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ABSTRACT

Attack graphs provide formalism for modelling the vulnerabilities using a compact repre-

sentation scheme. Two of the most popular attack graph representations are scenario attack

graphs, and logical attack graphs. In logical attack graphs, the host machines present in the

network are represented as exploit nodes, while the configurations (IDS rules, firewall policies

etc.) running on them are represented as fact nodes. The actual user privileges that are possible

on each of these hosts are represented as privilege nodes.

Existing work provides methods to analyze logical attack graphs and compute attack paths

of varying costs. In this thesis we develop a framework for analyzing the attack graph from a

defender perspective. Given an acyclic logical dependency attack graph we compute defense

policies that cover all known exploits that can be used by the attacker and also are preferred with

respect to minimizing the impacts. In contrast to previous work on analysis of logical attack

graphs where quantitative costs are assigned to the vulnerabilities (exploits), our framework

allows attack graph analysis using descriptions of vulnerabilities on a qualitative scale. We

develop two algorithms for computing preferred defense policies that are optimal with respect

to defender preferences. Our research to the best of our knowledge is the first fully qualitative

approach to analyzing these logical attack graphs and formulating defense policies based on

the preferences and priorities of the defender.

We provide a prototype implementation of our framework that allows logical attack graphs

to be input using a simple text file (custom language), or using a GUI tool in graphical markup

language (GML) format. Our implementation uses the NVD (National Vulnerability Database)

as the source of CVSS impact metrics for vulnerabilities in the attack graph. Our framework

generates a preferred order of defense policies using an existing preference reasoner. Preliminary

experiments on various attack graphs show the correctness and efficiency of our approach.



1

CHAPTER 1. Introduction

The internet being a global system of interconnected networks, each having their own

topologies and dependencies, is a tough challenge to manage. From a security standpoint,

system administrators have the tough task of enforcing security protocols to stop breaches

within their network without causing problems to general users of that network. In order

to enforce such policies they need to be well aware of existing vulnerabilities in their network,

which can be exploited by attackers with malicious intent. One of the worst known cyber-attack

occurred in 2004, when a Sandia National Laboratories employee, Shawn Carpenter, discovered

a series of large “cyber raids” [Graham (2005)]. The Federal Bureau of Investigation (FBI)

named the attacks, “Titan Rain”, and found that several sensitive computer networks were

infiltrated by hackers such as those at Lockheed Martin and Sandia (owned by Lockheed), but

also at the likes of NASA. The possibility that the hackers did not just make off with classified

data and military intel, but could also have left behind backdoors and “zombify” machines,

enabling easier attacks in the future.

In order to avoid such incidences it is imperative to know about existing vulnerabilities in

the network. The lesser the vulnerabilities, the more difficult it is for attackers to penetrate the

internal network. However, sometimes vulnerabilities cannot be avoided due to multitude of

reasons like: shared dependencies, lack of structured access policies in the organization etc. In

such situations knowledge about vulnerabilities by the system administrator is vital. They can

use that knowledge to safeguard against breaches by enforcing defense policies which blocks out

external attacks. Thus it is crucial to detect and respond to the attacks in a timely manner.

Intrusion detection systems (IDS) and firewalls help system administrators to identify attacks.

However, IDSs are very noisy and most of the times flag normal traffic as attacks, making

its use an issue to keep track of actual attacks [Kabiri and Ghorbani (2005), Hassan et al.
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(2013)]. Once attacks have taken place, it is very difficult and sometimes impossible to detect

the amount of losses, let alone recovering the lost data [Smith (2004), Cashell et al. (2004)].

In this context, it is important to supplement detection and response capabilities of Intru-

sion Detection and Response systems with a framework that will allow system administrators

to effectively and correctly (a) identify the cause and impact of an attack and (b) deploy

response(s).

Attack graphs [Phillips and Swiler (1998)] provide such a supplementary framework. They

capture the inter-relations between nodes or capabilities of a network and formulate the se-

quences or sets of events that can potentially compromise the network. The attack graphs can

be broadly classified as Network-based attack graph, which models the topological relationship

of the network nodes [Noel et al. (2005)]; and Logical attack graph, which models the capability

relation of the network [Ou et al. (2006)]. For instance, the Figures 1.1, 1.3 are two examples

of how logical attack graphs are represented.

Attack graphs allow security analysts to assess vulnerability of critical network resources

and to understand how impacts on individual services contribute to overall vulnerability. At-

tack graphs have traditionally been created manually by security red teams [Noel et al. (2005)].

However, significant progress has been made towards generating attack graphs based on net-

work models and attacker exploits, notably [Ramakrishnan and Sekar (2000); Ritchey and

Ammann (2000); Sheyner et al. (2002); Baldwin (1994); Zerkle and Levitt (1996); Phillips and

Swiler (1998); Dawkins et al. (2002); Ammann et al. (2002); Jajodia et al. (2005); Cuppens

et al. (2002); Ning et al. (2004); Noel et al. (2005)]. Most of the attack graphs generated are

potentially huge rendering analyses difficult.

Ou et al. (2006) introduced the notion of scalability and a standardized input mechanism

for generating attack graphs. One of the pioneering works by Sheyner et al. (2002) is the

first attack-graph tool based on formal logical techniques, popularly known as model-checking.

However, it still encountered the problem of growth explosion for moderate sized networks. For

example, a network of only 10 hosts with 5 vulnerabilities per host takes about 15 minutes to

generate and results in a graph consisting of 10 million edges [Ou et al. (2006)]. Therefore, the

method adopted for the tool developed for our research was based upon these acute observations
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Figure 1.1 A simple logical attack graph

and representing the attack graphs as a logical AND/OR tree made the most sense. Figure 1.1

displays an example of a simple logical attack graph. In the figure, the nodes labelled ‘p1’ and

‘p2’ are called as privilege nodes, while nodes ‘e1’, ‘e2’ and ‘e3’ are called exploit nodes. The

nodes labelled, ‘c1’, ‘c2’, ‘c3’, and ‘c4’ are referred to as fact/configuration nodes. In essence,

the exploit nodes represent the host machines in the network that can be attacked, while the

configuration nodes are sets of configurations (firewall rules, IDS configurations etc.) that those

hosts have been configured with. The privilege nodes, represent the privileges (application

programs; user privileges; ftp, rsh privileges etc.) that those host machines are capable of

running. In the representation of logical attack graphs, the privilege nodes are treated as OR

nodes which can be satisfied by any of the children nodes being satisfied (exploited) and exploit

nodes are treated as AND nodes which can only be satisfied when all of its children are satisfied.

The fact nodes (leaf nodes in logical attack graph) are treated as artifacts. Our aim is to help

the system administrator by providing a prioritized list of defense policies that will be validated

against the attack graph. Thus, it is essential, that the representation of the attack graph be

simple to understand and interpret but contain all information about the network.



4

1.1 Logical Attack Graphs

Logical attack graphs directly illustrate logical dependencies among attack goals and con-

figuration information. A logical attack graph always has size polynomial to the network being

analyzed [Ou et al. (2006)]. In this representation, a node in the graph is a logical statement

which does not encode the entire state of the network, but only some aspect of it. The edges

in the graph specify the causality relations between network configurations and an attackers

potential privileges. In Sheyner’s scenario attack graphs every node is a collection of boolean

variables encoding the entire network state at an attack stage. Thus, even if the number of

variables is polynomial in the size of the network, the possible number of states is exponential.

However, in logical attack graphs the nodes are not boolean variables but a logical statement,

while the edges capture the causality relations between network configurations and an attackers

potential privileges. Thus, not only ensuring that the graphs are always polynomial in size, but

the edges clearly outline the casualty relations with respect to attacker’s potential privileges.

In case of network security analysis, it is vital to consider both multi-stage and multi-host

attacks. In logical attack graphs, the propositional formula for each node, captures the state

of the attacker and the edges clearly outline the casualty relations with respect to attacker’s

potential privileges (inter host dependencies). Logical attack graphs not only require less time

to generate, but also it is also easier to embed any information either explicit or implicit about

the attack graph in them. Moreover, inferences that are to be drawn about the network can

be performed easily by the network and system administrators. We use logical attack graphs

for our work for all the same advantages.

The example network in Figure 1.2 is borrowed from the MuLVAL paper [Ou et al. (2006)].

Suppose the following potential attack paths are discovered after analyzing the configuration.

An attacker first compromises webServer by remotely exploiting vulnerability CVE-2002-0392

to get local access on the server. Since webServer is allowed to access fileServer through the

NFS protocol, he can then try to modify data on the file server. There are two ways to achieve

this. If there are vulnerabilities in the NFS service daemons, he can try to exploit them and

get local access on the machine; or if the NFS export table is not set up appropriately, he can
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Figure 1.2 Example [Ou et al.(2006)]

Figure 1.3 An example logical attack graph
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modify files on the server through the NFS protocol by using programs like NFS Shell. Once

he can modify files on the file server, the attacker can install a Trojan-horse program in the

executable binaries on fileServer that are mounted by machine workStation. The attacker can

now wait for an innocent user on workStation to execute it and obtain control on the machine

[Ou et al. (2006)]. The logical attack graph corresponding to the above scenarios is illustrated

in Figure 1.3.

1.2 Defense Policy Computation as SAT-Solving

The purpose of generating and analyzing these attack graphs is to aid the system adminis-

trators design defense policies to prevent attacks. If these graphs are too big and cumbersome,

it is of no practical use to the analysts even if they are accurate and complete. It was this

observation that led to the concept of attack graph distillation by Huang et al. (2011). Their

work is an extension of an earlier work by Homer and Ou (2009) which addressed the issue of

balancing security and usability with certain trade-offs. Consider the simple example of Figure

1.1, here the system administrator is aware of existing exploits (vulnerabilities), namely, ‘e1’,

‘e2’ and ‘e3’. However, despite these existing vulnerabilities in the network, the administrator

will try to defend the goal privilege (here, ‘p1’) from being attained by the malicious attacker.

In order to accomplish this, the defender will try to either modify or remove certain config-

urations (‘c1’, ‘c2’, ‘c3’, and/or ‘c4’) on the hosts (exploits ‘e1’, ‘e2’ and ‘e3’). The defender

may also, simply place monitors on certain privileges (here ‘p2’) using some IDS engine, to

prevent/log certain privilege usage.

In this thesis, we base our work along the lines of Homer and Ou (2009) and Huang et al.

(2011). Although, we will not restrict ourselves to only using SAT-solvers for forming and

verifying valid defense policies against possible attacks. As our approach is not quantitative but

more qualitative, we focus on the preferences of the defense policies based on recommendations

from the system administrator.



7

1.3 Defense Policy Properties

From the point of view of a system administrator, defense policies are a set of tasks that

could prevent an attacker from breaching the network. With regards to our research we will

define a defense policy as consisting of certain privileges and configurations present in the

AND/OR Logical Attack Graph. Previous works for assessing the security risks in an enterprise

have mostly been from a quantitative standpoint. They have either quantified the security risks

in an organization by basing their work on the Common Vulnerability Scoring System (CVSS)

alone [Ou et al. (2006)], or used certain probabilistic approaches [Homer and Ou (2009)] to

analyze the vulnerabilities in the enterprise and perform comparisons.

We try to address the issue of defense policy enforcement, by providing a prioritized list

of defense policies based on certain inputs from the system administrator. Again, let us try

to understand the issue from our example attack graph in Figure 1.1. Here’s the system

administrator’s main objective is to ensure that the privilege ‘p1’ never be achieved by any

attacker inspite of existing exploits (vulnerabilities) ‘e1’, ‘e2’ and ‘e3’. Now, there are several

ways of achieving this. The most naive solution would be to ensure, none of the configurations,

namely, ‘c1’, ‘c2’, ‘c3’, and ‘c4’ are ever placed. Note, this is similar to removing exploits ‘e1’,

‘e2’ and ‘e3’ from the network all together. However, this is not a viable solution to the problem,

because in real life these exploits are host machines, being used for actual purposes by a lot

of genuine users. Removing them all together, might ensure no possibility of attacks, but it

also means, shutting down all normal functionality within the network. This is certainly not

possible.

Consider alternative solutions, where the administrator can remove any or a combinations

of the configurations (c1, c2, c3 or c4). For example, removing c4 and c3; c1, c2, and c3;

or just removing c3. Note, the choice which is a better defense policy is entirely upon the

administrator, based on his/her experience about the network topology and traffic. If the

chances of an attack are very less, placing a monitor for the execution of privilege ‘p2’ may

be sufficient. While all the policies are correct, some might make the system more restrictive,

and others might just render it useless. Therefore, it is clear that there are a wide variety of
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choices in terms of defense policy for a certain attack. Now, in case of an enterprise network,

consisting of hundreds or thousands of hosts, these choices are too many for the administrator

to decide manually. This shows the usefulness of our tool, where the system administrator is

provided with a prioritized list of defense policies, based on certain generic inputs. Now, the

defender may have different priorities for different properties of the system like: availability,

confidentiality, and integrity. These properties are clearly defined by the industrial benchmark

of Common Vulnerability Scoring System (CVSS) [Mell et al. (2007), Schiffman et al. (2004)].

CVSS provides certain measurable (quantitative) metrics for communicating the characteristics

and impacts of IT vulnerabilities between different organizations.

1.3.1 Problem Statement

The question(s) we ask ourselves again and again, during the course of thesis is, “Can the

network be visualized in a logical manner that depicts the privileges possible to attain from

present configurations on existing vulnerabilities (exploits) in the system. Is there a way to

help formulate defense policies that would help system administrators block attacks? If so, can

these policies be prioritized, based on certain preferences input by the administrators?”

1.4 Contributions

The following are the contributions of this thesis:

1. Integration of Logical Attack graphs and CVSS impact metrics. To the best of our knowl-

edge, this work is the first of its kind, which analyses attack graphs by bringing together

the concept of logical attack graph based on Huang et al. (2011) and the CVSS impact

metrics (Confidentiality Impact (C), Integrity Impact (I) and Availability Impact (A)).

The defense policies generated are analyzed in a prioritized order based on certain rec-

ommendations of the system administrator and these policies are then compared against

the logical attack graph to validate them.

2. Preferential treatment of system privileges for obtaining priorities over defense policies.

The preferences input by the system administrator are over the privileges in the logical
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attack graphs. As we are interested in a qualitative analysis, we rely on the inputs of

the system administrator to create a list of preferences from high priority to low. Based

on the priority we help analyse the defense policies in the same order against the attack

graph of the network. This is efficient both in terms of scalability and practicality. In

a practical approach, one would want to safeguard the high priority assets first, then

their medium priority ones and finally the low priority ones. The CVSS impact metrics

also work in a similar manner. However, we ensure that in no way, the attacker even if

he/she gets hold of the low priority assets can escalate to higher privileges. In essence

we perform a holistic check on all possible paths to higher priority privileges before we

analyze the lower priority privileges.

3. Realization of a framework for obtaining prioritized defense policies (DrAGON1). To the

best of our knowledge, no such tool exists till date which analyses an attack graph and

provides a prioritized list of defense policies based on CVSS impact metrics. Here are a

couple of highlights of the tools features,

a. Experimental evaluation presenting the feasibility of the approach. We have run con-

clusive tests both from synthetic examples and from previously published sources.

We have run the tests based on a wide variety of parameters to verify the correctness

of our approach and have observed results that align with established principles and

expected results.

b. GUI for easy-to-understand justification of defense policy prioritization. For most of

the previous work on attack graphs, the input for the actual graphs requires some

really complicated syntax and semantics that varies based on the approach. Some

are based on formal methods, where the semantics can be cumbersome for the av-

erage lay-man user. Our work bridges the gap, by allowing the user to input the

attack graph either, in our specified format for parsing, or using graphical modeling

language(GML) for input, or to directly use their own graph editor tool(we recom-

mend using Y-ed graph editing tool for this purpose as it provides a diverse list of

1Defense by pReferred policies for Attack Graph of the Network
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options to layout the attack graphs) and create their own gml file from scratch.

1.5 Organization

This thesis is organized up into six chapters. In chapter 1, we introduced the reader to the

background of our work and to certain concepts and definitions. Chapter 2 provides insights

into the background of our work, and provides in-depth explanations of certain concepts and

ideas required to understand our work. It also provides certain examples to help understand

the underlying principles and concepts. Finally it compares our work to existing work and

clearly outlines the contributions of this thesis. In Chapter 3 we discuss about our concept of

qualitatively analyzing logical attack graphs and figuring out exploitable nature of the graphs.

We also delve into the impact analysis based on CVSS impact metrics and corresponding

defense criterions. Chapter 4 explains in detail, our implementation of qualitative analyses of

attack graphs and a preferential ordering of the defense policies. It explains how our tool works

and how to use it. We will discuss its architecture, modularization, input languages/formats,

outputs and visualization of the output. The experiments we conducted using our tool and

the observed results and how to interpret these results is explained in Chapter 5. Finally, in

Chapter 6, we will list the inferences we can draw from our experiments and conclude our

arguments regarding our work. We will also discuss the scope of future work based on our work

and extensions to the tool we developed.
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CHAPTER 2. Background

In this chapter we have discussed the background to our work involving and looked into

some of the past and existing work done in the field of attack graph. These have helped us

in building the foundation for our research. In the present study we have offered solutions

to the shortcomings of the research done in the past. Attack graphs are a way to visualize

and understand a network, thereby addressing the ongoing and evolving challenge of tracking

changes to inherent vulnerabilities, variable nature of attacks and tools used over time. Thus

attack graphs are a valuable tool for network administrators in patching vulnerabilities and

blocking attacks.

2.1 Attack Graphs

Attack graphs allow security analysts to assess true vulnerability of critical network re-

sources and to understand how impacts on individual services contribute to overall vulnerabil-

ity. Attack graphs have come a long way since their manual creation by the security red teams

[Noel et al. (2005)], by making use of network models and attacker exploits [Ramakrishnan

and Sekar (2000); Ritchey and Ammann (2000); Sheyner et al. (2002); Baldwin (1994); Zerkle

and Levitt (1996); Phillips and Swiler (1998); Dawkins et al. (2002); Ammann et al. (2002);

Jajodia et al. (2005); Cuppens et al. (2002); Ning et al. (2004); Noel et al. (2005)]. Most

of the attack graphs generated are potentially huge rendering their analysis difficult. A new

graph representation was presented by Kunz and Pradhan (1994), to identify implications in a

multi-level combinational circuit. While the emphasis provided in Kunz and Pradhan (1994)

was on how to extract implications, it had the underlying concept of search algorithms for

recursive learning which addressed the issue of exponential growth, as encountered by most of
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the previous works cited. This gave new theoretical and practical insight into many problems

[Stoffel et al. (1995)]. The issue of exponential growth can be solved by AND/OR tree which

was born as an underlying principle in recursive learning and it cannot be related to any of the

above.

In the field of security, all the work done before Ou et al. (2006) had not only failed to provide

an account of the scalability of the graph generating process, but also lacked logical formalism

in their representations of attack graphs. Although the work done by Sheyner et al. (2002)

in developing the attack-graph tool based on formal logical techniques, popularly known as

model-checking was first of its kind, it still could not address the issue of exponential explosion

for moderate sized networks.

2.1.1 Logical Attack Graphs

In case of network security analysis, it is vital to consider both multi-stage and multi-host

attacks. Attackers generally do not stop at the first machine they can break into, but try to

escalate up the hierarchy. As is evident, this means there is quite a lot of complicated routes

that the attacker can take. The defender’s work is extremely challenging as not all of these

paths can be cut off, as some might involve bringing down the network in part or full. Although,

that would stop the attack, it would also cause immense harm to the regular activities of the

real users and the organization. Logical attack graphs directly illustrate logical dependencies

among attack goals and configuration information. A logical attack graph always has size

polynomial to the network being analyzed [Ou et al. (2006)].

2.1.1.1 Definition

A logical attack graph is a graph where every node in the graph is a logical statement,

which does not encode the entire state of the network, but only some aspect of it. The edges

in the graph specify the causality relations between network configurations and an attackers

potential privileges. Logical attack graph illustrates causes of the attacks.

The mathematical definition of Logical Attack graphs is as follows:
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Definition 2.1.1. (Np, Ne, Nc, E, L,G) is a logical attack graph, where Np, Ne and Nc are

three sets of disjoint nodes in the graph, E ⊆ (Np × Ne) ∪ (Ne × (Np ∪Nc), L is a mapping

from a node to its label, and G ∈ Np is the attackers goal.

Np, Ne and Nc are the sets of privilege nodes, exploit nodes and fact(leaf) nodes, respec-

tively. The labeling function maps a privilege node to the privilege that can be run on the

host machine(exploit), and maps a configuration node to the configuration in place on the host

machine(exploit). For example, the attack graph illustrated in Figure 1.1, Np = {p1, p2}; Ne =

{e1, e2, e3}; Nc = {c1, c2, c3, c4}. The labelling function L, maps each node to the labels of each

node. For the same example, L(Np) = (p1, p2); L(Ne) = (e1, e2, e3); L(Nc) = (c1, c2, c3, c4).

Formally, the semantics of a logical attack graph is defined as follows.

Property 1. For every exploit node e, let P be the set of e’s parent node(s) and C be the

set of e’s child nodes then, (∧L(C)) ⇒ L( P) is an instantiation of interaction rule L( e) [Ou

et al. (2006)].

Here, ∧ is the conjunction operator. For example, the exploit node ‘e2’ is an application of

the interaction rule shown in Figure 1.1. In the example, e2 : (c1∧ c2∧p2)⇒ p1. This in literal

terms means, if the attacker can gain control over the configurations c1 and c2 on host e2 and

already has gained privilege p2, then the attacker will get access to privilege p1 as well..

2.1.1.2 Origin of Logical Attack Graphs

Logical Attack Graphs closely resemble Attack Trees which are conceptual diagrams showing

how an asset, or target, might be attacked. In the field of information technology, attack

trees have been used to describe threats on computer systems and possible attacks to realize

those threats. However, their use is not restricted to the analysis of conventional information

systems. They are widely used in the fields of defense and aerospace for the analysis of threats

against tamper resistant electronics systems (e.g., avionics on military aircraft). Attack trees

are increasingly being applied to computer control systems (especially relating to the electric

power grid). They have also been used to understand threats to physical systems. Some of

the earliest descriptions of attack trees are by Schneier (1999). Figure 2.1 is borrowed from
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Figure 2.1 Simple Attack Tree Describing Ways to Burgle a House [AmenazaLtd. (2003)]

AmenazaLtd. (2003) which is an attack tree that illustrates (in a very simple manner) the

different ways in which a residence, with an attached garage, can be burglarized. The green

colored nodes are called OR nodes and can be satisfied by any one of its immediate child nodes.

The blue colored node(s) are called AND nodes and they are satisfied if and only if all of its

immediate children are true (satisfied). The topmost node is the root node and represents the

ultimate goal of the attacker. All the grey colored boxes are sub-tasks called as Leaf nodes

which must be performed to satisfy the task nodes (AND/OR nodes).

Attack trees laid the foundation for some later works. We have seen that the dependencies

and interactions between multiple hosts and components in any moderately sized network can

be very large. Thus, it is important to generate automatic tools for analyzing the configurations

in an enterprise and spotting potential security vulnerabilities [Ou et al. (2006)].

The earliest work in producing full attack graphs is the Kuang system [Baldwin (1994)],

and its extension to a network environment, the NetKuang system [Zerkle and Levitt (1996)].

In these systems, a backward goal-based search scans UNIX systems for poor configurations.

The output is a combination of operations that lead to compromise.

Lippmann and Ingols (2005) presented a fine overview of various attack graph tools used

in the past and stated that, “although research has made significant progress in the past few
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years, no system has analyzed networks with more than 20 hosts, and computation for most

approaches scales poorly and would be impractical for networks with more than a few hundred

hosts.” This is quite a remarkable observation as most of the attack graph generation tools

not only suffer from scalability problems but also perform an ad-hoc method of inputting and

displaying this information.

Ammann et al. (2002) address the exponential nature of the attack graphs common to

Phillips and Swiler (1998), Swiler et al. (2001), and Sheyner et al. (2002). They present an

implicit, scalable attack graph representation that avoids the exponential blow-up of explicit

attack graphs. Attack graphs are encoded as dependencies among exploits and security con-

ditions, under the assumption of monotonicity. Here, monotonicity means, that the attackers

ability to perform any action is not affected by whatever actions or choices he/she takes. The

authors treat vulnerabilities, intruder access privileges, and network connectivity as atomic

boolean attributes, and actions as atomic transformations that, given a set of pre-conditions

on the attributes, establish a set of post-conditions.

Dawkins et al. (2002) have specified another language for modeling exploits and used this

language to provide a hierarchical view of attack trees. The hierarchy helps in presenting

information to the user in a more manageable way. However, their procedure results in a graph

representing all possible compromises, and not just those of interest to a specific intruder goal.

Most of the works discussed here have been mentioned in Sheyner’s thesis [Sheyner et al.

(2002)]. The work by Sheyner et al. (2002) is the first of its kind in this regard and is based

on formal methods. In it the state of the network is formally modelled as a collection of

boolean variables, representing configuration parameters and attacker’s privileges. The actions

performed by the attacker are modeled as state-transition relations. The security property

of the network is specified as a temporal formula, which is modeled and then verified by a

model checker. Unlike traditional model checkers, which provide just one counter-example if

the formula is not satisfied, Sheyner’s tool outputs all possible counter examples in the form of

a scenario graph.

However, Sheyner’s tool was far from perfect based on observations made by Ou et al. (2006).

They found that for a network of only 10 hosts with 5 vulnerabilities per host, Sheyner’s tool
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takes about 15 minutes to generate and results in a graph containing 10 million edges, which

pretty much renders Sheyner’s tool useless. Ou et al. (2006) in their work addressed this issue

by introducing logical attack graphs by performing subtle changes in the way the information

about the graph is stored. In their representation, a node in the graph is a logical statement.

This logical statement does not encode the entire state of the network, but only some aspect

of it. In some sense it can be viewed as one boolean variable in the nodes of Sheyners graph.

The edges in the graph specify the causality relations between network configurations and an

attackers potential privileges. According to Ou et al. (2006), if Sheyner’s attack graph illustrates

snapshots of attack steps, or “how the attack can happen”, their attack graph illustrates causes

of the attacks, or “why the attack can happen”. Sheyner’s work is referred to as scenario attack

graphs and the work done by Ou et al. (2006) is referred to as logical attack graphs.

2.2 Defense Policy Identification

We have seen different approaches to generate attack graphs so far. The main aim behind

generating these attack graphs is to allow the system administrators to understand the existing

vulnerabilities and to help in blocking the attacks. From the example scenario we talked about

in Section 1.3, we saw that the system administrators have a lot of different ways of blocking

the same attack. Now, these different defense strategies may involve certain different trade-offs

as far as normal working of the network is concerned. These defense measures can impact

different parameters of the network viz: confidentiality, integrity, and availability.

Previous work for assessing the security risks in an enterprise have either quantified the

security risks in an organization by basing their work on the Common Vulnerability Scoring

System (CVSS) alone, or used certain probabilistic approaches to analyze the vulnerabilities in

the enterprise and perform comparisons. Ou et al. (2006) in their book, “Quantitative Security

Risk Assessment of Enterprise Networks”, presented a methodology for quantitative security

risk analysis based on the model of attack graphs and the Common Vulnerability Scoring System

(CVSS). They helped answer questions like: “are we more secure than yesterday” or “how does

the security of one network configuration compare with another one”. Homer and Ou (2009)

takes yet again a quantitative approach to analyzing security risk in an enterprise network, but
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they applied probabilistic reasoning to produce an aggregation that has clear semantics and

sound computation. They also address the issue of shared dependencies between attack paths

and cycles in their aggregation analysis.

Our work defines a defense policy as consisting of certain privileges and/or configurations

present in the AND/OR Logical Attack Graph. We will also base our approach more from a

qualitative stand-point integrating the CVSS impact metrics and allowing priorities over these

metrics.

2.2.1 Formalization of the SAT Problem

The logical relationships represented in a dependency attack graph can be analyzed in two

directions. One way to do this is by forward deduction, where analysis is from attacker’s present

state to the final goal state. This approach has been used to encode the effect of changing

configurations on attackability [Homer and Ou (2009)]. The second approach is by backward

induction, which is from the goal state to the initial attacker location [Huang et al. (2011)].

This approach has also been used to transform an attack graph into disjunctive normal form

(DNF)[Wang et al. (2006)] that captures the exact configuration conditions for a privilege(s) to

be obtainable. In our work we will perform backward induction similar to Huang et al. (2011),

where the backward induction generates a conjunctive normal form (CNF) that encodes the

requirement relations between attack steps. However, unlike them we will not assign cost

metrics to the literals in the CNF formula and perform a quantitative analysis. We will take a

qualitative standpoint and prioritize the defense policies based on the SAT formula and CVSS

[CVSS (2007)] impact metrics.

Let us revisit our first basic example of a logical attack graph as illustrated in Figure 1.1 and

review the logical structure of the graph and provide examples of the transformation process.

An OR node (the green colored diamond-shaped node) represents the privilege an attacker can

gain after exploiting any one of children AND nodes, e.g. p1 can be achieved through one of

e1, and e3, corresponding to the OR logic. An AND node (the blue colored oval-shaped node)

is used to simulate the process of exploiting a vulnerability on a host, only after all its children

are obtained, e.g. e3 can be exploited if and only if all of its children are obtained viz: p2, and
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c4. It is worth noting that for this type of exploits, the logic constraint indicates that in order

to set e1 to be “True”, its child privilege p2 should be set to “True” as well. For example,

consider the possible attack paths for reaching goal privilege p1 through exploits e1, e2, and e3

could be traced as follows:

e2 → p2 → e3 → p1; e2 → p2 → e1 → p1

The basic logic constraint encode based on the original attack graph depicted in Figure 1.1,

are defined as follows. For p1, we have

p1 ::= p1 ⇒ e1 ∨ e3

Or, equivalently,

p1 ::= ¬p1 ∨ e1 ∨ e3

For an AND node like e1,

e1 ::= c1 ∧ c2 ∧ p′2 ⇒ p1

where, p′2 means the privilege node p2 is not monitored

Or, equivalently,

e1 ::= (c1 ∧ c2 ∧ p′2) ∨ ¬p1

For our work, we consider that a privilege node can be represented as is pi or as un-

monitored (p′i). The un-monitored privilege node (p′i) means the same privilege exists in the

attack graph, but currently there are no monitors on it. Negating an un-monitored privilege

means explicitly placing a monitor on the privilege pi. Based on this transformation, each of

the OR nodes and AND nodes will be represented in one or more disjunctive clauses. Now, a

valid defense policy for protecting the goal privilege node, defined by the symbol Def() will be

negation of conjunctions all exploit nodes (AND nodes), along with the negation of the goal

privilege node in the attack graph. Mathematically, it can be represented as,

Def(p1) ::= (e1 ∧ e2 ∧ e3) ∧ ¬p1

A valid defense policy is one where, the system administrator considers that all the exploits

are present, yet the goal privilege is safeguarded from an attack. It is worth pointing out that
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for our work, we do not consider an exploit to be negated even if it’s parent privilege(s) is

negated, e.g. in Figure 1.1, e2 is not considered negated, even if p2 is negated according to

the system administrator, when formulating a defense policy. This is because, e2 can still be

exploited by an attacker by using any other exploitable configurations (known/unknown) that

have not been modeled in the attack graph. However, if e2 is considered to be negated from the

defender perspective, p2 will be automatically negated. Thus, our work ensures the correctness

of the defense policies enforced.

2.2.2 CVSS Impact Metrics: An Overview

The National Vulnerability Database (NVD) is a product of the National Institute of Stan-

dards and Technology (NIST) Computer Security Division and is sponsored by the Department

of Homeland Security’s National Cyber Security Division. It is the U.S. government content

repository for the Security Content Automation Protocol (SCAP). They use a standardized

method for analyzing vulnerabilities in a network based on certain quantitative valuations.

This guideline of scores(called metrics) is based on expert assessment and is termed as Com-

mon Vulnerability Scoring System (CVSS), maintained by the Forum of Incident Response and

Security Teams (FIRST). CVSS helps organizations prioritize and coordinate a joint response

to security vulnerabilities by communicating the base, temporal and environmental properties

of a vulnerability [CVSS (2007); Mell et al. (2007); Schiffman et al. (2004)]. CVSS defines the

following terms:

• Vulnerability: a bug, flaw, weakness, or exposure of an application, system, device, or

service that could lead to a failure of confidentiality, integrity, or availability.

• Threat: the likelihood or frequency of a harmful event occurring.

• Risk: the relative impact that an exploited vulnerability would have to a user’s environ-

ment.

Research by the National Infrastructure Advisory Council in 2003/2004 led to the launch

of CVSSv1 in 2004. Work on CVSSv2 (the current version) began in 2005 and launched in
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2007. Work on version 3 began in 2012, and is expected to be released in 2014. CVSSv2

has 6 base metrics for analyzing the vulnerability status of a network. The base metric group

captures the characteristics of a vulnerability that are constant with time and across user

environments. The Access Vector, Access Complexity, and Authentication metrics capture

how the vulnerability is accessed and whether or not extra conditions are required to exploit

it. The three impact metrics measure how a vulnerability, if exploited, will directly affect an

IT asset, where the impacts are independently defined as the degree of loss of confidentiality,

integrity, and availability. For example, a vulnerability could cause a partial loss of integrity

and availability, but no loss of confidentiality.

Here we’re concerned with the 3 CVSS Impact metrics:

1. Confidentiality Impact (C): This metric measures the impact on confidentiality of a

successfully exploited vulnerability. Confidentiality refers to limiting information access

and disclosure to only authorized users, as well as preventing access by, or disclosure to,

unauthorized ones. There are 3 levels associated with it:

• None (N): There is no impact to the confidentiality of the system.

• Partial (P): There is considerable informational disclosure. Access to some system

files is possible, but the attacker does not have control over what is obtained, or the

scope of the loss is constrained. An example is a vulnerability that divulges only

certain tables in a database.

• Complete (C): There is total information disclosure, resulting in all system files

being revealed. The attacker is able to read all of the system’s data (memory, files,

etc.)

2. Integrity Impact (I): This metric measures the impact to integrity of a successfully

exploited vulnerability. Integrity refers to the trustworthiness and guaranteed veracity of

information. There are 3 levels associated with it:

• None (N): There is no impact to the integrity of the system.
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• Partial (P): Modification of some system files or information is possible, but the

attacker does not have control over what can be modified, or the scope of what

the attacker can affect is limited. For example, system or application files may be

overwritten or modified, but either the attacker has no control over which files are

affected or the attacker can modify files within only a limited context or scope.

• Complete (C): There is a total compromise of system integrity. There is a complete

loss of system protection, resulting in the entire system being compromised. The

attacker is able to modify any files on the target system.

3. Availability Impact (A): This metric measures the impact to availability of a suc-

cessfully exploited vulnerability. Availability refers to the accessibility of information

resources. Attacks that consume network bandwidth, processor cycles, or disk space all

impact the availability of a system. There are 3 levels associated with it:

• None (N): There is no impact to the availability of the system.

• Partial (P): There is reduced performance or interruptions in resource availabil-

ity. An example is a network-based flood attack that permits a limited number of

successful connections to an Internet service.

• Complete (C): There is a total shutdown of the affected resource. The attacker

can render the resource completely unavailable.

2.3 Scope of this Thesis

Our work is based on identifying and validating defense policies in a prioritized manner

against the input logical attack graph. We do not approach the problem from a purely quanti-

tative view-point like many of the previous works [Homer and Ou (2009); Homer et al. (2009);

Homer et al. (2013)]. Even though we integrate our defense policy validator with the CVSS

impact metrics, we allow for the system administrator to prioritize the policies based on the

impact metrics. To the best of our knowledge, no such tool exists till date which analyses an

attack graph and provides a prioritized list of defense policies based on CVSS impact metrics.
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CHAPTER 3. A Qualitative Analysis of Attack Graph Exploitability and

Impacts

In this chapter we will discuss about our work in detail. We will try to understand, why we

are interested in a qualitative analysis of the attack graph over a quantitative analysis. We will

also showcase how our work differs from previous works. We will see how our work integrates

the network metric standards of CVSS, and finally, we will look at the advantages of such a

qualitative analysis.

We have seen already, that the National Vulnerability Database (NVD) was set up to

help standardize the vulnerability measures across different organizations based on the CVSS

metrics. We have also seen by now, that having a very detailed and complete analysis of

a network might be overwhelming and not very useful to the system administrators. Thus,

there is a need for balancing usability with completeness when it comes to analysis of network

security. Our work tries to accommodate all of these ideals.

3.1 Advantages of Qualitative Analysis

We are concerned about a qualitative analysis in our work, than a quantitative analysis.

There are many reasons as to why we are interested in such an analysis. The biggest reason we

felt for adopting such a strategy, is that qualitative analysis allows for a much more in-depth

analysis of a phenomenon than a quantitative analysis. Also, we found, that there has been a

lot of quantitative analysis of attack graphs that have been previously performed [Swiler et al.

(1998); Wang et al. (2007); Frigault et al. (2008); Wang et al. (2008); Huang et al. (2011);

Keramati and Akbari (2013)]. Although, many of them helped address a lot of missing features

of quantifying the vulnerabilities and the overall security of the network, none could actually
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factor in specific details about a network. Our work, to the best of our knowledge allows

inputs from the system administrator about basing priorities over the CVSS impact metrics,

allowing for a much more in-depth analysis of the dependency logical attack graph. Moreover,

NVD and FIRST (Forum of Incident Response and Security Teams) themselves recommend

explicitly that the metrics be handled qualitatively to preserve information. Since, we do not

rigidly depend on the cost metrics put forward by the CVSS [Mell et al. (2007); CVSS (2007);

Schiffman et al. (2004)] as maintained by the NVD, we allow for natural extension to any other

metric that might be more accurate in future. As the metrics we used do not have numeric

domain, we do not have to make unjust approximations about our analysis. Hence, our defense

policy validator is not only always correct, but it can analyze in much more detail inputs fed

in by the system administrator about the network administrator along with the attack graph.

3.2 Logical Attack Graphs and Our Work

The choice of logical attack graphs based on Ou et al. (2006) work, was a deliberate attempt

to keeping our attack graphs both scalable and usable. Sheyner’s contribution [Sheyner et al.

(2002); Sheyner (2004)] to this field is considered as one of the most impactful contributions yet

based on a couple of reasons. Not only was his tool based on formal logical methods but, his tool

also performed a complete analysis of all possible attack scenarios based on the input attack

graph. However, it suffered in terms of scalability of the generated attack graph. Based on all

previous works on this topic, we found Huang et al. (2011) approach to be the most effective.

Hence, we base our work around the same concept of logical attack graph as explained by them.

Although we will deal with a slightly different representation for our work. In their work, Huang

et al. (2011) represented dependency in their attack graph with edges from the leaves towards

the goal privilege (which is the root). However, we shall represent our attack graph with edges

from the root node (goal privilege) and outwards to the leaves (fact/configuration nodes). This

difference in representation stems from the fact that, while Huang et al. (2011) were concerned

with the steps taken by an attacker to gain the goal privilege, our main objective is to help the

defender (system/network administrator) stop any attacker from gaining the goal privilege.

This difference can be understood from the example in figures 3.1. Observe that in Figure
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3.1(a), the edges are inward towards the goal privilege (p1), whereas, in Figure 3.1(b), the

edges are directed from the goal privilege (p1) outwards to the leaf nodes (fact/configuration

nodes). This simple variation in the two representations arises from the fundamental difference,

that while in Figure 3.1(a), the graph is from an attacker’s point of view, in Figure 3.1(b), we

consider the graph from the defender’s perspective. It is worth mentioning here, that unlike

the example in Figure 3.1(b), we will not deal with attack graphs having cycles but work with

acyclic logical attack graphs only. We intend to extend our work to accommodate cycles in the

future.

Huang et al. (2011) in their work, provided a tool for analyzing attack graphs quantitatively.

Their contribution is the concept of attack graph surface and a way to compute the critical

attack graph surface iteratively through SAT solving. SAT solving had been previously applied

in network configuration management [Narain et al. (2008)] and MinCostSAT had been applied

to attack graph for context-aware security management [Homer and Ou (2009)]. Wang et al.

(2006) in their work had a boolean formula based approach to identify minimum-cost network

hardening options from attack graphs. However, only Huang et al. (2011) focused on the

critical problems in an attack graph and identified a critical attack surface. The idea of attack

surface [Howard et al. (2005), Manadhata and Wing (2011), Manadhata et al. (2006)] was

proposed in software engineering as a metric to indicate the exposed resources to potential

abuses. Similarly, a critical attack graph surface refers to a portion of an attack graph that

demonstrates the most critical security exposure in a network.

3.3 Integration of CVSS Impact Metrics in Analysis

There have been a wide variety of approaches to quantify the security of attack graphs

[Swiler et al. (1998), Wang et al. (2007), Frigault et al. (2008), Wang et al. (2008), Huang

et al. (2011), Keramati and Akbari (2013)]. However, most of these quantitative approaches

involve some level of probabilistic analysis. Now, the problem with adopting any of the metrics

discussed in these works is that they have not been tested out rigorously and not applied to

different network conditions. However, the CVSS metrics have been used by a wide variety of

organizations, with different network topologies, with varying threats and vulnerabilities. The
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(a) Attacker perspective [Huang et al. (2011)]

(b) Defender perspective

Figure 3.1 An example dependency logical attack graph
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CVSS metrics are publicly maintained and available in the National Vulnerability Database

(NVD). We base our work on the CVSS metrics, because of these very reasons. However, we

do realize that CVSS also has its limitations for assessing the impact metrics, but, since we do

not work explicitly with the cost metrics set by CVSS and concentrate more on the qualitative

nature of analyzing impacts, our research is somewhat independent of its limitations. This

allows adapting our study on some new and better metrics that might be available in the

future.

In Chapter 2 we discussed about the 3 CVSS impact metrics, when solving the problem

of validating the defense policies and prioritizing them. For the benefit of the reader, we re-

iterate the 3 CVSS impact metrics again, they are: confidentiality impact, integrity impact,

and availability impact. Now, each of these impacts have 3 impact levels, low, medium, and

high, in the order of better to worse conditions. Confidentiality impact measures how well,

data is protected from unauthorized access. Integrity impact measures the trustworthiness and

veracity of the information. Availability impact measures the accessibility of the information

resource. Now, the system administrators(s) might have a preference over any of the impact

metrics, e.g, confidentiality might be most important, followed by availability, and then integrity

in an enterprise. Another situation might be that, medium confidentiality impact is preferred

over a high availability impact. In essence, there may be a complete or partial ordering over

these impact metrics and levels. We accommodate such preferences while putting forward

defense policies in a prioritized order to the system administrator. We use a tool called iPref-R

[Santhanam et al. (2010); Oster et al. (2013)] which is a reasoner for qualitative preferences

expressed in languages such as CP-nets, TCP-nets and CI-nets. i-PrefR is founded on decision

theory, formal methods and software engineering. It helps generate preferences of partial or

complete order over the input literals (here, CVSS impact metrics and sub-levels). The following

section provides an overview of the foundations and working of this preference reasoner.
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3.4 Conditional Preference Statements

3.4.1 CP-nets and TCP-nets

Extracting preference information from users is generally an arduous process, and human de-

cision analysts have developed sophisticated techniques to help elicit this information [Howard

and Matheson (1984)]. Methods for extracting, representing and reasoning about preferences

are important in AI (Artificial Intelligence) applications. Even for analyzing the attack graphs,

we need a structured method to analyze the preferences among the various defense policies that

can be enforced to stop a certain attack. However, in most cases just like in our work, users

may not be able to provide much more than qualitative rankings of fairly circumscribed out-

comes. This idea gave birth to the novel graphical representation, CP-nets, that can be used for

specifying preference relations in a relatively compact, intuitive, and structured manner using

conditional ceteris paribus (all else being equal) preference statements [Boutilier et al. (2004)].

The semantics of CP-net allows variables to have arbitrary finite domains. It is important to

note that the ceteris paribus component of these definitions ensures that the statements one

makes are relatively weak. In particular, they do not imply a stance on specific value tradeoffs.

Consider two variables A and B that are preferentially independent, so that the preferences

for values of A and B can be assessed separately; for instance, suppose a1 � a2 and b1 � b2.

Clearly, a1b1 is the most preferred outcome and a2b2 is the least; but if feasibility constraints

make a1b1 impossible, we must be satisfied with one of a1b2 or a2b1. However, we cannot tell

which is most preferred using these separate assessments. Brafman et al. (2006) enhanced the

expressive power of CP-nets by introducing information about importance relations, obtain-

ing a preference-representation structure which they called TCP-nets (for Tradeoff-enhanced

CP-nets). By capturing information about both conditional preferential independence and

conditional relative importance, TCP-nets provide a richer framework for representing user

preferences, allowing stronger conclusions to be drawn, yet remaining committed to the use

of only very intuitive, qualitative information. They modeled a preference relation as a strict

partial order. A strict partial order is a binary relation over outcomes that is anti-reflexive,

anti-symmetric and transitive. Given two outcomes o, o’, the representation o � o’ is used to
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denote that o is strictly preferred to o’. The TCP-net (for Tradeoff-enhanced CP-nets) model

is an extension of CP-nets [Boutilier et al. (2004)] that encodes conditional relative importance

statements, as well as the conditional preference statements supported in CP-nets. The primary

usage of the TCP-net graphical structure is in consistency analysis of the provided preference

statements, and in classification of complexity and developing efficient algorithms for various

reasoning tasks over these statements.

In the following example borrowed from Brafman et al. (2006) we will try to understand

the inherent advantages of TCP-nets over CP-nets. Again for simplicity of presentation, the

variables are boolean in nature, but they can have arbitrary finite domains.

Example 3.4.1 (My Top-Secret Network). Figure 3.2(a) presents a CP-net that consists of

three variables C, I, and A, standing for the confidentiality impact, integrity impact, and avail-

ability impact, respectively. I run a top-secret research lab working with top-secret stuff and I

prefer low impact to high impact as an impact level for both confidentiality and integrity im-

pacts, while my preference for the availability impact (low/high) is conditioned on the impact

levels of confidentiality and availability: If both confidentiality and integrity impacts are low, a

high availability impact will make the network break down completely, therefore, low availability

impact is preferable. Otherwise, if the confidentiality and the integrity impacts are different, a

low availability impact will probably render the existing users vulnerable to attacks and allow the

attack to spread easier, or develop inconsistencies in the data effectively puzzling the genuine

users, therefore, a high availability impact is preferable. However, if both the confidentiality and

integrity impacts are high, then the availability should be low (to prevent exfiltration of data),

hence, availability impact should be high. The solid lines in Figure 3.2(c) show the preference

relation induced directly by the information captured by this CP-net; The top and the bottom

elements are the worst and the best outcomes, respectively, and the arrows are directed from less

preferred to more preferred outcomes. Figure 3.2(b) depicts a TCP-net that extends this CP-net

by adding an i-arc from C to I, i.e., having low confidentiality impact is (unconditionally) more

important than having low integrity impact. This induces additional relations among outcomes,

captured by the dashed lines in Figure 3.2(c).
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(a) (b) (c)

Figure 3.2 “My Top-Secret Network” CP-net & TCP-net

According to the preference, it seems that I will always have low confidentiality and low

availability impact. However, while my preferences are clear, various constraints may make

some outcomes, including the most preferred one, infeasible. For instance, I may not have a

low confidentiality impact in my network (because my system administrator went to a bar and

lost a document with all root passwords and reset-passwords in it after getting drunk), in which

case the most preferred feasible alternative is a high confidentiality impact, low integrity impact,

and a high availability impact. Alternatively, suppose that the only options for me are to have

a low confidentiality impact and high integrity impact by installing state of the art hardware

based firewall device or high confidentiality impact and low integrity impact by upgrading to

new enterprise database software. I do not have enough money to install the firewall device

and upgrade to a new enterprise database software, so I will have to compromise, and either

upgrade to a newer enterprise database solution and deal with high confidentiality impact but

maintain a low integrity impact, or to install the hardware equipment and allow data integrity

to be hampered but maintain a low confidential impact. In this case, the fact that I prefer low

confidentiality impact than low integrity impact determines higher desirability for the hardware

based firewall device than the upgrade to the enterprise database software. Now, if my assistant
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has to run the network security lab in case I’m kidnapped and held at gun-point (for top-secret

information), having this information will help him/her to choose among the available options

a decision which I would have concurred. Essentially, the same concept goes into picking the

most preferred defense policies with respect to a given attack graph for blocking attacks.

3.4.2 CI-nets

Both CP-nets and TCP-nets help represent ordinal preferences over sets of alternatives and

not over set of goods which are monotonic. Conditional importance networks (CI-nets) includes

questions of the form, “if I have a set A of goods, and I do not have any of the goods from

some other set B, then I prefer the set of goods C over the set of goods D” [Bouveret et al.

(2009)]. So far we have seen CP-nets [Boutilier et al. (2004)] allow eliciting and representing

ordinal preferences over combinatorial domains where preference relations on the domain of

each variable are conditioned by the values of the variables it depends on. TCP-nets [Brafman

et al. (2006)] extend CP-nets by allowing statements of conditional importance between single

variables, and conditional preference theories [Wilson (2004)] which is an extension TCP-nets.

CI-nets are very similar to TCP-nets [Brafman et al. (2006)], but, CI-nets can compare sets

of objects of arbitrary size, while TCP-nets can only express importance statements between

single objects, ceteris paribus (all else being equal). However, CI-nets do not express preferences

between values of variables, as TCP-nets do, since monotonicity makes them redundant. The

following are the definitions of conditional importance statement and CI-nets by Bouveret et al.

(2009).

Definition 3.4.1 (Conditional importance statement). A conditional importance statement

on V is a quadruple γ = (S+,S−,S1,S2) of pairwise disjoint subsets of V, written as S+,S− :

S1 B S2.

The informal reading is: if I have all the items in S+ and none of those in S−, I prefer

obtaining all items in S1 to obtaining all those in S2, ceteris paribus. S+ and S− are called the

positive precondition and the negative precondition of γ, respectively. S1 and S2 are called the

compared sets of γ. Here, V is a set of attributes describing the alternatives.
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Definition 3.4.2 (CI-net). A CI-net on V is a set N of conditional importance statements on

V.

CI-statements are similar to importance statements in TCP-nets [Brafman et al. (2006)],

up to a very important difference: CI-nets can compare sets of objects of arbitrary size, while

TCP-nets can only express importance statements between single objects, ceteris paribus. On

the other hand, CI-nets do not express preferences between values of variables, as TCP-nets

do, since monotonicity makes them redundant.

CI-nets are very compact in nature which stems from the ceteris paribus interpretation

of preference statements; a single CI-statement may express up to an exponential number

of comparisons. While CP-nets and TCP-nets have a two-tier language where preferences

are expressed on properties that the set of objects have, CI-nets express preferences directly

at the object level. CI-nets also address the monotonicity problem, which was concerned

neither by CP-nets nor TCP-nets. A formalism based on CI-nets to represent and reason

over countermeasures that the administrator may hold when devising a strategy to thwart the

attackers goals was presented by Santhanam et al. (2013). Santhanam et al. (2013) presented

a method to find a strategy that is guaranteed to thwart any attack on the system, which is

also most preferred.

3.4.3 Computing Next-Preferred Reasoning based on Dominance Testing

Dominance testing is the problem of determining whether an outcome is preferred over

another. It is of fundamental importance in many applications. Santhanam et al. (2010)

provided an encoding of TCP-nets in the form of a Kripke structure for CTL and showed how

to compute dominance using NuSMV, a model checker for CTL. The results of their experiments

proved the feasibility of the approach. They reduced dominance testing to reachability analysis

in a graph of outcomes. Specifically, they formalized the ceteris paribus semantics of preferences

in terms of a direct and succinct representation of preference semantics using Kripke structures

[Clarke et al. (2000)] that encoded preferences over outcomes as reachability within a graph

of outcomes. In essence they reduced dominance testing to satisfiability of corresponding
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(a) CI-net preference statements
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Figure 3.3 CI-net preference statements, Induced preference graph depicting the most pre-

ferred statement with respect to given preferences, and the Complete ordering of

the variables [Oster et al. (2013)]
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temporal formulas in the model and provided a translation from TCP-nets to the Kripke model

specification language of a widely used model checker NuSMV [Cimatti et al. (2002)].

In a more recent work by Oster et al. (2013), a qualitative preference formalism based on

CI-nets for representing and reasoning with client preferences over the relative sensitivity of sets

of credentials was presented. They developed a model checking-based approach for analyzing

the preference graph, efficiently verifying whether one set of credentials is more sensitive than

another (dominance testing). Moreover, they identified the least (minimum) sensitive set of

information that may be disclosed by the client to get access to the desired service. This laid

the foundation for computing the next preferred statements in the i-PrefR tool [Santhanam

et al. (2010); Oster et al. (2013)] which we shall use to compute the preferred order of defense

policies qualitatively. The technique is based on iterative verification and refinement of the

preference graph for computing a sequence of credential sets, ensuring that a credential set

with higher sensitivity is never returned before one with lower sensitivity.

The following example borrowed from Oster et al. (2013) illustrates the main idea behind

computing the preferred statements.

Example 3.4.2. Consider a client who is interested in obtaining some financial quote (e.g.,

auto and/or home insurance, mortgage, etc.) using an online service. Suppose that there are

multiple servers that provide the required service, and each server’s access control policy requires

a combination of several credentials from the client before granting access to the service. We

consider four such credentials: the client’s name, residential address, bank account

number, and bank routing number.

The client has some qualitative preferences over the relative importance of his credentials

based on their sensitivity. The rationale behind these preferences is that the client would like to

make it impossible (or at least difficult) for a third party to perform any financial transaction

maliciously posing as the client. Therefore, from the client’s perspective, the objective is to

choose the server that provides the desired financial service by requiring the least sensitive set

of client credentials. Consider the following qualitative preferences specified by the client:

P1. If bank account number is disclosed, then I would rather give my address than bank
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routing number to the server.

P2. If I have to disclose my address but not my name, then I would prefer to give my bank

routing number rather than my bank account number.

P3. If I don’t need to disclose my bank account number, I will give my name and address

instead of my bank routing number.

Based on these preferences, the client can identify successively more sensitive sets of cre-

dentials (starting from the empty set) and verify whether a set of credentials is sufficient to

satisfy the access control policy of any server providing the desired service. Any server that

accepts this least sensitive acceptable set of credentials may be selected to provide the service to

the client.

Given two choices (of sets of credentials), deciding the preference of one choice over the other

is referred to as dominance testing. Dominance testing is known to be PSPACE-complete

[Boutilier et al. (2004); Goldsmith et al. (2008)]. The objective now is to identify a most

preferred set γ of credentials that the client has to disclose in order to meet the server’s

requirements. The corresponding CI-net statements (figure 3.3(a)) and the induced preference

graph based on the preferences (figure 3.3(b)) are depicted in Figure 3.3. The computed

ordering of all the variables is depicted in Figure 3.3(c). Essentially, the method involves two

processes:

1. Decide: Automatically decide the preference of a set of credentials over another, where

preferences are specified using CI-nets.

2. Order: Use the above decision process to automatically identify the preference ordering of

sets of credentials, starting from the most preferred sets and ending in the least preferred

ones.

The ordering of the preference statement variables based on the CI-net preference state-

ments is depicted in Figure 3.3. This example provides a clear picture as to how the preference
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logic in i-PrefR generates preferred statements based on user inputs, which are obviously qual-

itative in nature. We use the same framework in our work for computing preferences over the

different possible defense policies to prevent/stop an attack based on inputs from the system

administrator with respect to a particular attack graph.

3.4.4 Preferences Over Defense Policies

The main aim of our work is to provide a qualitative analysis of the network based on

the input logical attack graph and certain preferences over the different impact parameters as

defined in CVSS. Based on these inputs and preferences, our goal is to provide a prioritized list

of valid defense policies. The prioritization of the defense policies is a two-step process. In step

1, the preference reasoner, i.e., i-PrefR [Santhanam et al. (2010); Oster et al. (2013)] is fed with

the qualitative preference statements based on certain preferences of the user. The preference

reasoner then returns a prioritized list of CVSS impact valuations. Each of these elements in

the list consists of a set containing encoded values corresponding to the levels of the different

impact parameters (Confidentiality impact, Integrity impact, and Availability impact). Each

set is sent back from the preference reasoner one at a time in order based on preference (highest

to lowest) which is fed into our analysis engine for step 2. In step 2, our analyzer generates

two sets based on the set from the preference reasoner. The first set consists of a set of exact

nodes (E=), which is essentially all the privilege and fact nodes that have the exact same

corresponding impact valuations as the returned set from the preference reasoner. The second

is set of betters (E>) that consists of all privilege and fact nodes that have impact valuations

lower than the returned set from the preference reasoner. For the following example, consider

the input attack graph illustrated in Figure 1.1 and that each impact parameter has 3 levels:

high, medium, and low.

Example 3.4.3. Suppose, the impact valuations for the privilege and fact nodes present in the

attack graph, in Figure 1.1, are as defined in Table 3.4.4 1. Now, suppose based on the inputs

provided by the user, the preference reasoner returns the following set of impact valuations

{medium, low, medium}, corresponding to confidentiality, integrity and availability

1p1 is the goal privilege and has no impact valuations
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impacts respectively. The analyzer then generates the following 2 sets: E= = {c3}; E> = {p2,

c1}.

Node name Confidentiality Integrity Availability

Impact Impact Impact

p2 medium low low

c1 low low low

c2 low medium low

c3 medium low medium

c4 high medium high

Table 3.1 An example of impact values

Now that the set of E= and E> are generated, the analyzer calls our bottom-up and top-

down methods successively to analyze in the corresponding manner. In both the approaches

(bottom-up and top-down), the first policy that is generated is the super-policy that results

from negating the union of the E= and E> sets conjuncted over the literals. In essence, the

first policy generated in our example is, ¬(c3 ∨ p2 ∨ c1). The algorithms for the bottom-up and

top-down analysis are presented in Algorithms 1, and 2 respectively.

3.4.4.1 Bottom Up Analyzer

Generating Super Policy

Proceeding further with our example in 3.4.3, and the input valuations as per Table 3.4.4,

we reached the point, where the bottom-up analyzer was called. As stated earlier, the initial

policy generated by the bottom-up analyzer is the policy ¬c3 ∧ ¬p2 ∧ ¬c1. Now, the verifier

returns true and check is set to true in line 3, as this is a valid defense policy. This is because,

by negating fact nodes c1 and c3 and the privilege p2, essentially all the possible exploits viz:

e1, e2, and e3 are negated, thus, not allowing any attacker to exploit these vulnerabilities and

gain goal privilege p1.

Generating Strict Subsets of Super Policy

The bottom-up analyzer then generates all possible valid combinations of the super-policy,

and stores them in allPossibleCombinations, according to line 4 of the Algorithm 1. Here, the

allPossibleCombinations will be: {(¬c3 ∧ ¬p2), (¬c3 ∧ ¬c1),¬c3}. Line 5 then prints the policy
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Algorithm 1 Bottom-Up analyzer

1: procedure Bottom-up(policy, nodes) . nodes is the list of nodes in the attack graph

2: if verify(policy, nodes) = True then

3: check ← True

4: Generate allPossibleCombinations of policy in decreasing order of size of policies

5: Print policy, “is a valid policy” . policy = E= ∪ E>

6: else

7: Quit and print “No valid policies exist”

8: end if

9: while |markedPolicies| < |allPossibleCombinations| do

10: policyCombinations← generateCombinations(policy, |policy| − 1)

11: if policyCombinations ⊆ markedPolicies then

12: policy ← {p|p ∈ allPossibleCombinations and p /∈ markedCombinations}
13: else

14: policy ← {p|p ∈ policyCombinations and p /∈ markedCombinations}
15: end if

16: check ← verify(policy, nodes)

17: if check = True then

18: Print policy, “is a valid policy”

19: else

20: Print policy, “is an invalid policy”

21: for (i=1; i < | policy |; i++) do

22: policyCombinations← generateCombinations(policy, i)

23: markedPolicies← markedPolicies ∪ policyCombinations
24: end for

25: end if

26: markedPolicies← markedPolicies ∪ policy
27: end while

28: end procedure
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and a message stating that it is valid policy. The algorithm in bottom-up analyzer then tries

to find sub-policies of this super-policy that can still prevent attacks effectively and enters the

while loop at line 9 of Algorithm 1. The next policy combinations that are generated in line 10

are: {(¬c3 ∧ ¬p2), (¬c3 ∧ ¬c1)} by the bottom-up analyzer. The policy to be picked first here

is, (¬c3 ∧ ¬p2) according to line 14 of the Algorithm 1, which is again a valid policy and the

verifier returns true in line 16, as none of the exploits in the attack graph can be exploited by

the attacker. Line 17 evaluates to true, so, the policy is printed along with a message stating

it is valid in line 18. Finally in line 26, the policy is added to the list of marked policies and

the next iteration of the while loop begins.

Exploring the Subset Policies Space

In the next iteration the next policy combinations generated is, {¬c3}, since it is the only

possibility. Now, ¬c3 is a valid policy (verifier returns true) along with a message stating that

a monitor (IDS rule, firewall policy etc.) needs to be placed on the privilege p2 to prevent

exploits e1 and e3 from being attacked without any knowledge of the system administrator and

the policy is again displayed along with a message stating it is valid according to lines 17, and

18 respectively. The policy is then added to the list of marked policies in line 26 and the next

iteration of the while loop begins. In the next iteration, the policy combinations generated is

an empty set ({}) , as there can be no policy smaller than ¬c3 ∧ ¬p′2. So, the if statement in

line 11 becomes true, and the policy chosen according to line 12 is, (¬c3 ∧ ¬c1), which is the

first policy present in allPossibleCombinations but not in the list of already marked policies.

Now, (¬c3 ∧ ¬c1) ∧ ¬p′2 is also a valid policy as long as a monitor is placed on the privilege

node p2 to prevent exploit e3 from being compromised, because exploits e1, and e2 are already

protected by negating c1 and c3 respectively. There are no more policies generated for this

input impact valuation ({medium, low, medium}), sent from the preference reasoner. It is

worth noting that (¬p2 ∧ ¬c1), ¬p2, and ¬c1 are not considered defense policies for the input

valuation {medium, low, medium}, since, they do not match the exact specifications for it. This

is because, in the context of finding the preferred policy, the assumption is that the analyzer

is going to have preference values in descending order (from better to worse). As a result for

each iteration policies which are formed from the combinations of the elements in E> (set of



39

better valuations) should have been already explored. In essence, the elements in the E> set

cannot on their own (or combination of them) form a defense policy (even if it is valid); they

have to be combined with at least an E= set (set of exact valuations) element.

Based on the characteristics of the algorithm for BOTTOM-UP, we present the following

proposition:

Proposition 3.4.1. For a given preferred valuation ϑ, algorithm BOTTOM-UP returns a

policy P such that P 2 Def(pi), where pi is the goal privilege and the impact valuations for policy

P is ϑ, then @ P ′ such that P ′ ⊂ P and the impact valuations for P ′ is ϑ and P ′ |= Def(p).

Proof: Suppose there exists a policy P such that P 2 Def(pi), where pi is the goal privilege

and Def(pi) is defined as in the presence of all exploits can one defend privilege pi and the

impact valuations for policy P is ϑ. Suppose there also exists a policy P ′ such that P ′ ⊂ P

and the impact valuations for P ′ is ϑ and P ′ |= Def(p). However, in SAT solving, if a

statement containing conjunctions over a set of literals does not satisfy a condition, none of the

combinations of the subset of that conjunction can ever satisfy the same condition. Hence, if

P 2 Def(p) then @ P’ such that P ′ ⊂ P and the impact valuations for P ′ is ϑ and P ′ |= Def(p).

z

Let us try to understand the above proposition with the help of an example. Suppose, one

of the possible policies for the example we saw earlier was (¬c1 ∧ ¬c2), but, this is an invalid

policy based on the structure of the attack graph. Hence, sub-policies of this policy, i.e. ¬c1,

and ¬c2 are invalid policies also (which is true).

3.4.4.2 Top Down Analyzer

Generating Super Policy

When top-down analyzer is called, the first policy generated is the super-policy which is the

union of E= and E> sets, which is, (¬c3 ∧¬p2 ∧¬c1). Now, the verifier returns true and check

is set to true in line 3 of Algorithm 2, as this is a valid defense policy, for the same reasons

stated earlier.
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Generating Strict Subsets of Super Policy

The next task performed by the top-down analyzer is to generate all possible valid combi-

nations of the super-policy in increasing order of size (opposite of bottom-up approach), and

stores them in allPossibleCombinations, according to line 4. Here, the allPossibleCombinations

will be: {¬c3 ∧ ¬p′2, (¬c3 ∧ ¬p2), (¬c3 ∧ ¬c1)}. Line 5 then prints the policy and a message

stating that it is valid policy.

Exploring the Subset Policies Space

A lot of sub-policies of this super-policy is possible that can still prevent attacks, so the

algorithm enters the while loop at line 9 of Algorithm 2. The next set of policy combinations

that is generated in line 10, is of size 1, i.e, {¬c3 ∧ ¬p′2}, and the verifier returns true along

with a message stating that a monitor (IDS rule, firewall policy etc.) needs to be placed on

the privilege p2 to prevent exploits e1 and e3 from being attacked without any knowledge of

the system administrator and the policy is again displayed along with a message stating it is

valid according to lines 18, and 19 respectively. The policy is then added to the list of marked

policies in line 24 and the next iteration of the while loop begins. As there doesn’t exist any

other policy of size 1, the Algorithm 2 enters the if-else block. As the if condition is satisfied,

the control goes to line 13 and the policy now becomes, (¬c3 ∧ ¬p2), again a valid policy and

the verifier returns true in line 17, as none of the exploits in the attack graph can be exploited

by the attacker. Line 18 evaluates to true, so, the policy is printed along with a message

stating it is valid in line 19. Finally in line 24, the policy is added to the list of marked policies

and the next iteration of the while loop begins. In the next iteration, the exact same events

occur, in which the policy chosen is, (¬c3 ∧ ¬c1) ∧ ¬p′2, which is also a valid policy as long as

a monitor is placed on the privilege node p2 to prevent exploit e3 from being compromised,

because exploits e1, and e2 are already protected by negating c1 and c3 respectively. There are

no more iterations following this policy, since the cardinality of the sets allPossibleCombinations

and markedCombinations are equal. Hence, no more policies generated for the input impact

valuation {medium, low, medium}, sent from the preference reasoner.

Based on the characteristics of the algorithm for TOP-DOWN, we present the following

proposition:
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Proposition 3.4.2. For a given preferred valuation ϑ, algorithm TOP-DOWN returns a policy

P such that P |= Def(pi), where pi is the goal privilege and the impact valuations for policy P

is ϑ, then @ P’ such that |P ′| < |P | and the impact valuations for P’ is ϑ and P’ |= Def(p).

Proof: Suppose there exists a policy P such that P |= Def(p) and there also exists a policy

P ′ such that |P ′| < |P | and the impact valuations for P ′ is ϑ and P ′ |= Def(pi), then P ′

then allPossibleCombinations (all possible combinations of policies of the super-policy) has a

policy combination Pc such that |Pc| < |P | and Pc |= Def(pi). However, according to line 4

of the Algorithm 2, the |allPossibleCombinations| is constant because it stores all possible

combinations of the super policy. Thus, the policy |P | ≥ |Pc|, so, @Pc such that |Pc| < |P | and

Pc |= Def(pi). Therefore, @ P ′ such that |P ′| < |P | and the impact valuations for P ′ is ϑ and

P ′ |= Def(p). z

In the above proposition note that, that cardinality of P’ is never strictly less than P

(|P ′| < |P |). This observation stems from the fact that, the top-down analyzer computes, all

possible combinations of the super-policy in increasing order of policy size. It then picks the

first policy (the smallest policy) from that set. Since, it explores all policies from smallest to

biggest, there cannot exist a smaller valid policy than the first explored valid policy by the

analyzer.

Example 3.4.4. Consider the following scenario. In iteration i, the preference reasoner pro-

vides as input the preferred values: {low, low, low}, corresponding to confidentiality, integrity,

and availability impacts respectively for the same attack graph as illustrated in Figure 1.1 and

the impact values for each node same as described in Table 3.4.4. The set of E= and E>

for this input would yield the following, E= = {c1}, E> = {}. The first policy is, ¬c1, for

both bottom-up and top-down analyzers, which is not a valid policy as it negates only exploit

e1. However, exploits e2 and e3 can be exploited in a variety of fashions by an attacker. The

top-down and bottom-up analyzer fails to find any policy that matches with the preferred value

and informs the preference reasoner to provide the next preferred value.
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Algorithm 2 Top-down analyzer

1: procedure Top-Down(policy, nodes) . nodes is the list of nodes in the attack graph

2: if verify(policy, nodes) = True then

3: check ← True

4: Generate allPossibleCombinations of policy in increasing order of size of policies

5: Print policy, “is a valid policy” . policy = E= ∪ E>

6: else

7: print “No valid policies exist” and Quit

8: end if

9: pass = (|policy| − 1)

10: while |markedPolicies| < |allPossibleCombinations| do

11: policyCombinations← generateCombinations(policy, |policy| − pass)
12: if policyCombinations ⊆ markedPolicies then

13: policy ← {p|p ∈ allPossibleCombinations and p /∈ markedCombinations}
14: else

15: policy ← {p|p ∈ policyCombinations and p /∈ markedCombinations}
16: end if

17: check ← verify(policy, nodes)

18: if check = True then

19: Print policy, “is a valid policy”

20: else

21: Print policy, “is an invalid policy”

22: pass−−
23: end if

24: markedPolicies← markedPolicies ∪ policy
25: end while

26: end procedure

Example 3.4.5. For this example consider the attack graph illustrated in Figure 3.4, the order

of policies generated and verified as valid/invalid by both the bottom-up analyzer (Figure 3.5)

and top-down analyzer (Figure 3.6) for a particular preferred valuation of confidentiality,

integrity, and availability impacts against the same set of impact values for the nodes. The

green boxes represent valid policies while the red boxes represent invalid policies. It is worth

noting that the bottom-up analyzer, on encountering an invalid policy automatically marks all

its sub policies as invalid also, and never explores them. This is justified because, if a policy is

invalid, none of the sub policies formed by combinations over the literals in that policy can be

a valid defense policy according to the same reasons stated previously in Section 3.4.4.

Our research focuses on 3 aspects: a simple view of logical attack graphs, integrating the
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Figure 3.4 Attack graph described in Example 3.4.5

Figure 3.5 Bottom-up policy generation/validation order
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Figure 3.6 Top-down policy generation/validation order
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CVSS impact metrics with analysis of defense policies, and providing preferences over these

defense policies based on qualitative inputs. We have designed two analysis engines, namely,

the bottom-up analyzer and the top-down analyzer. There is no conclusive evidence to suggest,

which analyzer is more effective or best, but our endeavour has been to equip the system

administrator with as much analysis power as possible. While the bottom-up analyzer fares well

for most attack graphs, however, if the rate of invalid policies is very less, or if the possibility

of combinations is very high and the system administrator is interested in smaller sized defense

policies, then the top-down analyzer may be more effective. We formulate preferences over the

user inputs using preference reasoner discussed in section 3.4.3
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CHAPTER 4. Implementation and Tool Development

We have realized dependency logical attack graphs (without cycles) and defence policy

validation and prioritization based on the attack graph through the tool we developed for our

research called, DrAGON 1. Figure 4.1 presents an overview of the various modules used in

DrAGON. For generating a prioritized defense policy list to the user (system administrator) we

have used, i-PrefR (preference reasoning tool) [Santhanam et al. (2010); Oster et al. (2013)]. i-

PrefR is a reasoner for qualitative preferences expressed in languages such as CP-nets [Boutilier

et al. (2004)], TCP-nets [Brafman et al. (2006)] and CI-nets [Bouveret et al. (2009)], and was

founded on decision theory, formal methods and software engineering. The user of our tool

need not necessarily be aware of how this preference reasoner functions. We have implemented

our tool, DrAGON, to work with i-PrefR in the back-end based on preference inputs from the

system administrators. Here we briefly discuss the foundations and theory behind the i-PrefR

reasoning tool.

4.1 Architecture Overview

Our tool, DrAGON, is completely modular, Figure 4.1, illustrates the architectural overview

of the main analysis engine. Besides the modules, displayed in figure 4.1, there are other

modules, namely, the “generate” module, that contains, the AttackGraphGenerator, CVSS-

FileGenerator, GMLGenerator, GraphFileGenerator, and ImpactMetricsAnalyzer. Before we

discuss what the generate module does, we explain how the rest of our tool works and analysis

is performed.

The AttackGraphMain takes in as input, the filenames, and location of the input attack

graph file, the CVSS impact assignment file for each of the privilege and fact/configuration

1Defense by pReferred policies for Attack Graph of the Network



47

nodes in the attack graph, and send it to the parser (the input and output semantics and

syntax is explained elaborately in the later sections of this chapter). The TreeParser and

CVSSParser then parses these input files respectively and send it to the TreeValidator to

validate the feasibility of the input attack graph. For instance, if there are more than one node

with the same name in the attack graph, or if any of the fact/configuration nodes have children

according to the input, then the validator returns false and stops further processing. Once

the validator, has successfully validated that, the input file is correct, the logical dependency

attack graph (acyclic) is setup, and each of the nodes are assigned the appropriate CVSS

impact metrics. This attack graph, along with the preferred output from the i-PrefR is fed

to the ImpactAnalyzer. Based on the input from the i-prefR, the ImpactAnalyzer generates a

set of exact node matched to the input impact values and a set of nodes that have valuation,

better than the valuation got from the preference reasoner. These two sets are then sent to the

PolicyGenerator, which generates policies, either in top-down or bottom-up fashion and sends

it back to the ImpactAnalyzer. The ImpactAnalyzer sends this candidate policy, along with

attack graph to the PolicyVerifier, which returns either “yes”, or “no”, indicating a valid and

an invalid defense policy. This process, continues, until, no more defense policies can be found

for that input preferred CVSS impact valuation. After which the next preferred value is fed in

from the preference reasoner.

Now, let us understand what is meant by top-down and bottom-up approach of policy

generation. When the ImpactAnalyzer is fed the attack graph, and a preferred CVSS impact

valuation, the ImpactAnalyzer generates a set of exact nodes matching the preferred valuation,

and a set which has values better than the preferred valuation. This can be understood from the

example in the Table 4.1. The table depicts the various levels of the CVSS impact metrics for

the privilege and configuration nodes in Figure 1.1. Here, very-low impact = 1, low impact =

2, low-medium impact = 3, high-medium impact = 4, high impact = 5, and very-hight impact

= 6. For all the other nodes, the default value of their impact metrics = 7. This ensures,

they are not featured in the better set by any chance. Now, suppose the valuation returned by

i-PrefR is, confidentiality impact = 3 (low-medium), integrity impact = 3 (low-medium), and

availability impact = 3 (low-medium). Then, the ImpactAnalyzer would generate E= = {c1},
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Figure 4.1 Architectural overview and data flow in DrAGON
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Node Confidentiality Integrity Availability

Impact(C) Impact(I) Impact(A)

p2 3 1 3

c1 3 3 3

c2 6 6 6

c3 2 3 2

c4 1 1 1

Table 4.1 An example valuation of the CVSS impacts for each of the nodes

and E> = {p2, c3, c4}.

The ImpactAnalyzer then sends these 2 sets to the PolicyGenerator who return the first

policy as, (¬c1∧¬p2∧¬c3∧¬c4). This obviously is a valid policy. So, the PolicyGenerator will

try to find an even smaller sub-set of this policy, say (¬c1 ∧ ¬p2 ∧ ¬c3), which is again a valid

policy. Again, the PolicyGenerator will try to find a smaller sub-set of this policy that can be

a valid defense policy, so it will find, (¬c1 ∧ ¬c3) ∧ ¬p′2. This is valid because, we negated c1,

and c3, thus negating the exploits e2, and e1 all together. However, e3 can still be exploited,

so, we instruct the system administrator to place a monitor on privilege p2 for keeping exploit

e3 under check. A monitor essentially is an IDS rule or firewall policy that would prevent

attackers from exploiting e3 easily and unnoticed. This is a partial ordering of the defense

policy and one of the advantages of our work, because we are performing a qualitative analysis.

Such a measure could never be achieved by any quantitative analysis approach. Further atomic

policies are not possible, so the PolicyGenerator again goes back to the last subset found, and

tries to find defense policies, that can be valid, one such policy possible is, (¬c1∧¬c3∧¬c4). It

is worth noting here, that (¬c1 ∧¬p2 ∧¬c4) is an invalid policy, since, e2 can still be exploited,

which could lead to p2 actually being achieved by the attacker inspite of considering it negated

by the system administrator. So, our tool, ensures, it verifies the truth about the assumptions

made by the system administrator and helps him/her out, even if they have made a wrong

assumption. This is another remarkable achievement of our work.
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4.2 The Helper Modules of DrAGON

The tool developed during the course of this research is extremely modular. Each part is

able to function entirely independent of the other parts, thus allowing for easy extensions in

the future. In this section, we discuss about the modules, which do not explicitly help in our

analysis and defense policy formation and validation. However, they are useful, as they either

provide a seamless interface for the user, or help create log files, that can help document all

the test results.

The generate package contains the following classes, AttackGraphGenerator, CVSSFileGen-

erator, GMLGenerator, GraphFileGenerator, and ImpactMetricsAnalyzer. The AttackGraph-

Generator creates attack graph files according to the semantics and syntax discussed in section

4.2. The CVSSFileGenerator helps create files with CVSS input valuations for the nodes in

the corresponding attack graph. This is essential for conducting thorough testing of our tool,

where random test scenarios for each attack graph model can be created. The generated files

would then act as inputs for analysis.

The GMLGenerator creates GML (Graphical Markup Language) files for any attack graph.

These can then be viewed in any graph editor. We recommend using Y-ed Graph Editor

[yWorks (2013)]. yEd is freely available and runs on all major platforms: Windows, Unix/Linux,

and Mac OS X. It offers various visual layouts for the graphs, at the touch of a button.

We recommend, installing y-Ed along with our tool on the system and associate “.gml” file

extensions to yEd Graph Editor.

The ImpactMetricsAnalyzer takes in the attack graph and a set of impact values from the

preference reasoner to conduct analysis. It first calls the ImpactAnalyzer for performing the

analysis and then writes the output to a log file.

4.3 Input Languages

For inputting attack graphs, we have developed a very simple and easy to use language.

The semantics and syntax of this input language can be understood from Figures 4.2 and 4.3.

Let us first understand the syntax of the input attack graph file. As we can see in Figure
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Figure 4.2 Example input attack graph file

Figure 4.3 Corresponding logical dependency attack graph

4.2, the keywords are: pnodes, enodes, lnodes, root, goals-sloag block, leaves-sevael block, and

END. The “#” (hash symbol) is used to comment a line. The Table 4.3 explains the meaning

and usage of the keywords used for the input attack graph file. Table 4.3 contains the list of

delimiters and their usage.

4.4 Output Visualizations

Our tool, DrAGON, allows the user to visualize the attack graph for correctness after input.

For this purpose we recommend that the user have yEd graph editor installed on their system

[yWorks (2013)]. The example attack graph in Figure 1.1, can be viewed in different layouts

in yEd as depicted in Figure 4.4. Also, yEd allows the user to create, edit and re-use, new and

existing gml input files for generating the attack graphs. Our tool also has a built-in viewer

using JUNG (Java Universal Network/Graph Framework) [Madadhain et al. (2005), Bernstein

(2010)]. The GUI interface using JUNG is a very primitive view and does not allow the user

the ability to visualize different layouts or edit the graph. The same attack graph is illustrated

in Figure 4.5. It is obvious to the naked eye that this visualization is not very pretty and does

not allow the user to change layouts like yEd. So, we recommend the usage of yEd along with
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Keyword Description

pnodes Used to describe all the privilege nodes present in the attack

graph. The keyword pnodes is followed by a “:” followed by

the names of all the privilege nodes separated by commas

(,).

enodes Used to describe all the exploit nodes present in the attack

graph. The keyword enodes is followed by a “:” followed by

the names of all the exploit nodes separated by commas (,).

lnodes Used to describe all the fact/configuration nodes present in

the attack graph. The keyword lnodes is followed by a “:”

followed by the names of all the exploit nodes separated by

commas (,).

root Used to specify the name of the root node (typically a priv-

ilege node). The keyword root, is followed by a “:” followed

by the name of the root privilege node of the attack graph.

There can be only 1 root node for any attack graph.

goals-sloag block Used to specify the parent(s) of each privilege and exploit

node. Any parent node (singular) is written on the left of

the arrow (– –>) symbol and all its corresponding children

(privilege and exploit) nodes are written on the right side

of the arrow (– –>) symbol. Each child node is separated

by comma (,). The keyword goals followed by a colon (:)

signifies the start of the block, and the keyword sloag is

used to indicate the end of the block.

leaves-sevael block Used to specify the parent(s) of each fact node. Any

parent node (singular) is written on the left of the ar-

row (– –>) symbol and all its corresponding children

(fact/configuration) nodes are written on the right side of

the arrow (– –>) symbol. Each child node name is separated

by comma (,). The keyword leaves followed by a colon (:)

signifies the start of the block, and the keyword sevael is

used to indicate the end of the block.

END Represents the end of the file.

Table 4.2 Input language keywords & description
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Delimiter Usage

Comma (,) The comma (,) symbol is used to separate the names of the

nodes in any line.

textbfColon (:) The colon (:) follows immediately after the usage of a key-

word. The colon (:) delimiter separates the keyword from

the input parameters.

Semi-colon (;) The semi-colon (;) indicates the end of a line of input for

the input file.

Hash (#) The hash (#) comments that line and marks it as not needed

to parse for creating the attack graph.

Table 4.3 Delimiters and their usage in the input attack graph file

our tool for best results.

We have described here the functionality and implementation of the framework we have

designed during the course of our research. We have implemented our tool and run several

conclusive tests to prove both its correctness and effectiveness. The correctness of the algo-

rithms used in the implementation of this framework has been discussed in detail in section

3.4.4. The results that prove that our framework works and performs as expected according to

the underlying ideologies of the respective algorithms is described in Chapter 5.
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(a) Directed Tree Layout

(b) Classic Orthogonal Layout

Figure 4.4 Different layouts visualizing the same attack graph using yEd
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Figure 4.5 A graphical visualization of the attack graph using JUNG
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CHAPTER 5. Experiments and Results

In this chapter we will discuss the preliminary results, for generating and validating defense

policies using both our developed algorithms bottom-up and top-down analyzers as described

in Algorithms 1 and 2 respectively. These results are based on attack graphs modeled mostly

from previous research literatures discussed in Chapter 2, and some which we developed to test

the correctness of our tool.

5.1 Bottom-up Analyzer

We have already seen how the algorithm for bottom-up analyzer works in section 3.4.4.1.

For validating the correctness and understanding the efficiency of the algorithm, we ran a

substantial number of tests. We used 12 logical attack graph models, of which 10 were present

in previous research papers in the field of attack graph theory, and 2 were developed by us,

for validating the correctness of the algorithms. We used 6 different impact levels (very low,

low, low medium, high medium, high, and very high) for assigning the confidentiality, integrity

and availability impacts for each privilege and fact node. We randomly generated 100 different

assignments of impacts for the nodes present in an attack for all the 12 models. We then ran

all 216 (6 * 6 * 6 = 216) possible combination of values for impacts and ran our analyzers,

giving us a substantial number of output results (259,200) to analyze the correctness and the

efficiency of the algorithm, in regard to time taken (in ms). For generating random files with

different impact values for the nodes present in any attack graph model, we used the Random

class of java.

It is important to note, that there exists no other tool/framework, for such analysis that we

know of. So, the major concern for us while developing our tool (DrAGON ) was to ensure that
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it performed the task correctly. Although, our major concern was not efficiency in terms of

time, the results indicate, that our bottom-up analyzer is pretty fast. The maximum iterations

that we have encountered amongst, all the 259,200 results that we have analyzed is, 5,276,

which took only 3,393 ms (< 4s). This is really promising in terms of the possibilities and

application of our tool, in real-life scenarios. This particular case arose for an attack graph

model with 9 privilege nodes, 16 exploit nodes, and 20 fact nodes. The graphs depicted in Figure

5.1 plots, the total time taken for analyzing a given policy and all its sub policies against the

log(total number of iterations). We chose a log scale instead of a direct scale because, as we

get to higher number of iterations, the total time taken increases sharply, also, the number of

such high iteration instances are rare. So, to accommodate all the results, we chose a log scale.

What we see from the graphs is a really encouraging and positive from our research perspective.

While we have already proven the correctness of the Algorithm 1 in section 3.4.4.1, from the

results displayed here, we see that the time taken for generating sub policies and validating

them is also pretty fast. The graph in Figure 5.1(a), contains all the results, while the graph in

Figure 5.1(b), depicts a magnified view of iterations for upto 100 iterations. From the Figure

5.1(b), we can infer, that the time taken depends not only on the number of iterations taken,

but also on the structure of the attack graph itself and the position of the nodes present in the

graph being analyzed.

5.2 Top-down Analyzer

Just like the bottom-up analyzer, we have seen the algorithm for top-down analyzer in section

3.4.4.2. For validating the correctness and understanding the efficiency of the algorithm, we

ran the same number of tests (259,200) on the top-down analyzer as we did for the bottom-up

analyzer. We used the same 12 logical attack graph models for testing purposes, and the same

6 impact levels (very low, low, low medium, high medium, high, and very high) for assigning

the confidentiality, integrity and availability impacts for each privilege and fact node. We used

the same randomly generated 100 different assignments of impacts for the nodes present in an

attack for all the 12 models. We then ran all 216 possible combinations of values for impacts

and ran our analyzers, giving us 259,200 output results to analyze the correctness and the
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(a) Log(Bottom-up iterations) vs Time(ms) (all values) (b) Log(Bottom-up iterations) vs
Time(ms) (iterations <= 100)

Figure 5.1 Graphs representing iterations vs time (ms) for bottom-up analyzer

efficiency of the algorithm.

From what we saw about the logic used for top-down analysis in section 3.4.4.2, it is clear,

that the top-down analyzer will definitely, not be more efficient over the bottom-up analyzer

with respect to time. This is because, like we saw in the Example 3.4.5, the top-down analyzer

explores all the policies from smaller to larger size. In cases where the policies generated

might not be valid for that attack graph, it might be too much overhead to explore all the

policies. In most instances, with complicated attack graph structures, it is quite difficult to

find valid policies. In such instances, the bottom-up analyzer computes faster than the top-

down analyzer, by neglecting sub policies of invalid policies and saves time. Unfortunately, the

top-down analyzer, explores all possible policies for any super policy, so, it requires considerable

more time. The maximum iterations performed by the top-down analyzer is, 65,536 and it took

457,466 ms (< 500s). However, the positive thing is, it completed the analysis and explored

all the policies. The thing to note while analyzing the results for our top-down analyzer is, our

main aim aim for designing the algorithm was not efficiency, but to give the user a chance to

explore all the possible policies (even if they are invalid). Also, the policies generated are from

smaller size to larger size, so if the system administrator wants the smallest effective defense
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policy first, he/she can make use of the top-down analyzer. Also, if the structure of the attack

graph is very complicated yet very small policies can be enforced to stop attacks, then this

approach would be very beneficial.

The graphs depicted in Figure 5.2 plots, the total time taken for analyzing a given policy

and all its sub policies against the log(total number of iterations). We chose a log scale instead

of a direct scale because, as we get to higher number of iterations, the total time taken increases

sharply, also, the number of such high iteration instances are rare. So, to accommodate all the

results, we chose a log scale. The results are in alignment with our expected results, as the time

taken increases rapidly as the number of iterations increases. Also, the number of iterations

themselves are more widely spaced than for bottom-up approach, as the top-down analyzer

tries to explore all possible policies, thus increasing the number of iterations considerably for

a valid super-policy. Both these trends can be observed clearly in Figure 5.2(a). Figure 5.2(b)

illustrates a magnified view for iterations upto 1024 times.

(a) Log(Top-down iterations) vs Time(ms) (all values) (b) Log(Top-down iterations) vs
Time(ms) (iterations <= 1024)

Figure 5.2 Graphs representing iterations vs time (ms) for top-down analyzer

The results described in this chapter are very much along the expected results during

the development of the framework. The bottom-up analyzer is quite time efficient, while the

top-down analyzer is great for policy exploration. Both of these analyzers have their own
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advantages. Our main goal is not to base solely on efficiency, but to provide the user with

different methods of analysis. The correctness of both these analyzers is a highlight of our

research and has been discussed in gamut in section 3.4.4.
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CHAPTER 6. Conclusion

6.1 Summary

We have presented a practical solution to the problem of finding and verifying policies for

complicated networks and developed a novel framework that works with qualitative preferences

and can essentially help design defense policies, based on the attack graph. We have also,

provided a means of visualizing the attack graph before it is fed into our tool for analysis.

We have allowed the use of standard graph storage format, namely GML (Graphical Markup

Language) to create, edit and store these attack graphs. We have also provided a custom input

language, which is simple to use for storing very large attack graphs easily in a textual format.

We have introduced the concept of representing logical attack graphs from defender per-

spective and formally defined it. The advantages of using this representation, over existing

representation techniques have been discussed elaborately in Chapter 3. Furthermore, we pro-

vided a visualizing medium of the attack graph using a graphical user interface, which can be

used to create, edit, and store attack graphs of any size and in any layout. Our work is a novel

work, in trying to integrate the CVSS impact metrics and logical attack graphs in a qualitative

manner. By using the CVSS metrics, we have ensured a standard of comparing results across

a variety of networks.

Through this research, we have provided a means to provide preferred policies for defense

against attacks in a network. We have formulated 2 unique algorithms, to generate and validate

the correctness of the policies that are either enforced or proposed. Since, we provide a preferred

order of defense policies; the user is assured of the best policy first, without having to sift

through all the possible policies. However, our top-down analyzer ensures that the interested

user can explore all policies.
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6.2 Future Work

The field of attack graphs has seen an increased interest in the last decade. It will continue

to be a popularly studied field as humans become increasingly more dependent on technology

for information and day-to-day work. Our work, is applicable but not restricted to just the

field of attack graphs, but can be applicable to other broader areas like network security and

even medical science.

By considering certain cells as sites for attack by viruses, the concept of preferred defense

policies can be modeled to provide best treatment procedure for any particular disease based on

certain personal traits/history of the patient. Essentially, these traits, or past medical history

can be thought of as configurations and the organs, or sites affected by the ailment as the

privilege nodes. The challenge in this case would be to document impact values something

similar along the lines of CVSS for network vulnerability. However, it can be modeled very

easily considering just qualitative aspects like we have done here, without any quantitative

estimates for solving the disease. Whether such an analysis is practical and useful would need

to be examined more.

6.2.1 Extending Our Work to Include Cyclic Graphs

Our tool is primarily based on acyclic graphs; we would like to extend it to include cyclic

graphs as well. The way to include cycles while computing the satisfiability of a policy is by

calculating the set of fixed points in order to circumvent the problem of running into cycles.

As part of future work, we plan to study the feasibility of identifying and pre-computing

only the necessary information required to guarantee the termination of cyclic attack graphs.

6.2.2 Allowing Partial Ordering over the Policy Search Space

One feature we would like to add to our existing framework is to allow the preference

reasoner to return partial impact valuation set. For instance, instead of the preference reasoner

returning {confidentiality impact value, integrity impact value, availability impact value}, it can

return just a partial order of these values, like: {confidentiality impact value, availability impact
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value}, or {integrity impact value, availability impact value}, or even {integrity impact value}.

This would be a great feature to include allowing even more flexibility to the user while

designing policies and providing preferences. Right now, all three impact values have to be

clearly defined; otherwise the search for the sets containing nodes with exact matches and

better valuation than the preferred impact value returned by the preference reasoner would

break down.

6.2.3 Improving the Output Visualizations

Another aspect of our framework we want to improve would be the visual aspect. While our

tool provides a rich graphical interface for visualizing the input attack graph, there currently

does not exist a graphical interface to visualize the defense policies. Providing a graphical user

interface for visualizing the defense policies (both valid and invalid), would assist the user in

understanding, why a policy works or it does not.

6.2.4 Designing a Hybrid Algorithm Using the Bottom-up and

Top-down Analyzers

While we have designed two algorithms, based on exact opposite ideologies, namely the

bottom-up and the top-down analyzer. While the bottom-up approach goes from bigger to

smaller policies, the top-down approach goes from small to bigger sized policies. Essentially,

there is a wide gap in these two extreme approaches, which can be filled by a more elegant and

hybrid approach, capitalizing on the positives of both these approaches. It would be interesting

to see the performance of such an algorithm and how it fares compared to either or both of

these policies.
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