
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2014

Automatic Verification of Interactions in
Asynchronous Systems with Unbounded Buffers
Sneha Bankar
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bankar, Sneha, "Automatic Verification of Interactions in Asynchronous Systems with Unbounded Buffers" (2014). Graduate Theses
and Dissertations. 14052.
https://lib.dr.iastate.edu/etd/14052

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14052?utm_source=lib.dr.iastate.edu%2Fetd%2F14052&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Automatic verification of interactions in asynchronous systems with

unbounded buffers

by

Sneha Bankar

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Samik Basu, Major Professor

Andrew S. Miner

Hridesh Rajan

Iowa State University

Ames, Iowa

2014

Copyright c© Sneha Bankar, 2014. All rights reserved.

ii

DEDICATION

I would like to dedicate this work to Dr. Samik Basu and to my parents: Mr Anil

Bankar and Mrs. Ujwala Bankar for their constant moral support throughout my Mas-

ter’s education and while writing this Thesis.

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . ix

ABSTRACT . x

CHAPTER 1. INTRODUCTION . 1

1.1 Automatic Verification of Asynchronous Systems 3

1.1.1 Existing Approach . 3

1.1.2 Proposed Solution . 5

1.2 Contributions . 6

1.3 Outline . 7

CHAPTER 2. RELATED WORK . 8

2.1 Summary . 16

CHAPTER 3. BACKGROUND . 19

3.1 Peers and Systems . 19

3.2 System Behavior Description as Languages 25

3.3 Temporal Properties . 26

CHAPTER 4. DETECTION OF BOUNDED BEHAVIOR 28

4.1 Condition for Bounded Buffer Behavior 28

4.2 Algorithms for bounded behavior detection 32

4.2.1 Finding Configurations with Unbounded Send Sequences 32

iv

4.2.2 Algorithm for Exploring I and Verifying ϕ 36

4.3 Algorithm to find bound . 45

CHAPTER 5. TOOL DESCRIPTION . 51

5.1 Tool Overview . 51

5.2 Tool Components . 52

CHAPTER 6. CASE STUDIES . 59

6.1 Case Study 1 . 59

6.2 Case Study 2 . 61

6.3 Case Study 3: Reservation Session Protocol 63

6.4 Case Study 4: TCP Contract . 65

6.5 Case Study 5: Key Board Contract - Singularity Channel 67

6.6 Case Study 6: Stock Broker Protocol (E-Service) 69

6.7 Case Study 7: TPM Contract Protocol 70

6.8 Case Study 8: Alternating Bit Protocol 72

6.9 SUMMARY . 74

CHAPTER 7. SUMMARY . 77

7.1 Contributions . 77

7.2 Future Work . 78

BIBLIOGRAPHY . 81

v

LIST OF TABLES

6.1 Case study 1: Computation time in milliseconds 59

6.2 Case study 1: Results . 60

6.3 Case study 1: BOUNDFINDER in nanoseconds 61

6.4 Case study 2: Computation time in milliseconds 62

6.5 Case study 2: Results . 62

6.6 Case study 2: BOUNDFINDER in nanoseconds 62

6.7 Case study 3: Computation time in milliseconds 63

6.8 Case study 3: Results . 64

6.9 Case study 3: BOUNDFINDER in nanoseconds 64

6.10 Case study 4: Computation time in milliseconds 65

6.11 Case study 4: Results . 66

6.12 Case study 4: BOUNDFINDER in nanoseconds 67

6.13 Case study 5: Computation time in milliseconds 67

6.14 Case study 5: Results . 68

6.15 Case study 5: BOUNDFINDER in nanoseconds 69

6.16 Case study 6:Computation time in milliseconds 70

6.17 Case study 6:Results . 71

6.18 Case study 7: Computation time in milliseconds 71

6.19 Case study 7: Results . 72

6.20 Case study 7: BOUNDFINDER in nanoseconds 72

6.21 Case study 8: Computation time in milliseconds 74

vi

6.22 Case study 8: Results . 74

vii

LIST OF FIGURES

Figure 1.1 Peers with unbounded buffers 4

Figure 3.1 Single peers . 20

Figure 3.2 Composed system table . 21

Figure 3.3 Composed System . 22

Figure 3.4 1-bounded system . 24

Figure 3.5 2-bounded system . 24

Figure 4.1 Strongly connected components 34

Figure 4.2 DFS: unbounded send cycle detection 36

Figure 4.3 Explore I . 39

Figure 4.4 Next state generator . 44

Figure 5.1 Tool architecture showing main components 51

Figure 5.2 SIR mapping . 54

Figure 6.1 Peers: case study 1 . 60

Figure 6.2 Peers: case study 2 . 61

Figure 6.3 Peers: case study 3 . 63

Figure 6.4 Peers: case study 4 . 65

Figure 6.5 Peers: case study 5 . 68

Figure 6.6 Peers: case study 6 . 70

Figure 6.7 Peers: case study 7 . 71

viii

Figure 6.8 Peers: case study 8 . 73

Figure 6.9 Summary 1 . 75

Figure 6.10 Summary 2 . 76

ix

ACKNOWLEDGEMENTS

I would like to thank firstly to Dr. Samik Basu for his constant support, guidance and

most importantly being patient while going through different phases of this research and

thesis. Also special thanks to members in my POS committee, Dr. Andrew Miner and

Dr. Hridesh Rajan for giving their valuable inputs and giving insights on some future

work of this thesis. This work is supported by US National Science Foundation grant

CCF1116836.

x

ABSTRACT

Model Checking of distributed systems which communicate via message exchanges

is an open research problem. Such communication results in asynchronous interaction

between senders and receivers, one where the communicating entities, do not move in

lock-step. Model Checking is only possible for systems which can be represented as

finite state systems. Distributed Systems which communicate asynchronously cannot be

represented as finite state systems due to undefined bound on the message buffers meant

for message exchanges. Thus in general model checking such systems is undecidable.

In this thesis, we present a technique to automatically identify asynchronous systems

whose interactions can be represented by some finite state systems. This will allow us

to automatically model check the asynchronous systems. We also present a prototype

implementation and discuss the application of our technique on several case studies from

existing literature.

1

CHAPTER 1. INTRODUCTION

The paradigm of distributed computing is becoming extremely popular with the

growth of high performance computing, distributed service infrastructure and distributed

consumer’s scenario. This paradigm has become a basis for a wide variety of applications

from data-centric services to processor intensive tasks, from systems built from very small

and relatively primitive sensors to those incorporating powerful computational elements,

from embedded systems to ones that support a sophisticated interactive user experience,

and so on. According to G. Couloris, a distributed system is “a system in which hardware

or software components located at networked computers communicate and coordinate

their actions only by message passing” Coulouris and Dollimore (1988). As can be seen,

distributed systems encompass many of the most significant technological developments

of recent years and have a widespread use. Thus, it becomes imperative to have a deep

understanding of distributed systems and further analyze such systems to avoid system

failures.

In order to enable interaction between different components of a distributed system,

message based communication is widely used. Message based communication allows for

concurrency and distributed computing. Important applications of message based dis-

tributed systems are process isolation in Singularity OS Fähndrich et al. (2006) and

distributed message based services Armstrong (2002); Banavar et al. (1999). Singular-

ity is an experimental operating system built by Microsoft Research. It is designed as

a highly-dependable OS in which the kernel, device drivers, and applications were all

written in managed code. Process isolation is an important feature for Singularity OS

2

and to accomplish this, processes are not allowed to share memory. The inter-process

communication, therefore, occurs over channels via message passing. Web Services are a

good example of distributed message based services. Web Services basically are formed

of web-accessible software applications that communicate over the Web. The communi-

cation between services takes place through XML based messages. It is necessary that

services should be able to tolerate pauses in availability of other services and slow data

transmission. This is achieved through asynchronous communication.

We consider distributed systems communicating via message exchanges. These mes-

sage exchanges are performed through communication channels. The different compo-

nents of the distributed system are often referred to as peers. Communication over

channels can incur delays (or even loss) in the delivery of messages to the receiving peer.

A simple view of such a channel is that of a first in first out (FIFO) queue where the

maximum size of the queue corresponds to maximum delay a channel can incur. This is

referred to as the size of the channel. Other representations can include random-access

queue, where the ordering of the messages being exchanged via the channels is not main-

tained. In either case, the communication results in asynchronous interaction between

senders and receivers, one where the communicating entities, do not move in lock-step.

We consider FIFO ordering of messages. We refer to message buffers present at any peer’s

end as receive queues. In this communication model, same peer can act as a sender as

well as a receiver. The systems which follow the interaction behavior described above

are called as asynchronous systems. In asynchronous systems, communicating peers can

continue their operation without getting blocked as they do not have to wait for other

peers to complete their actions. For instance, after a sender sends a message to the

receiver, it does not have to wait for the receiver to consume the message. Once the

message it sent, it can safely resume its actions.

3

1.1 Automatic Verification of Asynchronous Systems

Given a representation of dynamic behavior of a system, model checking enables to

exhaustively and automatically verify whether the behavior is a model of the desired

temporal specification; in short, whether the behavior satisfies the specification. The

primary constraint in applying model checking is that the behavior of the system should

have finite state-space; otherwise, the problem of model checking becomes undecidable.

This makes model checking asynchronous systems challenging, if not impossible. The

reason stems from the fact that the size of the communication channels, i.e. the size of

the queues, is not known a priori. As a result, model checking an asynchronous system

involves model checking the system with any finite size channel. In fact, Brand and

Zafiropulo (1983) states that asynchronous systems can be viewed as communicating

finite state machines, for which automatic reachability analysis (a sub-goal of model

checking) is undecidable in general.

1.1.1 Existing Approach

Many different approaches have been undertaken to address the problem of verifica-

tion of asynchronous systems where peers communicate via channels whose size is not

specified. Since automatic verification for such systems is undecidable, researchers have

focused on sub-classes of these systems for which verification can be decidable.An ex-

ample of an asynchronous system communicating via message buffers is shown in figure

1.1. In this example, the system is made up of three peers. The communication channel

is modeled as an unbounded receive queue for every single peer. When a peer wants

to communicate with any other peer, it can perform a write to the receive queue of the

other peer.Also, a peer can read from its own receive queue whenever it is ready to do

so. Thus communication between the peers is asynchronous.

One line of research considers verification of asynchronous systems by imposing re-

4

Figure 1.1 Peers with unbounded buffers

strictions on them. For example, Cecea and Finkel (2005) considers verification of half-

duplex systems. This work proves that reachability set for half duplex systems can be

calculated in polynomial time and determining if a system is half duplex is decidable.

The half-duplex property for two machines and two channels (one in each direction)

states that each reachable configuration has at most one non-empty channel. This is a

clear restriction on the communication channel of peers in an asynchronous system.

A more general class of asynchronous systems is handled in Fu et al. (2004) and

Fu et al. (2005), where there could be more than two peers in the system and com-

munication channel need not be restricted. In this line of work, verification of such

systems is decidable if interaction between the peers is synchronizable i.e. the behav-

ior of asynchronously interacting peers can be mimicked by the behavior of the same

peers interacting synchronously (i.e., with receive queue size 0).Yoshida and Vasconcelos

(2007) and Honda et al. (2008) focus on session types, used in the context of structured

5

communication-centered programming. However, the drawback is that the systems have

to conform to the behavior of session types, where sends and receives from the same

state is not possible.Thus, there is a restriction on the behavior of communicating peers.

Siegel (2005) and Vakkalanka et al. (2010) target the domain of parallel programs

that employ message passing interface. In this line of research, the send actions and

receive actions are restricted such that it leads to a deadlock free interaction.Thus here

the focus is on the local behavior of the system. In contrast we focus on global interaction

behavior.

We do not put any limitation on the behavior of message channels or do not make any

assumptions with respect to system specifications. Our work is built upon the results

in Fu et al. (2005) but does not require for asynchronous systems to be synchronizable.

Thus our solution is more generic. In conclusion, our approach targets a broader class

of asynchronous systems. We represent unbounded buffered asynchronous systems in

the form of finite state systems and check if any bounded interaction behavior mimics

the given unbounded behavior. After such confirmation, traditional model checking

algorithms can be used to verify different properties for the given unbounded system.

1.1.2 Proposed Solution

We give a solution which can be applied to a more general class of asynchronous

systems and does not have any limitation on the behavior of the communication channel.

We present necessary and sufficient conditions under which interactions between peers

with unbounded receive queues in an asynchronous system are identical to interactions

between the same peers with some bounded receive queues. Bounded buffered systems

exhibit finite state space and thus verification is decidable for them. The intuition behind

our approach is that if interaction between a particular set of peers with unbounded buffer

system can be mimicked by a buffered system, then the buffered system can be used as

a representation of the unbounded counterpart.

6

The root cause of infinite state behavior of asynchronous systems is that, the sender

can send messages without any blockage, however the receiver cannot consume the mes-

sages at the rate they are being sent. The FIFO queue for the receiver grows in an

unbounded fashion. However, if the receiver’s behavior is such that it can consume the

messages in its buffer infinitely often, then a bounded buffer is sufficient to serve the

purpose of the unbounded buffer. As a result, the bounded buffer implies finite state-

space representation of the asynchronous unbounded buffered system. We identify the

condition that exactly captures this behavior of the receiver. We also show that the con-

dition can be automatically verified by exploring and analyzing finite number of states

in the system. Once the condition is successfully verified, which ensures the existence

of the finite bound (say k) on the receive queue size, one can automatically compute

such a bound. The process is based on iteratively checking whether the peer interactions

with i size receive queues are identical to peer interactions with i + 1 size receive queues,

starting from i = 1. This iteration is guaranteed to terminate when i = k. This process is

based on the fact that the interactions between peers using i size receive queues include

the same peers interactions using ≤ i size receive queues Basu and Bultan (2011).

1.2 Contributions

1. Theoretical Results As discussed earlier, all the existing work targets verifica-

tion of specific classes of asynchronous systems. Our approach identifies a super-set

of these classes and makes verification decidable for them. We prove that our algo-

rithm always terminates whether or not any bounded behavior is detected in the

given asynchronous unbounded system.

2. Prototype Tool We have built a tool which is based on our proposed approach,

thus proving that our approach is realizable in practice. Different modules of

the tool perform separate functions and communicate with each other via static

7

objects. This modularization makes future extensions to our approach easy. For

example, the tool can be further extended to include additional parsers to accept

additional specification languages other than XML. It can also be coupled with

standard Model Checkers like SPIN to enable Model Checking of asynchronous

systems for which verification is decidable.

3. Case Studies We evaluate the tool against standard communication protocols like

Alternating Bit Protocol, Sliding Window Protocol and Snoopy Cache Protocol.

We also perform a case study on protocols like TCPContract Protocol, TPMCon-

tract Protocol, KeyBoardContract Protocol from Singularity OS and Stock Broker

Protocol, MetaConversation Protocol, Reservation Session Protocol from Web Ser-

vices. We evaluate the tool on randomly generated unbounded buffer systems and

special cases of sliding window protocol with increasing window size to check for

scalability. Preliminary case studies prove that our approach is feasible.

1.3 Outline

The rest of the thesis is organized as follows. In Chapter 2, we discuss previous work

related to solving the problem similar to ours. Chapter 3 gives detailed explanation of two

conditions to be checked to detect bounded behavior in unbounded buffer systems. It also

gives an overview of Algorithms to be used in order to check the two conditions. Chapter

4 gives an overview of the Tool Architecture and implementation of tool components.

Chapter 5 presents case studies used for evaluation and experimental results. In Chapter

6 we summarize our approach and contributions.

8

CHAPTER 2. RELATED WORK

Many different approaches have been undertaken to address the problem of verifica-

tion of asynchronous systems where peers communicate with unbounded message buffers.

Since automatic verification for such systems is undecidable, researchers have focused on

sub-classes of these systems for which verification can be decidable.

Cecea and Finkel (2005) considers verification of Communicating Finite State Ma-

chines with Unbounded Channels. More specifically it considers analysis of Half-Duplex

Systems made of finite state machines that communicate over unbounded channels. Half

Duplex Property says that two machines and two channels, the composition of this sys-

tem each configuration should have at most one non-empty channel. The authors provide

that is it possible to decide in polynomial time whether a system is half duplex. Further

exact Representation of reachability set of half duplex communicating systems is possible

to calculate in polynomial time. This paper discusses about properties to be checked on

model of communicating finite state machines. How to check them with recognizable

representation of their reachability set. Then it talks about a recognizable representa-

tion for half duplex systems. This representation helps in finding symbolic reachability

graph of half duplex system. It gives a theorem to show to decide whether a system

of two machines is half duplex in polynomial time. Also it talks about extensions of

this half duplex communication and how it becomes Turing Powerful. Another finding

here is that Propositional linear temporal logic and Computational Tree Logic analysis

is undecidable for half duplex systems.

First the authors identify the possible verification properties for communicating finite

9

state machines (CFSM). For example: reachability problem is to determine if a particular

configuration is reachable in the CFSM; deadlock problem is to check if a deadlock con-

figuration exists in the CFSM. They talk about seven such problems, refer to Cecea and

Finkel (2005) for more details. The authors say that Systems of CFSMs have the power

of Turing machines. Thus verification is undecidable for them. However for a system

S whose reachability set is channel recognizable and for which an effective description

is possible, the first 6 problems are decidable. Channel recognizable means while states

of a communicating system are considered while calculating the configurations we also

consider the possible states of the queue. Next the authors discuss about half duplex

systems which contains only two machines communicating with each other. They show

that each reachable configuration of this system is possible to calculate using a method

used to calculate channel recognizable reachability set. The basic idea is all the tran-

sitions which are possible to reach different configurations can be split into two sets of

transitions. The first set is a 1-Bounded exectution i.e it takes care that the number of

messages possible in both the channels is not more than one. The second set consists of

only send actions which only use one machine and one channel. Thus both these sets are

realizable in a half duplex system with two machines. Thus it is channel recognizable

and reachability set can be calculated for this half duplex system. The authors prove

that this can be done in polynomial time and that the seven verification problems for

half duplex systems are decidable.

Next, it is important to decide if a given CFSM is actually a half duplex system in

order to apply the above results. The authors prove that it is decidable in polynomial

time. After talking about basic verification problems, the paper focuses on model check-

ing of half duplex machines against temporal logics like Propositional Temporal Logic

and Computational Tree Logic. Also another result of this paper is that for half duplex

systems with more than two machines, verification is undecidable as such systems can

simulate Turing Machines. Thus reachability analysis is not possible for them.

10

Next we consider work which is related to systems which satisfy the ‘Synchronizability

property’. If the interaction behavior for a set of communicating peers remains the same

when asynchronous communication is replaced with synchronous communication. This

is called the synchronizability problem. Basu and Bultan (2011), Fu et al. (2004) and

Fu et al. (2005) focus on such system and below we discuss these works.

Basu and Bultan (2011) focuses on Choreography conformance. Specification and

analysis of message-based interactions has been an important research area in service

oriented computing in the last several years. Choreography languages enable specifica-

tion of such interactions. A choreography specification corresponds to a global ordering

of the message exchange events among the peers participating to a composite service,

i.e., a choreography specification identifies the set of allowable message sequences for

a composite web service. Choreography conformance problem is identifying if a set of

given services adhere to a given choreography specification. In general this problem is

undecidable when asynchronous communication is used. This work identifies a subclass

of asynchronous systems for which choreography conformance can be checked effectively.

For any system to belong to this class, this system has to satisfy ‘Synchronizability Prop-

erty’. The authors prove that synchronizability can be determined by comparing the

behavior of the peers with synchronous communication and with bounded asynchronous

communication where each message queue is restricted to a queue of size 1. Once a set

of peers are determined to be synchronizable, then choreography conformance can be

easily checked using existing finite state verification tools.

Initially the authors discuss about Language Equivalence, Bisimulation Equivalence

and Simulation Pre-order. Refer to Basu and Bultan (2011) for the definitions. Further

these equivalence are talked with respect to synchronizability. In summary, bismulation

equivalence demands that branching behavior with respect to send actions between two

composite systems is same. For satisfaction of the ‘Synchronizability Property’, satisfac-

tion of bisumlation equivalence is more than enough. Since our work is built upon this

11

research. The relevant proof for Syncronizability also called as language synchronizability

is mentioned in 3.2.1.

Bisimulation synchronizability allows for verifying conformance of a composite system

to choreography specification expressed in any temporal logic; Simulation synchronizabil-

ity allows for verifying conformance of composite system to choreography specifications

expressed in universal fragment of temporal logic; and finally, language synchronizabil-

ity allows for verifying conformance of composite system to choreography specification

expressed as FSA and in LTL temporal logic. Bisimulation synchronizability implies

simulation synchronizability which, in turn, implies language synchronizability.

The main contribution of this work has been solving the decidability of synchroniz-

ability problem which was an open problem before.

In Fu et al. (2005) focus is on sub-class of asynchronous systems, called synchro-

nizable systems, for which certain reachability properties (over send actions and over

states with no pending receives) remain unchanged when asynchronous communication

is replaced with synchronous communication. Hence, if a system is synchronizable, then

the verification of these reachability properties can be done on the synchronous version

of the system and the results hold for the asynchronous case. We present a technique for

deciding if a given system is synchronizable. An asynchronously communicating system

is synchronizable if executing that system with synchronous communication instead of

asynchronous communication preserves its behaviors. Focus is on two types of behaviors:

1) the sequences of messages that are sent, and 2) the set of reachable configurations

where message queues are empty, i.e., configurations with no pending receives. Before

in Basu and Bultan (2011) the focus was on just the send actions of Peers. Here the

authors also consider reachability of configurations with no pending receives. Such con-

figurations are also called as Synchronized states. Thus a system is synchronizable if

and only if the behaviors for the synchronous version of the system and the 1-bounded-

asynchronous version of the system are equivalent with respect to sent messages and

12

reachable configurations with empty message queues. If a system is synchronizable, then

we can check properties about its message sequences or about the reachability of its

global configurations with empty message queues, using the synchronous version of the

system.

The authors explain about Send traces defined as a sequence of send actions starting

from the initial configuration and Synchronized trace which is a send trace and ends

in a Synchronized state. In order for the systems to be synchronizable with respect to

the behaviors given above, the synchronous version of the system and the 1-bounded-

asynchronous version of the system are equivalent with respect to the Send traces and

the Synchronized trace. Basu and Bultan (2011) already discusses about Send Traces.

This work mainly proves that if synchronous version and 1-Bounded verion of a system

are equivalent then there are no new Synchronizaed traces in any K-Bounded System

∀k ≥ 1. Thus synchronizability can be decided by checking the equivalence between two

finite-state systems, synchronous version and 1-Bounded version. This can be performed

automatically. Then verification of the asynchronous system can be performed using the

corresponding synchronous system.

In this work, the synchronizability results were applied on analysis of channel con-

tracts in the Singularity OS. The experimental results show that almost all channel

contracts in the Singularity OS are synchronizable, and, hence, their properties can be

analyzed using synchronous communication semantics. These results are also applicable

to domains including verification and analysis of interactions among processes at the

OS level, coordination in service-oriented computing and interactions among distributed

programs. Even though there could be bounds on the actual physical memory on the

buffers of Singularity OS, these results are still useful as the message queues are com-

pletely removed and model checking on this system works well as the state explosion

problem for systems with message queues is solved. Another important aspect of this

work is that it implemented Synchronizability and applied it to Singularity OS Channel

13

Contracts.

Finite State Verification technique one of which is model checking suffers usually

from the state explosion problem. This is even more a serious problem with concurrent

systems. Approaches to solve this problem taken are partial order reduction (POR)

methods, data abstraction, program slicing, and state compression techniques. This ob-

servation has led to interest in more domain-specic approaches. In Siegel (2005) authors

focus on the domain of parallel programs which employ Message Passing Interface. The

idea is to leverage knowledge of the restrictions imposed by a particular programming

domain, or of common idioms used in the domain, in order to gain greater reductions

than the generic algorithms allow. With respect to verification the focus is on halt-

ing properties which include freedom from deadlock and assertion of values of certain

variables after program termination.

This paper explains the basic MPI semantics which is explained below. The basic

MPI function for sending a message to another process is MPI SEND. To use it, one

must specify the destination process and a message tag, in addition to other information.

The corresponding function for receiving a message is MPI RECV. In contrast to MPI

SEND, an MPI RECV statement may specify its source process, or it may use the wild-

card value MPI ANY SOURCE, indicating that this statement will accept a message

from any source. Similarly, it may specify the tag of the message it wishes to receive,

or it may use the wildcard value MPI ANY TAG. A receive operation that uses either

or both wildcards is called a wildcard receive. The use of wildcards and tags allows for

great exibility in how messages are selected for reception. The state explosion problem

occurs when message channels come into picture. Before this work it was already proved

that if wildcards receives are ignored than if a system does not deadlock on synchronous

execution it can be model checked and state explosion problem can be avoided. Thus

use of MPI ANY TAG becomes difficult. In this work the MPI ANY TAG can be used

with some relaxation on the hypothesis of wildcard receives. Also, the range of properties

14

is expanded to include all halting properties. It provides model checking algorithm that

deals with MPI ANY SOURCE by moving back and forth between a synchronous and

a buering mode as the search of the state space progresses. An MPI program consists

of a xed number of concurrent processes, each executing its own code, with no shared

variables, that communicate only through the MPI functions.

The basic idea behind presented in this paper is that, in most of the model checking

approaches for concurrent systems, the send and receive channels are supposed to be

bounded and thus the sends possible from any sender are blocked. However the MPI

standard does not have any such limitation on the channel size. The sends in this case

are blocked unless receives are done synchronously by the receivers. This work mainly

focuses on the halting properties of MPI programs. A state in the composed graph of the

Concurrent System is said to be halted when there are no receives or any synchronized

receive events to be performed.

Similar to previous works discussed earlier here, this work also tries to map a poten-

tially infinite state graph(say G) to a finite state graph(say G′) by removing the states

which might lead to the infinite state behavior. In this paper, the authors discuss what

such states could be with respect to MPI Programs and give the formal definitions and

an algorithm to select such states. In conclusion, this work is concerned with the verica-

tion of certain properties, such as freedom from deadlock, for parallel programs that are

written using the Message Passing Interface (MPI). It is known that for MPI programs

containing no ‘wildcard receives’ (and restricted to a certain subset of MPI) freedom from

deadlock can be established by considering only synchronous executions. This approach

is generalizes by presenting a model checking algorithm that deals with wildcard receives

by moving back and forth between a synchronous and a buering mode as the search of the

state space progresses. This approach is similar to that taken by partial order reduction

(POR) methods, but can dramatically reduce the number of states explored even when

the standard POR techniques do not apply. On similar lines Manohar and Martin (1998)

15

present conditions under which slack of a channel in a distributed system can be modi-

fied whitout changing its behavior. This paper suggests some program transformations

for concurrent systems which can be correct only if their interaction behavior satisfy

certain conditions. Vakkalanka et al. (2010) takes the work in Siegel (2005) further. It

takes into consideration slack elastic programs. Slack elastic programs consider send or

receive actions in a particular order and due to this property, buffering can be added

to them safely. The authors say that many MPI programs are slack elastic but there

are few which are not. This paper suggests a formulation of a happens before relation

for MPI programs. This will help in identifying local states which cause the system to

follow non-deterministic behavior. The authors provide method to efficiently check for

slack elasticity of MPI Programs. They also implement this approach in a framework

which help in verifying larger set of MPI programs. Thus Siegel (2005), Manohar and

Martin (1998) and Vakkalanka et al. (2010) consider a specific domain of potentially infi-

nite state space concurrent systems called as MPI programs and also identify techniques

which could help verify such programs by mapping them to a finite state space system.

Yoshida and Vasconcelos (2007) and Honda et al. (2008) focus on session types where

a particular system interaction has to follow certain communication protocol. These

interactions are formulated into a typing problem. Many of the language primitives

had constructs which would define one time interaction between Peers and this work

is concerned with a structure of a series of interactions between Peers. In this work

the authors basically wanted to describe complex interaction behaviors with clarity and

discipline at the high-level of abstraction, together with a formal basis for verification.

They gave basic communication primitives (corresponding to assignment and arithmetic

operations in the imperative setting), and the structuring constructs to combine them

(corresponding to ‘if-then-else’ and ‘while’). Verification methodologies on their basis

were then developed. Communicating Peers can have different modules via which they

communicate with each other. This work shows how these modules and the interaction

16

between them can be represented as a typed language. Whenever a Peer initiates an

interactions and it is called as a Session. Each session has a corresponding channel via

which the Peers communicate. The main idea here is the syntax of the type constructs

is defined such that there is certain compatibility of communication patterns between

two processes. This compatibility is such that each Peer cannot perform a a send or

a receive action from the same state. Thus in terms of the typed language, this paper

defines a global interaction protocol which the communicating peers must follow. The

peers local behavior should be such that they follow this global interaction protocol. The

typed conversations are used as a basis for validating programs. Yoshida and Vasconcelos

(2007) dealt with asynchronous systems dealing with just two peers while Honda et al.

(2008) took the work further to deal with more than two Peers.

Thus Yoshida and Vasconcelos (2007) and Honda et al. (2008) consider concurrent

programs communicating with each other. This is not a certain domain of concurrent

systems like MPI programs or web services described before. However, they define Type

constructs for interaction between communicating peers. These constructs in turn im-

pose communication restrictions on such interactions, due to which verification of asyn-

chronous systems with unbounded buffers (under certain restrictions) becomes feasible.

2.1 Summary

Thus we see the approach taken to solve the problem of Verification of Asynchronous

systems is to concentrate on certain sub-class of Asynchronous systems or impose certain

behavioral restrictions on such systems. Thus the sub-class of Asynchronous Systems

becomes verifiable or at least if they satisfy certain conditions they become verifiable. In

our work, we identify a new and relaxed sub class for which interactions between peers

with unbounded receive queues in an asynchronous system are identical to interactions

between the same peers with some bounded receive queues. We provide certain con-

17

ditions to determine if a particular Asynchronous System belongs to such a sub-class

and provide an approach to check for these conditions. In conclusion, one line of re-

search considers verification of asynchronous systems by imposing restrictions on them.

For example, Cecea and Finkel (2005) considers verification of half-duplex systems. This

work proves that reachability set for half duplex systems can be calculated in polynomial

time and determining if a system is half duplex is decidable. The half-duplex property

for two machines and two channels (one in each direction) states that each reachable

configuration has at most one non-empty channel. This is a clear restriction on the

communication pattern of peers in an asynchronous system. A more general class of

asynchronous systems is handled in Fu et al. (2004) and Fu et al. (2005), where there

could be more than two peers in the system and communication channel need not be

restricted. In this line of work, verification of such systems is decidable if interaction

between the peers is synchronizable i.e. the behavior of asynchronously interacting peers

can be mimicked by the behavior of the same peers interacting synchronously (i.e., with

receive queue size 0).

Our approach over decidability of verification of asynchronous systems does not lay

any restrictions on the type of asynchronous system and thus handles a wider subset of

asynchronous systems.

Yoshida and Vasconcelos (2007) and Honda et al. (2008) focus on session types,

used in the context of structured communication-centered programming. Honda et al.

(2008) was an important step from binary asynchronous systems to multi-party systems.

However, the drawback is that the systems have to conform to the behavior of session

types, where sends and receives from the same state is not possible. Siegel (2005) and

Vakkalanka et al. (2010) target the domain of parallel programs that employ message

passing interface. This approach necessitates that the systems to be checked are deadlock

free which is a local behavior. In contrast we focus on global interaction behavior.

We do not put any limitation on the behavior of message channels or do not make any

18

assumptions with respect to system specifications. Our work is built upon the results

in Fu et al. (2005) but does not require for asynchronous systems to be synchronizable.

Thus our solution is more generic.

19

CHAPTER 3. BACKGROUND

In this section, we present the conditions which when satisfied by an asynchronous

system with unbounded message queues, it can be represented by an asynchronous sys-

tem with bounded message queues. We give basic syntax and semantics to represent

asynchronous systems by using an example. We will further use this example to explain

the necessary conditions. Most of definitions given below have already been given in Fu

et al. (2005).

3.1 Peers and Systems

Peer behavior is represented as communicating finite state machines. From each state

there is a send (ouput) action or receive (input) action possible. A send action would

result in addition of a message to the receiver peer’s message buffer. A receive action

would result in consumption of a message from the Peer buffer which holds the message.

Formally we define Peers in Definition 1.

Definition 1. A peer behavior or simply a peer, denoted by P, is a Finite State Machine

(M, T, s0, δ) where M is the union of input (M in) and output (M out) message sets, T

is the finite set of states, s0 ⊆ T is the initial state, and δ ∈ T × (M ∪ { ε }) × T is

the transition relation. A transition τ ∈ δ can be one of the following three types:

1. a send-transition of the form (t1, !m1, t2) which sends a message m1 ∈ (M out).

2. a receive-transition of the form (t1, ?m1, t2) which consumes a message m1 ∈ (M in)

from its input queue.

20

Figure 3.1 Single peers

3. an empty-transition of the form (t1, ε, t2).

Any transition (t1, !a, t2) is written as t1
a−→ t2.

We consider deterministic behavior of the Peers with respect to transitions,

∀ (t1, t2) : t1
a−→ t2

∧
t1

a−→ t3⇒ (t2 = t3). Any peer behavior can be determinized following

standard methods for translation of non-deterministic state machines to a deterministic

one.

Example 3.1.1. Figure 3.1, illustrates the behavior of peers. The initial states are

marked in red. It also shows the send and receive transitions possible in the Peers. In

the initial states the Queues of all the Peers are empty as shown in the figure. An example

of a send action is at state s0, Peer 1 can send a message ‘a’ due to send transition s0

!a−→ s0. Due to this action the message ‘a’ gets stored in the buffer of Peer 3. An example

of a receive transition is s0
?c−→ s1, if the head of message queue of Peer 1 contains the

message ‘a’ this action can be taken and Peer 1 moves to states s1.

21

Figure 3.2 Composed system table

A composed system is a composition of Peers. This composition is a result of exchange

of messages between the Peers. We formally define the Composed System in Definition

2.

Definition 2. (Composed System Behavior) A composed system refers to a system over

a set of peers (P1, P2, ..., Pn) where Pi = (Mi, T1,s0i , δi) and Mi = M in
i

⋃
M out

i , is

denoted by a state machine (possibly infinite state) I = (M, C, c0, 4) where

1. M =
⋃
iMi

2. C ⊆ Q1 × S1 × Q2 × S2 ×.... Qn × Sn such that ∀i ∈ [1...n]: Qi ⊆ (M i
in)∗.

3. c0 ∈ C such that c0 = (ε,s01,s02,s03,..s0n) and

4. 4 ⊆ C × M × C, and for c = (Q1, t1, Q2, t2, ...Qn, tn) and c′ = (Q′1, t′1, Q′2,

t′2, ...Q′n, t′n)

22

Figure 3.3 Composed System

(a) c
!m−→ c′ ∈ 4 if ∃i, j ∈ [1..n] : m ∈ M out

i then

i. ti
!m−→ t′i ∈ δi

ii. Q′j = Qjm,

iii. ∀k ∈ [1..n] : k 6= j ⇒ Qk = Q′k and

iv. ∀k ∈ [1..n] : k 6= i ⇒ tk = t′k

(b) c
?m−→ c′ ∈ 4 if ∃i ∈ [1..n] : m ∈ Mi then

i. ti
?m−→ t′i ∈ δi

ii. Q′j = Qjm and

iii. ∀k ∈ [1..n] : k 6= i ⇒ Qk = Q′k and

iv. ∀k ∈ [1..n] : k 6= i ⇒ tk = t′k

(c) c
ε−→ c′ ∈ 4 if ∃i ∈ [1..n] then

i. ti
ε−→ t′i ∈ δi,

23

ii. ∀k ∈ [1..n] : ⇒ Qk = Q′k and

iii. ∀k ∈ [1..n] : k 6= i ⇒ tk = t′k

Example 3.1.2. Figure 3.2 provides a partial representation of the Composed System

behavior for the Peers shown in 3.1. The ‘Current Configuration’ column contains

Local States and Queue Status for a particular system configuration. Similarly the ‘Next

Configuration’ is represented by the Local States and Queue Status. The ‘Peer Moving’

column represents the peer which performs particular transition. ‘Transition’ and the

‘Transition Message’ represent the local transition for the Peer which has moved. For

example, the initial state shows that the queue for all Peers is empty. From the initial

Composed State, two Peers can make the next moves, thus we have two Next Composed

States. First move is possible due to a send transition from s0 back to s0 by sending a

message ‘a’. This message ‘a’ gets buffered in the queue of Peer 3. Also whenever a

message is buffered in a Peers queue and if that Peer has a possible receive transition

where it can consume that message, it becomes a possible move for a Composed State.

Once a receive transition is performed, the message is consumed from the respective peer.

Figure 3.3 gives a graph representation of the partial Composed System which is also

described in the form of table in Figure 3.2. Each state of this graph is called as a

‘configuration’. Each configuration represents the status of local states of the interacting

peers and status of the queue of each Peer. The transitions represent send or receive

actions.

Definition 3. (k-bounded System). A k-bounded system (denoted by Ik) is a system I

where the receive queue length for any peer is at most k. The k-bounded system behav-

ior is, therefore, realized by augmenting condition 4(a) in Definition 2 to include the

condition |Qj| ≤ k, where |Qj| denotes the length of the queue for peer j.

In k-bounded system Ik, unlike I, the send actions get blocked when the receive queue

of the peer which is supposed to consume the message, becomes full. In other words,

24

the peer gets blocked when it cannot consume K number of messages which are already

present in its queue. When a new message appears at the Peer it cannot buffer the new

message due to limitation on the buffer size of its receive queue. Ik can be represented

by a finite state machine as the bound on the queue restricts the number of all possible

states to a finite number. The k-bounded for Peers shown in Figure 1 with bound 1 and

bound 2 on message queues are shown in Figure 3.4 and 3.5. We can see the configuration

marked in red is possible in a 2-bounded system and not in 1-bounded system as the

queue size is restricted to 1 for Peer 3 in a 1-bounded system.

Figure 3.4 1-bounded system

Figure 3.5 2-bounded system

25

3.2 System Behavior Description as Languages

The interaction behavior of systems is referred to as messages exchanged between the

peers. Also note that, whenever a message is sent by a sending peer and consumed by

the designated receiver, the peers go through internal state transitions. These transitions

are not visible to the other peers. As mentioned before, we say that bounded behavior

for I is detected, when interaction behavior of I can be mimicked by Ik. Below we define

this interaction in terms of a language of a system and language equivalence (defined

below) implies system interaction equivalence.

Definition 4. (Language of Composed System). Language of a composed system I =

(M, C, c0, F, 4), denoted by L(I) is defined as a set of sequences of the all the send

actions possible from all the paths possible from the initial composed state c0. (Language

Equivalence). The languages of composed systems I and Ik are equivalent if L(I) =

L(Ik).

Example 3.2.1. In 3.2, some of sequences of sends that are contained in L(I) are:

1. sequence of unbounded a’s, aaaaa....aaa....

2. a∗ce(a|d), where * represents zero or more occurrences and | represents OR.

Proposition 3.2.1. L(I0) = L(I1) =⇒ ∀k ≥ 1, L(Ik+1) = L(Ik)

Proof. This is the proof already proved in Basu and Bultan (2011) and is proved by

contradiction. An assumption is made that for some k, L(I1) 6= L(Ik). For this to be a

possibility there should be partial matching send path in L(I1) and L(Ik). For the rest

of this path in L(Ik) there are extra sends which are not possible in L(I1). One of the

reasons could be that a Peer is blocked and cannot consume messages in its queue. Thus

the sender which sends the extra send messages in Ik cannot do so in I1.

Now it is given that L(I0) = L(I1), consider the corresponding send path as above in I0.

26

We still consider the extra send of messages and say the receiver for it is Peer P. As the

I0 is the synchronous system the messages are also consumed instantly and there is no

Peer which is really blocked. Thus, when we talk about the extra send of messages, these

sends will always be possible in I0. As L(I0) = L(I1), the extra sends are also possible

in I1. Thus our assumption that there is a path in Ik which contains some sends which

are not possible in I1 is wrong. Hence when a synchronous system can be represented

by a 1-Bounded System, the synchronous system can be used to represent the system I.

3.3 Temporal Properties

We consider temporal ordering of sends expressed in the logic of Linear Temporal

Logic (LTL). LTL can be used to specify temporal orderings along all paths of the system

behavior: e.g., presence of a sequence (or substring) of sends, a set of sends occurring

infinitely often or finitely many times.

The basic syntactic constructs in the context of our problem are as follows:

σ → true | ¬σ |Mout | σ ∨ σ | Xσ | Fσ | Gσ | σ
⋃
σ

The above states that propositional constant true is an LTL property. If σ is an LTL

property, then its negation is also an LTL property, same is true for disjunction of two

LTL properties. Any element from Mout is an atomic/basic LTL property in our context.

X σ denotes LTL property, which is satisfied in all paths starting from configuration c,

if σ is satisfied in all suffix of the path starting from s′ and s −→ s′. F σ is satisfied

in the set of paths if and only if σ is satisfied by some suffix of all the paths. G σ is

satisfied by the set of paths if and only if σ is satisfied by all suffix of all the paths. σ1 U

σ2 is satisfied by the set of paths if and only if σ2 is satisfied in some suffix (say, π) in all

paths, and all suffix starting before π satisfy σ1. For instance, GFa represents the LTL

property which is satisfied if along all paths of the system message a, is sent infinitely

27

often. On the other hand, FG¬a represents the LTL property which is satisfied if along

all paths of the system message a is sent finitely many times. For detailed description of

LTL properties, refer to Zakharov (2001).

Proposition 3.3.1. Given two systems I and I ′, if L(I)=L(I ′) then for any LTL prop-

erty σ over the send actions I satisfies σ if and only if I ′ satisfies σ.

The above propositions (Propositions 3.2.1, 3.3.1) form the basis for verification of

systems with unbounded receive queues. Asynchronous systems whose behavior can be

mimicked by corresponding synchronous systems are called as Synchronizable Systems.

This is possible when the interaction behavior of Peers in system I does not change even

if we move to a Synchronous mode of communication between the Peers. In this thesis we

extend the above work. We broaden the scope of verifiability by developing conditions

under which systems which are not Synchornizable are also verifiable automatically. In

the subsequent sections, we identify the condition under which one can guarantee the

existence of k such that the language of a system I with unbounded receive queues is

identical to the language of Ik. Once the existence of k is guaranteed, the value of k

can be computed by iteratively checking for equality between L(Ii) and L(Ii+1) starting

from i = 1 (Proposition 3.2.1). Finally, the computed Ik can be used to verify any LTL

property over send actions using traditional model checking tools and the verification

results will hold for I as well (Proposition 3.3.1).

28

CHAPTER 4. DETECTION OF BOUNDED BEHAVIOR

In this chapter we will provide the necessary and sufficient conditions for identifying

the existence of a bound such that the bounded representation of the Asynchronous

system can mimic the interaction behavior of the given Asynchronous system.

In 4.1, we provide the conditions for existence of a bound for an Asynchronous system.

Further in 4.2 we provide the Algorithms to check these conditions. If a system satisfies

these conditions, i.e., the existence of a bound is guaranteed, we will proceed to develop

an algorithmic way to identify the bound 4.3. Finally, we will discuss the algorithms for

finding the bound. This chapter is based on the results from Basu and Bultan (2014).

4.1 Condition for Bounded Buffer Behavior

In this section, we present a condition (ϕ) which when satisfied in any state in the

system I guarantees that the interactions between peers participating in the system

cannot be represented by interactions in any Ik. We proceed by introducing the concept

of unbounded send sequence.

Definition 5. (Unbounded Send Sequence). Given a system I = (M, T, s0, δ) over n

peers (P1, ...Pn), consider a configuration c ∈ C. A sequence of sends starting from c is

unbounded if the following holds.

1. A set of Peers at the configuration c ∈ C can send any number of messages

2. some peer PS over the set of n Peers is the receiver of the messages being sent.

29

The first condition in the above definition implies that a set of peers in the system

is capable of sending unbounded number of messages. The second condition states that

some peer is a receiver of the one of the messages being sent. Note that, the number of

states in each peer is finite; therefore, any unbounded send sequence will require that at

least one peer in PS moves in a cycle.

Example 4.1.1. Consider the peers in 3.1, the start state of the system has the local

states s0, t0, r0, u0. The peer P1 is capable of sending unbounded number of a’s to peer

P3. The peers P2 and P3 cannot perform any send operations at the start states. The

peer P4 can send finite number of messages; i.e., it is incapable of sending unbounded

number of messages. When the system is at a configuration where the local states of the

peers is s1, t1, r0, u2; the peers P1 and P2 can send unbounded number of a’s and d’s,

respectively to P1 and P3.

Note that such unbounded sends can make the size of the receiver’s queues to grow

in an unbounded fashion resulting in infinite state-space of the system behavior.

Our objective is to identify the condition which when satisfied guarantees the existence of

k such the L(Ik) = L(I). The intuition for checking when/how a finite queue size system

(Ik) can replicate all behaviors of unbounded queue size system (I) is as follows. Every

unbounded send sequence will result in repetition of some sequence of messages being

sent. The receiver peers must be capable of consuming these messages infinitely often

ensuring that the receive queues do not have to hold unbounded number of messages.

Note that, due to the finiteness of each peer, consuming messages infinitely often will

imply consuming the messages at regular intervals. Furthermore, the receive actions

of a peer are not visible to the other peers (as the receiver consume messages from its

receive queue). Therefore, it is also necessary that after consuming any subsequence of

unbounded sequences of messages, receiver peers should be able to provide the same set

of send sequences as they were able to before consuming the messages(ensuring that any

30

ordering of sends between peers that are possible in I is also possible in Ik for some finite

k). Theorem 1 presents necessary and sufficient condition for guaranteeing the existence

of k : L(Ik) = L(I).

We proceed by first describing the simulation relation with respect to the send actions.

This will be used to ensure to that peers while consuming unbounded sequences of

messages will not disable any sequence of send actions.

Definition 6. (Send-only Simulation).Given a finite state machine (M, T, s0, δ), t1 ∈

T is said to be send-simulated by t2 ∈ T, denoted by t1 ≺! t2, implies

∀ t1′ : t1
!m−→ t1′ ⇒ t2′ : ∃ t2

!m−→ t2′ ∧ t1′ ≺! t2′.

Example 4.1.2. The states s0, s1 and s2 of the peer P1 in Figure 3.1 are related to

each other by the ≺! relation; s0 ≺! s1 ≺! s2 ≺! s0. Each state can perform unbounded

number of !a.

Theorem 4.1.1. Given I = (M,T, s0, δ) over a set of n peers, ¬[∃k : L(Ik) = L(I)] if

and only if there exists a configuration c = (Q1, s1, Q2, s2, ...Qn, sn) reachable from c0

such that the condition ϕ = ϕ1 ∨ (ϕ1 ∧ ϕ2) holds at c, where

1. there exists a set of peers which can send unbounded number of messages to some

peer Pi;

2. Pi cannot move from si to any si′ by only consuming all the pending messages in

its receive queue;

3. If Pi can move from si to si′ by only consuming all the pending messages in its

receive queue, then si 6≺! si′.

Proof. To prove: ϕ ⇒ ¬∃k : L(Ik) = L(I) Let w be the sequence of sends leading to

configuration c from c0. As there are finite number of states in each peer, the unbounded

send sequence starting from c results on unbounded repetition of a sequence (say, σ).

31

Consider first the case where Pi does not consume all messages in its receive queue

Qi(ϕ2). Therefore, it will require Qi to be of infinite size to allow storing of messages

resulting from unbounded repetition of send sequence σ. In other words, in the given

path, the send sequence wσσσ will require that Qi size is not finite. Next consider the

case where Pi can consume all messages in its receive queue Qi to reach si′ from si and si

≺! si′(condition 3). Let σ′ be the sequence of sends possible from si that is not possible

from si′.

Consider as before that, w is the sequence that led to c from c0 and the unbounded

send sequence results from the unbounded repetition of σ. Therefore, I can have a

sequence wσσ...σ′... where the number of times σ can be repeated depends on the size

of Pi queue at the state si. In summary, in the above paths, it is necessary for the peer

Pi to have infinite receive queue size. Therefore, when ϕ holds, there does not exist any

k such that L(Ik) = L(I).

Proof. To prove: ¬ϕ ⇒ ∃k : L(Ik) = L(I). Suppose the first condition is not satisfied

i.e. there is no configuration from where peers can send unbounded number of messages

to some Peer Pi. In this case, the queue size is finite in all configurations of the system.

Thus, there exists a k: L(Ik) = L(I). Here queue size will be the maximum number

of messages needed to buffer by any receiver in any configuration. Now consider a case

where the second condition is not satisfied. For all possible Qi=mi1mi2...mil, there exists

a sub path along which all the pending messages in Qi are consumed. Let the start and

end states of this path be si and si′. Further, si 6≺! si′. Thus, whenever an unbounded

sequence of sends is generated at any configuration, there is some peer which can consume

the messages and again is capable of sending the same set of messages which it could

before consuming messages from its receive queues. This implies that along all paths

of the system, the queues of the peers that may receive unbounded number of messages

become empty at regular intervals. As the peer behaviors are represented by finite state

machines, the queue size of any peer cannot grow in an unbounded fashion. Therefore,

32

the send sequences in I can be replicated by send sequence of Ik for some finite value of

k.

4.2 Algorithms for bounded behavior detection

Our objective is to present an algorithm that can automatically verify the condition ϕ

in Theorem 4.1.1 for all possible configurations in I. Two problems need to be addressed

to realize such an algorithm:

(a) identifying whether a set of peers in a reachable configuration can generate unbounded

number of sends

(b) exploring sufficient (finite) number of configurations in the system

4.2.1 Finding Configurations with Unbounded Send Sequences

We are dealing with finite number of local states for all Peers in a communicating

system. Thus even though we work with unbounded buffers we are still dealing with

Finite State Machine Representations. For production of unbounded sends it is important

that the Peers move in cycles while performing some send actions. For any particular

configuration in the composed state, we need to check if that configuration is capable of

producing unbounded send sequences. Further we also need to make sure this unbounded

send sequence is consumed by some peers in the system. We present an algorithm

CYCLE, which takes as parameter a configuration in a system I, and returns CY = (CY1,

CY2,...). Here CY, represents a set of send cycles generated by the input configuration in

system I. CY in effect is responsible to generate unbounded send sequences as defined

in Definition 5. Every CYi represents a send cycle where the start and end states of the

cycle are same. Note that this cycle belongs to a single peer.

The basic idea behind the algorithm CYCLE is, given a configuration we want to

check if it produces unbounded send sequences. This can be ensured if we traverse along

33

the system I starting with the given configuration (with respect to local states) and

come across the same configuration (with respect to local states) again. However, one

restriction added to this traversal is that while moving along the configurations, the local

states must belong to the same strongly connected component (SCC). For example, if

there is path in I such that, {s0, t0, r0}
!m−→ {s0′, t0, r0}, then s0 and s0′ must belong

to the same SCC (It is also obvious that these two states belong to same Peer). The

reason for considering states that belong to a SCC is that only such components tend

to generate messages in a cycle, given a finite state system. The algorithm terminates

once the above traversal is done for maximum number of possible transitions (called as

Transition Threshold). Also we do not allow any messages to be consumed from the

queue at the initial configuration. If along this traversal any configurations are revisited

and the final queue is larger than the initial one, we say unbounded send messages are

generated.

Strongly Connected Components (SCC) A strongly connected component in a

FSM for a single Peer is where every state is reachable from every other state in the

component. A good property of these SCCs is that they represent cycles, and if there

are send transitions along the edges of the SCCs, it leads to an unbounded send se-

quence. Algorithm CYCLE needs states of peers which belong to the same SCC. We use

the Tarjan’s strongly connected components algorithm to find the strongly connected

components of each Peer in system I. This algorithm takes in the finite state represen-

tation of each Peer and returns a partition of the states in the Peer which belong to the

same SCC. Each state appears in exactly one SCC. We mark all the states belonging to

same SCC for the system given in Figure 3.1 by unique SCC IDs, using the Tarjan’s

strongly connected components algorithm. For more details on the Tarjan’s Algorithm

refer to Tarjan (1972).

Example 4.2.1. Figure 4.1 represents Strongly Connected Components (SCC) for the

system shown in figure 3.1. All the states which belong to the same SCC are marked

34

Figure 4.1 Strongly connected components

in the same color. The SCCs clearly represent cycles which could potentially produce

unbounded send sequences. For instance, the following SCCs represent cycles which can

potentially lead to production of unbounded sequences of message ’a’.

s0
!a−→ s0

s1
!a−→ s2

!a−→ s1

Below we present the Algorithm CYCLE.

1. Take input as configuration of a system I, say {s0, t0, r0, u0} and current message

queue status at this configuration.

2. For this configuration, perform a depth first traversal along the system I. Also, lo-

cally Peers can move only along the states that form a part of a same Strongly Con-

nected Components (SCC). While doing the traversal do not allow any messages

to be consumed from the initial queue, but let the Peers move on a corresponding

receive action.

3. If the same configuration is visited again and the message queue for any of the Peers

has grown , return {Configuration,Unbounded Send Messages}. This indicates the

35

configuration generates Unbounded Send Messages.

Stop if the number of transitions made is greater the Transition Threshold for the

configuration and indicate “No Unbounded Sequence Produced” if the Unbounded

Send Messages are not generated at all (i.e No configurations are revisited). Oth-

erwise, continue with the depth first traversal of I, i.e. make a transition along

system I, such that {s0, t0, uo r0}
!m−→ {s0′, t0, u0, r0} and s0 and s0′ belong to the

same SCC.

4. In the end return all the unbounded messages generated.

Transition Threshold The transition threshold indicates the maximum possible moves

that are possible for each Peer in a configuration. If even after taking these maximum

possible steps the same local states of a configuration are not visited, then it means some

Peer has not moved. Thus if maximum possible moves have exceeded the Transition

Threshold, it means an unbounded send cycle is not possible. Suppose a configuration

represents n Peers and mi represents a possible moves for a state(in the SCC to which

it belongs) in a configuration for ith Peer. Thus,

Transition Threshold =
∑
mi for i=1...n

Example 4.2.2. For a configuration, {s2, t1, r0, u0}, s2 can make 4 transitions, t1 can

make one transition and r0 can make 1 transition.Thus the Transition Threshold for this

configuration is 6.

Example 4.2.3. Consider a sample configuration {s2, t1, r0 u0} in the composed system

I and run through steps 2 and 3. The transition threshold for this configuration is 6.

Thus the exploration goes through six transitions along the composed system and we see

the configurations with local states {s2, t1, r0 u0} and {s1, t1, r0 u0} are visited again.

Thus an unbounded send cycle for message ’a’ is detected and it is reported. Also the

queue size has increased for Peer 3 as compared to the initial queue status.

36

Figure 4.2 DFS: unbounded send cycle detection

Theorem 4.2.1. Algorithm CYCLE computes all unbounded send sequences that are

possible due to the cycles involving the local states of a configuration.

Proof. For each configuration we allow check if the same configuration is visited again.

This indicates there is a cycle and if there are any send transitions involved, we know

these are Unbounded Sends. The receivers are not allowed to consume messages in the

initial queue and check the queue status at the end so that we know if the queue size has

increased, to take care that any Unbounded Sends that are generated are not interrupted

in any way. Also we take care the single peers move along Strongly Connected States

ensuring we consider transitions which would generate potential send cycles. Also this

algorithm is guaranteed to terminate as the exploration is performed till the ‘Transition

Threshold’ is reached. This ensures that the exploration stops at some point. Also the

‘Transition Threshold’ does take care of covering any possible Send cycles which might

be generated due to the existing Strongly Connected States in a Peer.

4.2.2 Algorithm for Exploring I and Verifying ϕ

In this section, we focus on exploring sufficient number of configurations for I and

verify the condition ϕ.

Below we discuss some notations which will be used while explaining the Algorithm:

NOTATIONS: For composed system I = (M,C, c0, F,4), with n Peers (P1, P2,Pn)

and configuration c = (Q1, s1, Q2, s2,...Qn, sn), we use the following notations,

c ↓st = (s1, s2,, sn) Projection of local states for a configuration.

37

c ↓stPi
= si Projection of Pi’s local state for configuration

c ↓st
P̄i

= (s1, s2, ...si−1, si+1, sn) Projection of local states of all Peers except Pi for

configuration

c ↓quPi
= Qi Projection of Pi’s queue for configuration

Given a sequence of messages l, Min(l) and Mout(l) are the sets of input and output

messages respectively. Similarly, for a set L of sequences, Min(L) := ∪l∈LMin(l)and

Mout(L) := ∪l∈LMout(l). Finally, given a set of messages M, R(M) is the set of peers can

consume at least one message m ∈ M.

We present an Algorithm EXPLORE which performs the depth first exploration of

the configurations in the Composed System I from the initial configuration c0. It carries

following two important sets:

1. The set Visited of visited configurations projected onto the local states of the

peers and (message type, message) which represents a transition from the previous

configuration to the current configuration.

2. The set VObl of tuples of the form (c ↓st : c′ ↓st) are configurations in I. We call

these tuples as ‘Obligations’.

In addition to these global sets, in each depth first call the algorithm maintains the local

states of the current configuration, the message queue status of all Peers for the current

configuration (say c) and (message type, message) which represents a transition from the

previous configuration to the current configuration. Below we present the Steps for the

algorithm EXPLORE:

1. For the current configuration c of the Composed System I, check if it produces any

Unbounded Send Cycles using the Algorithm CYCLE. The Algorithm CYCLE

gives the pseduo configurations which generate these Send Cycles.

2. If Unbounded Send Cycles are generated, run the Algorithm ObligationCheck

(explained in detail later) which returns ‘True’ if any Obligation is generated and

38

‘False’ if no Obligation is generated.

If no Unbounded Send Cycles are generated, mark the current configuration as

Visited, i.e update the Set Visited with local states and (message type, message)

for the current depth first call.

3. If ObligationCheck returns ‘True’, it also returns a set of Obligations(say newObl)

generated by the Unbounded Send Cycles for the current configuration.

If newObl ⊆ VObl mark the current configuration as Visited.

If newObl * VObl then VObl = VObl ∪ newObl.

If ObligationCheck returns ‘False’, EXPLORE returns ‘False’.

4. c and c′ belong to I, NextStateGenerator explained later generates all possible

c′’s for a given c.

For all c −→ c′:

If c is marked as Visited, visit only unvisited c′ by calling EXPLORE for c′.

If c is not marked as Visited, visit all c′ by calling EXPLORE for c′

If EXPLORE for c′ returns ‘False’ then return ‘False’ and stop the depth first

exploration.

Below in Figure 4.3 we present a snapshot of the system I and show how EXPLORE

works.

Example 4.2.4. In the figure 4.3, exploration starts with configuration {s0, t0, r0, uo}

and empty queue [][][][]. This will return true if all its children return ‘True’. Let us take

an example path given in the 4.3, where the configurations are marked in red and the path

is marked in blue. Take into consideration the configuration {s1, t0, r0, u2} and queue

[][e][][]. The Obligations for this configuration are already computed so it is marked

as Visited. Also the next configurations generated from this configuration are already

covered in a different path. Thus this configuration returns ‘True’ to its parent {s0, t0,

r0, u2} and queue [c][e][][]. All the next configurations for this configuration also return

39

Figure 4.3 Explore I

‘True’. Also the local states for this configuration are Visited in the Exploration for the

first time and thus it generates new Obligations for the first time. After covering all the

next configurations and paths this configuration returns ‘True’ to its parent {s0, t0, r0,

u1} and queue [c][][][]. Similar to the previous configuration, this configuration generates

obligations for the first time when Visited and thus the exploration goes through all the

next configurations (irrespective of them being Visited or not). After all the children

return ‘True’, this configuration returns ‘True’ to its parent {s0, t0, r0, uo} and empty

queue [][][][]. In the end when all the next configurations of c0 return ‘True’, the algorithm

returns ‘True’.

Step 1 invokes the Algorithm CYCLE and helps in verifying the condition ϕ1 in

ϕ. According to Step 2, if a particular configuration does not produce Unbounded Send

Messages then it is marked as Visited. If there is a system I where no Unbounded Send

Cycles are generated, eventually all the configurations in system I form a finite state

system. Thus EXPLORE returns ‘True’ indicating ϕ1 is satisfied although ϕ2 and ϕ3

40

are not satisfied.

In Step 2, input to ObligationCheck is current depth first exploration configuration

c, current message queue and configurations from CYCLE which generate Unbounded

Send Messages. ObligationCheck performs the following checks:

1. First it finds the Peers which are responsible for consuming unbounded send mes-

sages found by CYCLE.

2. For each such receiver Peer check if the Peer can move from its current state to

some other destination state by consuming all the messages in its receive queue

(ϕ2).

3. If the messages in the Queue can be consumed by the receiver Peer, the destination

state can send-simulate the current state (ϕ3). (Algorithm NotSendSimulate

explained later determines if a state can be send simulated by the other)

Example 4.2.5. Let us take an example of the configuration, {s0, t0, r0, u1} with queue

status[c][][][]. This configuration generates unbounded sends of message ‘a’. According

to step 1 in ObligationCheck, the Receiver Peer is ‘Peer 3’ with state r0. The queue

for ‘Peer 3’ is empty and r0 is send-simulated by itself. Thus the first Obligation which

is generated is {s0, t0, r0, u1}: {s0, t0, r0, u1}. We also notice that this configuration

can also generate another unbounded sends of message ‘a’ which can also be consumed

by ‘Peer 3’. The obligation generated for this case is {s0, t0, r0, u1} : . Let us take

an example of the configuration, {s0, t1, r0, u2} with queue status [c][][][], This con-

figurations generates unbounded sends of message ‘a’ and ‘d’. According to step 1 in

ObligationCheck, the Receiver Peer is ‘Peer 3’ with state r0 for message ‘a’. The

queue for ‘Peer 3’ is empty and r0 is send-simulated by itself. Thus the first Obligation

which is generated is {s0, t1, r0, u2}:{s0, t1, r0, u2}.

According to step 1 in ObligationCheck, the Receiver Peer is ‘Peer 1’ with state s0 for

message ‘d’. The queue for ‘Peer 1’ has message ‘c’. After consuming message ‘c’, state

41

s0 moves to state s1. We see that s0 is send simulated by s1. Thus the other Obligation

that is generated is {s0, t1, r0, u2}:{s1, t1, r0, u2}

Obligations If the above check is successful, ObligationCheck returns ‘True’ and

also returns a tuple which contains local states of the peers in the current configuration

and the local states of the peers after the receiver consumes all the pending messages.

We refer to such a tuple as obligation. An obligation is represented by the tuple (c ↓st

: c′ ↓st), at c′ some peer has the obligation to consume unbounded send sequences that

can be possibly sent to it by some other peers from c′.

Algorithm NotSendSimulate: Input to this algorithm are local states i.e. source

state(say s) and destination state(say d) belonging to the receiver Peer of an Unbounded

Send message(refer to Step 3 of ObligationCheck).

This is a recursive algorithm which returns 1 if the input destination state cannot be

send simulated by the input source state. Below are the steps for this algorithm:

1. Set simulationFlag = 0

2. for all s −→ s′(Consider only Send Transitions)

Set simulationFlag = 1

for all d −→ d′(Consider only Send Transitions)

if Send Transitions for s and d match:

Set simulationFlag = 0

simulationFlag = simulationFlag OR NotSendSimulate(s′,d′)

3. Return simulationFlag

Example 4.2.6. Let us consider the configuration {s0, t1, r0, u2} with queue status

[c][][][]. From ObligationCheck we find that we need to check for send simulation rela-

tions between states s0 and s1. Thus the input to NotSendSimulate are states s0 and

s1. We need to check if s1 can send simulate s0. The similationFlag is set to 1. The

42

send transition possible from s0 is, s0
!a−→ s0. The corresponding send transition for s1 is

s1
!a−→ s2. The simulationFlag is set to 0.

In the next recursive call for NotSendSimulate, the input states will be s0 and s2.

Again the send transitions s0
!a−→ s0 and s2

!a−→ s1 match. The similationFlag for this is

set to 0. Since the call for s0 and s1 is already done there is no need to call NotSend-

Simulate again. Thus the call for NotSendSimulate with the input states will be s0

and s2 and it returns 0. Thus NotSendSimulate(s0,s2) returns 0.

After returning from the above call, the simulationFlag according to Step 2 in NotSend-

Simulate becomes 0.

simulationFlag = simulationFlag OR NotSendSimulate(s0,s2). NotSendSimulate(s0, s2)

is 0 and simulationFlag is 0. Thus eventually for NotSendSimulate(s0,s1) becomes 0

and NotSendSimulate(s0, s1) returns 0. Since we are checking for the negation of the

condition of simulation, so when NotSendSimulate returns 0 it means there was no proof

found where s0 and s1 are not send simulated.

Correctness of Algorithm EXPLORE

In Step 3 of EXPLORE, if ObligationCheck returns ‘False’, then the algorithm

returns ‘False’. This indicates that even though ϕ1 is satisfied, either ϕ2 or ϕ3 are not.

In other words, even though unbounded messages are generated there is no Peer which

can consume these messages periodically. There is no cycle detected in the receiver’s

behavior. Thus no bounded behavior is detected.

We realize EXPLORE only returns ‘True’, if a particular configuration (that does not

satisfy ϕ) is revisited (with respect to its local states and incoming (message type, mes-

sage)) and if EXPLORE for the next configurations return ‘True’.

Intuitively, EXPLORE does a depth first exploration along the configurations in the

system I. Further a configuration is marked as Visited when it basically does not satisfy

the condition ϕ. As per the logic in Step 3 of EXPLORE, a configuration is marked

Visited when it does not generate any new Obligation. When no new Obligation is gen-

43

erated, it implies the local states for the particular configuration are visited again and

all the unbounded send sequences generated by these local states can be consumed in

some other configuration of system I.

EXPLORE only returns ‘True’, if all the configurations that lie along the path from

the Visited configuration also do not satisfy ϕ. Traversing along all the paths from the

Visited configurations is important as there could be a configuration which satisfies ϕ

and thus a bounded representation for the system I is not possible.

In Step 4 of EXPLORE, if the current configuration is marked as Visited exploration

only considers next unvisited configurations. If the current configuration is not marked

as Visited exploration continues along all the next configurations. This means if the

current configuration is marked as Visited there are no new Obligations which can be

generated and we can skip the exploration along next Visited configurations. Also EX-

PLORE is guaranteed to be terminated, this is because it checks if the configurations

are visited again with respect to the local states of the Peers. Since the Peers are fi-

nite state representations the algorithm is guaranteed to terminate in finite number of

configurations.

Below are the Steps for the Algorithm NextStateGenerator: Input to this Algo-

rithm is the current configuration c in system I, current message Queue and the state

transitions in the Single Peer System shown in 1.1. This algorithm computes the next

state configurations and updates the Message Queues for all Peers.

1. A configuration c is a tuple which represents projection of local states of all Peers

in the system. Get all possible Transitions for the local states of all Peers in the

configuration c.

2. For each Transition run the following logic:

c′ = c

There could be transitions of two types:

44

(a) If transition is Output Transition: s
!m−→ s′

Get the Peer to which s belongs, say Psrc. For Psrc, update the state ‘s’ with

‘s′’ in configuration ‘c′’.

Find the receiver Peer for message m, say Prec. For Prec, update the message

queue with message m.

return ‘c′’ and updated message queue.

(b) If transition is Input Transition: s
?m−→ s′

Get the Peer to which s belongs, say Psrc. If message queue for Psrc has

message m available for consumption:

For Psrc, update the state ‘s’ with ‘s′’ in configuration ‘c′’.

For Psrc, update the message queue by removing the message m.

return ‘c′’ and updated message queue.

Example 4.2.7. Let us take an example configuration NextStateGenerator {s1, t1,

r0, u1} with message queue [][][][a]. According to Step 1 in NextStateGenerator, get

the transitions for local states in the input configuration. The table below in Figure 4.4

shows how the next configurations in the System I are generated according to Step 2 of

NextStateGenerator.

Figure 4.4 Next state generator

45

4.3 Algorithm to find bound

Proposition 3.2.1 discusses synchronizability i.e whether interaction behavior of an

asynchronous system can be mimicked by a system when it interacts in a synchronous

fashion. In this chapter, we discuss whether a bounded behavior can replicate the be-

havior of the asynchronous system even when the system is not synchronizable. In other

words, we provide a more general result than synchronizability. Proceeding further, we

provide the necessary proofs and further discuss the Algorithms to find the bound.

Proposition 4.3.1. ∀k : L(Ik) = L(I)⇐⇒ L(Ik+1) = L(Ik)

Proof. Given the systems X and Y, we say that L(X) ⊆ L(Y), if ∀w ∈ L(X), either w is

sub-sequence of some w′ ∈ L(Y) or w ∈ L(Y).

We know that L(Ii) ⊆ L(Ii+1). This is because the queue size of L(Ii+1) is always one

greater than that of L(Ii). Thus send actions possible in L(Ii+1) are always greater than

that of L(Ii). Same holds for L(I) and thus L(Ii) ⊆ L(I).

Based on ⊆ relation, ∀k : L(Ik)= L(I) implies that L(Ik+1)= L(Ik), as L(Ii) ⊆ L(Ii+1)

⊆ L(I).

Proof. The reverse direction ∀k : L(Ik) = L(Ik+1)⇒ L(Ik) = L(I) can be directly proved

by first proving ∀k : L(Ik) = L(Ik+1) ⇒ ∀ i ≥ k : L(Ii) = L(Ii+1). This means that

increasing receive queue size beyond k does not have any impact on the behavior in terms

of send sequence.

Let us prove this by contradiction. Given L(Ik) = L(Ik+1), assume that there exists n ≥

k+1 such that L(Ik+1) 6= L(In), i.e., L(Ik+1) ⊂ L(In). For this to be a possibility there

should be partial matching send path in L(Ik+1) and L(In). For the rest of this path in

L(In) there are extra sends which are not possible in L(Ik+1). One of the reasons could

be that a Peer is blocked and cannot consume messages in its queue. Thus the sender

which sends the extra send messages in In cannot do so in Ik+1.

Now it is given that L(Ik) = L(Ik+1), consider the corresponding send path as above in

46

Ik. We still consider the extra send of messages and say the receiver for it is Peer P.

Since we say that L(Ik) = L(Ik+1), it means that all the sends possible in Ik+1 are also

possible in Ik. We find that any send path which is possible in Ik+1 does not require a

message queue size of more than k. Thus for n ≥ k+1, there will be no send path which

would require a message queue size of more than k. It is proved that there are no extra

sends which are possible in In and not in Ik+1. The basic assumption that a path with

extra sends is possible in In is proved to be wrong.

Thus after the EXPLORE returns ‘True’, we know the interactions between peers

participating in the system with unbounded buffers can be represented by a k-bounded

system.

Below we represent an Algorithm BOUNDFINDER which finds the exact bound K

such that L(I) = L(Ik). We can identify K by checking the equality of L(Ii) = L(Ii+1)

starting from i = 1. Language equivalence can be determined by making sure all the

configurations in Ii are send simulated by Ii+1. Checking for Language equivalence is

sufficient to find K because language equivalence guarantees that all the send traces

which are possible in L(Ik+1) are also possible in L(Ik).

1. Set i = 1

2. Say ci is the initial configuration for the system Ii and ci+1 is the initial configura-

tion for the system Ii+1.

Set KConfig = ci and IncKConfig = ci+1

3. Call K-BoundNotSendSimulate(KConfig, IncKConfig)

4. If it returns ‘False’, return bound K=i

If it returns ‘True’:

i = i+1

Go To Step 2.

47

The basic logic for K-BoundNotSendSimulate is similar to that of NotSendSimu-

late. Only difference is, in NotSendSimulate we take into consideration states belong-

ing to finite State Systems representing Single Peers. In K-BoundNotSendSimulate

we consider the configurations belonging to Composed Systems I with buffers having

bounds i and i+1 where i lies between 1 and K. K-BoundNotSendSimulate takes in

input as the initial configurations of the systems Ii and Ii+1. It does a depth first traversal

along the configurations of Ii and Ii+1 and proceeds along both the systems if matching

transitions are found. Thus Ii will send-simulate Ii+1 if K-BoundNotSendSimulate

returns ‘False’. If along any path if a configuration in Ii cannot send-simulate a con-

figuration in Ii+1 i.e. a send action possible in Ii+1 is not possible in Ii then K-

BoundNotSendSimulate return ’False’.

Below are the steps for the Algorithm K-BoundNotSendSimulate:

1. Take input configurations IncKConfig (configuration for Ii) and KConfig (configu-

ration for Ii+1)

Set simulationFlag = ‘False’

2. for all IncKConfig −→ IncKConfig′(Consider only Send Transitions)

Set simulationFlag = ‘True’

for all KConfig −→ KConfig′(Consider only Send Transitions)

if Send Transitions for IncKConfig and KConfig match:

Set simulationFlag = ‘False’

simulationFlag = simulationFlag OR NotSendSimulate(IncKConfig′, KConfig′)

3. Return simulationFlag

In step 2, K-BoundNotSendSimulate uses NextStateGenerator to generate

next configurations in system I with buffers having bound i and i+1. Only difference is

that in Step 2b of NextStateGenerator, skip the input transitions of type s
?m−→ s′ till

we reach an output transition.

48

For example, if a path for s exists such that,

s
?m−→ s1

?m−→ s2
!m−→ s3.

Condense this path to s
!m−→ s3 and consider this as a transition in Step 2b.

In the previous Algorithm to find the bound we have used a simple approach of

performing a depth first exploration of a K-Bounded and a K+1-Bounded System and

checking if the states in both the systems are send-simulated or not. We can take an

advantage of the fact that a K+1-Bounded System is always a larger system as compared

to a K-Bounded System. Thus instead of going through all the configurations of both

systems and checking for send-simulation, we can just work on the the larger system

i.e K+1 Bounded System and check if all the paths covered in this system are also

represented in the K-Bounded System. If this check is successful, we can say we found

the correct bound i.e K.

Below we provide the steps for this approach in Algorithm NewBOUNDFINDER:

1. Set i=2

2. Say ci is the Initial Configuration for the system Ii.

3. Call BFSDeterminize(ci+1)

If it returns ‘True’ return Bound = i-1

Otherwise, set i = i+1, call Step 2.

Algorithm BFSDeterminize generates the next configurations of the system Ii on

the fly using the NextStateGenerator and does a breadth first exploration of Ii and

then performs check to see if Ii can replicate the send behavior of Ii+1.

1. EnQueue ci in a Queue Q

2. If Queue Q is not Empty

Configuration c = DeQueue Q

Mark c as Visited.

49

3. Generate all Next Configurations from c using NextStateGenerator. Let us say

c′ is one such configuration.

In the process of generation of next configurations, we also mark configurations

which can represented in both Ii and Ii−1 with an identifier of ‘i-1’ and those which

can only be represented in Ii with an identifier of ‘i’.

4. Call Merge with configuration c as input

If Merge returns ‘False’ return ‘False’ for all c −→ c′(Consider only Send Transi-

tions)

If c′ is not Visited, Enqueue c′ in Queue Q

5. If all the state configurations of Ii are Visited and all of them are marked with an

identifier for ‘i-1’ return ‘True’

Below we present the Algorithm Merge where the identifiers assigned to next config-

urations of input configuration c which are marked in Step 3 of BFSDeterminize are

updated. Let us say from a configuration c, we have transitions to next configurations

c′ of the form c
!m−→ c′. We would say two transitions match if the message type(which is

always send in this case as we only consider send transitions) and message name match.

1. For all matching transitions from c, get identifiers of all next state configurations

(say c′ s) of these transitions.

2. If any of the identifiers is ‘i-1’, Update the identifiers of the all the c′s to ‘i-1’.

3. If such an Update is not possible, return ‘False’ Otherwise return ‘True’.

In summary we have discussed conditions for identifying the existence of a bound such

that the bounded representation of the Asynchronous system can mimic the interaction

behavior of the given Asynchronous system. We discussed the Algorithms to check

these conditions. If a system satisfies these conditions, i.e., the existence of a bound is

50

guaranteed, we discussed two different algorithms to do the same. These methods have

made even the systems which are not Synchronizable verifiable. It has thus broadened

the scope of verification to a larger subset of Asynchronous systems.

51

CHAPTER 5. TOOL DESCRIPTION

5.1 Tool Overview

Our tool is implemented in Java Programming Language. It is built using NetBeans

7.2.1 and JDK 7. The overall tool architecture is depicted in 5.1 which shows its main

components. The red arrows represent the data flow while the blue arrows represent the

control flow between the components of the Tool.

Figure 5.1 Tool architecture showing main components

52

1. In the first step, the tool takes as input, the system interaction representation

(SIR) which is an input file that represents interaction behavior of peers in an

asynchronous distributed system. After running through the SIR Parser, the input

file is converted to an internal system interaction representation, referred to as

Parsed SIR.

2. The Strongly Connected Component Marker runs through the Parsed SIR to mark

all the states of individual peers which form a Strongly Connected Component.

3. Next, the parsed SIR goes through the Verifier, which performs composition formed

out of local states of each peer, using the State Composer. The Verifier basically

runs through the depth first exploration of the composed states and performs the

checks necessary to capture bounded behavior in an unbounded buffered system.

The Send Cycle Identifier finds all possible send cycles generated by a particular

composed state.

4. If the Verifier captures a bounded behavior in the system, the Bound Finder goes

ahead to find the bound on size of queue necessary to represent the unbounded

asynchronous system.

5. After finding the message Queue bound, the Output modeler stores the composed

bounded buffered system representation i.e the system Ik in the form of a Composed

SIR. The Display Modeler handles the display of single peers as shown in Figure1.1

and of the composed system I with bound K(If the asynchronous system of Peers

has bounded behavior) to the user interface.

5.2 Tool Components

1. System Interaction Representation(SIR) We need a specification language

to represent an asynchronous distributed system which is shown in Figure1.1. We

53

use XML as the input specification language. Below we show a SIR for the system

shown in Figure1.1 and explain the components of the SIR:

Listing 5.1 SinglePeers.xml

1 <root>

2 <proce s s id=”P1”>

3 <s t a t e id=”S0”>

4 <t r a n s i t i o n id=”T1” message=”a” messagetype=” output ” t a r g e t=”S0”></

t r a n s i t i o n>

5 <t r a n s i t i o n id=”T2” message=”c” messagetype=” input ” t a r g e t=”S1”></

t r a n s i t i o n>

6 </ s t a t e>

7 <s t a t e id=”S1”>

8 <t r a n s i t i o n id=”T1” message=”d” messagetype=” input ” t a r g e t=”S1”></

t r a n s i t i o n>

9 <t r a n s i t i o n id=”T2” message=”a” messagetype=” output ” t a r g e t=”S2”></

t r a n s i t i o n>

10 </ s t a t e>

11 <s t a t e id=”S2”>

12 <t r a n s i t i o n id=”T1” message=”d” messagetype=” input ” t a r g e t=”S2”></

t r a n s i t i o n>

13 <t r a n s i t i o n id=”T2” message=”a” messagetype=” output ” t a r g e t=”S1”></

t r a n s i t i o n>

14 </ s t a t e>

15 </ proce s s>

16 <proce s s id=”P2”>

17 <s t a t e id=”T0”>

18 <t r a n s i t i o n id=”T1” message=”e” messagetype=” input ” t a r g e t=”T1”></

t r a n s i t i o n>

19 </ s t a t e>

20 <s t a t e id=”T1”>

21 <t r a n s i t i o n id=”T1” message=”d” messagetype=” output ” t a r g e t=”T1”></

t r a n s i t i o n>

22 </ s t a t e>

23 </ proce s s>

24 </ root>

A single peer is represented using the tag ‘Process’. Individual states are repre-

sented using the tag ‘State’ and transitions are represented using the tag ‘Tran-

54

sition’. Every peer contains a peer Id and different states that make the peer.

Every state contains a state Id which is unique to its respective peer. States also

contain transitions. Each transition contains a transition Id which is unique to its

respective state. Transitions hold information like source state, destination state,

transition message and transition message type. We know every peer moves from

one state to another state based on different actions it performs. In our case, these

actions could be consuming messages in the buffer (input actions) or sending mes-

sages to the other peer (output actions). Thus the states are represented by ‘State’

in the SIR. The input and output actions are represented by ‘Transitions’ in the

SIR. 5.2 shows the mapping between a Peer in 3.1 and its representation in the

SIR XML input. In this example, ‘Peer1’ can go through states ‘S0’, ‘S1’, ‘S2’ and

the state mapping is marked with red arrows. The transition mappings are marked

with blue arrows. An example transition for state ‘S0’ is where it can output a

message ‘a’ and come back to ‘S0’. This is represented by transition id ‘T1’ in state

‘S0’. Thus source and destination for this transition is ‘S0’ and message type for

message ‘a’ is ‘input.

Figure 5.2 SIR mapping

2. Parsed SIR A parsed SIR represents a static Hashmap object which stores the

55

input SIR and is used by different modules of the tool. Individual elements of

the input XML like peers, states and transitions are stored in corresponding Java

objects. Transition objects are stored in a State object. State objects are stored

in Peer objects. All the peer objects are stored in a Hashmap which can then be

used globally.

3. SIR Parser The main task of the SIR Parser is to parse the System Interaction

representation (SIR) into a Parsed SIR format.

4. SCC(Strongly connected Component) Marker The SCC Marker takes the

Parsed SIR as input and runs the Tarjans Strongly Connected Component algo-

rithm on individual peers which are represented as finite state machines. As the

name suggests, the SCC Marker assigns a component Id to each state of each peer.

Thus, the states which form a part of the same strongly connected component have

the same component Id. We can say input to this component is the system shown

in figure 3.1 and the output is as shown in the figure 4.1. SCC Marker is just

an Implementation of the Tarjan’s Strongly Connected Component Algorithm for

peers of asynchronous systems.

5. Send Cycle Identifier Input to this module is a configuration of a composed

system I shown in figure 3.2. It finds all possible Send Cycles that are generated

by the composed state configuration. These Send Cycles are cycle objects which

represent Receivers of the unbounded send messages and the unbounded send mes-

sages generated. The Send Cycle Identifier is an implementation the Algorithm

CYCLE.

6. State Composer This is an important module and is used by many other mod-

ules of the tool. The main task of this module is to generate next composed state

configuration, given the current composed state configuration in composed system

I. It requires the information like current local states and current message queue

56

of the all the peers for a given composed state configuration. To generate the next

composed state, it takes in information from the Parsed SIR. The other modules

dependent on this module are the Verifier, Send Cycle Identifier and the Bound

Finder which need to perform a depth first exploration of the system I. State

Composer is an implementation of the Algorithm NextStateGenerator.

7. Verifier This module is an implementation of the Algorithm EXPLORE. As

stated in the algorithm, it performs depth first exploration of the configurations

in the composed system I. The next state configurations that could appear in the

depth first path of the current configuration are generated on the fly using the State

Composer. The Verifier also maintains the global receive queues for individual

peers which help in generating the next possible configuration. This module gets

the send cycle objects using the Send Cycle Identifier module. Using these send

cycle objects this module run the Algorithm ObligationCheck mentioned before.

Based on the Algorithm EXPLORE, this module returns a Boolean value i.e ‘True’

if a bounded behavior is detected in the interaction between Peers in System I or

‘False’ otherwise.

8. Bound Finder This module is an implementation of the Algorithm BOUND-

FINDER. This module is only called if the Verifier sends a signal to this module

indicating that a bounded representation of the given system I exists i.e. it re-

turns ‘True’. The input to this module is the Parsed SIR. It returns the bound

on message queue which can be used to represent the bounded composed system

i.e the K-Bounded System. It also generates the Parsed SIR representation of the

K-Bounded System. Since it involves depth first exploration of the system I, it

takes help from the State Composer to generate the composed state configurations

on the fly.

9. Output Modeler The output modeler takes as input the Parsed SIR represen-

57

tation of the K-Bounded Composed System and generates a Composed SIR. The

Parsed SIR representation of the the K-Bounded Composed System is in fact rep-

resentation system Ik and is a finite state system because of the bound on queue

size of each Peer.

Listing 5.2 KBounded.xml

1 <proce s s id=”Composed Peer”>−

2

3 <s t a t e id=” [S0 , T0 , R0 , U0] | [] [] [] [] ”>

4 <t r a n s i t i o n id=”2” t a r g e t=” [S0 , T0 , R0 , U1] | [c] [] [] [] ” messagetype=” output ”

message=”c”/>

5 <t r a n s i t i o n id=”1” t a r g e t=” [S0 , T0 , R0 , U0] | [] [] [a] [] ” messagetype=” output ”

message=”a”/>

6 </ s t a t e>

7

8 −<s t a t e id=” [S0 , T0 , R0 , U0] | [] [] [a] [] ”>

9 <t r a n s i t i o n id=”2” t a r g e t=” [S0 , T0 , R0 , U1] | [c] [] [a] [] ” messagetype=” output ”

message=”c”/>

10 <t r a n s i t i o n id=”1” t a r g e t=” [S0 , T0 , R0 , U0] | [] [] [] [] ” messagetype=” input ”

message=”a”/>

11 </ s t a t e>

12

13 −<s t a t e id=” [S0 , T0 , R0 , U1] | [c] [] [a] [] ”><t r a n s i t i o n id=”3” t a r g e t=” [S0 , T0 ,

R0 , U2] | [c] [e] [a] [] ” messagetype=” output ” message=”e”/>

14 <t r a n s i t i o n id=”2” t a r g e t=” [S0 , T0 , R0 , U1] | [c] [] [] [] ” messagetype=” input ”

message=”a”/>

15 <t r a n s i t i o n id=”1” t a r g e t=” [S1 , T0 , R0 , U1] | [] [] [a] [] ” messagetype=” input ”

message=”c”/>

16 </ s t a t e>

17

18 −<s t a t e id=” [S1 , T0 , R0 , U1] | [] [] [a] [] ”>

19 <t r a n s i t i o n id=”2” t a r g e t=” [S1 , T0 , R0 , U2] | [] [e] [a] [] ” messagetype=” output ”

message=”e”/>

20 <t r a n s i t i o n id=”1” t a r g e t=” [S1 , T0 , R0 , U1] | [] [] [] [] ” messagetype=” input ”

message=”a”/>

21 </ s t a t e>

10. Composed SIR The Composed SIR is a simple SIR representation of a K-

58

Bounded Composed System. The composed SIR follow the same semantics as that

of the SIR discussed before. The only difference is that in a Composed SIR every

State is represented by a unique id i.e. a State Id which is a combination of the

local states of the configuration in system I and the message queue status of the

Peers at that particular configuration. Below we give a partial XML representation

of the composed SIR.

11. Display Modeler The display modeler handles the generation of GUI graph

objects for the Parsed SIR and Composed SIR. These graph objects are then used

to draw to the GUI panel. Apart from the graph objects, the display modeler is

also responsible for generation of other GUI panel objects like the logger, file menu

and the task bar.

12. GUI graph The GUI graph is a graphical interface object required to repre-

sent the Parsed SIR and Composed SIR. The GUI graph objects related to the

Composed SIR are updated on the fly as and when new states are added to the

Composed SIR.

The main advantage of building the tool with the above approach is that it is properly

modularized. The tool implements different components of the proposed Algorithms

in Chapter 4 and each component is a separate module. The modules communicate via

Static Objects. An important use of this approach is that due modularization, debugging

becomes very easy. Another important feature is easy plug and play of modules. For

example, the input language for the tool is SIR. However if the input language is to be

replaced one can easily replace the SIR Parser by the required Parser and one can still run

the decidability of verification. Also we have two implementations of the BoundFinder

Module. Both the BoundFinder approaches can be tested and evaluated against different

case studies.

59

CHAPTER 6. CASE STUDIES

We evaluate our proposed approach to verify asynchronous systems using a num-

ber of case studies explained later in this chapter. As seen earlier, we have important

components to our algorithm like marking Strongly Connected Components, finding Un-

bounded Send Cycles, composing next States in system I, and finding the bound that

represents the interaction behavior of the asynchronous system.

6.1 Case Study 1

This model represents an asynchronous system with four Peers communicating via

message buffers. The diagram below represents this system. The EXPLORE in sec-

tion 4.2 explores around 48 configurations. The table 6.1 below provides the minimum,

maximum, median and average computation time taken by different methods per con-

figuration.

Table 6.1 Case study 1: Computation time in milliseconds

METHOD MIN MAX MEDIAN AVERAGE

SEND CYCLES 0.13 23.50 0.28 2.03
OBLIGATION CHECK 0.016 0.34 0.06 0.09

NEXT STATE COMPOSER 0.004 0.25 0.013 0.0194
TOTAL TIME 0.35 188.97 0.87 32.09

We also show below in table 6.2 the minimum, maximum and median values for

cycles, obligations and next state Configurations generated during the depth first explo-

ration of each configuration of system I.

60

Figure 6.1 Peers: case study 1

Table 6.2 Case study 1: Results

OBJECTS MIN MAX MEDIAN

CYCLES 3 4 3
OBLIGATIONS 2 2 2
NEXT STATES 2 4 3

In this case, the algorithm EXPLORE explores all configurations with all possi-

ble local states with varying queue configurations. Overall it checks if the condition

ϕ is satisfied along all the configurations and their next configurations until a parent

configuration is visited again.

EXPLORE returns ‘True’ and thus BOUNDFINDER finds that 1-Bounded Sys-

tem can mimic the interactions for the Asynchronous System shown in Figure. The

number of configurations in a 1-Bounded System is 40. This also proves that EX-

PLORE has to visit many more number of states in I even though a 1-Bounded System

has less number of configurations. The table below 6.3 shows the Computation time for

61

methods K-BoundNotSendSimulate and NewBOUNDFINDER.

Table 6.3 Case study 1: BOUNDFINDER in nanoseconds

METHOD COMPUTATION TIME

K-BoundNotSendSimulate 246
NewBOUNDFINDER 649

6.2 Case Study 2

This model represents an asynchronous system with three Peers communicating via

message buffers. The diagram below represents this system. The EXPLORE in sec-

tion 4.2 explores around 43 configurations. The table 6.4 below provides the minimum,

maximum, median and average computation time taken by different methods per con-

figuration.

Figure 6.2 Peers: case study 2

62

Table 6.4 Case study 2: Computation time in milliseconds

METHOD MIN MAX MEDIAN AVERAGE

SEND CYCLES 0.045 22.85 0.134 1.256
OBLIGATION CHECK 0.016 7.212 0.062 0.238

NEXT STATE COMPOSER 0.004 0.02 0.015 0.014
TOTAL TIME 0.19 109.78 1.18 12.01

We also show below in table 6.5 the minimum, maximum and median values for

cycles, obligations and next state Configurations generated during the depth first explo-

ration of each configuration of system I.

Table 6.5 Case study 2: Results

OBJECTS MIN MAX MEDIAN

CYCLES 0 3 2
OBLIGATIONS 0 2 2
NEXT STATES 1 5 3

In this case, the algorithm EXPLORE explores all configurations with all possi-

ble local states with varying queue configurations. Overall it checks if the condition

ϕ is satisfied along all the configurations and their next configurations until a parent

configuration is visited again.

EXPLORE returns ‘True’ and thus BOUNDFINDER finds that 2-Bounded Sys-

tem can mimic the interactions for the Asynchronous System shown in Figure. The num-

ber of configurations in a 2-Bounded System is 66. In this case, EXPLORE visits 43 con-

figurations while the 2-Bounded System has more number of configurations i.e 66. The

table below 6.6 shows the Computation time for methods K-BoundNotSendSimulate

and NewBOUNDFINDER.

Table 6.6 Case study 2: BOUNDFINDER in nanoseconds

METHOD COMPUTATION TIME

K-BoundNotSendSimulate 489
NewBOUNDFINDER 1695

63

6.3 Case Study 3: Reservation Session Protocol

This model represents an asynchronous system with two Peers communicating via

message buffers. It represents the ‘Reservation Session Protocol’. (TODO more ex-

plaination) The diagram below represents this system. The EXPLORE in section 4.2

explores around 43 configurations. The table 6.7 below provides the minimum, maxi-

mum, median and average computation time taken by different methods per configura-

tion.

Figure 6.3 Peers: case study 3

Table 6.7 Case study 3: Computation time in milliseconds

METHOD MIN MAX MEDIAN AVERAGE

SEND CYCLES 0.108 1.47 0.116 0.199
OBLIGATION CHECK 0 0 0 0

NEXT STATE COMPOSER 0 0.149 0.039 0.054
TOTAL TIME 0.440 34.84 1.280 5.45

We also show below in table 6.8 the minimum, maximum and median values for

cycles, obligations and next state Configurations generated during the depth first explo-

ration of each configuration of system I.

In this case, the algorithm EXPLORE explores all configurations with all possible

64

Table 6.8 Case study 3: Results

OBJECTS MIN MAX MEDIAN

CYCLES 0 0 0
OBLIGATIONS 0 0 0
NEXT STATES 0 3 1

local states with varying queue configurations. Overall it checks if the condition ϕ is

satisfied along all the configurations and their next configurations until a parent config-

uration is visited again. In this case, there are no Unbounded Sends detected at any

configuration and thus due to this, the first condition in ϕ is not satisfied in any of the

configurations. Thus this asynchronous system can be represented by some bounded

system.

EXPLORE returns ‘True’ and thus BOUNDFINDER finds that 1-Bounded Sys-

tem can mimic the interactions for the Asynchronous System shown in Figure. The num-

ber of configurations in a 1-Bounded System is 12. In this case, EXPLORE visits 19

configurations while the 1-Bounded System has 12 state configurations. The table below

6.9 shows the Computation time for methods K-BoundNotSendSimulate and New-

BOUNDFINDER. In this case study, the NewBOUNDFINDER is more efficient

as compared to K-BoundNotSendSimulate. In this case, the Algorithm MERGE

there are no matching transitions as per Step 1, as all the transitions from a composed

state configuration are unique. Thus there is no need of any extra work of updating the

bound identifiers.

Table 6.9 Case study 3: BOUNDFINDER in nanoseconds

METHOD COMPUTATION TIME

K-BoundNotSendSimulate 8
NewBOUNDFINDER 17

65

6.4 Case Study 4: TCP Contract

This model represents an asynchronous system with two Peers communicating via

message buffers. It represents the ‘Transmission Control Protocol(TCP) Contract’. The

two peers here follow a protocol to establish a connection before any data transmission

can start. The diagram below represents this system.

The EXPLORE in section 4.2 explores around 9 configurations. The table 6.10

below provides the minimum, maximum, median and average computation time taken

by different methods per configuration.

Figure 6.4 Peers: case study 4

Table 6.10 Case study 4: Computation time in milliseconds

METHOD MIN MAX MEDIAN AVERAGE

SEND CYCLES 0.0984 6.38 0.138 0.924
OBLIGATION CHECK 0 0 0 0

NEXT STATE COMPOSER 0 0.074 0.036 0.039
TOTAL TIME 0.444 17.290 1.65 3.665

66

We also show below in table 6.11 the minimum, maximum and median values for

cycles, obligations and next state Configurations generated during the depth first explo-

ration of each configuration of system I.

Table 6.11 Case study 4: Results

OBJECTS MIN MAX MEDIAN

CYCLES 0 0 0
OBLIGATIONS 0 0 0
NEXT STATES 0 2 1

In this case, the algorithm EXPLORE explores all configurations with all possible

local states with varying queue configurations. Overall it checks if the condition ϕ is

satisfied along all the configurations and their next configurations until a parent config-

uration is visited again. In this case, there are no Unbounded Sends detected at any

configuration and thus due to this, the first condition in ϕ is not satisfied in any of the

configurations. Thus this asynchronous system can be represented by some bounded

system.

EXPLORE returns ‘True’ and thus BOUNDFINDER finds that 1-Bounded Sys-

tem can mimic the interactions for the Asynchronous System shown in Figure. The

number of configurations in a 1-Bounded System is 5. In this case, EXPLORE visits 9

configurations while the 1-Bounded System has 5 state configurations. The table below

6.12 shows the Computation time for methods K-BoundNotSendSimulate and New-

BOUNDFINDER. In this case study, the NewBOUNDFINDER is more efficient

as compared to K-BoundNotSendSimulate. In this case, the Algorithm MERGE

there are no matching transitions as per Step 1, as all the transitions from a composed

state configuration are unique. Thus there is no need of any extra work of updating the

bound identifiers.

67

Table 6.12 Case study 4: BOUNDFINDER in nanoseconds

METHOD COMPUTATION TIME

K-BoundNotSendSimulate 7
NewBOUNDFINDER 4

6.5 Case Study 5: Key Board Contract - Singularity Channel

This model represents an asynchronous system with two Peers communicating via

message buffers. It represents the ‘Key Board Contract’. This case study analyzes

channel contract specifications in Microsoft Research’s Singularity operating system. A

channel contract is a state machine that specifies the allowable interactions between

a server and a client through an asynchronous communication channel. This contract

begins in the Start state and transitions into Ready state when the server sends a Success

message. Once in the Ready state, the client may send either the Get message or the

Poll message. If the Get message is sent, the channel contract transitions to the Waiting

state. If the Poll message is sent, the contract transitions to an implicit state. From

either of these states, the server may send either the Ack message, which will transition

the contract back to the Ready state.

The EXPLORE in section 4.2 explores around 12 configurations. The table 6.13

below provides the minimum, maximum, median and average computation time taken

by different methods per configuration.

Table 6.13 Case study 5: Computation time in milliseconds

METHOD MIN MAX MEDIAN AVERAGE

SEND CYCLES 0.151 0.597 0.208 0.247
OBLIGATION CHECK 0 0 0 0

NEXT STATE COMPOSER 0.05 0.160 0.065 0.076
TOTAL TIME 0.73 12.47 4.49 5.464

We also show below in table 6.14 the minimum, maximum and median values for

cycles, obligations and next state Configurations generated during the depth first explo-

ration of each configuration of system I.

68

Figure 6.5 Peers: case study 5

Table 6.14 Case study 5: Results

OBJECTS MIN MAX MEDIAN

CYCLES 0 0 0
OBLIGATIONS 0 0 0
NEXT STATES 1 2 1

In this case, the algorithm EXPLORE explores all configurations with all possible

local states with varying queue configurations. Overall it checks if the condition ϕ is

satisfied along all the configurations and their next configurations until a parent config-

uration is visited again. In this case, there are no Unbounded Sends detected at any

configuration and thus due to this, the first condition in ϕ is not satisfied in any of the

configurations. Thus this asynchronous system can be represented by some bounded

system. The Unbounded Sends which are possible are already such that each Peer has

to consume a message in its queue to send a message to another Peer and these actions

are performed in a cycle. Thus, though messages are sent in a cycle, care is taken that

they are consumed in that cycle and the queue for the Peers in the system are emptied

69

infinitely often.

EXPLORE returns ‘True’ and thus BOUNDFINDER finds that 1-Bounded Sys-

tem can mimic the interactions for the Asynchronous System shown in Figure. The

number of configurations in a 1-Bounded System is 8. In this case, EXPLORE visits

12 configurations while the 1-Bounded System has 8 state configurations. The table be-

low 6.20 shows the Computation time for methods K-BoundNotSendSimulate and

NewBOUNDFINDER. In this case study, the NewBOUNDFINDER is almost

same as that of K-BoundNotSendSimulate.

Table 6.15 Case study 5: BOUNDFINDER in nanoseconds

METHOD COMPUTATION TIME

K-BoundNotSendSimulate 10
NewBOUNDFINDER 11

6.6 Case Study 6: Stock Broker Protocol (E-Service)

This model represents an asynchronous system with three Peers communicating via

message buffers. It represents the ‘Stock Broker Protocol’.

In each round of message exchange, Online Stock Broker i.e. Peer1 sends a list of

Raw Data to Research Department i.e. Peer2 for further analysis, where for each Raw

Data, one Data is generated and sent to Investor i.e.Peer3. Message classes End, Start,

and Complete are intended to synchronize the three peers. Finally Investor acknowledges

Online Stock Broker with Ack so that a new round of data processing can start.

The EXPLORE in section 4.2 explores around 3 configurations. The table 6.16

below provides the minimum, maximum, median and average computation time taken

by different methods per configuration.

We also show below in table 6.17 the minimum, maximum and median values for

cycles, obligations and next state Configurations generated during the depth first explo-

ration of each configuration of system I.

70

Figure 6.6 Peers: case study 6

Table 6.16 Case study 6:Computation time in milliseconds

METHOD MIN MAX MEDIAN AVERAGE

SEND CYCLES 0.388 1.750 0.406 0.848
OBLIGATION CHECK 0 0.191 0.168 0.119

NEXT STATE COMPOSER 0 0.03 0.025 0.02
TOTAL TIME 0 10.84 6.59 5.813

In this case, the algorithm EXPLORE explores the configurations in system I, it

checks if the condition ϕ is satisfied. During this exploration a configuration with local

states {s1, t0, u0} is reached where t0 cannot consume all the messages in its queue and

thus no Obligation is generated and ϕ is satisfied. Thus EXPLORE returns ‘False’.

6.7 Case Study 7: TPM Contract Protocol

This model represents an asynchronous system with two Peers communicating via

message buffers. It represents the ‘TPM Contract’.

The EXPLORE in section 4.2 explores around 17 configurations. The table 6.18

below provides the minimum, maximum, median and average computation time taken

71

Table 6.17 Case study 6:Results

OBJECTS MIN MAX MEDIAN

CYCLES 2 2 2
OBLIGATIONS 0 2 2
NEXT STATES 0 1 1

Figure 6.7 Peers: case study 7

by different methods per configuration.

Table 6.18 Case study 7: Computation time in milliseconds

METHOD MIN MAX MEDIAN AVERAGE

SEND CYCLES 0.13 0.44 0.22 0.240
OBLIGATION CHECK 0.13 0.44 0.22 0.240

NEXT STATE COMPOSER 0.02 0.10 0.049 0.05
TOTAL TIME 0.47 60.16 6.16 23.34

We also show below in table 6.19 the minimum, maximum and median values for

cycles, obligations and next state Configurations generated during the depth first explo-

ration of each configuration of system I.

In this case, the algorithm EXPLORE explores all configurations with all possible

local states with varying queue configurations. Overall it checks if the condition ϕ is

satisfied along all the configurations and their next configurations until a parent config-

72

Table 6.19 Case study 7: Results

OBJECTS MIN MAX MEDIAN

CYCLES 0 0 0
OBLIGATIONS 0 0 0
NEXT STATES 0 2 1

uration is visited again. In this case, there are no Unbounded Sends detected at any

configuration and thus due to this, the first condition in ϕ is not satisfied in any of the

configurations. Thus this asynchronous system can be represented by some bounded

system. The Unbounded Sends which are possible are already such that each Peer has

to consume a message in its queue to send a message to another Peer and these actions

are performed in a cycle. Thus, though messages are sent in a cycle, care is taken that

they are consumed in that cycle and the queue for the Peers in the system are emptied

infinitely often.

EXPLORE returns ‘True’ and thus BOUNDFINDER finds that 1-Bounded Sys-

tem can mimic the interactions for the Asynchronous System shown in Figure. The

number of configurations in a 1-Bounded System is 12. In this case, EXPLORE visits

19 configurations while the 1-Bounded System has 12 state configurations. The table

below 6.20 shows the Computation time for methods K-BoundNotSendSimulate and

NewBOUNDFINDER.

Table 6.20 Case study 7: BOUNDFINDER in nanoseconds

METHOD COMPUTATION TIME

K-BoundNotSendSimulate 15
NewBOUNDFINDER 40

6.8 Case Study 8: Alternating Bit Protocol

This model represents an asynchronous system with 4 Peers communicating via mes-

sage buffers. It represents the ‘ Alternating Bit Protocol’.

73

Alternating bit protocol (ABP) is a simple network protocol operating at the data

link layer that retransmits lost or corrupted messages. When the Sender sends a mes-

sage, it resends it continuously, with the same sequence number, until it receives an

acknowledgment from Receiver that contains the same sequence number. When that

happens, Sender complements (flips) the sequence number and starts transmitting the

next message. When Receiver receives a message that is not corrupted and has sequence

number 0, it starts sending ACK0(a0) and keeps doing so until it receives a valid message

with number 1. Then it starts sending ACK1(a1), etc.

In the model which we formulate for this case study, two Peers in the system represent

the Sender and Receiver. The other two Peers represent Communication Channels used

by the Sender and Receiver Channels respectively. This model formulates the interaction

behavior such that the communication channel does have a scope of losing messages.

Figure 6.8 Peers: case study 8

74

The EXPLORE in section 4.2 explores around 68 configurations. The table 6.21

below provides the minimum, maximum, median and average computation time taken

by different methods per configuration.

Table 6.21 Case study 8: Computation time in milliseconds

METHOD MIN MAX MEDIAN AVERAGE

SEND CYCLES 0.30 14.41 0.60 1.34
OBLIGATION CHECK 0 0.25 0.11 0.12

NEXT STATE COMPOSER 0 0.23 0.072 0.075
TOTAL TIME 0 198.71 102.89 102.70

We also show below in table 6.22 the minimum, maximum and median values for

cycles, obligations and next state Configurations generated during the depth first explo-

ration of each configuration of system I.

Table 6.22 Case study 8: Results

OBJECTS MIN MAX MEDIAN

CYCLES 3 4 3
OBLIGATIONS 0 1 0
NEXT STATES 0 5 2

In this case, the algorithm EXPLORE explores the configurations in system I, it

checks if the condition ϕ is satisfied. During this exploration a configuration with local

states {s1, t0, u2} is reached where u2 cannot consume all the messages in its queue and

thus no Obligation is generated and ϕ is satisfied. Thus EXPLORE returns ‘False’.

6.9 SUMMARY

The table shown in below diagrams represents the summary of our results:

If we consider the Average time EXPLORE takes to return a decision where bounded

behavior is detected or not, we can see it is proportional the number of the configurations

in System I. If EXPLORE returns ‘True’, it has to cover all the configurations which

contain all the local states of each Peer for sure. For each configuration it has to cover

75

Figure 6.9 Summary 1

all the child configurations till a cycle in the Send and Receive behavior is detected along

the path from the particular configuration.

However if the bounded behavior is absent for a System I, the Algorithm terminates at

a configuration where the ObligationCheck fails. From the above results, there is a

good chance that such a configuration is detected earlier and the EXPLORE returns

‘False’ earlier.

This explains that if there is a bounded behavior present EXPLORE would take more

time to return as compared to when this behavior is absent.

In case of Send Cycle Detection, it involves a special depth first exploration of some

configurations in System I. In this case the time for exploration is dependent on the

number of strongly connected components involved in each Send Cycle Detection. In

case of Send Cycle detection as opposed to EXPLORE, if a send cycle is present it

would terminate earlier as compared to when send cycle is not present.

Let us now consider K-BoundNotSendSimulate and NewBOUNDFINDER

76

Figure 6.10 Summary 2

which are two different approaches to find the K-Bounded System which represents

the System I. K-BoundNotSendSimulate does a depth first exploration of the K-

Bounded System while NewBOUNDFINDER does a breadth first exploration. Over-

all it is found that K-BoundNotSendSimulate outperforms NewBOUNDFINDER.

Another interesting insight from the results is that whenever a bounded represen-

tation for a System is detected, we can see the resulting K-Bounded System has fewer

configurations as compared to the number of configurations EXPLORE explores to find

if a bounded representation does exist.

77

CHAPTER 7. SUMMARY

7.1 Contributions

Our work focuses on verification of asynchronous systems with unbounded buffers

and as discussed earlier this is a difficult problem to solve, as such systems lead to

infinite state spaces. Previous work has been to consider subclasses of these systems

like Synchronizable systems or Half-Duplex systems and other Examples mentioned in

Chapter 2. Our work is built upon the results of Synchronizablility Fu et al. (2005). We

have identified a more relaxed class of asynchronous systems for which verification now

becomes decidable. The main idea is deciding if a bounded representation for system I

exists. We check if a set of Senders can send any messages in a cycle. Further, we check

if a corresponding cycle exists in the Receiver’s behavior as well. Thus the messages are

consumed in a cyclic fashion and they would not require a buffer of more than a specific

bound ‘K’.

In this thesis, we discuss algorithms for our proposed approach. Moreover once it is

found that a system I can be mimicked by some K-Bounded System, we run the Bound

Finder logic. This involves checking if two K-Bounded Systems are send simulated or

not. We provide two different approaches to the problem of Send-Simulation. One which

follows a depth first exploration and the other which follows a breadth first exploration.

The new approach for Send-Simulation takes an advantage of the fact that for any i,

L(Ii) ⊆ L(Ii+1). While the depth first logic runs through configurations of two systems,

the breadth first logic runs through a single Ii+1 system.

78

We have built a tool which is based on our proposed approach, thus proving that our

approach is realizable in practice. Different modules of the tool perform separate func-

tions and communicate with each other via static objects. This modularization makes

future extensions to our approach easy. For example, the tool can be further extended to

include additional parsers to accept additional specification languages other than XML.

It can also be coupled with standard Model Checkers like SPIN to enable Model Check-

ing of asynchronous systems for which verification is decidable. The output graphs are

stored in standard ‘Graph Modelling Language’ (GML). This helps in visualization of

the graphs using standard External Graph Visualizers like ‘yEd’, ‘Prefuse’ etc.

We also perform a case study on protocols like Alternating Bit Protocol, TCPContract

Protocol, TPMContract Protocol, KeyBoardContract Protocol from Singularity OS and

Stock Broker Protocol, Reservation Session Protocol from Web Services. We perform

the run time analysis of different modules of our tool for these case studies and gain

some interesting insights on the performance of the modules with respect to interaction

behavior that each case study presents.

7.2 Future Work

Once we find that a System I can be represented using a K-Bounded System (IK), we

know that verification for I is decidable. Further work in this respect that remains to be

done is to augment Model Checkers like SPIN to Model Check the K-Bounded System

(IK). Thus verifying IK with respect to just the Send Language can help in verifying

properties for I.

In the formalism we have used to define Asynchronous systems, we assume that it

is a message based interaction between peers. In this message based interaction, we

assume that every message has a unique sender and receiver. However, there could be

cases where a message with same message name could be sent by multiple senders or

79

received by multiple receivers. If we consider a case of a message having multiple senders

and unique receiver, we can still represent this interaction in form of a configuration in a

composed system. If there is a case which involves multiple senders and multiple receivers

non deterministic behavior of the senders (as in which Peer would act a receiver Peer

for a particular message)comes into picture. This non deterministic behavior still can be

represented in form of possible configurations in the composed system. All these are our

insights on what are the possibilities if the formalism changes as described above. We still

need to work in this area to provide proofs and check if any changes in implementation

are needed.

This work currently focuses only on Verifying system properties with respect to send

actions. However, there could be scenarios where Verification of properties with respect

to specific set of messages is required. For example, one might need to check if a particular

set of messages are sent after a certain message is sent. Thus we know that the focus is

only on particular branch of the graph representing I. Thus the conditions to determine

if this behavior is represented using a finite state machine will be much more relaxed.

Further work needs to be done in this direction.

With respect to the Tool, more work needs to be done to improve Output Visual-

izations. Since our Output Graphs representing the K-Bounded System contain large

number of configurations good visualization is important. The new Visualizer should

make possible easy analysis and exploration of the Output Graphs. Another work that

needs to be done is to check for Scalability of the Tool using randomly generated graphs.

The challenging work here is to perform Choreography to generate random Communi-

cating Finite State Systems and which map to the sub-class we target to verify.

We discussed the new approach for solving the problem of Send-Simulation, when send

simulation needs to be checked for states which belong to two systems (representing the

same I) and which differ in the bound of message buffer size through which the Peers

communicate. The advantage here is we perform analysis on just one system I instead

80

of analyzing two separate systems. This method works well with distributed systems

whose composed behavior is deterministic with respect to send-actions, however when

non-determinism comes into picture we need to first determinise the actions performed

at each composed state before applying our method.

81

BIBLIOGRAPHY

Armstrong, J. (2002). Getting erlang to talk to the outside world.

Banavar, G., Ch, T., Strom, R., and Sturman, D. (1999). A case for message oriented

middleware. In In Proceedings of the 13th International Symposium on Distributed

Computing, pages 1–18. Springer-Verlag.

Basu, S. and Bultan, T. (2011). Choreography conformance via synchronizability. In

Proceedings of the 20th International Conference on World Wide Web, WWW ’11,

pages 795–804, New York, NY, USA. ACM.

Basu, S. and Bultan, T. (2014). Automatic verification of interactions in asynchronous

systems with unbounded buffers. In 29th IEEE/ACM International Conference on

Automated Software Engineering.

Brand, D. and Zafiropulo, P. (1983). On communicating finite-state machines. J. ACM,

30(2):323–342.

Cecea, G. and Finkel, A. (2005). Verification of programs with half-duplex communica-

tion. Inf. Comput., 202(2).

Coulouris, G. F. and Dollimore, J. (1988). Distributed Systems: Concepts and Design.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J. R., and Levi,

S. (2006). Language support for fast and reliable message-based communication in

82

singularity os. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference

on Computer Systems 2006.

Fu, X., Bultan, T., and Su, J. (2004). Analysis of interacting bpel web services. In

Proceedings of the 13th International Conference on World Wide Web, WWW ’04,

pages 621–630, New York, NY, USA. ACM.

Fu, X., Bultan, T., and Su, J. (2005). Synchronizability of conversations among web

services. IEEE Trans. Softw. Eng., 31(12):1042–1055.

Honda, K., Yoshida, N., and Carbone, M. (2008). Multiparty asynchronous session types.

SIGPLAN Not., 43(1):273–284.

Manohar, R. and Martin, A. J. (1998). Slack elasticity in concurrent computing. In

Proceedings of the Mathematics of Program Construction, MPC ’98, pages 272–285,

London, UK. Springer-Verlag.

Siegel, S. (2005). Efficient verification of halting properties for mpi programs with wild-

card receives. In Cousot, R., editor, Verification, Model Checking, and Abstract Inter-

pretation, volume 3385 of Lecture Notes in Computer Science, pages 413–429. Springer

Berlin Heidelberg.

Tarjan, R. (1972). Depth first search and linear graph algorithms. SIAM Journal on

Computing.

Vakkalanka, S., Vo, A., Gopalakrishnan, G., and Kirby, R. M. (2010). Precise dynamic

analysis for slack elasticity: Adding buffering without adding bugs. In Proceedings of

the 17th European MPI Users’ Group Meeting Conference on Recent Advances in the

Message Passing Interface, EuroMPI’10, pages 152–159, Berlin, Heidelberg. Springer-

Verlag.

83

Yoshida, N. and Vasconcelos, V. T. (2007). Language primitives and type discipline for

structured communication-based programming revisited: Two systems for higher-order

session communication. Electron. Notes Theor. Comput. Sci., 171(4):73–93.

Zakharov, V. A. (2001). Book review: ”model checking” by e. clarke, o. grumberg and

d. a. peled. 11.

	2014
	Automatic Verification of Interactions in Asynchronous Systems with Unbounded Buffers
	Sneha Bankar
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Automatic Verification of Asynchronous Systems
	1.1.1 Existing Approach
	1.1.2 Proposed Solution

	1.2 Contributions
	1.3 Outline

	2. RELATED WORK
	2.1 Summary

	3. BACKGROUND
	3.1 Peers and Systems
	3.2 System Behavior Description as Languages
	3.3 Temporal Properties

	4. DETECTION OF BOUNDED BEHAVIOR
	4.1 Condition for Bounded Buffer Behavior
	4.2 Algorithms for bounded behavior detection
	4.2.1 Finding Configurations with Unbounded Send Sequences
	4.2.2 Algorithm for Exploring I and Verifying

	4.3 Algorithm to find bound

	5. TOOL DESCRIPTION
	5.1 Tool Overview
	5.2 Tool Components

	6. CASE STUDIES
	6.1 Case Study 1
	6.2 Case Study 2
	6.3 Case Study 3: Reservation Session Protocol
	6.4 Case Study 4: TCP Contract
	6.5 Case Study 5: Key Board Contract - Singularity Channel
	6.6 Case Study 6: Stock Broker Protocol (E-Service)
	6.7 Case Study 7: TPM Contract Protocol
	6.8 Case Study 8: Alternating Bit Protocol
	6.9 SUMMARY

	7. SUMMARY
	7.1 Contributions
	7.2 Future Work

	BIBLIOGRAPHY

