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ABSTRACT

The systematic reuse provided by software product lines provides opportunities to

achieve increased quality and reliability as a product line matures. This has led to

a widely accepted assumption that as a product line evolves, its reliability improves.

However, evidence in terms of empirical investigation of the relationship among change,

reuse and reliability in evolving software product lines is lacking.

To address the problem this work investigates: 1) whether reliability as measured by

post-deployment failures improves as the products and components in a software product

line change over time, and 2) whether the stabilizing effect of shared artifacts enables

accurate prediction of failure-prone files in the product line.

The first part of this work performs defect assessment and investigates defect trends

in Eclipse, an open-source software product line. It analyzes the evolution of the product

line over time in terms of the total number of defects, the percentage of severe defects

and the relationship between defects and changes.

The second part of this work explores prediction of failure-prone files in the Eclipse

product line to determine whether prediction improves as the product line evolves over

time. In addition, this part investigates the effect of defect and data collection periods

on the prediction performance.

The main contributions of this work include findings that the majority of files with

severe defects are reused files rather than new files, but that common components ex-

perience less change than variation components. The work also found that there is a

consistent set of metrics which serve as prominent predictors across multiple products

and reuse categories over time. Classification of post-release, failure-prone files using
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change data for the Eclipse product line gives better recall and false positive rates as

compared to classification using static code metrics. The work also found that on-going

change in product lines hinders the ability to predict failure-prone files, and that pre-

dicting post-release defects using pre-release change data for the Eclipse case study is

difficult. For example, using more data from the past to predict future failure-prone

files does not necessarily give better results than using data only from the recent past.

The empirical investigation of product line change and defect data leads to an improved

understanding of the interplay among change, reuse and reliability as a product line

evolves.
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CHAPTER 1. INTRODUCTION

The systematic reuse provided by software product lines (SPLs) provides opportuni-

ties to achieve increased quality and reliability as it matures. We follow Weiss and Lai

in defining a product line as “a family of products designed to take advantage of their

common aspects and predicted variabilities [Weiss and Lai, 1999].” The planned reuse of

artifacts allows more rapid development of new products and lower-cost maintenance of

existing products [SEI, 1984], [Gomaa, 2004], [Pohl et al., 2005], [Weiss and Lai, 1999],

[Clements and Northrop, 2001]. Since the product line artifacts such as specifications,

design, code and test cases are reused and maintained via a centralized repository, there

is reason to anticipate that the quality and reliability of both the existing products and

the new products may improve over time. This has led to a widely accepted assumption

that as a product line evolves, its reliability improves.

1.1 Problem Statement

The goal of this research is to investigate: 1) whether reliability as measured by post-

deployment failures improves as the products and components in a software product line

change over time, and 2) whether the stabilizing effect of shared artifacts as the product

line evolves enables accurate prediction of failure-prone files in the product line.

We define reliability as continuity of correct service [Avizienis et al., 2001]. A failure

is a departure of the system or system component behavior from its required behavior.

A failure occurs when a system or component is unable to perform its required functions
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within specified performance requirements [IEEE, 1999]. Post-deployment failures are

indicators of the reliability of the system or components. In this work we study how

reliability, measured by the number of post-deployment failures, changes as Eclipse, a

large, open-source software product line, evolves over time. In accordance with the

literature, we use the broader term defect to describe occurrences in which a software

system does not behave as desired or specified [Pohl et al., 2005]. A defect is also often

referred to as a fault or bug [Clark and Zubrow, 2001].

Ongoing change is typical in product lines and proceeds along two main dimensions.

The first dimension is evolution of the product line in which, as the product line matures,

more products are built. Some of these additional products may include new features

(i.e., units of functionality [Batory et al., 2006]). The changes also may propagate to

other, previously built products [Stephenson, 2002]. If the changes are incorporated into

the product line, the product line asset repository is updated so that future products

can reuse them.

The second dimension of product line evolution involves changes to an individual

product from one of its releases to another. This is similar to the evolution and mainte-

nance of a single system, except that it may happen to each system in the product line.

The two dimensions of product line evolution are shown in Figure 1.1.

Figure 1.1: Product Line Evolution across two dimensions
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As each product in the product line evolves across releases, failure and change data

for each release may become available and can be used to estimate and predict reliability

for individual products. We wish to discover whether the knowledge acquired from

older products in a product line helps in estimating the quality and reliability of newer

products.

The work reported here has two parts. The first part performs defect assessment and

investigates defect trends in Eclipse, an open-source software product line. This part

characterizes the evolution of Eclipse in terms of the amount of change it experiences

over a period of 7 years and the corresponding bug trends for three different levels of

reuse: common components reused in all products; high-reuse variation components,

used in many but not all products; and low-reuse variation components, used in only

one or two products.

Results from the first part of this work show that even common components experi-

ence change on an on-going basis. However, common components have less change than

the variation components over time. As the product line evolves, fewer serious failures

occur in common components than in variation components.

The second part of this work is motivated by these results. It explores prediction of

failure-prone files in the Eclipse product line at the product level and component level

to determine whether prediction improves as the Eclipse product line evolves over time.

In addition, this part investigates the effect of defect and data collection periods on the

prediction performance.

Results from the second part of this study show improvement in prediction perfor-

mance for some but not all defect and data collection periods. It also identifies consistent

predictors for individual products and components as well as for the entire product line.
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1.2 Research Questions

This work investigates the following research questions.

1. Defect Assessment

(a) Failure trends. Do serious failures decrease over time as the common/high-

reuse variation/low-reuse variation components evolve over releases?

(b) Change trends. Does the amount of change to the source code decrease

across releases for the common/high-reuse variation/low-reuse variation com-

ponents?

(c) Failure/Change relationships. Does the number of serious failures normal-

ized for source-code changes decrease over time for the common/high-reuse

variation/low-reuse variation components?

2. Defect Prediction

(a) Prediction trends.

i. Does our ability to predict the failure-prone files improve over time across

products as the product line matures?

ii. Does the ability to predict failure-prone files differ across components

belonging to different categories of reuse?

iii. How do datasets with different data collection and prediction periods

affect prediction performance?

iv. Do datasets with incrementally increasing data collection periods yield

better results?

(b) Product/Component evolution. Are there any change metrics that serve as

good predictors for which files are failure-prone as a product or component

matures over releases?
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(c) Product line evolution. Do any of these change metrics also serve as good

predictors across all the products and components in a product line over time?

1.3 Approach

We study Eclipse from a product line perspective, following the examples in the

previous literature of [Chastek et al., 2007] and [van der Linden, 2009] in treating Eclipse

as a product line. Since Eclipse is an open source project, the evolution of its products

is documented in public failure reports, change reports and source code available across

its component releases. We collect information from the defect and change repository to

study how reliability changes as Eclipse evolves over time.

The work uses data extracted from the Eclipse Bugzilla database and the CVS change

repositories for the individual Eclipse projects. Data is collected for five of the six de-

fect severity categories, namely blocker, critical, major, normal and minor, for Eclipse

products from 2002-2010, with the trivial category excluded. For the defect assessment

analysis, the focus is on the severe post-deployment defects, i.e., the top three severity

categories. The investigation of the relationship between defects and change uses in-

formation about the number of changes made to existing files and the number of new

files created in each release for components belonging to all three categories of reuse

(commonalities, high-reuse variations and low-reuse variations). The defect assessment

considers the total number of severe failures, the percentage of the total failures that are

severe and the defect trends for the different reuse categories.

The defect prediction work maps the bug data to the change data from the CVS

repository using standard data collection techniques [Zimmermann et al., 2007]. Per-

formance of defect classification by several well-known classifiers is compared using the

collected data in order to identify whether any particular learner performs better than

others. The evaluation of results uses defect classification performance metrics accu-
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racy, recall, false positive rates, precision, and area under ROC curve (AUC) values, as

described in Chapter 3, to compare our results with results obtained in other studies.

1.4 Results

The findings resulting from the investigation are briefly described here and in more

detail in Chapters 4 and 5.

• Defect Assessment

1. Failure trends. As the product line evolves, fewer serious failures occur in

components implementing commonality. The occurrence of failures in vari-

ation components shows no uniform pattern of decrease as the product line

evolves. Although the number of failures in some variation components de-

creases as the product line matures, the percentage of severe failures in those

components holds steady or even increases.

2. Change trends. Common components exhibit less change over time as com-

pared to variation components, but also observe on-going change. Compo-

nents implementing variations, even when reused in five or more products,

continue to evolve fairly rapidly. In common components, the percentage of

new files shows a decreasing trend as the product line evolves. In variation

components that are lightly reused, the percentage of new files generally shows

a decreasing trend, comparable in values to one of the common components.

Heavily reused variation components have a very low percentage of new files,

much lower than either common components or lightly reused variation com-

ponents.

3. Failure/Change relationships. The occurrence of failures in variation compo-

nents shows no uniform pattern of decrease as the product line evolves, even

when normalized for the occurrence of change.
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• Defect Prediction

1. Prediction trends. As the product line matures, prediction of post-release

failure-prone files using pre-release change data for four products in the Eclipse

product line shows statistically significant improvement in accuracy across

releases, but not in recall. Similarly, components in the three categories of

reuse show significant improvement in accuracy and false-positive rate but not

in recall. Further, there is no statistically significant difference in performance

improvement across releases among the three categories of reuse.

2. Product/Component evolution. As each product evolves, there is a set of

change metrics that are consistently prominent predictors of failure-prone files

across its releases. Looking at the evolution of components in the different

categories of reuse in the product line (i.e., commonalities, high-reuse varia-

tions and low-reuse variations), we find that there is consistency among the

prominent predictors for some categories, but not among all of them.

3. Product line evolution. There is some consistency among the prominent pre-

dictors for early vs. late releases for all the considered products in the product

line.

1.5 Contributions

The contributions, discussed in more detail in Chapter 7, indicate the following in-

terplays among change, reuse and reliability in the evolving software product line:

• The majority of files with severe defects are reused files rather than new files.

• On-going change in product lines hinders the ability to predict failure-prone files.

• Classification of post-release, failure-prone files using change data for the Eclipse

product line gives better recall and false positive rates as compared to classification
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using static code metrics.

• Predicting post-release defects using pre-release change data for the Eclipse case

study is difficult.

• Using more data from the past to predict future failure-prone files does not neces-

sarily give better results than using data only from the recent past.

• Common components experience less change than variation components.

• There is a consistent set of metrics which serve as prominent predictors across

multiple products and reuse categories over time.

1.6 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 discusses related work

and the Eclipse product line case study. Chapter 3 describes the approach. Chapter 4

presents results from the defect assessment for the Eclipse product line. Results from

the defect prediction for the Eclipse product line are detailed in Chapter 5. Chapter 6

presents the threats to validity of this study. Chapter 7 summarizes the contributions

and suggests future work.
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CHAPTER 2. BACKGROUND AND RELATED WORK

This chapter defines the terminology used in the rest of this work and presents the

related work.1

2.1 Software Product Lines

We first introduce the terminology used to describe product line development. Weiss

and Lai [Weiss and Lai, 1999] define a product line as “a family of products designed to

take advantage of their common aspects and predicted variabilities [Weiss and Lai, 1999].”

The Software Engineering Institute [SEI, 1984] defines a software product line as “a set

of software-intensive systems sharing a common, managed set of features that satisfy the

specific needs of a particular market segment or mission and that are developed from a

common set of core assets in a prescribed way.”

Core Assets: Core assets are the reusable artifacts and resources that form the basis

for the software product line [SEI, 1984].

Commonalities: In a product line, some requirements are shared by all the products

in the product line. These requirements are called commonalities [Weiss and Lai, 1999].

Variabilities: Variabilities describe how the products differ from each other. Each

product has a particular combination of variability requirements which makes it unique

in the product line [Weiss and Lai, 1999].

Commonality Variability Analysis: Commonality Variability Analysis (CVA) is a

document which describes the commonalities, variabilities and dependencies in the prod-

1Parts of this chapter are adapted from [Krishnan et al., 2011a] and [Krishnan et al., 2012a].
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uct line. Dependencies are the constraints amongst the variabilities [Weiss and Lai, 1999].

Domain Engineering: This is the first step of product line engineering where the

core assets of the product line are defined and implemented. Domain Engineering is de-

fined as “A process for creating the production facilities for a family” [Weiss and Lai, 1999]

or as “The process of software product line engineering in which the commonality and

the variability of the product line are defined and realized” [Pohl et al., 2005].

Application Engineering: This is the second stage of product line engineering

where the products in the product line are implemented by reusing the assets developed

in the domain engineering phase. Application engineering is defined as “A process for

rapidly creating members of a family (applications) using the production facilities for

the family” [Weiss and Lai, 1999] or as “the process of software product line engineering

in which the applications of the product line are built by reusing domain artifacts and

exploiting the product line variability” [Pohl et al., 2005].

2.2 Eclipse Product Line

As the common and variation code files are reused across products, they go through

iterative cycles of testing, operation and maintenance that over time identify and remove

many of the bugs that can lead to failures. There is thus some reason to anticipate that

the quality and reliability of both the existing products and the new products may

improve over time.

The lack of available product line data, however, makes it hard to investigate such and

similar claims. The availability of Eclipse data is a noteworthy exception. The Eclipse

project, described on its website as an ecosystem, documents and makes available bug

reports, change reports, and source code that span the evolution of the Eclipse products.

Chastek, McGregor and Northrop [Chastek et al., 2007] were the first that we know

of to consider Eclipse as a product line. Eclipse provides a set of different products
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tailored to the needs of different user communities. Each product has a set of common

features, yet each product differs from other products based on some variation features.

The features are developed in a systematic manner with planned reuse for the future.

The features are implemented in Eclipse as plug-ins and integrated to form products.

The products in the Eclipse product line are thus the multiple package distributions

provided by Eclipse for different user communities.

2.2.1 Products

Each year Eclipse provides more products based on the needs of its user communi-

ties. For Java developers, the Eclipse Java package is available; for C/C++ developers,

Eclipse provides the C/C++ distribution package, etc. In 2007, five package distribu-

tions were available: Eclipse Classic, Eclipse Java, Eclipse JavaEE, Eclipse C/C++,

and Eclipse RCP. In 2008, two more products became available: Eclipse Modeling and

Eclipse Reporting. Year 2009 saw the introduction of Eclipse PHP and Eclipse Pulsar.

In 2010, Eclipse had twelve products, including three new ones: Eclipse C/C++ Linux,

Eclipse SOA and Eclipse Javascript. The columns in Fig. 2.1 list the 2010 products. New

products reuse and sometimes modify the common components and existing variation

components and implement any required new variations in new component files.

In this study we observe four products (Eclipse-Classic,

Eclipse-C/C++, Eclipse-Java, and Eclipse-JavaEE). Each product has a release dur-

ing the years 2007-2010, with Eclipse-Classic also having releases for years 2002-2004.

The yearly releases of Eclipse products are given release names in addition to the release

numbers: Europa for year 2007, Ganymede for 2008, Galileo for 2009 and Helios for 2010.

The release numbers corresponding to each release are 3.3 for Europa, 3.4 for Ganymede,

3.5 for Galileo, and 3.6 for Helios. In the rest of the paper, to refer to a particular release

of a product, we mention the release name along with the release number, i.e., Classic-3.3

(Europa), Java-3.4 (Ganymede), etc. For the older releases from 2002-2004 we refer to
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them using their release numbers, namely 2.0, 2.1 and 3.0, respectively.

Figure 2.1: Eclipse Product Line for the year 2010 [ http://www.eclipse.org/

downloads/compare.php]

2.2.2 Components

The products are composed of components which are implemented as plugins. For

the 2010 release, the components in the Eclipse product line are shown in the first column

in Figure 2.1. The individual cells indicate which components are used/reused in each

product.

Based on the level of reuse we observe three categories of components that imple-

ment: commonalities, high-reuse variations and low-reuse variations. Table 2.1 lists the

components studied in this paper, grouped by level of reuse.

The first category contains the common components reused in all products. The large

component RCP/Platform is the only common component reused across all products.

Henceforth in the paper, we abbreviate the RCP/Platform component to Platform.

http://www.eclipse.org/downloads/compare.php
http://www.eclipse.org/downloads/compare.php
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The second category is the set of variation components with high reuse, which are

reused in more than two products but not in all products. The number of products in

which these components are reused increases with each subsequent release from 2007

to 2010. The components in this category are EMF, GEF, JDT, Mylyn, Webtools,

XMLtools, and PDE.

The third category is the set of variation components with low reuse. This category

includes components that are reused only in two products, and the number of products

in which they are reused does not increase with each release. The components in this

category are CDT, Datatools and Java EE Tools (called JEEtools here).

Table 2.1: List of Components

Category Component
Common Platform

High-reuse variation EMF
GEF
JDT

Mylyn
Webtools
XMLtools

PDE
Low-reuse variation CDT

Datatools
JEEtools

2.3 Software Defect Assessment

There have been many studies of failure trends or profiles for commercial as well

as open source systems. Work to date has been done to identify causes of failures,

distribution of different types of failures, classification of the consequences of failures,

comparison of the failure density of open-source systems to commercial systems, and

defect/failure prediction for individual systems. However, studies investigating the effects

of software product line engineering and their benefits by mining the failure databases
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are rare.

The work most closely related to ours is that of Mohagheghi and Conradi

[Mohagheghi and Conradi, 2008], [Mohagheghi et al., 2004], who reported on a system

developed using a product family approach. They compared the fault density and the

stability (amount of change) of the reused and non-reused components. They observed

that reused components have lower fault density and less modified code as compared to

non-reused components.

Recently we have also studied pre-release software faults in an industrial software

product line [Devine et al., 2012]. We examined the pre-release software faults and code

changes made to four products of the PolyFlow product line, a family of software testing

tools developed by Avaya [Weiss et al., 2008]. Results showed that in that software

product line setting, faults are more highly correlated to change metrics than to static

code metrics. Also, variation components unique to individual products had the highest

fault density and were most prone to change. Results also showed that development

and testing of previous products benefited the new products in the software product

line. This work is not discussed further in this dissertation as it will appear in Devine’s

master’s thesis [Devine et al., 2012].

For open-source systems, Mockus, Fielding and Herbsleb [Mockus et al., 2000] in-

vestigated the effectiveness of open-source software development methods on Apache in

terms of defect density, developer participation and other factors. They showed that for

some measures of defects and changes, open-source systems appear to perform better

while for other measures, the commercial systems perform better. In our study we use

one of the measures they recommend, i.e., KChanges. Kim, Cai and Kim recently found

that the number of bug fixes in three large open-source systems, one of them Eclipse

JDT, increases after refactorings [Kim et al., 2011]. Eaddy et al. found a moderate to

strong correlation between scattering (where the implementation of a cross-cutting con-

cern is scattered across files) and defects for three case studies, one of which was an
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Eclipse component [Eaddy et al., 2008].

Fenton and Ohlsson [Fenton and Ohlsson, 2000] analyzed the faults and failures in

a commercial system and tested several hypotheses related to failure profiles. Their

results related the distribution of faults to failures and the predictive accuracy of some

widely used metrics. They found that pre-release faults are an order of magnitude

greater than the operational failures in the first twelve months. Lutz and Mikulski

[Lutz and Mikulski, 2004] analyzed serious failures/anomalies in safety-critical spacecraft

during operations. Hamill and Goševa-Popstojanova conducted a study of two large

systems to identify the distribution of different types of software faults and whether they

are localized or distributed across the system [Hamill and Goševa-Popstojanova, 2009].

They analyzed different categories of faults and their contribution to the total number of

faults in the system. Børretzen and Conradi [Borretzen and Conradi, 2006] performed a

study of four business-critical systems to investigate their fault profiles. They classified

the faults into multiple categories and analyzed the distribution of different types of

faults.

Paulson, Succi and Eberlein [Paulson et al., 2004] investigated the growth pattern

of open-source systems and compared them with that for commercial systems. They

found no significant difference between the two in terms of software growth, simplicity

and modularity of code. They found, however, that in terms of defect fixes, open-source

systems have more frequent fixes to defects.

A comparative study of software reliability modeling for open source software was

performed recently by Rahmani, Azadmanesh and Najjar [Rahmani et al., 2010]. They

analyzed five open source software systems, collected the failure reports for them and

compared the prediction capability of three reliability models on this data. One of

their results was that the failure patterns for open-source software follow a Weibull

distribution.
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2.4 Software Defect Prediction

There has been extensive research in defect/failure prediction based on a wide va-

riety of metrics data. Chidamber-Kemerer (CK) metrics have been widely used to

predict the reliability of system or the fault-proneness or modules [Basili et al., 1996]

[Zhou and Leung, 2006], [Tang et al., 1999], [Denaro et al., 2003]. Menzies et al.

[Menzies et al., 2010] recently did a comprehensive study of the different approaches

towards defect prediction from static code features and suggest that not only are the

choice of metrics used for prediction important but also the machine learning techniques

used for prediction. They explain the advantages of static code metrics over other process

metrics.

Nagappan, Ball and Zeller used static code metrics to predict failures in five Mi-

crosoft software systems [Nagappan et al., 2006b]. They find that although code com-

plexity metrics act as good predictors of failure-prone files, there is no single set of

metrics applicable to all the projects. They also found that the predictors built from one

Microsoft project using a particular set of metrics could be generally applied to other

similar projects, but not to dissimilar projects. Since products in a product line are

similar (i.e., share commonalities), this helps motivate our efforts to understand under

what circumstances predictors from one product in a product line are relevant to other

products in the product line.

[Nagappan and Ball, 2005, Menzies et al., 2007, Zimmermann et al., 2008] are some

of the other works that have used static code metrics for classification and prediction.

Work described by Moser et al. in [Moser et al., 2008b, Moser et al., 2008a], and

Nagappan et al. in [Nagappan et al., 2006a, Nagappan et al., 2010] used process met-

rics such as change data from the version repositories to predict the failure-proneness

of modules. In our work, we have investigated the applicability of existing prediction

techniques using process metrics to predict failure-proneness of files for product lines.



17

Our work builds on previous work by Zimmermann, Premraj and Zeller

[Zimmermann et al., 2007] and by Moser, Pedrycz and Succi [Moser et al., 2008b]. The

authors in [Zimmermann et al., 2007] studied defects from the bug database of three

early releases of an Eclipse product at both the file and package level. They built logistic

regression models to predict post-release defects. At the file level, the models had mixed

results, with low recall values less than 0.4 and precision values mostly above 0.6. The

authors in [Moser et al., 2008b] found that change metrics performed better than code

metrics on a selected subset of the same Eclipse dataset, and that the performance of

the J48 decision tree learner surpassed the performance of logistic regression and Näıve

Bayes learners.

Besides the work of [Zimmermann et al., 2007] and [Moser et al., 2008b], several dif-

ferent approaches for defect prediction also have used Eclipse as the case study, giving

additional insights into the role of various product and process metrics in defect predic-

tion for Eclipse. D’Ambros, Lanza and Robbes analyzed three large Java software sys-

tems, including Eclipse JDT Core 3.3, using regression modeling, and found correlations

between change coupling (files that change together) and defects [D’Ambros et al., 2009].

They found that Eclipse classes have, on average, many more changes and more shared

transactions than classes in the other two systems studied.

Schroter, Zimmerman and Zeller [Schröter et al., 2006] found that their predictive

models (regression models and support vector machines) trained in one version could be

used to predict failure-prone components in later versions (here, from version 2.0 to 2.1

of Eclipse) . Shihab et al. reported work to minimize the number of metrics in their

multivariate logistic regression model [Shihab et al., 2010]. In a case study on the Eclipse

dataset, Zimmermann et al. [Zimmermann et al., 2008] identified four code and change

metrics. One change metric, total prior changes in the 6 months before the release, was

in their short list.

Studies reported in [Zimmermann et al., 2007], [Nagappan et al., 2006c],
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[Nagappan et al., 2010], [Zimmermann et al., 2008], [Guo et al., 2010] used bug reports

and bug repositories such as Bugzilla for predicting defects and failures. Jiang, Men-

zies, Cukic and others [Jiang et al., 2008], [Menzies et al., 2010] used machine learning

algorithms successfully to perform defect prediction. Ostrand, Weyuker and Bell were

able with high accuracy to predict the number of faults in files in two large industrial

systems [Ostrand et al., 2005]. Menzies et al. found that a lower number of training

instances provided as much information as a higher number for predicting faulty code

modules [Menzies et al., 2008]. Zhang predicted the number of future component-level

defects reasonably well using a polynomial regression-based model built from historical

defect data [Zhang, 2008].

The work reported here is similar to the work by Mohagheghi et al. in

[Mohagheghi and Conradi, 2008] in that both consider the effect of reuse on the quality

of product lines. However, we focus on post-deployment failures, rather than fault den-

sities, since post-deployment failures are experienced by end users and affects reliability

more directly. Further, we consider the effects of code change specifically on the severe

failures rather than failures in general. Eclipse also involves components reused across

more products than in [Mohagheghi and Conradi, 2008].

To our knowledge this is the first work to perform defect prediction in a product line

setting, investigating the ability to predict failure-prone files in the different product line

reuse categories as they evolve over time. This work also contributes to the software

engineering community by replicating earlier studies on prediction of failure-prone files

and comparing results with updated datasets. While previous research focused on iden-

tifying better defect prediction approaches, our goal has been to investigate trends in the

ability to predict post-release failure-prone files as a product line grows. We investigate

the influence of the different reuse categories on several factors related to prediction of

failure-prone files such as classifier selection, dataset selection and identifying prominent

predictors.
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CHAPTER 3. APPROACH

This chapter1 describes the approach used for the defect assessment and the defect

prediction parts of the study. For both parts we collected data from the defect as well as

the version control repositories of Eclipse and used existing techniques to form mappings

among entries from both repositories. The chapter explains the approach used for each

part of the study separately, highlighting the data collection and integration methods

used in each part.

3.1 Defect Assessment

The data studied is from four recent releases of the Eclipse Product Line, 2007 to

2010. The individual components that form the products were available before 2007, but

the integration of components into products began from 2007, leading us to select these

four releases for investigation.

The focus is on the effect of evolution for each component across these four releases

on the component’s post-release failures. Post-release failures are those that occur after

the software is operational. For a user-community, the number of post-release failures

encountered strongly affects their opinion of the quality of the software. The analysis

also considers change in the source code of these components across the four releases.

1Parts of this chapter are adapted from [Krishnan et al., 2011a] and [Krishnan et al., 2012a].
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3.1.1 Failure Trends in an Evolving SPL

3.1.1.1 Data Sources and Severity Categories

The failure reports come from the public Eclipse Bugzilla database [Eclipse, a]. Users

can query the database through a web interface and retrieve the results in graphical or

textual format. We collect data for five of the six [Eclipse, b] severity categories: blocker,

critical, major, normal and minor. We exclude the trivial failure category as these do

not contribute significantly toward reliability.

We consider the failures in the top five severity categories to be the total failures

for a given component. We aggregate the failures in the most serious three categories

(blocker, critical and major) into a single category called severe failures. These failures

all have serious consequences for the user, such as a major loss of functionality, crash, or

blockage without a workaround.

A total of 9,266 failures are identified for the 11 components considered in this study

across the four releases. Of these, approximately 1,542 are severe failures. The number

of total failures and severe failures for each release is shown in Table 3.1.
Table 3.1: Number of Total and Severe Failures

Year 2007 2008 2009 2010 Total
All Failures 2928 2781 2089 1468 9266

Severe Failures 496 497 303 246 1542

3.1.1.2 Data Collection, Integration and Analysis

For each of the components listed in Table 2.1, we query the Eclipse Bugzilla database

and retrieve the number of total failures and the number of severe failures. In the Bugzilla

database, data can be retrieved for each component or for each of the individual sub-

components of the component. We first map the plugins to the components for each

distribution of every product. We collect the post-release failure data for only those

sub-components that have corresponding plugins in the product distributions. This is to

ensure that we consider failures for only those sub-components present in the distribution
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and not for other sub-components that may not have been present during that particular

release. The numbers for these sub-components are aggregated to calculate the number

of failures for each component. Although this approach is more time consuming than

directly finding the numbers for the components from Bugzilla, it allows us to get more

accurate numbers for the components based on the product distributions.

We analyze the collected data in two ways. First we calculate the raw number of severe

failures for each of the three categories of components (common, high-reuse variation and

low-reuse variation). This is to investigate whether there are interesting patterns such as

decreasing or increasing trends in the number of severe failures. The second way that we

look at the data is by the percentage of severe failures. To detect, when a failure occurs,

how often its effects are judged to be severe and how this factor changes over time, we

determine the percentage of the total failures that are severe. If the percentage of severe

failures increases or remains stable over time, it may indicate that the impact of failure

on users is not necessarily decreasing, even if the number of severe failures is decreasing.

3.1.2 Change Trends in an Evolving SPL

3.1.2.1 Data Sources and Type of Changes

In order to measure the amount of change to the source-code, we mine the CVS

release repository of Eclipse, which is our source for change data. There are two ways in

Eclipse to readily observe software change. This study uses both these types of change

to try to characterize the SPL evolution. The first kind of observable change is changes

to existing files. We measure change to existing files in terms of modifications to existing

code. Since the number of modifications is large, we calculate the number of Kchanges to

the source code in each release of a component. Kchanges is the number of modifications

to existing files for that component, divided by 1000. The second kind of observable

change is change via new files. Since the number of new files is not as large, we calculate

the percentage of files that are new for each release of each component.
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3.1.2.2 Data Collection, Integration, Validation and Analysis

We use the tool cvschangelogbuilder-2.5 [cvs, 2004] to query the CVS repository.

The plugins for each component are available in the different Eclipse product distribu-

tions/packages. The plugins associated with these components are also annotated with

the corresponding release numbers. Using this information of plugin name and asso-

ciated release number, we query the CVS repository. The commit information also is

annotated with whether files are changed or added. Using this information, we retrieve

the number of changes and the number of additions made to the source-code per release

using textual pattern matching. We match patterns like changed and added and find

the number of times files are changed and number of new files added. We aggregate the

number of changes for all plugins of a component to calculate the number of additions

and modifications for each component. Since data is not available for all releases of some

components, we exclude these components (PDE, Mylyn, EMF and Datatools) from the

change analysis. However, we collect data for the majority of components in each of the

three categories and analyze them. Of the 11 components examined in this study, data

is available and retrieved for 7 components (Platform, JDT, GEF, Webtools, XMLtools,

CDT, and JEEtools).

The Eclipse community maintains active forums for development of its products and

components. In order to validate whether the collected data represents the real picture,

we sought responses from the developers through the forums. The data entered in the

bug repository is public, and both users and developers can initiate the bug. Developers

actively use the bug database as well as the CVS/SVN/Git source control repositories.

When a user opens a bug, s/he may not have the correct knowledge of which prod-

uct/component the bug belongs to or what severity level the bug may have. However,

the fields in the bug database are reassigned by the person who commits the fix for the

bug, if it is incorrectly assigned by the user. We can therefore place confidence in the

data in the bug database as it is maintained under the supervision of the developers
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who actually commit the fixes for the bugs. Thus, the information collected about the

component/sub-component that the bug is assigned to as well as the severity and priority

level of the bug can be considered to be representative of the actual situation.

3.2 Defect Prediction

3.2.1 Data Collection, Integration and Validation

As mentioned in Chapter 2, our work in defect prediction builds on the previous work

by [Zimmermann et al., 2007] and [Moser et al., 2008b]. In order to both replicate and

extend the work conducted by Moser et al. [Moser et al., 2008b], we collected CVS log

data and bug tracking database entries from May 2001 to May 2011 for the Eclipse-

Classic product. This data was partitioned into time periods corresponding to 6 months

before and after the release of Eclipse 2.0, Eclipse 2.1, Eclipse 3.0, Eclipse 3.3 (Europa),

Eclipse 3.4 (Ganymede), Eclipse 3.5 (Galileo), and Eclipse 3.6 (Helios). Figure 3.1 shows

the time periods for each release.

Figure 3.1: Data Timeline of Eclipse Classic

We extracted the same set of 17 change metrics as in [Moser et al., 2008b], including

identifying bug-fixes, refactorings, and changeset size as listed in Table 3.2. A detailed

description of these metrics is given in [Moser et al., 2008b]. For pre-Europa releases,

i.e., releases 2.0, 2.1, and 3.0, as in [Zimmermann et al., 2007], we mined the CVS log
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Figure 3.2: Data Collection Process

data by looking for four and five digit strings matching the bug IDs. For Europa and

later releases, we matched six-digit strings to bug IDs. A manual review of data instances

showed that no entries containing the word “bug” existed which were not caught by this

pattern match. Extracting the metric Refactorings followed Moser’s approach, namely

tagging all log entries with the word “refactor” in them. Refactoring the code involves

restructuring parts of the code to improve code quality while preserving its internal

structure. The Age metric was calculated by reviewing all CVS log data from 2001

onward and noting the timestamp of the first occurrence of each file name.

To determine changeset size, we used the CVSPS tool [Mansfield, 2001]. This tool

identifies files which were committed together and presents them as a changeset. Slight

modifications to the tool were required to ensure that the file names produced in the

changesets included the path information to match the file names produced by our rlog

processing script.

We wrote custom scripts to parse the CVS logs, converting the log entries into an

SQL database. This data, along with changesets, bugs, and refactorings, were used

to compute the metric values for each file. Finally, Weka-formatted files (ARFF) were

produced. We also found and corrected an error in the script we had used to extract the

change data from the database into ARFF files in [Krishnan et al., 2011b]. This error
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had caused the data to be extracted beyond the stated end date (beyond six months

pre-release) for 13 of the 17 metrics. Figure 3.2 provides an overview of this process.

Table 3.2: List of Change Metrics [Moser et al., 2008b]

Metric name Description
REVISIONS Number of revisions made to a file
REFACTORINGS Number of times a file has been

refactored
BUGFIXES Number of times a file was involved

in bug-fixing (pre-release bugs)
AUTHORS Number of distinct authors that

made revisions to the file
LOC ADDED Sum over all revisions of the num-

ber of lines of code added to the
file

MAX LOC ADDED Maximum number of lines of code
added for all revisions

AVE LOC ADDED Average lines of code added per re-
vision

LOC DELETED Sum over all revisions of the num-
ber of lines of code deleted from the
file

MAX LOC DELETED Maximum number of lines of code
deleted for all revisions

AVE LOC DELETED Average lines of code deleted per
revision

CODECHURN Sum of (added lines of code -
deleted lines of code) over all re-
visions

MAX CODECHURN Maximum CODECHURN for all
revisions

AVE CODECHURN Average CODECHURN per revi-
sion

MAX CHANGESET Maximum number of files commit-
ted together to the repository

AVE CHANGESET Average number of files committed
together to the repository

AGE Age of a file in weeks (counting
backwards from a specific release
to its first appearance in the code
repository)

WEIGHTED AGE

N∑
i=1

Age(i)×LOC ADDED(i)

N∑
i=1

LOC ADDED(i)

where

Age(i) is the number of weeks
starting from the release date for
revision i and LOC ADDED(i) is
the number of lines of code added
at revision i



26

To determine changeset size, we used the CVSPS tool [Mansfield, 2001]. This tool

identifies files which were committed together and presents them as a changeset. Slight

modifications to the tool were required to ensure that the file names produced in the

changesets included the path information to match the file names produced by our rlog

processing script.

We wrote custom scripts to parse the CVS logs, converting the log entries into an

SQL database. This data, along with changesets, bugs, and refactorings, were used

to compute the metric values for each file. Finally, Weka-formatted files (ARFF) were

produced. We also found and corrected an error in the script we had used to extract the

change data from the database into ARFF files in [Krishnan et al., 2011b]. This error

had caused the data to be extracted beyond the stated end date (beyond six months

pre-release) for 13 of the 17 metrics. Figure 3.2 provides an overview of this process.

To ensure that the data resulting from the various input

sources all contained matching filenames (the key by which the data were combined),

and covered the same time periods, a few on-the-fly modifications were necessary. In

cases where a file has been marked “dead”, it is often moved to the Attic in CVS. This

results in an alteration of the file path, which we adjusted by removing all instances of

the pattern “/Attic/” from all file paths.

An artifact of using the CVS rlog tool with date filtering is that files which contain

no changes during the filter period will be listed as having zero revisions, with no date,

author, or other revision-specific information. This is true even if the file was previously

marked “dead” on a branch. Thus, rather than examining only the date range required

for each specific release, we obtained the rlog for the entire file history and determined

the files which were alive and the revisions which applied to each release.

To validate our approach, we compared our resulting file set for the pre-Europa re-

leases (2.0, 2.1 and 3.0) with the file sets available from Zimmermann’s work

[Zimmermann et al., 2007]. We found that there were a few differences in the two
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datasets due to the independent data collection processes. While most of the files were

common to both datasets, there was a small subset of files which were unique to each

of them. For the three components, Platform, JDT and PDE, in the 2.0 release, we

included 6893 files as compared to their 6730 files. In the 2.1 release, we had 7942 files

while they had 7888, and in the 3.0 release, we had 10822 files as compared to 10593 in

theirs. Further inspection showed that there were some differences in the list of plugins

included in both studies. We also observed that some files which were not present in

the earlier dataset did have revisions during the development and production lifetime of

the respective releases, and hence should have been included in the analysis. We thus

included those in our dataset.

Moser et al. [Moser et al., 2008b] use a subset of the dataset used in

[Zimmermann et al., 2007] (57% of Classic-2.0 files, 68% of Classic-2.1 files and 81% of

Classic-3.0 files) and annotate it with change metrics. Since this dataset is not publicly

available, we cannot compare our dataset with theirs. As discussed earlier, our dataset

is comparable in size with the Zimmermann dataset in [Zimmermann et al., 2007] and

hence larger than the Moser dataset in [Moser et al., 2008b].

3.2.2 Types of Datasets

Previous classification studies use several different types of datasets. Some previous

defect prediction studies use datasets that divide the time period into pre-release and

post-release [Zimmermann et al., 2007], [Moser et al., 2008b], [Zimmermann et al., 2009],

[Nagappan et al., 2006a], [D’Ambros et al., 2012]. In these studies, metrics are collected

for a specified period before the release of the software (typically six months), and these

metrics are used to predict the post-release defects six months after release. Other

studies use datasets that do not have such division of data into time periods. These in-

clude datasets from the NASA MDP repository [MDP, 2004] and the PROMISE repos-

itory [Menzies et al., 2012]. MDP and PROMISE datasets provide static metrics at
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file (or class) level but do not distinguish between pre-release and post-release defects

[Hall et al., 2012], [Gray et al., 2011].

Studies using the NASA MDP and PROMISE datasets have shown good prediction

performance (e.g., [Menzies et al., 2007], [Menzies et al., 2011], [Bettenburg et al., 2012]),

applying cross-validation to predict the defective files. However, the high recall rates in

experiments carried out on these datasets may not be achievable for our goal of a product

line project predicting future failure-prone files from past data.

Studies which have divided their data into pre-release and post-release periods ob-

served mixed results in terms of prediction performance. For studies on open-source

systems, Zimmermann et al. [Zimmermann et al., 2007] report that for three releases

of the Eclipse system, classifying files as failure-prone or not gave very low recall rates

(the best being only 37.9% for Eclipse 3.0) when static metrics were used. Moser et al.

[Moser et al., 2008b] reported much better results for the same releases of Eclipse when

change metrics were used with recall rates greater than 60%. However, this dataset is

not publicly available and hence reproducibility is not possible. Recently, D’Ambros

et al. performed a study to provide a benchmark for existing defect prediction strate-

gies [D’Ambros et al., 2012]. They report high AUC values (greater than 0.85) for five

open-source systems, when change metrics were used. Studies from Microsoft by Na-

gappan et al. [Nagappan et al., 2010] report very high recall and precision rates (both

greater than 90%) when using change burst metrics for predicting defect-prone binaries.

However, they also report that the same change burst metrics perform poorly for some

open-source projects like Eclipse (recall rate of only 51%).

To check the consistency of results across datasets with different data collection

and prediction periods, we experiment with three existing approaches to classifying our

datasets, each involving a different time period for collecting change and defect data. For

every release of the Eclipse products (i.e., 2.0, 2.1, 3.0, 3.3, 3.4, 3.5 and 3.6), we collected

change and defect data for 6 months before and after release. Except for release 2.1,
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which was released in March, 2003, the other releases were in June of their respective

years. We partition this collected change and defect data in three different ways to form

the three types of datasets. We then compare results among the three types of datasets

as we investigate the research questions.

• UseAll PredictAll : This dataset uses the same approach as the NASA MDP and

PROMISE datasets [MDP, 2004, Menzies et al., 2012]. For this type of dataset,

change data is collected for the entire twelve months (Jan-Dec) of each release.

Pre-release and post-release defects are grouped into a single field. If a file has any

defects associated with it, we tag the file as defective; otherwise, the file is tagged

as non-defective. In this type of datasets we do not distinguish between pre-release

and post-release defects. Therefore, the metric BUGFIXES is not included in the

feature set, i.e., only the other 16 change metrics are included.

• UseAll PredictPost : This dataset is a variant of the approach used in our earlier

work [Krishnan et al., 2011b]. As with the previous dataset, the change data is

collected for the twelve months (Jan-Dec) of each release. Pre-release defects are

distinguished from post-release defects. The number of pre-release defects (defects

in Jan-June) are counted and recorded in the BUGFIXES metric. If a file has any

post-release defects (defects in Jul-Dec), it is tagged as defective; otherwise, the

file is tagged as non-defective.

• UsePre PredictPost : This dataset uses the same approach as that used by Zimmer-

mann et al. [Zimmermann et al., 2007] and others [Moser et al., 2008b],

[Zimmermann et al., 2009], [Nagappan et al., 2006a], [D’Ambros et al., 2012]. For

this dataset, change data is collected for six months (Jan-Jun) pre-release, in-

cluding the BUGFIXES metric. Again, pre-release defects are distinguished from

post-release defects. If a file has any post-release defects (defects in Jul-Dec), it is

tagged as defective; otherwise, the file is tagged as non-defective.
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The main reason for wanting to distinguish pre and post-release defects is that, since

post-release defects are encountered and reported by customers, they may have a higher

impact on the quality of the software as perceived by the customer. Additionally, in

terms of the practical utility of prediction, projects may seek to use metrics collected

from the pre-release period to predict post-release defects. Using pre-release data to

predict pre-release defects, or post-release data to predict post-release defects may have

limited practical value.

3.2.3 Data Analysis

The base probabilities (proportion of defective files) for all releases of all four products

for the three datasets are given in Table 3.3. The total number of files for each release of

each product is given in the third column. For the UseAll PredictAll datasets, the per-

centage of defective files is shown in the fourth column. For both the UseAll PredictPost

and UsePre PredictPost datasets, the percentage of defective files is the same as shown

in the last column. The percentage of defective files in the UseAll PredictAll dataset,

which includes both pre-release and post-release defects, is two to three times larger than

in UseAll PredictPost and UsePre PredictPost datasets, for all products and releases.

In our previous work [Krishnan et al., 2011b], the prediction was done at the product

level, for each product in the product line. In this work, we perform prediction and

analysis at the component level as well. Data at the product level is an aggregation of

data at the component level, i.e., the total number of files in a product is an aggregation

of the files of all the components that belong to that particular product. For example,

Eclipse-Classic is composed of three components, Platform, JDT and PDE. As such, the

total files for any release of Eclipse-Classic is an aggregation of all the files of Platform,

JDT and PDE for that release.

We perform an initial exploration using seventeen different learners including Bayesian

methods, decision tree methods, support vector techniques, neural network techniques
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Table 3.3: Base Probability for All Releases for Multiple Products of Eclipse

Product Release Total Files UseAll PredictAll UseAll PredictPost and
UsePre PredictPost

Classic

2.0 6893 54.6% 26.2%
2.1 7942 45.9% 23.3%
3.0 10822 47.6% 23.5%
3.3 15661 32.1% 16.7%
3.4 17066 32.1% 16.6%
3.5 16663 24.0% 11.9%
3.6 17035 18.6% 8.3%

C C++

3.3 14303 36.7% 18.3%
3.4 15689 37.6% 21.3%
3.5 16489 32.6% 16.6%
3.6 16992 30.4% 10.5%

Java

3.3 18972 40.4% 18.1%
3.4 20492 32.4% 17.8%
3.5 20836 25.8% 13.7%
3.6 21178 21.2% 8.6%

JavaEE

3.3 35311 48.7% 24.2%
3.4 39033 34.8% 16.5%
3.5 39980 26.3% 11.5%
3.6 41274 19.1% 6.6%

and nearest neighbor methods. Based on the results we choose the J48 decision tree

learner for the subsequent work. The prediction results are obtained using 10-fold cross

validation (CV). We divide the dataset into 10 folds and use 9 folds for training and 1

fold for testing. This is done for each fold and the results of the 10 folds are averaged.

For some statistical tests, we repeat the 10-fold CV multiple times as indicated in the

text.

Based on the confusion matrix shown in Table 3.4, we use the following metrics of

learner performance, consistent with [Zimmermann et al., 2007] and [Moser et al., 2008b].

PC =
(n11 + n22)

(n11 + n12 + n21 + n22)
∗ 100% (3.1)

TPR =
n22

(n21 + n22)
∗ 100% (3.2)
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Table 3.4: Confusion Matrix

Predicted Class
Not
Failure-
prone

Failure-
prone

True Class
Not
Failure-
prone

n11(TN) n12(FP )

Failure-
prone

n21(FN) n22(TP )

FPR =
n12

(n11 + n12)
∗ 100% (3.3)

Precision =
n22

(n12 + n22)
∗ 100% (3.4)

The metric PC, also known as Accuracy, relates the number of correct classifications

to the total number of files. The metric TPR, also known as Recall, relates the number of

files predicted and observed to be failure-prone to the total number of failure-prone files.

It is also known as the probability of detection. The metric Precision gives the number

of files that are actually failure-prone within the files that are predicted as failure-prone.

The measure False Positive Rate (FPR) relates the files incorrectly classified as failure-

prone to the total number of non-failure-prone files. We use these metrics to compare

our results with those by Moser, et al. [Moser et al., 2008b] and Zimmermann, et al.

[Zimmermann et al., 2007]. In addition to these metrics, we also use the Area Under

the ROC Curve (AUC) as a performance metric. The Receiver Operating Characteristic

curve is a curve that gives the trade-off between the recall and the false positive rates.

The curve can be used to find the optimal operating condition based on the desired

recall and false positive rates. Such values may differ from one system to another, based

on the domain and functionality required of the system. Area under the ROC curve

(AUC) is a measure to identify the performance. AUC value lies between 0 and 1. The
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larger the AUC value, the better. An ROC curve which lies towards the upper left

corner of the graph (high recall and low false positive rate) is the desirable position

[Heagerty and Zheng, 2004], [Wikipedia, 2003].

In addition to the prediction results obtained from 10-fold cross-validation, we identify

the metrics which are most prominent. Prominent predictors are those which provide the

highest information gain for classification of post-release defects. We find the Gain Ratio

(GR) for each metric. GR has been found to be an effective method for feature selection

[Shivaji et al., 2009]. Information Gain (IG) favors features with a larger number of

values, although they actually have less information [Wang et al., 2011]. GR improves

upon IG by normalizing it with the actual intrinsic value of the feature. Gain Ratio is

calculated as

GR(C, a) = (H(C)−H(C|a))/H(a) (3.5)

where H is the entropy function, C is the dependent variable (CLASS) and a is the

feature being evaluated. We modified the J48 code in Weka to output the gain ratio

weights assigned to the nodes of the tree based on the number of correctly classified files

from the total number of files.

Based on the GR of the features we perform a step-wise greedy feature selection ap-

proach. We first select the feature with the highest GR to perform classification. We then

add the feature with second-highest GR to the dataset and repeat the classification. If

there is significant improvement in classification performance, this feature is added to the

prominent predictor list. Features are added in decreasing GR order until no additional

feature significantly improves classification performance. We repeat the procedure for

each release of each product (or component). Note that the significance levels reported

by this procedure are not literal (since predictors are pre-screened by GR and the t-test

is not valid because the 10-fold CV values are not independent). As a result, this feature

selection procedure neither guarantees the best set of predictors nor that each predictor

actually significantly improves prediction, but it is a reasonable procedure to identify
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likely important predictors in a standard way.

Finally, we investigate an incremental prediction approach that uses increasing amount

of change data (instead of the usual 6 months) to predict the failure-prone files in the re-

maining post-release months. We increment the change data period from 6 months to 11

months, in steps of 1 month, while simultaneously reducing the post-release failure-prone

file data from 6 months to 1 month.

Note that in order to control the family-wise error rate

(FWER) at the 0.05 level due to multiple statistical tests performed in this work, we use

a cut-off significance value of 0.05/36 = 0.001.
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CHAPTER 4. DEFECT ASSESSMENT RESULTS

In this chapter, we present the results from the defect assessment study. Recall that

in Chapter 1 we briefly stated the research questions for our defect assessment study.

The research questions are stated in detail below. 1

4.1 Research Questions

1. Failure trends

(a) Failure trends for common components

(i) Do the number of severe failures (blocker, critical and major) decrease

with time as the common component is being reused across multiple re-

leases?

(ii) Does the percentage of severe failures decrease with time as the common

component is being reused across multiple releases?

(b) Failure trends for high-reuse variation components

(i) Do the number of severe failures decrease with time as the high-reuse

variation components are being reused across multiple releases?

(ii) Does the percentage of severe failures decrease with time as the high-reuse

variation components are being reused across multiple releases?

1The work presented in this chapter is adapted from [Krishnan et al., 2011a]. Empirical Evaluation
of Reliability Improvement in an Evolving Software Product Line. Proceedings of the 8th Working
Conference on Mining Software Repositories, Waikiki, Honolulu, HI, USA, May 2011, pp. 103-112.
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(c) Failure trends for low-reuse variation components

(i) Same as b(i) but for low-reuse variation components.

(ii) Same as b(ii) but for low-reuse variation components.

2. Change trends

(a) Does the percentage of new files and/or modifications to the source code for

the common components decrease across releases?

(b) Does the percentage of new files and/or modifications to the source code for

the variation components decrease across releases?

3. Failures/Change relationship

(a) Is there a decrease in the number of failures with respect to changes (new file

creation/code modifications) for the common components across releases?

(b) Is there a decrease in the number of failures with respect to changes (new file

creation/code modifications) for the variation components across releases?

4.2 Results

The following discussion describes the results obtained from the analysis of the data

for each of the above research questions.

4.2.1 Failure Trends

4.2.1.1 Failure Trend for Common Components

The common components are those that have been reused in all products.

(i) Number of severe failures decreases over time, as expected. Fig. 4.1 shows the de-

creasing number of severe failures for the five individual sub-components of Plat-

form and for the aggregate Platform-combined which is the sum of the failures
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for its fourteen sub-components. Note that the 2007 Release is labeled as 1, 2008

Release as 2 and so on.

(ii) Percentage of severe failures tends to stabilize and even shows a gradual increase

over time, contrary to our expectations. As shown in Fig. 4.2, the percentage of

severe failures for Platform-combined tends to remain in the range of 14.5% to

17%, rather than continuing to drop.

In fact, for Platform-combined, the percentage of severe failures increases over

the last three releases. SWT, UI, Resources and Platform-combined show an in-

crease in the percentage of severe failures from release 3 to release 4. Of the

remaining two sub-components, Runtime and Debug, Debug shows a decrease of

approximately 1% only from release 3 to 4. Only Runtime subcomponent shows a

significantly decreasing trend over the last three releases. This shows that from re-

lease 3 to 4 the percentage of severe failures does not exhibit a significant decrease

for the common sub-components.

Figure 4.1: Number of Severe Failures in Common Components

4.2.1.2 Failure Trend for High-reuse Variation Components

These are the components which are reused increasingly in multiple products across

the four releases.
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Figure 4.2: Percentage of Severe Failures in Common Components

(i) Number of severe failures does not monotonically decrease over time and shows

mixed behavior, contrary to our expectations. Fig. 4.3 shows that this monotonic

decrease occurs for some components (JDT), but not for others. For example, PDE,

Mylyn and GEF show an increase in the number of severe failures from release 1 to

2. EMF shows an increase in the fourth release. Other components show uneven

behavior. For example, Webtools and XMLtools show an increase in severe failures

from release 1 to 2, then a decrease from release 2 to 3 and again an increase from

release 3 to 4.

The data suggest that for variation components with high reuse, the trend

for number of severe failures over time is highly mixed and dependent on the

component. While we would expect that highly reused variation components tend

to behave like common components, only a few of them do.

(ii) Percentage of severe failures also shows a mixed trend contrary to our expectations.

Fig. 4.4 shows that the values for percentage of severe failures also show simi-

lar uneven trends. PDE and the last three releases of JDT show trends similar

to the common Platform-combined component, with the percentage of severe fail-

ures tending to stabilize at 9.5% to 13%. However, the values for Webtools and

XMLtools fluctuate in a large range of 4% to 27% with alternating increases and



39

decreases in the percentage values. Six of the seven components have a higher

percentage of severe failures in release 4 than in release 3. Interestingly, although

the number of severe failures for JDT steadily decreases from release 2 to 4, the

percentage of severe failures steadily increases for these releases.

Figure 4.3: Number of Severe Failures in Variation Components with High
Reuse

Figure 4.4: Percentage of Severe Failures in Variation Components with High
Reuse

4.2.1.3 Failure Trend for Low-reuse Variation Components

Variation components with low reuse display tendencies similar to variation compo-

nents with high reuse.

(i) Number of severe failures show mixed trends and do not monotonically decrease.

The low-reuse variation components have a higher number of severe failures than
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most of the high-reuse variation components, which matches our expectations.

However, we also observe mixed trends. Fig. 4.5 shows an overall decrease in

the number of severe failures from release 1 to 4 for CDT. The number of severe

failures for JEEtools increases from release 1 to 2, then decreases from release 2 to

3 and then remains stable from release 3 to 4. Datatools shows an alternate rise

and drop in the number of severe failures. The number of severe failures do not

monotonically decrease for all components; rather there is a mixed behavior.

(ii) Percentage of severe failures shows mixed trends and not a decreasing trend. For

low-reuse variation components, the percentage of severe failures fluctuates less

than for high-reuse variation components. Only CDT shows a steady decrease in

percentage values as seen in Fig. 4.6. JEEtools shows an increase from release 1

to 2, then a decrease from 2 to 3 and the remains stable from 3 to 4, whereas

Datatools first decreases, then increases and remains stable. Thus, the percentage

of severe failures shows mixed results similar to the trends for number of severe

failures.

Figure 4.5: Number of Severe Failures in Variation Components with Low
Reuse

4.2.2 Change Trends

Chapter 3, Section 3.1.2 described two kinds of observable changes as Eclipse evolved:

creation of new files and modifications to existing files. We first discuss trends related to
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Figure 4.6: Percentage of Severe Failures in Variation Components with Low
Reuse

new files and the occurrence of failures in the next subsection, and then trends related to

modifications to existing files and the occurrence of failures in the following subsection.

4.2.2.1 SPL Evolution With Respect to New Files

We investigate the amount of change in the common components by calculating the

percentage of new files for each component in each release. Table 4.1 gives the percentage

of new files per release for each component we analyze. Cells with “No-info” indicate

that the data for that particular time period were not available in the Eclipse repository.

Cells with “-” indicate that there were no new files added in that time period. For the

common components, the percentage of new files gradually decreases across the four

releases. This is consistent with the SPL expectation that the common components,

since they contain features shared by all products, will be relatively stable. We also see

that in the initial release, the percentage of new files is very high.

For the high-reuse variation components, the percentages of new files are less than

for the common components/ sub-components. The percentages of the files that are new

for a given component tend to be stable across releases, rather than showing a decreasing

trend (as the common components do).

For the low-reuse variation components, the percentages of new files are comparable to
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the common components and sub-components. These percentages are also much higher

than for the high-reuse variation components. They show an overall decreasing trend as

per our expectations with the last release of JEEtools being an exception.

4.2.2.2 SPL Modification of Existing Code

Modification to existing code is observed by calculating the number of code changes

normalized to the number of files over the sequential releases of the components. There

is no overarching trend, except that a single component, SWT, has a significantly larger

modification rate over time than any other component. The two smallest common com-

ponents in this study, in terms of number of files (Resource and Runtime), have the

lowest modification rate among the common components. However, even the common

components do not show a decreasing modification rate across releases. To summarize,

existing as well as new files show significant change, and even the common components

were not reused intact, but were modified on an ongoing basis.

Table 4.1: Percentage of New Files for Commonalities and Variabilities

Category Component
Percentage of new files

2007 2008 2009 2010

Common

Debug 14.87 4.32 4.26 3.16
UI 9.10 6.57 4.80 No-info

SWT 28.82 15.77 7.70 4.74
Resources 42.76 1.32 - 5.15
Runtime - - - -

High-reuse

JDT 2.28 6.43 1.91 1.03
Webtools 1.44 13.30 1.26 1.23
XMLtools 3.78 7.41 2.21 4.18

GEF 0.53 1.90 0.68 2.18

Low-reuse
CDT 22.97 12.05 3.53 3.51

JEEtools 29.92 9.44 2.13 7.31
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Table 4.2: Failures/New-File for Commonalities and Variabilities

Category Component
Failures/new-file

2007 2008 2009 2010

Common

Debug 0.09 0.21 0.15 0.10
UI 0.27 0.25 0.19 No-info

SWT 0.44 0.58 0.83 1.37
Resources 0.05 2.50 - 0.86
Runtime - - - -

High-reuse

JDT 1.95 0.17 0.40 0.43
Webtools 0.16 0.03 0.07 0.11
XMLtools 0.09 0.15 0.05 0.06

GEF 1.33 0.55 0.75 0.15

Low-reuse
CDT 0.05 0.07 0.25 0.17

JEEtools 0.03 0.11 0.24 0.06

Table 4.3: Failures/Kchanges for Commonalities and Variabilities

Category Component
Failures/Kchanges

2007 2008 2009 2010

Common

Debug 6.92 7.47 14.81 4.71
UI 18.02 14.79 12.72 No-info

SWT 26.64 6.90 7.83 10.86
Resources 44.44 50.51 34.88 35.82
Runtime 200.00 857.14 235.29 250.00

High-reuse

JDT 59.94 5.95 3.84 8.51
Webtools 4.47 2.31 3.95 3.24
XMLtools 3.02 17.29 2.65 5.91

GEF 90.91 39.74 51.72 1.62

Low-reuse
CDT 6.65 5.83 10.98 9.69

JEEtools 6.54 17.51 14.00 6.56

4.2.3 Failure/Change Trends

One reason for increased failures might be large amounts of new/changed code that

introduced faults. To analyze the failure/evolution relationship, for each component we

extracted the number of new files added in each release and the number of times existing

files were changed. Table 4.2 shows the number of severe failures per new file and Table

4.3 the number of severe failures per 1000 changes.
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4.2.3.1 Failure/Evolution Relationship for New Files

Interestingly, the rise in the percentage of new files for three of the four high-reuse

variation components (as seen in Table 4.1) is accompanied by an increase in the number

of severe failures (as seen in Fig. 4.3). For the second release, Webtools, XMLtools and

GEF show an increase in the percentage of new files and also a corresponding increase

in the number of severe failures from the first release. Similarly in the fourth release,

XMLtools shows an increase in the percentage of new files and also an increase in the

number of severe failures. This may indicate a relationship between the failures and the

number of new files.

Table 4.2 shows a non-uniform increase or decrease in the ratio of failures over new

files. However, comparing the Failures/new file values of release 1 to release 4, there

is one observation that distinguishes the common components from the variation com-

ponents. With the exception of the Debug sub-component, for the other two common

sub-components for which we have valid data (SWT and Resources), release 1 has a

lower Failures/new-file value than release 4, with the difference being more than 0.8.

This means that the addition of new files in later releases of the evolution led to more

failures. For the high-reuse variation components, however, we observe that the values

in release 1 are always higher than in release 4, which may mean that the addition of

new files in later stages did not lead to as many failures as in the early stages. Low-reuse

variation components also show trends similar to the common sub-components.

4.2.3.2 Failure/Modification Relationship for Existing Files

As a reminder, Kchanges is the number of modifications to existing files divided by

1000. Table 4.3 shows that most components do not have a steadily decreasing rate

for Failures/Kchanges. Even for common components, the Failures/Kchanges decreases

over releases for only one of the five sub-components (UI). For Debug, Failures/Kchanges
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increases in the first three releases, and for SWT it increases from release 2 to 4. Re-

sources and Runtime first show an increase, then a decrease and then tend to remain

stable. The high-reuse and low-reuse variation components show similarly mixed trends

in the Failures/Kchanges. With respect to changes, failures fluctuate a great deal with

no distinguishing upward or downward trend.

4.3 Discussion of the results

The highlights of the empirical observations about post-deployment failures and sta-

bility of changes in the open-source, evolving product line Eclipse are summarized as

follows:

1. Components/sub-components implementing commonality reused in every product

exhibit fewer serious post-deployment failures across releases.

2. Variable components, both heavily and lightly reused, do not show a monotonically

decreasing trend for post-deployment failures across releases. No obvious trend is

observed even when failures are normalized for the number of changes made to

existing files or for the number of new files.

3. Although the number of failures in some variation components decreases as the

product line matures, the percentage of severe failures in those components holds

steady or even increases.

4. The percentages of new files in common components show a decreasing trend as the

product line evolves through releases. The values of these percentages are roughly

comparable to lightly reused variation components, but higher than for heavily

reused variation components.

As expected, common components experience fewer severe post-deployment failures

and less change as the product line matures through releases. Conversely, contrary to
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typical expectations, variable components, even if reused in multiple products, do not

show a decreasing pattern either in post-deployment failures or in the changes made/new

files added across subsequent releases. These findings clearly indicate that the improve-

ment of post-deployment quality and the stability of source code do not depend solely

on how often components are reused.

None of the Eclipse components considered in our study was reused intact(“as-is”).

“As-is” reuse without change to existing components might have led to more straight-

forward conclusions about the benefits of reuse in software product lines. The extent of

enhancements/new features added with each release is one of the factors that may help

explain the mixed results for the variation components and that may determine the ben-

efit of reuse for software product lines such as Eclipse that undergo rapid evolution. This

finding of on-going change in reused elements merits further investigation that should

take into account the amount of change measured at a finer granularity (e.g., blocks or

lines of source code), and possibly include metrics such as the size and complexity of the

components.

The mixed results also suggest that there may be other factors associated with these

reuse components, such as the amount of pre-deployment testing and the extent of field

usage, that are not accounted for in this analysis. Unfortunately, as pointed out in

[Fenton and Ohlsson, 2000], this information is typically unavailable to allow more in-

depth study in this direction.
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CHAPTER 5. DEFECT PREDICTION RESULTS

In this chapter, we present results from the defect prediction study. 1

5.1 Research Questions

Chapter 3, Section 3.2.2, gave a description of the three types of datasets studied

in this chapter: UseAll PredictAll, UseAll PredictPost and UsePre PredictPost. This

chapter explores the following research questions for each of the three types of datasets

mentioned above:

RQ1. Classifier Selection

(i) Is there a specific machine learner that is significantly better than other learn-

ers for classifying failure-prone files using change data?

RQ2. Single Product Evolution

(i) How do our results related to learner performance compare with previously

published results?

(ii) Does learner performance improve as a single product evolves?

(iii) Is the set of prominent predictors consistent across releases of a single product?

RQ3. Product Line Evolution

1The work presented in this chapter is adapted from [Krishnan et al., 2012a]. Predicting failure-
proneness in an evolving software product line. Journal of Information and Software Technology, 2012.
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(i) Does learner performance improve as the product line evolves?

(ii) Is the set of prominent predictors consistent across products as the product

line evolves?

RQ4. Evolution of Components at Different Levels of Reuse

(i) Does the learner performance improve for components in each category of

reuse (commonalities, high-reuse variation and low-reuse variation)? Does

performance differ across categories of reuse?

(ii) Is there a common set of best predictors across all categories of reuse?

RQ5. Incremental Prediction

(i) Does performing incremental prediction (increasing the period of change data

collection) improve the prediction performance?

The next five sections address these five sets of research questions in turn.

5.2 Classifier Selection

In this section, we explore RQ1 from the list of research questions. In our previous

work [Krishnan et al., 2011b], we used the J48 machine learner to perform classifica-

tion of failure-prone files. In the past, researchers have shown that prediction perfor-

mance is not crucially dependent on type of classification technique used. Menzies, et al.

[Menzies et al., 2007, Menzies et al., 2008] and Lessmann, et al. [Lessmann et al., 2008],

observed that there is no statistical difference between the performance of most learners.

However, there were a few learners that performed significantly worse than others.

We wanted to check whether J48 performs well enough when compared to other learn-

ers. Hence, we performed analysis similar to that of Lessmann, et al.
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[Lessmann et al., 2008]. We evaluated a total of 17 classifiers, over the 11 distinct com-

ponent datasets identified in Table 2.1. All the 17 chosen classifiers are implemented in

the Weka machine learning software [Hall et al., 2009] and listed in Table 5.1.

Table 5.1: List of Classifiers

Type Classifier
Statistical Naive Bayes

Bayesian Networks
Logistic Regression

Bayesian Logistic Regression
Decision Tree methods J48

ADTree
LADTree

RandomForest
Support Vector methods Voted Perceptron

SPegasos
SMO

Neural Network methods RBF Network
Nearest Neighbor methods IBk

Others DecisionTable
OneR

Bagging with J48
RandomSubSpace with J48

We evaluated the performance of the 17 classifiers over the 11 components for the 2007

Europa release. As this was part of a pilot study and as we were interested in observing

the general trends, we did not consider all the releases. We measured the AUC and

the recall (TPR) values for each learner-component combination. To test whether the

differences in AUC or TPR are significant, we carried out the Friedman test. A p-value

< 2.2× 10−16 suggested that the hypothesis of equal performances among the classifiers

was unlikely to be true. This shows that there is a statistically significant difference

between some pairs of learners. This was true when comparing AUC as well as TPR

values. We then conducted post-hoc Nemenyi tests to find where was the difference, and

represented the results with Demsar’s Critical Difference (CD) diagram [Demšar, 2006].

For 11 datasets and 17 classifiers the CD value was 7.45 at a significance level of 0.05.
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The results of Nemenyi tests for the AUC and TPR values are shown in Figure

5.1. When using AUC as the performance measure, we find that there is no statistical

difference between the top 10 classification algorithms. Furthermore, we observe that

there is no significant difference between the performance of J48 learner and the observed

best performer, RandomForest, both in terms of AUC and TPR. Since our focus is not

on analysis of classifier performances, we do not present the details of the ranking of the

different classifiers.

Figure 5.1 shows the results for the UseAll PredictAll dataset (i.e., for each compo-

nent, the change metrics and defect data encompass the entire 12 months). Similar results

are observed for the UseAll PredictPost and UsePre PredictPost data. These results are

shown in Figures 5.2 and 5.3, respectively. In all, there are 6 cases (3 types of dataset

and 2 performance metrics, AUC and TPR). Although the individual rankings differ for

each case, there is no statistical difference between the performance of J48 and the best

learner in 5 out of 6 cases. Only for one case is there a statistically significant differ-

ence, i.e., (AUC ranking for UsePre PredictPost dataset). For the UsePre PredictPost

dataset, we also see that there is no statistical difference between performance of the

first 12 classifiers. These results are similar to the results observed by Lessmann et al.

[Lessmann et al., 2008] who also found no statistical difference between the performance

of most learners. Their results were for the MDP datasets which are based on static

code metrics while ours are based on change metrics. Since J48’s performance was good

overall, we continued our analysis in this paper with J48.

5.3 Single Product Evolution

In this section we discuss the performance of the J48 machine learner and the sets of

prominent predictors for a single product, Classic, in the Eclipse product line. We look

at each of the questions listed in RQ2 in Section 1.2.
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Figure 5.1: CD Diagram for AUC and TPR Ranks of UseAll PredictAll
Dataset

5.3.1 How do our results related to learner’s performance compare with

previously published results?

Older releases of Eclipse did not have many components. Platform, JDT and PDE

were the important components, and the combination of these three components was

distributed as Eclipse SDK. This combination of components is now one product called

Eclipse Classic in the Eclipse product line. Moser, Pedrycz and Succi in

[Moser et al., 2008b] looked at three releases, 2.0, 2.1 and 3.0 of this product. We per-

formed classification on the same three releases for this product using the J48 learner.

Table 5.2 compares our results with the results by Zimmermann et al.

[Zimmermann et al., 2007] and Moser et al. [Moser et al., 2008b]. The authors in

[Zimmermann et al., 2007] and [Moser et al., 2008b] used pre-release data to predict

post-release defects. Hence we compare their results with our results for the

UsePre PredictPost dataset of Eclipse-Classic for releases 2.0, 2.1 and 3.0.

We see that our results using change data are better than the results of Zimmermann
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Figure 5.2: CD Diagram for AUC and TPR Ranks of UseAll PredictPost
Dataset

et al. [Zimmermann et al., 2007] which were based on using static data. The values

of PC and Precision are similar to theirs, while the TPR and FPR values are much

better than theirs. The TPR values reported by Moser et al. [Moser et al., 2008b] are

higher than the TPR values we observed. It should be noted that the dataset used

in [Moser et al., 2008b] is significantly smaller. Because that dataset is not publicly

available, we are unable to further investigate the discrepancy of the results.

Table 5.2: Comparison of Classification Performance for 2.0, 2.1, and 3.0 Re-
leases of Eclipse Classic for UsePre PredictPost Dataset

Release
[Moser et al., 2008b] [Zimmermann et al., 2007] This study

PC TPR FPR Precision PC TPR FPR Precision PC TPR FPR Precision
Classic-2.0 82 69 11 71 77 24 27 66 79 52 11 63
Classic-2.1 83 60 10 65 79 22 24 65 81 46 8 63
Classic-3.0 80 65 13 71 71 38 34 66 80 38 7 63

A reason for the difference in results may be the different number of files used by Moser

et al. and us. The datasets used in [Moser et al., 2008b] consisted of significantly smaller

subsets of the files in [Zimmermann et al., 2007], which was mentioned to be due to
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Figure 5.3: CD Diagram for AUC and TPR Ranks of UsePre PredictPost
Dataset

incomplete CVS history. Instead, we use the dataset used in [Zimmermann et al., 2007]

as a reference point. As described in Section 1.3.1, our datasets are comparable in size

to the datasets in [Zimmermann et al., 2007], with few differences between them.

5.3.2 Does learner performance improve as a single product evolves?

We next add to the analysis four additional releases of the same product, Eclipse

Classic for the three types of datasets. The results in Table 5.3 show values for PC,

TPR, FPR and AUC over the seven years for the three datasets, UseAll PredictAll,

UseAll PredictPost and UsePre PredictPost. The comparison over the three datasets

reveals that results that may look promising when using a particular type of dataset

need not hold for other type of datasets. In our case, the results are promising for the

UseAll PredictAll and UseAll PredictPost datasets. However, when we look at more

practical datasets like the UsePre PredictPost, the results are much worse. PC, TPR,

FPR and AUC values for UseAll PredictAll and UseAll PredictPost datasets are improv-
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ing with time. For the later releases, the PC and TPR values are above 85% which is

good. Similarly, the FPR values are as low as 2%. Quite opposite to the other two

datasets, for UsePre PredictPost the TPR values for the later releases of Eclipse-Classic

are worse than for the older releases. The highest TPR value for the later releases is 40%

for the Ganymede release.

We used statistical methods to test for differences in learner performance in time and

then estimate the magnitude of the change in performance over time for each dataset.

For each release of the Classic product, we computed the average PC, TPR, and FPR of

the J48 learner over a ten-fold cross-validation. To reduce the variance in these estimated

statistics, we repeated the ten-fold cross-validation 1,000 times.

First, we used one-way analysis of variance (ANOVA) to test for constant mean PC,

TPR, FPR and AUC across all releases. For all three datasets, this hypothesis was re-

soundingly rejected (p-value< 5×10−16) for all three responses. The ANOVA assumption

of normality was largely satisfied, except for response TPR on the Europa release (p-value

4 × 10−4) for the UseAll PredictAll dataset, for response PC on the Ganymede release

(p-value 2×10−3) for the UsePre PredictPost dataset, and for response PC on the Galileo

release (p-value 8×10−3) for the UseAll PredictPost dataset. The equal variance assump-

tion was violated for all responses of all datasets (based on Figner-Killeen test p-values

< 5 × 10−16). As a precaution against these violated assumptions, we carried out the

non-parametric Kruskal-Wallis test which does not have assumptions about distributions.

The hypothesis of equal distributions was resoundingly rejected (p-value < 5 × 10−16)

for all four responses (PC, TPR, FPR and AUC) in all three datasets.
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Given that there was change in PC, TPR, and FPR across releases, we next sought

to characterize the size and direction of the trend over time. Our interest is in detecting

possible trends in time and, since there are only seven releases (and only four in later

sections), we restrict our attention to linear trends. If the temporal trend is in fact

linear, then the estimated slopes are a more parsimonious and precise summary of the

trend than pairwise post-hoc tests. To estimate the linear trend in PC, TPR, and FPR

over time, we fit a linear mixed model to the 1,000 repeated measures for each release

using R package nlme [Pinheiro et al., 2001]. We estimated a separate variance for each

release. The slopes and associated p-values for testing the null hypothesis of no temporal

trend are shown in the last row of Table 5.3. Cells marked with ** denote values that

are statistically significant at the 0.001 level. For the UseAll PredictAll dataset, PC

increased 2.0% per year (p-value 0.0004); TPR increased 1.7% per year (p-value 0.003);

FPR decreased 2.3% per year (p-value 0.0001) and AUC increased 1.9% per year (p-

value 0.0002). However, for the UsePre PredictPost dataset, only PC and FPR have an

improving trend, whereas TPR and AUC have a worsening, but not significant, trend.

PC increased 1.5% per year (p-value 0.0002); TPR decreased 3.6% per year (p-value

0.004); FPR decreased 1.1% per year (p-value 8.6× 10−05) and AUC decreased 0.5% per

year (p-value 0.22).

For the UsePre PredictPost dataset it is difficult to assess whether performance is

increasing or decreasing over time. However, there is a clear reduction in the TPR

and AUC for the UsePre PredictPost dataset as compared to the others. Thus, train-

ing only on pre-release data makes it very difficult to successfully find post-release fail-

ures. One likely reason for the high recall rates and improving performance for the

UseAll PredictAll and UseAll PredictPost datasets is that the changes made to correct

the post-release defects are included in the change data collected period. Another pos-

sible reason for the worse performance of the UsePre PredictPost dataset is the lower

percentage of defects, i.e., it is a less balanced dataset. Looking back at Table 3.3, we
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can see that the percentage of defective files for UsePre PredictPost dataset is between 6-

27%, almost half of the percentage for the UseAll PredictAll dataset. However, since the

UseAll PredictAll datasets also have high recall rates, class imbalance does not appear

to be as important as the period of collection of change data and prediction data here. It

appears that the continuous change observed [Krishnan et al., 2011a] even in the com-

ponents that implement commonalities and high-reuse variabilities makes classification

more difficult.

5.3.3 Is the set of prominent predictors consistent across releases of a single

product?

We next explore whether the set of prominent predictors remains stable across releases

for a single product in the product line, namely Eclipse Classic. To identify the prominent

predictors, we order the 17 change metrics with decreasing gain ratio (GR) weights, and

perform a step-wise feature selection approach followed by classification of each feature

selected subset using the J48 machine learner. We run the following algorithm to perform

the step-wise feature selection:

1. Let m be set of all metrics for the dataset.

2. Select m′ = maxGR(m)

3. Add m′ to the prominent predictor list.

4. Add m′ to temporary dataset d′

5. Perform J48 classification on d′. Store result in R1

6. Delete m′ from m.

7. While m 6= φ, repeat steps 8-12

8. Select m′′ = maxGR(m)
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9. Add m′′ to d′

10. Perform J48 classification on d′. Store result in R2

11. If (R2 is statistically significantly better than R1) then { Add m′′ to prominent

predictor list; R1 = R2 }

12. Delete m′′ from m.

13. Output prominent predictors.

We performed the above steps for all releases of the Eclipse-Classic product. For each

feature-selected dataset, we performed 10-fold cross validation. To test whether a metric

should be included in prominent predictor list, we compared the performance when a new

feature is added with the previous feature selected dataset (that resulted in a prominent

predictor) using t-test. The feature with the highest GR is considered as prominent by

default. To test if the feature with second highest GR should be included in the prominent

predictor set, we do a t-test between 10 outputs of 10-fold CV for the second dataset

(when the highest and second highest GR features are selected), and the 10 outputs

of 10-fold CV of the dataset with only the highest GR feature. If the improvement is

significant, we add the feature with second highest GR to the prominent predictor set. As

multiple t-tests had to be performed, we applied a Bonferroni correction to the p-value.

Since the number of t-tests to be performed was not known apriori (due to all metrics not

contributing towards GR), we took a conservative approach for Bonferroni correction. A

maximum of 16 t-tests would be performed if all features contribute towards GR and,

each being a one-sided test to check for increase in the AUC value, we compared the

p-value returned by t-tests with 0.05/16 = 0.003125.

Results of the feature selection approach for the different releases of Eclipse Clas-

sic across the three types of datasets are shown in Tables 5.4 and 5.5. Table 5.4 gives

the prominent predictors for the older releases of Eclipse-Classic, while Table 5.5 gives
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the results for the newer releases. We find that in both tables the UseAll PredictAll

and UseAll PredictPost datasets have a prominent predictor that is common across the

respective sets of releases (Revisions for older releases of UseAll PredictAll, Authors

for newer releases of UseAll PredictAll and Revisions for older and newer releases of

UseAll PredictPost). However the UsePre PredictPost dataset does not have a promi-

nent predictor that is common across all the considered releases. The previous study

by Moser, Pedrycz and Succi [Moser et al., 2008b] identified Bugfixes, Revisions and

Max Changeset as the most common predictors. Although it did not mention using any

statistical test to check for prominence, we find that there is some overlap between those

results and our results for the UsePre PredictPost dataset. We also find that Bugfixes

and Revisions appear as prominent in more than one release. For the newer releases,

in addition to Bugfixes and Revisions, we find that Age also appears in more than one

release.

Table 5.4: Comparison of Prominent Predictors for Older Releases of Eclipse
Classic

Release
Top 3 pre-
dictors from
[Moser et al.,
2008]

Top predictors from this study

UseAll PredictAll UseAll PredictPost UsePre PredictPost

Classic-
2.0

Max Changeset,
Revisions,
Bugfixes

Revisions,
Age,
Authors

Revisions,
Weighted Age

Revisions,
Loc Deleted

Classic-
2.1

Bugfixes,
Max Changeset,
Revisions

Revisions,
Ave Changeset

Revisions,
Weighted Age

Bugfixes,
Max Changeset

Classic-
3.0

Revisions,
Max Changeset,
Bugfixes

Revisions,
Max Changeset,
Age

Revisions,
CodeChurn

Bugfixes,
Revisions
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Table 5.5: Prominent Predictors for Newer Releases of Eclipse Classic

Release
Top predictors

UseAll PredictAll UseAll PredictPost UsePre PredictPost

Classic-3.3
(Europa)

Max CodeChurn,
Age,
Loc Added,
Authors

Revisions,
Max Changeset,
Max Loc Added

Revisions

Classic-3.4
(Ganymede)

Authors,
Revisions,
Age,
Ave Changeset

Revisions,
Age,
Ave Changeset

Age,
Bugfixes,
Ave Loc Added

Classic-3.5
(Galileo)

Ave CodeChurn,
Age,
Ave Changeset,
Authors

Revisions,
Max Changeset,
Loc Added,
Authors

Revisions,
Bugfixes

Classic-3.6
(Helios)

Authors,
Ave Changeset

Revisions,
Authors,
Bugfixes

Loc Added,
Age

5.4 Product Line Evolution

In this section we discuss how the performance of the machine learner and the sets of

prominent predictors change as the product line evolves, looking at both of the questions

in RQ3 given in Section 1.2. In addition to the Eclipse Classic product studied in Section

5.3, we applied the learning algorithm to three other products in the Eclipse product

line, Eclipse Java, Eclipse JavaEE, and Eclipse C/C++.

5.4.1 Does learner performance improve as the product line evolves?

Figures 5.4, 5.5 and 5.6 show the results for PC, TPR and FPR across four years

2007-2010, for the four products in Eclipse’s product line, for the three types of datasets.

The X-axis shows the four products and the Y-axis shows the PC, TPR and FPR values.

As in the case with the Eclipse-Classic product, we observe that across the prod-

uct line, results show an improving trend for all products in the UseAll PredictAll and

UseAll PredictPost datasets. In terms of correctly classified instances, all products have
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PC rates above 94%. The true positive rates are almost all above 85% for both these

datasets. False positives show very low values, less than 6% with the 2010 Helios release

of JavaEE product having the lowest FPR for both datasets. For the UsePre PredictPost

dataset, we see similar results as in Section 5.3, i.e., although the PC and FPR values

are improving with time, the recall values are low and do not show improvement. The

highest recall value is of 60% for the 2007 Europa release of the JavaEE product.

The plots of Figures 5.4-5.6 appear to show some trends over time. Specifically, PC

appears to increase; FPR appears to decrease; and TPR increases for two of the three

datasets. To test whether this tendency is a global and significant trend across products,

we regress each of these responses separately on time (release). We used a linear mixed

model with random intercept to account for covariance due to repeated measures on

the same product. The slope values along with the corresponding p-values are shown in

Table 5.6. The estimated trends from these four years of data are similar to the results

obtained from the Classic product over seven years (Table 5.3). However, none of the

slopes estimated for UsePre PredictPost dataset are significant, that is, the predictions

do not show a recognizable trend as the product line evolves.

Similar to Section 5.3.2, there is no evidence to conclude any performance trend in

time for the UsePre PredictPost dataset, but there is an obvious reduced TPR for the

UsePre PredictPost dataset at all releases relative to the others. Why this is so is a

topic of current research, but it seems that ongoing change [Krishnan et al., 2011a] is

altering the patterns associated with failure as the products evolve in time. Products are

made of both commonalities and variations, and it is reasonable to suspect that failure

patterns are more stable in commonalities. In Section 5.5, we check to see if files from

commonalities are easier to predict than files from variations.
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Figure 5.4: PC, TPR and FPR Comparison of Eclipse Products Across Re-
leases for UseAll PredictAll Dataset

Figure 5.5: PC, TPR and FPR Comparison of Eclipse Products Across Re-
leases for UseAll PredictPost Dataset

Figure 5.6: PC, TPR and FPR Comparison of Eclipse Products Across Re-
leases for UsePre PredictPost Dataset
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5.4.2 Is the set of prominent predictors consistent across products as the

product line evolves?

In Section 5.3.3 we discussed the prominent predictors of failure-prone files over time

for the three types of datasets for the Eclipse-Classic product. Here we investigate

whether the set of prominent predictors differs for different products in the product line.

We use the algorithm explained in Section 5.3.3 to identify the prominent predictors.

Table 5.7 compares multiple products across the 2007-2010 (Europa, Ganymede,

Galileo and Helios) releases. Each cell gives a summary of the prominent predictors for

that particular product and in how many of the four releases they appeared as prominent.

We find that for the UseAll PredictAll dataset, the Authors metric is common across all

releases of all products, followed by Ave Changeset, which is prominent in three releases

of each product. For the UseAll PredictPost dataset, Revisions is common, appearing

in 15 of 16 releases across the four products. Authors and Max Changeset are the next

most common. For the UsePre PredictPost dataset, however, there is no common pre-

dictor across products and releases. Age is the most common predictor, appearing in 11

of 16 releases across the four products. Bugfixes and Revisions are the next most com-

mon prominent predictors for the product line, appearing in 9 releases and 8 releases,

respectively, across four products.

The observations suggest that while there are predictors which are common across all

releases for the UseAll PredictAll and UseAll PredictPost datasets, for the

UsePre PredictPost dataset no common predictor exists across all releases.
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5.5 Evolution of Components at Different Levels Of Reuse

We explore the learner performance and consistency of predictors for components

grouped by level of reuse (commonalities, high-reuse variations and low-reuse variations)

considering both questions listed in RQ4 in Section 1.2.

5.5.1 Does the learner performance improve for components in each cate-

gory of reuse? Does performance differ across categories of reuse?

Failure prediction at the product level showed that the prediction performance is

improving across time only for PC and FPR, but not for recall. Products are an ag-

gregation of components, so we wanted to observe whether there is an improvement in

prediction for components in the different reuse categories. Intuitively, we expect that

the learner performance would improve for each category of reuse. Since commonalities

are reused in every product, change less and have fewer defects [Krishnan et al., 2011a],

we expect the J48 learner to show better performance for higher reuse, i.e., performance

improvement for commonalities to be better than high-reuse variations which in turn

would be better than low-reuse variations. To explore this, we performed 10-fold cross

validation using the J48 learner for the individual components.

We used a linear mixed effects model with random intercept to estimate the slope of

improvement and considered the main and interaction effects of “time (year)” and “Type

of reuse”. The overall increase/decrease rates for PC, TPR, FPR and AUC averaged

across all components for the three types of datasets are shown in Table 5.8. The results

are similar to the previous results obtained for products. For UseAll PredictAll and Use-

All PredictPost datasets, we observe significant improvement trends for all the responses

(with the exception of FPR and AUC for UseAll PredictAll). For the UsePre PredictPost

dataset we see similar patterns as before, although PC is significantly improving for com-

ponents.
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We found that with time, there is an improvement in learner performance for each

category of reuse for the UseAll PredictAll and the UseAll PredictPost datasets. Similar

to the results in Table 5.6, most of the results for UsePre PredictPost dataset are not

statistically significant. For each dataset, when comparing the different categories of

reuse, we found that no category has a performance increase that is significantly less (or

more) than the overall improvement rate. Hence, the values in the Table 5.8 indicate the

overall improvement rates for all three categories of reuse. In some cases, as expected,

commonalities seem to be classified better than the other two categories, while for others

commonalities are classified worse, which does not confirm our intuition.

It should be noted that except for three components (Platform, JDT and PDE), other

components had change data for only four releases (2007-2010). Due to limited data we

are not able to conclusively say whether one category of reuse performs better than the

others. In addition, the components are much smaller in size compared to products and

hence we expect more noise in the analysis at the component level.
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5.5.2 Is there a common set of best predictors across all categories of reuse?

Next we explore whether the set of prominent predictors differs across component

categories. We use the algorithm described in Section 5.3.3 for feature selection.

Table 5.9: Prominent Predictors for Components at Different Levels of Reuse

Dataset Type Commonalities High-Reuse
Variations

Low-Reuse Vari-
ations

UseAll PredictAll

Authors:3
Ave Changeset:2
Max Changeset:2
Revisions:2
Max CodeChurn:1
Age:1
Max Loc Added:1

Revisions:3
Authors:2
Ave Changeset:2
Age:2
Max Changeset:1
Ave CodeChurn:1
Max CodeChurn:1
Weighted Age:1

Authors:4
Age:3
Max Changeset:2
Revisions:1
Ave Changeset:1

UseAll PredictPost

Revisions:3
Max Changeset:3
Authors:3
Weighted Age:1
Max CodeChurn:1
Max Loc Added:1
Loc Added:1

Revisions:4
Authors:3
Max Changeset:2
Bugfixes:2
Age:2
Code Churn:1
Ave Changeset:1
Loc Added:1

Max Changeset:3
Loc Added:3
Weighted Age:2
Age:1
Authors:1
Bugfixes:1
Revisions:1
Max CodeChurn:1

UsePre PredictPost

Bugfixes:2
Authors:2
Loc Added:2
Age:1
Max Changeset:1

Age:4
Bugfixes:2
Ave Changeset:1
Weighted Age:1
Max Code Churn:1

Age:3
Bugfixes:2
Weighted Age:1
Max Loc Added:1
Revisions:1

Table 5.9 lists the prominent predictors for the three reuse categories, for the three

types of datasets. Each cell gives a summary of the prominent predictors for that par-

ticular reuse category and in how many of the four releases they appeared as prominent.

We observe that there is some overlap among the prominent predictors for the three reuse

categories. For the UseAll PredictAll dataset, the metric Authors is prominent and com-

mon across all three reuse categories. Similarly for the UseAll PredictPost dataset, Bug-

fixes and Max Changeset are common and prominent across all reuse categories. For the
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UsePre PredictPost dataset, the metric Bugfixes is common across all reuse categories,

although it appears as prominent in only two of the four releases (2007-2010). Addition-

ally, the metric Age is also common between the two types of variations (high-reuse and

low-reuse) and appears in three or more releases. Age is prominent for commonalities in

only a single release. This indicates that while there are some metrics that are prominent

across all reuse categories, there are also differences among the prominent predictors for

the different reuse categories.

5.6 Prediction with Incrementally Increasing Data Collection

Periods

In this section we explore RQ5. Results in sections 5.3, 5.4 and 5.5 showed that

predicting post-release failure-prone files using pre-release change data gives low recall

values. In this section we investigate whether increasing the period of collecting change

data improves the prediction of failure-prone files. The UsePre PredictPost type of

datasets uses 6 months pre-release data to predict failure-prone files 6 months post-

release. We would like to investigate whether using post-release change data in monthly

increments, combined with pre-release change data helps to better classify post-release

failure-prone files in the remaining months. In our incremental approach we begin from

the UsePre PredictPost dataset (i.e., using 6 months pre-release change data to predict

6 months post-release failure-prone files). We increment the change data period from

6 months to 11 months in increments of 1 month, while simultaneously reducing the

post-release failure-prone file data from 6 months to 1 month, i.e., our final dataset will

have 11 months of change data to predict failure-prone files in the 12th month.

Figure 5.7 shows the results of incremental prediction for the four products in the

product line. We find that increasing the period of change data does not improve recall

values. One possible reason is that as the period of change data increases (from 6 months
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to 11 months), the number of files that are failure-prone in the remaining months reduces.

As a result the J48 learner may not have a sufficient number of defective files from which

to learn. We find that for the last two iterations the recall values drop as compared to

the first four iterations.

Similar results are observed for the three reuse categories, as shown in Figure 5.8.

Even commonalities, which should change less and hence have a good classification per-

formance, show low recall values. In fact, the recall values for commonalities are in

some cases lower than for the other two reuse categories. High-reuse variations have the

highest recall values.

Results from Sections 5.3.2 and 5.4.1 indicated that using only pre-release change

data to predict post-release failure-prone files is difficult. The results presented in this

section indicate that even when post-release change data are added to pre-release change

data, the predictions do not improve.

Figure 5.7: Incremental Prediction for Four Eclipse Products
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Figure 5.8: Incremental Prediction for Three Reuse Categories

5.7 Summary of the Results

The highlights of the observations from the study are summarized as follows:

We initially used the J48 decision tree learner to classify failure-prone files. In exper-

iments with other learners, we found that there is no statistically significant difference

between the performance of J48 and learners which perform slightly better (e.g., Random

Forest).

A replication study, comparing our results with results from previous studies for the

same releases of Eclipse-Classic, showed that while change metrics are better predictors

than static metrics, predicting post-release failure-prone files using pre-release data led

to low recall rates. Although accuracy and false-positive rates were impressive, the low

recall rates suggest that it was difficult to classify failure-prone files effectively based on

pre-release change data.

A comparison between different types of datasets distinguished by the data collection

and prediction period showed that datasets that do not distinguish pre-release period

with post-release period (similar to MDP) have better performance with respect to ac-

curacy, recall and false-positive rate.

From the product line perspective, prediction of failure-prone files for four products

in the Eclipse product line based on pre-release data did not show recognizable trends

across releases (i.e., the estimated trends were not statistically significant).
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When comparing the prediction trends among the three categories of reuse (i.e.,

commonalities, high-reuse variations and low-reuse variations), the results showed sta-

tistically significant improvement in accuracy, but not statistically significant trends for

the other performance metrics.

As each product evolved, there was a set of change metrics that were consistently

prominent predictors of failure-prone files across its releases. This set was different for

the different types of datasets (with respect to change and defect data collection period)

considered in this study.

There was some consistency among the prominent predictors for early vs. late releases

for all the considered products in the product line. This set was different for the different

types of datasets considered here. For predicting post-release failure-prone files using

pre-release change data, the subset of change metrics, Bugfixes, Revisions and Age was

among the prominent predictors for all the products across most of the releases.

Looking at the evolution of the different categories of components in the product line

(i.e., commonalities, high-reuse variations and low-reuse variations), we found that there

was consistency among the prominent predictors for some categories, but not among all

categories. For predicting post-release failure-prone files using pre-release change data,

the change metric Bugfixes appeared to be prominent in all three categories, although not

across all releases. Metrics such as Age were prominent across more than one category

but not across all three of them.
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CHAPTER 6. THREATS TO VALIDITY

This section discusses the threats to validity of this study.

Construct Validity. For the defect assessment study, a possible threat to the

construct validity is that the number and severity of failures may be affected by the

expertise of the programmers who worked on the components. To alleviate this, we have

normalized the failures with respect to the number of changes and additions to source

code files, rather than normalizing it with the lines of code for each component. This is

in accordance with Mockus, Fielding and Herbsleb who identify the programmer’s lack of

expertise, leading to unnecessarily lengthy code, as one of the reasons for seemingly lower

failure density [Mockus et al., 2000]. In addition, because each component in Eclipse is

typically developed by multiple programmers, this threat may be alleviated.

Another threat to the construct validity is the limited number of releases in the study.

While analyzing more releases might give additional insight into the trends, the 2007-

2010 releases provide a representative picture of the current product line situation. We

did not include the minor quarterly releases into our analysis because there were fewer

users downloading them and because the entries in the bug database for these minor

releases were missing data for several components. Furthermore, some of the minor

releases reported higher numbers of failures while others did not report any.

As mentioned by Moser, Pedrycz and Succi in [Moser et al., 2008b], a possible threat

to construct validity could be the choice of metrics used in this study. We followed

[Moser et al., 2008b] in using a particular set of change metrics. In general, there could be

other change metrics that give different results. We believe that our results are compara-
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ble to results from previous studies which evaluate the performance of different metric sets

in terms of classification of failure-prone files. Arisholm, et al. in [Arisholm et al., 2010]

observe process metrics to be the best metric set. However, they also report low recall

and precision values (in the range of 36% to 62%) when using process metrics.

Internal Validity. Inaccuracies in our data collection process at one or more

steps could be one of the possible threats to internal validity of this study. We per-

formed manual and automated inspections on our dataset to verify and validate its

accuracy, including comparison with data provided by Zimmermann, Premraj and Zeller

in [Zimmermann et al., 2007]. Chapter 3 Section 3.2.1 discusses these inspections. Itera-

tive inspections on the dataset were conducted by 2 programmers to identify and correct

duplicate and missing entries, and to ensure accurate mapping of the Eclipse Bugzilla

database to the source code version control repositories.

Conclusion Validity. A possible threat to the conclusion validity of the defect

assessment study is that we analyzed only one common component, namely Platform.

To moderate this we investigated five sub-components of Platform. Platform is a large

component, and each of these sub-components is comparable in size to other compo-

nents in our study. Each of these Platform sub-components provides a specific common

functionality. Also, each of these sub-components has a large number of severe failures.

For the defect prediction part, one threat to the conclusion validity may be that we

performed analysis using only one machine learning algorithm, namely J48. Moser et

al. [Moser et al., 2008b] additionally used Näıve Bayes and logistic regression learners

but found J48 to give the best results. We also analyzed the performance of 17 machine

learners, including J48, and found that there is no statistically significant difference

between the performance of J48 and learners with higher mean rank (e.g., Random

Forest).

Another possible threat to the conclusion validity is the class-imbalance problem.

The datasets used in this study are imbalanced, i.e., the proportion of defective files is
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smaller than the percentage of non-defective files. Several studies have found that the

learner performance improves when trained on balanced data, using techniques such as

over-sampling, under-sampling, etc. [Menzies et al., 2008, Drummond and Holte, 2003].

Our emphasis in this work is on the trends in prediction performance as the product line

evolves. When we carried out the tests to check performance trends (Sections 5.3.3, 5.4.2

and 5.5.1) on both balanced and imbalanced datasets, we found that the slopes of the

trends (either improving trend or worsening trend) hold for both datasets. While the

performance might be improved using balancing methods, it appears that the trends in

defect prediction as the product line evolves do not depend on the balancing of datasets.

Another possible threat to the conclusion validity, as pointed out by D. Weiss

[Weiss, 2013], is the applicability of the underlying assumption that predictive mod-

els from one product or release can be used to predict defects in another product or

release. Software changes between releases due to bug fixes and enhancements. Our re-

search attempts to validate the existing predictive models in relation to this assumption.

The difficulty in accurate prediction of defective files may indicate the dynamic nature

of software and the resulting inapplicability of existing defect prediction models.

A typical threat to conclusion validity relates to the validity of the assumptions of the

statistical tests and errors in statistical conclusions. As much as possible, we analyzed

the validity of the statistical assumptions. Given the small number of releases, the

linear mixed effects models parsimoniously account for some correlation among responses

due to repeated temporal measures on the same product or component, but far more

complex correlation is likely. Releases close in time are more likely to share common

characteristics. Further, many files, especially high reuse files, are included in multiple

products and hence contribute to multiple performance responses. Improper modeling of

the covariance can have a large impact on estimated significance levels. The component

datasets do not suffer from the potentially unaccounted covariance due to shared files

because each file exists in only one component, so the component p-values are likely the
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most reliable.

Another possible threat to the conclusion validity is related to the normalization of

failure rates. For the defect assessment part of our work, we have normalized the failure

rate using number of changes to each component. A desirable measure of normalization

is the amount of usage for each component, such as product installation information.

Such data are hard to collect. Eclipse keeps track of the number of downloads for each

component. However, using this measure for normalization may not lead to accurate

results. Other methods of normalization of failure-rates must be evaluated.

Finally, we included releases from products spanning 2002 through 2010, but only

the Classic product and its components were available prior to 2005, and the years 2005

and 2006 were not sampled.

External Validity. An external validity threat to this study is the extent to which

these observations can be generalized to other product lines. Eclipse was not intended to

be developed as a product line, but has adopted some of the methodologies of product

line engineering, such as a common repository for all products, reuse of components from

previous products in new products, and selection and integration of needed features in

a new product. Eclipse, however, does not keep track of variability constraints as with

product line engineering. Further, Eclipse is a large product line with many developers

in an open-source, geographically distributed effort. This may mean that the develop-

ment of the Eclipse product line is more varied in terms of the people involved and

the development techniques used than in commercial product lines. Chastek, McGregor

and Northrop consider the open-source development to be largely beneficial in terms

of quality [Chastek et al., 2007]. We hope to study other open-source software product

lines and have studied an industrial software product line [Devine et al., 2012] to learn

more about reuse, change and reliability in product lines. We have made our dataset

[Krishnan et al., 2012b] public so that other researchers can validate the results of this

study and/or use it to conduct other types of analysis.
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CHAPTER 7. CONTRIBUTIONS AND FUTURE WORK

This chapter summarizes the consequences of our results for the Eclipse product line.

It also describes more broadly the potential impact of these results for other open-source

and industrial product lines. Finally, the chapter briefly proposes some directions for

future work to further investigate defect assessment and prediction in product lines.

7.1 Contributions

The empirical study of changes and defects in the Eclipse product line identifies

several important considerations both for Eclipse and for other product lines.

1. The majority of files with severe defects are reused files rather than new files. This

finding is contrary to the widespread assumption that product line reuse of files

improves the quality of those files. For example, [Card et al., 1986] report that

98% of the modules reused without modification in five flight dynamics software

projects were fault free. Similarly, [Mohagheghi and Conradi, 2008] report that

reused components exhibited lower fault density than non-reused components in a

large commercial telecommunication product line.

Table 7.1 shows the relationship between reused files and severe defects for

the four yearly releases (2007-2010) of the Eclipse product line for each of the

three reuse categories, commonalities, high-reuse variations and low-reuse varia-

tions. Column 3 shows the total number of files in each reuse category. Column 4

gives the number of files reused in this release from the previous release. Reused
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files are the files which were present in the previous release and are also present

in the current release. Column 5 gives the number of files that have been reused

as-is (i.e., without any modification). Columns 6, 7 and 8 give the total number

of files with severe defects, the number of reused files with severe defects and the

number of files reused as-is with severe defects, respectively. Columns 9 and 10

give the percentage of the files with severe defects that are reused and are reused

as-is, respectively.

Table 7.1 shows that the majority of the severe defects found are in reused code.

For the commonalities, 75% to 96% of the files with severe defects are reused files,

and 13% to 52% of the files with severe defects are files that have been reused as-is.

This is interesting because 78% to 95% of the files are reused from the previous

release, and 48% to 81% are reused as-is. Most surprising is that even common

components experience ongoing change as seen from columns 3 and 4. This suggests

that the on-going evolution of common components negatively affects the quality

of the reused components. For the Eclipse product line, reducing change in reused

files and reducing change in common components would be likely to reduce severe

defects.

Whether this is practical is an open question. However, in our discussions with

IBM project managers, they identified the finding that a majority of reused files

have severe defects as important information for the Eclipse project as well as other

IBM projects. The potential benefit offered by reuse of code is hampered when

reused code contributes the majority of the severe defects.

2. On-going change in product lines hinders the ability to predict failure-prone files.

While the Eclipse components benefit from high reuse, the ongoing change makes

it difficult to predict failure-prone files effectively, allowing only 40 to 60% of the

defective files to be classified correctly. [Kim et al., 2011] found that the refactoring
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process in Eclipse, although it facilitates bug fixing, also induces bugs. Moreover,

Eclipse undergoes bug fixes on a daily basis with nightly builds that often may not

be stable. Further investigation is needed to know the nature of these fixes and

refactorings in Eclipse to get a better understanding of how to predict these bugs.

3. Classification of post-release failure-prone files using change data for the Eclipse

product line gives better recall and false positive rates as compared to classification

using static code metrics. Table 7.2 compares our results using change data to those

of [Zimmermann et al., 2007] using static code metrics for Eclipse releases 2.0, 2.1

and 3.0 (2002-2004). Table 7.2 compares the accuracy, recall, false-positive rate

and precision performance of the two studies. Chapter 3 defined these performance

metrics.

The accuracy values obtained in our study are comparable or better than the

Zimmermann study. Similarly, the recall values we obtained using change metrics

are better than those previously obtained using code metrics. Most importantly,

the false-positive rates we obtain using change metrics are very low. Low false-

positive rates are essential for practical use of prediction by developers since high

false-positive rates can be very costly due to wasteful inspection and testing of files

that are not defective. The precision values we obtained using change metrics are

lower than those previously achieved using code metrics. To put this in context,

[Menzies et al., 2007] note that optimizing for one of precision and recall will often

compromise the other. They advise that in many industrial situations, low precision

and high recall detectors are useful especially for datasets, such as Eclipse, where

the number of defective files is much smaller than the number of non-defective files.

Two other studies on classification of defective files for Eclipse have confirmed

the value of change metrics. [Moser et al., 2008b] report even better recall values on

a small earlier Eclipse dataset that is not publicly available. [D’Ambros et al., 2012]
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report high AUC (Area Under ROC Curve, defined in Chapter 3) values of 85-92%

for two Eclipse components for data collected from 2005-2008. More broadly, we

observed high AUC values of 65-75% (as shown in Table 5.3 in Chapter 5) for three

Eclipse components for data collected from 2002-2010.

Table 7.2: Comparing Cross-release Classification Performance Using Static
Code Metrics and Change Metrics

Trained On Tested On
Zimmermann et al. This study

Acc. Rec. FPR Pre. Acc. Rec. FPR Pre.
Classic-2.0 Classic-2.0 76.6 24.2 27.3 65.7 91.5 77.8 3.7 88.3
Classic-2.0 Classic-2.1 78.3 25.9 22.6 57.8 75.7 40.6 13.6 47.6
Classic-2.0 Classic-3.0 68.2 24.4 41.6 63.8 76.8 33.5 9.9 51.0
Classic-2.1 Classic-2.1 78.9 21.9 23.9 64.5 88.1 59.5 3.2 85.2
Classic-2.1 Classic-3.0 68.2 19.5 44.3 68.7 77.6 35.3 9.4 53.6
Classic-3.0 Classic-3.0 71.1 37.9 34.2 66.3 86.2 52.5 3.4 82.6

4. Predicting post-release defects using pre-release change data for the Eclipse case

study is difficult. What interests project managers the most is the capability to

predict post-release defects using pre-release data. However, it is more difficult

than predicting post-release defects using pre and post-release change data and

also more difficult than predicting total defects using pre and post-release change

data.

We thus have investigated the effect of the period of data collection on prediction.

Studies in the past have shown good results when no distinction is made between

pre-release and post-release defects ([Menzies et al., 2007], [Menzies et al., 2011],

[Bettenburg et al., 2012]). At least for the Eclipse product line, we found that

predicting post-release failure-prone files using pre-release change data yields low

recall rates. Previous defect prediction results on Eclipse using code metrics,

[Zimmermann et al., 2007], also showed that at the file level, predicting post-release

failures using pre-release code metrics data gives poor recall as well as false-positive

rates. However, previous studies on Microsoft systems showed that effective pre-
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diction of post-release failure-prone files can be performed using pre-release change

data ([Nagappan et al., 2006a], [Nagappan et al., 2010]). Incorporating new pre-

diction techniques such as clustering ([Menzies et al., 2011]), or topic based defect

prediction ([Nguyen et al., 2011]) might improve recall rates for Eclipse similar to

previous studies.

5. Using more data from the past to predict future failure-prone files does not neces-

sarily give better results than using data only from the recent past. Data collected

during the evolution of the Eclipse products does not improve prediction ability.

We performed studies aggregating data over multiple years to predict defective files

for a future release. For example, we collected the aggregated change and defect

data from January, 2007 to December, 2008 and used it to predict the defective files

in the 2009 release. The results were worse than using data from the immediate

past, i.e., from using data only from 2008 to predict 2009.

In Chapter 5 Section 6, we describe increasing the period of change data in

monthly increments and predicting the post-release failure-prone files in the re-

maining months. The results showed that even when we use a portion of the

post-release change data in combination with pre-release change data, the predic-

tions do not necessarily improve. This tends to indicate that defect prediction

models may be more applicable for product lines that change less than Eclipse.

6. Common components experience less change than variation components. This is

as expected for a product line. However, the finding that the amount of change

in commonalities does not decrease over time, as seen in Table 7.1, is contrary to

expectations. Whether this on-going change is typical of other product lines merits

additional investigation.

7. There is a consistent set of metrics which serve as prominent predictors across mul-

tiple products and reuse categories over time. We found that Age, Bugfixes and Re-



84

visions were the prominent predictors at the product level. For the reuse-category

level, Age and Bugfixes were prominent across the multiple reuse categories.

These results give additional indication of the benefit of change metrics over

static metrics. For example, [Menzies et al., 2007] found that when static metrics

are used, the set of their best defect predictors were different for different datasets.

Having a consistent set of change metrics as good predictors can be especially

useful in a product line for predicting failure-prone files across products as well as

for future releases of the same product.

7.2 Future Work

The results from this empirical investigation open up the following future research

directions.

• This empirical research is based on extensive study of a single open-source product

line as well as on a defect assessment study of a commercial product-line. To test

and strengthen the conclusions, the assessment and prediction methods used in

this work should be applied to other product lines, both from the commercial as

well as the open-source community.

• This study used change metrics, based on their good classification performance in

previous research. The comparative classification of defective files in different reuse

categories might be enhanced by incorporating information about the developers’

and the projects’ characteristics. Specific techniques to be explored are developer

metrics [Bird et al., 2011] and socio-technical metrics [Bird et al., 2009].

• Discussions with Eclipse developers have sparked their interest in exploring how

Eclipse can benefit more from product line engineering techniques. Managers from

IBM are interested in examining whether the reuse of a component in different
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products leads to different types of bugs. However, the Eclipse Bugzilla repository

currently does not keep track of the product in which the bug is encountered, e.g.,

whether the bug was encountered while Eclipse JAVA or Eclipse JAVAEE was

being used. The rationale for not logging the product information is that Eclipse

follows a plugin-based development to give users more flexibility. For example,

users can download a C++ plugin and use it in the JAVA product if they choose.

However, our manual inspection of bugs found that some bugs occur only in the

presence of plugins which are part of only certain products. Hence, changing the

bug reporting process to keep track of product information will be essential to

understanding product specific bugs.

• This work performed binary classification of files (defective vs. non-defective). A

promising avenue to explore is whether results for predicting the true number

of defects using regression techniques show similar or different results. We are

supporting work at West Virginia University to investigate this using combinations

of code and change metrics.

This work used product line change and defect data from Eclipse to empirically

investigate the widely accepted assumption that as a product line evolves, its reliability

improves. The work consisted of two parts, defect assessment and defect prediction.

Defect assessment results showed that common components experienced less change than

variation components. However, the majority of files with severe defects were reused

files rather than new files, which challenged the assumption of increasing reliability over

time. Defect prediction results showed that on-going change in product lines hindered

prediction of failure-prone files and that the on-going change negatively affected the

stabilizing behavior intended by planned reuse. More encouragingly, the study identified

a set of change metrics that are consistently prominent in predicting failure-prone files

across the multiple products and reuse categories in the product line. This empirical
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investigation led to an improved understanding of the interplay among change, reuse

and reliability as a product line evolves.
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