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CHAPTER 1. INTRODUCTION

This chapter explains the centrality of verification and testing to the software industry, the

contribution of this thesis, and an overview of related work.

1.1 Goal of this thesis

Society is coming to use and rely more and more on computer systems, such as safety

critical systems, business systems, home appliance systems, entertainment systems, and mobile

systems. Our dependence on such computer systems raises people’s awareness of the social

importance of the software quality in these systems. The quality of software is eventually

determined when a product is released. A product manager usually has to make the decision

on when to release a product using collected software quality data; however, because software

is substantially complex, methods for measuring software quality are sometimes inadequate.

Consequently, a product manager may be pressured to make a release decision to meet the

product release schedule with uncertain software quality. This thesis proposes a statistical

software testing technique [23, 42, 24, 25] to provide a rationale for software quality to help

make this management decision.

Software quality is measured with verification and validation. Verification is a method used

to ensure that a product is built correctly. Validation is a method to ensure that the correct

product is built [6]. While both methods are important, this thesis will focus on verification.

Well-known software verification techniques are testing, review, program proving, and model

checking. This thesis will focus on testing. The number and importance of test cases that are

performed in testing and the absence of errors during executing those test cases gives a measure

of the confidence of software quality.
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The problem of testing is that the combinatorial number of input values is exponential on

the sum of the number of input variable bits, which is large; thus, testing all combinations of

input values is usually impractical. Hence, many testing approaches to determine important

testing input value combinations have been proposed. The black-box testing techniques [5,

26] in particular deliver benefits for testing large and complex software, since they only use

specifications that abstract away details of source code.

The first issue of black-box testing is how to identify use cases to test. A use case is a

detailed description of a sequence of transactions between system and actors that exist outside

the system. Black-box testing lists testing input patterns that can be derived from specifica-

tions, such as requirement specifications or module interface specifications. In industry, testers

usually identify use cases with the prediction of possible usages of the product; however, since

testers perform the usage prediction individually and ad-hoc, the prediction depends on the

testers’ individual skills and preferences, which can cause uncertain software quality. Several

researchers have suggested methods for improving this use cases identification. Jacobson [16]

introduced a systematic process to identify use cases. His process incorporated UML use case

diagrams and produced the use cases. However, since the description of use cases is written in a

natural language, which has ambiguity, the exhaustive listing of all use cases is difficult. Some

researchers proposed identification methods using formal specifications such as Z[2], VDM [1],

and state machine [8]. By utilizing its formalism, they could generate an exhaustive list of

use cases that are specified. However, since most specification languages are difficult to write

because of their complicated model construction, they are rarely adopted in industry. Among

them, Trace Function Method (TFM) is reportedly beneficial [33, 3, 37, 29]. It is formal but

relatively intuitive, conforms to the information hiding principle [31], and has reader-friendly

tabular format. In this thesis, we identify use cases with TFM specifications.

The second issue of black-box testing is how to prioritize test cases. The exhaustive listing of

use cases of a large software component yields an intractable number of use cases. Development

organizations have a limited time for testing cases; thus, we have to prioritize them to reduce

the number of test cases to perform. Whittaker [42, 9] modeled the system as a discrete-time

Markov chain where the transitions are user operations, and generated prioritized test cases
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with a random choice of transitions in the Markov chain; however, they left the discussion

on how to identify states and transitions of the Markov chain as an open question. Woit [43]

generated prioritized test cases from a list of pairs (event, class of system’s executed events)

with an occurrence probability. The event is an invocation of an access program of a component.

Although she introduced classes of executed events, she left room to discuss how to identify

those classes. Musa [24, 25] proposed the operational profile, which profiles each user operation

with its occurrence probability and importance and prioritizes user operations to test. Although

this approach is reportedly beneficial [25], the identification of the set of user operations relies

on an informal refinement process, which makes completing an exhaustive list of user operations

a complex task.

In this thesis, we propose a black-box testing method that derives important test cases with

usage statistics, and enables a product manager to make a release decision with a rationale,

“the important use cases specified in the usage statistics are tested and have no error.” First, we

propose a method to specify components with TFM module interface specifications. Then, we

propose a way to associate module usage statistics with the TFM module interface specification.

Finally, we propose a method to generate a prioritized list of black-box test cases for component

testing and integration testing [5] from the TFM module interface specification with usage

statistics.

1.2 Structure of this thesis

This thesis consists of seven sections. Chapter 2 describes the background of this research.

Chapter 3 explains the proposed technique. Chapter 4 evaluates the proposed technique with

an example application and chapter 5.1 discusses the limitations and improvements. Chapter

5.2 describes related work and comparisons with the proposed technique. Finally, chapter 5.3

summarizes this research, and suggests areas for further research.
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CHAPTER 2. BACKGROUND

2.1 Software Testing Technique

Testing approaches are usually categorized as follows: unit testing, component testing, in-

tegration testing, system testing, acceptance testing, and regression testing [5, 26, 11]. Unit

testing checks the correctness of behaviors of the smallest piece of software that can be inde-

pendently tested. Component testing checks the correctness of behaviors of an integrated

assembly of one or more units/components and associated data objects. A software unit is

usually a module1. A component is a set of modules. In this thesis, we consider that unit test-

ing is a particular case of component testing; thus any method applicable to component testing

is applicable to unit testing. Integration testing checks the correctness of interactions among

the components such as inter-component calls, returns, and data handling. System testing

checks the existence or absence of required properties including non-functional properties such

as performance, usability, and security. A built product or a major component is tested in

system testing since nonfunctional properties usually can only be tested after the product or

major component is built. Acceptance testing checks the conformance of the system to the

latest user needs. When requirements changes are included in software, regression testing

shows, by repetition of tests, that the software behaviors are unchanged except for the required

changes. Although a testing procedure is usually ad hoc and individualized by the software

application and organization, most organizations conduct their testing approach in the order

described in Figure. 2.1 when they test a new product or changes. In this thesis, we focus and

improve component testing and integration testing.

In component testing and integration testing, all errors2 can be detected if all the possible

1Software projects are organized as a set of work assignments. A module is a work assignment [31].
2An error is a design flaw or deviation from a desired or intended state [19]. A bug (fault) is an incorrect
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Figure 2.1 Test Procedure

combination of input values are tested; however, testing all is usually impossible because the

combinatorial number of input values is too high. For example, an input value in an integer

variable domain has 2b values where b is the number of bits for an integer value. If we have n

integer variables, then the combinatorial number of input values is 2b × 2b × ... = 2nb. Thus,

the number of the combinations of input values is exponential on the number of the bits of

input variables and the number of input variables. Hence, we have to select only a partial set

of input value combinations in practice.

A test case is a pair of input history3 and output values under a program execution envi-

ronment. Test cases are selected using two approaches: black-box testing (functional testing)

and white-box testing (structural testing) [5, 11]. Black-box testing is an approach to develop

test cases for each equivalence class4 of input variables. The equivalence classes are documented

in software specifications. White-box testing is an approach to develop test cases for each

interesting code structure, such as conditional branches in source code. The limitation of white-

box testing is that one cannot determine whether all equivalence classes are tested, since the

source of test cases is the source code, which says nothing about the equivalence class specified

step, process, or data definition in a computer program[15]. A failure is an inability of a system or component
to perform its required (intended) functions within specified performance requirements [19]. Errors lead to bugs,
and bugs lead to failures.

3Each input variable is a time function and has a history.
4An equivalence relation is a relation that is reflexive, transitive, and symmetric. An equivalence class

is a class for objects that satisfy an equivalence relation. If we partition the input value domain into equivalence
classes (equivalence classes of input values), the testing result on one object in an equivalence class is the
same as the testing result on any object in the equivalence class.
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in the specification. The limitation of black-box testing is that even if all equivalence classes are

tested, one cannot detect errors that are caused by incorrect coding for some input value com-

binations in an equivalence class. Accordingly, both test case development approaches should

be used as long as possible; however, as the number of input and output variables, i.e. the size

of component, grows, the total number of white-box and black-box test cases becomes, again,

intractable. Therefore, many researchers have proposed approaches to selecting an important

partial set of test cases. Among them, black-box testing especially delivers benefits to this

problem solving, since it does not use the knowledge of source code, which is too detailed and

large, but uses software specifications that abstract away details of source code.

As explained, black-box testing identifies equivalence classes and tests them. As in section

1.1, the first issue was identifying use cases, i.e. equivalence classes of input variables. 5

Many researchers have proposed formal specification languages to specify equivalence classes

of input variables exhaustively; thus, section 2.2 explains the formal specification technique.

The second issue was prioritizing and selecting test cases. Statistical software testing is a

testing method that performs the test case prioritization with usage profiles. Profiling is a

program analysis technique that measures characteristics such as function call frequencies of

usage and memory usage and produces a usage profile that shows the statistics. Section 2.3

summarizes this statistical software testing technique.

5Note the relation between a use case and an equivalence class of input variables is one-to-one mapping.



7

2.2 Formal Specification Technique

A description of a system is written or spoken accurate information about the system[32].

A document of a system is a written description, and should always have official status. A

specification of a system is a description that specifies the required and intended (designed)

properties of the system. As software and development organizations become larger, document-

ing specifications takes on a new significance: specification documents help a team of engineers

1) design; 2) review the design; 3) maintain the software with low cost; 4) make responsibilities

clear; 5) make software easy to inspect, hence, easy to change and reuse; 6) reduce design flaws

from incomplete design; 7) derive black-box test cases. Although the set of documents differs

by development processes or development team organizations, development projects produce

the following specification documents: 1) system requirements; 2) module structures; 3) mod-

ule interfaces; 4) module internal design. As for the component testing and integration testing

use, module structure and module interface specification documents give testers the correct

(required and intended) behaviors of modules.

Although several definitions of the term, module exist, we use Parnas’ definition. Software

projects are organized as a set of work assignments, and a module is a collection of programs

to be implemented as a work assignment [31, 28]. Similar but different terms are component

and class. In this thesis, we make a clear distinction between component, class and module.

A component is a collection of programs distributed as a unit and used in several systems

without modification [33]. A class in Object-oriented programming is a software element

describing an abstract data type6 and its partial or total implementation [22]. In other words,

a module is a unit for work decomposition, a component is a unit for program deployments, and

a class in Object-oriented programming is a unit for design or implementation. A module may

include several components or classes. A component may include several modules or classes.

A class may be used in several classes or components.

Modules are designed using the information hiding principle[31]. Information hiding7 is a

6”An abstract data type is a set of objects defined by the list of operations, or features, applicable to these
objects, and the properties of these operations.”[22]

7Encapsulation is a mechanism to bundle data with functions operating on that data. On the other hand,
information hiding is a design effort to enable independent development and independent changes.
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design principle in which each module is designed to hide its design decisions that are difficult

or likely to change in future, so that one can change those decisions later, separately from

the rest of modules. The design decisions may be concerned with data structures, procedures,

hard-coded parameters, algorithms, etc.

A module is specified with a module interface specification, which may use a formal specifi-

cation language. The module interface specifies input-output relations of the module. Many ap-

proaches for writing module interface specification have been proposed [40]. These approaches

can be generally categorized by the orientation of their approach.

• State-oriented:

Z [2] or VDM [1] is a language that describes system with input values, output values,

state variables, and actions that changes the state variable’s value.

• Process-oriented:

LOTOS, Estelle, or SDL [17] is a language that describes system as a set of processes.

• Operation-oriented:

Algebraic representations, such as Type Algebra Theory, Larch/CLU, and Initial Algebra

Theory, are languages that describe the semantics of operations with a set of axioms [40].

• Behavior-oriented:

Trace representations, such as Trace Assertion Method (TAM) and Trace Function Method

(TFM) [33, 3, 37, 29], are languages that describe outputs. TAM describes a set of ax-

ioms about traces, which is a history of inputs and outputs, and the final output. TFM

describes outputs as functions on traces.

Whereas all representations except trace representations require the identification of inner-

module data, trace representations require the specification of only externally observable mod-

ule inputs and outputs. Thus, trace representations conform to the information hiding principle,

which hides the inner design of modules, and are suitable for the module interface specification.

In this thesis, we use trace representations.
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Trace Assertion Method (TAM) identifies canonical traces and equivalence of traces [4].

TAM is not intuitive for engineers in practice because it is axiomatic. Parnas and Dragomiroiu

proposed the Trace Function Method (TFM) [33], which specifies only output values with

predicates on traces. Since TFM does not have canonical traces and equivalences of traces,

it is a direct representation to the module input-output relations, and TFM has proven its

usefulness in limited industrial cases [29, 30, 3, 37]. In this thesis, we utilize this TFM.

Then, how can we write and read TFM module interface specification? In trace representa-

tions, a software module is viewed as a state machine where state transitions occur at discrete

points of time. TFM introduces the following terms [33]:

• An event is a transition trigger of the state machine. At an event, a software module

performs the combination of the following:

– Reading all of the input variable values;8

– Changing the inner state of the state machine;

– Updating some of the output variable values.9

• An abbreviated event descriptor 10 is a set of tuples:

– Input variable name and value before the event;11.

– Output variables name and value after the event.

In this thesis, we call an abbreviated event descriptor an event descriptor for simplicity.

A possible syntax of event descriptors is described in BNF as follows:

8These variables include global variables and input variables via access program arguments. Each variable is
considered as a time function and has a value at an event.

9These variables include global variables and output variables via return values of access programs.
10A full event descriptor is values of all variables before and after the event. Variable values unchanged by

events are also included in full event descriptors.
11Access program names are considered as input variables. The value of the variable is the name of the access

program.



10

event descriptor ::= (PGM : func, parameter list)

func ::= Name of an access program

parameter list ::= parameter, parameter list|parameter|

parameter ::= ′input variable < type >: value|output variable′ < type >: value

input variable ::= Name of an input variable

output variable ::= Name of an output variable

value ::= constant

The letter “ ” means an empty string. “type” includes all data types and abstract data

types that typed programming languages such as C,C++ and Java accept. With this

syntax, an example event descriptor that has a function name myfunction, an input

variable myin, a global variable12 myglobal, and an output variable myout is as follows:

(PGM:myfunction, ’myin<int>:100, ’myglobal<int>:10, myout’<int>:30,

myglobal’<int>:10).

• A trace is a finite sequence of event descriptors. Possible representation of the trace with

abbreviated event descriptors is as follows. The period concatenates two event descrip-

tors.

(PGM:myfunction1, ’myin<int>:100, ’myglobal<int>:10, myout’<int>:30,

myglobal’<int>:10).(PGM:myfunction2, ’myglobal<int>:10, myglobal’<int>:100)

This trace is equivalent to the following execution steps:

Step1. myfunction1 is called with myin=100, myglobal=10 and returned myout=30,

myglobal=10.

Step2. myfunction2 is called with myglobal=10 and returned myglobal=100.

• A TFM module interface specification consists of the following:

– A complete description13 of inputs and their data type (section 1 in Figure. 2.4);

12In this thesis, a global variable is a variable that is shared among modules. Note that a global variable
can be an input variable or an output variable

13A description is complete when all required description for the document are described[33].
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– A complete description of outputs and their data type (section 2 in Figure. 2.4);

– A complete description of access programs and event descriptors (section 3 in Figure.

2.4);

– A set of relations of the value of each output variable and the history of events.

These relations are described with predicates in a tabular form (section 4 in Figure.

2.4);

– Auxiliary functions14 that are any functions to simplify the predicates, if desired

(section 5 in Figure. 2.4);

– We may also associate the document with supplemental descriptions, such as design

issues, document review questions, test cases, and others, for software development

processes.

The output behaviors definition (section 4 in Figure. 2.4) specifies a “set of relations

of the value of each output variable and the history of events.” In this definition, the output

values are specified by conditioning the event history with predicates on traces. In this thesis,

we refer to the predicates on traces as trace predicates. Trace predicates and output value

definitions may use the following denotations, which are summarized in Figure 2.2 in detail:15

1) Primitive functions on event descriptors that refer to data in an event descriptor;

2) Notations for an empty trace and the trace concatenation;

3) Basic functions on traces that traverse traces and return some data;

4) Useful function generators on predicates and traces that traverse traces and return

some data that satisfies predicates.

The purpose of the basic functions and useful function generators are to make the predicate

description compact. In addition to these functions or function generators, specification writers

may add more auxiliary functions (section 5 in Figure. 2.4) to make descriptions as compact

and readable as possible.

14An example auxiliary function is inIntegerRange(x) ≡ (Lower bound value of int) ≤ x ≤ (Upper

bound value of int). This function helps simplifying predicates that uses the range.
15More denotations are summarized in Appendix A



12Primitive functions on event descriptorsSyntax Function Semantics ExamplePGM(e) PGM:(event descriptor)→(string) A function that returns the name of theaccess program in the event descriptor e Ife=(PGM:myfunc,'in<int>:100,out'<int>:1), then PGM(e)=myfunc'V(e) 'V:(event descriptor)→(data type of V) A function that returns the value of Vbefore the event of the event descriptor e(V  may be any input variable) Ife=(PGM:myfunc,'in<int>:100,out'<int>:1), then 'in(e)=100V'(e) V':(event descriptor)→(data type of V) A function that returns the value of V  afterthe event of the event descriptor e (V  maybe any output variable) Ife=(PGM:myfunc,'in<int>:100,out'<int>:1), then out'(e)=1Notation for tracesNotation Semantics_ This is an empty trace.T1 . T2 A period '.'concatenates twotraces.Basic functions on tracesSyntax Function Semantics Exampler(n,T) r:(integer)×(trace)→(event descriptor) A function that returns the n th most recentevent descriptor in the trace T.r(n,_)=Undefined. If T=E1.E2.E3  where En is an eventdescriptor, then r(1,T)=E3,r(2,T)=E2, r(3,T)=E1,r(4,T)=undefined.oldest(T) oldest:(trace)→(eventdescriptor) A function that returns the first (oldest)event descriptor in the trace T. oldest(_)=_. If T=E1.E2.E3  where En  is an eventdescriptor, then oldest(T)=E1.p(n,T) p:(integer)×(trace)→(trace) A function that returns the prefix trace ofr(n,T)  in the trace T . p(n,_)=Undefined. If T=E1.E2.E3 where En is an eventdescriptor, then p(1,T)=E1.E2,p(2,T)=E1, p(3,T)=_.subseq(T) subseq:(trace)→(trace) A function that returns the trace T'  suchthat T=oldest(T).T' If T=E1.E2.E3  where En is an eventdescriptor, then subseq(T)=E2.E3.Useful function generators on traces and predicatesSyntax Function Semantics Exampleexist(P,T) exist:(predicate)×(trace)→(boolean) A function that returns true if and only ifthere exists an event descriptor in T  thatsatisfies P , otherwise false If T=E1.E2.E3 where En  is an eventdescriptor, and E1  satisfies P , thenexist(P,T)=true .idx_r_st(P,T) idx_r_st:(predicate)×(trace)→(integer) A function that returns the index of themost recent event descriptor in T  thatsatisfies P. The index starts from 1. If T=E1.E2.E3... where En  is anevent descriptor, and E1, E2, and E3satisfy P , then idx_r_st(P,T)=3 .idx_oldest_st(P,T) idx_oldest_st:(predicate)×(trace)→(integer) A function that returns the index of the first(oldest) event descriptor in T  that satisfiesP. The index starts from 1. If T=E1.E2.E3 where En  is an eventdescriptor, and E1, E2, and E3satisfy P , thenidx_oldest_st(P,T)=1 .
Figure 2.2 Functions and Notations for Predicates (See Additional Definitions in Appendix

A)
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Example:

Figure 2.4 describes a possible TFM module interface document for a stack module. The

stack module is simplified for an explanation, so it does not consider the case when the

stack is full.

• TFM specifies the value of each output variable and the return of auxiliary functions

in closed-form solutions (equations) at the output behaviors definition (section

4 in Figure. 2.4) and auxiliary functions definition (section 5 in Figure. 2.4).

The output behavior definition is given as a set of functions whose domain is

traces T and whose range is output values. The auxiliary function definition

is given as a function whose domain is variable values or traces and whose range is

some values.

TFM may use a tabular format. The tabular format to define output behavior

definition and auxiliary function definition has two parts, the trace predi-

cates columns that is immediately right of the equivalence symbol ’≡’, and the

value column that is enclosed by a heavy line. The tabular format is interpreted as

meaning that, an output variable value or an auxiliary function return value is equal

to a value in the value column if the trace predicates in the corresponding row

of the trace predicates columns are true. For example, the definition of value

in Figure 2.4 is equivalent to the conditional expressions shown in Figure 2.3. The

definition of pushes in Figure 2.4 is equivalent to the ones shown in Figure 2.5. Note

that the output value column may have recursive definitions, such as pushes(T1,T2)

≡ pushes(T1,subseq(T2)), to define the output value by traversing traces.

• In this stack module, the most recent PUSH event is canceled by a POP event. In

order to make the output behavior definition compact, we defined the auxiliary

function pushOnlyTrace that strips all canceled PUSH events and POP events and

returns a trace that has only PUSH events that have not been removed by POP event.

pushOnlyTrace also strips failed PUSH events (a PUSH event fails if its input value

is out of the range).
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• In this thesis, values in the event descriptor definitions are described as ’*’. For

example, (PGM: TOP,value’<int>:*). This ’*’ means that the value may be any

value in its variable data type.top(p(1,T)) if PGM(r(1,T))=TOPvalue(p(1,T)) if PGM(r(1,T))=PUSHvalue(p(1,T)) if PGM(r(1,T))=POPUndefined if T=_{value(T)≡
Figure 2.3 Closed-form Solution for value - Conditional Expressions Format



15[Section 1] Input Variables DefinitionVariable Name Data Typein int[Section 2] Output Variables DefinitionVariable Name Data Typetop intvalue int[Section 3] Access Programs and Event Descriptors DefinitionProgram Name Input Variable Output VariablePUSH in topPOP _ topTOP _ value[Section 4] Output Behaviors Definitiontop(T)≡ pushOnlyTrace(T)=_ UndefinedpushOnlyTrace(T)≠_ 'in(r(1,pushOnlyTrace(T)))value(T)≡ PGM(r(1,T))=TOP top(p(1,T))PGM(r(1,T))=PUSH value(p(1,T))PGM(r(1,T))=POP value(p(1,T))T=_ Undefined[Section 5] Auxiliary Functions DefinitionpushOnlyTrace(T)≡ pushes(_,T)pushes(T1,T2)≡ T2=_ T1¬(T2=_)∧noeffect(oldest(T2)) pushes(T1,subseq(T2))PGM(oldest(T2))=PUSH pushes(T1.oldest(T2),subseq(T2))T1=_ pushes(_,subseq(T2))¬(T1=_) pushes(p(1,T1),subseq(T2))noeffect(e)≡ [(PGM(e)=PUSH)∧(¬inrange('in(e)))]∨[PGM(e)=TOP]inrange(i)≡ (Lower Bound Value of int) ≤ i ≤ (Upper Bound Value of int)¬(T2=_)∧¬noeffect(oldest(T2))∧ [PGM(oldest(T2))=POP]∧

Event Descriptor(PGM:PUSH,'in<int>:*,top'<int>:*)(PGM:POP,top'<int>:*)(PGM:TOP,value'<int>:*)

Figure 2.4 TFM Module Interface Document for a Stack Module
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1 T1
ifT2=_

pushes(T1,subseq(T2))
if ¬(T2=_)∧   noeffect(oldest(T2))

pushes(T1.oldest(T2),subseq(T2))
if[¬(T2=_)∧ ¬noeffect(oldest(T2)

)] ∧ [PGM(oldest(T2))=PUSH]
pushes(_,subseq(T2))

if[¬(T2=_)∧ ¬noeffect(oldest(T2)
)] ∧ [PGM(oldest(T2))=POP]∧ (T1=_)

pushes(p(1,T1),subseq(T2))
if[¬(T2=_)∧ ¬noeffect(oldest(T2)

)] ∧ [PGM(oldest(T2))=POP]∧¬ (T1=_)
pushes(T1,T2)≡ {

Figure 2.5 Closed-form Solution for pushes - Conditional Expressions Format
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2.3 Statistical Software Testing Technique

Until the late 1970s, the goal of testing was to show that software worked. Myers[26]

pointed out that one can corrupt the testing process with this goal as follows: the probability

of showing that software does not work will increase as the software is tested, and hence, the

software should be tested less. Another possible goal of testing was to find software errors

(bugs). Since we do not know when in the future errors may occur, we do not know when to

stop testing, and hence, cannot release products. In the 1980s, Beizer[5] claimed that the goal

of software testing was to provide enough testing to ensure that the probability of failure can

be accepted. He claimed that ”enough” comes from a judgment of software reliability16 with a

statistical measure. This is accomplished by statistical software testing.

Statistical software testing or statistical quality control is a testing method that

constructs a predetermined number of test cases that are relatively more important than

others[23, 42, 24, 25]. The importance is usually decided by considerations of the occurrence

frequency and criticality17 of the use case. Specifically, statistical software testing develops us-

age18 statistics as usage profiles, prioritizes each usage with the statistics, and lists prioritized

usages to test. Consequently, the absence of errors in the list of usages provides a statistical

rationale for the certification of software quality.

Musa proposed to create the usage statistics for each pair (user group, system mode) to

reduce the effect of population size to the statistics [24, 25]. A user group is an independent

group of users, such as administrators or customers. A system mode is an independent

coarse-grained state of the system, such as an error recovery mode, a daily use mode, or the

nuclear power plant shutdown mode [17].

How are those statistics derived? They can be developed in two ways: measurements and

estimations. First, the criticality can be derived only from estimations. If the product is a

safety critical system, the estimation may come from a hazard analysis [19] of the system. A

16Reliability is the probability that a component will perform its intended function satisfactorily for a pre-
scribed time and under predetermined environmental conditions[19].

17This criticality is the parameter that shows the severity of effect when the software part fails.
18A usage is a use case. The relation between a use case and an equivalence class of input variables is one-to-

one mapping; thus, the relation between a usage and an equivalence class of input variables is also one-to-one.
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usage may be assigned a high criticality factor if found to cause hazards during hazard analysis.

Alternatively, we may consider that usages with frequent bug fixes or modifications usually have

bugs[27] [39], and hence, their criticality is larger than others.

Secondly, we have two options for deriving the occurrence probability. The first option is

counting the occurrences of each usage during program executions and calculating their occur-

rence probabilities. The occurrence counting may be done with execution logs that are saved

during a usage monitoring test to test the user interface or user satisfaction of products,

or family of products[41] in the market, if possible19. The second option for deriving it is

estimations. The estimation should be done by a group of people who know the product usage

well and can estimate the adequate occurrence probability of each equivalence class.

Example:

Consider an online sales system as an example. Assume that we want to develop usage

statistics for the system.

• The system usages were identified as follows: {Search products, Purchase products,

Register selling products, Website appearance configuration,

Database operations}.

• The system had three groups of users: {buyers, sellers, system administrators},

and the respective groups had different ways of using the system.

• Three system modes were identified as follows: {customer mode, maintenance

mode, survey mode}.

The number of people in the system administrators group was smaller than others,

and although the survey mode was rarely used, it was important; thus, to avoid false

prioritizations, we develop statistics for each user group to remove the factor of population

size from the statistics.

19Technically, the log embedding may be done with Aspect-Oriented Programming library such as AspectJ
and AspectC++. If we want to insert logging code at compile-time, we may develop a compile-time logging code
insertion program. If we want to embed logging code at run-time, run-time instrumentation mechanisms such
as dynamic Aspect-Oriented Programming may be options.
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Then, we measure/estimate and calculate each occurrence probability and criticality

adequately, which is summarized as Table 2.1. This table is the usage statistics of the

system.

Table 2.1 Example of Usage Statistics

User Group
System
Mode

Usage
Occurrence
Probabil-
ity (%)

Criticality
(1..100)

Buyer
Customer

Mode
Search products 80 20

Purchase products 20 80

Register selling products 0 0

Website appearance configu-

ration
0 0

Database operations 0 0

Seller
Customer

Mode
Search products 20 10

Purchase products 0 0

Register selling products 80 90

Website appearance configu-

ration
0 0

Database operations 0 0

Administrator
Maintenance

Mode
Search products 10 5

Purchase products 10 5

Register selling products 20 10

Website appearance configu-

ration
30 30

Database operations 30 50

Survey

Mode
Search products 10 10

Purchase products 0 0

Register selling products 0 0

Website appearance configu-

ration
0 0

Database operations 90 90
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Then, the final issue is how to develop test cases using the usage statistics. In statisti-

cal software testing, a testing priority of each usage is calculated with the statistics, and is

used to prioritize the usage. Algorithm 1 is an example algorithm for developing a priori-

tized list of usages, and hence, test cases.20 An example output for (user group, system

mode)=(Administrator, Maintenance Mode) in Table 2.1 is shown in Table 2.2. A larger

priority has a higher priority.

Algorithm 1 Derive a prioritized list of usages (test cases) with usage statistics

Input: Usage statistics:

Pr:(User group)×(System mode)×(Usage)→(Occurrence probability)

Cr:(User group)×(System mode)×(Usage)→(Criticality)

Output: A list of pairs (usage, priority) in the priority descending order:

L:(Usage)×(Priority)

1: for each pair (user group gi, system mode mj) do

2: for each usage uk of (gi, mj) do

3: Calculate the priority pk of uk. pk = 100× Pr(gi,mj ,uk)∑
∀ukof(gi,mj)

Pr
× Cr(gi,mj ,uk)∑

∀ukof(gi,mj)
Cr

4: Insert (uk, pk) to L between the elements l1 = (u1, p1) and l2 = (u2, p2)

where p1 ≥ pk ≥ p2.
5: end for

6: end for

Table 2.2 Example list of pairs (usage, priority)

Usage Priority (1..100)

Database operations 15

Website appearance configuration 9

Register selling products 2

Search products 5

Purchase products 5

20This example algorithm multiplies the occurrence probability and criticality of a usage to calculate its
priority; however, the calculation method is not limited to this in the statistical software testing. We may choose
an appropriate calculation method for each application.
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CHAPTER 3. APPROACH

This thesis presents a new black-box test case generation method for component testing

and integration testing. Figure 3.1 outlines the work presented in this thesis, and Figure 3.2

describes the overall data flow of component testing and integration testing.1 As shown in

Figure 3.1, first, we get TFM module interface documents, measure or estimate usage statistics

of modules, and associate them with the TFM module interface documents. These documents

work as usage statistics documents. Finally, using the usage statistics document and a prede-

termined test plan that is a tuple (number of test cases, user type, system mode), we generate

a prioritized list of black-box test cases for component testing and integration testing.

Figure 3.1 Overview of Test Case Generation Process

1Note that Figure 3.2 omits some software design phases to give a rough view.
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Figure 3.2 Overview of Testing Process
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3.1 TFM Module Interface Document for Component Testing and

Integration Testing

3.1.1 Assumptions - Module Interface Specification

Definition: A trace specification is an ordered pair (syntax specification, semantic

specification), where a syntax specification is a decidable set2 of syntax sentences, and a

semantic specification is a decidable set of assertions [20].3

In TFM, a conditional {(trace predicates) → (output value definition)} in the out-

put behaviors definition, i.e. an equation and its condition in the conditional expressions (Figure

2.3), is an assertion. Thus, the output behaviors definition has a decidable set of assertions

and is the semantic specification.

Definition: A trace specification with its assertions Γ is consistent if there is no formula

θ such that Γ ` θ and Γ ` ¬θ [20]. 4

Definition: A trace specification with its assertions Γ is total if for any given trace

constant T , every output variables V has a constant a, such that Γ ` (V (T ) ≡ a), or V

is defined as (V (T ) ≡ Undefined).5

The rest of this thesis assumes that every module has consistent and total TFM specifications,

which is written at the module interface design phase.6

2A decidable set is a set that has an algorithm that halts in a finite time to decide whether or not a given
object is in the set. The decidable set is also called computable or recursive.

3An assertion is a set of conditions that program states or variables must satisfy [15].
4An argument < Γ, φ > where Γ is premises, and φ is a conclusion is derivable if there is a deduction from

some of its premises to its conclusion, which we denote as Γ ` φ. [38]
5Note a specification allows specifying partial functions.
6The methodology to write or check TFM specifications is outside the scope of this project.
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3.1.2 Module Interaction Trace Specification

We introduce an approach to write TFM module interface specification with module inter-

actions. Conventional TFM module interface specifications have some syntax and semantics

that complicate the specification of module interactions7; thus, we relax them in section 3.1.2.1.

Additionally, traces in TFM do not consider nesting events that appear in most test cases in

integration testing. Therefore, we introduce new primitive functions in section 3.1.2.2.

3.1.2.1 Relaxation of Multiple Object Trace Representation

For component testing and integration testing, we want a single testing trace that has the

information of the occurrence order of events on multiple objects; hence, we integrate traces of

all objects and write it as T , and give an object name to any operation on the object via an

input variable of the corresponding event.

Example:

An example is shown in the following trace. Two objects of Module A are instantiated

in the first two events, and the rest of the events get their object value via each input

variable.

T = (PGM : ModuleA constructor, object′ < ModuleA > : objectA1).

(PGM : ModuleA constructor, object′ < ModuleA > : objectA2).

(PGM : ModuleA printHelloWorld,′ object < ModuleA > : objectA1).

(PGM : ModuleA printHelloWorld,′ object < ModuleA > : objectA2).

(PGM : ModuleA destructor,′ object < ModuleA > : objectA1).

(PGM : ModuleA destructor,′ object < ModuleA > : objectA2)

7When we say a trace constant T in conventional TFM module interface specifications, T is the trace of a
primary object that we specify in the document. If the module interface contains interactions of two or more
objects, the conventional TFM document separates each object’s trace with a notation T.<objectname>, where
< objectname > is the name of the object and T.<self> is the trace of the primary object[33].
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3.1.2.2 Nesting Event Trace

A nesting event is a sub event that is invoked by other events. We cannot represent nesting

events with the current set of the primitive trace functions (which we reviewed in Chapter 2),

because an event descriptor always requires the values of output variables, which we cannot

derive until after all nested events are evaluated. Therefore, we separate an event that invokes

other events into two. We adopt “InvokePGM” and “ReturnPGM” variable in addition to “PGM”

variable and primitive functions, InvokePGM(e), ReturnPGM(e), and modified PGM(e) defined

in Figure 3.3. Then, we specify all input variables in the event descriptor of InvokePGM and all

output variables in the event descriptor of ReturnPGM.

Example:

The example is shown in the following trace. This example describes the procedure

that ModuleA main program calls the access programs of Module B, ModuleB func1 and

ModuleB func2, and returns “True” via an output variable, “result’.”

T = (InvokePGM : ModuleA main,′ in < Boolean > : True).

(PGM : ModuleB func1, out′ < Boolean > : True).

(PGM : ModuleB func2, out′ < int > : 100).

(ReturnPGM : ModuleA main, result′ < Boolean > : True)Primitive functions on event descriptorsSyntax Function Semantics ExampleInvokePGM(e) InvokePGM:(eventdescriptor)→(string) If e=(InvokePGM:myfunc,'in<int>:100),then InvokePGM(e)=myfuncReturnPGM(e) ReturnPGM:(eventdescriptor)→(string) If e=(ReturnPGM:myfunc,out'<int>:1),then ReturnPGM(e)=myfuncPGM(e) PGM:(eventdescriptor)→(string) A function that returns thename of the access programin the event descriptor e Ife=(PGM:myfunc,'in<int>:100,out'<int>:1) ore=(InvokePGM:myfunc,'in<int>:100),then PGM(e)=myfunc
A function that returns thename of the event invokeraccess program at the eventdescriptor e

Figure 3.3 Primitive Functions on Event Descriptors
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3.1.3 Input and Output Specification

A module interface has an upper-face and a lower-face[33]. The upper-face shows a service

that the module provides. The lower-face shows interactions with other modules. Figure 3.4

describes a module interface that has only an upper-face. Module A receives the value of inputs

and returns the value of output variables. Although Module A is designed to use Module B,

the use of Module B is not the service of Module A; thus, the use of Module B is hidden at

Module A’s interface.

Figure 3.4 Upper-Face Only Module Interface

The upper-face only module interface specification delivers many benefits to software design,

coding, and testing8[10, 20]; however, testers need the lower-face specification to answer the

following questions that arise during integration testing[5]:

• Does any improper call or return sequence exist?

• Does any inconsistent handling of data objects exist?

The lower-face might be specified in other documents, such as module internal design docu-

ments.9 When we generate black-box test cases for integration testing, the lower-face specifi-

8Users can see what a module does without referring to its design details. Architects do not need to make
premature decisions on design details when they design architecture. Implementers can choose the most effective
implementation after careful considerations of external behaviors. Designers can distinguish what they can
change, e.g. replaceable algorithm, from what they cannot, i.e. required services. Testers can design black box
test cases.

9Users of Module A need information about the required resources such as libraries, back-end servers, and
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cation must be formally defined. Therefore, we specify module interactions formally in TFM

module interface documents.

We specify the output variables of a module that are actually returned from the module,

and specify the used program events in trace predicates. Figure 3.5 shows what to specify with

specific variables. Note that a module interface no longer specifies all service’s output variables.

Some of them are specified only in used modules. We call it output delegation. The benefits

of the output delegation are as follows:

• It enables the separation of concerns at module interfaces since some output value speci-

fications are delegated to the used modules that exclusively offer those output services.

• We still can derive all services of the module from its interface specification if we aggregate

all outputs in its used modules and itself.

Note that trace predicates on input values can be mapped to Meyer’s precondition[21], and

trace predicates on output values with invoked access programs and returned values from the

invoked access programs can be mapped to postcondition.

Example:

An example TFM interface document is shown in Figure 3.6. In this example, Sequencer’s

access program “run” provides a service to set a robot arm angle to a constant “100” de-

grees and return “True”. RobotArmDriver has “setAngleTo100” that controls the arm

physically and sets its angle to “100”. Since “run” calls “setAngleTo100”, “result”

has the trace predicate that includes “setAngleTo100.”

operating system that will be a part of the design decision of whether they use Module A or not. However,
the upper-face does not specify them. Designers and implementers must use modules as designed by architects,
although the upper-face tells nothing about the used modules, and they must analyze the usage of shared
resources such as memory and timing, none of which is indicated by the upper-face interface.
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Figure 3.5 Module Interface SpecificationSequencer Module Interface SpecificationImport ModuleRobotArmDriverAccess ProgramProgram Name Input Variable Output Variable Event Descriptorrun void result:Boolean (PGM:run,result'<Boolean>:*)Output Behaviors Definitionresult(T)≡ PGM(r(1,T))=setAngleTo100 PGM(r(2,T))=run TRUEPGM(r(2,T))≠run result(p(2,T).r(1,T))PGM(r(1,T))≠setAngleTo100 result(p(1,T))T=Empty UndefinedRobotArmDriver Module Interface SpecificationAccess ProgramProgram Name Input Variable Output Variable Event DescriptorsetAngleTo100 void angle:int (PGM:setAngleTo100,angle'<int>:*)Output Behaviors Definitionangle(T)≡ PGM(r(1,T))=setAngleTo100 100PGM(r(1,T))≠setAngleTo100 angle(p(1,T))T=Empty Undefined
Figure 3.6 Output Delegation
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3.2 Statistics Document Development

As we saw in Chapter 2, a black-box test case is developed for each equivalence class of input

values.10 In trace representations, a trace includes all input values; thus, an equivalence class

of input values has an one-to-one correspondence to an equivalence class of traces. How can we

find equivalence classes of traces in a TFM document? TFM documents specify the value of

each output variable in a closed-form solution. This closed-form solution has two types of right

hand side: 1) an output value definition or 2) a recursive definition with trace transformation

functions. For example, RobotArmDriver in Figure 3.6 has the following equations:

angle(T ) ≡ 100 if PGM(r(1, T )) = setAngleTo100 (3.1)

angle(T ) ≡ angle(p(1, T )) if PGM(r(1, T )) 6= setAngleTo100 (3.2)

angle(T ) ≡ Undefined if T = Empty (3.3)

On the right hand side, the equation (3.1) and (3.3) has each output value definition, and the

equation (3.2) has a recursive definition with a trace transformation function p(1, T ). If the

TFM document is total, the trace transformation function eventually transforms the trace T

into the one that satisfies the predicates of an equation that has an output value definition on

its right hand side, (3.1) or (3.3) in this example. Since an equivalence class of traces delivers

the same output values, the equivalence class has an one-to-one correspondence to the equation

with an output value definition.

Therefore, we associate usage statistics with each equivalence class of traces, which is an

equation with the output value definition in TFM documents, to prioritize the test case for the

equivalence class. Then, we develop the occurrence probability and criticality of each equation

for each user type and system mode with the same approach as the one explained in Chapter

2, and use them to calculate a priority of each equivalence class of traces and generate test

cases. For rest of this thesis, we make an assumption that reasonable occurrence probabilities

and criticalities of each equivalence class of traces can be developed for each module.

10An equivalence relation is a relation that is reflexive, transitive, and symmetric. An equivalence class
is a set of objects that satisfies an equivalence relation. Any event history in an equivalence class derives the
same output values.
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Example: An example of the statistics annotated document is shown in Figure 3.7.

This is an example module that controls a heater switch. If the room temperature

’temperature is less than or equal to 50F, then the access program func turns on the

heater switch, which is heaterON ≡ true. This example says that the occurrence prob-

ability of the class that has “heaterON’<boolean>:true” is “60/100” and the one that

has “heaterON’<boolean>:false” is “40/100.” The criticality of the class that has

“heaterON’<boolean>:true” is “30/100” and the one that has “heaterON’<boolean>:

false” is “70/100”. These values can be used to calculate a priority of each equivalence

class of traces.Output Behaviors Definition {User Type,System Mode} OccurrenceProbability CriticalityheaterON(T)≡ 'temperature(r(1,T))≤ 50 TRUE 60/100 30/100'temperature(r(1,T))> 50 FALSE 40/100 70/100heaterON(p(1,T)) - -PGM(r(1,T))=funcPGM(r(1,T))≠func {Regular User,Normal UseMode}
Figure 3.7 Output Behaviors Definition of Module B with Statistics Annotations
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3.3 Testing Trace Generation Method

3.3.1 Trace Postconditions

To generate testing traces, we “symbolically” execute [18] TFM module interface specifica-

tion using usage statistics, we construct testing traces, and we aggregate constraints of input

values. Before we propose a test case generation algorithm, we introduce new concepts, trace

postconditions and monitored variable constraints. A trace postcondition is a con-

ditional whose antecedent is a trace constant with a last event that has unevaluated output

values, and whose consequent is a trace constant all of whose output values are evaluated.

This evaluated means that some value or meta-variable is assigned to all output variables

of the event. A meta-variable is a variable that is replaced by a constant in the test case

generation algorithm that will presented in section 3.3.3. An example trace postcondition is as

follows:

T.(PGM : func,′ in < int > : a, out′ < int > : UNEVAL)→

T.(PGM : func,′ in < int > : a, out′ < int > : a)

“a” is a meta-variable. This conditional means that if a trace constant ends with an event

descriptor (PGM:func, ’in<int>:a, out’<int>:*) whose out’ is “UNEVAL” (unevaluated),

then, the trace constant after the evaluation of the last event will be the consequent of the

conditional whose out’ has the meta-variable “a”.

Another case of the trace postcondition is when an event invokes other modules’ access

programs. As section 3.1.2.2 explained, we evaluate such an event to a separated pair of

InvokePGM and ReturnPGM with its invoked events in the middle. For example, if Module

A’s access program funcA invokes funcB that is an access program of Module B, its trace

postcondition is as follows:

T.(PGM : funcA, result′ < Boolean > : UNEVAL)→

T.(InvokePGM : funcA).

(PGM : funcB, UNEVAL).

(ReturnPGM : funcA, result′ < Boolean > : True)
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Here, “funcB” has the output “UNEVAL” that means any outputs can occur. This is because

we delegate output tasks to “funcB” and the evaluation of Module A’s event does not clarify

the outputs of “funcB” unless they are handled as the return values of funcB and inputs to

Module A in the interface specification of Module A. The formal syntax of trace postconditions

is as follows in BNF:

postcondition ::= T.trUneval→ T.trEval

trUneval ::= eUneval

trEval ::= eEval|eEval.trEval

eUneval ::= (PGM : func, in, outUneval)

eEval ::= (programV ar : func, in, outEval)

programV ar ::= PGM |InvokePGM |ReturnPGM

func ::= Name of an access program

in ::= i, in|i|

i ::= ′inV ar < type >: val

inV ar ::= Name of an input variable

outUneval ::= oUneval, outUneval|oUneval|

outEval ::= oEval, outEval|oEval|

oUneval ::= outV ar′ < type >: UNEV AL|UNEV AL

oEval ::= outV ar′ < type >: val

outV ar ::= Name of an output variable

val ::= constant|meta variable

3.3.2 Monitored Variable Constraints

Inputs can be categorized into the following two variables11:

• A monitored variable that is a variable whose value is determined externally. Physical

values, such as sensor data, are the values of the monitored variables.

11These names correspond to the variable names defined in the four-variable model[34, 36].
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• An input variable that is a variable whose value is derived from access programs of

other modules.

Input variable values are determined by software itself, so they are derivable from its specifi-

cation; however, monitored variable values are derivable as domains, not values. The domains

are specified as constraints in TFM documents. We call the collection of these constraints as

monitored variable constraints. An example is shown in Figure 3.8. Consider the input

variable ’temperature is the monitored variable. The value of ’temperature is not speci-

fied for each equivalence class of traces, but its monitored variable constraints are specified as

“’temperature ≤ 50” or “’temperature > 50.”Output Behaviors DefinitionheaterON(T)≡ PGM(r(1,T))=func 'temperature(r(1,T)) ≤ 50 TRUE'temperature(r(1,T)) > 50 FALSEPGM(r(1,T))≠func heaterON(p(1,T))
Figure 3.8 Monitored Variable Constraints

3.3.3 Test Case Generation Algorithm

Finally, we generate test cases with the following steps:

Step1. Derive trace postconditions for each equivalence class of traces from the TFM

module interface specifications.

Derive monitored variable constraints for each equivalence class of traces from the TFM

module interface specifications.

Step2. Initialize an output trace Ttest with a given start event.

Step3. For the oldest unevaluated event in Ttest, query the TFM module interface spec-

ification and get equivalence classes of traces that have possibly-satisfiable trace pred-

icates on a given trace constant. A possibly-satisfiable trace predicate is a predicate

that can be satisfied in future event evaluations, i.e. value or meta-variable assignments

to variables. (Stage 0, i or i+2 in appendix D)
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Step4. Choose one equivalence class of traces randomly using the usage statistics.

Get the consequent of the trace postcondition that is associated with the chosen equiva-

lence class of traces, and insert the consequence of the trace postcondition into Ttest.

Get the monitored variable constraints that are associated with the chosen equivalence

class of traces, and add the constraints to the monitored variable constraints collection.

(Stage 0, i+1 or i+2 in appendix D)

Step5. Repeat Step 3-4 until all events in Ttest are evaluated or the length of Ttest reaches

the predetermined length in a test plan.

Step6. Generate monitored variable values using monitored variable constraints and a

certain probability distribution. (Stage i+3 in appendix D) 12

Note that the query in step 3 may return several possibly-satisfiable predicates, since an event

is nondeterministic until all its nesting events are evaluated and all monitored variables are

determined. The detailed pseudo-code is described in algorithm 2, 3, 4. An example testing

trace generation will be described in section 4.1.

Algorithm 2 Testing Trace Generation

1: Input Name of a program to invoke: f and Name of its module: m

2: Input Usage statistics specifications for a particular user type and system mode: S and

Trace max lenth: l

3: Initialize a trace Ttest with {(PGM : f, ∗)}
4: Initialize a list of monitored variable constraint expressions CONS with Empty

5: Initialize a key-value map of meta variable and value V ARS with Empty
6: CALL EventEvaluation (See Algorithm 3) with Ttest, srcIndex = 0, S, l, CONS, V ARS

and

UPDATE Ttest, CONS, V ARS

7: Generate the value of monitored variables to satisfy CONS and set them in V ARS

8: Replace meta variables in Ttest with the corresponding values in V ARS

9: Output Ttest and return

12The probability distribution may be any distribution that has some rational. It may be a uniform distribution
if we want to uniformly test input values in the domain.
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Algorithm 3 EventEvaluation

1: Input A trace: T and an event index of T to evaluate: srcIndex

2: Input Usage statistics specifications: S and Trace max lenth: l

3: Input A list of monitored variable constraint expressions: CONS

4: Input A key-value map of meta variable and value: V ARS

/*Part1. Append events produced by the event at srcIndex in T*/
5: CALL QueryPossiblySatisfiableEquivalenceClasses with the sub-list of T between

0 and srcIndex, function name at srcIndex in T , module name at srcIndex in T , CONS,
and V ARS and

OBTAIN all candidate equivalence classes (i.e. equations with an output value definition)

that the sub-list of T between 0 and srcIndex will be classified with any future events

6: Randomly select a equivalence class ec from the all candidate equivalence classes using each

occurrence probability and criticality

7: Overwrite or insert the events in the trace postcondition consequence of ec to T . The events

whose index exceeds the trace length upper bound l are truncated.

8: Add the monitored variable constraints of ec to CONS

9: if the index exceeds the upper bound length srcIndex > l then

10: Output T,CONS, V ARS and return

11: end if

/*Part2. Append events produced by all nested events*/

12: Increment srcNextIndex = srcIndex+ 1

13: Initialize lastIndex = srcIndex

14: for all of the inserted nested events do
15: CALL EventEvaluation with Ttest, lastIndex, S, l, CONS, V ARS and

UPDATE T, lastIndex,CONS, V ARS
16: CALL QueryPossiblySatisfiableEquivalenceClasses (See Algorithm 4) with the

sub-list of T between 0 and lastIndex, function name of the event at srcIndex in T ,
module name of the event at srcIndex in T , CONS, and V ARS and

OBTAIN all candidate equivalence classes that the sub-list of T between 0 and

lastIndex will be classified with any future events

17: Randomly select an equivalence class ec from the all candidate equivalence classes using

each occurrence probability and criticality

18: Increment srcNextIndex = srcNextIndex+ 1

19: Overwrite the sub-list of the produced trace in ec’s trace postcondition consequence

between srcNextIndex and the last element index onto T from the position of lastIndex.

20: end for

21: if ReturnPGM(event at lastIndex in T 6= null then

22: Increment lastIndex = lastIndex+ 1

23: end if

24: Put ec’s output value definition to V ARS

25: Output T, lastIndex,CONS, V ARS and return
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Algorithm 4 QueryPossiblySatisfiableEquivalenceClasses

1: Input A trace: T

2: Input Name of a program to invoke: f and Name of its module: m

3: Input Usage statistics specifications: S

4: Input A list of monitored variable constraint expressions: CONS

5: Input A key-value map of meta variable and value: V ARS

6: In m’s module interface specification in S, find and get equations (pairs of an output value

definition and its trace predicates), eq, that have the trace postcondition for f

7: for each equation eq do

8: Initialize Ttemp = T

9: REEXAMINE TRANSFORMED:

10: Extract the preconditions of the last event in Ttemp from eq’s predicate

11: Check whether T with CONS and V ARS satisfies the preconditions with a predicate

solver

12: if satisfied then

13: if the output value of eq is a trace transformation function then

14: Transform Ttemp with the trace transformation function in the output value definition

of eq

15: GO TO REEXAMINE TRANSFORMED to reexamine the transformed trace

Ttemp.

16: else

17: Add eq to the set of equations SATEQ

18: end if

19: end if

20: end for

21: Output the equivalence classes that correspond to SATEQ and return
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CHAPTER 4. EVALUATION

4.1 Feasibility of Test Case Generation - Example Application: Floating

Weather Station

This section describes an example application to show that the proposed test case generation

is feasible. Floating weather stations (FWS) are buoys that are deployed at sea and monitor

the wind speed and periodically report the data via radio. The family of FWS is developed

with the FAST (Family-Oriented Abstraction, Specification, and Translation) process [41]. As

example software, we derived a member of FWS family that has a whale sensor. The whale

sensor monitors whales with sonars, and its sensor driver program returns true if it detects

whales.

The software system consists of 7 modules. The size of the program coded in Java is 10

classes, 38 methods, and 400 LOC. We ran the program with a FWS simulator program (Figure

4.1) written in Java (this work used the simulator code in [41]).

The module structure and representative process structure is presented in the module guide,

the module hierarchical structure, and the uses relation in Appendix B. Although the original

FWS family member has multiple threads, this example system is single-threaded for simplicity.

The usage statistics, trace postconditions, and monitored variable constraints are presented

in Appendix C. The pair of expected user type and system mode is limited to one pair for

simplicity. We measured occurrence probabilities with a simulator execution recording that

prints out and records event descriptors as a log using Java reflection, JavaVM stack tracing,

and hard-coding to get variable names and values. We set all criticality values at the same value

for simplicity; thus, we used only occurrence probabilities for prioritizing. Trace postconditions

and monitored variable constraints are derived as presented in section 3.3.3. In this example, we
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Figure 4.1 FWS simulator GUI

derived trace postconditions and monitored variable constraints from trace predicates manually,

but we could automate this derivation process since all trace postconditions are defined formally

in trace predicates.

Consider that we test an access program FWS init with a maximum testing trace length 37.

The service of FWS init is periodically receiving the sensor value five times and transmitting the

averaged sensor value. We performed the test case generation algorithm and derived one test

case shown in Figure 4.2. Detailed intermediate states in the test case generation algorithm

are described step-by-step in appendix D. The nesting events are indented. The monitored

variable values that testers have to create are enclosed by a thin line, and the service output is

enclosed by a heavy line.

Testers can 1) determine how they should input monitored variable values; 2) check whether

the program returned the service output values as indicated in the testing trace (in Figure 4.2,

the output of TransmitDriver sendWindSpeed is the service output.); 3) check whether their

testing program produced the sequence of events as indicated in the testing trace. Checking the

service output values corresponds to component testing, and checking the sequence of events

corresponds to integration testing; thus, testers can perform component testing and integration

testing with the generated testing trace.



39Ttest=(InvokePGM:FWS_<init>,'quit<Boolean>:FALSE).       (PGM:DataBanker_init).       (PGM:MessageGenerator_<init>,object'<MesssageGenerator>:ob1)       (PGM:SensorMonitor_<init>,object'<SensorMonitor>:ob2)       (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).              (PGM:ThreadSleep,'sleeptime<int>=1000).              (PGM:SensorDriver_get,'windSpeed<int>:45 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd1).              (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd1).       (ReturnPGM:SensorMonitor_run)       (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).              (PGM:ThreadSleep,'sleeptime<int>=1000).              (PGM:SensorDriver_get,'windSpeed<int>:51 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd2).              (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd2).       (ReturnPGM:SensorMonitor_run)       (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).              (PGM:ThreadSleep,'sleeptime<int>=1000).              (PGM:SensorDriver_get,'windSpeed<int>:50 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd3).              (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd3).       (ReturnPGM:SensorMonitor_run)       (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).              (PGM:ThreadSleep,'sleeptime<int>=1000).              (PGM:SensorDriver_get,'windSpeed<int>:52 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd4).              (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd4).       (ReturnPGM:SensorMonitor_run)       (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).              (PGM:ThreadSleep,'sleeptime<int>=1000).              (PGM:SensorDriver_get,'windSpeed<int>:55 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd5).              (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd5).       (ReturnPGM:SensorMonitor_run)       (InvokePGM:MessageGenerator_run).              (InvokePGM:getWindSpeed).                     (PGM:DataBanker_read,readData'<List<SensorReading>>:new List(dd1,dd2,dd3,dd4,dd5))              (ReturnPGM:getWindSpeed,averageData'<int>:cc1)              (PGM:TransmitDriver_sendWindSpeed,                     'msg<MessageFormatWind>:mm1=new MessageFormat(cc1),msg'<MessageFormatWind>:mm1).              (InvokePGM:Averager_getWhale).                     (PGM:DataBanker_read,readData'<List<SensorReading>>:new List(dd1,dd2,dd3,dd4,dd5))              (ReturnPGM:Averager_getWhale,whalePassing'=FALSE )
Figure 4.2 Generated Testing Trace (Test Case)
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4.2 Computation Termination and Efficiency of Test Case Generation

Algorithm

Algorithm 2 does not halt if there exists a recursive output value definition that does not

have a solution. In this case, algorithm 4 (line 14) will evaluate recursion infinitely many times

and does not terminate. However, such a recursive output value definition does not exist if the

TFM specification is total (as explained in section 3.1.1). Except for such a case, algorithm 2

halts either when the number of event descriptors in a generated trace reaches a threshold, or

when an initial access program that we input to the algorithm returns its outputs.

Algorithm 2 (line 7) is NP-complete if a set of monitored variable constraints CONS

makes a satisfying assignment as hard as 3-SAT or other NP-complete problems. If monitored

variable value assignments are not as hard as NP-complete problems, the efficiency of algorithm

2 is calculated as follows and is polynomial time:

Consider lmax is the maximum length of testing trace that is predetermined in a test

plan, bmax is the maximum number of equations in the simultaneous equations of the

output behavior definition, smax is the maximum time for solving a trace predicate on a

trace constant, |V | is the number of all monitored variables.

Since the length of the output testing trace has an upper-bound lmax, the running

time of algorithm 4 is Q = O(lmaxsmaxbmax), the running time of algorithm 3 is E =

O(l2maxsmaxbmax), and the running time of algorithm 2 is O(E+|V |) = O(l2maxsmaxbmax+

|V |), which is polynomial time.
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CHAPTER 5. CONCLUSION AND SUMMARY

5.1 Limitations and Improvement Idea

To adopt the presented approach, we needed to 1) identify modules and 2) prepare module

interface specification documents in TFM. Identifying modules is difficult if performed on some

ongoing software development projects with unidentified modules, but a large amount of code.

In this case, we might have to refactor the software to identify them. Preparing TFM module

interface documents is also difficult without strong tool support such as a trace predicate

consistency checker, totalness checker, and editor tool with auto completions. We should

develop these tools in future.

Second, we needed to measure or estimate usage statistics. The estimation is difficult if

the module interface is complicated. If we visualize the behavior in other representations that

are better at the graphical visualization, such as sequence diagrams and behavior animations,

the prediction will be easier. The measurement is difficult if we do not want to sacrifice the

program execution speed for recording the execution log. We may activate the logging only at

the recording phase and deactivate it when we release the product; however, some behaviors

may change if the execution timing changes because of logging. Thus, we need a practical

solution for those behavior recordings in future.

Third, we generated test cases in traces. Testers need to follow the event sequence in traces

and execute the program. In order to facilitate the testing process, we should develop a harness

program that drives the target programs along a given testing trace, much as Hoffman proposed

a harness program for a single module testing trace [12].

Fourth, the proposed test case generation algorithm aggregates monitored variable con-

straints and finds a monitored variable value assignment that satisfies the set of constraints;
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thus, the test case generation algorithm can be NP-complete (as discussed in section 4.2). If

possible, such a set of monitored variable constraints should be avoided when we write speci-

fications. TFM module interface specification editor tools should have a constraints difficulty

check capability and warn users of the difficulties of satisfying assignments.

Finally, we have considered only single-threaded programs, not multi-threaded programs.

If we accommodate multi-threaded programs, we might need to introduce additional functions

to be used in predicates such as a function that returns thread ID. Furthermore, we might

need to simulate the thread dispatching mechanism in the test case generator. These are all

considerations for future work.

5.2 Related Work

We proposed a method to specify module interactions with TFM. Module interactions are

usually specified with UML sequence diagrams. Since a UML sequence diagram is a graphical

representation, especially if the interaction has conditional branches, the diagram becomes

large and its layout poor. As a practical alternative, our proposed method not only expresses

interactions with text of trace predicates in tabular format, which is compact, but is relatively

easy to exhaustively specify.

Many CASE tools incorporate test case generation into a state machine based specification

framework [14, 8, 7]. In particular, MaTeLo has a feature to input usage profiles and generate

test cases. Its approach is similar to Whittaker’s approach [42, 9]. However, since they are

based on Markov chains, we need to identify the states of modules that are not externally

visible and do not conform to the information hiding principle. In our approach, we identify

only externally visible events to the module, which conforms to the information hiding and is

beneficial, as explained in Section 3.1.3.

Our oracle1 is based on the satisfaction of the trace predicate. Hoffman’s approach [12]

generated test cases for single modules with module interface specifications as oracle. Peters’

approach [35] generated oracles for single modules with LD-relation specification. However,

1Oracle is any means that provides information about the (correct) expected behavior of a component [13].
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none of them generated the oracle or test cases for multiple modules, i.e. component testing

and integration testing.

5.3 Summary

We proposed a black-box testing method that derives important test cases from usage

statistics. The method specified large components with TFM module interface specifications

and associated module usage statistics with the TFM module interface specification. Finally, we

showed that the method could generate a prioritized list of testing traces for component testing

and integration testing from the TFM module interface specification with usage statistics.

Consequently, the proposed method enables a product manager to make a release decision

with a rationale, “the important use cases specified in the usage statistics are tested and have

no error.”
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APPENDIX A. FUNCTIONS AND NOTATIONS FOR PREDICATES



45Primitive functions on event descriptorsSyntax Function Semantics ExamplePGM(e) PGM:(event descriptor)→(string) A function that returns the name of theaccess program in the event descriptor e Ife=(PGM:myfunc,'in<int>:100,out'<int>:1),then PGM(e)=myfunc'V(e) 'V:(event descriptor)→(data type of V) A function that returns the value of V  beforethe event of the event descriptor e (V  maybe any input variable) Ife=(PGM:myfunc,'in<int>:100,out'<int>:1),then 'in(e)=100V'(e) V':(event descriptor)→(data type of V) A function that returns the value of V  afterthe event of the event descriptor e (V  maybe any output variable) Ife=(PGM:myfunc,'in<int>:100,out'<int>:1),then out'(e)=1Notation for tracesNotation Semantics_ This is an empty trace.T1.T2 A period '.' concatenatestwo traces.Basic functions on tracesSyntax Function Semantics ExampleLen(T) Len:(trace)→(integer) A function that returns the length of the traceT  (the number of event descriptors in thetrace) If T=E1.E2.E3  where En is an eventdescriptor, Len(T)=3.r(n,T) r:(integer)×(trace)→(event descriptor) A function that returns the n th most recentevent descriptor in the trace T.r(n,_)=Undefined. If T=E1.E2.E3  where En is an eventdescriptor, r(1,T)=E3, r(2,T)=E2, r(3,T)=E1,r(4,T)=undefined.oldest(T) oldest:(trace)→(eventdescriptor) A function that returns the first (oldest)event descriptor in the trace T.  oldest(_)=_. If T=E1.E2.E3  where En  is an eventdescriptor, oldest(T)=E1.p(n,T) p:(integer)×(trace)→(trace) A function that returns the prefix trace ofr(n,T)  in the trace T .  p(n,_)=Undefined. If T=E1.E2.E3 where En is an eventdescriptor, p(1,T)=E1.E2, p(2,T)=E1,p(3,T)=_.subseq(T) subseq:(trace)→(trace) A function that returns the trace T'  such thatT=oldest(T).T' If T=E1.E2.E3  where En is an eventdescriptor, subseq(T)=E2.E3.r_call(pg, T) r_call:(string)×(trace)→(event descriptor) A function that returns the most recent eventdescriptor which access program name is pgin the trace T If T=E1.E2.E3 where En  is an eventdescriptor, and E1  is invoked by a programpg and E2 and E3 are not invoked by pg ,then r_call(pg,T)=E1.Useful function generators on traces and predicatesSyntax Function Semantics Exampleexist(P,T) exist:(predicate)×(trace)→(boolean) A function that returns true if and only ifthere exists an event descriptor in T  thatsatisfies P , otherwise false If T=E1.E2.E3 where En  is an eventdescriptor, and E1  satisfies P , thenexist(P,T)=true .r_st(P,T) r_st:(predicate)×(trace)→(event descriptor) A function that returns the most recent eventdescriptor in T  that satisfies P If T=...E1.E2.E3 where En  is an eventdescriptor, and E1, E2, and E3  satisfy P ,then r_st(P,T)=E3.oldest_st(P,T) oldest_st:(predicate)×(trace)→(eventdescriptor) A function that returns the first (oldest)event descriptor in T  that satisfies P If T=E1.E2.E3... where En  is an eventdescriptor, and E1, E2, and E3  satisfy P ,then oldest_st(P,T)=E1.idx_r_st(P,T) idx_r_st:(predicate)×(trace)→(integer) A function that returns the index of the mostrecent event descriptor in T  that satisfies P.The index starts from 1. If T=E1.E2.E3... where En  is an eventdescriptor, and E1, E2, and E3  satisfy P ,then idx_r_st(P,T)=3.idx_oldest_st(P,T) idx_oldest_st:(predicate)×(trace)→(integer) A function that returns the index of the first(oldest) event descriptor in T  that satisfies P.The index starts from 1. If T=E1.E2.E3 where En  is an eventdescriptor, and E1, E2, and E3  satisfy P ,then idx_oldest_st(P,T)=1.extract(P,T) extract:(predicate)×(trace)→(trace) A function that returns a trace that has onlythe event descriptors in T  that satisfies P If T=E1.E2.E3 where En  is an eventdescriptor, and E1 and E3  satisfy P , thenextract(P,T)=E1.E3.
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APPENDIX B. FWS MODULE GUIDE

• Behavior-Hiding Modules

– Controller

Secret: How to control the execution sequence of FWS

– MessageGenerator:

Secret: How to obtain monitored data and transmit averaged data in a message

• Device Interface Modules

– Sensor Device Driver

Secret: How to monitor and control the wind speed sensors and whale sensors.

– Transmitter Device Driver

Secret: How to control the transmitter

• Software-Design-Hiding Modules

– SensorMonitor

Secret: How to obtain data from sensors and store it for later retrieval.

– DataBanker

Secret: How to store the most recent wind data and whale data

– Averager

Secret: How to process the current DataBanker data to produce a current wind data

and whale data estimate
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Figure B.1 FWS Module Hierarchical Structure

Figure B.2 FWS Uses Relation
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APPENDIX C. FWS MODULE INTERFACE SPECIFICATION

Note: output behaviors definition and auxiliary function definition tables are transposed to

save paper space. For example, the trace semantics part of SensorDriver module interface is

equivalent to Figure C.1.
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Trace Postcondition
Monitored Variable ConstraintsExecuted CountTotal SampleOccurrence Probability

sensorData(T)≡Pre(1,T,SensorDriver_get)= {True,i}new SensorReading( 'windSpeed(r(i,T)), 'whalePassing(r(i,T)) )T.(PGM:SensorDriver_get,'w
indSp

eed<int>:UNEVAL,'whalePas
sing<

Boolean>:UNEVAL, sensorData'<SensorReading
>:UN

EVAL)→ T.(PGM:SensorDriver_get,'w
indSp

eed<int>:aa,'whalePassing<
Boole

an>:bb, sensorData'<SensorReading
>:ne

w SensorReading(aa,bb))
INTMIN ≤ aa ≤ INTMAX, bb = TRUE v FALSE114114

100

∨j { ¬[∧i (Predicate (i,j)) ] }UndefinedUndefined
-0
00

Figure C.1 SensorDriver module Before Transpose
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Module IndexControllerMessageGeneratorSensorMonitorAveragerDataBankerSensorDriverTransmitDriverAuxiliary FunctionsTrace Predicates r(i,T)=evt r(i,T)≠evt r(i,T)=EmptyPre(i,T,evt)≡ {TRUE,i} Pre(i+1,T,evt) {FALSE,i}Trace Predicates r(i,T)=evt r(i,T)≠evt r(i,T)=EmptyPost(i,T,evt)≡ {TRUE,i} Post(i-1, T,evt) {FALSE,i}suffix(i,T)≡ subseqi(T)
Behavior HidingDevice InterfaceSoftware DesignHiding

Trace Predicates 'quit(  r( [idx_r_st(PGM(r(1,T))=(MessageGenerator_run)], T)  )=FALSE 'quit(  r( [idx_r_st(PGM(r(1,T))=(MessageGenerator_run)], T)  )=TRUET.loopEvents()≡ T.(PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,*).(PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,*).(PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,*).(PGM:MessageGenerator_run,'obj<MessageGenerator>:ob1,*).loopEvents() T
Data TypeType Name AttributesMessageFormatWind windSpeed:intMessageFormatWhale whalePassing:BooleanwindSpeed:intwhalePassing:BooleanSensorReading



51Controller Module Interface SpecificationTrace Event SyntaxProgramName Input Variable Output Variable Event DescriptorFWS_<init> quit:Boolean NONE (PGM:FWS_<init>,'quit<Boolean>:*)Trace Semanticsidx_oldest_st(PGM(r(1,T))=FWS_<init>, T)=i0[idx_oldest_st(PGM(r(1,T))=DataBanker_init,T)=i1] ^[i0<i1][idx_oldest_st(PGM(r(1,T))=MessageGenerator_<init>,T)=i2] ^[i1<i2][idx_oldest_st(PGM(r(1,T))=SensorMonitor_<init>,T)=i3] ^[i2<i3]suffix(i3,T)=loopEvents()Len( extract ( [(PGM=SensorMonitor_run)^('quit=FALSE)] , T) ) = nOutputBehaviorDefinition NONE(T)≡NONE NONE(T)≡UndefinedTracePostcondition T.(PGM:FWS_<init>,'quit<Boolean>:qq)→T.(InvokePGM:FWS_<init>,'quit<Boolean>:qq).(PGM:DataBanker_init).(PGM:MessageGenerator_<init>,object'<MessageGenerator>:ob1,UNEVAL).(PGM:SensorMonitor_<init>,object'<SensorMonitor>:ob2,UNEVAL).[(PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).(PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).(PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).(PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).(PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).(PGM:MessageGenerator_run,'obj<MessageGenerator>:ob1,UNEVAL)]×n (*See a note below).(ReturnPGM:FWS_<init>)
Undefined

MonitoredVariableConstraints qq=FALSE v TRUE -ExecutedCount 1 0Total SampleOccurrenceProbability(%) 100 0

∨j { ¬[∧i(Predicate (i,j)) ] }where i is anumber of row inthis table, and j isa number ofcolumn in thistable,and i and j don'tinclude this cell'snumber.TracePredicates

1*Note: [T]×n is the abbreviation of n times repeated T sequence. For example, [T]×3 means T.T.T.This notation is introduced here to save paper space.



52MessageGenerator Module Interface SpecificationTrace Event SyntaxProgramName Input Event Descriptor Output Event Descriptor Event Descriptor<init> NONE object:MessageGenerator (PGM:MessageGenerator_<init>,object'<MessageGenerator>:*)run thisObj:MessageGenerator NONE (PGM:MessageGenerator_run,'thisObj<SensorMonitor>:*)Trace Semantics[Pre(i0,T,Averager_getWhale)={TRUE,i5}] ^[whalePassing'(r(i4,T))=whalePassing'(r(i5,T))] { [  [Pre(i0,T,Averager_getWhale)={TRUE,i5}] ^  [whalePassing'(r(i4,T))≠whalePassing'(r(i5,T))]} v {  [Pre(i0,T,Averager_getWhale)={FALSE,i5}]] } ^{ [Post(i4,T,TransmitDriver_sendToWhaleSurveyCenter)={TRUE,i5}] ^ ['msg(r(i5,T))=newMessageFormatWhale(TRUE)]}OutputBehaviorDefinition NONE(T)=NONE NONE(T)=NONE object(T)=new MessageGenerator UndefinedTracePostcondition T.(PGM:MessageGenerator_run)→T.(InvokePGM:MessageGenerator_run).(PGM:Averager_getWindSpeed,averageData'<int>:ag,UNEVAL).(PGM:TransmitDriver_sendWindSpeed.'msg<MessageFormatWind>:newMessageFormat(ag),UNEVAL).(PGM:Averager_getWhale,whalePassing'<boolean>:FALSE,UNEVAL).(ReturnPGM:MessageGenerator_run) T.(PGM:MessageGenerator_run)→T.(InvokePGM:MessageGenerator_run).(PGM:Averager_getWindSpeed,averageData'<int>:ag,UNEVAL).(PGM:TransmitDriver_send.'msg<MessageFormatWind>:newMessageFormat(ag),UNEVAL).(PGM:Averager_getWhale,whalePassing'<boolean>:TRUE,UNEVAL).(PGM:TransmitDriver_sendWhale,'msg<MessageFormatWhale>:newMessageFormat(TRUE),UNEVAL).(ReturnPGM:MessageGenerator_run) T.(PGM:MessageGenerator_<init>,object'<MessageGenerator>:UNEVAL)→T.(PGM:MessageGenerator_<init>,object'<MesssageGenerator>:newMessageGenerator) UndefinedMonitoredVariableConstraints - - - -ExecutedCount 22 2 1 0Total Sample 24 1 0OccurrenceProbability 91.667 8.333 100 0

Post(i0,T,MessageGenerator_run)={TRUE,i1} ^Pre(1,T,MessageGenerator_<init>)={TRUE,i0} Pre(1,T,MessageGenerator_<init>)={TRUE,i1}TracePredicates ∨j { ¬[∧i(Predicate (i,j)) ]} where i is anumber of rowin this table,and j is anumber ofcolumn in thistable,and i and j don'tinclude thiscell's number.Post(i2,T,TransmitDriver_send)={TRUE,i3} ^Post(i3,T,Averager_getWhale)={TRUE,i4}Post(i1,T,Averager_getWindSpeed)={TRUE,i2}
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SensorMonitor Module Interface SpecificationTrace Event SyntaxProgramName Input Variable Output Variable Event Descriptor<init> NONE object:SensorMonitor (PGM:SensorMonitor_<init>,object'<SensorMonitor>:*)run thisObj:SensorMonitor NONE (PGM:SensorMonitor_run,'thisObj<SensorMonitor>:*)Trace SemanticsPre(1,T,SensorMonitor_<init>)={True,i0} Pre(1,T,SensorMonitor_<init>)={True,i}Pre(i0,T,run)={True,i1} ^['thisObj(r(i1,T))=object'(r(i0,T))]Post(i1,T,Thread_Sleep)={TRUE,i2} ^ ['sleeptime(r(i2,T))=1000]Post(i2,T,SensorDriver_get)={TRUE,i3}Post(i3,T,DataBanker_write)={TRUE,i4} ^['sensorDataIn(r(i4,T))=sensorData'(r(i3,T))]OutputBehaviorDefinition NONE(T)=NONE object(T)=new SensorMonitor UndefinedTracePostcondition T.(PGM:SensorMonitor_run,'thisObj<SensorMonitor>:oo)→T.(InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:oo).(PGM:ThreadSleep,'sleeptime<int>=1000).(PGM:SensorDriver_get,'windSpeed<int>:UNEVAL,'whalePassing<Boolean>:UNEVAL,sensorData'<SensorReading>:dd).(PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd).(ReturnPGM:SensorMonitor_run) T.(PGM:SensorMonitor_<init>,object'<SensorMonitor>:UNEVAL) →T.(PGM:SensorMonitor_<init>,object'<SensorMonitor>:new SensorMonitor) UndefinedMonitoredVariableConstraints - - -ExecutedCount 114 1 0Total Sample 114 1 0OccurrenceProbability 100 100 0
∨j { ¬[∧i (Predicate (i,j)) ] }where i is a number of row in thistable, and j is a number of columnin this table,and i and j don't include this cell'snumber.TracePredicates



54Averager Module Interface SpecificationTrace Event SyntaxProgramName Input Variable Output Variable Event DescriptorgetWindSpeed NONE averageData:int (PGM:Averager_getWindSpeed,averageData'<int>:*)getWhale NONE whalePassing:boolean (PGM:Averager_getWhale,whalePassing'<Boolean>:*)TraceSemantics Pre(1,T,Averager_getWindSpeed)={TRUE,i0} Pre(1,T,Averager_getWhale)={TRUE,i0}Post(i0,T,DataBanker_read)={TRUE,i1} exist({[Pre(i0,T,DataBanker_write)={TRUE,i1}] ^['sensorDataIn(r(i1,T)) = {*,TRUE}] } v{[Pre(i1,T,DataBanker_write)={TRUE,i2}] ^['sensorDataIn(r(i2,T)) = {*,TRUE}] } v{[Pre(i2,T,DataBanker_write)={TRUE,i3}] ^['sensorDataIn(r(i3,T)) = {*,TRUE}] } v{[Pre(i3,T,DataBanker_write)={TRUE,i4}] ^['sensorDataIn(r(i4,T)) = {*,TRUE}] } v{[Pre(i4,T,DataBanker_write)={TRUE,i5}] ^['sensorDataIn(r(i5,T)) = {*,TRUE}] },T) = TRUE exist({[Pre(i0,T,DataBanker_write)={TRUE,i1}] ^['sensorDataIn(r(i1,T)) = {*,FALSE}] } ^{[Pre(i1,T,DataBanker_write)={TRUE,i2}] ^['sensorDataIn(r(i2,T)) = {*,FALSE}] } ^{[Pre(i2,T,DataBanker_write)={TRUE,i3}] ^['sensorDataIn(r(i3,T)) = {*,FALSE}] } ^{[Pre(i3,T,DataBanker_write)={TRUE,i4}] ^['sensorDataIn(r(i4,T)) = {*,FALSE}] }  ^{[Pre(i4,T,DataBanker_write)={TRUE,i5}] ^['sensorDataIn(r(i5,T)) = {*,FALSE}] },T) = TRUEPost(i0,T,DataBanker_read)={TRUE,i} Post(i0,T,DataBanker_read)={TRUE,i}OutputBehaviorDefinition averageData(T)= Σj((readData'(r(i1,T)).listElement(j)).value /readData'(r(i1,T)).length) whalePassing(T)= True whalePassing(T)= False UndefinedTracePostcondition T.(PGM:Averager_getWindSpeed,averageData'<int>:UNEVAL)->T.(InvokePGM:Averager_getWindSpeed).(PGM:DataBanker_read,readData'<List<int>>:rd,UNEVAL).(ReturnPGM:Averager_getWindSpeed,averageData'<int>:Σi (rd.listElement(i)).value /rd.length)) T.(PGM:Averager_getWhale,whalePassing'<Boolean>:UNEVAL)->T.(InvokePGM:Averager_getWhale).(PGM:DataBanker_read,readData'<List<int>>:rd,UNEVAL).(ReturnPGM:Averager_getWhale,whalePassing'=True) T.(PGM:Averager_getWhale,whalePassing'<Boolean>:UNEVAL)->T.(InvokePGM:Averager_getWhale).(PGM:DataBanker_read,readData'<List<int>>:rd,UNEVAL).(ReturnPGM:Averager_getWhale,whalePassing'=False) UndefinedMonitoredVariableConstraints - [(rd.listItemAt[0]).whalePassing = True] v[(rd.listItemAt[1]).whalePassing = True] v[(rd.listItemAt[2]).whalePassing = True] v[(rd.listItemAt[3]).whalePassing = True] v[(rd.listItemAt[4]).whalePassing = True] [(rd.listItemAt[0]).whalePassing = False] ^[(rd.listItemAt[1]).whalePassing = False] ^[(rd.listItemAt[2]).whalePassing = False] ^[(rd.listItemAt[3]).whalePassing = False] ^[(rd.listItemAt[4]).whalePassing = False] -ExecutedCount 24 3 21 0Total Sample 24 24 0OccurrenceProbability 100 12.5 87.5 0
TracePredicates ∨j { ¬[∧i(Predicate (i,j)) ]} where i is anumber of rowin this table,and j is anumber ofcolumn in thistable,and i and j don'tinclude thiscell's number.
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DataBanker Module Interface SpecificationTrace Event SyntaxProgramName Input Variable Output Variable Event Descriptorinit NONE NONE (PGM:DataBanker_init,'staticList<List<SensorReading>>:*)write sensorDataIn:SensorReading NONE (PGM:DataBanker_write,'staticList<List<SensorReading>>:*, 'sensorDataIn<SensorReading>:*)read NONE readData:List<SensorReading> (PGM:DataBanker_read,'staticList<List<SensorReading>>:*, readData<List<SensorReading>>:*)Trace SemanticsPre(1,T,DataBanker_init)={TRUE,i0} Pre(1,T,DataBanker_write)={TRUE,i0} Pre(1,T,DataBanker_read)={TRUE,i0}Pre(i0,T,DataBanker_write)={TRUE,i1}Pre(i1,T,DataBanker_write)={TRUE,i2}Pre(i2,T,DataBanker_write)={TRUE,i3}Pre(i3,T,DataBanker_write)={TRUE,i4}Pre(i4,T,DataBanker_write)={TRUE,i5}Pre(i5,T,DataBanker_init)={TRUE,i6}OutputBehaviorDefinition NONE(T)=NONE NONE(T)=NONE readData(T)=new List('sensorDataIn(r(i1,T)),'sensorDataIn(r(i2,T)), 'sensorDataIn(r(i3,T)),'sensorDataIn(r(i4,T)), 'sensorDataIn(r(i5,T))) UndefinedTracePostcondition T.(PGM:DataBanker_init)->T.(PGM:DataBanker_init) T.(PGM:DataBanker_write,'sensorDataIn<SensorReading>:sd)->T.(PGM:DataBanker_write,'sensorDataIn<SensorReading>:sd) T.(PGM:DataBanker_read,readData'<List<SensorReading>>:UNEVAL)->T.(PGM:DataBanker_read,readData'<List<SensorReading>>:new List(sd0,sd1,sd2,sd3,sd4)) UndefinedMonitoredVariableConstraints - - - -ExecutedCount 1 228 48 0Total Sample 1 228 48 0OccurrenceProbability 100 100 100 0
TracePredicates ∨j { ¬[∧i(Predicate (i,j)) ]} where i is anumber of rowin this table,and j is anumber ofcolumn in thistable,and i and j don'tinclude thiscell's number.
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SensorDriver Module Interface SpecificationTrace Event SyntaxFunction CallEventDescriptor Input Variable Output Variable Event DescriptorSensorDriver_get windSpeed:int, whalePassing:Boolean sensorData:SensorReading (PGM:SensorDriver_get,'windSpeed<int>:*,'whalePassing<Boolean>:*,sensorData'<SensorReading>:*)Trace SemanticsTracePredicates Pre(1,T,SensorDriver_get)={True,i} ∨j { ¬[∧i (Predicate (i,j)) ] }OutputBehaviorDefinition sensorData(T)=new SensorReading('windSpeed(r(i,T)), 'whalePassing(r(i,T)) ) UndefinedTracePostcondition T.(PGM:SensorDriver_get,'windSpeed<int>:UNEVAL,'whalePassing<Boolean>:UNEVAL,sensorData'<SensorReading>:UNEVAL)→T.(PGM:SensorDriver_get,'windSpeed<int>:aa,'whalePassing<Boolean>:bb,sensorData'<SensorReading>:newSensorReading(aa,bb)) UndefinedMonitoredVariableConstraints INTMIN ≤ aa ≤ INTMAX,bb = TRUE v FALSE -ExecutedCount 114 0Total Sample 114 0OccurrenceProbability 100 0
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TransmitDriver Module Interface SpecificationTrace Event SyntaxProgramName Input Variable Output Variable Event DescriptorsendWindSpeed msg:MessageFormatWind msg:MessageFormatWind (PGM:TransmitDriver_sendWindSpeed,'msg<MessageFormatWind>:*,msg'<MessageFormatWind>:*)sendToWhaleSurveyCenter msg:MessageFormatWhale msg:MessageFormatWhale (PGM:TransmitDriver_sendToWhaleSurveyCenter,'msg<MessageFormatWhale>:*,msg'<MessageFormatWhale>:*)Trace SemanticsTracePredicates Pre(1,T,TransmitDriver_sendWindSpeed)={True,i} Pre(1,T,TransmitDriver_sendToWhaleSurveyCenter)={True,i} ∨j { ¬[∧i (Predicate (i,j)) ] } where i is a numberof row in this table, and j is a number of columnin this table,and i and j don't include this cell's number.OutputBehaviorDefinition msg(T)='msg(r(I,T)) msg(T)='msg(r(I,T)) UndefinedTracePostcondition T.(PGM:TransmitDriver_sendWindSpeed,'msg<MessageFormatWind>:mm,msg'<MessageFormatWind>:UNEVAL)→T.(PGM:TransmitDriver_sendWindSpeed,'msg<MessageFormatWind>:mm,msg'<MessageFormatWind>:mm) T.(PGM:TransmitDriver_sendToWhaleSurveyCenter,'msg<MessageFormatWhale>:mm,msg'<MessageFormatWhae>:UNEVAL)→T.(PGM:TransmitDriver_sendToWhaleSurveyCenter,'msg<MessageFormatWhale>:mm,msg'<MessageFormatWhae>:mm) UndefinedMonitoredVariableConstraints - - -ExecutedCount 114 3 0Total Sample 114 3 0OccurrenceProbability 100 100 0
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APPENDIX D. TESTING TRACE GENERATION ALGORITHM

INTERMEDIATE STATES

The intermediate states of the testing trace in the test case generation algorithm are de-

scribed for particular stages.
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Ttest= Ttest=(PGM:FWS_<init>,'quit<Boolean>:qq) → (InvokePGM:FWS_<init>,'quit<Boolean>:qq).     (PGM:DataBanker_init).     (PGM:MessageGenerator_<init>,object'<MessageGenerator>:ob1,UNEVAL).     (PGM:SensorMonitor_<init>,object'<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:MessageGenerator_run,'obj<MessageGenerator>:ob1,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:MessageGenerator_run,'obj<MessageGenerator>:ob1,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:MessageGenerator_run,'obj<MessageGenerator>:ob1,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:MessageGenerator_run,'obj<MessageGenerator>:ob1,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:MessageGenerator_run,'obj<MessageGenerator>:ob1,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).Events beyond the upper-bound length of testing trace are truncated. This example has the upper-bound 37.

Step 3, 4. ・This equivalence class of traces is chosen with probability 1.・The consequent of the trace postcondition is insert to the testing trace.・The meta-variable qq is added to the meta-variable map , and  the constraint of  monitored variable 'quit is  added to the collection, CON.Step 5. Go back to  Step3.This Step3 evaluates the next unevaluated event (PGM:DataBanker_init)

Meta-VariableMap=Key Valueqq Monitored Variableob1 new MessageGenerator Instanceob2 new SensorMonitor Instance CON=qq=FALSE
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Ttest=(InvokePGM:FWS_<init>,'quit<Boolean>:False).     (PGM:DataBanker_init).     (PGM:MessageGenerator_<init>,object'<MesssageGenerator>:ob1=new MessageGenerator)     (PGM:SensorMonitor_<init>,object'<SensorMonitor>:ob2=new SensorMonitor)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa1,'whalePassing<Boolean>:bb1,sensorData'<SensorReading>:dd1).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd1).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa2,'whalePassing<Boolean>:bb2,sensorData'<SensorReading>:dd2).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd2).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa3,'whalePassing<Boolean>:bb3,sensorData'<SensorReading>:dd3).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd3).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa4,'whalePassing<Boolean>:bb4,sensorData'<SensorReading>:dd4).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd4).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa5,'whalePassing<Boolean>:bb5,sensorData'<SensorReading>:dd5).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd5).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:MessageGenerator_run).          (InvokePGM:Averager_getWindSpeed).               (PGM:DataBanker_read,readData'<List<SensorReading>>:new List(dd1,dd2,dd3,dd4,dd5))          (ReturnPGM:Averager_getWindSpeed,averageData'<int>:av1)          (PGM:TransmitDriver_sendWindSpeed.'msg<MessageFormatWind>:mm1=new MessageFormat(cc1),msg'<MessageFormatWind>:mm1).          (InvokePGM:Averager_getWhale).               (PGM:DataBanker_read,readData'<List<SensorReading>>:UNEVAL)          (ReturnPGM:Averager_getWhale,whalePassing'<Boolean>:FALSE)Step4. ・An equivalence class of traces is chosen. In this case, the one with "whalePasing=FALSE" is chosen with the probability 87.5/100.

Ttest=(InvokePGM:FWS_<init>,'quit<Boolean>:False).     (PGM:DataBanker_init).     (PGM:MessageGenerator_<init>,object'<MesssageGenerator>:ob1=new MessageGenerator)     (PGM:SensorMonitor_<init>,object'<SensorMonitor>:ob2=new SensorMonitor)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa1,'whalePassing<Boolean>:bb1,sensorData'<SensorReading>:dd1).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd1).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa2,'whalePassing<Boolean>:bb2,sensorData'<SensorReading>:dd2).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd2).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa3,'whalePassing<Boolean>:bb3,sensorData'<SensorReading>:dd3).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd3).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa4,'whalePassing<Boolean>:bb4,sensorData'<SensorReading>:dd4).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd4).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa5,'whalePassing<Boolean>:bb5,sensorData'<SensorReading>:dd5).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd5).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:MessageGenerator_run).          (InvokePGM:Averager_getWindSpeed).               (PGM:DataBanker_read,readData'<List<SensorReading>>:new List(dd1,dd2,dd3,dd4,dd5))          (ReturnPGM:Averager_getWindSpeed,averageData'<int>:av1)          (PGM:TransmitDriver_sendWindSpeed.'msg<MessageFormatWind>:mm1=new MessageFormat(cc1),msg'<MessageFormatWind>:mm1).          (PGM:Averager_getWhale,whalePassing'<boolean>:UNEVAL,UNEVAL).     (ReturnPGM:MessageGenerator_run)     (PGM:SensorMonitor_run,'obj<SensorMonitor>:ob2,UNEVAL).Step3. Query and get the possibly-satisfiable equivalence class. The possibly-satisfiable equivalence classes are 1) the one with "whalePassing(T)= TRUE;"2) the one with "whalePassing(T)= FALSE."



61Ttest=(InvokePGM:FWS_<init>,'quit<Boolean>:False).     (PGM:DataBanker_init).     (PGM:MessageGenerator_<init>,object'<MesssageGenerator>:ob1=new MessageGenerator)     (PGM:SensorMonitor_<init>,object'<SensorMonitor>:ob2=new SensorMonitor)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa1,'whalePassing<Boolean>:bb1,sensorData'<SensorReading>:dd1).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd1).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa2,'whalePassing<Boolean>:bb2,sensorData'<SensorReading>:dd2).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd2).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa3,'whalePassing<Boolean>:bb3,sensorData'<SensorReading>:dd3).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd3).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa4,'whalePassing<Boolean>:bb4,sensorData'<SensorReading>:dd4).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd4).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:aa5,'whalePassing<Boolean>:bb5,sensorData'<SensorReading>:dd5).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd5).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:MessageGenerator_run).          (InvokePGM:Averager_getWindSpeed).               (PGM:DataBanker_read,readData'<List<SensorReading>>:new List(dd1,dd2,dd3,dd4,dd5))          (ReturnPGM:Averager_getWindSpeed,averageData'<int>:cc1)          (PGM:TransmitDriver_sendWindSpeed.'msg<MessageFormatWind>:mm1=new MessageFormat(cc1),msg'<MessageFormatWind>:mm1).          (InvokePGM:Averager_getWhale).               (PGM:DataBanker_read,readData'<List<SensorReading>>:new List(dd1,dd2,dd3,dd4,dd5))          (ReturnPGM:Averager_getWhale,whalePassing'<Boolean>:FALSE)
Step3,4. ・A consequent of the trace postcondition of "Averager_getWhale" is inserted.Step3. Query again and get the possibly-satisfiable equivalence class.The possibly-satisfiable equivalence classes are 1) the one with "whalePassing(T)= TRUE;"2) the one with "whalePassing(T)= FALSE."Step4. This case "whalePasing=FALSE" is chosen with the probability 87.5/100.**Note: Although the random choice is done twice, the probability of getting "whalePasing=FALSE" at this step remains 87.5/100, since the probability of getting "whalePasing=FALSE" is 87.5/100 no matter what value "whalePasing" has before, which leads to 
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∀
== ∑MetaVariableMap= CON=Key Value qq=FALSEqq Monitored Variable INTMIN ≤ aa1 ≤ INTMAXob1 new MessageGenerator Instance INTMIN ≤ aa2 ≤ INTMAXob2 new SensorMonitor Instance INTMIN ≤ aa3 ≤ INTMAXaa1 Monitored Variable INTMIN ≤ aa4 ≤ INTMAXbb1 Monitored Variable INTMIN ≤ aa5 ≤ INTMAXdd1 {windSpeed=aa1, whalePassing=bb1} bb1 = TRUE v FALSEaa2 Monitored Variable bb2 = TRUE v FALSEbb2 Monitored Variable bb3 = TRUE v FALSEdd2 {windSpeed=aa2, whalePassing=bb2} bb4 = TRUE v FALSEaa3 Monitored Variable bb5 = TRUE v FALSEbb3 Monitored Variable bb1 = FALSEdd3 {windSpeed=aa3, whalePassing=bb3} bb2 = FALSEaa4 Monitored Variable bb3 = FALSEbb4 Monitored Variable bb4 = FALSEdd4 {windSpeed=aa4, whalePassing=bb4} bb5 = FALSEaa5 Monitored Variablebb5 Monitored Variabledd5 {windSpeed=aa5, whalePassing=bb5}rd1 List<SensorReading>  List(dd1,dd2,dd3,dd4,dd5)cc1 aa1+aa2+aa3+aa4+aa5/5



62Ttest=(InvokePGM:FWS_<init>,'quit<Boolean>:FALSE).     (PGM:DataBanker_init).     (PGM:MessageGenerator_<init>,object'<MesssageGenerator>:ob1)     (PGM:SensorMonitor_<init>,object'<SensorMonitor>:ob2)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:45 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd1).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd1).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:51 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd2).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd2).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:50 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd3).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd3).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:52 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd4).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd4).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:SensorMonitor_run,'thisObj<SensorMonitor>:ob2).          (PGM:ThreadSleep,'sleeptime<int>=1000).          (PGM:SensorDriver_get,'windSpeed<int>:55 ,'whalePassing<Boolean>:FALSE ,sensorData'<SensorReading>:dd5).          (PGM:DataBanker_write,'sensorDataIn<SensorReading>:dd5).     (ReturnPGM:SensorMonitor_run)     (InvokePGM:MessageGenerator_run).          (InvokePGM:getWindSpeed).               (PGM:DataBanker_read,readData'<List<SensorReading>>:new List(dd1,dd2,dd3,dd4,dd5))          (ReturnPGM:getWindSpeed,averageData'<int>:cc1)          (PGM:TransmitDriver_sendWindSpeed.          'msg<MessageFormatWind>:mm1=new MessageFormat(cc1),msg'<MessageFormatWind>:mm1).          (InvokePGM:Averager_getWhale).               (PGM:DataBanker_read,readData'<List<SensorReading>>:new List(dd1,dd2,dd3,dd4,dd5))          (ReturnPGM:Averager_getWhale,whalePassing'=FALSE )
Step6. Generate monitored variable values and populate all values  in this testing trace.
MetaVariableMap=Key Valueqq FALSEob1 new MessageGenerator Instanceob2 new SensorMonitor Instanceaa1 45bb1 FALSEdd1 {windSpeed=aa1, whalePassing=bb1}aa2 51bb2 FALSEdd2 {windSpeed=aa2, whalePassing=bb2}aa3 50bb3 FALSEdd3 {windSpeed=aa3, whalePassing=bb3}aa4 52bb4 FALSEdd4 {windSpeed=aa4, whalePassing=bb4}aa5 55bb5 FALSEdd5 {windSpeed=aa5, whalePassing=bb5}rd1 List<SensorReading>  List(dd1,dd2,dd3,dd4,dd5)cc1 51
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