
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

situ-f: a domain specific language and a first step
towards the realization of situ framework
Hua Ming
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ming, Hua, "situ-f: a domain specific language and a first step towards the realization of situ framework" (2012). Graduate Theses and
Dissertations. 12563.
https://lib.dr.iastate.edu/etd/12563

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F12563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12563?utm_source=lib.dr.iastate.edu%2Fetd%2F12563&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Situf : A Domain Specific Language

and

A First Step Towards the Realization of Situ Framework

by

Hua Ming

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Carl K. Chang, Major Professor

Johnny Wong

Simanta Mitra

Jin Tian

Ting Zhang

Iowa State University

Ames, Iowa

2012

Copyright c© Hua Ming, 2012. All rights reserved.



ii

DEDICATION

I would like to dedicate this dissertation to my families and friends, both in Beijing China

and in Iowa United States.



iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Review of Situ framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Declarative situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 A functional paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Situf -based Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 A glance view of the Situf environment . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 A retargetable environment . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 My contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 2. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Background information on situation and human intention . . . . . . . . . . . . 14

2.2 A motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The Environment Model of Situf language . . . . . . . . . . . . . . . . . . . . . 25

2.4 Context variables under the environment model . . . . . . . . . . . . . . . . . . 28

2.5 Event passing under Situf ’s environment model . . . . . . . . . . . . . . . . . 31

2.6 Human-centric Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 An introduction to Situf language and examples . . . . . . . . . . . . . . . . . 37

2.7.1 Attribute-Grammar model of Situf . . . . . . . . . . . . . . . . . . . . . 37

2.7.2 Synthesized attributes, inherited attriutes and functional dependency . 38



iv

2.7.3 Paper review example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

CHAPTER 3. FORMAL DEFINITION OF Situf . . . . . . . . . . . . . . . . . 50

3.1 Syntactical definition of Situf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Semantic definition of Situf through attribute grammar . . . . . . . . . . . . . 51

3.3 SituIO: the IO channel for Situf environment . . . . . . . . . . . . . . . . . . . 51

3.4 The Monadic ”@” to set up SituIO channel . . . . . . . . . . . . . . . . . . . . 53

3.5 The Monadic ”()” to convert user data to situation contexts . . . . . . . . . . . 55

3.6 A precise description of SituIO under Situf language . . . . . . . . . . . . . . . 55

3.6.1 Overview of semantics of programming languages: denotational, axiomatic

and operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Abstraction of SituIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.3 The computational semantics of SituIO . . . . . . . . . . . . . . . . . . 60

CHAPTER 4. Situf -based ENVIRONMENT . . . . . . . . . . . . . . . . . . . . 74

4.1 Context specification and situation services . . . . . . . . . . . . . . . . . . . . 75

4.1.1 XML and context specifications . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.2 The inclusion of situation services . . . . . . . . . . . . . . . . . . . . . 80

4.2 XML Situation data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 EOS in Situf -based environment . . . . . . . . . . . . . . . . . . . . . . . . . . 81

CHAPTER 5. IMPLEMENTATION AND FEASIBILITY TEST . . . . . . . 82

5.1 Experiment on JFrame/Swing based User Interface Adaptation . . . . . . . . . 82

5.1.1 Overview of adaptive user interface . . . . . . . . . . . . . . . . . . . . . 82

5.1.2 Error, situation and the XML representation of context . . . . . . . . . 86

5.2 Experiment on MyReview, a web-based paper review system . . . . . . . . . . 88

CHAPTER 6. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . 91

6.1 Conclusion remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



v

LIST OF TABLES

2.1 A context-free grammar for SimpleL . . . . . . . . . . . . . . . . . . . 38

2.2 Attribute grammar for SimpleL . . . . . . . . . . . . . . . . . . . . . . 39

3.1 A context-free grammar representing concrete syntax for Situf . . . . 68

3.2 Abstract syntax for Situf . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Attribute grammar for Situf (part 1 of 3) . . . . . . . . . . . . . . . . 70

3.4 Attribute grammar for Situf (part 2 of 3) . . . . . . . . . . . . . . . . 71

3.5 Attribute grammar for Situf (part 3 of 3) . . . . . . . . . . . . . . . . 72

3.6 Operational semantics of SituIO . . . . . . . . . . . . . . . . . . . . . 73

4.1 An XML Schema-based context template . . . . . . . . . . . . . . . . . 78

4.2 A sample context value collected at runtime using XML . . . . . . . . 80



vi

LIST OF FIGURES

1.1 Situf -based environment: the overview . . . . . . . . . . . . . . . . . . 6

1.2 A simple diagram of the behavior-centric context for a user . . . . . . 7

1.3 The cascading structure of the context for MyReview login . . . . . . . 8

1.4 A more complete picture of the MyReview login context integrating

user’s profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Context stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 A Situf -based environment in action . . . . . . . . . . . . . . . . . . . 12

2.1 A Kripke Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 A MyReview Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Situations S1 and S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Login Fail Situation S3 . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Example of context variable environment . . . . . . . . . . . . . . . . 26

2.6 System user’s demonstrated desire . . . . . . . . . . . . . . . . . . . . 31

2.7 Environment model: a working example . . . . . . . . . . . . . . . . . 34

2.8 Parse tree and attribute dependency graph . . . . . . . . . . . . . . . . 40

2.9 Parse tree for paper review situation . . . . . . . . . . . . . . . . . . . 43

2.10 Temporal ordering of situations . . . . . . . . . . . . . . . . . . . . . . 44

2.11 An example of the ¡prog url¿ grammar symbol in Situf grammar . . . 47

2.12 Parse tree and attribute propagation graph for Program 2 . . . . . . . 48

3.1 An example of reduce expression . . . . . . . . . . . . . . . . . . . . . 69

4.1 The compiling of a Situf script . . . . . . . . . . . . . . . . . . . . . . 74



vii

5.1 The Graphical User Interface for Personal Information . . . . . . . . . 90

5.2 Context specificaation for Personal Information in XML . . . . . . . . 90



viii

ABSTRACT

Situ proposes a human centered, dynamic reasoning framework for domain experts to evolve

their software. It formally models the relationship between externally observed situation se-

quences and the rapid evolution of that software system, using real-time usage information

from users and contextual capturing on the behavior of a software system relative to its run-

time environment.

Situf is a continuing effort under Situ framework [1]. In this effort, a domain specific,

functional programming language named Situf is presented from its design, semantics and

a feasibility test through theoretical validation. The targeted users of this language mainly

include domain experts and engineers who are versed in the major concepts and paradigms

regarding human-centric situations. As argued there, human-centric situations are vitally im-

portant to infer a user’s intention and therefore, to drive software service evolution. Situf

is designed particularly to encourage domain experts and engineers to think and work with

situations. An attribute grammar based approach is developed so that through Situf , relevant

real-time contexts can be systematically aggregated around situations. A computational se-

mantics is offered to precisely describe the runtime behavior of a Situf program. While the

Situf language serves as the critical centerpiece of this work, its functioning necessarily requires

environmental support from Situ elements outside the language itself, such that altogether they

give rise to a Situ oriented system. This environment, named Situf -based environment, is also

introduced.

Keywords: Situ-framework, Situf -environment, situation, human intention, software evo-

lution, domain-specific programming language, functional programing language, structural op-

erational semantics
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CHAPTER 1. INTRODUCTION

1.1 Review of Situ framework

Human intention has long played important roles in both cognitive reasoning and creative

software development [2, 3, 4]. How intention can be connected with the software maintenance

and evolution process has not been adequately studied [1]. Situ framework was developed

to bridge this gap towards a rapid, automated software service evolution process [1, 5]. An

important concept brought to light by Situ framework was that of human intention - which

is defined as a temporal sequence of situations observed towards achieving a common goal.

The goal there is meant to be in the context of system goals directly related to the goal model

used in Goal-Oriented Requirement Engineering [6, 7]. Under Situ’s definition, each situation

at a particular time instant must encapsulate a user’s behavioral as well as environmental

context from which a user’s desire can be served [1]. In order to enrich the concept of Situation

with more expressive power for software and service evolution, Ming et al., [5, 8] continued

to expand this research spectrum under Situ framework with new concepts, including Situ-

module,Situ-morphism and Situ-channel. While in need of more refined and sustainable efforts,

the conceptual cornerstone for the Situ framework has been provided by which robust upper-

level structures are made possible.

1.2 Declarative situations

In computer programming, the declarative paradigm distinguishes itself from all other

paradigms, such as its popular imperative counterpart, in its emphasis to minimize or even

eliminate side effects by describing what the program should do rather than how to accomplish

it. This defining characteristic of the declarative paradigm stands out especially with regard
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to the way functions are created in both their syntax and, more importantly, their seman-

tics. Popular declarative languages include SQL, ML and Haskell. Declarative programming

is of particular interest recently, in both the research and the industry due to the fact that

eliminating side effects can greatly simplify the writing and debugging of parallel programs.

While it is very impressive that the declarative programming paradigm goes a long way

for simplifying the writing of correct parallel programs, especially in this age of multi-core and

multi-processors, it is of special interest for the designer of a domain specific programming

language under Situ framework. First of all, the description of a situation, in its very nature,

is a what rather than how process.

Let us consider a concrete example. A domain expert trying to schedule a meeting for

various parties to attend wants to accommodate as many requested meeting times and locations

as possible. To start with, she wants to compile everyone’s time and location by first filtering

out “impossible” situations for which there are no viable chances, and then reduce the remaining

situations to one that would allow most of the intended parties to participate.

The solution that comes out most naturally to help the meeting scheduling expert can be

specified as follows:

• the situation for each party is represented as a pair of available time and location;

• the collection of all the availabilities consist in a list of available time and location pairs;

• apply a filter function on each party’s situation to remove the inviable ones, and;

• synthesize all remaining situations into a final situation that works the best to accomodate

each remaining situation.

A direct translation from the above scheme is as follows:

synthesize→ (filter → [(t1, loc1) . . . (tn, locn)])1 (1.1)

A declarative language promotes the most straightforward solution leading to a simple

computer program. Note that should such a declarative language be available, the domain
1This is also known as map reduce, a well known scheme with its root from functional paradigm, a subcategory

under declarative paradigm.
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expert will only need to worry about what the filter has to do on each situation, enjoying the

complete insulation from how the filter is going to be applied iteratively from one situation to

the next throughout the list. A similar case occurs in the synthesis step as described in the

above scheme.

More interestingly, should there be an appropriate declarative language support, such a

solution can also serve as an executable high level specification targeting strategic design ob-

jectives.

Second, a declarative paradigm is consistent with Situ defined situations. According to the

definition by Situ, each situation carries a time stamp by which situations can be collected and

sequenced into specified time intervals. A key observation is that once a situation is observed

and added to a temporal sequence, it becomes immutable - in a sense similar to historical

data. Indeed, this impiles that no side effects are allowed under the proposed domain specific

language over situations. Once they are generated as function outputs, they are final.

In particular, this kind of immutability is well supported by functional paradigm where no

update assignment is allowed.

1.3 A functional paradigm

Functional paradigm emphasizes computing with values rather than with actions. The

computation is a direct, explicit description based on what values to use and to generate.

To illustrate the charm of the simplicity intrinsic to a functional paradigm, let us consider

the following example using Haskell2.

Problem: Find the summation of squares of natural numbers up to a particular

number.

A typical imperative program might solve the problem with the following code:

sumSq := 0;

i := 0;

while i ¡ n do

2A popular functional programming language
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i := i + 1;

sumSq := i ∗ i + sumSq;

end

The variable sumSq, which holds the summation value of the squares of natural numbers

under consideration, is changed repeatedly during program execution, as is the count variable

i. The effect of the program can only be seen by following the sequence of changes made to

these variables by the commands in the program.

In contrast, the following is usually what a professional Haskell programmer will write to

solve the very same problem:

sumSq :: Int→ Int

sumSq n = sum (map square [ 1 . . n ] )

In this program, a list is used to store numbers from 1 to n, then each of them is squared

before being summed up to give the result. This Haskell code snippet uses neither control flow,

found in imperative programs, nor recursion, and serves as a good example of a functional style

program with elegant simplicity. Note that square is a Haskell function that another Haskell

function map applies as its argument3 to every member of a list before the sum function adding

every number in the list to give the summation. The underlying data-directed programming

style is added value of the functional paradigm. As compared with the meeting scheduler

example under section 1.2, the functional skeleton structure demonstrated in the Haskell code

snippet above, especially the map function, can be used immediately to implement the meeting

scheduler design in (1.1) with a functional paradigm.

A program written in a functional programming language, such as the Haskell code snippet

we saw earlier, can also be read as executable specifications of behaviors[9]. A domain expert,

who oftentimes goes beyond simply being a programmer, would like to embrace an executable

behavior specification language to edit, compile and test the design specification by actually
3therefore, map is called the higher order function.
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running it on the source code level. In ensuing sections, we will showcase in detail how a

Situation oriented domain expert can benefit from such a functional, Situ framework specific

programming language.

Functional paradigm has already been used to serve various domain specific engineering

purposes. For example, functional reactive programming (FRP) paradigm[10] in which con-

tinuously evolving behaviors and discrete events are used to model systems, has been adopted

and implemented in applications as diverse as robotics, animation and real-time programming.

As to concrete language, Fran[11] is a FRP domain-specific language with its root from Haskell

for building reactive animations, using simple vector graphics, text, (animated) bitmaps and

sound. In the area of multimedia reactive authoring research, FRP languages are also proposed

to catch hold of varying values rendered by runtime animation tasks[12].

1.4 Situf -based Environment

As the following diagram shows, the central components within Situf -based environment

revolve around serving the Situf program. We model the underlying capturing mechanism

for context information centered around a situation by SituIO, which by nature is to stream

captured context information. SituIO connects internally specified situations written in Situf

language and the externally observed context variables bound with those situations. In Situf ,

each situation can be constructed, either independently or combinatorially, by four built-in

functional patterns: map, reduce, filter and apply.

The precise meaning of SituIO is described using computational semantics in 3.6.3.

1.5 A glance view of the Situf environment

No computer program can run in a vacuum. Ever since Brian Kernigan and Rob Pike’s

classic The Unix Programming Environment hit the shelf, generations of programmers have

been deeply aware that the secret of Unix’s huge success is in a big part due to its unusually

rich and productive programming environment. At its heart, it is the relationships among

programs rather than the programs themselves that produce the core power of a system [13].
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Figure 1.1 Situf -based environment: the overview

One of the design objectives of Situf -based environment is to provide such a setting in which

domain experts can take advantage of a variety of elements centered around the abstraction of

a human-centered situation [1].

Situ framework envisions and blueprints a rapid software evolution paradigm. Situf -environment

targets the implementation of this vision by first focusing upon graphical user interface level

transitions and commands. From situation services, situation data structures, to the underly-

ing Situf runtime, Situf -based environment is proposed to embrace all of the above as its core

interest, contributing towards a situation-oriented, automated software adaptation paradigm.

This design is composed to highlight the human-centric nature of situations under Situ frame-

work. A user’s context, especially, a user’s behavioral context, falls into the category of internal

dimension of context as opposed to external dimension of context. The latter has been more

sufficiently addressed than the former in the context-awareness research community [14] . The

reason, as least in part, is due to its being external and therefore easier to observe, for example

location, temperature, time, lighting levels, proximity to other objects and so on. However,
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to dig deeper into the context, especially to more accurately capture those regarding human

factors like user’s goals, tasks, work context, etc. . . , internal context needs to be attende d[14]

equally well.

User

Behavior 
ActionsActions

Behavior-centric Context 

Behavior-centric Context

Figure 1.2 A simple diagram of the behavior-centric context for a user

The internal context, i.e., user’s behavioral context, surrounds the actions of a user and it

only comes into existence when a sequence of actions leading to a behavior are being performed.

The internal context is created at the outset of an action sequence performed by the user and

ends when the behavior is concluded.

An important observation is that behaviors vary in scope ranging from the very general

to the very specific. General behaviors contain one or more specific activities. In this sense,

we can think of a behavior as a container in which all the sub-behavioral activities at various

levels compose a hierarchical structure. To give a concrete example of this context hierarchy,

let us consider the login activity inside MyReview–a real world example featuing a web-based

paper review system.

In general, a behavior, coupled with its internal context within which it exists, gives rise to a
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Login Login_context 

MyReview-Login MyReview-

Login_context 

submit 

username 

submit 

password 

MyReview-LoginMyReview-

Login_context

submit 

username

submit

password

MyReview-

username_context 

MyReview-

password_context 

Figure 1.3 The cascading structure of the context for MyReview login

structural context diagram as shown in Figure 1.2. Note that Login context influences not only

login behavior, but also MyReview − Login, MyReview username and password submission

behavior.

The picture is incomplete when we only look into the context surrounding the receiver of a

user’s action within MyReview without investigating the action provider’s functional role. In

other words, the user’s profile also creates an important part of the internal context. Suppose

that the user uses the MyReview system to organize a workshop under IEEE COMPSAC

to meet academic researchers and industrial practitioners to discuss emerging methodologies

and techniques to enhance software security. The context goes beyond interacting with the

MyReview system, though they are closely related. In order to run a successful workshop, to

attract and evaluate scholar paper submissions is indispensible. This activity cannot isolate

itself from the context: a security workshop organizer usually is an expert in the area of

computer security, which in turn is part of her career path: maybe she is a professor of computer

security from computer science department in a University, currently working on several NSF-
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funded research projects, one of which is to test the applicability and scalability of certain

security theory as being extended to the industry partners. Organizing a workshop is an

excellent task to support the project, for which MyReview is used as a tool. The user’s profile

is hierarchized through Figure 1.4:

Career 

Project 

Task 

Workshop 

MyReview 

MyReview Login 

Figure 1.4 A more complete picture of the MyReview login context integrating user’s profile

While a user’s internal context can mirror her expectation, the challenge is to identify a

priori the information that exists within the context, especially the internal context: how do

you identify the information regarding the behaviors being performed even before the behavior

is performed? A side question that comes along is how to exclude irrelevant information from

contextual considerations in order to recognize only legitimate situations relative to a user’s

goal. Situf is designed to set up the environment that serves to answer the first question; we

propose to answer the second question by the binding mechanism of context variables built

inside the Situf language. More detailed discussion is offerd in the next chapter.

The ordering of contexts can be adjusted by events. Events are also signals sending off

information about switching of context that often suggests transitioning between situations.
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The mechanism of events-passing between contexts serves to link context-oriented situations.

At any given time, only one internal context is active; as a result, a user’s behavior will be

recognized only when it is supported by the active internal context. The diagram in Figure 1.5

shows a concrete example of an active internal context.

general  context 

PC member Dr. Miles 

logins in 

Dr. Miles 

general context 

Dr. Miles’s paper review 

environment 

general  context 

Dr. Miles’s paper  

review environment 

Dr. Miles logout ; 

Dr.Lee login  

Dr.Lee’s paper review 

environment 

Example using MyReview: a web-based paper review system 

general context: MyReview 

system general configuration

Figure 1.5 Context stack

Situf -environment supports context propogation: when the whole system is under a cer-

tain active context, all its sub-system will automatically inherit that active context. After

a paper reviewer’s successful login, for example, each GUI gadget such as buttons and links

can be conceived as carrying the context of that specific reviewer’s profile. This view reflects

the human-centered characteristic of Situf -environment. When an event occurs in a certain

context, all changed contextual elements will be published to all its sub-contexts. This is

achieved combinatorially by Situf ’s attribute grammar based context handling machinery and

its interplay with Situf -based environment.

Situ framework is context-oriented [1]. Each situation contains information regarding its

environmental context. In this work, an attribute grammar based context handling approach
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is proposed to define the Situf language. The Situf language and the correlated environment

based on Situf together bring home a situation programming model.

Existing approaches mostly remain focused on a user’s external context level. In order to

better address issues involving a user’s cognitive activities, our approach will focus on capturing

and using the context information surrounding the behavioral performance by a user. To

this end, the designer of the Situf language pays particular attention to craft the language

such that through built-in context binding, monad-based SituIO streaming and pattern-based

situation constructing mechanism, situation specifications written in Situf intrinsically revolve

around a user’s behavioral performance. Having a behavioral-centric context implies a firm

and consistent step forward towards the model of human-centered situation proposed by the

original Situ framework.

The diagram in Figure 1.6 shows a typical usage scenario that engages a Situf program

runtime. A domain engineer specifies situations in Situf code. Due to the high level situation-

oriented perspective, the domain engineer, for different software modules that serves the end

user, imports different context specifications to correctly bind contexts information in her Situf

program. In the meantime, appropriate situation services are included to assist the real-time,

context collection task.

1.5.1 A retargetable environment

Underlying software modules vary from domain to domain. The flexibility of allowing the

plug and play of domain specific software modules into Situf -based environment makes it easily

retargetable to other software modules whose situational interplay with an end user interests

a domain engineer to write situation specification code in Situf . Besides, one domain expert’s

situation specification written in Situf , once made public under appropriate circumstances, can

be imported to assist another domain expert’s situation specification effort using Situf . Indeed,

the central design objectives of the Situf language include promoting situation re-usability.

The contribution of Situf is that through language features and its built-in support, Situf

allows domain experts to think and code in terms of situations. Lower level details regarding

specific software modules through which an end user interacts with, as well as the specific
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Situf program runtime 

End User 

… 

Original software 

modules 

situation / context 

specification 

Software services  

Domain Engineer 

Figure 1.6 A Situf -based environment in action

services and context specifications are well encapsulated to promote the reusability of the code.

Although currently only graphical user interface based user interaction is fully supported by

the prototype, future extension can well cover the ground of remote sensory interaction and

multi-modal interaction between a human user and a computing device.

1.6 My contribution

This work is the first attempt to realize the conceptual model of Situ framework [1]. The

objective is to create a programming model with the following specific aspects:

1. bridging the concept of Situation over to realistic computing circumstances with clear

software engineering realizations;

2. creating the Situf -based environment is created to drive the evolution of graphical user

interface based commands and transitions - a subcategory of software evolution proposed

by the original Situ framework;
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3. utilizing a Situation as a basic building block into a functional paradigm specification

language called Situf ;

4. developing an attribute grammar-based approach to formalize contexts surrounding a

situation as attributes, with the purpose of rigorously specifying situations in Situf ;

5. linking situation data structures specified in Situf scripts to existing software by the

language features and attribution rules built inside Situf ’s attribute grammar;

6. carrying out experiments in MyReview and Java JFrame mechanism to showcase the

feasibility of the Situf -based environment, which in turn provides evidence of the rigor

and practicality of the original Situ framework.

1.7 Organization

This work is organized as follows: first Situf ’s underlying data exchange model is introduced,

built on top of an XML-based intermediate representation. Then, a series of examples are

given revolving around the concepts of Situation contexts, especially action-oriented behavioral

context and environmental context. After that, a rigorous definition of the domain specific,

functional language Situf is given.Our focus centers around the attribute grammar model used

in Situf , which combines the syntax and static semantics of the concept of situation under the

grammar production rules, each one of which is decorated by a set of attribute equations. Our

approach to model contexts as attributes in situations receives particular emphasis.

It is through a situation specification written in Situf that a Situf -based environment can

be initiated, set up and finally established. Overall, the big picture that creates and runs such

a Situf -based environment is entirely revolving around situations. Given that context data

collection necessarily requires I/O support, SituIO, which finds its root in the Situf language

itself, is emphasized and precisely described using computational semantics, a.k.a small-step

operational semantics. Finally, an evaluation of the approach is given by a feasiblity test,

followed by conclusion and future work.



14

CHAPTER 2. OVERVIEW

2.1 Background information on situation and human intention

Among the flurry of research on human intention cutting across Philosophy [2], cognitive

science [15], and artificial intelligence [16, 3], two well referenced opinions that directly relate

to the purpose that motivates this research stand out.

First, Bratman described intention as mental states motivating actions [2]. His opinion has

been adopted and turned into the supporting theory, known as BDI logic, for agent planning

research. Targeting Rational agents, a lot of research work has been done in the area of

Artificial Intelligence (AI) and Robotics, to infer the mental states of agents. Approaches

involving planning theory [17, 18], ontologies [19, 20], closed world mathematical logic such

as Kripke semantics [21, 22] are well developed. However, this is not enough for inferencing

human intentions. The reasons are found both due to the efficiency issues and in terms of the

practical concerns under current state of art. The essential challenge comes from the highly

fluid and intangible nature of human’s mental states. To see the gap more clearly, let us use

epistemic formulas from Kripke semantics1 [23] as an example.

The key construct under Kripke semantics is what is so called Kripke structure M, defined

as a tuple ¡ S, π, R1, . . .Rm ¿ where:

(i) S is a non-empty set of states,

(ii) π : S → ( P → { t , f} ) is the truth assignment to propositional atoms per state,

(iii) Ri ⊆ S × S ( i = 1, · · · , m) are so-called accessibility relation.
1also known as possible world semantics.
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As is shown above, the set S of states has to be determined before one can start reasoning

on the truth value of an Epistemic Formula [23]. The Epistemic Formula generally takes the

following form2:

(M, s) � Kiφ ⇔ (M, t) � φ for all t with (s, t) ∈ Ri

Despite its logic form, Kiφ expresses the meaning of “Agent i acknowledges φ”. The under-

lying implication is that in order to “understand” a certain epistemological state of agent i’s

knowledge φ in world (M, s), it is sufficient and necessary to “understand” if that knowledge

φ still holds in all worlds agent i considers possible. Note that (M, t) can be any of such a

possible world relative to a given state s due to state t’s “for all” condition. Two key issues

stand out when applying the Kripke semantics to human-centered domain:

• If set S can not be solidly decided, or can never be easily stabilized mostly due to the

human factors involved, the above epistemic reasoning can be seriously hampered;

• Even if set S is decidable but it is very large a set, as is usually the case even for a stan-

dalone computer program [24], not to say the case where state changes are made by human

beings’ instantaneous decision, the efficiency of reasoning under Kripke semantics-based

logic system can be quite a daunting task [25, 23]. As shown from the diagram below,

to verify agent i’s knowledge φ at state s, all possible worlds have to be checked. Those

possible worlds are derived from all accessible states sanctioned by agent i’s accessbility

relation Ri.

These restrictions generally apply as long as Kripke semantics serves as a key component in

the underlying theoretical foundation, which is at the time of this writing prevalently true in AI

for knowledge representation, practical knowledge reasoning [25, 23], as well as ontologies such

as those based on description logics [19, 20]. More concrete examples include the well-known

LORA [26] system, a derivative and further extension from Rao and Georgeff’s original BDI

logic system that allows the representation and reasoning about beliefs, desires, intentions, and

actions of agents within a system, and how these beliefs, desires, intentions and actions change

over time [26, 27].
2for the sake of brevity, we omit the purly propositional counterparts.
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Figure 2.1 A Kripke Structure

In response to Bratman’s theory, Scheer initiated the second school of opinion regarding the

definition of human intention. He pointed out that intention should be considered as a course

of actions [28]. In Scheer’s opinion, direct mental states modeling should be avoided by way of

capturing action sequence.

Both Bratman and Scheer seem to agree on the point where human intention can be analysed

through the observation of action sequences. In addition, sensor-based approaches [29, 30] have

recently gained momentum, through which collected information on temporal contexts, closely

related user-centric data3, can be timely captured and analysed to improve human life style

[31]. It’s worth mentioning that XML-based sensor language helped to seamlessly move sensor

data onto the interconnected World Wide Web, to the platform of mobile computing [29] and

even to serve the construction of human-robot interfaces [32].
3Examples include user’s geographical locations, etc.
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We use XML to describe the structure of sensory data collected and the structure of sit-

uations drawn from those data. XML serves as the intermediate form of Situf program and

prepares the discussion for further analysis of situation modeling that motivates the invention

of Situf domain specific language.

The XML-encoded Data (or documents) are ordered, labeled tree structures. Among oth-

ers, XML’s intrinsic hierachical structure offers enormous flexibility and in the meantime has

nurtured a flurry of research in computer science on XML itself, ranging from XML type sys-

tem analysis based on DTD or XML schema to XML-based document processing techniques;

Good examples include statically typed XML prcessing devices such as XDuce [33] and RELAX

NG [34]. By design, Situf adopts XML to serve as an intermediate meta-language to capture

and represent contextual information attached to each situation. Underpinning its wide-spread

applications on sensory data is XML’s semi-structured data model, which is enbodied by the

form of a mark-up language.

XML can also comfortably serve the purposes of describing the sensory data and of depicting

the structure of situations drawn from these data. The intuitive and syntactic nature of XML

serves to prepare the discussion of further analysis and modeling of situations under Situ which

nutures the birth of Situf domain specific language and Situf -based environment.

To strike a brand new paradigm featuring rapid and automated software evolution, Situ

framework [1] developed the concept of minimal intention that is built from a sequence of

situations4 with respect to a goal5. We take minimal intention as our default definition of

intention to avoid terminology confusion. Each situation snapshots software user’s behavioral

and environmental contexts as well as the predicted user’s desire based on those contexts.

As part of the big picture, rather than exposing the hierarchical context directly to the

domain experts and engineers, we propose that contexts be captured and internally processed

inside Situf -based environment, which is set up by Situf program written by domain experts.

More concretely, we abstract the key processig power of Situf -based environment as an abstract

machine, whose native language is a situation stream language as will be explained later on.
4where each situation is defined as a triple {d,A,E}t, it is human-centric since A and E are human factors;

see [1] for details.
5referring to system goals as discussed in Goal-Oriented Requirement Engineering [6, 7]
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This abstract machine is noted as Situf -AM. Situf -AM sets up and maintains its internal states,

geared by captured contexts.

2.2 A motivating example

Let us first consider a concrete example.

MyReview, a paper review system in use for conference organization has three types of users:

paper author, paper reviewer and conference organizer. Each author is given login access to

her paper once the initial submission has been completed to the system so that she can keep

updating her submission until the deadline is hit. Paper reviewers can login to review those

papers assigned by conference organizers following a double blind review policy, and conference

organizers once login, can utilize the administration tools such as assign papers to reviewer,

batch email to all program committee members etc. A typical scenario of interest is the login

situation.

Figure 2.2 A MyReview Example

Our discussion is based on the assumption that a user’s computer has been equipped with

a sensory touch detector, basically a situation service shown in Figure 1.1, that can record all

the mouse clicks and key strokes over button, links and textboxes etc. In fact, this is the basic

setup Situf -based environment requires in order for it to fulfill its mission. Our Situf prototype

provides this capability as a default service.
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Given that in MyReview, the login interface for users (author, paper reviewer and confer-

ence organizer) may seem to provide identical visual effect, a less experienced paper reviewer

accidentally hits the conference organizer’s login entrance. She types in her username and pass-

word(S1) (see footnote 6), clicked the login button(S2). The following picture visualizes these

two situations with regard to the login interface:

S
1
 

S
2
 

Figure 2.3 Situations S1 and S2

The minute the login button is clicked after wrong username and password information is

typed in, the user sees a login fail page saying “invalid password!” which signals her to relogin

(S3).

Each situation such as S1 is intrinsically timestamped, such as St1
1 . Several times around,

the user eventually gets to login successfully; then she clicked and downloaded one of the four

papers assigned to her and started reviewing(St4
4 ), uploaded her comment and review score into

the system(St5
5 ). Following a similar vein, she moves on and reviews the next paper . . .

6S1 corresponds to a node in XML format, which is used as the intermediate representation to encode captured
situation sequences. Same thing for S2,S3,S4, . . .
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S
3 

Figure 2.4 Login Fail Situation S3

For concrete syntax offered by Situf that a domain engineer can use to write code to create

the Situf environment, please refer to Chapter 3. We still use XML to explain the machinery,

given that it is a Situf syntax neutral, intermediate representation. This arrangement strives

to emphasize on the semantic transformation critical for any computing environment, including

Situf -based environment.

Next, we assume that a domain engineer’s program written in Situf is already successfuly

interpreted. This assumes the completion of the of proper establishment of a Situf -based

environment so as to effectively capture the runtime situation sequence centered around a use

case scenario. The context mediates the entire process. The aforementioned MyReview system

example is such a concrete case in point.

The particular situation sequence describing the above scenario, after being captured by

the mechanisms employed under Situf environment, is sequentially represented as follows:



21

S
4 

S
5 

St11
1 , St21

2 , St31
3 , St12

1 , St22
2 , St32

3 , St13
1 , St23

2 , St33
3 , . . . , St1n

1 , St2n
2 , St41

4 , St51
5

(2.1)

Note that in this situation sequence, since the last login action given by the paper reviewer

must be a successful login action, there is no St3n
3 to represent a Login Fail Situation to follow

St2n
2 in the sequence. By nature, a Login Fail Situation corresponds to an event which is passed

back to the Situf -based environment, which is formalized as Situf virtural machine. This event

is analogous to an IO interrupt on a real machine, whereas under Situf -based environment

the communication is between user’s action imposed on a specific software system (such as

MyReview’s graphical user login for paper review interface just demonstrated) and the external

environment, generally imagined as the Sifuf virtual machine. The handling of this event inside

Situf virtual machine will change the state of the virtual machine correspondingly.

The XML intermediate representation reflecting the capturing of temporal situation se-

quence is as follows:

<S1 timestamp=“t11“ >
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<action target=“login text box” src=“login.php “ >

<output>

<context target=“text box1“> text1 </conext>

<context target=“text box2“> text2 </context>

</output>

</action>

</S1>

<S2 timestamp=“t21“ >

<action target=“login button” src=“login.php “ >

<input>

<context target=“text box1“> text1 </context>

<context target=“text box2“> text2 </context>

</input>

<output>

<context> username </context>

<context> password </context>

</output>

</action>

</S2>

<S3 timestamp=“t31“ >

<effect> Fail </effect>

<source> S2 </source>

</S3>

<S1 timestamp=“t12“ >

<action target=“login text box” src=“login.php “ >

<output>

<context target=“text box1“> text1 </conext>

<context target=“text box2“> text2 </context>



23

</output>

</action>

</S1>

<S2 timestamp=“t22“ >

<action target=“login button” src=“login.php “ >

<input>

<context target=“text box1“> text1 </context>

<context target= “text box2“ /> text2 </context>

</input>

<output>

<context> username </context>

<context> password </context>

</output>

</action>

</S2>

<S4 timestamp=“t41“ depend on=“S1“ >

<action target=“paperd download button” src=“review.php “ >

<input>

<context> username </conext>

<context> password </context>

</input>

<output>

<context> paper S4 </context>

</output>

</action>

</S4>

<S5 timestamp=“t51“ depend on=“S4“ >

<action target=“review upload button” src=“review.php “ >
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<input>

<context> paper S4 </conext>

</input>

</action>

</S5>

We define an event to be a special situation that semantically splits a sequence of situations

into sub-sequences. It is the boundary that delimits scopes of contexts. An event is closely re-

lated to the immediate goal of a sub-sequence of situations. In the example of LoginFailEvent,

the goal of the sub-sequence of situations up until S3 is the negation of the event message, that

is, to login successfuly.

Event passing inside Situf virtual machine suggests the following pattern:

((S1, S2, S3)∗(S1, S2))(S4, S5) (2.2)

To see that, the repeated situation sequence is (S1, S2, S3): with the event S3 trailing the

sequence; This creates (S1, S2, S3)∗. The rest is non-repeated situation sequence excluding S3,

(S1, S3) since no exceptional situations, or events, occur there.

This pattern is generated over captured situation sequence (2.1). Prototypical forms of

situations are used in pattern (2.2),where contextual information is taken off. For example

Stk
1 and S

tk+1
1 both have the same prototypical form S1, which stands for generic login

situation - let alone certain contexual differences such as {username,password}. Two failed

logins, between one and the other, must have different context variables such as their time

stamp, input texts of username and password by the user etc. Stk
1 and S

tk+1
1 represent two

concrete, context-annotated logins at time instant tk and tk+1 respectively. Indeed, we can view

tk, the temporal tag decorating a prototypically formed situation S1, as a symbolic annotator

implying all associated contexts for S1 at time instant tk.
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2.3 The Environment Model of Situf language

In Situf language, variables containing context information are stored in places called loca-

tions. The set of locations is noted as Loc. Let l denote an arbitrary location of Loc. Given

that a machine all has countably many storage locations, we assume that Loc = N, meaning

locations are natural numbers.

The environment for Situf context variables is a function that maps each context variable

to a storage location. We can imagine a variable environment as a symbol table. More formally,

the set of context variable environments is the set of partical functions from context variable

to locations:

EnvV = V ar ∪ {next} ⇀ Loc

We use envV to denote an arbitrary member of EnvV . The ⇀ represents a partial function.

Moreover, we model the allocation of memory location for a new variable by assuming the

existence of a function:

new : Loc→ Loc

the new function above returns a successor for each location. That is done whether this

successor location is available or not.

Since we are assuming that Loc = N, we can think of it in our settings as:

new l = l + 1

The special context variable next is used to point to the next available location to be

assigned to a variable.

next = new l

given that current variable location in our natural number modeling proceeds to l. The next

diagram provides a more intuitive illustration.

The following introduces a notation for the introduction of a new variable, which when

bound to a location will produce a new environment. Suppose that the old environment is
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Var  {next} Loc 

x 

 

y 

 

 

 

 

z 

{next} 

l1 

l2 

 

 

 

 

l3 

l4 

envV 

Figure 2.5 Example of context variable environment

envV , now a new context variable x is bound to location l, i.e. envV [x 7→ l]; then the new

environment env′
V is:

env,
V y =


envV y if y 6= x

l if y = x and x is unbound in envV

error if y = x and x is already bound in envV

The following figure shows that we have three context variables x, y and z. envV is the

function noted by the arrows between Var ∪{next} and Loc. It shows clearly that x is bound

to location l1, y is bound to location l2 and z is bound to location l3. The next free location is

l4. No other context variables are bound to any locations.

Note that since Situf programs are computing in functional paradigm and no update as-

signment is allowed. Every context variable will be assigned one exclusive location and each
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location will not change its value once defined. Therefore, in our environment model each loca-

tion is one-to-one corresponding to a value. This provides notational convenience since we only

need to keep track of the binding location of a context variable to understand its semantics.

The set of stores is also defined as a set of partial functions from locations to values. Given

that all values in the domain of Situf applications are Graphical User Interface based transitions

and commands, the value of a context variable can be encoded as a string. Each string is a

linear combination of characters(C), each Store function is a mapping from set of locations to

C∗. Therefore the set of Store functions is represented as follows:

Store = Loc ⇀ P(C∗)

in which, P refers to power set.

Situf , a functional language that is formally defined in the next chapter, strives to provide

necessary means to allow a domain expert to set up the Situf -based environment complying

with the original Situ model [1]. In this dissertation, we focus on Graphical User Interface

based commands and transitions which appears to be typical in present web-based applications.

Domain expert’s vision and expertise injected into the environment through Situf program

largely determines the effectiveness of the environment. Moreover, context variables under

Situf environment, whose close correlation with situations are proposed through an attribute

grammar based approach, which allows one to look at situations as context-oriented structures

[1].

XML’s semi-structure feature and its wide application across multiple domains, especially in

the realm of sensory data representation to support many pervasive computing purposes, makes

it an excellent choice to serve as an intermediate form to construct and represent situations

under Situf -based environment. XML is used in this work to capture and illustrate the internal

workings of the underlying Situf -based environment. Furthermore, we model Situf -based en-

vironment as a virtual machine, designed to handle situation flows and context variables from

a computer programming point of view.

This section provides a foundation for the efforts later on to formally define the semantics

of Situf language, especially in 3.6.2.
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2.4 Context variables under the environment model

Let us again consider the paper review system example from 2.1. Due to unfamilarity with

the system, the paper reviewer might have accidentally run into unrelated situations such as

clicking a link and being transferred to paper author’s paper submission page, rather than

paper reviewer’s review submission interface. This action leads to an erroneous situation since

the username and password required to enter authors’s paper submission page is different from

the current username and password that are taking effect, namely the one that records a paper

reviewer’s identity. An event (S7) is resulted from this error and will be passed.

(S1, S2, S3)∗(S1, S2)(S6, S7) (2.3)

The XML intermediate representation for Situation sequence (2.3) is as follows:

<S1 timestamp=“t11“ >

<action target=“login text box” src=“login.php “ >

<output>

<context target=“text box1“ > text1 </conext>

<context target=“text box2“> text2 </context>

<output>

</action>

</S1>

< S2 timestamp=“t21“ >

<action target=“login button” src=“login.php “ >

<input>

<context target=“text box1“> text1 </context>

<context target=“text box2“> text2 </context>

</input>

<output>

<context> username </context>

<context> password </context>
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</output>

</action>

</S2>

<S3 timestamp=“t31“ >

<effect> Fail </effect>

<source> S2 </source>

</S3>

<S1 timestamp=“t12“ >

<action target=“login text box” src=“login.php “ >

<output>

<context target=“text box1“ > text1 </conext>

<context target=“text box2“ > text2 </context>

</output>

</action>

</S1>

<S2 timestamp=“t22“ >

<action target=“login button” src=“login.php “ >

<input>

<context target=“text box1“> text1 </context>

<context target= “text box2“> text2 </context>

</input>

<output>

<context> username </context>

<context> password </context>

</output>

</action>

</S2>

<S6 timestamp=“t61“ >
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<action target=“paper submit button” >

<input>

<context> username </conext>

< context > password </context>

</input>

<output redirect=“submitpaper.php “ />

</action>

</S6>

<S7 timestamp=“t71“>

<effect> Fail </effect>

<source> S6 </source>

</S7>

Each event is directly from a human action imposed on the software system; an immediate

system goal exists with regard to the action [1], and the occurence of an event from within

Situf environment is closely linked to a user’s desire.

Indeed, event is an appropriate mechanism to realize the interaction between the user

(feedback) and the software system to better understand the user’s instantaneous desire. A

good question to ask in the case of situation sequence (2.3) is: does the user desire to submit a

paper, or does she/he simply commits an operational mistake? The latter implies that the user

is still committed to her/his original desire: to review paper. The Situf -based environment will

inject action around events to more accurately capture the user’s desire.

The passing of event (S7) works as an interrupt between the user and the Situf virtual

machine. It interrupts the output generation of (S7), namely successful redirection to the

paper submission page for paper authors. The internal working of this event is based on the

environment model upon which the virtual machine is built. Let us go into certain length of

detail of how the environment model employed by Situf works to facilitate its event passing

machinery.
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Figure 2.6 System user’s demonstrated desire

2.5 Event passing under Situf ’s environment model

Under Situf ’s environment model, there are three kinds of errors detected by the environ-

ment that can trigger an event.

• A runtime error raised by the software system

• A tendency to use undefined (unbound) context variables or functions

• A tendency to conduct update assignment to a variable location already bound to a

context variable

Let us take a look at the events raised in the MyReview system example again, especially

the situation sequence at (2.3):



32

(S1, S2, S3)∗(S1, S2)(S6, S7)

The XML intermediate representation for the above situation sequence is:

<S1 timestamp=“t11“ >

<action target=“login text box” src=“login.php “ >

<output>

<context target=“text box1“ > text1 </conext>

<context target=“text box2“> text2 </context>

<output>

</action>

< /S1>

<S42 timestamp=“t21“ >

<action target=“login button” src=“login.php “ >

<input>

<context target=“text box1“> text1 </context>

<context target=“text box2“> text2 </context>

</input>

> <output>

<context> username </context>

<context> password </context>

</output>

</action>

</S2>

<S3 timestamp=“t31“ >

<effect> Fail </effect>

<source> S2 </source>

</S3>

<S1 timestamp=“t12“ >
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<action target=“login text box” src=“login.php “ >

<output>

<context target=“text box1“ > text1 </conext>

<context target=“text box2“ > text2 </context>

</output>

</action>

</S1>

<S2 timestamp=“t22“ >

<action target=“login button” src=“login.php “ >

<input>

<context target=“text box1“> text1 </context>

<context target= “text box2“> text2 </context>

</input>

<output>

<context> username </context>

<context> password </context>

</output>

</action>

</S2>

<S6 timestamp=“t61“ >

<action target=“paper submit button” >

<input>

<context> username </conext>

<context> password </context>

</input>

<output redirect=“submitpaper.php “ />

</action>

</S6>
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<S7 timestamp=“t71“>

<effect> Fail </effect>

<source> S6 </source>

</S7>

The two events are situations S3 and S7. Their happening is due to the actions occured in

their immediate previous situations - S2 and S6 respectively. For event S7, the user’s action to

click on the paper submission button triggers MyReview system to internally check the cached

username and password. The username and password are modeled as context variables by

Situf ’s environment model.

Variable  Loc 

l1 

l2 

 

 

 

username 

 

password 

 

 

 

envV 

“Robinson” 

“eip23*bp9” 

Store 

Figure 2.7 Environment model: a working example
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Applying the envV function to username and password gives the memory locations in Situf

virtual machine for username and password to store the data; afterwards, applying Storage

function on those two locations returns the current value of username and password. In other

words, the value v of a context variable x can be found by v = store ◦ envV (x), where ◦ stands

for functional composition.

MyReview system looks these values up in its internally maintained credentials, and delivers

a rejection error afterwards. This is a runtime error. An important point to notice is that the

context variable of username and password are established into the environment by the last

S2, since the previous one was interrupted by an event, that therefore led to an abortion of the

desired context variables.

Note the difference between the MyReview system and Situf -based environment. The

environment model is employed by Situf -based environment, not MyReview system. The latter

happens to be an example under discussion, whereas Situf -based environment can be set on

top of different Graphical User Interface based software system. To tailor the Situf -based

environment to a specific Graphical User Interface based software system, a domain expert

needs to use Situf language, which will be introduced with a concrete example in the next

section.

By comparing (2.3) with (2.2), it is clear that these two patterns are not the same, and

even less, neither is compatible with the other. The question is: is event S7 an accident, or is it

the user’s real intention? By writing Situf script, a domain expert can choose either interactive

mode or default mode to resolve this issue. By default mode, the Situf virtual machine will

reason based on its contextual information.

Under default mode, with respect to a goal, for example, (S4, S5), (2.3) can be thought of as

compatible with (2.2), therefore S7 is an accident. The reason is that S6 is a noise with regard

to (S4, S5) - since none of S6’s context data is found in S4, S5 - Situf virtual machine internally

replaces S6 with ε, a least situation, which is a constant situation compatible with any situation

type (including situation sequence rendered meta-situation, like (S1, S2)), so that (S6, S7) will

be subsumed into (S1, S2, S3)∗, which reduces (2.3) to (S1, S2, S3)+(S1, S2)(S4, S5).
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After being equipped with the above example that provides a concrete “insider’s” view of

Situf ’s intermediate meta-level to expose how situations are represented and analysed inside

Situf -based environment through contextual information, let us now take the domain engi-

neer’s7 role to see how to write a script in Situf domain specific language to set up the Situf

environment in order to capture those situations via relevant contexts. Before that, an empha-

sis on understanding of situation from a Situ’s point of view as a human centric construct is

necessary [1].

2.6 Human-centric Situations

A critical new ingredient injected into the concept of situation, around which the entire Situ

framework [1] is built, is that all situations are human-centric situations. Situ’s perspective on

situation strikes a brand new vision in which a human’s dimension is added as an indispensable

component.

In the last section, the paper review system example was discussed. From this section on,

while still using the same example, our emphasis will be switched to the machinery a Situf -

based environment offers to facilitate the capturing of user’s information which is eventually

built into a situation, thus the name human-centric situation.

In addition to providing some intuitive background for those interested in exercising situa-

tion programming in Situf , this example also serves the following purposes:

• it elaborates the concept of behaviorial context and how it relates to situations;

• it elaborates the concept of Situ-environment and how it integrates Situation and a real

world system;

• it introduces Situf ’s built-in support for situation composition patterns that a domain

expert can benefit from.
7In this writing, we use domain engineer and domain expert interchangeably.



37

2.7 An introduction to Situf language and examples

Situf is a functional specification language. Its central langauge craft revolves around the

idea of a function, from a function name, its inputs (arguments), outputs to more sophiste-

cated techniques like functional composition, partial function, currying, etc. . . In Situf , a name

is either a function or static data. Situf ’s function models an action or compound action,

representing a behavioral context within a situation [1]. The real novelty is the way that Situf

is proposed, which combines functional paradigm with attribute grammar to model situations

for domain specific purposes within the boundary of Situ framework.

2.7.1 Attribute-Grammar model of Situf

Attibute grammar [35] can be conceived as context-free grammar with an additon of at-

tached context-sensitive conditions and semantics-oriented attribute rules. More precisely, it

extends the context-free grammar by attaching attributes to the nonterminal symbols of the

grammar and by supplying attribute equations to define attribute values. Each production in

attribute grammar has a set of associated attribute rules known as attribute equations to spec-

ify the relationships between the attributes of terminals and nonterminals in the production.

For the following production p:

p : X0 → X1 . . . Xk

each Xi, (0 ≤ k) denotes an occurence of a grammar symbol, and associated with each

nonterminal occurence is a set of attribute occurrences, denoted as A(Xi) which includes all

nonterminal’s attributes.

Each production in an attribute grammar usually has a set of equations, each of which

defines the attribute values. In essence, those equations are indeed tantamount to attribute-

definition functions. The attributes of a nonterminal are divided into two disjoint classes:

synthesized attributes, denoted S(Xi) and inherited attributes I(Xi), where A(Xi) = S(Xi) ∪

I(Xi). Briefly, synthesized attributes are used to pass information up a syntax tree; in contrast,

inherited attributes are used to pass information down a syntax tree. In particular:



38

• Terminals may have only synthesized attributes;

• Nonterminals may have both sythesized and inherited attributes.

Figure 2.8 in the following section illustrates these two important terms.

2.7.2 Synthesized attributes, inherited attriutes and functional dependency

Synthesized attributes and inherited attributes are two key components for an attribute

grammar to propagate attribute values through its derivation tree. Moreover, a dependency

graph further enhances a derivation tree by adding functional dependency relations among

attribute occurences to visualize the direction of the propagation flow of the attribute values for

the attribute grammar. A handy side effect coming out of the dependency graph is that it serves

as a convenient tool to allow intuitive judgement upon circular versus non-circular attribute

grammars, without the need of stepping into full length formal proof. This section brings

together these concepts and their closely related formalisms, such as Function Dependency

(FD), Dependency Graph, etc. . . to facilitate further discussion.

As a running example, we use a simple programming language called SimpleL, which does

not have type expressions in variable declarations. The only statement the language supports

is the assignment statement. The context-free grammar for SimpleL is defined in Table 2.1.

For brevity, we do not show productions that can be derived from the nonterminal identifiers

and expressions).

(1) program → program identifier var declList begin stmtList end
(2) declList → declare identifier
(3) declList → declare identifier ; declList
(4) stmtList → stmt
(5) stmtList → stmt ; stmtList
(6) stmt → identifier := exp
(7) stmt → begin stmlList end

Table 2.1 A context-free grammar for SimpleL
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It is easy to see that this context free grammar for SimpleL language depicts program

scheme shown in Program 1.

Program 1 Program scheme for SimpleL language

program p
var

declare q;
declare r;

begin
stmt;
stmt;
stmt;

end

The attribute annotated grammar, i.e. attribute grammar for SimpleL, is in Table 2.2.

(1) program → program identifier var declList begin stmtList end
stmtList.env = declList.env

(2) declList → declare identifier
declList.env = {identifier.id }

(3) declList → declare identifier ; declList
declList1.env = {identifier.id} ∪ declList2.env

(4) stmtList → stmt
stmt.env = stmtList.env

(5) stmtList → stmt ; stmtList
stmt.env = stmtList1.env
stmlList2 = stmtList1.env

(6) stmt → identifier := exp
exp.env = stmt.env

(7) stmt → begin stmtList end
stmtList.env = stmt.env

Table 2.2 Attribute grammar for SimpleL
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Functional dependencies (FD) among attribute occurrences in a production p can be repre-

sented by a directed graph, called dependency graph, denoted by D(p). The in-depth definition

of dependency graph is :

1. For each attribute occurrence b in an attribute grammar G, the graph contains a vertex

b
′ .

2. If attribute occurrence b appears on the right-hand sie of the attribute equation that

defines attribute occurrence c, the graph contains an edge(b′
, c

′), directed from b
′ to c′ .
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Figure 2.8 Parse tree and attribute dependency graph

In Figure 2.8, the dotted lines show the parsing of Program 1 against the context free

grammar specified in Table 2.1. A solid arrow shows the flow of attribute values. It also
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shows the dependence relation that echoes the attribute flow. Note that since there is no cycle

formed by the solid arrows in Figure 2.8, the attibute grammar for SimpleL is a non-circular

attribute grammar. In this research, we confine our attention to noncircular grammars only.

Theoretically, a grammar is noncircular if it is not possible to build a derivation tree in which

attributes are defined circularly. Besides, circularity issues of attribute grammars have already

been well solved by Knuth in 1971. He showed that circularity is a decidable property of

attribute grammar [36], and proposed an algorithm to test circularity [36]. In 1975, Jazayeri

et al. showed that such algorithm is of inherently exponential complexity [37]. We will take

full advantage of the intuition a dependency graph offers, such as that in Figure 2.8: after

transforming an attribute grammar to a dependency graph, if it is acyclic, then it is sufficent

to say that the original grammar is a noncircular attribute grammar. We directly use this

conclusion for the rest of this work. Another default convention we follow is that we deal

only with well formed attribute grammars where each production has exactly one attribute

equation for each of the lef-hand-side nonterminal’s synthesized attribute occurrences and the

right-hand-side nonterminals’ inherited attribute occurrences.

Intuitively, variables such as p and q have to be declared before they are being used. The

declaration records a variable by supplying its id which will be stored in the symbol table,

which is the global environment drawn from the environment of the declaration list.

Attribute grammar shares a great deal in common with functional paradigm, or more

broadly, declarative paradigm-based programming models. Some researchers even argued that

an attribute grammar per se is a delarative functional language [38, 39, 40, 41]. Indeed, our

proposed Situf domain specific language follows functional paradigm to allow a domain expert

to specify situations. In order to do that, we find that all important contexts surrdounding

a situation, both environmental contexts and behavioral contexts, fit well into an attribute

grammar model. They serve as the attributes for each production to specify situations. The

attribute grammar provides a good modeling tool so that we can combine the syntax rules and

static semantic rules for Situf under one formalism. More interestingly, attribute grammars

have several desirable qualities as a model for specifying the intrinsic relations between a sit-

uation and its contexts in Situf . A good example is that it supports modular specification of
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situations through contexts, as each attribute equation under attribute grammar is local to only

one grammar production. Any attribute to each equation can be thought of as a placeholder to

an attribute equation, just as parameters to a function in many mainstream languages such as

C++, Java etc. In addition, although propagation of attribute values through the derivation

tree is not specified explicitly by attribute grammar, it is implicitly defined by the equations

of the grammar and the form of a tree. The functional situation specification language Situf

is based on attribute grammar formalism.

In general, for each situation scenario to be specified in Situf , the domain expert needs to

define production-like grammar rules, with a corresponding set of attribute equations which

take each context variable as an attribute. The ensemble of context variables reflects domain

specific vocabulary particularly pertaining to the situation domain. While the main success

scenario is specified as a functional based production rule in Situf , the distribution of context

variables over that particular situation is captured by the machinery built in the associated set

of semantic rules.

Based on the online paper review scenario, the following example is composed to draft a

real Situf program. In it, the perspective of a domain expert is taken and various language

features are picked along the way. Towards the end, the reader is expected to have an overall

feeling and some tangible hands-on experience. Having learned this example, readers will be

ready to see a complete syntactic and semantic description of the Situf language - a main task

for the next chapter.

2.7.3 Paper review example

Returning to the paper review example, let us assume a domain expert at work who spe-

cializes in the web-based paper review process. She is also trained and understands the funda-

mentals of situation theory proposed in [1]. First of all, she sketches the main success scenario

of a general online paper review scenarion.

goal → map ( (download.review), [paper1, paper2, . . . papern] ) (2.4)

The parse tree depicted in Figure 2.9 reveals the intrisic structure of (2.4).



43

Human Desire 

map 

download.review [paper1, …, papern] 

download review paper1 papern 
. . . 

Figure 2.9 Parse tree for paper review situation

Note that given Situf a domain specific language, the vocabulary used in Situf script are

all domain vocabulary. For example, (2.4) is specific to the online paper review domain where

paper, download, review, etc. . . , are frequently used. The main actions captured are modeled

as names of functions, e.g. downoad, review etc. The ”.” notion used in the expression of

download.review refers to a composed action incorporating download and review, in which

the output of download is pipelined to the input of review. Indeed, being a functional language,

Situf ’s situation specification particularly reflects this characteristic.

Each situation defined under Situ framwork [1] contains a temporal tag defining the time

instant for its being. The temporal order within a situation sequence is recorded through these

temporal tags. Note that in (2.4), the download action happens temporally before review as

each paper is concerned. Figure 2.10 offers a pictorial explanation. Indeed, the functional

composition notion lends itself well to temporal sequencing representation. Specification (2.4)

simply reads: for each paper first download it, and then review it.

Since each situation lives within its correlated context, under Situ framework a situation
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download  review 

time

most recently 
download  reviewdownload  review

download paper situation 

occurrence ( may contain 

repetitive actions, failure, etc. )  

reviewing paper situation 

occurrence ( may contain 

repetitive actions, failure, etc. )  

The overall situation 

Figure 2.10 Temporal ordering of situations

is conceptually defined to include environmental as well as behavioral context. To capture

the context surrounding a situation, a domain expert usually needs to focus first on the data

source. This translates to a series of problems. Particularly in this paper review example:

• Most often than not, the domain expert would not be able to know the accurate number

of papers assigned to a reviewer. These details, which are tied to specific circumstances,

are beyond the knowledge as well as the concern of a domain expert;

• The concrete software support for downloading and reviewing paper in MyReview system

is not shown in (2.4). To connect situations with their working circumstances in real

world, this information is indispensible.

To solve these problems, Situf provides certain features which are illustrated through Pro-

gram 2. Program 2 can be considered Situf ’s implementaion of (2.4).

There are several critical points demonstrated through Program 2:
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Program 2 A Situf program for paper review situation

include common_service_GUI
import contextSpec_MyReview

program _paperReview
data

declare
paper@129.186.93.0:/home/myreview/ \

COMPSAC2011_Training/Review.php;
declare

Review@129.186.93.0:/home/myreview/ \
COMPSAC2011_Training/Review.php;

action
declare

download<None:paper>@129.186.93.0:/home/ \
myreview/COMPSAC2011_Training/Review.php;

declare
review<paper:Review>@129.186.93.0:/home/ \

myreview/COMPSAC2011_Training/Review.php;

situation
map download.review paper();
// other temporally ensuing situations
. . . . . .

• First, the notion of @ creates an IO channel in a Situf program called paperReview to

bind data and action to their real world counterparts: a paper can be downloaded from

Review.php page whose server-side url is specified; Review can be submitted and later

on collected also through the same page. Each time a paper is downloaded or a review is

submitted through Review.php page, the contextual information will be captured by @

and sent back to program paperReview.

• Notice that review and Review are different program entities in Program 2: the former

is the action whereas the latter is the result coming out of that action thus declared as

data in Program 2. This example shows the effect of variables naming in Situf .

• @ is an I/O based language feature. Once declared, data and action can be used to
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construct a situation. Another point worth attention in Program 2 is by the use of (),

which follows declared data paper. () is another I/O based feature Situf offers. It is a

data constructor: paper() returns a list of papers resulted by a series of paper downloading

actions performed on Review.php page of the deployed MyReview system. The end of

such a situation, that is the moment paper() stops constructing papers is when the user

leaves Review.php page or simply logs out. User’s leaving triggers an internal end-of-

situation event EOS inside Situf -based environment.

• Closely related with SituIo and its @ operator is the ¡program url¿8 defined in Situf

attribute grammar, which will be introduced in the next chapter. This symbol speci-

fies how Situf runtime is able to find the external counterpart that supplies contextual

information to declared data, actions and situations defined by a domain expert’s Situf

program. Figure 2.11 illustrates it using a concrete example.

By nature, ”@” is a monad type which should be familiar to readers who are experienced

in Haskell, in particular Haskell’s I/O mechanism. A monad helps to bind side-effect with a

purely functional return value to form a new return type. It really is a sequencing mechanism:

1. to perform an I/O operation;

2. to return the retrieved value through I/O.

Having monad helps to keep a purely functional paradigm while still being able to combine

impure side effects. Some computer scientists consider monad an imperative sublanguage inside

a purely functional language [42]. Monad has its root in category theory and has already been

well studied by logicians and theorists; therefore we do not step into the theoretical side of

monad much. Rather, our focus is to precisely specify the semantics arising from monad-based

SituIO mechanism so as to well establish the link between situation structures derived from

a Situf program and the correlated contextual information gathered externally. Further, we
8¡prog url¿ denotes a program url which takes the form of server IP address:serverside absolute directory.

For programs on your local machine, simply use 255.255.255.255;
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129.186.93.0:/home/myreview/COMPSAC2011_Training/Review.php 

<prog_url> following the @  as  shown in the grammar of Situf  

Server IP Address program directory on the server 

/COMPSAC2011_Training/Review.php

program name  user interacts with – context info is collected by calling 

situation service to monitor on this program   

Figure 2.11 An example of the ¡prog url¿ grammar symbol in Situf grammar

focus on the flow between the user actions and the reaction from the graphical user interface

of a software whose evolutionary nature falls into our research spectrum. Under this purpose,

the peculiar meaning of Situf ’s monadic feature @ is:

1. perform I/O to connect to an existing software’s Graphical User Interface actions.9 This

step generates the side effect, and then;

2. return the most recent context values supplied by related GUI gadegts. This step gener-

ates the main functional return value of a Situf function.

The details of the attribute grammar for Situf are given in full length in the next chapter.

For now, as a gentle introduction to the formal treatment of Situf ’s attribute grammar, more

importantly, to further explain the motives behind the proposal of Program 2, Figure 2.12 is

given to show the attribute propagation around the paperReview situation 10.
9specified by ¡program url¿ as in the attribute grammar.

10Program 2 defines context-oriented paperReview situation, following the original Situ framework where all
situations are based on behavioral and environmental contexts.
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Figure 2.12 Parse tree and attribute propagation graph for Program 2

The data and action declarations in Program 2 set up the data, as well as the action to

construct a situation. @ operator connects data structures like paper and Review to their real

world data source. For Program 2, the source of data for paper and review are the server-

side Review.php page. This simply means that each time the user downloads a paper through

Review.php page, the context surrounding that paper such as author list, email contact and

abstract etc . . . will be collected over the Graphical User Interface and sent back to Program

2. More concretely, through paper(), context information of all assigned papers are captured

incrementally one after another and are given as input to review action. When the user finishes

reviewing that paper and generates a Review, the Review will be captured in terms of its

context ensemble: an aggregation of review comments, review score, suggestions to the Program
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Commettee, etc. The communication is carried out while all intermediate results are recorded

through XML intermediate representation.

Situf provides four built-in functional patterns as situation constructors to propagate con-

texts, or in attribute grammar’s terms: attributes, to the entire parse tree. These four built-in

patterns are map, filter, reduce and apply. The map pattern is used in Program 2 in state-

ment map download.review paper() to describe a situation where a reviewer needs to download

and then review every paper assigned to her/him. The map pattern, commonly found in

functional programming paradigm, applies its first input, i.e. the temporally combined action

of downloading and then reviewing (download.review) to its second input - a list of papers.

Readers familiar with functional programming know well that theoretically map represents

a higher-order function that applies the first argument it accepts, which is a function or a

composed function, to its second argument, usually a sequence of data such as the paper list

aforementioned. Situf introduces map pattern so that its first argument can be re-used for all

members in its second argument. Overall, applying map pattern over a list is to transform the

list to another by working on each and every member of the list according to its first argu-

ment; specifically in specification (2.4), a list of reviewed papers that are attached with review

comments and scores etc . . . are the end result for the main success scenario for specification

(2.4).

This section only illustrates map example. The precise computational meaning of map,

reduce, filter and apply is given using small-step operational semantics in 3.6.2.
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CHAPTER 3. FORMAL DEFINITION OF Situf

The motivation behind the design of Situf domain specific language is to provide a set of

features easy to use yet powerful enough to meet the following requirements:

• Situation centric: the basic language constructs revolve around situation definition given

in [1]. In every aspect, Situf is a continued research effort under the original Situ frame-

work towards a programming model;

• Simplicity: in essence, Situf is a language to specify situations. A program, or script

written in it emphasizes the ”what” rather than ”how” process, therefore it encourages

smaller than average program size. As explained earlier, functional paradigm fits in nicely,

hence the name Situf .1;

• Situation modularity and situation re-usability: more likely than not, a domain expert

usually focuses on one situation at a time. Separate concerns, when combined with situa-

tions, translate to the need of a reusable and modular situation specification mechanism;

• Conducive to the generation of an environment. The main aim of this work is to construct

a Situf -based environment that provides an initial realization of Situ framework.

Under these goals, we give a formal definition for Situf . The syntactical part of the definition

is provided through a context free grammar, and an attribute grammar based approach and

operational semantics are employed to define the semantics.

3.1 Syntactical definition of Situf

The context free grammar, i.e., concrete syntax, of Situf is shown in Table 3.1.
1The superscript ”f” refers to the term ”functional”
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Since attribute grammar is based on context-free grammar, which specifies concrete syntax,

we will not discuss in depth the abstract syntax of Situf here. But to make the picture complete

and to show the simplicity of the structure of the Situf program, we attach Situf ’s abstract

syntax in Table 3.2.

3.2 Semantic definition of Situf through attribute grammar

Table 3.3 through 3.5 give the definition of Situf in terms of attribute grammar.

(For formatting purposes we split Situf ’s attribute grammar into Table 3.3 through Table

3.5.)

3.3 SituIO: the IO channel for Situf environment

To closely follow and provide built-in support for the original Situ framework [1], where

each situation is identified to be associated with a set of behavioral as well as environmental

contexts, Situf includes in its language proper a unique context-oriented I/O mechanism called

SituIO. Through SituIO:

• Low level information processing idiosyncrasies are encapsulated, allowing domain experts

to focus more on the level of situation specification;

• The reasoning model of a purely functional langauge is maintained;

• The contexts surrounding each situation is collected in realtime and directly provides low

level support for Situf ’s attribute grammar-based semantics;

• The human-centric nature of a situation is enhanced in Situf -based environment.

Before further elaborating the definition of SituIO mechanism, let us first conduct a brief

historical review over sensitive IO issues affecting functional programming model [43].

A functional program contains a number of definitions, including values, functions, etc., as

shown the top of page 52.

v :: Integer
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v = 38

function :: Integer → Integer

function n = v + n

The net effect of these definitions is associating a fixed value with each name:

• for v: an Integer 38;

• for function: a mapping from Integer to Integer.

Next let us take into account defining a function to get an integer value from an IO. Some

approaches, for instance [44, 45] is to include the following operation:

inputInt :: Integer (3.1)

The intent is to read an integer from the input stream where the value read becomes the

value given to inputInt. Each time inputInt is evaluated it will be given, possibly, a new value,

therefore not a fixed value under the very same function name: inputInt. To see why this causes

a problem, let us examine the following example:

inputDiff = inputInt− inputInt (3.2)

Suppose the first input read in through the input action is 4, and the next is 2. The

result of inputDiff is 2 or -2, depending on the order in which the arguments to the operation

’-’ are evaluated. This uncertainty breaks the reasoning model over functional models: for

any function that takes the same input (including no input) the output should be the same2,

therefore inputDiff should always be equal to zero, which is not the case should inputInt be

defined as in (3.1).

The reason for this is precisely that the meaning of an expression is also determined by

where it occurs in a program. This breaks the functional model. More serious is the fact that
2Mathematical definition of a function as you can find in any elementary math texts.
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since any function in a functional language can use inputInt just as any other pure function,

its unpure definition can be “epidemic” to the reasoning chaining to a greater range. Because

of this, I/O has turned out to be a troublemaker for functional programmers for an extended

period of time. A good historical overview can be found in [43].

In thinking about input/output, it makes more sense to think of actions happening in

sequence, e.g., some input might be read first, and then on the basis of that further input

might be read, or output might be produced. The current Haskell language standard follows

this scheme, and provides the type IO a, that is, do some I/O and then return a value of type

a. I/O is Haskell’s primitive built-in mechanism as well as the mechanism to sequence these

I/O’s.

What Haskell and other functional languages have not offered, but is indeed needed by Situf

language however, is to connect the stream of external contexts with each internally specified

situation. The context stream is generated by user’s raw actions, such as mouse click, filling

out a textbox, etc. Those actions lead to raw context data, which after having been collected

and fetched into SituIO, are organically organized as meaningful components surrounding a

defined situation. Situf ’s treatment of contexts and situations follows immediately the original

conceptual definition of situation found in [1], i.e.

situation ∼ (d,A,E)t

where A and E stands for behavioral contexts and environmental contexts respectively, whereas

d reflects human desire, all captured at time instant t.

As compared with mainstream IO type usually found in a functional language such as

Haskell, SituIO distinguishes itself by its intrinsic, domain specific support for human cen-

tric situations, which provides indispensable support for the task of user-centric reasoning of

situations.

3.4 The Monadic ”@” to set up SituIO channel

Situf provides two languages features, ”@” and ”()”, to support SituIO.
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”@” is designed to bind context stream with a program url. A program url, whose grammar

symbol is <prog url> shown in Table 3.1, follows ”@” in a legitimate Situf program. It can be

thought of as a context generator to initiate the flow of context values captured at the interface

level into the data or action variable declared on the left hand side of ”@”. The interface

between human user and software typically consists of a GUI or of sensory type. The program

url can reference both locally and remotely deployed software components. Program 2 contains

the following program url:

129.186.93.0 : /home/myreview/COMPSAC2011 Training/Review.php (3.3)

(3.3) points out that context values surrounding the paper review situation as specified in

Program 2 are generated from the PHP program called Review.php, which is deployed under

the directory of: /home/myreview/COMPSAC2011 Training, on server whose IP address is

129.186.93.0 .

Note that in Program 2, data type variables like paper, Review and action type variables

such as download and review, are all bound to the user interface (3.3) by ”@”, meaning that

(3.3) is the user interface where a user’s behavioral as well as the environmental contexts are

captured. This binding enabled by ”@” set up the context I/O channel so that the context

values collected through interface (3.3) are available for SituIO mechanism and to be assigned

as context values for paper(data), Review(data), download(action) and review(action). The

context values for each declared data and action are governed by the attribute grammar given

in Table 3.3 through Table 3.5. Situf ’s context I/O pipeline is impossible without ”@”.

”@” is used to set up the context I/O pipleline, and therefore it is always used in the

declaration section of a Situf program for data and action variables. The underlying workings

of Situf runtime, especially the convertion from externally captured raw data to internally

meaningful context, is intimately controlled under the ”()” operator.
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3.5 The Monadic ”()” to convert user data to situation contexts

Following lazy evaluation strategy, ”()” is designed by the call-by-name principle, as opposed

to the call-by-value principle. It incrementally supplies contextual data captured externally one

unit at a time to the specified situation under a Situf program. From a domain expert point

of view, ”()” reifies the iterator pattern.

In the specification of paper review situation of Program 2:

map download.review paper() (3.4)

”()” is used to supply one paper at a time to the action of download and review, under

the control of the built-in situation constructor - map. Each paper is declared in the data

section and is bound to an external program url resource. Note that (3.4) does not give any

information as to the number of papers to download and review. This is because that under

Situation (3.4):

• the actual number of papers in general becomes known at run-time only;

• the actual number of papers is beyond the scope of core purposes or interests of a domain

expert;

• ”()” is in fact an iterator over contextual data, e.g. paper, for example (3.4).

The adoption of iterator pattern in the design of ”()” targets to make situation specification

more re-usable, flexible and friendly to domain experts.

3.6 A precise description of SituIO under Situf language

In this effort, structural operational semantics is used to precisely describe the machinery

of the internal workings of SituIO at runtime, with special focus on the monadic ”()” feature

already introduced to Situf . ”()” well insulates the runtime complexity of incrementally fetching

contextual data from external context sources one at a time. Looking at Program 2, the point

should be clear that by encapsulating those low-level details as to how many papers are expected

to be reviewed, or for each paper how to get the related contexts from a user’s action, etc. . . ,
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the domain expert can focus entirely on the most important part of specifying a paper review

situation without missing a beat.

3.6.1 Overview of semantics of programming languages: denotational, axiomatic

and operational semantics

The semantic considerations are of the utmost importance both in the design of the whole

or part of a programming language and during the reasoning about properties of a particular

program written in that language. Historically, three types of semantics stand out during

theoretical and practical development of modern programming languages.

Denotational semantics was the first mathematical account of program behavior; it arose

in the late 1960s [46, 47, 48] and was poineered by Dana Scott and Christopher Strachey. In

denotational semantics, the behavior of a program is described by defining a function that

assigns meaning to every construct in the languages. The meaning of a language construct is

called its denotation. Typically, for an imperative program, the denotation will be a state

transformation, which again is a function that describes how the final values of the variables

in a program are found from their initial values.

Structural operational semantics came into existence around 1980 due to Gordon Plotkin

[49]. By borrowing some of the techniques developed for denotational semantics, structural op-

erational semantics proposed a more satisfactory and simpler operational theory where greater

emphasis is placed on defining the effect of running a program in terms of its structure. More

specifically, behavior of a program is specified by defining a transition system whose transition

relation describes the evaluation steps of a program. Structural operational semantics made it

possible to give a simple account of concurrent programs, which is in general very complicated,

using denotational semantcs. Structural semantics is syntax-directed; it uses abstract syntax to

set the stage to define allowable states, which eventually leads to the desired transition system.

Two or more different operational semantics can be defined for a single language, for exam-

ple the big-step operational semantics, a.k.a. evaluation semantics, gives a high-level, rather

abstract description (from programmer’s point of view) of a language, while the small-step

operational semantics, a.k.a. computation semantics, tends to provide an account of a language
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from a point of view that is closer to an interpreter or compiler.

Axiomatic semantics [50, 51] takes a more direct approach than the other two kinds of

semantics: rather than deriving rules by first defining the behavior of programs and then gen-

erating rules from this definition, axiomatic semantics takes rules in the form of mathematical

logics themselves as the definition of the language. This includes assertions that must hold

before and after the language construct has been executed. The meaning of a program, then,

becomes just what can be proved about it based on the rules.

During the ’60s and ’70s, operational semantics was generally regarded as inferior to the

other two styles [52]. They were considered useful for quick and dirty definitions of language

features, but inelegant and mathematically weak. Examples include some of the earliest at-

tempts at IBM’s research laboratory in Vienna in the late sixties [49]. But in the 80’s, the more

abstract methods, i.e. denotational semantics, began to encounter increasingly difficult situ-

ations such as nondeterminism and concurrency. For axiomatic semantics it was procedures.

The simplicity and flexibility of operational methods came to be more and more attractive

to the research community. Among these Plotin’s Structural Operational Semantics [49] is of

special interest, for which: Kahn [53] proposed an extension called natural semantics to accom-

modate higher-order functions beyond first-order ones; Robin Milner used Plotkin’s approach

to give a labelled semantics to his Calculus of Communication Systems (CCS) [54, 55, 56].

These approaches introduced more mathematically elegant formalisms and showed potential,

for powerful mathematical techniques developed in the context of denotational semantics to be

transferred to a structural operational setting.

Until this day, operational semantics has remained an active research area in its own right

and is often the method of choice for defining programming languages and studying their

properties.

Small-step operational semantics, also known as computational semantics, is chosen for this

work to precisely define the operational properties of SituIO. We propose a succinct approach

when applying operational semantics.
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3.6.2 Abstraction of SituIO

To articulate the operational semantics for SituIO, we first propose the following abstrac-

tions:

• The grammar symbol “<data>()” found in Table 3.1 is abstracted as a context stream

expression noted by se;

• The grammar symbol ”<data>” found in Table 3.1 is abstracted as a non-stream expres-

sion noted by e;

• We distinguish the evaluation for se from that for e by providing the following two forms

of evaluation relations:

=⇒N vs. =⇒S

The reason for this refinement is that ”()” is a non-compile time I/O operation, there

is no way for Situf compiler to know in advance exactly how many data units in total

will be streamed. The detailed internal workings of context stream within Situf , which

are hidden from the Situf programmer, e.g., a domain expert, will be elaborated through

operational semantics given in 3.6.3.

=⇒N is the evaluation relation for non-stream expressions. The type of =⇒N is:

=⇒N : D ⇀ ENV ⇀ E ⇀ E

Any non-stream expressions will be evaluated by =⇒N , which reduce one such expression

to another under declaration D, to interpret function and data name, and environment

ENV, to internally check the name bindings in Situf .

=⇒S is the evlauation relation for context stream expressions. The type of =⇒S is:

=⇒S : D ⇀ ENV ⇀ SE ⇀ < E,SE >
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This in turn leads to a derived relation v=⇒S , where v is a value generated from a Non-

Stream expression e. The type for v=⇒S is therefore:

v=⇒S : D ⇀ ENV ⇀ SE ⇀ SE

Any context stream expressions should be evaluated by =⇒S .

Note that v=⇒S is a more graphic and intuitive rendering but in essence the same notion

as =⇒S . This point will be especially clear after introducing the semantic rules in 3.6.3.

The symbols used above to explain the type of =⇒N , =⇒S and v=⇒S are specified below:

D : set of declarations for variables and functions;

ENV : Environment. It can be thought of as a function that

binds a variable to storage location [46, 47, 57]. An

environment roughly corresponds to a symbol table

maintained by the compiler.

E : set of NonStream expressions;

SE : set of context stream expressions;

v : A value returned by Situf of type E.

Note:

1. A concrete instance of value v is shown in Table 4.2, of section 4.1.1.1;

2. Details about the Environment model for Situf -based environment, i.e.,

ENV, is provided in 2.3

• The grammar symbol ”<action>” found in Table 3.1 is abstracted as an action function

F:
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– F takes as input NonStream context variables x1, . . . , xk and returns a NonStream

expression e. Formally:

F (x1, . . . , xk) ⇐= e

Function definition is represented by the notion of ⇐=. The process in which a user

carries out her action under a situation is abstracted by function definition, represented

by the notion of ⇐=, and e is the body of the definition. In an overly simplified but

essential example of a function definition:

F (x) = x2 + 1

F is the functional name variable. x2 + 1 gives the definition of F, corresponding

to the notion of e. Using the notion of ⇐=, this function definition can be

represented as:

F (x)⇐= x2 + 1

3.6.3 The computational semantics of SituIO

Based on the abstractions of SituIO from section 3.6.2, we argue that the context streaming

through SituIO can be imagined as a stream language. In pursuant of the semantics of SituIO,

we formalize that intuition by using those aforementioned abstractions to propose such a stream

language. It is an abstract language since we only care about its meaning and therefore give it an

abstract syntax for semantic purposes. We do not intend to move towards any implementation

level objectives. By giving computational semantics3 to such an abstract stream language, the

precise meaning of SituIO is captured. The abstract syntax is first provided for this abstract

stream language under Situf .

1. Syntactic categories

3also known as small-step operational semantics; for more information, please refer to 3.6.1.
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p ∈ Program

D ∈ Declaration

se ∈ Stream Expression for External Context

sx ∈ Stream Variable

e ∈ NonStream Expression

x ∈ Unbound Context Variable

F ∈ Function Variable

2. Formulation rules

p ::= ¡ se,D ¿

D ::= F ( x1, . . . , xk)⇐= e

where x1, . . . , xk, are free context variables

se ::= e : se | EOS | apply F se | map F se |

reduce F se | filter F se

e ::= F ( e1, . . . , ek ) | x | v | True | False | e : e
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The semantic rules are given in Table 3.6.

Interpretation of the sematnic rules:

• Rule Eval: This is the evaluation rule for the base-case stream expression in which a

NonStream expression is immediately followed by EOS. This rule links stream and Non-

Stream expressions of SituIO. According to the Formulation Rule, ”e : EOS” by itself is

a stream expression, therefore the evaluation resorts to the =⇒S relation.

Intuitively, when a NonStream expression is followed by EOS, that is equivalent to eval-

uating e solely, since EOS is just a stream terminating signal. On the other hand, EOS

comes only when context streaming is on. Therefore, to evalue ”e : EOS”, stream evalu-

ation relation =⇒S is applied.

• Rule Map1: EOS signals the End Of Stream condition for external context values in

Situf . EOS echoes the well-known EOF, which signals no more data can be read from

an external recourse in a computer operating system such as Unix or Linux as well

as a popular language like C. EOS, as shown in the Formulation Rules, is a Stream

Expression for External Context in SituIO. This rule means that under Declaration D

and Environment ρ, the situation constructor map will computationally evaluate to EOS

when signalled an EOS.

• Rule Map2:

– e[v/x] denotes the result of substituting the context variable x in a NonStream

expression e with context value v returned by SituIO. The precondition is that x

is a free variable as pointed out, since the value associated with variables which

appear bound plays no role in the evaluation of the expression e. Let us consider

the following example. Without loss of generality, pseudo code is used.
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The two experssions (let a = 6 in a * a + c ) and (let b = 6 in b * b + c)

have exactly the same value! The exact value depends on the value of c, the

unbound and free variable. a and b are bound variables and they can be

changed to any variables other than c without affecting the meaning of the

expression. However, if we change a or b to c, we get a different value: let c

= 6 in c * c + c will evaluate to 42. This is because c is a free variable of

the original expressions of (let a = 6 in a * a + c) and (let b = 6 in b * b +

c), and substituting c for a or b turns a free variable into a bound variable.

In general, changing a free variable into a bound variable will change the

value of an expression.

By using e[v/x], we assume that x is a free variable. Should name clash

occur, changing the free variable name(s) will avoid the hazard.

For additional mathematical machinery about free versus bound variables with re-

gard to other constructs in programming languages, readers are referred to many

excellent resources such as [58, 59, 60].

– F (x) ⇐= e means that the return value of function F is given by the evaluation of

the NonStream expression e, hence ⇐= is noted as function definition relation in

3.6.2.

– since se is a context stream expression, such as the expression of ” paper()” shown in

Program 2, it must be evaluated by SituIO’s stream expression evaluation relation

=⇒S . Using the declaration D and under programming environment ρ, the runtime

stream expression se is evaluated through SituIO as the value v and produces the

SituIO residual se’, denoted by: D, ρ ` se
v=⇒S se′. In other words, the first

value in the stream associated with se is v. To find out about subsequent values we

must apply the definition of =⇒S to se’, i.e.

D ` se′ v1=⇒S se1

Consequently, after n steps the result becomes:

v : v1 : v2 : . . . : vn : sen
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v : v1 : v2 : . . . : vn is the partial result generated incrementally by map. According

to Formulation Rules, v : v1 : v2 : . . . : vn is a NonStream expression. While sen is

not EOS, v : v1 : v2 : . . . : vn : sen is, by Formulation Rules, a stream expression;

Once sen hits EOS, v : v1 : v2 : . . . : vn : sen remains a Stream expression since

se ::= se : EOS

In other words, the stream terminates and the incremental evaluation of map with

regard to the context stream expression is then finished.

– Note that D, ρ ` se
v=⇒S se′ mathematically expresses that SituIO is a monad:

it returns v as the return value while causing the side effect se’.

– Computational semantics specifies the evaluation of map F se one step at a time,

hence computational semantics is also named small-step operational semantics.

• Rule Filter1:

– Since the substituting context variable x in NonStream expression e with context

value v does not involve stream expression, using declaration D and environment

ρ e[v/x] is evaluated under the evaluation relation of =⇒N . It does not directly

involve SituIO.

– When e[v/x] is NonStream-evaluated to True, i.e.,

D, ρ ` e[v/x] =⇒N True

the value v is kept and appended to the partial result so that all value v that makes

F(x) evaluate to true can be ”filtered” and kept. This is exactly what the filter does.

• Rule Filter2: when e[v/x] is NonStream-evaluated to False, i.e.,

D, ρ ` e[v/x] =⇒N False

the value v is not kept in the partial result so that in the end all value v that makes F(x)

evaluate to false will be ”filtered out.” This complements Rule Filter1.
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• Rule Reduce1: to fully understand the reduce situation constructor and the reduce rule,

let us first examine the example shown in Figure 3.1.

In Figure 3.1, ’+’ represents an infix addition function and serves as a concrete instance

of function symbol “F” in Rule Reduce1. ’+’ takes a left and right operand, therefore

the name ”infix,” before returning the summation value. A sequence of numbers, after

being ”reduced,” in this case ”added” as shown in Figure 3.1, the computation boils

down to one number. This example, although quite simple, illustrates the power of the

reduce stream expression, one of the four situation constructors in Situf . Moreover, more

complex examples can be quite easily captured by the reduce expression, for instance, to

generate a conference proceedings from all accepted papers.

More formally,

’+’ is defined as x + y. To follow the Formulation Rule:

′+′ ⇐= x+ y

x and y are free variables and the above form can be strictly translated to F(x,y)

⇐= e, where e refers to x + y for infix function ’+’. Notice that ’+’ takes two

parameters as any F in the reduce rule, this is regulated by ”F(x1, x2)” in the

premise of Reduce1 Rule. If ’+’, however, is given only one argument, say 3,

then that causes a partial application and therefore ’+’ turns into a curried

function [59]. By e[v/x], which is a curried function for F, the follow-on ”

reduce F se’ ” expression in the conclusion part of Reduce1 Rule becomes the

sole argument of e[v/x].

• Rule Reduce2: one way of looking at this rule is that it provides a base case scenario for

the recursive Reduce1 Rule. Its intuitive meaning should be straightforward.

• Rule Apply1: this rule handles singleton stream where there is only one value being

streamed through SituIO.

• Rule Apply2: this rule points out that if the stream is an empty stream, just having EOS,

then nothing happens, i.e. the result is simply EOS when the evaluation finishes.
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Definition: If a stream expression se ending in EOS can be successfully evaluated, then

se is said to be legally terminated.

Theorem 3.6.1. All SituIO stream expressions are legally terminated by EOS.

Proof. : The theorem is trivally true for EOS. Note that no semantic rule can apply to EOS

implies that it immediately terminates.

If the stream expression takes the form of e:EOS, since it is a legal stream expression by

Formulation Rules, the theorem holds.

If the stream expression takes the form of map F se, that is, it is a map stream expression:

Let se = e : se’ . By mathematical induction, we assume se’ can be legally termi-

nated by EOS. There are two cases:

1. se’ is EOS: by applying the Rule Map2 and then Rule Map1, map F se is

successfully evaluated following the semantic rules of SituIO, hence legally

terminated by EOS;

2. se’ is not EOS: we apply Rule Map2 on map F se’ first. By induction hypothe-

sis, D, ρ ` map F se′ will be, by =⇒S , evaluated successfully since otherwise

se’ will not be legally terminated by EOS.

Therefore, the theorem holds for map stream expression.

If the stream expression is a filter stream expression, i.e., filter F se:

Let se = e : se’ . By mathematical induction, we assume se’ can be legally termi-

nated by EOS. There are two cases:

1. se’ is EOS: by applying the Rule Filter3 and then Rule Filter1 or Rule Filter2

depending the truth value of F(e), filter F se is successfully evaluated by the

semantic rules of SituIO, hence legally terminated by EOS;
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2. se’ is not EOS: we apply Rule Filter2 or Rule Filter1 on filter F se’ first.

By induction hypothesis, D, ρ ` filter F se′ will be, by =⇒S , evaluated

successfully since otherwise se’ will not be legally terminated by EOS.

Therefore, the theorem holds for filter stream expression.

If the stream expression is a reduce stream expression, i.e., reduce F se::

Let se = e : se’ . By mathematical induction, we assume se’ can be legally termi-

nated by EOS. There are two cases:

1. se’ is EOS: by applying the Rule Reduce1 and then Rule Reduce2, reduce F se

is successfully evaluated following the semantic rules of SituIO, hence legally

terminated by EOS;

2. se’ is not EOS: we apply Rule Reduce1 on map F se’ first. By induction

hypothesis, D, ρ ` reduce F se′ will be, by =⇒S , evaluated successfully since

otherwise se’ will not be legally terminated by EOS.

Therefore, the theorem holds for reduce stream expression.

Following exactly the same vein, we can show that the theorem holds for apply stream

expression also.

Theorem 3.1 guarantees that a runtime environment can safely utilize EOS to delineate

SituIO operations. Situf -based environment, the subject of next chapter, is precisely one of

such kind.
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(1) <program> → [include <service name>][import <situaion spec>]
program <identifier> data <dataDeclList>
action <actionDeclList> situation <SituStmtList>

(2)<identifier> → [ a . . . | z | A . . . | Z | ]+[ 0 | . . . | 9 | a . . . | z | A . . . | Z | | \]∗
(3)<dataName> → None
(4)<dataName> → <identifier>
(5)<dataDeclList> → declare <dataName>@<prog url>
(6)<dataDeclList1> → declare<dataName>@<prog url>; <dataDeclList2>
(7)<action> → None
(8)<action> → <indentifier>
(9)<actionList> → <action>
(10)< actionList >1 → <action>.< actionList >2

(11)<input> → None
(12)<input> → <identifier>
(13)< input >1 → <identifier>,< input >2

(14)<output> → None
(15)<output> → <identifier>
(16)< output >1 → <idnetifier>,< output >2

(17)<actionDeclList> → declare<actionList>(< input > : < output >) @<prog url>
(18)<actionDeclList> → declare<actionList>(< input > : < output >) @<prog url>

;<actionDeclList>
(19)<situStmtList> → <situStmt>
(20)<situStmtList1> → <situStmt>;<situStmtList2>

(21)<situStmt> → map <actionList> <dataName>()
(22)<situStmt> → filter <actionList> <dataName>()
(23)<situStmt> → reduce <actionList> <dataName>()
(24)<situStmt> → apply <actionList> <dataName>

Table 3.1 A context-free grammar representing concrete syntax for Situf
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Syntactic categories:
P in Program

IncludeStmt in Include Statement
ImptStmt in Import Statement
DataDecl in Data Declaration

DataDeclList in Data Declaration List
ActDecl in Action Declaration

ActDeclList in Action Declaration List
SituStmtList in Situation Statement List

Formulation rules:
P ::= [IncludeStmt] [ImptStmt] DataDeclList ActDeclList SituStmtList

DataDeclList ::= DataDecl | DataDeclList;DataDeclList
ActDeclList ::= ActDecl | ActDeclList;ActDeclList

SituStmtList ::= mapStmt | filterStmt | reduceStmt | applyStmt
| SituStmtList;SituStmtList

Table 3.2 Abstract syntax for Situf

reduce ‘+’  3 : 98 : 1 : 2 : EOS 

reduce ‘+’  ( 3 + ( 98 + ( 1 + 2 ) ) ) 

( ‘+’ is an infix addition function )  

103 

reduce ‘+’  ( 3 + ( 98 : 1 : 2 : EOS ) ) 

reduce ‘+’  ( 3 + ( 98 + ( 1 : 2 : EOS ) ) ) 

reduce ‘+’  ( 3 + ( 98 + ( 1 + ( 2 : EOS ) ) ) ) 

Figure 3.1 An example of reduce expression
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(1) <program> → [include <service name>][import <situation spec>]
program <identifier> data <dataDeclList>
action <actionDeclList> situation <SituStmtList>
{< SituStmtList >env = < dataDeclList >env

∪ < actionDeclList >env ∪ < service name >env

∪ < situaion spec >env }

(2)<identifier> → [ a . . . | z | A . . . | Z | ]+[ 0 | . . . | 9 | a . . . | z | A . . . | Z | | \]∗

(3)<dataName> → None
{ < dataName >env = φ}

(4)<dataName> → <identifier>
{ < dataName >env = {< identifier > .id} }

(5)<dataDeclList> → declare <dataName>@<prog url>
{ < dataDeclList >env = < dataName > .env

∪ {< prog url > .id} }

(6)<dataDeclList1> → declare<dataName>@<prog url>; <dataDeclList2>
{ < dataDeclList1 >env=< dataName > .env

∪ {< prog url > .id} ∪ < dataDeclList2 >env }

(7)<action> → None
{< action >env = φ}

Table 3.3 Attribute grammar for Situf (part 1 of 3)
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(8)<action> → <indentifier>
{ < action >env = {< identifier > .id} }

(9)<actionList> → <action>
{ < actionList >env = < action >env }

(10)< actionList >1 → <action>.< actionList >2

{ < actionList >1
env = < action >env ∪ < actionList >2

env }

(11)<input> → None
{ < input >env = φ }

(12)<input> → <identifier>
{ < input >env = {< identifier > .id}}

(13)< input >1 → <identifier>,< input >2

{ < input >1
env = {< identifier >id} ∪ < input >2

env }

(14)<output> → None
{ < output >env = φ }

(15)<output> → <identifier>
{ < output >env = {< identifier > .id}}

(16)< output >1 → <idnetifier>,< output >2

{ < output >1
env = {< identifier >id} ∪ < output >2

env }

(17)<actionDeclList> → declare<actionList>(< input > : < output >) @<prog url>
{ < actionDeclList >env = < actionList > .env

∪ < input > .env ∪ < output > .env

∪ {< prog url > .id} }

Table 3.4 Attribute grammar for Situf (part 2 of 3)
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(18)<actionDeclList> → declare<actionList>(< input > : < output >) @<prog url>
;<actionDeclList>
{ < actionDeclList >env = < actionList > .env

∪ < input >env ∪ < output >env

∪ < prog url > .id ∪ < actionDeclList >env }

(19)<situStmtList> → <situStmt>
{< situStmt >env = < situStmtList >env}

(20)<situStmtList1> → <situStmt>;<situStmtList2>

{< situStmt >env = < situStmtList >env

< situStmtList2 >env = < situStmtList1 >env}

(21)<situStmt> → map <actionList> <dataName>()
{mapenv = < situStmt >env ∪ < actionList >env

∪ < dataName > ()env}

(22)<situStmt> → filter <actionList> <dataName>()
{filterenv = < situStmt >env ∪ < actionList >env

∪ < dataName > ()env}

(23)<situStmt> → reduce <actionList> <dataName>()
{reduceenv = < situStmt >env ∪ < actionList >env

∪ < dataName > ()env}

(24)<situStmt> → apply <actionList> <dataName>
{applyenv = < situStmt >env ∪ < actionList >env

∪ < dataName >env}

Table 3.5 Attribute grammar for Situf (part 3 of 3)
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[Rule Eval]
D, ρ ` e : EOS =⇒S e

[Rule Map1]
D, ρ ` map F EOS =⇒S EOS

[Rule Map2]

D, ρ ` se
v=⇒S se′

D, ρ ` F (x) ⇐= e

D, ρ ` map F se =⇒S e[v/x] : map F se′

[Rule F ilter1]

D, ρ ` se
v=⇒S se′

D, ρ ` F (x) ⇐= e

D, ρ ` e[v/x] =⇒N True

D, ρ ` filter F se =⇒S v : filter F se′

[Rule F ilter2]

D, ρ ` se
v=⇒S se′

D, ρ ` F (x) ⇐= e

D, ρ ` e[v/x] =⇒N False

D, ρ ` filter F se =⇒S filter F se′

[Rule F ilter3]
D, ρ ` filter F EOS =⇒S EOS

[Rule Reduce1]

D, ρ ` se
v=⇒S se′

D, ρ ` F (x1, x2) ⇐= e

D, ρ ` reduce F se =⇒S e[v/x](reduce F se′)

[Rule Reduce2]
D, ρ ` reduce F EOS =⇒S EOS

[Rule Apply1]

D, ρ ` se
v=⇒S EOS

D, ρ ` F (x) ⇐= e

D, ρ ` apply F se =⇒S e[v/x]

[Rule Apply2]
D, ρ ` apply F EOS =⇒S EOS

Table 3.6 Operational semantics of SituIO
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CHAPTER 4. Situf -based ENVIRONMENT

Compiling a Situf program involves the following major steps:

• Parse the Situf script;

• Link situation data structures;

• Link situation services;

• Set up SituIO channel.

The compiling process is refined and visualized by Figure 4.1.

Situf script parsing 

xml data type 

setup 

Situation service 

linking  

SituIO setup 

Situf runtime 

start 

Situation data structure 

linking  

Figure 4.1 The compiling of a Situf script
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After a Situf program is compiled, the corresponding runtime will start up; in the meantime,

it brings up an environment shown in Figure 1.1.

A Situf -based environment (Figure 1.1) brings together all the important issues discussed

so far. The centerpiece tying up this environment is Situf runtime.

While it is true that Situf programs are designed to precisely specify situations, the collec-

tion of context information for those situations is a direct relevant task [1], and thus it remains

a central design purpose of Situf . The contexts that need be captured for each constituent of

a specified situation, both for data and for action, are specified in XML format.

Note that data and action refer to the corresponding grammar symbols, ¡dataName¿ and

¡action¿, defined in Table 3.1. For a domain expert, the detailed aspects of context informa-

tion are beyond her core concern, therefore Situf introduces the import clause to incorporate

separately specified, XML-formatted context information for each situation.

In general, the context data are derived from actions exerted by a user over a software

system. However, most often than not, the software system itself does not provide extra

functionality to support context data collection tasks, not to say to report that collection to

a third party. The design of Situf keeps that in mind and proposes a special include clause

to let the situation services provide context collection capabilities. The author of this thesis

and his colleagues have completed such general situation services: one targeting web-based

applications which is written in Java Script, one targeting local Java JFrame based programs

which is written in Java. Situation services help make the goal of collecting context information

generally more reachable for different Situf programs.

4.1 Context specification and situation services

With concrete examples, this section elaborates on the technical details of context specifi-

cation, situation serivces, their relationship with XML, their affiliation to a Situf program and

finally the active roles they play towards a Situf -based environment.

According to the grammar of Situf language, the major constituents of a situation are data

and actions. In a Situf script, the situation constructors, i.e., map, reduce, filter and apply,

are used to assemble data and actions declared into a meaningful situation. This means that
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the context information in a Situf program is classified into two categories: data context and

action context. Action context is built on top of data context, as the input and output of each

action come from data. In this writing, we concentrate on explaining data context, through

which action context should seem easy.

In Situf environment, context information, either for data or for action, is represented and

transmitted using XML format. Furthermore, XML is considered the intermediate representa-

tion to exchange information, not just restricted to context information specification, but also

serve the purpose of recording situation data structure as well as specifying situation services

included in a Situf -based environment. In particular, there are two ways of defining the struc-

ture of any contents represented in XML format: DTDs, the older and more restricted way,

and XML Schema, which offers extended possibilities, mainly for the definition of data types in

XML [61]. Unlike DTD, which uses a different syntax separate from XML, thus needs a separate

parser to interpret [61] its code, XML Schema by itself follows XML-based syntax to define new

types. It is worth mentioning that as compared with DTD, which only provides character data

type such as #PCDATA(Parsed Character Data) and #CDATA(Unparsed Character Data),

XML Schema offers a variety of built-in data types:

• Numerical data types, including integer, Short, Byte, Long, Float, Decimal

• String data types, including string, ID, IDREF, CDATA, Language

• Date and time data types, including time, Data, Month, Year

The rich power for data structure description provided by XML Schema, as well as the

ability to extend an existing data type, collectively make XML Schema a better candidate than

DTD to serve the purpose of specifying context information in Situf -based environments.

In this work, we choose XML Schema to configure ”context” templates to synchronize the

communication between a Situf program and the external context collection capabilities, under

a Situf -based environment.
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4.1.1 XML and context specifications

To provide concrete explanations and illustrations for key issues involved, let us revisit the

paper review example given in Program 2.

The attribute grammar of Situf given in Table 3.3 through 3.5 requires that each declared

data, represented by grammar symbol <dataName>, have an attribute called env, meaning

environment. This is a composite attribute. Its runtime implication depends on the context

specification the Situf program imports. Each paper declared in Program 2 in fact has the

following attributes:

• abstract;

• author name;

• author affiliation;

• email contact;

• paperID;

• submitTime;

• targetted trackName;

This detailed context information is generally beyond the concern, or knowledge, of a do-

main expert. But it is very important to answer the attribute grammar requests. Situf ’s

support of separation of concerns [62] bridges this gap. More concretely, Situf offers an

import clause feature. As seen in Program 2, the ”contextSpec MyReview” following the ”im-

port” keyword is an instance of <situation spec>, which is encoded as an XML Schema given

in Table 4.1.

The all keyword represents a built-in mechanism XML Schema offers to construct new types

of data. The detail is quoted as follows:

• sequence, a sequence of existing data type elements, the appearance of which in a prede-

fined order is important;
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<? XML version=”1.0” encoding=”UTF-16” ?>

<MyReview:schema xmlns:MyReview=”http://www.w3.org/2001/XMLSchema”
version=”1.0”s>
<MyReview:element name=”paper” type=”paperType”>

<MyReview:complexType name=”paperType”>
<all>

<element name=”abstract” type=”string” use=”required”/>
<element name=”author name” type=’string” minOccurs=”1”

maxOccurs=”unbounded” />
<element name=”author affiliation” type=”string” minOccurs=”1”

maxOccurs=”unbounded” />
<element name=”email contact” type=”string” use=”required”

maxOccurs=”1” />
<element name=”paperID” type=”integer” use=”required” />
<element name=”submitTime” type=”date” use=”required” />
<element name=”targetted trackName” type=”string” use=”required”

maxOccurs=”1” />
<element name=”conference name” type=”string” use=”required” />

</all>
</MyReview:complexType>

</MyReview:element>
</MyReview:schema>

Table 4.1 An XML Schema-based context template

• all, a collection of elements that must appear, but the order of which is not important;

• choice, a collection of elements, of which one will be chosen.

In fact, XML Schema enables user-defined data types, comprising simple data types, which

cannot use elements or attributes, and complex data types, which can use elements and at-

tributes [61]. Complex data types can also be defined from already existing data types. The

XML schema given in Table 4.1 essentially provides a template to help bind paper, a data

variable declared in Program 2, and its closely related context. Note that Table 4.1 provides

detailed attributes pertaining to the specific situations associated with the MyReview system.

The associating power is further enhanced by the use of namespace MyReview in Table 4.1.

That said, a paper under a different circumstance, such as the ”EasyChair” software system,
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could involve compeltely different attributes, the use of which requires the importing of a dif-

ferent XML schema. Besides, the use of namespace in an XML Schema helps to disambiguate

identical naming and to differentiate between separate situation domains, e.g, MyReview vs.

EasyChair. For more background information on namespace mechanism of XML schema, please

consult [61].

Upon the import of a context specification where relevant information for a paper is pro-

vided, the Situf compiler automatically executes the following action:

paperenv = paperenv ∪ { abstract, author name, author affiliation,

email contact, paperID, submitTime,

targetted trackName }

Note: the initial env attribute of paper only includes its id information. To see that, from pro-

duction (4) given by the attribute grammar in Table 3.3: < dataName >env= < identifier > .id,

when paper is declared, it replaces <dataName>.

In Table 4.1, ”paper” is defined as a new type, where abstract, author name, author affiliation,

email contact, paperID, submitTime, targetted trackName and conference name are its built-in

fields. Each field, corresponding to the respective context of a ”paper,” is of a precisely de-

fined data type such as string, integer, etc. . . The diverse data types available in XML Schema

make XML Schema powerful enough to specify highly diverse data different Situf programs

may face. In comparison, XML DTD only supports character data types, i.e., #PCDATA, for

Parsed Character Data, and #CDATA, for unparsed Character Data,

4.1.1.1 Example of context values generated based on context templates

Table 4.2 is a direct instantiation of the XML schema based context template given in Table

4.1. Given that Table 4.2 strictly follows the format prescribed by Table 4.1, the latter is hence

named context template.

Table 4.2 presents a concrete runtime example of a data value traveling through SituIO.

This XML element is a value for the data variable ”paper” delcared in Program 3.3, generated
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<?xml version=”1.0” encoding=”UTF-16 ?>

<paper MyReview:schemaLocation=”rs.cs.iastate.edu/myreview/context-
Spec MyReview”>
<abstract> This paper describes a novel testing approach for . . .</abstract>
<author name>John Schneider</author name>
<author affiliation> Iowa State Universit </author affiliation>
<email contact>jschneidre@iastate.edu</email contact>
<paperID>215</paperID>
<submitTime>2012-07-24</submitTime>
<targetted trackName>Software Testing</targetted trackName>
<conference name>IEEE COMPSAC</conference name>

</paper>

Table 4.2 A sample context value collected at runtime using XML

under the governing of “contextSpec MyReview” file which contains the XML Schema given in

Table 4.1. The XML context information shown in Table 4.2 for ”paper” also presents itself as

a sample value for env attribute of <dataName>, a grammar symbol instantiated by ”paper,”

from Situf ’s attribute grammar in Table 3.3 to Table 3.5. Table 4.2 is a concrete instance of

value v, presented in the abstraction for SituIO in section 3.6.2.

4.1.2 The inclusion of situation services

Situation services extend the capability of a Situf program that includes them. Situation

services are either made by a third party provider and hosted on the cloud, or they can be hosted

on the local machine. The default situation service for Situf is called “common service GUI,”.

The details about this default service is provided in the next chapter as part of the feasiblity

test of the Situf language. The default service offers the capability that, once deployed at the

targeted url site, can capture and record a software user’s action information which is then sent

back, through SituIO, to where the Situf runtime is deployed. What is captured by the default

service is real time behavioral and environmental contextual information, which is configured

by the central Situf program that generally contains program url addresses. For Program 2, it
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is:

129.186.93.0 : /home/myreview/COMPSAC2011T raining/Review.php

To deploy a situation service requires security trust of the hosting system. Secutiry issues under

Situf -based environment is part of our future research direction. An intersting question to ask

from the perspective of Situf is: how can the design of Situf be evolved to be more situation

security aware. This question can be answered as a result of our future work.

4.2 XML Situation data structures

The XML-based situation data structure is encoded and transmitted in XML format. There-

fore it also involves XML Schema to define its data type similar to the discussion in 4.1.1.

However, the XML situation data structure uses XML format to serve different purposes:

• To record all context data received through SituIO. This includes intemediate, as well as

final functional results a running Situf program generates;

• the records saved in XML situation data structure are all temporally sorted;

• Save all user errors found from historical records affiliated with specific situation services,

or freshly captured use errors.

4.3 EOS in Situf -based environment

For a Situf program, the compiler emits code to monitor the recorded actions of the software

user, most typically through comman service GUI. Once the user moves on to a program url

that is out of the scope specified in Situf , that information, once received, is interpreted as an

EOS which wraps up the on-going stream expression evaluation. In the example of Program

2, once user’s mouse clicks a url other than

129.186.93.0 : /home/myreview/COMPSAC2011T raining/Review.php

SituF runtime equivalently receives an EOS from the Situf -based environment.
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CHAPTER 5. IMPLEMENTATION AND FEASIBILITY TEST

The overall objective of Situ framework is to improve our understanding of software evolu-

tion to involve a human-centered situation centric perspective. The Situf -based environment

including the functional Situf , its underlying programming model, such as SituIO, all revolves

around situations: situations are the basic building blocks that are given intrinsic support in-

side a Situf -based environment. In this section, we showcase the feasibility of Situf ’s approach

from an experimental test point of view; more specifically, we apply our mechanism on two

occasions:

• a Java JFrame/Swing based Graphical User Interface software deployed locally. By writ-

ing code in Situf to adapt the user interface through collectively capturing user’s action

context, especially user’s operation errors, and;

• experimental details on the paper review instance on the MyReview system, which is used

as the sample case through Program 2 and else throughout this thesis.

5.1 Experiment on JFrame/Swing based User Interface Adaptation

5.1.1 Overview of adaptive user interface

Adaptive User Interfaces refers to a very broad category of interfaces. It can be precisely

defined as a user interface that has the ability to adapt and change based on the user’s per-

formance. The interface is responsible for learning about user differences and preferences in

order to make the decision for the user. This can be achieved by constructing a user model.

This section will examine the various approaches that have been proposed for modeling adap-

tive user interfaces. Further, the various challenges involved in developing methogologies for

adaptive user interfaces will also be examined.
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Oftentimes, a software interface is designed targeting a major user group rather than any

single user. But individual differences analysis offers good clues to possible exceptional usage

issues, closely related to the evolution of the interface.

Several authors have looked at the possible ways for accommodating individual differences.

In their paper, [63] analyzed the usability of user interface with respect to individual differences

in spatial ability by using an interface that supports zoom with overview and detail. They found

out that the users were able to perform much faster using an interface which had detail rather

than the one with an overview.

[64] conducted an experiment to compare the performance of users with high and low spatial

abilities. They were able to overcome poor performance due to low spatial ability by making

some small changes to the interface like adding extra commands. One important point to be

considered is improving the usability of the systems. Each and every individual has a different

set of cognitive skills and preferences. [65] has differentiated the individual differences that

are useful, those which are stable and have an impact on interaction. Stanney and Salvendy

[65] were successful in using visual mediators to accommodate low spatial ability individuals.

Their experiment found it to be useful to improve the search performance of low spatial ability

individuals.

[66] suggested the development of a new inclusive design that includes people with dis-

abilities. [67] presented a methodological design approach for implementing inclusive interface

design. [68] has discussed the use of an inclusive interface for cell phones concentrating on the

usability issues related to older users. [69] discussed issues about adaptive user interfaces for

health-care systems, including the current knowledge, goals, and other significant characteris-

tics of the user that are important for redesigned interfaces.

Although a high amount of work has been done on inclusive design approach, it should be

noted that in an inclusive interface all the users are forced to use the same interface. This may

not be the right solution. Interfaces appearing easier to use by a certain group of people may

not be easier for a large number of people. [65] has pointed out that such an interface would

result in a non-optimal interface for certain users.

To provide a much more accommodating solution, user interfaces must possess the ability
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to adjust and adapt to individual user preferences or differences. There are wide varieties of

device types, form factors and input methods that make it highly difficult for the programmers

to create an interface which accommodates all these differences; thus an automated adaptive

system becomes necessary under these circumstances. It must be noted that there is a key

difference between the interface being adaptable and adaptive. Adaptable interfaces are those

in which the users are given a choice. These interfaces are always under a user’s control, but

not all adaptive interfaces are controlled by the users.

In their study, [70] found out that users responded well to adaptable and adaptive user

interfaces over the static interfaces. Adaptive interfaces can be differentiated from adaptable

interfaces by the means of their overall performance and details in implementation. Adaptive

interfaces require extra overhead in implementation.

Modeling user behavior is an interesting area as it will help us with new insights on the

nature of human interaction with systems. It standardizes the way of building an adaptive

user interface. It is vital to create a model for the effective implementation of adaptive user

interfaces. [71] has discussed several techniques of user modeling and adaptive systems. The

paper also provides a set of guidelines in building an adaptive user interface, in which user

modeling is emphasized. In their design of an adaptive route advisor, Rogers et.al. in [72]

used a model of driver preferences. The route advisor constantly updates the user model by

interacting with the user and gathering user preferences. In developing the personalized word

assistant based on episodes identification and association, Liu et al. [73] have recognized user

behavior patterns and built a user profile that facilitates personalized interactions.

The most prevalent common example of adaptive user interfaces would correspond to those

systems that are used to filter information and recommend users accordingly. Content based

and collaborative filtering are among the basic approaches involved in adaptive systems. [74]

discussed a system that retains profiles for individuals and later combines their predictions to

produce both content-based and collaborative behavior. Pat Langley [75] discusses problems

that involve more than just selecting from among a large set of documents or products. Horvitz

et al. [76] built statistical methods and cost-benefit approaches to identify decisions on inform-

ing users in the area of context-aware interfaces and environments. Gajos et al. [77] found that
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increasing the accuracy of the adaptive system significantly improved both performance and

adaptive interface utilization. Further, both predictability and accuracy significantly increased

participants’ satisfaction. Shankar et al. [78] showcases statistically significant results indicat-

ing that an adaptive context-aware user interface can improve user-experience. An adaptive

interface is rated based on the effectiveness of the algorithms used to determine the differences

and preferences of the users. Langley [75] has suggested the use of machine learning algorithms

for developing such interfaces. The adaptive interfaces must be able to build suggestion models

that provide only recommendations to the user through the collective learning of user prefer-

ences/differences. It should be noted that the knowledge gained by the adaptive system must

be capable of reflecting the preferences learnt. At the same time, an error-based model for

adapting user interfaces to enhance software performance in field settings was proposed [75].

The indexing mechanism first proposed there as part of the error detection mechanism was

later extended to handle complicated screen real estate indexing for indexing web pages. Both

applications and software support are available as a concept-proof for that model.

Viano et al. [79] developed an adaptive interface that focused on the state of the process

and state of the user. Tsandilas and Shraefel [80] examined the accuracy of algorithms for

predicting user performance and satisfaction. Other works include investigating the use of user

error detection as a means of adapting web pages to suit the abilities of older adults.

To show the effectiveness of Situf -based environment, I carried out an experiement that

adopts the modeling of an adaptive user interface based on the errors made by the users

interacting with the system. The experiments were conducted with the MyReview paper review

system. Errors made by a user can be easily corresponded to adapting, thus evolving, the

system, such that it minimizes errors committed by the user. The system built is capable of

indexing the components on the interfaces, capturing the erros made by the user and producing

multiple situation-driven user interfaces based on their preferences, reflected through errors

made by the user.
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5.1.2 Error, situation and the XML representation of context

A user is likely to make errors while using an interface, especially in adverse conditions.

These user errors occur for many reasons. Some of them are:

• Environmental conditions (eg. Low visibility);

• User limitations (eg. Poor motor skills);

• Complexity of the interface

We focus on tapping errors, such as a user missing a button while tapping, incorrect taps

where the user taps a wrong button, reversals and text entry errors. It is not easy to identify

the reasons behind these types of errors. The reason for a missed tap can be anything from a

user not being able to locate the button to the user not being able to hit the button properly.

The types of errors supported by this experiment includes:

• Tapping Errors

– Reversals

– Missed Taps

∗ Check Box

∗ Radio Button

∗ Menu

∗ Text Box

∗ Text Area

∗ Button

∗ Keyboard

The two types of tapping errors supported are reversals and missed taps. A reversal refers

to the act of a user where he/she taps on a component and quickly reverses the action. We

have built a situation service, named user-action-error-detection-local, which provides an error

detection function isError. On the implementation level, it maintains a threshold value for the
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distance around each component included in a GUI. If the missed tap is within the range of

the threshold of a particular component, say a checkbox, then that tap is considered a missed

tap for that component. The taps that do not fall under the radius of any of the components

threshold value are considered to be errant taps. A series of errant taps suggest that the user

might have difficulty in accessing the right component. Thus, by capturing repeated errant

taps we can increase the threshold value for that particular component to capture the missed

taps. This reflects the ”adaptive nature” of this experiment.

Program 3 A Situf program for error-based adaptive user interface evolution

include GUI_error_detection_local
import contextSpec_user_interface_real_state

program _adaptiveUI
data

declare
UI_component@255.255.255.255:˜personalInformation_ \

UI.class;
declare

tap@255.255.255.255:˜personalInformation_UI.class;
declare

threshold@255.255.255.255:˜GUI_error_detection_local;

action
declare

isError<tap:Boolean>@255.255.255.255:GUI_error_ \
detection_local;

declare
correctiveAction<tap:threshold>@255.255.255.255: GUI_ \
error_detection_local;

situation
map correctiveAction(filter isError tap());

The personal information appeared in the Situf Program 3 is displayed in Figure 5.1.

The “contextSpec user interface real state” imported by Program 3 is, as explained in the

last chapter, encoded in XML. It is shown in Figure 5.2.
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Figure 5.2 shows the benefit of separating the concern of details in a graphical user interface

real state. The domain expert can simply import the information, therefore being able to fully

concentrate on the most import task, in this example, adaptively evolve the user interface

incrementally!

5.2 Experiment on MyReview, a web-based paper review system

For the MyReview experiment, the Situf code that has been written to specify a paper

review situation is demonstrated at Program 2. JavaCC [81], i.e., Java Compiler Compiler,

is used to generate the parser for Situf . Our input to JavaCC is Situf.jj, a file ending in

.jj, which contains production rules from Situf ’s Context Free Grammar found in Table 3.1.

Java code is injected under each production rule in Situf.jj to carry out the execution of

attribute grammar rules given in Table 3.3 to 3.5 as syntax directed semantic actions. After

conducting grammatical error checking on Situf.jj to prevent things like left recursion from

happening, JavaCC automatically generates a parser for Situf . Specifically, the auto-generated

Situf parser is a java file called SitufParser.java. It is automatically named by JavaCC by taking

the prefix of the input grammar file name of “Situf.jj”, and then appending “Parser.java” to

it. More importantly, at the very end of Situf.jj file, which will only be executed after all

parsing is done, lies a segment of java code that takes parsed names–both for data and for

action–and XML contexts’ specifications to set up XML context templates, to link in situation

data structure and then finally, to start up the related situation services. Under standard java

runtime environment, to parse a Situf Program 2 simply requires providing Program 2 as an

input file to the auto-generated parser SitufParser.java before running java command javac;

after that run the generated java class file using java command java. In the end, the Situf -based

environment revolving around the specified paper review situation is started.

A side note is that Java socket is used to implement the context data transportation between

a Situf program and its external runtime environment. This is because the site where a Situf

program is run, usually locally to a domain expert, is most probably remote to where the

MyReview system and the included situation services are deployed. At the current stage, we

run Java sockets under a homogeneous environment where no security issues, such as firewall
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policies, will arise. In future however, to meet the need of using a heterogeneous environment

such as the World Wide Web, Simple Object Access Protocol(SOAP) will be considered to

wrap up the sockets so that firewall policies will not deny socket access.
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Figure 5.1 The Graphical User Interface for Personal Information

Figure 5.2 Context specificaation for Personal Information in XML
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CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Conclusion remark

This work marks the first step towards the realization of Situ framework. A domain specific

functional programming language called Situf is proposed to bridge the concept of situation

[1] to realistic computing circumstances. In this work, attribute grammar is used to aggregate

dynamically captured contexts around each specified situation written in Situf by a domain

expert. The communication between a stream of externally collected contexts and the internally

specified situations is further modelled as Monad-based SituIO. This way, Situf is able to

maintain its position in the purely functional category. Unlike a traditional language such as

ANSI C where I/O is supplied by external libraries, SituIO is a built-in component of Situf

language proper. Therefore, to completely define Situf , this thesis offers a precise mathematical

description, namely computational semantics, also known as small-step operational semantics,

for SituIO.

The design of Situf gives rise to an environment that employs XML as the intermediate

representation for data transportation, context specification importing, situation services inclu-

sion, as well as other runtime support purposes. Since such an environment, which we name as

Situf -based environment, effectively encapsulates nontrivial underlying complexity, a domain

expert is able to focus on situation level abstractions. Last, but not least, Situf -based envi-

ronment closely supports separation of concerns for situation specification. This brings home

a set of desirable results such as situation modularity and reusability.

To test the feasibility of our approach, two experiments were conducted. One was done

over situations regarding user error based local graphical user interface adaptation; the other

was to capture paper-review situations on top of MyReview, a web-based paper review system.
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The results showed that Situf language, coupled with its affiliated Situf -based environment,

provides sufficient expressive power as well as runtime support to help domain experts who

write situation specifications to achieve various domain specific purposes.

6.2 Future work

The future work targets the following aspects:

• Add a strict type system on top of Situf to facilitate static time checking as well as static

time program verification.

• Improve security mechanisms, from the perspectives of both theoretical modelling and

practical implementation, for situation services inclusion;

• Engage sophisticated high performance compilation techniques, where functional lan-

guages generally have an edge over imperative languages for the purpose of ensuring

program correctness.

• Integrate RDF, which shares the XML format, with Situf -based environment, especially

into the mechanism of context specification importing. This way, Situf -based environment

is able to enjoy the benefits derived by knowledge representation and knowledge reasoning

techniques.

• Add “error propagation” machinery into Situf so that an erroneous situations may be

captured in parallel with localizing the user and software errors to closely correspond to

the situation specification.
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