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ABSTRACT

The transition from paper-oriented record keeping to their on-line counterpart has been 

anything but smooth. Often, the on-line systems are difficult to use and do not provide a 

structure to maintain organizational memory and procedures. A user momentarily sees the 

part he / she is currently working on and not aware of the big picture. Often, the user is has to 

work in such convoluted ways that require considerable learning curve. The Course Catalog at 

universities seem to be facing this these problems. 

In this thesis we provide XCCat, an XML-based road-map for an enterprise solution for 

design, implementation, usage, and maintenance of course catalogs for institutions of higher 

learning. XCCat brings information about curriculum requirements, courses, changes to 

courses, approval sequences, participants and deliberations surrounding catalog development, 

and report generation under a single umbrella in a live XML-based database that not only 

remembers everything but can also be queried for this memory. The concept of catalog 

publication is carefully developed so when a catalog for the next year is published, the 

development version of the catalog for the following year is also published; the latter 

automatically carries forward the unfinished work in progress. This simplifies many things: 

need for tracking is reduced considerably, the development version of the catalog is always 

available, increases opportunities for collaboration, there is only one goto place foll all 

participants (e.g. university, colleges, and programs) for all catalog related issues. There is 

only one view of the catalog, all information is visible to everyone except the parts that need 

authorization for making updates. A fair portion that is enough to assess the viability of the 

ideas behind XCCat have already been implemented. 

The approach comes close to what has been termed zero information-loss in the field of 

temporal databases. In the zero information loss model, one could query data, the database 

history of data, query updates, and query queries. Zero information-loss is a part of what is 

known as provenance in databases and information systems these days. 
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CHAPTER 1. INTRODUCTION

Development of a course catalog is a continual undertaking at institutions of higher 

learning. In old days one used paper-based systems and their automation has not been smooth. 

In some ways the new systems have become more complex to interact with, unforeseen 

problems have surfaced, and one is left feeling that we have not fully harnessed the 

advantages offered by computer and connectivity technologies. The reasons for this 

shortcoming are primarily rooted in the choice of technology platforms on which the solutions 

are being built. We envision that Extensible Markup Language (XML) – coupled with its 

associated technologies such as DOM [4], XPath [2], and XQuery [3] – provide a viable 

approach. In this thesis we report XML-based Catalog Management System (XCCat – read 

axicat), an enterprise solution for management of course catalog. Although we concentrate on 

the course catalog at Iowa State University, it is a sufficiently detailed use case that should 

extend to most institution of higher learning. 

The prevalent legacy technologies, such as SQL-based relational databases and 

spreadsheets are inapt for hosting many applications for which XML is far more viable. In 

order to deploy legacy technologies the natural structure in information has to be dismantled 

and atomized; there is no such compulsion in XML. In legacy technologies closely related 

things have to be scattered in multiple destinations, thereby increasing the complexity in 

bringing them back into local syntactic contexts, making software development complex. In 

XML one never runs out of “local space”, an element can always be expanded within a local 

context by adding attributes and nested elements. XML is not compulsive about uniformity 

and allows object instances in the same collection to range from simple as atomic values to as 

complex as necessary. Information tends to reside in its most natural context and its evolving 

complexity is absorbed easily and locally without massive displacement and need for a global 

redesign. Path expressions provide natural handles for values and their collections. (See 

Appendix A for an interesting example.) The counterpart of path expressions in legacy 

technologies can have potentially unbounded syntactic complexity. 
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As stated above, with automation some advantages for the paper-based systems that we 

took for granted have become distant. This include loss of organizational memory, lack of 

clarity on routing work for approval, and ensuring that an organization’s procedural 

requirements are met. Furthermore, reliance on email has complicated the determination of 

the status and needed residual work at any given moment of time. The current state of 

approvals is often not clear and sits in spaghettis of emails that have to be manually browsed 

before clarity emerges, and that too for a short period of time. Even a list of participants in a 

process and their roles are not immediately available or clear. 

The description of a course has several components, requiring different people to interact in 

the development and approval process. The deadlines also vary from one field to another. 

Sometimes a task has to be repeated multiple times on parts of participants. For example, a 

department curriculum committee may have made a decision about a course and may like to 

enter it in the catalog without having to worry about multiple deadlines for various 

components. One should not have to wait for an opening date for entering the information. It 

would be best if the next catalog always remains open for editing. This idea prompts us to 

actually extend the conventional concept of organizational memory: obviously it consists of 

past memory but it also extends into future until a task is completed. The components that do 

not get incorporated in the next catalog should automatically carryover to the catalog 

following the next catalog. In this way, by eliminating start deadlines one opens a system for 

recording future memory. 

Current systems do not facilitate collaborations as smoothly and widely as they could. For 

example, at department level every faculty may be allowed to participate in modifying 

courses. A well designed catalog system can eliminate the need for calling a meeting on every 

small issue or collecting inputs from faculty via email and then having to collate them. The 

information should always reside in a collated form. XCCat provides a town-square like 

environment, where all participants can work collaboratively. All information, dynamic 

reports, and identity of participants are always visible. This is appropriate as catalog 

development is not a highly secretive process. All parts of the catalog should be visible to all, 

although editing is privileged to a specific participants. 
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From the point of view of catalog development it is useful to think in terms of programs 

rather than departments. Most programs are offered by single departments (hence single 

colleges). But some programs are jointly offered by multiple departments residing in multiple 

colleges. Every program designates one faculty member as a liaison in the development of the 

catalog. This person interfaces the curriculum committees in the program and colleges. The 

college level curriculum committee interfaces with the Faculty Senate, the body that is overall 

in charge of catalog development. In addition, there are other bodies that look into specific 

aspects of the catalog. For example, in case of dual listed courses – the courses that are 

available to undergrad as well as grad students – the Graduate College ensures that the 

graduate student side of the course meets some additional requirements. We can divide the 

participants into three types of participating units: university at the top, and colleges and 

programs below it. 

In this day and age, query for the content of information should be easy, but that seems 

distant due to two reasons. First, the information may reside on a platform that does not even 

support query. The second reason is that the organization of information in legacy system may 

become so horrendously convoluted that there may be little incentive to make it available for 

on-line query. Thus we may fail to tap the potential advantages of computer and connectivity 

technologies adequately. 

The catalog system is fragmented in ways that is not necessary. For example, experimental 

courses at Iowa State may form a separate catalog without any compelling reasons. On the 

contrary, XML encourages us to expand a system to bring more content under a single banner. 

As the local information is not dismantled to begin with, it simply becomes a part of a global 

context without a change in semantics. Even syntactic handles to access the information 

remain largely stable. (See an excellent example in Appendix A.). Indeed we bring multiple 

year catalogs under XCCat. This will have several benefits. First we note that the degree 

requirements for students although primarily rooted in the catalog at the time of their 

admission, adjustments span multiple catalog years. Another advantage is we immediately 

gain ability to query the catalog evolution spanning multiple years. One could pose queries 

such as evolution of prerequisites of a specific course or the growth in number of courses 

offered by a program. A container for queries and their development is included in XCCat. All 
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participants will be able to pull the reports when needed, even on the fly: e.g., in a meeting. 

The framework would be useful for departments, programs, colleges, the Graduate College, 

curriculum committees at various levels. Registrar, Provost, Faculty Senate, and Board of 

Regents (the ultimate governing body for all three state universities in Iowa). 

Current user interfaces are often inadequate and tend to separate factual information from 

routing and approval requirements and views posted by participants. In this case we feel that 

the use of legacy systems convolute information so badly that to bring related things together 

in a single framework becomes a cumbersome task with little promise of potential gains 

compared to the effort that would have to be put in to reap such gains. In a nutshell in XCCat, 

due to its roots in XML, all information for all users, at all times remains collated at a single 

destination, that can be accessed in their most natural ways through customized graphical 

interfaces to facilitate text entry and editing, approvals, deliberation, query, and publishing in 

one unified framework without any loss of organizational memory. 

The rest of this thesis is organized as follows. In Section 2 we describe the storage 

organization of the whole catalog system in XML. In Section 3 we discuss implementation, 

including several user interface. In Section 4 we give a brief description of the project. Section 

5 mentions prior and related works. We conclude in Section 6 where we assess XCCat 

prototype and future work. 
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CHAPTER 2. STORAGE MODEL 

 The advantage of XML as a database platform has been explained in introduction. As 

stated before, this thesis reports XCCat, our prototype for course catalog. XCCat deploys 

XML for providing an enterprise solution for the management of course catalog system. In 

this chapter we consider the architecture of the storage used in XCCat. 

Figure 1 shows the storage architecture of XCCat as a single XML document. The 

architecture brings catalogs spanning several years in one place: as an example, the figure 

shows years 2005-2014. Incidentally, an academic year such as 2011-12 is referred to as 2011 

in the catalog. 

We recall the hierarchical organization among participant units. At the top of the hierarchy 

there is the university as a participant unit, and under it are college and program level 

participant units. The organization of a year directly reflects the hierarchical relationships 

among the participant units. The university is at the top and colleges and below it are colleges 

and programs. 

Each participant unit consists of Editors, Reports, and Description elements that will be 

explained shortly. In addition, each also has additional relevant information. Most noteworthy 

are the Courses under program groups, under which we have individual named Course Groups 

courses, that in turn consist of course element. The organization of individual courses turns 

out to be a major task and it will be dealt with in considerable detail. 

•  The Editors element consists of a list of users that play the role of editor for at a participant 

unit. In XML it consists of User elements. User elements contain userid, password, and 

privilege of editors. The list of editors is visible to all catalog participants. Currently, we 

envision that this list is maintained by a Catalog Administrator at university level, who too is 

enrolled as a user. 

•  The Reports element is a container for a set of queries relevant at a participant unit. 

Currently, these queries are expressed in the XQuery, the W3 recommended query language 

for XML. It is envisioned that participant unit would store useful queries here. Only 
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authorized user can add, delete, or revise query in the Query element. However, the read, 

execute, and copy access is allowed to help useful queries to be shared among other 

participant levels. The result of a query is a report that can be displayed on the fly or saved 

somewhere in user area. 

• The Description element contains the totality of text-based information belonging an 

participant unit. The number of named sections under the Description element can vary 

among organizational units. No standardization of formatting is imposed. Perhaps this may 

evolve in future and then this part can take a more definite shape. The participant units in a 

university are mutually independent bodies. They can distribute the workload in a way they 

find it fit. They may designate different individuals or committees, possibly with editing 

privileges, as in-charge of different sections. For example, the description sections belonging 

the Com S program, shown in Figure 1(b) are Front Material, Faculty List, Undergraduate 

Study, and Graduate Study. A very easy to use feather-weight editor, to be described later, is 

included in XCCat for creating and updating description sections. 

Figure 1. Overview of storage model in XML 

Root
Catalog(Year = 2005)

Catalog(Year = 2014)
Editors
Reports
Description
Colleges

ALS

LAS
Editors

ProgramList
Description

Anthropology

COMS

WLC

…

VM

Programs
ABE
COMS

Course Groups

Reports
Description

YTH

Editors

…
…

Reports

…

…

…

(a) Overview of storage model in XML

Description 

Faculty List

Graduate Study
Undergraduate Study

Front Material

(b) Description sections for Com S
Course

Contents

Base is included sometimes 

Fields shown in catalog
Fields not shown in catalog

Approval Status
Proceedings (comments by participants)

Updates is included sometimes 
Fields shown in catalog
Fields not shown in catalog

(c) Architecture of Course element

Editor
… UserID

Password
Role(Approver, Editor, administer)
Last Path

Editors

Editor

(d) Editors 
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• In addition to the above elements, every participant unit has an elements that is specific to 

its needs. The university unit has Colleges and Programs elements than contain lists of names 

of colleges and programs, respectively. The college level participant unit has Program List, 

containing a list of names of programs in which the college has a stake. In Programs 

participant units the Course Groups element will be described shortly. 

2.1. Rendering of text 

A proper rendering of text requires a framework such as a text editor. For maintenance of 

consistency the most important are paragraph styles, character styles, and page styles. These 

are very poorly understood and highly confused in Microsoft Word [8] and highly well 

understood in FrameMaker [9] representing two extremes. A reasonable compromise is 

reached in html technology through the use of Cascading Style Sheets (CSS) to represent 

paragraph styles. It is neither easy nor desirable for course catalog to use these technologies. 

The whole catalog uses only a small number of paragraph, character, and page formats. A 

feather-weight editor with our own XML tags as an integral part of the catalog system is a 

better solution and included in XCCat. The editor renders ordinary paragraphs in description 

sections, course groups, and individual courses. Currently, we have not considered character 

and page styles. 

The editor is based entirely on XML elements of the form <p style = “specific style ”>para-

content</p>. A library of specific style, expressed in CSS like syntax, to be used in the catalog 

is included. Besides information such as font type, size, face (bold, italic, etc.), vertical spaces 

before and after the paragraph, and a feature is that expresses “end this paragraph without a 

line feed”. This helps us realize every field in a course as a paragraph and at the same time 

render the whole course that has visual appearance of a single paragraph. The styles for 

various paragraphs in courses are implicitly hardwired, but in the description sections they are 

chosen from a drop-down list of built-in styles in a library. 

Thus our solution for the editor is entirely XML based which is perhaps the best thing to do: 

even Word and FramaMaker have progressed in this direction. We have not yet included 

character formats. Which means for example that in a paragraph a specific word cannot be 

highlighted, for example by italicizing it. The interplay between paragraph and character 
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formats in Word is confused to such a high degree that in relatively small documents dozens 

and even hundreds of spurious styles are likely to be generated and bewilder a user. On the 

other hand XML technology is so well thought out that a rudimentary addition of character 

styles in XCCat should not be difficult. 

2.2. A single description section 

A description section is simply a sequence of paragraph elements described above. We have 

not implemented nested paragraph styles such as this thesis document that has sections and 

sub sections etc. The appearance of these have to be given by proper choice of a paragraph 

style and enhancing the content. To begin with this is not an unreasonable solution as the 

description sections belonging to any individual participant unit is not very large. In course of 

time more features can be conservatively added to paragraph styles. 

2.3. Course structure, updates, and approvals 

Figure 1.(c) shows the storage structure of container for a course. Every course has a 

Contents element, but some also have Base and Updates element. Of these Updates element is 

very elaborate. The motivation for the structure of a course is rooted in the development 

process of a course leading to its publication. 

The contents element of the course consists of various fields of the course some of which 

are to be displayed in a print copy of the catalog and others to facilitate some organizational 

memory relevant to that course. If a courses is stable, i.e. a course for which no changes are to 

be considered during a catalog year, the Container element suffices. The more interesting case 

is when changes are considered for a course the Base and Updates elements are included. 

During any year Y we have a published version of the catalog that is in effect. In addition 

we have a development version of the catalog for year Y+1 for which the former one forms 

the base. The purpose of the Base element is to maintain a copy of the contents of the course 

in the previous version. The updates element in Y+1 year catalog changes dynamically during 

development, but the Base element does not. The Base element obviously introduces some 

redundancy: the Base in year Y+1 is same as Content in year Y. But this redundancy is 

intentional. It it localizes the entire developmental proceeding which become part of the 

organizational memory of the course that can even be queried. 
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At publication time for year Y+1 it can happen that no changes need to be made to the 

course. In that case Base and Updates elements are removed. This can happen due to several 

situations: e.g. when no change is ever posted or posted changes were withdrawn and no 

memory of this is to be kept. Thus Base never goes through changes for catalog year Y+1 

except it may sometimes be deleted as a whole. 

The purpose of the Updates element is to store all information surrounding the proposed 

changes. Currently we have envisioned it to consists of Proposed Changes, Approval Status, 

and Proceedings. Put together, Contents, Base, and Updates elements can be viewed as a 

central public square for all participant units to help them collaborate in development of the 

course until the eve of publishing deadline. 

Publishing the catalog means publishing the finished catalog for year Y+1 and at the same 

time also publish the development version for the year Y+2. For year Y+1 the Contents are 

recomputed by applying the updates. Base and the Updates elements are not changed. Year 

Y+2 carries the residual pending work that cannot yet be made part of Y+1 catalog. The 

details are shown in Figure 2. 

In the above discussion we have mentioned approved and pending changes. Understanding 

the difference is facilitated by the concept of an approval vector associated with every field. In 

this thesis we have proposed the concept of an approval vector having the format 

( | O O O | ). the first  is to record approval by liaison of a program, the next three O O O 

are for use of a college corresponding to Y | N | D (Y = “yes”, N = “no”, D = “differed”). Only 

one or none of the three radio button can be filled. (If one is inadvertently selected by clicking 

a radio button, it can be cleared by clicking on it again. This is a choice we provide that is 

ordinarily not available with radio buttons.). The last one  is for University’s use. 

Here is how  can be used by a program, possible a department. All faculty can be allowed 

to participate by suggesting changes. Even conflicting changes can be indicated by remarks. 

This can go through some evolution. Finally, the program liaison can edit the proposed 

changes to bring the final version to an unambiguous state and indicate the end of deliberation 

at the program level by checking . Only when this box is checked the colleges administering 

the program should consider the proposal. Such consultation within the department can be 
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done without having to meet in person and without having to use emails. Similarly the college 

can deliberate by posting comments and finally enter Y | N | D. The university can also post 

comments and eventually select  or choose not to. Note that the approval vectors for 

different fields are independent. Some fields may require additional components. In the 

current implementation Dual listing requires approval form the Graduate College. 

It is the approval vector that allows us to partition proposed changes into once that can be 

incorporated into the year Y+1 catalog and those that have to be differenced to year Y+2 

catalog. Note that the approval vector may evolve in future. However, the algorithm to split 

changes among the two catalog years will remain simple relative to the interpretation of the 

approval vector. 

Catalog for year Y 
Com S NNN (the root) 
   Contents: Various fields of the course (modeled as attribute and element children) 

(a) The structure of a stable course 

Catalog for year Y+1 during development 
Com S NNN  
   Contents := Y.Contents 
   Base := Y.Contents 
   Updates: Changes requested in various fields, approval status, and comments 

(b) The structure of a course during development 

Catalog for year Y+1 when Published 
Com S NNN 
   Contents: Y.Contents + approved changes 
   Base := Y.Contents 
   Updates := := Y+1.Development 

Catalog for year Y+2 opened for development 
Com S NNN 
   Contents := Y+1.Published.Contents 
   Base := Y+1.Published.Contents 
   Updates := Y+1.Non-approved updates 

If Updates becomes empty then remove the Base and Updates elements 

(c) Structure of a course at publication of the catalog 

Figure 2. Course organization during development and after publication 
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This is where the advantage offered by XML should become clear. In XML, a local context 

can always be expanded to accommodate something deemed useful and shrunk by releasing 

what becomes extraneous. One also comes close to human perception that when something is 

empty it is simply not there and in that case it does not even make sense to ask certain 

questions. Even a concept goes in and out of existence. The changes in structure can be 

localized without having to go to square one of in the design process. The storage structure 

varies from one course to another and still make them look as homogeneous as possible. The 

algorithms to accomplish organizational tasks would be simple having the minimum local 

context that can be easily expressed syntactically. 
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CHAPTER 3. USER INTERFACES AND IMPLEMENTATION 

In last chapter, XML-based storage model for XCCat prototype has been introduced. A 

common GUI is available for the use of all participants. The GUI consists of two vertical 

panes. The XML elements in the storage are shown in a tree format in the left hand pane in a 

format that is intuitive to a user. Internally the physical element may differ from how it is 

displayed for user.   

JTree is used to create a customized display of the contents of the XML-based catalog 

document in a tree format in the left pane. The labels for nodes, their designation as leaf or 

Figure 3. When “Com S” node is clicked by the user 
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non-leaf, and their inclusion non-inclusion in the tree are customized. JTree adds + / - before 

the labels of non-leaf nodes to allow a user to expand / collapse them. What is shown in the 

right hand pane when a node is clicked can also be customized. 

A participant can click on any node at year level or below in order to view its contents. As 

an example the result of clicking on Com S, a program is shown in Figure 3. Thus the entire 

catalog is visible to all participants. On clicking a node what is displayed varies considerably 

from node to node and tabulated in Figure 4. It is seen that in every case the most logical 

interpretation is displayed. A user having editing privileges can continue and edit without 

going through any extra steps. There are five such cases allowing editing. The case of course 

group is simple and it is explained completely in the Notes column in the table. The remaining 

four are covered in detail in separate sections below.   

3.1. Editing a specific description item 

As we mentioned before we could have simply allowed a single item called Description. 

But often different people are in-charge of different “parts” of it that we have termed 

description items or simply items. For example, in a program description, the list of faculty 

can be considered an item. (At Iowa State this has traditionally been provided by the Provost’s 

Office.) Other examples of in computer science program are ones that are titled 

“Undergraduate Study” and “Graduate Study” that happen to be under the jurisdiction of 

undergraduate and graduate curriculum committees, respectively. Thus the ability to divide 

Description into items and naming them appropriately would help a program manage it better. 

The choices of items will vary among programs, colleges, and university. Internally an item is 

simply a sequence of <p style=”?”>content</p>. The WYSIWYG editor will only display the 

contents and use the associated paragraph styles. The styles are represented CSS style. If one 

is satisfied the item can be saved by pressing [Save] button to save the edits. 

3.2. Editors elements 

Every participant unit: university, a college, and a program has an Editors element. Any 

participant can click on an Editors element to see its contents. The contents are formatted as a 

form as shown in Figure 5. In the current version, all Editor elements can only be edited by 
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Figure 4. What happens when elements in XML tree are clicked upon

Clicked 
element 

What is displayed Notes

Catalog Year The print version of the entire catalog Cannot be edited. 
Possibly some performance issues.

Colleges Combined print version of all colleges XML can be edited manually. Need to 
update the list of colleges should be rare. 

A specific college Print version of information about 
college 

The element cannot be edited at this level. 
List of programs can be updated manually. 

Programs The entire print version of all programs 
including descriptions and courses. 

(a) There is possibility of some performance 
issue in displaying entire contents. (b) XML 
can be manually edited; the need to update a 
list of program names would be in-frequent. 

A specific 
program

The print version of the program 
including description and courses. 

Cannot be edited at this level. 

Editors A custom-designed GUI panel contains 
the list of editors and privileges. 

Currently only Catalog Administrator can 
enroll editors. See Section X.Y.

Reports A custom-designed GUI panel contains 
a list of all queries, including their 
informal description and XQuery code. 

All can browse, execute, copy queries, and 
save reports. Only the participant unit can 
update. See Section X.Y. 

Description The combined print version of all 
description items 

Cannot be edited at this level. 

A specific 
description item

The print version of the item Someone internally assigned by a 
participant unit to the item. See Section X.Y.

Course group Print version of the title of the group 
followed by a list of courses 

The title can be edited and a number for a 
new course can be created by starting with a 
right click. Courses in the list cannot be 
edited at this level. 

A specific stable 
Course 

Print version of the course By definition it will not be edited. 

Root of a specific 
course being 
updated 

Print version of the course Automatically changes only at the time of 
publishing the catalog. 

Base element of a 
specific course

Print version of the Base course Remains frozen for years Y+1. 

Updates element 
of a specific 
course 

A formatted form. This changes with deliberations about a 
course proceed and visible to all. 
Collaboratively edited by many parties. See 
Section X.Y.
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one university level central authority, called Catalog Administrator, or simply Administrator. 

The Administrator can edit any Editors element to manage enrollments of participants and 

access control. 

A participant has a name, a login-id, and role. The roles are Editor, Liaison, and 

Administrator. A program may have several editors, but only one liaison. Colleges also have 

several editor and approvers to share their work. The Administrator also enrolls herself as an 

Administrator. Thus it is always clear who to contact to enroll editors and liaisons at lower 

levels. Some functionality can be added in future at program and college level Editors 

elements to make it easy to initiate such requests. 

3.3. Reports elements 

Reports element is available at every participant level. Anyone can click on any Reports 

element in the XML tree to see its contents. The display consists of a panel that allows 

interesting queries to be maintained, and executed. (See Figure 6.) The queries can be seen by 

all participants at all levels. They can also copy queries (one at a time) and paste them in their 

own Reports element that they have editing privileges for. They can also execute existing 

queries and develop new ones. The queries require and XQuery engine that may need 

Figure 5. Panel for List of Editors
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Figure 6. Panel for maintenance of reports 
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university wide license. When a query is executed the output can be considered a report. A 

report can be stored as a file. All this functionality is included in the Reports panel. Here are 

some examples of queries. 

• List all the name of all programs under the LAS. 

• List number of courses offered by Com S in 2015 Spring Semester. 

• How many credit hours in 2015 Spring Semester. 

• What courses need to be scheduled for next Fall in computer science? 

• How many undergraduate courses are offered by each program? 

• What new courses were introduced last year? 

• How many credit hours have been added (or reduced) in the whole catalog? 

• What is the approval status of all courses? 

• List the history of prerequisites for Com S 311 in last 5 years. 

• List names, emails, roles, and affiliation of all editors. 

Note that some queries take advantage of the fact that the catalog system in XCCat covers 

several years. XQuery is a very powerful query language compared to which SQL seems 

rather primitive and simplistic. After some learning curve, XQuery queries, due to natural 

structure of XML documents, are actually easier to write than SQL. All participants do not 

have to develop expertise in XQuery or XML. The queries can be developed by technical 

staff. The XCCat prototype makes it easy to share queries among participant units. A query 

developed by one program may be interesting to other programs and may require minimal 

changes. An XQuery query can be used to create reports that are internally formatted as text 

files or html documents. If necessary other tools, such as XSLT, or DOM can also be made 

available from the Reports element in future. 

3.4. Course elements     

Clicking on a course number (e.g., Com S 311) will simply display the print version of the 

course. If a course is stable, i.e., if it is not undergoing a change in the catalog cycle, there is 

no further information in the course element. Internally it is a complex element that may 

contain other fields that are not displayed. An example is Teaching Department for the course. 

For example some courses in software engineering are taught by Computer Science 
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Upper part of Figure 7 
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Lower part of Figure 7

Figure 7. Panel for enterprise-wide deliberations on a course 
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Departments, some by EE CprE, and some by other departments. In addition, we have also 

included a field called “Archival Notes” that helps in maintaining organizational memory 

related to a course. The courses that are changed in a catalog cycle include significant 

opportunities for retaining organizational memory. This mechanisms can be further extended 

in future. 

It is the Updates element that is the most interesting part of the XCCat prototype. Clicking 

on it opens a panel shown in Figure 7. Its consists of three parts: contents, Approval vector, 

and Proceedings. Contents consists of fields as in any course element. With every field an 

approval vector is included. Some fields mat have additional approval components. The 

Proceedings consists of comments. The contents are edited by a program, The parts of 

approval vector are shared by program, college, and university having authorization for 

specific parts of the Authorization vector. The comments can be posted by any participant and 

does not require even program level authorization. 

The panel creates a town-square like environment where different participants can come 

together. Comments can be added by a college stating why a certain field does not meet an 

approval. The program can then change the field to renew its request for approval. The  

system can be extended further to make this process more user friendly. The whole 

proceedings can be saved. But this can sometimes become overwhelming and actually 

become a distraction. Therefore we allow comments to be deleted. Sometimes multiple 

comments can be collapsed together. In the end, before the eve of publishing, one can go 

through a cu-ration process and only retain the comments that help maintain organizational 

memory. 

When the catalog is published, a course element is recomputed. The storage architecture 

makes these computations completely local. At the end of the yearly cycle the finalized 

catalog for year Y+1 and development version of catalog for year Y+2 are published 

simultaneously. 

3.5. User interactions in the course panel 

As a user interacts with the panel for a specific course the XML representation needs to be 

updated. The fields are divided into several types. The procedure for performing the updates 
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vary from type of field to another. A good choice for pairing GUI fields and XML elements is 

an interface called Facade. Different implementation of facade facilitate handling of different 

types of GUI fields. For example, whereas updating title and prerequisites fields require a 

certain instance of a facade, updating cross listing and offering fields require a different 

instance of a facade. 

In order to process the XML document containing the catalog it is first loaded in main 

memory where it is represented as a JDOM object. 

When editing request of a course is invoked, the corresponding element such as a course or 

a program is identified by internal XPath query on Jdom document. Then a Version Facade, 

which contains a complete set of facades for all atomic aspects of this course or program, is 

created by pulling all information needed under the element in Jdoom dcument. In the 

subsequent step, all Editable Components corresponding to the facades are created on and 

shown in the editable panel of GUI. The Figure 8 shows a typical architecture of data model 

for Editable panel of course information. An item, such as “course title” or “curse number” is 

an atomic and editable aspect for a course. It has a corresponding Facade in Version Facade 

and an Editable Component in Editable Panel. Any change that made by editor or approver is 

listened to locally by Editor Component and uploaded to the corresponding Facade. At same 

time, Facade itself will check whether it has it has the same information as aspect in JDom 

document. If not, a save button on Editable Panel will be enabled and synchronization can be 

Figure 8. Diagram for all component
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made by clicking on the button. The synchronization process concludes an override action of 

the information in corresponding element of JDom document, and a save action from JDom 

document to XML file on disk. 
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CHAPTER 4. DISCUSSION 

No high level tools can solve a problem that cannot be solved in assembly language of any 

computer. The high level tools help in simplifying the design, development, implementation, 

and ongoing maintenance of applications. No one platform is suited for all application; so for 

a given application appropriate choice of a platform is important. This thesis demonstrates 

that XML is a hand-in-glove match for a course catalog system. 

Normally a catalog is confined to information about curriculum and courses for a given 

year. In our XML-based representation, the organization of a yearly catalog mimics the 

organizational hierarchy consisting of university at the top and colleges and programs below 

it. A print version of the catalog becomes a very simple exercise and this is not our major 

preoccupation. We want not only meet but exceed the features and advantages offered by 

paper-based technologies and try to harness the full potential of computer and connectivity 

technologies. Use of XML makes a yearly catalog a live database that can be queried in 

powerful ways. Yet, this is just the starting point. We extend this in several orthogonal ways 

to provide an enterprise solution for bringing the whole catalog process under an single 

umbrella. We bring proposals for new courses – that may or may not be experimental – 

seamlessly under the catalog. 

In order to include the information about changes in course content under a yearly catalog, 

we add two elements to a course – one containing a local copy of the old version of the course 

and the other containing all proposed changes. At the time of publishing the new version of 

the course is computed locally by applying changes to the old content. The two child elements 

are not removed. This also supports powerful query of all changes in courses made during a 

catalog year without having to look elsewhere. Localization of context is great benefit offered 

by XML. The organizational memory of changes to courses becomes clear without having to 

resort to the previous year catalog. The query also becomes easier and eliminates need for a 

join operation. 

For every field in a course that is being changed, we also add a vector showing the status of 

approvals. This allows every field to be treated independently as the deadlines and the persons 
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who scrutinize changes can vary from one field to another. The GUI shows the current status 

of a course. It also allows what if scenarios implemented as buttons for on the fly visualization 

of current version, the proposed version, and the approved version without having to publish 

the course. 

A list of participants is included at every organizational unit. The enrollment of editors is 

currently viewed to come under the university level catalog administrator. All participants are 

visible to everyone but the enrollment is authorized by the Administrator. 

We also add a discussion board for every course that is undergoing a change. Anyone can 

post observations, suggestions, and reasons for the lack of approval in form of comments. 

This creates an atmosphere that is akin to a public square. The square remains alive during the 

entire development process. This almost eliminates the need for emails, that would simply be 

a horrible way of conducting such business. The square encapsulates all the organizational 

memory about the proceedings in one central place for every course. It always remains in a 

collated and complete form. There is no need to browse spaghettis of emails to find the current 

status of the approval process. 

Capability is also added for storing useful queries and development of new ones. This is 

available at all organizational units: university, colleges, and programs. XQuery is a powerful 

language and this feature would allow a report to be prepared at the click of a button. 

Everyone has read, execute, and copy access to queries belonging to others. This allows any 

organizational unit to search for queries that could be useful to them and copy and easily adapt 

the queries to their environment. 

In summary, an yearly catalog includes information about curriculum, courses, people 

participating in the catalog development process, the proceedings of the course development, 

a record of all changes, reporting capability for query of contents of the catalog and the 

changes. No separate handling of new course proposals and experimental courses is required. 

The information remains in a collated form, eliminating the need for emails and in some cases 

even physical meetings to conduct the catalog related business. Minimum information is 

entered and what is not absorbed in the next catalog carries over for consideration for to the 

catalog for subsequent years. Not only the timetable for entering information is simplified, but 
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once entered, the system does not forget it. Information remains in a collated form and greatly 

simplifies the approval process. 

Having summarized the concept of a yearly catalog in XCCat we observe that conceptually1 

we have extended the concept of a catalog to include catalogs of past years, the current year, 

and the development version of the catalog for the following year. This is beneficial as a 

student overlaps several yearly catalogs. In XML such multi-year integration is a simple 

exercise. This also helps us monitor and report catalog information beyond a single year. For 

example what is the year by year rate of increase in credit hours in each program at the 

university. 

1. All aspects of the catalog have not been implemented but a substantial core has been completed. Fur-
thermore, the path to complete implementation is fairly clear. 
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CHAPTER 5. PRIOR AND RELATED WORK 

 The idea that XML could be used to turn a course catalog into a live query-able database 

was first pursued in Com S 562, a course in Database Implementation at Iowa State university 

with Rahul Ravindrulu several years ago [6]. 

Serious implementation was started by Carl Chapman, an undergraduate student in 

Software Engineering, during the 2012-13 academic year [7]. He initiated the GUI design 

with the left pane showing the catalog as a tree. In most cases. on clicking a node in the tree 

would display the contents of the node in the right panel. The right panel for updating of 

course field-by-field via a form was initiated by him as well. This form also allowed users to 

post comments. The framework for executing the queries was also initiated by him. 

Under this thesis we have expanded the system developed by Chapman. The structure of the 

course was expanded to include the Base and Update elements to facilitate organizational 

memory of changes. The field level concept of authorization was also added to courses. 

Concept of publishing has been developed here. The course level publishing is partially 

implemented here but the catalog level published needs to be carefully expanded upon and 

implemented. 

Redesign of fields in course description was undertaken with the help of the catalog 

administrator at ISU. The graphical representation of these for updating required considerable 

thought. The original data was in a spreadsheet which was first cleaned up a bit, then 

converted to a spreadsheet in XML format, and finally a clean loading in to an XML 

document was undertaken. It is interesting to note that the loading was done by a query in 

XQuery language without direct use of DOM API. This is quite remarkable as XQuery is a 

very high-level language. (High level means more user friendly but not more powerful). 

Ability to view existing, proposed, and currently approved versions was added to Course 

Development Panel. This required computations relative to Base, Updates, and state of 

approvals to be implemented. A simple algorithm was obtained due to locality of storage 

afforded by XML. The buttons help in course development process. 
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For text and course description editing and rendering a feather weight embedded editor was 

developed that is very easy to use. Concept of paragraph formats was developed. A library of 

paragraph formats in CSS-like syntax was developed. An interesting component of a 

paragraph format is one that suppress the line feed after the paragraph. Using this feature the 

course description gives appearance of a single paragraph, which internally consists of several 

paragraphs, one for each field of the course. This allows rendering of text passages and 

courses to be treated uniformly. 

It is proposed that the catalog should span several years. When publishing a catalog, the 

development version of a future catalog is supposed to be published immediately where 

pending work is incorporated so the catalog development process never needs to be 

interrupted. 

This work seems to have no lineage other than the zero information loss model [10]. This 

has been explained in Section [6]. 
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CHAPTER 6. CONCLUSION AND FUTURE WORK

We feel that XCCat offers a viable road-map, a fair part of which has been implemented. In 

this section we highlight some features and a enumerate of directions in which it can be 

continued. 

It is clear that all users of the catalog see and interact with the parts they need to and also see 

the big picture where their role fits. The big picture in front of a user consists of two parts that 

can be termed vertical and horizontal. The vertical part is the hierarchy where a user fits, and 

in an unexpended view this is part is rather small. The horizontal part for a college and 

program are other colleges and programs. Their visualization can suppressed without 

disturbing the big picture qualitatively. This needs some thought, development, and 

implementation. The print view that is obtained when one clicks on the root of a given year is 

normally what we think of the public view. Thus public can be defined as a user who only sees 

the root of the XML tree. Different users see different parts of the tree. A similar concept of a 

user has been introduced in [10]. 

There is only one “goto” place for all users of the catalog including the public. To address 

security and privacy issues, parts of the catalog can be mirrored at different places without 

conceptually changing the one goto place. The one goto place includes what is conventional 

as well as new course proposals and experimental courses. Moreover, catalogs spanning 

multiple years are brought under the same root – that is the go to place. This destination 

remains stable and does not change with time either. 

Additions, deletions, and updates to courses have been modeled in as uniform manner as 

possible. This should help in maintenance of XCCat. The concept of publication has been 

developed carefully and the development version of a future catalog is supposed to be 

published simultaneously when publishing the next catalog. The catalog development can be 

thought of a linear ongoing non-stop process where changes that meet approval are simply 

removed once a year. 

The system has memory of past, present, and future (consisting of pending changes). One 

can query for the not only the information but also changes and who made those changes to 
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the information. By executing queries, reports can be generated on the fly for the organization 

memory. Even development of queries becomes an ongoing process. The queries can be 

shared among users for immediate use, customization, or further development. The concept of 

context can be encapsulated in queries to make them independent of programs and colleges. 

The concept of approval vectors greatly eliminate the need for tracking in rigid ways. A 

lower user in the hierarchy simply deposits information any time he/she finds convenient and 

the upper users simply pull the desired information for proceeding with approvals. 

The user interface is intuitive. One simply clicks on nodes in a tree to browse and edit. 

Every node has the most logical behavior possible to cater to user needs. Currently even to 

find who are in-charge of which portions is not easy, there are multiple goto places that are not 

stable. Currently all editors are enrolled by university level Administrator. In future some of 

this control could be released to program and colleges to provide them more autonomy and 

internal flexibility and encourage greater collaboration. 

A feather-weight editor has been included. This can be used directly to create description 

items and render them. It is also invoked internally to render print version of courses. A 

catalog of paragraph styles in CSS-like syntax is maintained and can easily be extended to 

include any new paragraph style. Our light-weight editor does not include character styles. 

Even a rudimentary support for character styles would be a good enhancement. It would be 

good to add a spelling checker. 

How to host XCCat has not been addressed. We imagine a centralized location where it can 

be housed. We have not looked deeply into performance issues. JDOM requires an XML 

document to be loaded in main memory. We do not see this as a serious obstacle as size of the 

catalog document is rather small. We expect the entire catalog for one year to be about 20 

MB. Even 10 year coverage would span only 200 MB. Nevertheless this issue must be 

examined carefully. 

Some embedded technologies, e.g. an XQuery engine would need licensing. Although we 

have a starting point for the approval process, but this would require a more detailed scrutiny. 

However, the use of XML ensures that any changes or addition can be absorbed easily. 

Recovery and concurrency should also be studied and implemented. We do not expect the 
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concurrency (parallel use by multiple users) to be problematic. Locking at course level would 

perhaps yield a good solution. We have allowed the description belonging to the university, 

colleges, and programs to be broken into smaller items that can internally be assigned to 

specific individuals. These items can also be considered granules for locking. 

Use of XML has simplified the structure of a course quite significantly when compared to 

its spreadsheet based representation. For example, cross listing of a course has been modeled 

as a simple element allowing one or more courses to be cross listed. In the spreadsheet it 

consisted of 10 columns to allow up to 10 courses to be cross-listed. In XML all the cross-

listed courses are reached via a simple variable, something that becomes far more complicated 

in a spreadsheet. Many such examples can be given. 

Once a good Catalog project is successful, other systems can also be considered for XML-

ization. This would make sharing of information easier and perhaps more automatic. For 

example schedule of classes to be offered every term, can benefit from it. 

Many other features can be added. For example, the deadlines for changes in a course vary 

from one field to another. A button can be added to display the deadlines in their physical 

context where the fields appear. An XML Schema should be developed to ensure that the 

catalog meets the organizational requirement. For example this can ensure that all cross-listed 

and dual-listed courses actually do appear in the catalog in appropriate places and form. What 

cannot be captured by XML schema has to be validated manually. It would be good to add the 

concept of mailbox for users where they can see pending work and deal with it in a stream. It 

would be good to add tabbed displays when appropriate. On the other hand users’ need for 

tabs is greatly eliminated as these are seen in the XML tree on the left. 

Once a catalog system is in place its scope can be expanded. For example accreditation of 

programs is a major preoccupation at universities. The catalog can perhaps be queried in the 

XQuery query language to verify if a program is meeting the accreditation requirements. The 

understanding of the requirements would need to be xml-ized for this to work properly. It 

seem that at the time of publication of a catalog such auditing can be done at university level 

for all programs. Another example is what is called Degree Audit at ISU. This is a procedure 

that allows a professional advisor to make sure that a student is progressing normally and will 
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complete degree requirements in time. This would require information about the courses taken 

by the students to be understood more clearly. Another example is the schedule of classes. 

The results obtained in the catalog project are similar to those in [10] where the concept of 

zero information loss was introduced in temporal databases. There a model and a query 

language framework was provided where data is never lost, and one could query data, 

database history of data, query updates and circumstantial information them, and query past 

queries. The term zero information-loss was used to capture the contents of a text-based 

transaction logs by converting them into databases that could be queried. The zero 

information referred to the fact that the whole transaction log could be restored from the 

database character-by-character and hence there is no loss of information relative to the 

transaction log. This work also introduced the concept of a user based upon what the amount 

of information that could be seen by the user. The zero information loss is akin to what is now 

known as provenance in databases. 
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APPENDIX A. WHY XML IS EASY TO USE 

XML brings machines and humans closer through rich vocabulary that is equally well 

understood by both. For example in an XML-based library, the list titles of books authored by 

Neal Stephenson may be captured by the XPath expression //book[author =“Neal 

Stephenson”]/title. (See [1]). This can be considered analogous to an expression such as ( b + 

sqrt (b2 - 4ac)) / 2a. When compared to the XPath expression, an SQL-based solution will be 

enormously more complex. If one were to express in Java, plausible code in JDOM is shown 

in Figure 9. One may view the complexity signature of the Java code as {{{{}}{}}{{}}}, 

where {} represents a loop or a conditional. This is far more complex than linear code 

{}{}{}{}{}{}{} and nested code {{{{{{}}}}}}}. Furthermore, the XPath code would remain 

robust under some changes in structure, e.g., if the library were to be replaced by a consortium 

of libraries. 

ArrayList result = new ArrayList();
NodeList books = doc.getElementsByTagName("book");
for (int i = 0; i < books.getLength(); i++) {
Element book = (Element) books.item(i);
NodeList authors = book.getElementsByTagName("author");
boolean stephenson = false;
for (int j = 0; j < authors.getLength(); j++) {
   Element author = (Element) authors.item(j);

   NodeList children = author.getChildNodes();
   StringBuffer sb = new StringBuffer();

           for (int k = 0; k < children.getLength(); k++) {
              Node child = children.item(k);
              // really should to do this recursively
              if (child.getNodeType() == Node.TEXT_NODE) {
                      sb.append(child.getNodeValue());
               }
         }
       if (sb.toString().equals("Neal Stephenson")) {
                       stephenson = true;
                       break;
        }
}
if (stephenson) {
    NodeList titles = book.getElementsByTagName("title");
     for (int j = 0; j < titles.getLength(); j++) {
     result.add(titles.item(j));
     } 
}

} 

Figure 9. JDOM Java code for a simple XPath expression
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