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Abstract 
 
One important computational problem is that of mining quasi bicliques from bipartite 

graphs. It is important because it has an almost endless number of applications and, in 

most real world problems, is more appropriate than the mining of bicliques. In my thesis 

I examine the following: the motivation for quasi bicliques, the existing literature for 

quasi bicliques, my implementation of a web application that allows the user to 

compute exact quasi biclique solutions using the biclique formulation and the exact 

solution algorithm provided by Chang et al.[1], and finally a polynomial heuristic 

algorithm for finding large quasi bicliques in the special case where we have all the 

biclique subgraphs of a bipartite graph available.  
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Chapter 1 – Introduction 
 

1.1 Motivation 

 

There is a plethora of real-world problems that can be handled by modeling the 

problem as a bipartite or k-partite graph problem and then mining one or more biclique 

subgraphs (or k-cliques in the case of the k-partite graph) from that graph. A biclique is a 

bipartite graph in which each vertex in one partition is connected to every other vertex 

in the other partition. Applications amenable to such treatment are mostly applications 

in business, web mining and bioinformatics as they most naturally can be modeled into 

a bipartite or k-partite model problem. For example, online retailers like Amazon or New 

Egg would like to suggest to or present their visitors with products that are most likely 

to lead to a purchase by using the history of the behavior of the specific visitor in 

comparison to the history of the behavior of all other visitors (bipartite graph case with 

the partitioning “visitors”-“products”). Another example would be a web search engine 

like Google or Bing that relies on advertisements for profit. Such engines would like to 

show to their users appropriate advertisements based on the user’s history of web 

searches and visitation of the results as to maximize the advertisement clicks (this is a 

tripartite case with the partitioning of “users”-“webpages visited after a search”-

“advertisements”).  

 

However, perhaps the most natural setting of all for the biclique extraction 

method is in biological problems and particularly in the problem of predicting protein-

protein interaction. Proteins are key factors for life, responsible for almost the totality of 

biological functions. Proteins are needed for genome expression, for the conversion of 

the genome from DNA to RNA and from RNA to proteins, for signal transduction, for 

cell-cell communication, for immunoreactions, etc. Protein-protein interaction 

prediction can lead to novel drugs, cure of diseases, and more. Thus, determining the 
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binding site location of proteins (the places in proteomic sequences where proteins 

actually interact) is one of the most important goals in protein research. The appeal of 

computational approaches when researching the protein binding sites is that the non-

computational approaches (X-ray crystallography, electron microscopy, mass 

spectrometry, etc.)  are both very expensive and very slow and furthermore the number 

of known proteins is huge. 

 

Not surprisingly, the literature on mining of biclique subgraphs technique is 

diverse and plentiful: the idea has been used for the co-clustering of groups of words 

and groups of documents [2], the discovery of web communities by co-clustering groups 

of users and groups of webpages [3-6], the co-clustering of  groups of species and 

groups of genes for the construction of the tree of life [7-9] and most frequently for the 

discovery of protein-protein interactions [10-15] or protein function prediction [16, 17], 

just to mention a few examples. All of the above examples have three common 

characteristics, discussed below.  

 

First, the graphs that model the problem can be very large. Second, what is 

actually needed is the enumeration of all maximal biclique subgraphs (a biclique 

subgraph of a bipartite graph G is maximal if and only if it is not a proper subset of any 

other biclique subgraph of G). Although the problem of finding a maximum vertex 

biclique given a graph G has polynomial solution [18], the interesting problem in which 

we are trying to maximize the edges (i.e. the relations) of a biclique given a graph G has 

been shown to be NP-hard [19].  Third, since all the data are real world data, there are 

plenty of missing or erroneous values. In the real world we have examined only so many 

“documents-words” associations, tracked only so many “users-web pages” 

relationships, we are aware of only so many “shareholders-companies” affiliations, we 

have tested only so many protein to protein interactions, and so on. Nevertheless, in 

many of the above applications the requirement of mining a biclique (an “all-to-all” 

relation) is not needed since we would simply get satisfactory results by examining only 
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“sufficiently many-to-sufficiently many” relations. This third characteristic of missing 

data, having erroneous data and not always needing “all-to-all” relations gave rise to the 

idea of mining quasi-bicliques instead of bicliques.  

 

A quasi biclique (or qbc) is almost a biclique in the sense that we are allowing it 

to miss a certain number of edges that would be present if it were to be an actual 

biclique. Although quasi-biclique extraction turns out to also be intractable (for all the 

various quasi-biclique formulations and definitions), quasi bicliques are of interest 

because they are more realistic models for handling the real world missing or erroneous 

data, are more appropriate for the applications that require “sufficiently many-to-

sufficiently many” relations and in certain cases can provide better results anyway [20, 

21]. However, one of their most obvious difficulties is defining quasi-ness, as the idea of 

“almost-a-biclique” can be interpreted in many ways. In the next section I will provide 

some preliminaries, notation and terminology that will be used throughout the thesis, 

and then I will examine the attempts to define quasi-ness so far in literature.  

 

Finally in the next two chapters, I will describe my own contribution. In chapter 2 

I will describe my implementation of a web application that allows the user to compute 

exact quasi biclique solutions using the biclique formulation and the exact solution 

algorithm provided by Chang et al.[1]. In chapter 3 I will describe a heuristic algorithm 

that allows the extraction of large quasi bicliques in polynomial time using the concept 

of a skeleton and a feasible circulation characterization of quasi bicliques. 
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1.2 Preliminaries, notation, terminology and definitions 
 

In this section I will provide the notation, terminology and definitions that will be 

used throughout the rest of the thesis. Since the definition of quasi-biclique varies 

depending on the paper I will give the relevant notation for each different definition 

when needed later in the thesis. Furthermore since particular notation and definitions 

are needed only for specific sections of the thesis I will simply present them when they 

are needed. 

 

Unless otherwise noted, all graphs in the thesis are considered to be undirected.  

 

An undirected graph denoted as ( ),G V E or simply G  consists of a non-empty and 

finite set of vertices V  and a set of edges { }{ }. . u v and u,v,E u v s t V≠ ∈= . Two 

vertices are adjacent if they are the endpoints of an edge, i.e. if there exists an edge 

{ , }u v   that connects them.  

 

For a vertex v  we denote the neighbor set of v  (the set of all vertices adjacent to v ) as 

( )vΓ . 

 

For a vertex set S V⊆  we denote by ( ) ( )u SS u∈Γ Γ   the set of all vertices each of 

which neighbors every vertex in S . 

 

A graph ( ', ')g V E  is a subgraph of G  if 'V V⊆  and 'E E⊆  . 

 

A subgraph ( ', ')g V E   of a graph ( ),G V E  is said to be induced if for any pair of vertices 

, 'u v V∈  the edge { , } 'u v E∈    if and only if { , }u v E∈ . 
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A bipartite graph denoted by ( , )G U V E∪ is a graph whose vertices can be partitioned 

in two disjoined sets of vertices U and V and an edge set 

{{ , } . .   }E u v s t u U and v V= ∈ ∈ . 

 

A complete bipartite graph or biclique is a bipartite graph ( , )G U V E∪ in which for any 

u U∈ and v V∈ there exists an edge that connects the two, i.e. { , }u v E∈ . 

 

We say that a bipartite graph ( , )G U V E∪ contains a biclique if we can find subsets
'U U⊆ , 'V V⊆ such that the subgraph 'G induced by ' 'U V∪ is complete. 

 

A biclique is called maximal if it is not included in any other biclique. 

 

A weighted biclique ( ), ,G U V E w∪ is a biclique ( , )G U V E∪ plus a weight function w 

that assigns a weight on each edge : [0,1]w E →   
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1.3 Quasi – biclique literature review 
 

 In this section I will provide a review of the literature on quasi bicliques. I will 

attempt to make clear what are the differences as well as the similarities between the 

various definitions and approaches to the problem.  

 

1.3.1 γ - quasi bicliques 
One first attempt to define quasi-ness is by considering the density of a graph. A 

graph (or a bipartite graph) is a quasi clique (or quasi biclique) if it is “dense enough”, 

i.e. if it is not missing too many of the edges that would otherwise make it a clique (or 

biclique). However the density based approach carries with it the same flaws as quasi-

ness. It seems that defining the “dense-enough” is a subjective matter. Never the less 

Abello et al. [22] provide such an approach. 

 

Notation: 

Let ( ),G V E be a graph and S V⊆  . By SG  we denote the subgraph of G  induced by S

. 

 

Definition 1.3.1.1: densityγ −  

A graph ( ),G V E is γ −dense  if 
| |

| |
2
V

E γ
 

≥  
 

 . 

Definition 1.3.1.2: quasi clique−   

A γ − clique or quasi-clique is a set of vertices S V⊆  such that the induced graph SG is 

both connected and denseγ − . 
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Problem 1.3.1.1: The maximum quasi-clique problem 

Input: A graph ( ),G V E  and 0 1γ< ≤  . 

Query: Find a quasi-clique of maximum cardinality. 

 

Abello et al. observe that when 1γ =  the problem is NP-hard since the question 

then is to find the maximum clique in a graph; a known NP-hard problem. Furthermore 

they notice that there can be no polynomial approximation algorithm that can 

approximate the maximum clique size within a factor of nε  ( 0)ε >  unless P NP=  [23-

26]. They proceed by introducing the notion of the potential of a set of vertices R  in 

respect to a disjoint set S  where ,R S V⊆  for a graph ( , )G V E .   

 

Definition 1.3.1.3: potential 

Let ( , )G V E  be a graph and R V⊆ be a quasi-clique. We define the potential of a set R

to be: 

| |
( ) | ( ) |

2
R

R E Rϕ γ
 

= −  
 

  

Definition 1.3.1.4: potential of a set R with respect to a disjoint set S 

Let ( , )G V E  be a graph and ,S R  with ,R S V⊆ be two disjoint quasi-cliques. We define 

the potential of a set R with respect to S  to be: 

( ) ( )S R R Sϕ ϕ= ∪  

 

Problem 1.3.1.2: 

Input: A graph ( ),G V E , 0 1γ< ≤  and a quasi-clique S . 

Query: Find quasi-clique R that is as large as possible such that S R∪  is also a quasi-

clique. 
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In other words we are looking for sets R  with large potential (i.e dense enough). 

In the ideal case the cardinality of R  would be maximum. However as we discussed 

earlier the problem of finding a quasi-clique of maximum cardinality (problem 3.1.1) is 

NP-hard. Thus they take the approach of constructing incrementally a maximal quasi-

clique by using a heuristic based on a greedy randomized adaptive search procedure 

algorithm (GRASP) [27]. 

 

So far we have seen nothing regarding bicliques and quasi bicliques; however everything 

discussed so far applies to bipartite graphs as well. Given a bipartite graph ( , )G U V E∪

their heuristic finds a balanced quasi biclique in 2(| | | | )O M U Vα ⋅ ∪  where | |Mα  is the 

size of a maximum matching in G . 

 

1.3.2 (non symmetrical) ε - quasi bicliques 
 

Motivated by the Conjunctive Clustering problem, Mishra et al.[28] provide a 

different definition of a quasi biclique, the ε-clique. A conjunctive cluster is a 

conjunction of attributes c  together with the points Y  in the data set that satisfy the 

conjunction c . In the Conjunctive Clustering problem the task is the identification of as 

long as possible conjunctive clusters that cover an as dense as possible region of space. 

The problem translates naturally to a biclique in a bipartite graph formulation.  

 

Let ( , )G U V E∪ be a bipartite graph where U is the number of points in the 

dataset to be clustered and V  is the set of attributes or dimensions.  For any two 

vertices u U∈  and v V∈ we have an edge { , }u v  if the thv  dimension is 1 (i.e. if u  has 

the attribute v  ). Given this formulation, it follows that the best conjunctive clustering 

corresponds to a maximum edge biclique. However as we already discussed, finding the 

maximum edge biclique is both NP-hard and difficult to approximate and therefore 

Mishra et al. relax the problem by requiring that in any given subgraph '( ' ', ')G U V E∪  
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returned by an algorithm we ask that each vertex 'v V∈  is connected to most vertices 

'u U∈  . 

 

They define the ε-clique as follows: 

 

Definition 1.3.2.1: ε-biclique 

Let ( , )G U V E∪ be a bipartite graph and let 'U U⊆  and 'V V⊆  .  Given 0 1ε< ≤  we 

say that the vertex set ' 'U V∪  is ε-close to being a biclique if every vertex in 'U  is 

adjacent to at least (1-ε) of | ' |V  . The induced subgraph '( ' ', ')G U V E∪ in that case is 

called an ε-biclique. 

 

Recall that by ( ) ( )u SS u∈Γ Γ   we denote the set of all vertices each of which neighbors 

every vertex in S . 

 

Definition 1.3.2.2 

Let ( , )G U V E∪ be a bipartite graph, let S U V⊆ ∪ and let 10 2ε< ≤  .  

We let ( ) { :| ( ) | (1 ) | |}S w w S Sε εΓ Γ ∩ ≥ − denote the set of vertices that neighbor all 

but an ε-fraction of S . 

 

Problem 1.3.2.1 

Input: A bipartite graph ( , )G U V E∪ , 10 2ε< ≤  and a small constant 0b >  . 

Query: Find a subset 'V  such that the ε-biclique induced by ( )( '), 'V VεΓ  is at least 

(1 )bε−  times as large as the maximum biclique for a small constant b . 

 

Note that in the case that where 0b =  the ε-biclique will contain the same number of 

edges as a biclique. 
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The algorithm provided in this paper does not output the ε-biclique subgraph

'( ' ', ')G U V E∪  but rather only the set of vertices 'V  from which the set of vertices 'U  

is determined implicitly from 'V , as the elements of 'U  is precisely those elements of 

U  that neighbor at least (1 )ε−  vertices in 'V  . The running time varies greatly 

depending on the size of 'U  and 'V  and can range from linear to exponential. However 

the biggest flaw of this approach is that the resulting quasi bicliques are not symmetrical 

(the authors justify the asymmetry by reminding us the ε-cliques serve needs in the 

context of clustering), a detail that I will talk in more depth in section 3.4. 

1.3.3 α - quasi bicliques 
 

 The idea behind the α – quasi bicliques, as presented by Yan et al. [9] is to use a 

percentage measurement to define quasi-ness.  

 

Definition 1.3.3.1: α - extension 

Let ( , )G U V E∪  be a bipartite graph and '( ' ', ')G U V E∪  be a biclique subgraph of G . 

We define an α-extension  of 'G  to be the bipartite subgraph of  G  induced by the 

vertex sets ,E EU V   'EU U U⊆ −  and 'EV V V⊆ − such that at least %a  of the nodes in 

each of 'U  and 'V  are connected to all the nodes in EU and EV respectively. 

 

Definition 1.3.3.2: α - quasi biclique 

Let ( , )G U V E∪ be a bipartite graph, ', EU U U⊆ , ', EV V V⊆ where the subgraph 'G  

induced by ( ', ')U V  is a biclique, a  be a % percentage and the subgraph induced by 

( , )E EU V be an α-extension  of 'G . An α- quasi biclique  is defined as the subgraph of G, 

G*induced by the ordered pair ( ' , ' )E EU U V V∪ ∪  . 

 

In other words, each vertex in the extension of a biclique will be adjacent to at 

least α% vertices in the biclique.  The idea is to somehow extract all bicliques from a 
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bipartite graph and then expand each one of them in order to obtain the corresponding 

maximal α - quasi biclique. There are two main issues with this approach. First, we need 

to extract all the bicliques of the bipartite graph before we start extending them. This is 

an issue since we do not have an efficient algorithm to do this. Second, it could be the 

case that the original graph contains no bicliques but could have useful quasi-bicliques 

nevertheless. However since both of these issues are issues that my heuristic has in 

common with this approach I will address them in detail in chapter 5. 

1.3.4 error tolerant ε – quasi bicliques 
 

Another idea is to approach quasi-ness from an error tolerance perspective. Sim 

et al. [29] define their quasi biclique version based not on how many edges we would 

like to have but rather on how many edges we are allowed to be missing. 

 

Definition 1.3.4.1 :  error tolerant ε – quasi biclique 

Let ( , )G U V E∪  be a bipartite graph and ε +∈ . We say that G  is an error tolerant ε 

– quasi biclique if for every u U∈  , | | | ( ) |VV u ε− Γ ≤ . 

 

Again what we need is given a bipartite graph ( , )G U V E∪ to find all the maximal error 

tolerant ε – quasi bicliques. The parameter ε is called the error tolerant threshold. 

 

Sim et al. are introducing two quite useful notions on the error tolerance of QBCs 

in order to characterize them, and they proceed in a comparison of their approach to 

the other approaches in the literature that are aware based on how they perform based 

on these notions.  

 

Definition 1.3.4.2 :  symmetrical 

We say that the error tolerance in a qbc is symmetrical if vertices in both sides of the 

qbc can tolerate missing edges. 
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Based on the above definition, it is clear that the approach described earlier in 

3.2 is not symmetrical since there is no imposing of any requirement as to how many 

edges can be missing on one of the two sides. The approaches described in 3.1 and 3.3 

are both symmetrical however. 

 

Definition 1.3.4.3 :  balanced 

We say that the error tolerance in a qbc is balanced if every vertex in the quasi biclique 

can  tolerate up to the same threshold of missing edges. 

 

Based on 1.3.4.3 the approaches described in all the previous sections are clearly 

not balanced. The authors provide a useful table comparing the approaches reproduced 

slightly altered in table 1. 

 

Table 1. Comparison of different types of quasi-bicliques and their algorithmic 

approach. 

Definition Type Symmetrical Balanced Algorithm 

Error tolerant -  

qbc 

Maximal Yes Yes Complete 

 γ-qbc Density Yes No Greedy 

ε-qbc Non-maximal No No Greedy 

α-qbc Maximal Yes No Complete 

 

  

What follows is the description of an algorithm that they call MQBminer 

(Maximal Quasi Biclique miner) with an unreported running time that is nevertheless 

depending on the minimum size threshold (how small can we allow the sets of vertices 

to be), the error tolerant threshold and the density of the graph. The mining of small 
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maximal qbcs that allow large ε is deemed to be very expensive. Similarly the 

computation becomes very expensive for graphs that are dense and we impose a small 

minimum size threshold. 

 

1.3.5 δ - quasi bicliques 
 

Another idea of quasi-ness is to use the degree of the participating nodes in each 

partition of the quasi bicliques as in Liu et al.[21]  

 

Definition 1.3.5.1: vertex degree 

Let ( , )G U V E∪  be a bipartite graph. For a vertex  u U∈  and a vertex set 'V V∈  , the 

degree of u  in 'V  is denoted by ( , ') |{  s.t v '  and {u,v} }|d u V v V E= ∈ ∈ . 

 

Definition 1.3.5.2: δ - quasi biclique 

Let ( , )G U V E∪  be a bipartite graph, and let 10 2δ< ≤  . G  is a δ – quasi biclique if 

for each u U∈  ( , ) (1 ) | |d u V Vδ≥ −  and for each v V∈ ( , ) (1 ) | |d v U Uδ≥ − . 

Using the above definition, Liu et al. formulate the following two problems. 

 

Problem 1.3.5.1: δ - quasi biclique problem 

Input : A bipartite graph ( , )G U V E∪ , and 10 2δ< ≤ . 

Query: Find 'U U⊆  and 'V V⊆  s.t. the ' 'U V∪  induced subgraph of G  is a δ - quasi 

biclique and | ' | | ' |U V+  is maximized. 

 

Problem 1.3.5.2: Balanced δ - quasi biclique problem 

Input: A bipartite graph ( , )G U V E∪ , and 10 2δ< ≤ . 
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Query: Find 'U U⊆  and 'V V⊆  s.t. the ' 'U V∪  induced subgraph of G  is a δ - quasi 

biclique and | ' | | ' |U V=  is maximized. 

 

The authors proceed in showing that both problems are NP-Hard using a reduction from 

the Exact Cover by 3-Sets problem which was shown to be NP-Hard by Karp[30] in the 

first case and from the perfect 3 cover problem which was also shown to be NP-hard in 

the second case[31]. 

Finally they describe a greedy heuristic implemented in Java that runs in 3( )O n . 

 

1.3.5.1 Approximating δ - quasi bicliques 

Wang in [32], describes a polynomial time approximation scheme to obtain a 

quasi biclique ', 'U V  for 'U U⊆  and 'V V⊆  with | ' | (1 ) | |optU Uε≥ −  and 

| ' | (1 ) | |optV Vε≥ − such that any vertex 'u U∈  is adjacent to at least (1 ) | ' |Vδ ε− −  

vertices in 'V  and any vertex 'v V∈  is adjacent to at least (1 ) | ' |Uδ ε− −  vertices in 'U

. However the paper is not very well written and the author provides no proofs. 

1.3.6 αβ – weighted quasi bicliques 
 

 The αβ – weighted quasi biclique approach is quite different from the rest in that 

it both allows an intended possible asymmetry between the two partitions, and also is 

the only approach that considers the edge weights in a bipartite graph. Chang et al.[1] 

define the αβ – weighted quasi biclique as follows: 

 

Definition 1.3.6.1: aβ – weighted quasi biclique 

Let ( , , )G U V E w∪  be a weighted bipartite graph, and let , [0,1]a β ∈  . An α,β-weighted 

quasi biclique in G  is the subgraph of G  induced by the pair ( )', 'U V  with 'U U⊆  and 

'V V⊆  that satisfies the following properties: 

1. ', ' { }U V ∉ ∅   
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2. 
'

' : ( , ) | ' |
v V

u U w u v a V
∈

∀ ∈ ≥ ×∑   

3. 
'

' : ( , ) | ' |
u U

v V w u v Uβ
∈

∀ ∈ ≥ ×∑  

 

Definitions 1.3.6.2: aβ – weighted quasi biclique weight 

The weight of an α,β-weighted quasi biclique is defined as the sum of the weights of all 

its edges. An α,β-weighted quasi biclique of a weighted bipartite graph ( , , )G U V E w∪  

is maximum weighted if its weight is at least as much as the weight of any other α,β-

weighted quasi biclique in G  . 

 

Based on the above definitions Chang et al. formulate the following problems: 

 

Problem 1.3.6.1: Maximum weighted aβ – weighted quasi biclique 

Input: A weighted bipartite graph ( , , )G U V E w∪ and values , [0,1]a β ∈ . 

Query: Find a maximum weighted aβ – weighted quasi biclique. 

 

Problem 1.3.6.2: Inclusion 

Input: A weighted bipartite graph ( , , )G U V E w∪ , values , [0,1]a β ∈ and a pair of vertex 

sets P U⊆  and Q V⊆  . 

Query: Find an aβ – weighted quasi biclique that includes ,P Q  . 

 

Problem 1.3.6.3: Included Maximum Weighted Quasi Biclique 

Input: A weighted bipartite graph ( , , )G U V E w∪ , values , [0,1]a β ∈ and a pair of vertex 

sets P U⊆  and Q V⊆  . 

Query: Find a maximum weighted aβ – weighted quasi biclique that includes ,P Q  . 

 

All three problems are proven to be NP-Complete. The first by a reduction from 

the maximum edge biclique problem. The second by a rather convoluted series of 
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reductions: A special case of the inclusion is considered (the one sided existence 

problem), then a modified version of the weighted quasi biclique problem is used (the 

modified one sided existence problem). Finally a well know NP-Complete problem, the 

partition problem, is reduced to the modified one sided existence problem which in turn 

is reduced to the one sided existence problem which in turn reduces to the inclusion 

problem. 

 

The authors provide an ILP formulation for solving the maximum weighted quasi-

biclique problem inspired by ILP solutions to the knapsack problems as well as an 

implementation in Python that is using the commercial  solver Gurobi and is hosted on a 

linux machine. However there was no interface provided for using the implementation. 
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Chapter 2 - αβ – weighted quasi bicliques web application 
 

2.1 The ILP implementation status  
 

The status of the implementation in Chang et al. [1] was functional on the one 

hand but hardly user friendly on the other. In order for the user to use the ILP 

formulation and the solver, the user should have SSH access to the linux machine 

hosting the Gurobi solver. Then he or she would have to alter the bash shell script that 

would run the python program and that would feed the output to the solver every time 

the change of a parameter was necessary (Figure 2.1.1). 

 

The user would also have to make sure that the input files are in the correct 

format (e.g. tab separated files vs. comma separated files vs. space separated files, and 

so on.) The output of the program was simply a bunch of cryptic text files that the user 

would have to inspect in a text editor, in which he or she would simply look at lines 

containing xs, ys and numbers (Figure 2.1.2).  

 

The user could not save the work that was already done (so as not to repeat it in 

the future) by using a meaningful name for it, and finally there was no separation or 

data privacy between the users as the implementation was meant to be for a single user 

only. This last observation was very important because it meant that every time a user 

(e.g. a collaborating professor) would like to analyze some data in order to evaluate the 

resulting qbcs, or the chosen αβ values, he or she would have to contact us so that we 

could do the work and then send back to him or her the results (i.e. send back a bunch 

of text files like the one seen in Figure 2.1.2). 
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Figure 2.1.1. Bash shell script. Circled are the areas that the user would have to alter in 

order to get different results (e.g. different αβ values, different number of resulting 

bicliques, different number of minimum vertices per partition, etc.). 
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Figure 2.1.2. Gurobi output with detail as seen on a Windows machine 

 

2.2 The application 
 

 I designed a web application based on the MVC (Model View Controller) 

paradigm that has the following characteristics: 

a) Multiple users with different user names and passwords are able to use the ILP 

implementation on their own. 

 

b) The access of the ILP formulation can be done from anywhere through a web 

page. 

 

c) The results are  saved and the users can access them later. 

 

d) The change of the input parameters is as simple as filling a web form. 
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e) The results can be seen in an interactive graphical interface that will allow the 

user to get an immediate idea of the quality of the results. 

 

What follows is a short description of the tools used for the application as well as a short 

user manual. 

 

2.2.1 Tools 
 

 For the application I used Java for programming the model and controller part, 

Flex and  JSP for the view part and MySQL as the database of choice for storing the user 

results. All that the user needs to run the application is a web browser that can show 

Adobe Flash content (for the FLEX interactive part of the result presentation). The server 

however requires the installation of  Java (for the Java parts),  Python (for the Python 

parts written by Chang et al.), Apache Tomcat, as well as Hibernate (for the JSP/servlet 

parts) , mySQL for the database parts of the problem and of course the Gurobi solver for 

solving the ILP. The machine available (hiv.cs.iastate.edu) did not have support for 

Tomcat or mySQL and thus the application could not be deployed on it at the time of 

this writing. The application thus was not tested in the hiv environment but only on 

personal machines. Unfortunately, my personal machines do not have access to the 

Gurobi solver meaning that the solver part of the application had to be replaced with a 

dummy solver. Nevertheless, the application can be deployed in any server that has all 

the prerequisites at any time with only minimal effort.  

 

For the Java part of the application, I used a modified version (by myself) of the 

0.8.3 iteration of the jgrapht library for graph modeling (the jgrapht library can be found 

for free at www.jgrapht.org).  For the Flex part of the application, I used the Kalileo 

library provided by Kapit (The Kalileo library can be found for free at www.kapit.fr). The 

http://www.kapit.fr/
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application is meant to be modular and thus any part of it could be replaced by a 

different implementation (e.g. a different solver, a non FLEX presentation, etc.). The 

entire written code was deposited on sourceforge (www.sourceforge.org) and can be 

accessed by any SVN client (for example directly through Eclipse).  

 

2.2.2 User Guide 
 

The application usage is very simple. The user initially will be asked to provide a 

user name and password or to register for one (at the point of this writing this was 

meant to be done freely without the need for a user database administrator). Upon 

successful login the user has the option to either copy paste an input graph in an input 

box, or to upload a text file that contains the input graph. In both cases, the correctness 

of the input is checked and if the input is found incorrect there are two options (the 

choice was left open to be decided later): either attempt to correct the input or ask the 

user to retry submitting. The user also provides a name for the current job, value ranges 

for α and β (an initial value and a stop value), an increment step value for α and β and a 

minimum threshold value that is required for the returned quasi bicliques. For example 

an input graph G  with α=β=0.01, step value 0.005, stop value of 0.025 and minimum 

threshold of 3 would return the quasi bicliques extracted from G that have at least 3 

nodes in each of their partition and are obtained by using the αβ values: α=β=0.01, 

α=β=0.015, α=β=0.2 and α=β=0.025. 

 

The resulting quasi bicliques are stored in a database so that the user can avoid 

redundant calculation and are given to the user as links. Clicking a resulting link takes 

the user to the interactive graphical representation of that particular result. For example 

clicking the 0.02-0.02-3 result will take them to the qbc calculated with α=β=0.2 and 

that contains at least 3 vertices in each partition. The vertices of the resulting quasi 

biclique are colored red and green for each partition and the weight of both vertices and 

http://www.sourceforge.org/
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edges are color and size coded. Heavier weight nodes (nodes that contributed more in 

the resulting quasi biclique) are darker and heavier weight edges are bolder. The user 

can move around each node individually or an entire partition or even the entire graph, 

he or she can collapse the partitions into a single node for easier handling of very large 

graphs, and can also zoom in and out. The user is getting some overall info and statistics 

about the resulting biclique (e.g. parameters used, overall resulting weight, number of 

edges, etc). Upon setting the cursor on a particular edge or vertex the user gets 

information about that particular edge or vertex (e.g. weight, vertex degree etc.). 

Visited vertices (i.e. nodes that were touched by the cursor) are size coded so that the 

user can see in a glance which nodes are already inspected. Heavier vertices are larger 

while lighter vertices are smaller. Double clicking anywhere on a node resets the graph 

to its original form (where the graph fits entirely in the screen and the vertices in the 

two partitions as well as the two partitions themselves are evenly spaced). The flash 

interface can be seen in figures 2.2.2.1 through 2.2.2.4. 
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Figure 2.2.1. All the nodes are inspected and thus color and size coded. Information 

about the quasi biclique characteristics are given inside the partition boxes. On the top 

left we get information for the currently examined node (the one with the cursor on it). 
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Figure 2.2.2. The graph is slightly zoomed out, a couple nodes are rearranged for better 

evaluation, and we are given the weight of the edge currently inspected (the one under 

the cursor). 
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Figure 2.2.3. Zoomed-in view of a larger returned quasi biclique. 
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Figure 2.2.4. Zoomed-out view of a larger returned quasi biclique. 
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Chapter 3- Skeleton based heuristic 
 

3.1 Motivation for the skeleton based heuristic 
 

 The application described in Chapter 4 gives exact solutions, however similarly to 

all other exact solutions, it is slow. Graphs of moderate size (e.g. 250 to 300 vertices) 

can take time well in excess of 15 to 20 minutes in order to calculate just one quasi 

biclique given certain parameters. For example, suppose we want to calculate up to ten 

different maximal quasi bicliques (and also assume that we can always find at least ten 

of those) for each different configuration of α β values, i.e. if we have an initial 

α=β=0.005  value and we want to move up to  α=β=0.02 with an increment of 0.001 in 

each step, we would need for a moderately sized graph ~15 to 20 minutes for the first 

qbc obtained with α=β=0.005, another ~15 to 20 minutes for the second qbc obtained 

with α=β=0.005, another ~15 to 20 minutes for the third qbc obtained with α=β=0.005, 

and so on. Once we get the first ten, we would need another ~15 to 20 minutes for each 

of the ten qbcs that we will acquire with parameters α=β=0.006, then another ~15 to 20 

minutes for each of the ten qbcs that we will acquire with parameters α=β=0.007, and 

so on. In other words, in practice it is not viable to ask for more than one qbc returned 

for each different αβ values configuration.  Even then if the increment step is too fine 

we will need a long time to process the whole job.  This however is a general flaw of all 

exact solution approaches and not one of the αβ weighted quasi biclique approach.  It 

seems clear that what we need is fast heuristics that will sacrifice exactness on the altar 

of usability.  

 

 My proposed skeleton oriented heuristic is based in the following intuition:  No 

matter what sort of quasi biclique definition we want to use, it better be the case that 

the parts of the original input that are densely enough populated by edges are 

participants in the returned quasi biclique.  Obviously the most densely edge-populated 
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regions of a bipartite graph are its biclique subgraphs. If then we somehow had all the 

biclique (or even sufficiently many) subgraphs of a graph G  we could try to construct a 

quasi biclique skeleton that contains as many of them as possible and check whether 

that skeleton satisfies our any-given definition of quasi-ness. Such an approach has the 

two disadvantages mentioned in 3.3 where we examined the α-quasi biclique biclique 

approach. Namely, it presupposes that we have all the bicliques of a bipartite graph and 

furthermore it presupposes that such bicliques always exist.  

 

 However in many cases it is either easy to calculate the cliques of a graph or we 

already have done so in the past (for whatever reason) in which case we have the 

extracted cliques available anyway. For example, if we are to use the algorithm 

described in Alexe et al. for the extraction of cliques  we would get results in polynomial 

time if our bipartite graph happens to be convex [33]. Similarly we get linear or 

polynomial time if the input graph happens to be among one of the special bipartite 

cases listed in [34], for example 1-bounded or 2-bounded bipartite [35]. Furthermore, 

although in my description I will be talking exclusively about bicliques, the theory will 

work even when we relax the requirement of using bicliques for constructing the 

skeleton, requiring instead locally dense enough areas or local qbcs (not necessarily 

maximal).   

 

3.2 Skeleton preliminaries 
 

Let : ( , )G U V E= ∪ be a bipartite graph and let ,X YU U V V⊆ ⊆ . 

Let XY XU U⊆ such that  .  ( , )XY Yx U y V s t x y E∈ ⇔ ∃ ∈ ∈ . 

Similarly: 

Let YX YV V⊆ such that  .  ( , )YX Xx V y U s t x y E∈ ⇔ ∃ ∈ ∈  

 



29 
 

 

Let ,A B be two complete subgraphs of G  such that A  is the biclique subgraph of G  

induced by ( ),A AU V  and B  is the biclique subgraph of G  induced by ( ),B BU V . 

We define the degree of A to B as deg( ) | | | |AB ABA B U V→ = +  

We define the degree of the pair AB as deg( ) deg( ) deg( )A B A B B A↔ = → + →  

We define the density of A to B as 
deg( )( )

| |
A Bden A B
A
→

→ =  

We define the density of the pair AB as 
deg( )( )

| | | |
A Bden A B

A B
↔

↔ =
+

 

 

For example in Figures 3.2.1 a and b we get: 

deg( ) 3 3 6A B→ = + =  

deg( ) 1 2 3B A→ = + =  

deg( ) 6 3 9A B↔ = + =  

6( )
8

den A B→ =
 

3( )
6

den B A→ =  

9 9( )
8 6 14

den A B↔ = =
+  

 

Obviously a density of 1 implies that A and B are sub-cliques of a biclique. 
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 Figure 3.2.1a (top) An example with two bicliques A  and B . 3.2.1b (bottom) The same 

example with the nodes colored and the sets of interest identified. 
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Let 1 2{ , ,..., }nS S S S= be a set of n complete subgraphs of G. 

 

Definition 3.2.1: skeleton 

We say that Sk S⊆ is a weak skeleton or d-skeleton or simply skeleton if for all 

,  i jS Sk S Sk∀ ∈ ∃ ∈ s.t. deg( )i jS S d→ ≥ or deg( )j iS S d→ ≥ where d is a positive 

integer. 

 

Definition 3.2.2: strong skeleton 

We say that Sk S⊆ is a strong skeleton or a strong d-skeleton if for all 

,  i jS Sk S Sk∀ ∈ ∃ ∈ s.t. deg( )i jS S d↔ ≥ 3here d is a positive integer. 

 

Definition 3.2.3: density- skeleton 

We say that Sk S⊆ is a weak density-skeleton or density-r-skeleton or simply density-

skeleton if for all ,  i jS Sk S Sk∀ ∈ ∃ ∈ s.t. ( )i jden S S r→ ≥ or ( )j iden S S r→ ≥ where

0 1r< ≤ . 

 

Definition 3.2.3: strong density- skeleton 

We say that Sk S⊆ is a strong density-skeleton or strong density-r-skeleton if for all 

,  i jS Sk S Sk∀ ∈ ∃ ∈ s.t. ( )i jden S S r↔ ≥ where 0 1r< ≤ . 

 

Definition 3.2.4: skeleton weight 

The weight of a skeleton is defined as : 

,
deg( )

i j

i j
S S Sk

S S
∈

→∑  

 

Definition 3.2.5: strong skeleton weight 

The weight of a strong skeleton is defined as : 
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,
deg( )

i j

i j
S S Sk

S S
∈

↔∑  

Similarly we define the weight of a density-skeleton and a strong density skeleton. 

 

Definition 3.2.6: maximum weight skeleton 

A maximum weight skeleton (or maximum weight density-skeleton) is a skeleton (or 

density skeleton) with a weight at least as much as the weight of any other skeleton (or 

density skeleton) in S . 

 

Problem 3.2.1: Maximum Skeleton Extraction 

Instance: Given a set 1 2{ , ,..., }nS S S S= of n complete subgraphs of a bipartite graph G 

and a positive integer d. 

Query: Find the maximum weak (or strong) weight skeleton in S and report its weight. 

The Maximum Density Skeleton Extraction problem is defined similarly. 

 

3.3 The algorithm 
 

The problem of Maximum Skeleton Extraction (all versions, i.e. weak, strong, weak 

density, strong density) from an input bipartite graph G  given that we have the set S  

can be solved in polynomial time with the algorithm described below. In this example 

we will assume that we are looking for a Maximum Strong Skeleton. 

 

1. First we construct a new graph 'G  as follows: 

a) For each iS S∈  with [1, ]i n∈  we add a new node i  in 'G . 

b) Two nodes u  and v  in 'G are connected with an undirected edge { , }u v  with 

a weight of deg( )i jS S↔ if and only if uS  and vS  satisfy the strong skeleton 

condition i.e. deg( )i jS S d↔ ≥ . 
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2. We run a DFS on the resulting graph 'G  and we acquire all its connected 

components. 

 

3. For each of the connected components 'iCc G∈ we acquire its weight: 

,
deg( )

i j i

i j
S S Cc

S S
∈

↔∑  . 

 

 

4. We then acquire a subset vertex set ( ) ( )Sub
U V U V∪ ⊆ ∪  of the original vertex 

set of graph G  as follows: 

a) For each vertex u  in the heaviest component of 'G we add in 

( )Sub
U V∪  all the vertices contained in the corresponding biclique 

( )
uS

U V∪  . 

 

5. We return the subgraph of G  induced by the vertex set ( )Sub
U V∪  as our result. 

 

It is easy to check that the above algorithm needs only polynomial time to run. Now 

that we have a maximum skeleton we can check again in polynomial time whether it is 

actually good enough according to our criteria as to be considered a quasi biclique. 

 

Problem 3.3.1: QBC status check 

Instance: Given a maximum skeleton mSkel  of a bipartite graph G and some quasi-ness 

criterion (e.g. αβ-weighted quasi biclique with : [0,1]w E →  ). 

Query: Is mSkel a quasi biclique according to our criterion? (e.g. is it an αβ-weighted 

quasi biclique with : [0,1]w E →  ?) 

 



34 
 

 

We can check the answer to the above question  in polynomial time with the following 

algorithm inspired by the survey design paradigm described in [36]. (I will keep counting 

the steps as if we are continuing immediately from step 4 of the maximum skeleton 

extraction as the question posed in 3.2.2 is a direct extension of the question posed in 

3.2.1.) 

6.  First we construct a new graph fG as follows: 

a) For each node in mSkel we add a new node in fG . 

 

b) For each edge in mSkel we add the corresponding edge in fG with 0,1 

capacity and we direct them from the nodes in ( )U mSkel  to the 

nodes in ( )V mSkel . 

 

c) We then add two new nodes: a source and a sink. 

 

d) From the source node we bring a directed edge to each of the nodes 

in ( )U mSkel with low and high capacity depending on our criterion. 

For example if our criterion is that each of our nodes in ( )U mSkel

should be connected to at least  lc  but no more than hc   nodes in 

( )V mSkel then our low capacity will be lc and our high capacity will be 

hc where 0 | ( ) |l hc c V mSkel≤ ≤ ≤  . Of course we do not have to 

restrict the upper bound in which case the upper bound would be 

simply | ( ) |V mSkel since we cannot have a node in ( )U mSkel having a 

degree higher than | ( ) |V mSkel . 
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e) From each node in | ( ) |V mSkel we bring a directed edge to the sink 

node with low and high capacity again depending on our criterion. For 

example if we want each node in ( )V mSkel to be connected to at 

least ld  but no more than hd  nodes in ( )U mSkel then our low 

capacity will be ld and our high capacity will be hd where 

0 | ( ) |l hd d U mSkel≤ ≤ ≤ . Once again we do not have to restrict the 

upper capacity in which case we would simply have | ( ) |U mSkel to be 

the upper bound. 

 

f) Finally we bring an edge from the sink to the source with capacity 

| ( ) | hU mSkel c⋅  . 

 

7. We then ask whether there exists a feasible circulation in the resulting graph fG . 

 

 

An example construction based on the graph of Figure 3.2.1 can be seen in Figure 

3.3.1.  
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Figure 3.3.1. An example construction of fG  based on the example given in Figure 5.2.1. 
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If the answer is yes, then the mSkel is a qbc according to our criterion. This is 

because if we have feasible circulation (and thus an integral circulation) that means that 

there is a way to satisfy the condition that each node in  ( )U mSkel can send at least lc  

units of flow to ( )V mSkel and each node in ( )V mSkel can receive at least ld units of 

flow from nodes in ( )U mSkel  (and the circulation simply shows how this is possible) 

which is precicely the way we set up the criterion of quasi-ness to be by construction. 

The converse is also true. If the mSkel is a qbc according to our criterion then each node 

in ( )U mSkel has to have at least lc neighbors in ( )V mSkel and each node in ( )V mSkel

has to have at least ld neighbors in ( )U mSkel  and thus we can send the appropriate 

number of units of flow through each node. The weight of such qbc will be simply 

| ( ) |E mSkel since we are ignoring the edge weights and we are concerned with 

unweighted qbcs. 

 

We can then proceed in trying to see if we can actually extend our skeleton so 

that we increase the weight of our qbc. We could do so in several ways, for example by 

sorting all the vertices that are not in mSkel  but are the endpoint of an edge that has an 

endpoint in mSkel according to their mSkel -degree (i.e. how many edges that touch 

nodes in mSkel have them as their other end point) and adding them one by one to 

mSkel , checking each time whether the addition will break the quasi-ness or not (a 

greedy approach that will not necessarily guarantee maximality), or by using dynamic 

programing to choose those vertices.  As another example we could use the resulting 

mSkel as the basis for an extension as described in the α - quasi biclique section.  

 

If the answer is negative then we answer that the current mSkel is not a qbc 

according to our criterion and proceed by checking the next biggest skeleton extracted 

at step 3a, 'mSkel , repeating the whole process . If we have exhausted our inputs (i.e. 

we have checked all the skeletons extracted by the connected components of 'G  ) 
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without having a positive result then we can answer that we could not find a qbc that 

satisfies the given criterion. 

 

3.4 Algorithm discussion 
 

One thing that makes this algorithm appealing (besides its polynomial time) is its 

flexibility and its ability to be parallelized.  For example, one could check a skeleton for 

quasi-ness using several criteria at once using several threads, where each thread runs 

the check on fG  for a different criterion. We could check whether fG  has a feasible 

flow according to the γ-quasi biclique criterion in thread one while checking if it has a 

feasible flow according to the δ- quasi biclique criterion in thread two. In fact we could 

simultaneously use another two thread to check these two criteria for 'mSkel , i.e. the 

second largest skeleton found, use another two threads to check simultaneously the 

same criteria for ''mSkel , i.e. the third largest skeleton found, and so on.  

 

The ability to use multiple criteria is not the only factor that makes the algorithm 

flexible. In fact we can set individual criteria for each of the participating nodes in our 

Skeleton by setting different minimum and maximum capacities for the edges from the 

source to ( )U mSkel for each ( )u U mSkel∈ and for the edges from each ( )v V mSkel∈ to 

the sink if, for example, we have vertices that we deem to be more or less important 

than the rest. We can also enforce balance and symmetry by manipulating the 

capacities appropriately (e.g. enforce symmetry by setting ' 'c d=  ) depending on 

whether that would be useful for our case. 

 

Furthermore the algorithm gives us the tools needed to evaluate the quality of 

our qbcs according to different needs. One question that arises naturally once we have 

the results of a heuristic is how to evaluate and compare them to the exact solutions. In 

our case, should we consider simply the weight of the resulting qbc, should we compare 
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the structural similarities or should we consider something else still? For example, 

consider Figure 3.4.1. If all we care about is the weight of a qbc, then by requiring that 

the strong skeleton condition is  deg( ) 6A B↔ ≥  both graphs in 3.4.1 are good 

skeletons with : 

 

deg( ) 6 3 9A B↔ = + =  for the Case 1 graph and 

deg( ) 5 1 6A B↔ = + =  for the Case 2 graph.  

 

i.e. both graphs qualify as skeletons but we would in fact prefer the graph in Case 2 as it 

will give a larger qbc-weight although the graph in Case 1 has a larger degree assuming 

that both graphs pass the quasi-ness test.. 

 

However, if we care about the structure of our skeleton as well, then by picking the 

strong density condition 1 ( ) 1/ 2den A B≥ ↔ ≥   we get that the  

6 3 9( )
8 6 14

den A B +
↔ = =

+
 for the Case 1 graph and 

5 1 6( )
10 4 14

den A B +
↔ = =

+
 for the Case 2 graph 

, i.e. although the Case 2 graph remains heavier this time it will fail to qualify since its 

structural density is rather weak (only one node in B is responsible for all the 

connections to nodes in A and conversely all nodes in A that have a connection in B have 

a connection to only a single node in B). 

 

 Finally, as I mentioned earlier, despite the fact that the algorithm was described 

in this thesis as requiring bicliques, there is nothing that restricts us from using other 

notions for constructing the skeletons. We could therefore use any other method that 

we would like in order to generate dense enough skeletons; For example, we could 

make use of the vast literature on the extraction of dense subgraphs from graphs, e.g. 
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check [37-41]. The algorithm described up until step 7 is implemented in Java and the 

code is available in sourceforge.org. 

 

Figure 3.4.1. Example where different qbc evaluation criteria will result in different picks 

by our algorithm. 

 



41 
 

 

Chapter 4 - Future work 
 

There are several possibilities for improvement of both the algorithm and its 

implementation that  can be done in the future. A first step for improving the 

implementation would be to modify my code so that it will use multiple threads as 

opposed to being a single threaded application. Furthermore, several improvements can 

be made in its running time by re-touching the implementation specifics. For example, 

the algorithm used for max flow  is the Edmonds – Karp which has running time 2( )O VE

[42]; however, the Dinic's algorithm can perform better using 2( )O V E time[43]. A web 

interface similar to the one that was provided for the ILP formulation of the αβ-

weighted quasi biclique problem can be provided for this application as well.  

 

One of the major issues with the approach described is that it cannot handle the 

case where we are dealing with weighted bipartite graphs. An obvious improvement 

would be to extend the algorithm so that it can handle such graphs as well (one way to 

do that would be to use altered degree or density criteria based on the sum of the 

weight of the edges that connect any given two biclique subgraphs of the original graph 

and then alter the quasi-ness checker or use a new one). 

 

Another step that should be taken next,  is to use the algorithm on data given by 

experts and then have the experts evaluate the results. As it is now the evaluation of the 

usefulness of a qbc regardless of the algorithm or approach used to extract it can be 

done only by an expert who will judge the result. A comparison between the skeleton 

approach and some other approach, say γ-quasi bicliques is by nature vague since, as 

discussed earlier, there is more than one way to compare two qbcs (weight, structural 

similarity, etc.). Thus, in order to actually evaluate the results of the skeleton approach, 

one has first to decide what he or she is comparing the results to and what the 

important criterion for the comparison is. If, for example, we want to compare the 
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skeleton based result to a γ-qbc result and we care only about the weight of the result 

alone, we need to pick a density-based skeleton approach and find out what is the 

threshold that better approaches the weight given by the γ-qbc result. Only then we can 

make a statement about the quality of the returned result. 
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