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ABSTRACT

Despite the unprecedented outpouring of molecular sequence data in phylogenetics, the

current understanding of the tree of life is still incomplete. The widespread applications of

phylogenies, ranging from drug design to biodiversity conservation, repeatedly remind us of the

need for more accurate and inclusive phylogenies. My thesis addresses some of the underlying

challenges, by presenting theoretical and empirical results, as well as algorithms for a range of

phylogenetic optimization problems.

In the first part of this thesis, I develop a heuristic method for the NP-hard unrooted

Robinson-Foulds (RF) supertree problem, and show that it yields more accurate supertrees than

those obtained from Matrix Representation with Parsimony (MRP) and rooted RF heuristic.

In the second, I present an RF distance measure based approach (MulRF) for inferring a species

tree from the input multi-copy gene trees, through a generalization of RF distance to multi-

labeled trees. Through simulation, I show that this approach, which is independent of gene

tree discordance mechanisms, produces more accurate species trees than existing methods when

incongruence is caused by gene tree error, duplications and losses, and/or lateral gene transfer.

Next, I perform a simulation study to evaluate the performance of Gene Tree Parsimony (GTP)

under duplication and duplication and loss cost models and compare it to MulRF method.

The objective is to study the effects of various types of sampling (e.g., gene tree and sequence

sampling), gene tree error, and duplication and loss rates on the accuracy of the phylogenetic

estimates by GTP and MulRF. Next, I present efficient error correction algorithms for gene

tree reconciliation based on duplication, duplication and loss, and deep coalescence. In the end,

I present NP-completeness proofs for two problems whose complexity was previously unknown.
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CHAPTER 1. Introduction

Life is ubiquitous throughout the nature—organisms spreading from the poles to the equator

and from the bottom of the sea to several miles above the ground, and surviving from the

freezing to well over boiling water temperatures. A confirmation to that is 1.75 million biological

species that have been identified and described to date, and yet it is believed to be a fraction

of the total diversity on earth. Despite that, the best evidences strongly suggest that all life

on earth has a common ancestor. Since that common ancestor appeared more than 3.5 billion

years ago, ancestral species have split to form new and independent species (speciation), with

their own physical manifestation and genetic makeup. Rather rarely, some of these otherwise

independent species have also come together to form yet another species (hybridization) or to

exchange genetic material (lateral gene transfer).

Phylogenetics is the exploration and identification of the evolutionary relationships among

the many different kinds of species on earth, both living (extant) and dead (extinct). These

evolutionary relationships are frequently represented by a branching tree, called a phylogenetic

tree or a phylogeny or just a tree. Occasionally, when reticulation events such as hybridization,

lateral gene transfer, or recombination are believed to be involved, the phylogenetic networks

are also considered to represent evolutionary relationships. They differ from phylogenetic trees

by the addition of nodes with two parents (hybrid nodes), instead of nodes with only one parent

(tree nodes). The prime focus of this thesis is restricted to the phylogenetic trees and their

problems.

Methods for building phylogenetic trees follow one of the two underlying approaches or

philosophies: phenetic, considers only the similarities and differences of character data (e.g.

physical traits or molecular sequences), and cladistic, considers the molecular sequences as well

as various possible pathways of evolution that brought to these sequences. The ultimate goal
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is to construct the phylogenetic hypothesis of all species on earth, the so-called Tree of Life.

Phylogenies have widespread applications. They are important for tracking the evolution

of diseases, and thus help design drugs and vaccines (for example the development of influenza

vaccine (Bush et al., 1999)). Plant scientists use phylogenies to determine the genes associated

with positive traits such as the ability to survive adverse growing conditions (e.g., drought).

The collective knowledge can certainly be applied towards breeding more productive crops,

and feeding more people, as a result. Phylogenies are used in Biogeography to hypothesize

the biological distribution of organisms (Lomolino et al., 2005), results are also applicable to

biodiversity conservation decision-making (Erwin, 1991). Other applications comprise protein

structure prediction and multiple-sequence alignment. The importance of phylogenies in biology

presses the need to have more inclusive and accurate phylogenies. This thesis addresses several

of such theoretical, computational was well as experimental problems that comes in way towards

reaching that goal.

The proliferation of next generation sequencing technologies has revolutionized phylogenet-

ics by incorporating large genomic data sets into phylogenetic inference. However, it also has

drawn attention to complex patterns of genomic variation that result from processes such as

gene duplication and loss, incomplete lineage sorting, recombination, or lateral gene transfer

(e.g., Maddison (1997)). These processes can create conflict among gene tree topologies and

obscure or mislead phylogenetic analyses (e.g., Mossel and Vigoda (2005); Kubatko and Degnan

(2007); Beiko et al. (2008); Penny et al. (2008)). Thus, in order to accurately hypothesize the

phylogenetic relationships from genomic data, it is necessary to address the incongruence among

input gene trees. Furthermore, a preferred method for such phylogenetic analyses not only has

to address the incongruence among input trees but also remain computationally tractable for

constructing more comprehensive phylogenies. Chapters 3 - 7, develop fast, both asymptot-

ically and in practice, algorithms and study existing techniques that allows analysis on such

conflicting input gene trees. We start with Chapter 2, that details the preliminaries for this

thesis. See Appendix A for commonly used symbols in each chapter.

In Chapter 3, Fast Local Search for Unrooted Robinson-Foulds Supertrees, we address the

supertree problem, which has multiple applications in systematics. Supertrees combine mul-
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tiple, usually conflicting, species trees with partially overlapping taxon sets into phylogenies,

containing all species from the input trees. We describe the unrooted Robinson-Foulds (RF)

supertree problem that also allows non-binary input trees. This problem is NP-hard, thus a

heuristic method is required to estimate solutions for large data sets. Our heuristics are based

on the Edge Contract and Refine (ECR) operation. Experiments on simulated and empirical

data sets show that our method yields better supertrees than those obtained from Matrix Rep-

resentation with Parsimony (MRP) and rooted RF heuristic. These results have been published

in (Chaudhary et al., 2012b).

A multi-labeled tree, or mul-tree in short, is a tree in which multiple leaves can have the same

label. MUL-trees are omnipresent in the literature under different names such as tangled trees

(used in host-parasite co-evolution (Page, 1994)), area cladograms (used in Biogeography, i.e.,

the study of geographical distribution of organisms (Lomolino et al., 2005)), and multi-copy

gene trees (i.e., a gene tree containing more then one sequence from a species). The ability to

use mul-trees as input, instead of being restricted to single copy genes, allows a phylogenetic

method to incorporate the wealth of genomic data from multi-copy genes, not only single-copy

genes, into phylogenetic inference. Our next contribution, is a new technique that also allows

multi-copy gene trees in phylogenetic analysis.

In Chapter 4, Inferring Species Trees from Incongruent Multi-Copy Gene Trees Using the

Robinson-Foulds Distance, we present a new tree distance metric based approach for inferring

species trees from incongruent multi-copy gene trees. Unlike most previous methods, this

approach does not assume that gene tree incongruence is caused by a single, specific biological

process or gene tree error. Consequently, it is appealing for analyses of genomic data sets, in

which many unknown biological processes as well as phylogenetic errors likely contribute to the

conflicts between the gene trees and the species tree. By generalizing RF distance measure to

multi-labeled trees, we formulate the MulRF problem which seeks a species tree that minimizes

the total RF distance to the input multi-copy gene trees. We present a fast heuristic algorithm

for the MulRF problem, and compared its performance with multiple gene tree parsimony

(GTP) approaches using gene tree simulations that incorporate gene duplications and losses

and/or lateral transfer. We found that the MulRF method produces more accurate species
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trees than various gene tree parsimony approaches, emphasizing that a phylogenetic method

based on a generic tree distance metric may be more appropriate if the conflict among genes

is due to error and/or to multiple, interacting biological processes. Furthermore, the MulRF

heuristic runs quickly on data sets containing hundreds of trees with up to a hundred taxa,

showing its suitability for large-scale phylogenomic analyses. A paper containing these results

is under review.

In Chapter 5, A Simulation Study to Compare Two Non-parametric Approaches for Species

Trees Construction, we study which phylogenetic approach among GTP and MulRF can best

resolve a species tree from multi-copy genes. We use gene simulations to evaluate the perfor-

mance of GTP under duplication and duplication and loss cost models and compare them to

the mechanism-free MulRF method. We look at the effects of various samplings (e.g., gene

tree and sequence sampling), gene tree error, and duplication and loss rates on the accuracy

of the phylogenetic estimates by Only-dup, Dup-loss, and MulRF. As expected, the species

trees were more accurately estimated for increased gene tree and gene sequence sampling and

decreased duplication and loss rate by all three methods. Further, the error in the gene trees

negatively affected the species tree analyses. In general, Only-dup performed poorly compared

to the other two methods, MulRF was best in estimating small species trees (≤ 100 taxa)

and Dup-loss larger species trees (≥ 250 taxa). Our results also highlight the limitations of

Only-dup in estimating duplications and losses, and Dup-loss in losses. A manuscript of these

results is under construction.

Chapter 6, Efficient Error Correction Algorithms for Gene Tree - Species Tree Reconcilia-

tion, deals with the error in the gene trees in a complete different way for improved gene tree -

species tree reconciliation, and more accurate species tree construction, as a result. Gene tree

- species tree reconciliation problems infer the patterns and processes of gene evolution within

a species tree. GTP approaches seek the evolutionary scenario that implies the fewest gene

duplications, duplications and losses, or deep coalescence events needed to reconcile a gene

tree and a species tree. While a GTP approach can be informative about genome evolution

and phylogenetics, error in gene trees can profoundly bias the results. We introduce efficient

algorithms to correct gene tree topologies based on the gene duplication, duplication and loss,
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or deep coalescence cost models. The algorithms work by identifying the small rearrangements,

based on Tree Bisection and Reconnection and Subtree Prune and Regrafting tree operations on

the gene trees, that reduce the reconciliation cost. They are extremely fast and thus amenable

to analyses of large-scale genomic data sets. The results have been published in Chaudhary

et al. (2012a)

In Chapter 7, NP-Completeness Proofs, we present NP-completeness proofs for two prob-

lems whose complexity was previously unknown. The first problem is computing the RF dis-

tance between two multi-labeled trees. This question was originally introduced by Ganapathy

et al. (2006) as the problem of computing RF distance between two area cladograms in Biogeog-

raphy, but as multi-labeled trees are omnipresent (see for example, Chapter 4), this problem

also appeals to different areas of research for various applications. The second problem is a

tree labeling problem: Labeling two unlabeled trees so as to minimize the RF distance between

the resulting singly-labeled trees. The reduction of it is partially similar to the first problem,

but its applications are in the study of tree shapes. The first proof here is undergoing review

process and the manuscript for the second is under construction.

In Chapter 8, we summarize our results and give some concluding remarks.
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CHAPTER 2. Preliminaries

2.1 Phylogenetic Trees

An unrooted phylogenetic tree is an acyclic connected graph, with no vertices of degree two

and every leaf (vertex of degree one) labelled uniquely. Internal vertices (vertices that are not

leaves) are typically left unlabelled. We use “phylogenetic tree” and “tree” interchangeably.

A rooted phylogenetic tree is defined in the same way except one internal vertex, which can

have degree two, is distinguished as root. The remaining internal vertices have degree three or

more.

In a binary unrooted tree every internal vertex has degree three. A binary rooted tree has

every internal vertex of degree three, except the root which has degree two.

One example of a binary tree is a caterpillar tree. An unrooted caterpillar tree has one

central path with leaves branching off it (see Fig. 2.2(1)). In an rooted caterpillar tree, leaves

append to a single path from the root to the single leaf (see Fig. 2.2(2))

Let the leaf set of a (rooted or unrooted) tree T be denoted by L(T ). The set of all vertices

a b c d e f g h a b c d e f g

b

a

dc

e

f
b

a

f

e

c d

(1) (2)

(3) (4)

Figure 2.1 Example of phylogenetic unrooted and rooted trees. Tree in, (1) is binary, un-
rooted, (2) is non-binary, unrooted, (3) is binary, rooted, and (4) is non-binary,
rooted.
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Figure 2.2 (1) Unrooted caterpillar tree, (2) rooted caterpillar tree.

by V (T ) and the set of all edges by E(T ). The root of a rooted tree T is denoted by rt(T )

Given a rooted tree T , a vertex v is internal if v ∈ V (T )\(L(T ) ∪ rt(T )). The set of all

internal vertices of T is denoted by I(T ). We define �T to be the partial order on V (T ) where

x �T y if y is a vertex on the path from rt(T ) to x. If {x, y} ∈ E(T ) and x �T y, then y is the

parent of x and x is a child of y. Two vertices in T are siblings if they have the same parent.

Let T be the given rooted tree. The least common ancestor (LCA) of a non-empty subset

L ⊆ V (T ), denoted by LCAT (L), is the unique smallest upper bound of L under �T .

Let T be a (rooted or unrooted) tree and U be a subset of V (T ). We denote by T (U)

the minimum subtree of T that connects the elements in U . The restriction of unrooted tree

T to U , denoted by T|U , is the phylogenetic tree that is obtained from T (U) by suppressing

all vertices of degree two. In restricting rooted tree T to U , all non-root vertices of T (U) are

suppressed.

2.1.1 Split and Clusters

Let T be a unrooted tree and e be an edge of T . Removal of e subdivides T into two

components. Let A be the set of leaves in one component and B be the set of leaves in another

component. A and B are called the parts of the resulting split A|B. Order does not matter, so

A|B is identical to B|A. Each edge in a tree induces a unique split. A split is called nontrivial

if each of A and B contains at least two elements. The set of all nontrivial splits of a tree T ,

denoted by Σ(T ), is called a split set of T .

Now consider a rooted tree T . Let v be a vertex in T . The subtree of T rooted at vertex

v ∈ V (T ), denoted by Tv, is the tree induced by {u ∈ V (T ) : u � v}. For each node v ∈ I(T ),
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A

B D

C

e

C

B D

A

e
NNI

T1 T2

Figure 2.3 An NNI operation. Tree T2 results from T1 after swapping subtree A with C.

Ap+3

p-edge contraction refinement

T1 T2 T3

e1 ep

Ap+2
Ap+1A3

A1

A2

A1

A2

A3

Ap+3

Ap+1

Ap+2

A1

e1 ep

Ap+2

Ap+1A3

Ap+3

A2

Figure 2.4 A p-ECR operation. Tree T2 results from T1 from contracting edges e1, e2, ..., ep;
T3 is a full refinement of T2. Observe the degree p + 3 vertex in T2. Note that,
in general, the edges contracted do not have to be adjacent, as they are in this
example.

CT (v) is defined to be the set of all leaf nodes in Tv. Set CT (v) is called a cluster. The set of

all clusters of a tree T , denoted by H(T ), is called a cluster set of T .

2.2 The Tree Edit Operations

2.2.1 Nearest Neighbor Interchange (NNI) Operation

Let T1 be an unrooted, binary tree and let e be an internal edge of T1. An NNI operation

on T1 consists of swapping one of the two subtrees on one side of e with one of the two subtrees

on the other side of e (Allen and Steel, 2001). (See Fig. 2.3.)

2.2.2 p-Edge Contract and Refine (ECR) Operation

Let T be an unrooted, binary binary tree. A p-ECR operation on T is the result of (i)

choosing p internal edges e1, e2, ..., ep of T , (ii) contracting e1, e2, ..., ep and (iii) constructing

some full refinement of the resulting tree (Ganapathy et al., 2003). (See Fig. 2.4.) Note that

the 1-ECR operation is equivalent to NNI operation.



9

A

C

ED A

C

EDSPR

Figure 2.5 An SPR operation. Subtree C is cut and regrafted to a new vertex between subtree
D and E.

A

C

BD A

D B

C
TBR

e

f

Figure 2.6 An TBR operation. Edge e is cut and an new edge f is added between the two
components.

2.2.3 Subtree Prune and Regraft (SPR) Operation

An SPR operation on an unrooted, binary tree T cuts any edge, thereby pruning a subtree t,

and then regrafts t by the same cut edge to a new vertex obtained by subdividing a pre-existing

edge in T − t (Allen and Steel (2001); Bordewich and Semple (2004)). (See Fig. 2.5.)

2.2.4 Tree Bisection and Reconnection (TBR) Operation

An TBR operation on an unrooted, binary tree T cuts an edge e, and then adds a new

edge f between a vertex that subdivides an edge of one component of T\e and a vertex that

subdivides an edge of the other component of T\e (Allen and Steel, 2001). (See Fig. 2.6.)

2.2.5 Contraction and Refinement Operation

Let T be a rooted or unrooted tree. The contraction of an edge in T collapses that edge and

identifies its two endpoints. The refinement of an unresolved vertex (i.e., an internal vertex

with degree greater than three) expands that vertex into two vertices connected by an edge.

Contraction and refinement can be viewed as inverses of each other (Fig. 2.7).

2.3 Multi-labeled Trees

An unrooted phylogenetic mul-tree or unrooted mul-tree, is a tuple T = (T,M,ϕ) consisting

of an unrooted tree T , called underlying tree, a set of labels M , and a surjective labeling function
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Figure 2.7 The contraction of edge {u, v} in the first tree produces the second tree; conversely,
the refinement of vertex u in the second tree produces the first tree.

ϕ : L(T )→M that maps each leaf of T with a label in M . A mul-trees in which each leaf has

the same label (i.e., |M | = 1) is called a uniform mul-tree.

Informally, a mul-tree is simply an unrooted phylogeny in which multiple leaves can have

the same label. For any label ` ∈M , ϕ−1(`) is the set of all leaves labeled `. If ϕ is a bijection,

the corresponding unrooted mul-tree is just a (singly-labeled) unrooted tree.

Similarly, a rooted phylogenetic mul-tree or rooted mul-tree, is a tuple T = (T,M,ϕ) con-

sisting of an rooted tree T , a set of labels M , and a surjective labeling function ϕ : L(T )→M

that maps each leaf of T with a label in M . Note that the difference between unrooted and

rooted mul-trees is in the underlying tree which is a rooted or unrooted tree for rooted and

unrooted mul-trees, respectively. In this thesis, we use the traditional notation for a tree when

the given mul-tree is clearly a tree.

The concepts introduced above for unrooted trees naturally extend to mul-trees. For ex-

ample, a mul-tree T = (T,M,ϕ) is binary if T is binary. Two mul-trees T1 = (T1,M, ϕ1) and

T2 = (T2,M, ϕ2) are isomorphic if T1 and T2 are isomorphic under bijection τ : V (T1)→ V (T2)

such that ϕ1(u) = ϕ2(τ(u)) for all u ∈ L(T1).

2.4 Robinson-Foulds Distance

The Robinson-Foulds (RF) distance between two mul-trees (or trees) T1 and T2, denoted

by RF (T1, T2), is the minimum number of contractions and refinements necessary to transform

T1 into a mul-tree (or tree) isomorphic to T2 (Robinson and Foulds, 1981).

In case of unrooted trees, the RF distance can be equivalently defined via split set. For two

unrooted trees T1 and T2 (Robinson and Foulds, 1981),

RF (T1, T2) := |(Σ(T1)\Σ(T2)) ∪ (Σ(T2)\Σ(T1))|.
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Figure 2.8 Two mul-trees that induce the same set of splits but are not isomorphic.

For rooted trees, the RF distance can be equivalently defined via cluster set. For two rooted

trees T1 and T2 (Robinson and Foulds, 1981),

RF (T, S) := |(H(T1)\H(T2)) ∪ (H(T2)\H(T1))|.

Unlike trees, it is possible for two unrooted (or rooted) mul-trees T1 and T2 to satisfy

Σ(T1) = Σ(T2) (or H(T1) = H(T2)) and yet not be isomorphic (see Fig. 2.8). Thus, the RF

distance between two mul-trees cannot be computed by splits or clusters. In fact, we prove

that computing the RF distance between two mul-trees is NP-complete (Chapter 7).
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CHAPTER 3. Fast Local Search for Unrooted Robinson-Foulds Supertrees

3.1 Introduction

Supertree techniques are widely used to combine multiple, usually conflicting, species trees

with partially overlapping taxon sets into phylogenies (supertrees) containing all species from

the input trees (Bininda-Emonds et al., 2007; Davies et al., 2004; Pisani et al., 2002). Matrix

representation with parsimony (MRP) (Baum, 1992; Ragan, 1992) is by far the most commonly

used supertree method. While MRP often performs well (Bininda-Emonds and Sanderson,

2001; Chen et al., 2006; Eulenstein et al., 2004), MRP supertrees may display size and shape

biases, and contain relationships that are not supported by any of the input trees (Goloboff,

2005; Purvis, 1995; Pisani and Wilkinson, 2002). Still, MRP remains popular because it can

take advantage of fast and effective parsimony heuristics and incorporate a broad range of input

data, including rooted, unrooted, and non-binary trees (Bininda-Emonds et al., 2005).

In contrast to MRP, the Robinson-Foulds (RF) supertree method seeks a supertree that

minimizes the total RF distance to the input phylogenies (Bansal et al., 2010b). Thus, an RF

supertree is consistent with the maximum number of splits in the input trees. Although the

properties of the RF supertree method make it a desirable alternative to MRP, its use has been

limited by the lack of effective heuristics. Bansal et al. (Bansal et al., 2010b) recently developed

fast local search algorithms for the rooted RF problem, the special case where the input trees

and the supertree are rooted. Here, we describe new local search algorithms for the unrooted

RF problem. These are not only asymptotically as fast as the rooted RF heuristics, but they

also allow more types of input data and improve the quality of supertree estimates, making the

RF supertree method a viable alternative to MRP for nearly any data set.

The use of local search (hill-climbing) heuristics for constructing RF supertrees is motivated
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by the NP-hardness of the underlying optimization problem. Local searches explore the space

of possible supertrees in search of a locally optimum supertree, a tree whose score is minimum

within its “neighborhood”, where the neighborhood is defined by a tree edit operation. The best

known tree edit operations are Nearest Neighbor Interchange (NNI) (Allen and Steel, 2001),

Subtree Prune and Regraft (SPR) (Allen and Steel, 2001; Bordewich and Semple, 2004), and

Tree Bisection and Reconnection (TBR) (Allen and Steel, 2001). The sizes of the respective

neighborhoods are Θ(n), Θ(n2), and Θ(n3), where n is the number of taxa in the tree.

Ganapathy et al. introduced the p-Edge Contract and Refine (ECR) operation (Ganapathy

et al., 2003), which is based on selecting a set of p edges to contract, after which all possible

refinements of the contracted tree are generated. While the 1-ECR operation is equivalent to

NNI, for larger values of p, p-ECR allows us to explore tree space in ways that other operations

do not. In particular, although the size of the TBR neighborhood is big (i.e., Θ(n3)), the

number of 2-ECR neighbors that are also TBR neighbors is just O(n) (Ganapathy et al., 2003,

2004). Thus, a 2-ECR search can cover a significant part of the tree space left unexplored

by TBR search. The effectiveness of combining TBR with ECR has been demonstrated for

parsimony (Goloboff, 1999). Further, the RF-distance between two trees is at most 2p if and

only if they are one p-ECR move apart (Ganapathy et al., 2004). This suggests that ECR may

be particularly well-suited for building RF supertrees.

We present fast NNI and 2-ECR local search algorithms for the unrooted RF supertree

problem. We also discuss how to extend these results to handle p-ECR, for any fixed p. In

particular, our algorithms perform a O(n) time preprocessing step after that RF distance

from each tree in NNI and 2-ECR neighborhood can be computed in constant time. To our

knowledge, the only previous related work is (Bansal et al., 2010b) and the supertree analysis

package Clann (Creevey and McInerney, 2005), which implements a heuristic for maximizing

the number of splits shared between the input trees and the supertree, but lacks any running

time performance guarantees. Our NNI and 2-ECR search algorithms run in Θ(nk) and Θ(n2k)

time, where k is the number of input trees. They represent Θ(n) speed-ups over the näıve

solutions for these problems. The algorithms produce binary supertrees, but the input trees

are not required to be binary. The techniques we use are, on the surface, similar to those
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used earlier for rooted trees (Bansal et al., 2010b). In particular, we transform the unrooted

problem into a rooted one and use an LCA mapping technique related to that of (Bansal et al.,

2010b). On the other hand, there are some important differences. For unrooted trees, we

use LCA mappings from the supertree to each input tree, the opposite of what is done for

rooted trees. This simplifies the algorithm considerably and allows us to compute RF distances

without restricting the supertree to the leaf set of each input tree. It also enables us to handle

multiple alternative rootings cleanly.

We examine the performance of our unrooted ECR-based RF supertree heuristic using

several large simulated and empirical data sets, and compare its performance with rooted RF

supertrees obtained by SPR-based local search (Bansal et al., 2010b). We demonstrate that

the ability to handle unrooted trees allows us to construct, in a reasonable amount of time,

higher-quality trees than those obtained by assuming fixed roots.

The results presented here are not only of algorithmic interest. It is often beneficial, if

not necessary, to allow unrooted input in supertree analyses. Identifying the root of a species

tree is among the most difficult problems in phylogenetics (e.g., Smith (1994); Wheeler (1990);

Sanderson and Shaffer (2002)), and conventional likelihood and parsimony-based phylogenetic

methods typically produce unrooted trees. To root trees, most analyses include outgroup taxa

that lie outside the clade of interest. However, in many cases, no useful outgroups exist, or

the phylogenetic distance of available outgroups may contribute to systematic, or “long-branch

attraction”, errors (Wheeler, 1990; Leebens-Mack et al., 2005). Methods for rooting trees

in the absence of an outgroup also can be problematic. For example, rooting the tree by

assuming a molecular clock, or similarly using mid-point rooting, may be misled by molecular

rate variation throughout the tree (Holland et al., 2003; Huelsenbeck et al., 2002), and the use

of non-reversible models appears to perform well only when the substitution process is strongly

asymmetric (Huelsenbeck et al., 2002; Yap and Speed, 2005).

3.2 Unrooted RF Supertree Problem

A profile is a tuple of trees P := (T1, T2, ..., Tk), where each tree Ti ∈ P is called an input

tree. A supertree on P is a phylogenetic tree S such that L(S) =
⋃k

i=1 L(Ti). We write n to
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Figure 3.1 A 2-ECR operation. Tree T2 results from T1 after contracting edge e1 and e2; T3

is a full refinement of T2. Observe the degree five vertex in T2.

denote |L(S)|; i.e., n is the total number of distinct leaves in the profile.

We extend the notion of RF distance to profile and supertree as follows. Let P be a

profile of unrooted trees and S be a supertree for P. Then, the RF distance from P to S is

RF (P, S) :=
∑

T∈P RF (T, S).

We now state our main problem. Let B(P) be the set of all binary supertrees for P.

Problem 1 (Unrooted RF Supertree).

Input: A profile P = (T1, T2, ..., Tk) of unrooted trees.

Output: A supertree S* for P such that RF (P, S*) = minS∈B(P)RF (P, S).

The unrooted RF supertree problem is NP-hard even when all input trees have the same leaf

set (McMorris and Steel, 1993). In the rest of this Chapter, we develop local search heuristics

for the unrooted RF supertree problem based on the p-ECR tree edit operation. Our primary

focus here is on the special cases of the p-ECR operation where p = 1 and p = 2. See Figs.

2.3 and 3.1. Note that the 1-ECR operation is equivalent to the well-known Nearest Neighbor

Interchange (NNI) operation.

Let p-ECRT denote the set of trees that can be obtained from a binary tree T by applying

a single p-ECR operation. The p-ECR search problem is defined as follows:

Problem 2 (p-ECR Search).

Input: A profile P = (T1, T2, ..., Tk) of unrooted trees and a binary supertree S for P.

Output: A tree S* ∈ p-ECRS such that RF (P, S*) = minS′∈p-ECRS
RF (P, S′).

We give algorithms that solve the 1-ECR/NNI and 2-ECR search problems in time Θ(nk)

and Θ(n2k), respectively. We achieve this by first executing a O(nk)-time preprocessing step

(explained in Section 3.3), which is the same for both problems. After that, for each tree in
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Figure 3.2 Tree T with leaf set {a, b, c, d, e}. The rooted tree T with r = a is also shown.

the input profile, the RF distance from any tree in 1-ECRS or 2-ECRS can be computed in

constant time. After explaining these algorithms, we outline an extension to p-ECR for any

fixed p.

3.3 Preprocessing

3.3.1 The Connection to Rooted RF Distance

We now show how to compute the RF distance from an arbitrary input tree T to a supertree

S by working with rooted versions of these trees.

Suppose S is a supertree for a profile P of unrooted trees and let T be a tree in P. Through-

out the rest of this Chapter, we assume that some arbitrary but fixed taxon r ∈ L(T )∩L(S) is

chosen for T . We refer to r as the outgroup. Different outgroups may be used for different input

trees. Let T and S be the trees that result from rooting T and S at the respective branches

incident on r (see Fig. 3.2).

Lemma 1. Let T and S be two unrooted phylogenetic trees with L(T ) = L(S), then,

RF (T, S) = RF (T,S).

Proof. We first show that RF (T, S) ≤ RF (T,S). Recall that RF (T, S) = |(Σ(T )\Σ(S)) ∪

(Σ(S)\Σ(T ))|. We prove that for each unmatched split in the split set of T (respectively, S),

there exists a unique unmatched cluster in the corresponding rooted tree T (respectively, S).

Let A|B be a split such that A|B ∈ Σ(T ) but A|B /∈ Σ(S). Assume without loss of generality

that r ∈ A. Then, B ∈ H(T) but B /∈ H(S). The argument for S and S follows similarly. Thus

RF (T, S) ≤ RF (T,S) holds. The proof that RF (T, S) ≥ RF (T,S) is similar.
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We extend RF distance to the case where L(T) ⊆ L(S) in the same way as for unrooted

trees. That is, RF (T, S) := RF (T, S|L(T)), where S|L(T) is the rooted phylogenetic tree obtained

from S(L(T)) by suppressing all non-root vertices of degree two. We now show how to compute

the RF distance in this more general setting, without explicitly building S|L(T).

Definition 1 (Restricted Cluster). Let v ∈ I(S). The restriction of CS(v) to L(T) is defined

as

ĈT(v) := {w ∈ L(Sv) : w ∈ L(T)}.

ĈT(v) is called a restricted cluster.

Definition 2 (Vertex Function). The vertex function fS assigns each u ∈ I(T) the value

fS(u) = |U |, where U := {v ∈ I(S) : CT(u) = ĈT(v)}.

Fig. 3.3 shows the tree T after labeling the internal vertices with the values of the vertex

function. Two vertices in T have label 1 since each one of them has exactly one identical

restricted cluster in S. (The LCA mapping depicted in Fig. 3.3 is explained later.) Observe

that if L(S) = L(T), then for all u ∈ I(T), fS(u) ≤ 1.

We use fS to define the following set, which is used to compute RF (T, S).

FS = {u ∈ I(T) : fS(u) = 0}

We drop the subscript from fS and FS when it is clear from the context.

Lemma 2. Let S′ := S|L(T). Then RF (T, S) = |I(S′)| − |I(T)|+ 2|FS′ |.

Proof. Recall that RF (T, S) = |(H(T)\H(S′)) ∪ (H(S′)\H(T))|. Let GS′ be a set {u ∈ I(T) :

fS′(u) > 0}. Thus, RF (T,S) = |I(S′)| + |I(T)| − 2|GS′ |. Since |GS′ | + |FS′ | = I(T) we have

RF (T,S) = |I(S′)| − |I(T)|+ 2|FS′ |.

Lemma 3. Let S′ := S|L(T). Then |FS| = |FS′ |.

Proof. We prove the lemma by showing that for u ∈ I(T), fS(u) 6= 0 if and only if fS′(u) 6= 0.

(⇒) Since fS(u) 6= 0, there exists a vertex v in S such that CT(u) = ĈT(v). There are two

cases.
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Case 1: L(Sv) = ĈT(v). In this case v stays in S′ after restriction, and so fS′(u) 6= 0.

Case 2: ĈT(v) ⊂ L(Sv). Let the children of v be v1 and v2. If L(T) is not disjoint with L(Sv1)

and L(Sv2), then v exists in S′. Otherwise, at most one of subtrees at these vertices,

e.g., v1, may be absent in S′ (if L(Sv1) and L(T) are disjoint). In that case by applying

the same argument inductively on v2, we reach a vertex that stays in S′. Thus we have

a vertex with similar cluster present in S′. Therefore, fS′(u) 6= 0.

(⇐) Since fS′(u) 6= 0, there exists a vertex v in S′ such that CT(u) = CS′(v). Now we must

have v ∈ I(S), since the restriction of S to L(T) does not introduce a new vertices in S′. Thus,

in S, ĈT(v) = CT(u) (by the definition of S′). Therefore, fS(u) 6= 0.

Corollary 1. RF (T, S) = |L(T)| − |I(T)|+ 2|FS| − 2.

Proof. In Lemma 2, |I(S′)| = |L(T)| − 2. Now the result is trivially true.

3.3.2 An LCA-Based Preprocessing Algorithm

We now describe aO(n)-time algorithm to compute the initial vertex function for a supertree

S relative to input tree T, along with the RF distance between these two trees.

Definition 3 (LCA Mapping). For S and T, the LCA mapping MS,T : V (S) → V (T) is

defined as

MS,T(v) :=


LCAT(ĈT(v)), if ĈT(v) 6= φ ;

null, otherwise.

Fig. 3.3 illustrates LCA mappings.

Lemma 4. For all u ∈ I(T), f(u) = |B|, where B := {v ∈ I(S) :MS,T(v) = u and |CT(u)| =

|ĈT(v)|}.

Proof. By the definition of f(u), it suffices to show that B = U , where U := {v ∈ I(S) : CT(u) =

ĈT(v)}. If v ∈ U , then, by the definition of MS,T(v), v ∈ B. If v ∈ B, then MS,T(v) = u and

|CT(u)| = |ĈT(v)| imply that CT(u) = ĈT(v).
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Figure 3.3 The LCA mapping from S to T. Vertex a in S is mapped to null as a /∈ L(T). The
internal vertices of T are labeled with the values of the vertex function.

Lemma 4 proves that LCA mappings can be used to compute the vertex function for given

trees S and T. A vertex u ∈ T with f(u) = 0 indicates that the corresponding cluster does not

match any restricted cluster in S; such vertices of T compose the set FS. Corollary 1 can now

be directly applied to compute RF (T, S).

The LCA computation for T can be done in O(n) time, and the LCA mapping from S to

T can be done in O(n) time (Bender and Farach-Colton, 2000). Further, from Lemmas 2–4 we

can compute the RF distance between S and T in O(n) time as well. We assume that there is

a distinct rooted copy S of S for each input tree T , and that S and T are rooted according to

the outgroup chosen for T .

3.4 Solving the NNI Search Problem

Let T be an arbitrary tree in P. We now show how to compute the RF distance from T to

each tree in the NNI neighborhood of a supertree S in linear time of the size of neighborhood.

The key idea is to simulate each NNI operation on unrooted tree S on its rooted version S, using

the LCA mapping from S to T to quickly compute the RF distance. This mapping changes as

NNI operations are performed on S, but we show that it can be updated in constant time at

each step.

Consider an NNI move across an edge e = {x, y} of S. Let A and B be the two subtrees

on the x side of e, and C and D be the two subtrees on the y side of e (Fig. 3.4).

Observation 1. The tree obtained from swapping A and C is isomorphic to the tree obtained

from swapping B and D.

Proof. Both swaps produce the same sets of splits and are therefore the trees are isomorphic
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Figure 3.4 Unrooted tree S, the rooted version S and the result S′ of an NNI operation
swapping subtrees B and C. The figure assumes that the outgroup lies in subtree
A.

by the Splits Equivalence Theorem.

Without loss of generality, assume that the NNI move swaps B with C, resulting in tree

S′. Also, assume that the subtrees A,B,C, and D connect with edge e through vertices a, b, c,

and d, respectively. In S, either x is the parent of y or y is the parent of x, depending on which

side has the outgroup. In the first case, the children of y are c and d. Further, if the sibling

of y is b, then the outgroup must be in subtree A (see Fig. 3.4), otherwise it is in subtree B.

The other cases are analogous. Observe that the parent-child and sibling relationships can be

checked in constant time.

Let the children of y in S be c and d, and the sibling of y be b. After the NNI operation the

children of y are b and d, and the sibling of y is c. Let the resulting tree be called S′. (Note

that if outgroup was in B then we would have swapped A and D, since, from Observation 1

both operations produce the same result.)

Lemma 5. (i) For all u ∈ I(S)\{y},MS′,T(u) =MS,T(u) and (ii)MS′,T(y) = LCAT(MS,T(b),MS,T(d)).

Proof. (i) For v ∈ V (S′b)
⋃
V (S′c)

⋃
V (S′d), Sv ' S′v. Thus, MS′,T(v) = MS,T(v). Now,

L(S′x) = L(Sx), thus MS′,T(x) = MS,T(x). Also, except for subtree Sx, the rest of the tree

remains the same in S′x, thus for v ∈ V (S′)\V (S′x), MS′,T(v) =MS,T(v).

(ii) Observe that, b, d are children of y in S′, and S′b ' Sb, S′d ' S′d. So, MS′,T(y) =

LCAT(MS′,T(b),MS′,T(d)) = LCAT(MS,T(b),MS,T(d)).

Let h :=MS,T(y) and h′ :=MS′,T(y). Note that h and h′ may refer to the same vertex in

T. Let G denote the set {w ∈ {h, h′} : fS(w) = 0, but fS′(w) ≥ 1}, and L the set {w ∈ {h, h′} :
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fS(w) ≥ 1, but fS′(w) = 0}.

Lemma 6. RF (S′,T) = RF (S,T)− 2|G|+ 2|L|.

Proof. RF (S′,T) = |L(T)|−|I(T)|−2+2|FS′ | =|L(T)|−|I(T)|−2 +2|{u ∈ I(T) : fS′(u) = 0}|

=|L(T)|−|I(T)|−2+2|FS|−2|{u ∈ {h, h′} : fS(u) = 0 & fS′(u) ≥ 1}|+2|{u ∈ {h, h′} : fS′(u) =

0 & fS(u) ≥ 1}| = RF (S,T)− 2|G|+ 2|L|

Lemma 7. The RF distance from T to any S′ ∈ NNIS can be computed in O(1) time.

Proof. From Lemma 5, the LCA mapping of only one vertex y changes in S′ and can be

computed in constant time using the LCA pre-computation of T. Also, the values of fS′(h) and

fS′(h
′) can be updated in constant time. Finally, RF (S′,T) is computed in constant time as

shown in Lemma 12. Further, RF (S′, T ) = RF (S′,T).

Theorem 1. The NNI Search problem can be solved in Θ(nk) time.

Proof. There are Θ(n) edges in S. From Lemma 7, updating the RF distance after an NNI

move takes constant time per input tree. Thus for k input trees it takes Θ(nk) time. Further,

the pre-processing of Section 4 takes Θ(nk) time.

3.5 Solving the 2-ECR Search Problem

As seen in Section 2, a 2-ECR operation on a binary tree consists of contracting two edges

e1 and e2, and then refining the contracted tree into a binary tree. These two edges may or

may not be adjacent edges in the tree. Our algorithm for 2-ECR Search handles each case

separately.

3.5.1 Case 1: The edges are not adjacent

In this case we use the next result.

Lemma 8. (Ganapathy et al. (2003)) Let T be an unrooted leaf-labeled tree and let T ′ be a

2-ECR neighbor of T such that the 2-ECR move involves the contraction and refinement of two

non-adjacent edges in T . Then T ′ can be reached from T through two NNI moves.
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Thus, when e1, e2 are not adjacent, the optimal 2-ECR neighbor can be obtained by com-

puting an optimal NNI neighbor of an NNI neighbor of S. There are Θ(n) NNI neighbors of S

and, by Theorem 1, an optimal NNI neighbor can be found in Θ(nk) time. Therefore, we have

the following result.

Lemma 9. The optimal 2-ECR neighbor of an n-taxa supertree S for a profile P of k trees,

subject to the restriction that the edges involved are not adjacent, can be computed in Θ(n2k)

time.

3.5.2 Case 2: The edges are adjacent

Note that there are O(n) possible pairs of adjacent edges for a tree with n leaves. For a

given pair (e1, e2) of edges, the 2-ECR operation contracts e1 and e2 and creates a degree-5

vertex. It then refines this vertex in one of the 15 possible ways to obtain a new binary tree.

We show that for each possible refinement the RF distance from an input tree can be computed

in constant time.

Let e1 = {x, y} and e2 = {y, z} be the two edges in S chosen for the 2-ECR move. Let S′

be the tree that results from the move. Let A and B be the subtree on x side of e1, C be the

subtree connected to y, and D and E be the subtree on z side of S. As in tree T1 of Fig. ??.

Also, assume that the subtrees A, B, C, D, and E connect with e1 and e2 through vertices a,

b, c, d, and e, respectively.

Note that in tree S, any of the five subtrees A,B,C,D,E can contain the outgroup.

1. A has the outgroup: Then x is the parent of y and y parent of z. The sibling of y is b.

2. B has the outgroup: Then x is the parent of y and y parent of z. The sibling of y is a.

3. D has the outgroup: Then z is the parent of y and y parent of x. The sibling of y is e.

4. E has the outgroup: Then z is the parent of y and y parent of x. The sibling of y is d.

5. C has the outgroup: Then y is the parent of x and z.

It is easy to check in constant time which case holds.
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Now we divide the 15 possible S′s into two categories for computing the RF distance from

all possible S′.

3.5.2.1 Category 1: Subtree C does not change position

If C is fixed at the same place as S in S′ then the remaining four subtrees can be arranged

in three ways. Observe that one of them is identical to S so we do not consider it. In the other

two cases, we swap a subtree on x side (A or B) with a subtree on z side (D or E). Notice that

this move is similar to one NNI where the edge spans two edges e1 and e2. We show how to

compute the RF distance of T from tree S′, obtained by swapping A with D in S. The other

case can be analyzed similarly.

First, we check which subtree among A,B,C,D,E contains the outgroup in S. If A or D

contains the outgroup, then we swap B with E. The splits obtained from swapping A and D

are the same as the splits obtained from swapping B and E; thus, the trees are isomorphic.

Next, we find the vertices of S′ with any change in LCA mapping in MS′,T. Based on the

topology of S, there are three cases:

1. x is the parent of y and y is the parent of z. For all t ∈ I(S′)\{y, z}, MS′,T(t) =

MS,T(t). Further,MS′,T(z) := LCA(MS,T(a),MS,T(e)), andMS′,T(y) := LCA(MS,T(c),

MS′,T(z)).

2. y is the parent of x and z. For all t ∈ I(S′)\{x, z}, MS′,T(t) = MS,T(t). Further,

MS′,T(z) := LCA(MS,T(a),MS,T(e), and MS′,T(x) := LCA(MS,T(d),MS,T(b)).

3. z is the parent of y and y is the parent of x. For all t ∈ I(S′)\{y, x},MS′,T(t) =MS,T(t).

Moreover,MS′,T(x) := LCA(MS,T(d),MS,T(b)), andMS′,T(y) := LCA(MS,T(c),MS′,T(x)).

It can be checked in constant time which one of the above three cases holds; thus, the LCA

mappings can be updated in constant time, too. Let H be the set defined as

H := {u ∈ I(T) : fS′(u) 6= fS(u)}.

Observe that set H has at most four vertices and that it can be computed in constant time.

The new RF score is computed from the change in the f values of the vertices in H in the
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following way. For t ∈ H, if fS(t) ≥ 1 and fS′(t) = 0 then the RF distance increases by 2 for t.

Conversely, if fS(t) = 0 and fS′(t) ≥ 1 then the RF distance decreases by 2 for t. Thus we have

shown how the RF distance between a input tree and S′, in Category 1, can be computed in

constant time.

3.5.2.2 Category 2: Subtree C changes position

In this case the place of C in S′ can be occupied by A, B, D, or E. Further, in each case the

remaining four subtrees can be arranged at vertices x and z in three ways. Thus there are 12

possibilities in this Category. We generate all S′s in this in an order that helps us to compute

RF distance easily. First, we perform one NNI that swaps subtree C with a subtree from {A,

B, D, E} and compute the RF distance for the generated S′. For this S′, we swap one subtree

from x side with one subtree from z side to generate the other two S′s. We describe how to do

so for subtree A; the same can be done for the rest of the subtrees.

Once again, our algorithm first checks the topology of S. If A or C has the outgroup, we

swap the subtrees other than A and C from x and y side of e1. Observe that this is an NNI

operation, and so the RF distance between T and S′ can be computed in constant time from

Lemma 7. The next two moves on S′ are similar to Category 1. Thus, for each tree the RF

distance can be computed in constant time.

Summarizing the analyses for Categories 1 and 2, we have the following.

Lemma 10. The optimal 2-ECR neighbor of an n-taxa supertree S for a profile P of k trees,

subject to the restriction that the edges involved are adjacent, can be computed in Θ(nk) time.

Lemmas 9 and 10 give us the next result.

Theorem 2. The 2-ECR Search problem can be solved in Θ(n2k) time.

3.6 p-ECR

As seen in Section 2, a p-ECR operation on a binary tree consists of contracting p edges,

and then refining the contracted tree into a binary tree. For the case when p is a variable we

have the next result.
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Theorem 3. The p-ECR Search problem for arbitrary p cannot be solved in polynomial time

unless P = NP.

Proof. Follows from the observation that the Unrooted RF Supertree problem reduces to the

p-ECR Search problem by letting p = n− 3.

The techniques used for the 1-ECR (NNI) and 2-ECR Search problems can generalize

naturally to the 3-ECR Search problem, and further p-ECR for any fixed p. We limit ourselves

to outlining of the main ideas of 3-ECR Search problem, which gives some insight into the

p-ECR Search problem and its limitations as p grows. We rely on the following fact (see, e.g.,

(Semple and Steel, 2003) for a proof).

Lemma 11. The number of unrooted binary phylogenetic trees on n leaves is (2n − 5)!! =

(2n− 5) · (2n− 7) · · · 5 · 3 · 1.

There are three subcases to consider, depending on the adjacency relationships among the

edges chosen for the 3-ECR operation:

1. No two of the three edges are adjacent. There are O(n3) sets of three such edges

in S. In this case, the 3-ECR operation first produces three degree-four vertices, each

of which is then refined independently of the others in three possible ways. Thus, there

are 27 possible full refinements of the contracted graph. The problem now becomes one

of finding an optimal NNI neighbor of an NNI neighbor of an NNI neighbor of S. By

Theorem 1, this can be done in O(n3) time.

2. Only two of the three edges are adjacent. There are O(n) pairs of adjacent edges

and O(n) single edges in S, for a total of O(n2) possibilities. As seen in the previous

section, the node resulting from contracting the two adjacent edges can be refined in 15

possible ways. The node resulting from contracting the third edge can be refined in three

possible ways, for a total of 45 possibilities for each such triple of edges. In this case, the

best 3-ECR neighbor can be computed in O(n2) time by enumerating the O(n) 1-ECR

neighbors, and among them, finding the best 2-ECR neighbor for the case where the two

edges involved are adjacent. By Lemma 10, the total time for doing this is O(n2k).
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3. The three edges form a subtree. A contraction of three edges generates one degree-6

node, which, by Lemma 11, can be refined in (2 ·6−5)!! = 105 ways. There are O(n) sets

of three edges which form a subtree in S. Through a detailed case analysis, one can show

that the RF distance of the supertree to each input tree can be obtained in constant time,

after a linear amount of preprocessing. Thus in this case the optimal 3-ECR neighbor

can be computed in O(nk) time; however, the O-notation hides a large constant.

To summarize, the total time needed for the 3-ECR Search problem is O(n3), but the

constant factors are significantly higher than they are for 2-ECR.

3.7 Experimental Results

We implemented our unrooted RF heuristic based on 2-ECR local search and tested it on

simulated and empirical data sets. (The executable code is available by request from the first

author.) In our analyses, we first ran the SPR-based rooted RF supertree local search program

(RRF) (Bansal et al., 2010b) on each data set. Next, we selected the best supertree from

the output as the starting supertree for our unrooted RF supertree program (URF). We then

compared the results of URF search with RRF and MRP. MRP was carried out on an Intel

Core 2 Duo 2.4 GHz Macintosh laptop with 4GB of main memory; for rest of the analyses, we

used an Intel Pentium Core 2 Duo 2.6 GHz desktop computer with 4 GB of main memory.

Local search algorithms can get caught in local optima with relatively high RF-distance

scores. To alleviate this problem, we implemented a search heuristic based on the parsimony

ratchet (Nixon, 1999). Our ratchet search performs 18 iterations, where each iteration consist

of two local 2-ECR searches. The first search takes as its input the current supertree and a

randomly selected subset of 10% of the input trees. The supertree produced by the first search

is then used as the starting point for the second search, which works with the original input

trees. The output of the iteration is the supertree produced by the second search.

We used simulated data sets produced by SMIDGEN (Swenson et al., 2010, 2011), available

at www.cs.utexas.edu/~phylo/datasets/supertrees.html. In brief, they are 100-taxon,

500-taxon, and 1000-taxon datasets, and comprised of mixed source trees, containing one “scaf-

www.cs.utexas.edu/~phylo/datasets/supertrees.html
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Figure 3.5 Graphs on mixed source tree datasets with 100, 500, and 1000 taxa. The top three
graphs show the Sum-RF scores for RRF and URF as a function of the scaffold
density. The bottom three graphs display the RF score using the y1-axis, and
FN/FP rate using the y2-axis, both as a function of the scaffold density. Each
data point represents the average of the scores from all 30 model conditions (10
for the 1000-taxon data set).

fold” dataset and several clade-based datasets. The clade-based datasets are produced by dense

taxon sampling within a rooted subtree. A scaffold dataset is constructed by randomly select-

ing the taxa from the entire dataset with a probability called the “scaffold factor”, ranging

from 20% to 100%. The total number of taxa and the scaffold factor determines the model

condition of a supertree study. For each model condition the source tree file has 6, 16, and 26

trees for 100, 500, and 1000 taxa data sets, respectively. There are 30 replicates for each model

condition, except for the 1000-taxon data sets that have 10 replicates. See (Swenson et al.,

2010, 2011) for full detail of these datasets.

Topological error for each estimated supertree was evaluated according to RF score, false

positive/false negative rate, and Sum-RF score. Let T be an estimated supertree, T0 be the

true (model) tree, and Γ be the profile of source trees. Then,

• the RF score is RF (T, T0),
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Table 3.1 Running Time for Simulated Datasets

Num. Taxa Scaffold Factor (%) RRF-Time URF-Time

100

20 4s 7s

50 5s 8s

75 5s 8s

100 5s 8s

500

20 10m 40s 20m 2s

50 11m 29s 17m 17s

75 15m 36s 13m 38s

100 10m 7s 23m 8s

1000

20 1h 53m 21s 2h 57m 12s

50 2h 25m 37s 3h 30m 1s

75 2h 36m 28s 4h 35m 36s

100 2h 53m 6s 5h 24m 31s

• the false positive (FP) rate is |Σ(T0)\Σ(T )|
|Σ(T )| and the false negative (FN) rate is |Σ(T )\Σ(T0)|

|Σ(T0)| ,

• the Sum-RF score is RF (Γ, T ).

Observe that when the estimated tree and true tree are binary, as is the case for the

simulated data, then the false positive rate and false negative rate are equal. Thus, for simulated

data we refer to the “FP/FN” rather than to the two rates separately. Note also that, for binary

trees, the (normalized) RF score is twice the FP/FN rate.

We show the RF scores and FP/FN rates of RRF and URF for different scaffold values and

taxa size in Fig. 3.5. Figure 3.5 also gives the Sum-RF of RRF and URF for different scaffold

values and taxa size. The running times are summarized in Table 6.1. We did not run MRP

on the simulated data, as MRP and RRF are already compared in (Swenson et al., 2011).

We also evaluated the performance of our implementation on five empirical data sets, and

compared it with RRF and MRP. The data included published supertree data sets for marsu-

pials (Cardillo et al., 2004), placental mammals (Beck et al., 2006), and dinosaurs (Lloyd et al.,

2008). Additionally, we used data sets we assembled from the gymnosperm and Saxifragales

plant clades. To construct these data sets, first all core nucleotide sequence data from these
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clades, with some outgroups, were downloaded from GenBank (www.ncbi.nlm.nih.gov). The

sequences were clustered into sets of homologs based on BLAST scores (Altschul et al., 1990),

and the clusters were aligned using MUSCLE Edgar (2004). The gene trees were inferred with

maximum likelihood using RAxML (Stamatakis, 2006a). The gymnosperm data set has 77

gene trees that include sequences from a total of 950 species, and the Saxifragales data set has

51 gene trees and 958 total species. Although these data sets are unpublished, similar gene

tree data sets were used in a previous study (Wehe and Burleigh, 2010). The input gene trees

are available on the Dryad data repository (www.dryaddata.org). Our experimental results

are summarized in Table 6.2.

Because RRF requires that the source trees be rooted, we rooted the unrooted trees at

the midpoint of the longest leaf-to-leaf path before passing them to RRF. The dinosaur, gym-

nosperm, and Saxifragales data sets, as well as all the simulated data sets, had unrooted input

trees.

For our MRP analyses, we used the parsimony ratchet implemented in PAUP* (Swofford,

2003). First we build the MRP matrix using r8s (Sanderson, 2003). In our search, the starting

trees were generated from a random sequence addition followed by one round of TBR swapping.

Once a local optimum was reached, we performed 20 ratchet iterations. Each ratchet iteration

randomly reweighted 10% of the characters with weight 1.0, while keeping the weight of other

characters at 0. A round of TBR hill-climbing was performed on the reweighted data matrix.

During the second round, the weight of all characters was returned to 1.0, and another round

of TBR hill-climbing was performed. This returns a set of trees, each of which has the best

(found) score. Next, we compute the greedy consensus (gMRP) tree for this set. The greedy

consensus is a refinement of the majority consensus, and thus, it contains all the bipartitions

present in more than half the input trees.

We note that in our experiments, FN/FP rates of the resulting RRF supertrees are no-

ticeably better than those reported in (Swenson et al., 2011), where the tests are done on the

same simulated datasets (see Fig. 3.5). Additionally, the URF supertree heuristic produces su-

pertrees of even lower FN/FP rates, and thus outperforms all the supertree techniques studied

in (Swenson et al., 2011), at least by this measure.

www.ncbi.nlm.nih.gov
www.dryaddata.org
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Table 3.2 Experimental Results for Empirical Datasets

Data Set Supertree Method RF Distance Time

Dinosaurs RRF 12188 6h 24m 50s

(420 taxa; URF 11500 14h 47m 31s

165 trees) MRP 11512 8m 54s

Gymnosperms RRF 4370 2d 11h 50m 11s

(950 taxa; URF 4054 2d 52m 37s

78 trees) MRP 4420 35m 41s

Marsupials RRF 1353 1h 4m

(272 taxa; URF 1333 1h 39m 10s

156 trees) MRP 1335 1m 42s

Placental Mammals RRF 5431 24m 37s

(116 taxa; URF 5391 1h 42m 42s

726 trees) MRP 5393 1m 3s

Saxifragales RRF 2156 12h 29m 27s

(959 taxa; URF 1992 15h 55m 33s

51 trees) MRP 2196 47m 5s

Also, in our experiments on simulated data, we observed that trees with small RF distance

from the source trees also had, on the average, lower RF distance to the true tree (see Fig. 3.5).

This is clearly a desirable characteristic for any distance measure used in supertree construction.

For all five empirical data sets, URF notably reduced the RF score of the starting supertree

and always performed better than MRP (Table 6.2). In contrast to that, in simulated tests

our URF supertree heuristic marginally improved on RRF in some cases. One reason for this

may be that URF performs well when the dataset has a large number of unrooted trees and

consequently more instances of incorrect rooting. In such situations, the rooted technique

generates supertrees that are more distant from the optimal supertrees. In contrast, URF does

not rely on any rooting and thus it performs well compared to RRF.
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3.8 Conclusion

The RF supertree problem directly seeks a supertree that is most similar to input trees

based on the RF distance, making it a desirable and potentially useful approach for building

comprehensive phylogenies. Until now, the only existing heuristics for RF supertrees required

rooted input Bansal et al. (2010b). However, nearly all recent supertree studies have included

unrooted input trees (e.g., Beck et al. (2006); Bininda-Emonds et al. (2007); Cardillo et al.

(2004)).

Thus, our new heuristics for the unrooted RF supertree problem greatly extend the utility

of the RF supertree method. Further, our experiments demonstrate that they can easily handle

data sets with nearly 1000 taxa, while improving upon the quality of rooted RF supertrees.

The improvement could be especially significant when the number of input trees is large, and

incorrect rooting of one or more input trees is a serious possibility. This suggests that the RF

supertree method is a viable alternative to MRP for a wide range of data sets.

Still, there are several directions for future development. In our experiments, the unrooted

heuristic started from a high quality supertree (the rooted RF supertree). Although this strat-

egy appears to be effective, it is also costly. Further tests are needed to examine the effects of

the starting tree on the performance of the unrooted heuristic and to identify fast and effective

strategies to build a starting tree. It is also important, and appears to be relatively straight-

forward, to incorporate uncertainty within the input trees into an RF supertree analysis by

weighting the splits when calculating the RF distance.
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CHAPTER 4. Inferring Species Trees from Incongruent Multi-Copy Gene

Trees Using the Robinson-Foulds Distance

4.1 Introduction

Constructing species phylogenies from a collection of gene trees requires summarizing and

reconciling the phylogenetic information contained in the genomic data. To achieve this, the

majority of existing species tree reconstruction methods typically use a model of gene evolution

that reconciles the gene tree and species tree topologies based on a specific evolutionary process,

such as duplication and loss or deep coalescence. These models doubtlessly simplify the true

processes of genome evolution. A gap remains, though, as these models do not reflect the com-

plexity of the evolutionary processes of many genes, that are affected by multiple evolutionary

processes. Adapting more complex and realistic models can quickly become unwieldy, making

it hard or impossible to analyze large genomic data sets, potentially prohibited scientists from

obtaining the good estimates of the evolutionary relationships from the available genomic data

sets. Here we consider the problem of constructing species tree from gene trees as a problem

of identifying the dominant phylogenetic signals among the incongruent gene trees, without

attempting to hypothesize the processes that caused the incongruence among gene trees. Such

simplified process may avoid undesirable evolutionary assumptions while allowing the user to

include large gene tree data sets in a phylogenetic analysis.

Existing methods for inferring species trees from collections of gene trees can be divided

into two broad categories: non-parametric methods based on gene tree parsimony (GTP), and

likelihood-based approaches (Ané et al., 2007; Kubatko et al., 2009; Liu and Pearl, 2007). GTP

methods take a collection of discordant gene trees and try to find the species tree that implies

the fewest evolutionary events. GeneTree (Page, 1998), DupTree (Wehe et al., 2008), and
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DupLoss (Bansal et al., 2010a) seek to minimize the number of duplications or duplications

and losses. GeneTree (Page, 1998), Mesquite (Maddison, 1997), PhyloNet (Yu et al., 2011),

and the method of (Bansal et al., 2010a) minimize deep coalescence events. The Subtree

Prune and Regraft (SPR) supertree method (Whidden et al., 2012) is based on minimizing the

number of LGT events, and thus it can be considered a type of gene tree parsimony. Some

of these methods have fast and effective heuristics, enabling the analysis of very large data

sets. However, errors in the gene trees can mislead GTP analyses (Burleigh et al., 2011; Huang

and Knowles, 2009; Sanderson and McMahon, 2007a). Also, in some cases GTP methods

may be statistically inconsistent even when the gene tree topologies are correct (Than and

Rosenberg, 2011). Most of the likelihood-based methods use coalescence models to reconcile

gene tree topologies (Kubatko et al., 2009; Liu and Pearl, 2007). Although such likelihood-

based approaches have a strong statistical foundation, they can be computationally expensive

or intractable.

While all the existing methods differ widely in their details, at a high level, except (Ané

et al., 2007), they all are based on potentially restrictive assumptions about the source of discor-

dance among gene trees. For example, GTP based on a duplication and loss cost assumes that

all differences between a gene tree and the species tree are caused by either gene duplications

or losses. However, gene tree estimation error plays a significant role in the conflict among gene

trees (e.g., Rasmussen and Kellis (2011)). Further, these errors in gene trees can drastically

increase the estimated number of duplications and losses (Burleigh et al., 2009; Hahn, 2007;

Rasmussen and Kellis, 2011) and lead to error in the species tree inference (Burleigh et al.,

2009; Sanderson and McMahon, 2007b).

We present a tree distance metric based approach for constructing species tree from dis-

cordant multi-copy gene trees. The main advantage of using a tree distance metric in species

tree construction is that the resulting method is not restricted to any specific evolutionary

process of gene tree discordance. This allows the species tree to be estimated even when the

conflict among gene trees is the result of many evolutionary processes and gene tree estimation

errors. Our specific distance measure is a generalization of the Robinson-Foulds (RF) distance

measure to multi-labeled trees (mul-trees), i.e., trees where multiple leaves can have the same
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label. The ability to use mul-trees as input, instead of being restricted to single copy genes,

allows this method to incorporate the wealth of genomic data from multi-copy genes, not only

single-copy genes, into phylogenetic inference. Our new MulRF method takes as input a collec-

tion of multi-copy gene trees (or mul-trees) and finds a species tree at minimum RF distance to

the input gene trees (Section 4.2). The RF distance has been used in the supertree method for

singly-labeled input trees (Bansal et al., 2010b; Chaudhary et al., 2012b), and the tree distance

based maximum-likelihood supertree approach has been proven to be statistically consistent

(Steel and Rodrigo, 2008). Moreover, our method has the scalability and accuracy expected

for genome-wide analyses of many species.

MulRF is a NP-hard problem. Therefore, a heuristic algorithm is required to estimate

solutions for large data sets. We provide a fast Θ(n2k)-time algorithm for the MulRF problem,

where n is the total number of distinct leaves in the input collection of gene trees and k is

the number of gene trees (Section 4.3). We implemented the MulRF heuristic and examined

the performance of this method on gene tree simulations that incorporate gene tree error, gene

duplication and loss, and/or lateral gene transfer (Section 4.4).

4.2 MulRF Problem

A profile is a tuple of multi-copy gene trees P := (T1, T2, ..., Tk), also called input mul-trees,

where Ti = (Ti,Mi, ϕi) for each i ∈ {1, . . . , k}. A species tree or a tree for P is a singly-labeled

phylogenetic tree S such that L(S) =
⋃k

i=1Mi. We write n to denote |L(S)|, the total number

of distinct leaves in the profile. In this Chapter, we assume that the size of each input mul-tree

differs only by a constant factor from the size of the resulting species tree.

We extend the notion of RF distance to the case where L(T1) ⊆ L(T2) by lettingRF (T1, T2) :=

RF (T1, T2|L(T1)). We define the RF distance from a profile P to a species tree S for P as

RF (P, S) :=
∑
T ∈P RF (T , S).

Let B(P) be the set of all binary species trees for P.

Problem 3 (RF for MUL-Trees (MulRF)).

Input: A profile P = (T1, T2, ..., Tk) of unrooted, mul-trees.
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Figure 4.1 Input mul-tree T and the species tree S. The extended species tree S is also shown.

Output: A species tree S* for P such that RF (P, S*) = minS∈B(P)RF (P, S).

The MulRF problem is NP-hard even when all the input mul-trees are singly-labeled trees

on the same leaf set (McMorris and Steel, 1993). In fact, just computing the RF distance

between two mul-trees is hard (Chapter 7 Section 7.1). Nevertheless, we now show that it is

straightforward to compute the RF distance between an input mul-tree and a species tree.

Let T = (T,M,ϕ) be an input mul-tree and S be a species tree, where M ⊆ L(S). The

extended species tree is the mul-tree S constructed from S by replacing each a ∈ L(S) by an

internal node connecting to k leaves labeled with a, where k := |ϕ−1(a)| > 1. See Fig. 4.1.

A full differentiation of T is a leaf labeled tree T such that T and T are isomorphic.

Let T = (T,M,ϕ) and S = (T ′,M ′, ϕ′) be two unrooted mul-trees. Two full differentiations

T and S of T and S, respectively, are consistent if for each a ∈ M ∩ M ′, τ1(ϕ−1(a)) =

τ2(ϕ′−1(a)), where T and T are isomorphic under bijection τ1 : V (T ) → V (T) and T ′ and S

are isomorphic under bijection τ2 : V (T ′)→ V (S). For instance, a consistent full differentiation

can be obtained by relabeling each of the k copies of each leaf label a by a1, a2, . . . , ak in both

the mul-trees.

Theorem 4 (Ganapathy et al. (2006)). Let T and S be two mul-trees. Then, RF (T ,S) =

min{RF (T,S) : T and S are mutually consistent full differentiations of T and S, respectively}.

Theorem 5. Let T be an input mul-tree and S be the extended species tree. Then, all mutually

consistent full differentiations of T and S give the same RF distance.

Proof. Let the given input mul-tree T is such that T := (T,M,ϕ). We prove the Theorem

by showing that for each a ∈ M , where |ϕ−1(a)| = k, all k! ways of uniquely relabeling

corresponding k leaves in both T and S result into the same number of matched and unmatched
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splits in the corresponding mutually consistent full differentiations. The set of splits in T can

be divided into two categories:

• Category 1: Splits that have all the leaves labeled with a in one part. Such a split will

always have a match irrespective of the labeling.

• Category 2: The remaining splits. Such splits are not present in S, therefore, they will

never have a match irrespective of the labeling.

In short, the RF distance between an input mul-tree and a species tree can be computed

by 1) extending the species tree, 2) producing one consistent full differentiation of the two

mul-trees, and 3) applying the split based formula to compute the RF distance.

4.3 Solving the MulRF Problem

Our local search heuristic for the MulRF problem starts with an initial species tree and

explores the space of possible species trees in search of a locally optimum species tree; i.e., a

tree whose score is minimum within its “neighborhood”. The neighborhood is defined in terms

of the SPR operation (Allen and Steel, 2001). The set of all trees obtained by the application

of a single SPR operation on T is called the SPR neighborhood of T , and is denoted by SPRT .

The size of this neighborhood is Θ(n2).

Problem 4 (SPR Search).

Input: A profile P = (T1, T2, ..., Tk) of unrooted, mul-trees and a binary, species tree S for P.

Output: A tree S* ∈ SPRS such that RF (P, S*) = minS′∈SPRS
RF (P, S′).

In Section 4.3.1, we present an algorithm for the SPR search problem that runs in time

Θ(n2k). The algorithm relies on results from Chapter 3 Section 3.3, which characterize the RF

distance between unrooted trees in terms of least common ancestors in rooted versions of those

trees. These properties enable us to update the RF distance quickly after an SPR operation

has been applied to one of the trees.
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4.3.1 Solving the SPR Search Problem

Let T = (T,M,ϕ) be an arbitrary mul-tree in P. We now show how to compute the

RF distance from T to each tree in the SPRS neighborhood in linear time of the size of the

neighborhood. Let S be the extended species tree S after extending for T . Let T and S

be any two mutually consistent full differentiations of T and S, respectively. By Theorem 5,

computing the RF distance between an input mul-tree T and all trees in the SPR neighborhood

of an extended supertree S reduces to finding the RF distance between T and each tree in the

SPR neighborhood of S.

Suppose an SPR operation on S cuts the edge e = {x, y}, and that X, Y are the subtrees

of S − e containing x, y, respectively. Suppose subtree Y is pruned and regrafted by the same

cut edge to a new vertex obtained by subdividing an edge in X. The degree-two vertex x is

suppressed and the new vertex is denoted by x. Observe that there are O(n) possible edges

in X to regraft Y . We perform regrafts in an order that leads to a constant time RF distance

computation for each successive regraft.

Observation 1. For Z ∈ {X,Y }, if M ∩ L(Z) = ∅, then RF(S′, T ) = RF(S, T ) for each S′

obtained from S by regrafting Y on any edge in X.

Proof. Let the extension of S be S := (T ′,M ′, ϕ′). Let S be a full differentiation of S that is

consistent with T, where T ′ and S are isomorphic under bijection τ : V (T ′)→ V (S).

For Z ∈ {X,Y }, let S[Z] = {l ∈ L(S) : ϕ′(τ−1(l)) ∈ L(Z)}.

Since, L(S|L(T))∩S[Z] = ∅, RF (S|L(T),T) =RF (S′|L(T),T). Now, RF (S, T ) =RF (S,T) =

RF (S|L(T),T) = RF (S′|L(T),T) = RF (S′,T) = RF (S ′, T ).

We begin by regrafting Y at an edge incident to a leaf inX. Let S and S denote, respectively,

the tree that results from performing the prune-and-regraft and the full differentiation of this

result tree. We compute the RF distance between T and S using the algorithm described in

the previous section. This method works by computing the RF distance between the rooted

trees T and S obtained by rooting T and S at any leaf labeled by an element of M ∩ L(X).
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Figure 4.2 A tree with a subtree regrafted at edge {a, b}. One iteration of vertices in the tree
is m1, a,m2, a, b, c,m3, c,m4, c, b, d,m5, d,m6, d, b, a,m1. The resulting ordering ℵ
is {m1, a}, {a,m2}, ..., {a,m1}.

(Note that, by Observation 1, if M ∩ L(X) = ∅, then T ’s distance from S is same as S.) The

algorithm also computes the LCAs for T and the LCA mapping from S to T.

We perform the remaining regrafts of Y on edges in X by iterating through the vertices of X,

starting from a leaf and exploring as far as possible along each branch before backtracking. The

kth regraft is performed on the edge between the kth and k + 1st vertices in this iteration. Let

us denote this ordering of edges by ℵ. See Fig. 4.2. Observe that each two distinct consecutive

edges in ℵ are adjacent. We will show that, after the initial RF distance computation for S, we

can compute in constant time the RF distance for the result of regrafting on each successive

(adjacent) edges in ℵ.

Beginning with S, each S′ ∈ SPRS helps in computing the RF distance of the next tree in

the above regraft order. Assume that S′ ∈ SPRS results from regrafting Y at edge {a, b} in

X as shown in Fig. 4.2. Let the rooted tree obtained after extending and differentiating S′ be

denoted by S′. The LCA mapping and RF distance have been computed for S′. Let S′′ ∈ SPRS

denote the tree obtained by regrafting Y on edge {b, c} in X and the rooted counterpart of S′′

is S′′.

Next, we find the vertices of S′′ whose LCA mapping MS′′,T has changed as a result of the

SPR operation. Based on the topology of S′, there are three cases:

1. x is parent of b and b is parent of c. For all t ∈ I(S′′)\{x, b}, MS′′,T(t) = MS′,T(t).

Further, MS′′,T(b) :=MS′,T(x), and MS′′,T(x) := LCA(MS′,T(c),MS′,T(y)).

2. b is parent of c and x. For all t ∈ I(S′′)\{x},MS′′,T(t) =MS′,T(t). Further,MS′′,T(x) :=

LCA(MS′,T(c),MS′,T(y)).
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3. b is parent of x and c is parent of b. For all t ∈ I(S′′)\{b, x}, MS′′,T(t) = MS′,T(t).

Moreover, MS′′,T(x) :=MS′,T(b), and MS′′,T(b) := LCA(MS′,T(d),MS′,T(a)).

Since we can check in constant time which one of the above three cases holds, the LCA

mappings can be updated in constant time too. Let H be a set {u ∈ I(T) : fS′′(u) 6= fS′(u)}.

Set H can be computed in constant time. Observe that H has at most four vertices. Let G

denotes the set {w ∈ H : fS′(w) = 0, but fS′′(w) ≥ 1}, and L denote the set {w ∈ H : fS′(w) ≥

1, but fS′′(w) = 0}.

Lemma 12. RF (S′′,T) = RF (S′,T)− 2|G|+ 2|L|.

Proof.

RF (S′′,T) = |L(T)| − |I(T)| − 2 + 2|FS′′ |

= |L(T)| − |I(T)| − 2

+ 2|{u ∈ I(T) : fS′′(u) = 0}|

= |L(T)| − |I(T)| − 2 + 2|FS′ |

− 2|{u ∈ H : fS′(u) = 0 & fS′′(u) ≥ 1}|

+ 2|{u ∈ H : fS′′(u) = 0 & fS′(u) ≥ 1}|

= RF (S′,T)− 2|G|+ 2|L|

Thus, after the initial regraft of Y at a leaf in X, we can compute in constant time the

RF-distance between T and the species tree that results from each subsequent regraft.

Lemma 13. For each {x, y} ∈ E(S), where X and Y are two resulting subtrees containing x

and y, respectively. The RF distance for the set of trees obtained by regrafting X (resp. Y ) on

each edge in Y (resp. X) can be computed in Θ(n) time.

Proof. The RF distance computation for S, obtained by pruning Y and regrafting at a leaf in

X, can be done in Θ(n) time. After S, the RF distance for each tree S′, obtained by regrafting

Y on each edge in X, can be computed in constant time by performing regrafts in the order of

ℵ. There are Θ(n) edges in ℵ, thus the RF computation for all the trees can be done in Θ(n)

time. The same argument applies for pruning X and regrafting on the edges in Y .
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Theorem 6. The SPR Search problem can be solved in Θ(n2k) time.

Proof. There are Θ(n) internal edges in S. For each edge {x, y} in S, where X, Y be two

resulting subtrees containing x, y, respectively. The RF distance for all the trees obtained by

regrafting X (or Y ) on each edge in Y (or X) can be computed in Θ(n) time from Lemma 13.

Thus for k input trees the RF distance can be checked in Θ(nk) time. The total time over all

Θ(n) internal edges is Θ(n2k).

4.4 Experimental Evaluation

4.4.1 Method

Simulated data sets. We generated model species trees using the uniform speciation

(Yule) module in the program Mesquite (Maddison and Maddison, 2009). Two sets of model

trees were generated: i) 50 taxa trees of height 220 thousand years (tyrs), ii) 100 taxa trees

of height 440 tyrs (note that the dates are relative; they do not have to represent thousands

of years). Each data set had 20 model species trees. We evolved 150 and 300 gene trees for

each 50- and 100-taxon model species tree, respectively. We used duplication-loss model by

Arvestad et al. (2003) to evolve gene trees within the model tree. We applied LGT events

on the evolved gene trees, using the standard subtree transfer model of LGT. One LGT event

causes the subtree rooted at a vertex c to be pruned and regrafted at an edge (a, b), where a

and b together are not in the path from the root (of the tree) to c. We used gene duplication

and loss (D/L) rate of 0.002 events/gene per tyrs and LGT rate of 2 events per gene tree. In

other words, a gene tree can have 0 to 2 LGT events.

We evolved gene trees based on four evolutionary scenarios: i) no duplications, losses, or

LGT (called none), ii) D/L rate 0.002 and no LGT (called dl), iii) no duplication or loss, and

LGT rate 2 (called lgt), and iv) D/L rate 0.002 and LGT rate 2 (called both). The parameter

values for each simulation are called the model condition. We deleted 0 to 25% of the taxa

(selected at random) from each gene tree to represent missing data, which is common in almost

all phylogenomic studies. For each gene tree, we used Seq-Gen (Rambaut and Grassly, 1997)

to simulate a DNA sequence alignment of length 500 based on the GTR+Gamma+I model.
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Num. Taxa Sets Only-dup Dup-loss SPRS MulRF

50

none < 1s 2s 8h 34m 32s 3s
lgt < 1s 2s 8h 30m 30s 2s
dl < 1s 3s NA 6s
both < 1s 3s NA 6s

100

none 9s 37s 21h 34m 25s 58s
lgt 11s 49s 19h 6m 9s 51s
dl 9s 30s NA 1m 11s
both 11s 37s NA 1m 15s

Table 4.1 Running time for species tree estimations

The parameters of the model were chosen with equal probability from the parameter sets esti-

mated in (Ganapathy, 2006) on three biological data sets (Swenson et al., 2010). We estimated

maximum likelihood trees from each simulated sequence alignment using RAxML (Stamatakis,

2006a), performing searches from 5 different starting trees and saving the best tree. We rooted

each estimated gene tree at the midpoint of the longest leaf-to-leaf path before the species tree

construction.

Species tree estimation. We estimated species trees via GTP minimizing only the num-

ber of duplications (Only-dup) (Wehe et al., 2008), GTP minimizing duplications and losses

(Dup-loss) (Bansal et al., 2010a), GTP minimizing LGT events (SPR supertree or SPRS for

short) (Whidden et al., 2012), and the MulRF heuristic. Both Only-dup and Dup-loss were

executed with their default settings, including a fast leaf-adding heuristic for initial species tree

construction. SPRS was run with 25 iterations of the global rearrangement search option. For

50-taxon data sets, it calculated the exact rSPR distance if it was 15 or less, and otherwise it

estimated the rSPR distance using the 3-approximation. For the 100-taxon data sets, we used

the 3-approximation of the rSPR distance. SPRS does not allow mul-trees as input. Therefore

we only ran it on none and lgt data sets. Experiments were performed on the University of

Florida High Performance Computing test nodes with 8 to 24 cores.

Performance evaluation. We report the average topological error (ATE) for each model

condition. This is the average of the normalized RF distance (dividing the RF distance by

number of internal edges in both trees) between each of the 20 model species trees and their
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Figure 4.3 Graphs a-b shows duplications estimated by Only-dup and Dup-loss, and Graphs
c-d losses estimated by Dup-loss, against the actual number of these events in gene
trees, for all model conditions; means and standard errors are shown.
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Figure 4.4 Average topological error (means with standard error bars) for species tree con-
structed by Only-dup, Dup-loss, SPRS, and MulRF method, for all model condi-
tions.

estimated species trees. An ATE of 0 indicates that two trees are identical, and an ATE of

100 indicates that two trees share no common splits. We also compared the number of gene

duplications estimated by Only-dup and Dup-loss and losses estimated by Dup-loss with the

actual number of these events in each gene tree simulation.

4.4.2 Results

Both Dup-loss and Only-dup overestimate duplications for sets dl and both in both 50- and

100-taxon model trees (Fig. 4.3(a,b)). They also imply many duplications in the none and lgt

data sets, where the simulations included no duplications. Similarly, Dup-loss overestimates

losses for sets dl and both and also erroneously estimates losses for sets none and lgt (Fig.

4.3(c,d)).
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For each set of 50- and 100-taxon model trees, the MulRF species trees are more accurate

than those produced by the other three methods. For example, the ATE rate of MulRF is

16.75% to 39.91% lower than the method of lowest ATE rate among other three methods (Fig.

4.4).

In order to examine how Only-dup, Dup-loss, and SPRS methods perform when the process

of gene tree evolution only includes events that these methods assume to be the source of

discordance, we simulated gene trees that using a model that includes only duplication and

loss, or LGT. While SPRS could not be tested on the former, Only-dup and Dup-loss had high

ATE rate (indicating low accuracy) on the latter.

The MulRF software as well as simulated data are freely available for download at http:

//genome.cs.iastate.edu/CBL/MulRF/.

4.5 Conclusion

We presented the new MulRF method for inferring species tree from incongruent gene

trees that is based on RF distance metric. Unlike most previous phylogenetic methods using

gene trees, our approach is based on a generic tree distance metric, freeing it from potentially

restrictive assumptions about the causes of the conflict among gene trees. As a result it is

appealing for analyses of genomic data sets, in which many processes such as deep coalescence,

recombination, gene duplications and losses, and LGT, as well as phylogenetic error likely

contribute to gene tree discord.

Simulation experiments allowed us to evaluate the accuracy of our method by comparing

it against the true species tree, something that cannot be done on real data. We compared

the species trees constructed by MulRF and GTP methods that consider only duplication

(Wehe et al., 2008), duplication and loss (Bansal et al., 2010a), and only LGT (Whidden et al.,

2012) with the true species trees. Likelihood-based methods were not considered because the

simulated gene trees were comparatively large in size for these methods. In all experiments,

MulRF produced trees that are more similar to the true species trees than those obtained by

other three methods. Further, our algorithm ran quickly on moderate-size data sets, finishing

in under two minutes on data sets containing 300 gene trees evolved over 100 taxon species

http://genome.cs.iastate.edu/CBL/MulRF/
http://genome.cs.iastate.edu/CBL/MulRF/
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trees, suggesting it is scalable for large-scale phylogenomic analyses.

One reason of MulRF method’s strong performance may be its “unrooted” tree distance

metric (rather than “rooted” as in GTP methods). Gene tree reconstruction methods, for ex-

ample maximum likelihood or gene tree parsimony, typically generate unrooted trees. Rooting

the gene trees is in itself a difficult problem in phylogenetics (e.g., Smith (1994); Wheeler (1990);

Sanderson and Shaffer (2002)). GTP methods may be affected by erroneous rootings, while

this would not affect a method based on unrooted tree distance metric like MulRF. However,

the rooted metric of a GTP method gives a benefit of inferring a rooted species tree, which is

a limitation of the unrooted MulRF method.

The simulation experiments also provided us the opportunity to study how accurately the

GTP methods hypothesize the evolutionary history of the simulated genes. The simplest mea-

sure compares the number of GTP estimated duplications and losses with the actual number

of these events for each simulated gene tree. Whether the conflict among the simulated gene

trees was solely due to gene tree error or gene tree error in the presence of duplication and loss,

and/or LGT events, the estimated duplications and losses always differed greatly from the ac-

tual values. These results provide us with a novel insight: if the models based on evolutionary

processes are inaccurate, then there is reason to explore phylogenetic methods based on tree

distances that are not based on specific evolutionary processes. The MulRF method shows the

potential of such an approach.

There are several directions for future development. First and foremost, more tests are

needed to characterize the performance of MulRF methods under different evolutionary sce-

narios. Another future direction will be to incorporate estimates of gene tree uncertainty into

the supertree analysis by weighing the splits differently when computing the RF distance. The

effectiveness of the MulRF method in inferring species trees from multi-copy gene trees sug-

gests that other tree distance metrics in the same context. A natural candidate for study is the

quartet distance. Future work should also evaluate the suitability of different distance metrics

in estimating species trees under different error models and evolutionary scenarios.
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CHAPTER 5. A Simulation Study to Compare Two Non-parametric

Approaches for Species Trees Construction

5.1 Introduction

Inferring species relationships in the presence of discordant gene histories is a major chal-

lenge for modern phylogenetics. An effective method for such phylogenomic analyses must ad-

dress the variety of causes of gene tree incongruence while remaining computationally tractable

for large genomic data sets. Among the existing methods, although numerous recent studies

have used GTP to infer phylogenies from genomic data (Sanderson and McMahon (2007b);

Holton and Pisani (2010); Burleigh et al. (2011); Medina et al. (2011); Ness et al. (2011); Katz

et al. (2012); Near et al. (2012); Wainwright et al. (2012)), there have been few formal studies to

evaluate the performance of GTP, especially using genes with a history of duplication and loss.

One concern is that GTP methods usually address a single biological process (e.g., gene dupli-

cation/loss, deep coalescence, or LGT) and implicitly assume that all incongruence among gene

trees is caused by the specified process. In fact, much conflict among gene trees likely results

from error in the gene tree inference (e.g., Rasmussen and Kellis (2011)), which can drastically

inflate estimates of the number of duplications and losses (Hahn (2007); Burleigh et al. (2009);

Rasmussen and Kellis (2011)) and mislead GTP (Sanderson and McMahon (2007b); Burleigh

et al. (2009)). Finally, even given accurate gene trees that have evolved only under a single

process, GTP in some cases may be inconsistent; that is, the GTP solution may converge to

the incorrect species tree with the addition of more data (Than and Rosenberg, 2011).

A growing number of probabilistic (maximum likelihood or Bayesian) approaches based

on coalescence models have been developed to infer species trees from potentially conflicting

genes (e.g., Liu and Pearl (2007); Liu (2008); Kubatko et al. (2009); Heled and Drummond
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(2010); see Liu et al. (2009)). Although promising, these approaches still are designed to

address only orthologous sequences coalescence processes. Alternatively, Bayesian concordance

analysis (Ané et al., 2007) estimates a species tree without making assumptions about the

reason for gene discordance; however, it also is not currently designed to handle multi-copy

gene trees. Probabilistic models of gene duplication and loss (Arvestad et al. (2004); Arvestad

et al. (2009); Åkerborg et al. (2009); Górecki et al. (2011); Rasmussen and Kellis (2011)), or

duplication, loss, and coalescence (Rasmussen and Kellis (2012)), have been developed to map

gene duplications and losses on a fixed species tree, and some of these models simultaneously

infer the gene tree topology (Arvestad et al. (2004); Arvestad et al. (2009); Åkerborg et al.

(2009); Rasmussen and Kellis (2011)). However, simply calculating the maximum likelihood

of these models with a single gene and a fixed species tree can be extremely computationally

expensive, and such models have not been incorporated into phylogenetic inference.

MulRF, introduced in Chapter 4, is a non-parametric approach for combining multi-copy

gene trees to infer a species tree. Like GTP methods, the input for the MulRF method is a

collection of gene trees. Using a version of the RF distance generalized to multi-copy gene

trees, the MulRF method seeks a species tree with the smallest RF distance to the collection of

gene trees (Chapter 4). Thus, like GTP based on duplications and losses, the MulRF method

can include genes with paralogs; however, in contrast to GTP, the MulRF approach does not

attempt to reconcile the gene trees based on a specific biological process. Rather, it provides

a mechanism-free approach for reconciling gene trees by simply seeking the species tree that

is most similar to the input gene trees based on the generalized RF distance. Intuitively, the

MulRF approach may be more appropriate than GTP if much of the conflict among genes is due

to error or multiple, interacting biological processes, and preliminary simulation experiments

suggest that a MulRF heuristic can with high accuracy resolve species trees from large sets of

genes with a history of duplication and loss and limited LGT.

In this study, we address the question of which phylogenetic method can best resolve a

species tree from multi-copy genes. We use gene simulations to evaluate the performance

of GTP under duplication and duplication and loss cost models and compare them to the

mechanism-free MulRF method. We look at the effects of species and gene sampling, gene tree
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error, and missing, or unsampled, sequences, on the accuracy of the phylogenetic inference. Our

results highlight the difficulty of inferring species trees from multi-copy genes, especially when

there are high rates of duplication and loss, and raise concerns about the performance of GTP

methods, especially GTP based only on minimizing duplications. They also demonstrate that

in many cases, a method based on a generic tree distance measure, like the MulRF method,

may provide more accurate estimates of the phylogeny than GTP.

5.2 Methods

5.2.1 Simulation

We conducted a series of simulation experiments to evaluate the performance of the MulRF

heuristic and to compare its performance with GTP based on minimizing the gene duplication

(Only-Dup) or duplication and loss (Dup-loss) cost. In brief, we first generated species trees

using a Yule (pure birth) process simulation. Next, we generated gene trees inside model species

trees of 50-, 100-, 250-, and 500-taxa using a model of gene duplication and loss. For each gene

tree, we simulated an alignment of DNA sequences, and we estimated the maximum likelihood

(ML) gene tree from this alignment. We performed the MulRF and GTP analyses using as

input either the actual gene trees or the estimates of the gene tree topologies from the ML

analysis. The performance of each of the three methods was evaluated based on the similarity

of the estimated species trees to the original model species tree. For the GTP methods, we

also evaluated the accuracy of the duplication and loss estimates.

5.2.1.1 Generating Model Species Trees

We generated model species trees using the “Uniform Speciation” (Yule, or pure birth,

process) module in Mesquite (Maddison and Maddison, 2009). This creates a tree with a

specified number of terminal taxa and a fixed time between the root and the present. We

generated species trees with 50, 100, 250, and 500 taxa, and corresponding heights 220, 440,

800, and 1200 million years, respectively (note that the times are relative and the time units

are arbitrary). For each 50- and 100-taxon model tree, we generated 40 species trees, and for
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each 250- and 500-taxon model tree, we generated 20 species trees.

5.2.1.2 Simulating Gene Trees

We simulated 400 gene trees for each model species tree. Gene sequences often are either

intensively sampled from clades of closely related species (e.g., primates) or from only a few,

distantly related taxa which are selected to represent major lineages throughout a large clade.

Following (Swenson et al., 2010), we refer to the first strategy as clade-based sampling and the

second as scaffold sampling. For each model species tree, we generated 4 scaffold gene trees,

and 396 clade-based gene trees. While the genes for inferring scaffold trees span the root of the

model species tree, the genes for clade-based trees have a single birth node within the model

species tree, which was randomly selected using the model tree topology and branch lengths.

To simulate the gene tree inside the model species tree, we used the duplication-loss model

developed by Arvestad et al. (2003), which is based on the birth-death (BD) process (Feller,

1968). The BD process is a continuous-time process that generates a binary tree according to a

constant rate of lineage bifurcation (gene duplication) and lineage termination (gene loss). We

used gene duplication and loss (D/L) rates of 0.002, 0.004, and 0.008 events/gene per million

years, following the D/L rates estimated from a primate data set (Rasmussen and Kellis, 2012).

Each model condition is indicated by the number of taxa in the model species tree and the D/L

rate used in simulating gene trees over it. Since gene sampling is rarely complete, we deleted 0

to 25% of the taxa (determined by randomly selecting a number between 0 and 25) from each

gene tree, while ensuring each gene tree has at least 4 sequences from available taxa.

5.2.1.3 Simulating DNA Sequences and Building Input Trees

For each gene tree, a nucleotide sequence alignment of length 500 was simulated under the

GTR+Gamma+I model using Seq-Gen (Rambaut and Grassly, 1997). The parameters of the

model were chosen with equal probability from the parameter sets estimated by Ganapathy

(2006) on three biological data sets (Swenson et al., 2010). Genes were simulated at fast,

medium, or slow rates, implemented by rescaling the branch lengths of gene trees by a factor of

2.0, 1.0, or 0.1, respectively. While the genes for scaffold gene trees were always slow, 25% of
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the genes of clade-based gene trees were slow, 50% medium, and 25% fast. For each sequence

alignment, we estimated the maximum likelihood (ML) tree using RAxML (Stamatakis, 2006a),

performing searches from 5 different starting trees and taking the best tree.

5.2.1.4 Species Tree Estimation

We conducted three types of analyses to evaluate the performances of Only-dup, Dup-loss,

and MulRF methods. In the first analysis we ran Only-dup, Dup-loss, and MulRF on the

gene trees that were simulated from the model trees. This analysis is performed before the

nucleotide sequence simulation; therefore, we call it “pre-sequence” analysis. Note that in pre-

sequence analysis, the gene trees have the correct root and their topologies have no error. The

next two analyses were performed after simulating the nucleotide alignments and estimating

ML gene trees. Also, they differ in the way they deal with the rooting of the gene trees. The

Only-dup and Dup-loss methods require rooted gene trees, while MulRF does not. The ML

analysis outputs an unrooted (or arbitrarily rooted) gene tree. In our first analysis, called

“post-sequence (UR)”, we feed the unrooted ML gene trees directly to all the three methods.

Only-dup and Dup-loss run in their unrooted settings (Wehe et al. (2008); Burleigh et al.

(2011)). In this setting, after a local SPR-search, they reroot the input trees (i.e., to change

the artificial root of unrooted tree) to minimize the duplication or duplication and loss scores,

and a new local-SPR search is performed. This procedure is repeated until re-rooting does

not reduce the reconciliation cost. The second analysis, called “post-sequence (MR)”, roots

the ML gene trees using midpoint rooting implemented in Retree (Felsenstein, 1993) before

passing them to the three methods. In the post-sequence (MR) and the pre-sequence analyses,

Only-dup and Dup-loss use the rooted input trees and do not run in unrooted setting.

5.2.1.5 Performance Evaluation

We examined the accuracy of the three methods by comparing the estimated species tree

with the original model species tree. We estimated the average topological error (ATE) percent-

age for each model condition by computing the average of the normalized RF distance between

each model tree and the estimated species tree and multiplying by 100. The normalized RF
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distance between a model tree and the estimated species tree is the RF distance divided by

number of internal edges in both trees. An ATE of 0 indicates two trees are identical, and an

ATE of 100 indicates the two trees share no common splits.

We also compared the number of gene duplications estimated by Only-dup, and duplications

and losses estimated by Dup-loss with the actual number of these events in each gene tree

simulation.

5.2.1.6 Additional Simulation Experiments

We performed two additional simulation experiments to examine the effects of gene tree

sampling and sequence sampling within gene trees, respectively. In the first, we performed the

species tree analyses using first 100 simulated gene trees for each model condition instead of 400

gene trees used in the original experiments. Therefore, we call it “100 gene trees experiment”,

in contrast to the original “400 gene trees experiment”. This experiment allows us to examine

the effect of the number of gene trees on species tree estimation.

In the second “incomplete sampling experiment” we simulated 200 gene trees with D/L

rate 0.002 events/gene per million years over 100 taxon model species trees. From each gene

tree, we deleted 0-25%, 25-50%, or 50-75% of the total sequences (randomly selecting a number

from the specified range), while ensuring finally each model species tree has 200 simulated gene

trees, that each contain at least 4 sequences from available taxa. For both these simulation

experiments, pre-sequence and post-sequence (MR) analysis were performed.

5.3 Results

5.3.1 Accuracy of Species Tree Estimates

In both the 400 and 100 gene tree simulation experiments, the MulRF method always

performs better than Only-dup or Dup-loss when the species trees are smaller (≤ 100 taxa),

and the Dup-loss method is generally more accurate than the other methods when the species

trees are larger (≥ 250 taxa; Figs. 5.1, 5.2). In all simulation experiments, the Only-dup

method built trees that were less accurate than the Dup-loss or MulRF methods (e.g., Figs.
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5.1-5.3).

The accuracy of the gene trees and the D/L rate affect the performance of all methods,

but they have little effect on the relative accuracy of the different methods. In all simulation

experiments, all methods are most accurate in the pre-sequence analyses, when the input gene

tree topologies have no error (Figs 5.1-5.3). The impact of gene tree error is evident in the higher

ATE values in the post-sequence analyses compare to their pre-sequence counterparts (Figs.

5.1-5.3). Among the post-sequence analyses, the two GTP methods perform best when the

gene trees are rooted with mid-point rooting (post-sequence (MR)) compared to using unrooted

gene trees and examining alternate rootings after each local SPR search (post-sequence (UR)).

MulRF, which uses unrooted gene trees, performs similarly in the post-sequence (MR and UR)

experiments. For all methods, no matter what gene trees are used, increased D/L rates also

decreases accuracy, or increase ATE values (Figs. 5.1, 5.2).

The ATE rates of all three methods also increases as the sequence sampling decreases

(Fig. 5.3(a)). This trend particularly affects the accuracy of species-tree estimates in the

post-sequence (MR) analyses. For example, the Dup-loss and Only-dup supertrees share less

than half of their splits with the model species tree in the 50-75% deletion case (Fig. 5.3(a)).

However, increasing the number of input gene trees appears to improve species tree estimates.

Across all 100 input tree analyses, in 93% of the species tree estimates with 100 genes, the ATE

rates were higher than in the corresponding analysis using 400 gene trees (Figs. 5.1, 5.2). This

effect was particularly pronounced for MulRF method, where the percent increase in MulRF’s

ATE rate was higher than the percent increase in the ATE rates of other two methods in 91.67%

of the model conditions for post-sequence (MR) analyses (Figs. 5.1, 5.2).

5.3.2 Accuracy of Duplication and Loss Estimates

In the pre-sequence analyses for all experiments, Only-dup and Dup-loss always estimate

fewer duplications than occurred in the simulations (Figs. 5.4, 5.5, 5.3(b)). Similarly, the Dup-

loss method always underestimated the number of losses in the analyses using pre-sequence,

or true, gene trees (Figs. 5.6, 5.7, 5.3(c)). Furthermore, the percent underestimation of du-

plications and losses in the pre-sequence analyses increases with D/L rate (Figs. 5.4-5.7). For
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Figure 5.1 Results from the 400 gene trees experiments showing ATE rates of species trees
constructed by Only-dup, Dup-loss, and MulRF methods in the pre-sequence and
post-sequence (UR and MR) analyses, for differing D/L rates across 50, 100, 250,
and 500 taxa model trees. Mean and standard errors are shown. Lower ATE rates
mean higher accuracy.
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Figure 5.2 Results from the 100 gene trees experiments comparing the ATE rates for species
trees constructed by Only-dup, Dup-loss, and MulRF methods in the pre-sequence
and post-sequence (MR) analyses for differing D/L rates across 50, 100, 250, and
500 taxa model trees. Mean and standard errors are shown.

example, in the 50-taxon data set, Only-dup underestimates the number of duplications by

24.62% when the D/L rate 0.002 and by 44.18% when the D/L rate 0.008 (Fig. 5.4).

In contrast, in the post-sequence analyses, both Only-dup and Dup-loss often overestimate

duplications (Figs. 5.4, 5.5) and Dup-loss often overestimates losses (Figs. 5.6, 5.7). However,

the D/L rate in the simulations affects the accuracy of duplication and loss estimates. Estimates

of duplications were relatively higher with low D/L rates than they were with high D/L rates

(Figs. 5.4, 5.5). For example, with a D/L rate of 0.02, duplications are always overestimated,

but with a higher D/L rate, they were sometimes underestimated (Figs. 5.4, 5.5). Similarly,

the estimates of losses were relatively high with a low D/L rate and decrease with the increasing

D/L rate (Figs. 5.6, 5.7). Also, the percent overestimation of duplications and losses decreased

with the amount of incomplete sampling (Fig. 5.3(b-c)). For example, for post-sequence (MR)

analysis, Dup-loss estimated 1.08% more duplications for 0-25% deletion case and 0.14% fewer

duplications for 50-75% deletion case (Fig. 5.3(b)).

The duplication and loss estimates decrease with the size of the species tree in both the 400
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Table 5.1 Average running time for Only-dup, Dup-loss, and MulRF methods in 400 gene
trees experiment; times are given in hours:minutes:seconds.

Model Cond. Pre-seq Post-seq (UR) Post-seq (MR)

Num.
Taxa

D/L
rate

Only-
dup

Dup-
loss

MulRF Only-
dup

Dup-
loss

MulRF Only-
dup

Dup-
loss

MulRF

50

0.002 0:00:00 0:00:02 0:00:05 0:00:47 0:02:18 0:00:20 0:00:01 0:00:04 0:00:17

0.004 0:00:01 0:00:02 0:00:05 0:00:50 0:02:27 0:00:26 0:00:01 0:00:05 0:00:23

0.008 0:00:00 0:00:02 0:00:07 0:01:02 0:02:50 0:00:31 0:00:01 0:00:05 0:00:24

100

0.002 0:00:03 0:00:11 0:00:20 0:06:29 0:17:48 0:02:02 0:00:12 0:00:49 0:01:45

0.004 0:00:03 0:00:12 0:00:31 0:06:29 0:16:47 0:02:49 0:00:12 0:00:50 0:02:07

0.008 0:00:03 0:00:14 0:01:04 0:09:08 0:23:32 0:03:41 0:00:03 0:00:53 0:03:03

250

0.002 0:00:29 0:02:05 0:02:31 1:13:21 2:53:28 0:18:30 0:03:05 0:12:53 0:16:09

0.004 0:00:29 0:02:17 0:06:15 1:38:10 3:08:15 0:21:05 0:03:07 0:13:07 0:19:19

0.008 0:00:30 0:02:46 0:11:02 1:39:05 3:20:45 0:20:06 0:02:53 0:11:06 0:17:11

500

0.002 0:02:33 0:17:22 0:18:25 13:19:27 21:31:30 0:18:30 0:21:33 1:45:26 0:20:29

0.004 0:02:28 0:13:36 0:17:28 7:54:50 17:30:40 0:15:25 0:16:26 1:21:32 0:18:31

0.008 0:02:55 0:14:32 0:17:25 7:30:36 12:56:29 0:17:23 0:20:34 1:44:35 0:26:20

and 100 gene tree experiments (Figs. 5.4-5.7). For example, for post-sequence (UR) analysis

with D/L rate 0.002, Only-dup overestimates the number of duplications by 172.78% for the

50-taxon simulations, and only by 26.64% for 500-taxon simulations (Fig. 5.4).

5.3.3 Running Time

In the pre-sequence and post-sequence experiments, all three methods had reasonable run-

ning times, with only the Dup-loss method in the 500-taxon experiment exceeding an average

of an hour per run (Table 6.1). Overall, all three methods had similar execution times for pre-

sequence and post-sequence (MR) analysis, with Only-dup slightly fastest and MulRF slightly

slowest, except in the post-sequence (MR) with 500 taxa (Table 6.1). However, in the post-

sequence (UR) analysis, Only-dup and Dup-loss take up to 50 times more time to execute

compare to their MR counterparts (Table 6.1). In the UR setting, Only-dup and Dup-loss

reroot the ML trees and performs new SPR searches several times during a single run. This

greatly increases the time to complete execution compared to the MR setting.
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Figure 5.4 Accuracy of estimated duplications in 400 gene trees experiments. Comparison of
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Figure 5.7 Comparing the actual losses in the gene trees with the losses estimated by Dup-loss
in the pre-sequence and post-sequence (MR) analyses for differing D/L rates across
50, 100, 250, and 500 taxa model trees, in the 100 gene trees experiment. Mean
and standard errors are shown.
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5.4 Discussion

The simulation experiments emphasize the difficulty of constructing phylogenetic trees from

gene trees with a history of duplication and loss. Even though the optimality criteria for the

Only-dup and Dup-loss methods are explicitly designed to address duplications (or duplications

and losses), the MulRF method, based on a mechanism-free tree distance metric, outperforms

Only-dup and Dup-loss in experiments with relatively small species trees (Figs. 5.1, 5.2).

However, with larger species trees, Dup-loss often is more accurate than MulRF (Figs. 5.1, 5.2).

It is not surprising that both error in input trees, as introduced in the post-sequence simulations,

and higher rates of duplication and loss negatively affect performance of all methods; these

processes create conflict between the gene tree and species tree topologies. Incomplete gene

sampling also adversely affects all of the methods (Fig. 5.3(a)), as it can mask evidence of

duplications or losses. (See the example in Fig. 5.8.) The relatively poor performance of all

methods in some extreme simulation conditions suggests that it may be beneficial to remove

genes with especially high rates of duplication and loss or low sampling prior to phylogenetic

analyses. Alternately, increasing the number of high quality input gene trees can ameliorate

phylogenetic error.

In all simulation experiments, GTP using a duplication-only reconciliation cost (Only-dup;

Figs. 5.1, 5.2) performs poorly compared to the other methods. Several studies have sug-

gested that using an Only-dup cost function may be more appropriate than using the Dup-loss

cost function when the input gene trees have incomplete gene sampling (e.g, Cotton and Page

(2003); Burleigh et al. (2010)). In these cases, it can be impossible to distinguish gene losses

from unsampled genes, and thus, estimates of gene loss may be extremely unreliable and will

not represent the biological cost. Our sampling experiment suggests that this argument is un-

substantiated (Fig. 5.3); Dup-loss always outperforms Only-dup, even when only 25% of the

sequences are present in the gene trees. Published analyses using Only-dup have produced cred-

ible species trees, but, based on our simulations, this is likely to occur only when the input gene

trees have either very low rates of duplication and loss or when there are an enormous number

of input gene trees (e.g., Burleigh et al. (2010)). In spite of its generally poor performance,
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G1 G2

×

×

d1 a1
c1 c11 b1

D A C B
d2 a2 c2 b2
D A C B

×
×

Figure 5.8 An example showing the negative effect of inadequate gene sampling. Two gene
trees G1 and G2 are evolved over a species tree; circle, explosion, and cross signs
represent speciation, duplication, and loss (or incomplete sampling) of correspond-
ing genes, respectively. Both G1 and G2 are conflicting but error free. For G1

and G2 as input both MulRF and Only-dup estimate the right species tree, i.e.,
identical to G2 in topology. Further, if the gene sequence c11 had not been sampled
for G1, both MulRF and Only-dup would have estimated a species tree of topology
identical to than G1 or G2.

one advantage of Only-dup is its speed. Unlike Dup-loss and MulRF, there exists efficient and

apparently effective heuristics for Only-dup that can infer species trees with 100,000 taxa in

reasonable time (Wehe and Burleigh (2010)). Thus, Only-dup may still be useful for obtaining

quick species tree estimates from extraordinarily large data sets.

In general, estimates of duplications or duplications and losses from Only-dup and Dup-

loss, respectively, had high amounts of error. Several studies have noted that error in gene

tree topologies can greatly inflate estimates of duplications (e.g., Hahn (2007); Rasmussen and

Kellis (2011)). What was unexpected was the high error in duplication and loss estimates when

the gene tree topologies were correct and the many situations in which GTP underestimated

duplications and losses (Figs. 5.4 - 5.7).

The underestimates of duplications in the pre-sequence analyses, which used the actual

gene trees from the simulations, likely are due to the inability of the GTP methods to observe

duplications in a gene tree when none of the leaves under a child of duplication node are

present, due to either losses or incomplete sampling (Figs. 5.4, 5.5, 5.3(b)). There are more

of these “missed duplications” as the D/L rate is increased or the amount of gene sampling is

reduced (Figs. 5.4, 5.5, 5.3(b)). Losses are similarly underestimated under the same conditions
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(Figs. 5.6, 5.7, 5.3(c)). Missing data can lead to overestimates or underestimates of losses.

Multiple losses in a subtree are observed as a single loss if the other leaves in the subtree

are not sampled. In contrast, missing sequences can increase the number of perceived losses,

leading to overestimation of losses. Overall in our experiments losses appear to be missed more

than overcounted, and the impact of missed losses is more evident in simulations of larger trees

(Figs. 5.6, 5.7, 5.3(c)).

In the post-sequence analyses for D/L rate 0.002, overestimates of duplications (by both

Only-dup and Dup-loss) are likely due to errors in the gene tree topology that are interpreted

as duplications (Figs. 5.4, 5.5, 5.3(b)). These “mistaken duplications” do not increase with the

increasing D/L rate, but the missed duplications do. Eventually with higher D/L rates, missed

duplications become more common than mistaken duplications, and consequently, duplications

are overestimated when there is a low D/L rate and underestimated when there is a high

D/L rate. Dup-loss overestimates losses (Figs. 5.6, 5.7, 5.3(c)) as a result of incomplete

sampling and post-sequence gene tree errors, and underestimates losses due to missed losses

phenomenon (explained above). As the D/L rate increases, the relative effect of missed losses

becomes greater.

Whether the duplication or loss cost is over- or underestimated, it often differs greatly from

the actual biological cost. The duplication or loss costs are likely to be even less accurate

in analyses of real data, in which gene topologies may be further confounded by processes

such as incomplete lineage sorting, recombination, and lateral transfer or reticulate evolution.

Still, this does not necessarily mean that the GTP methods will produce inaccurate species

trees; in fact, there does not appear to be a direct relationship between accuracy of duplication

or loss estimates and species tree estimates in the simulation experiments. However, it does

suggest that the (often good) performance of the GTP methods is due to the suitability of

the duplication or duplication and loss cost as tree distance metrics and not the accuracy with

which they reflect actual biological costs. If the duplication or duplication and loss costs do

not represent the historical processes of gene evolution, it is natural to explore the performance

of other tree metrics that do not purport to represent a biological cost or process, like the RF

distance.
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Figure 5.9 Three gene trees G1, G2, and G3 evolved over a species tree; circle, explosion, and
cross signs represent speciation, duplication, and loss (or incomplete sampling) of
corresponding genes, respectively. Observe that the gene trees are conflicting but
error free. When only G1 and G2 are the inputs to Only-dup and MulRF, both
the methods estimate the species tree of topology identical to G1 or G2. After
including G3 in the input gene trees, while MulRF estimates the right species
tree, i.e., identical to G2 or G3 in topology, Only-dup’s output is same as before.
Thus the additional input gene tree helps MulRF to estimate the right (unrooted)
species tree, but Only-dup keeps struggling due to reliance on the rootings of the
input gene trees.

One reason MulRF may outperform GTP is due to the benefits of using an unrooted tree

distance metric (e.g., the metric in MulRF) instead of rooted metrics (e.g., the metrics in Only-

dup and Dup-loss). The reliance of GTP on the rooting of the input gene tree can disguise the

topological similarities. (See Fig. 5.9.) There has been recent work to develop GTP methods

for unrooted trees (e.g., Yu et al. (2011); Górecki et al. (2012)), and rooted GTP methods have

the added benefit of inferring rooted species trees, which cannot be done with MulRF (e.g.,

Katz et al. (2012)). Still, uncertainty and error in the root of gene trees presents a potential

liability and computational challenge to GTP that can be avoided using a method based on

unrooted metrics.

While the MulRF method can be effective for inferring species trees from multi-copy gene

trees, other tree distance metrics, like the quartet distance, could be similarly extended to

multilabeled trees and used for species tree inference. Future work should evaluate the suit-

ability of different distance metrics for reconciling gene trees under different error models and

evolutionary scenarios. The simulations demonstrate that the MulRF method often works well

under models of duplication and loss, and it may also be robust to low levels of lateral gene
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transfer (Chaudhary et al. (2012c), in review). However, gene tree branch swaps between dis-

tantly related taxa, as may occur in lateral gene transfer, may impact the RF distance much

more than other distance metrics like a quartets distance (e.g., Ge et al. (2005)). In such cases

a tree building method based on the RF distance may not be appropriate.

The application of generic (non-biological) distances to multi-copy gene reconciliation prob-

lems also suggests a variety of new applications unexplored in this study. For example, the

MulRF method presents a natural approach to synthesize multi-copy gene tree data with trees

built from non-molecular data (e.g., phenomic data or taxonomic trees) in a single, compre-

hensive phylogenetic analysis. Such analyses are possible with GTP, but it is difficult to justify

using an objective based on duplications or losses when reconciling non-molecular trees. Also,

the leaves of the gene trees could be represent geographic areas or host species in order to iden-

tify dominant patterns of biogeography or co-speciation (e.g., Page (1988); Ganapathy et al.

(2006)). Thus, the MulRF method potentially may provide a flexible and computationally

feasible approach to address large-scale evolutionary processes.
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CHAPTER 6. Efficient Error Correction Algorithms for Gene Tree -

Species Tree Reconciliation

6.1 Introduction

The most commonly used and computationally feasible approach to Gene tree - species tree

(GT-ST) reconciliation is gene tree parsimony, which seeks to infer the fewest evolutionary

events (e.g., duplication, loss, coalescence, or lateral gene transfer) needed to reconcile a gene

tree and species tree topology (Maddison, 1997). This approach also can be extended to infer

species phylogenies, finding the species tree that implies the fewest evolutionary events implied

by the gene trees (e.g., Goodman et al. (1979); Guigó et al. (1996); Slowinski et al. (1997)).

However, the gene trees often are estimated using heuristic methods from short sequence align-

ments, and consequently, there is often much error in the estimated gene tree topologies. Error

in the gene trees creates more GT-ST incongruence and can radically affect GT-ST reconcil-

iation analyses, implying far more duplications, duplications and losses, or deep coalescence

events than actually exist. For example, Rasmussen and Kellis (2011) estimated that error in

gene tree reconstruction can lead to 2 − 3 fold overestimates of gene duplications and losses.

Gene tree error also can erroneously imply large numbers of duplications near the root of the

species tree (Burleigh et al. (2009); Hahn (2007)), and it can mislead gene tree parsimony

phylogenetic analyses (e.g., Burleigh et al. (2011); Huang and Knowles (2009); Sanderson and

McMahon (2007a)).

Several approaches have been proposed to address gene tree error in GT-ST reconciliation.

First, questionable nodes in a gene tree or nodes with low support may be collapsed prior to

gene tree reconciliation, and the resulting non-binary gene trees may be reconciled with species

trees (Berglund-Sonnhammer et al. (2006); Vernot et al. (2007); Yu et al. (2011)). Similarly,
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GT-ST reconciliations can use a distribution of gene tree topologies, such as bootstrap gene

trees, rather than a single gene tree estimate (Burleigh et al. (2009); Cotton and Page (2002);

Joly and Bruneau (2009)). Both of these approaches may help account for stochastic error and

uncertainty in gene tree topologies, but they do not explicitly confront gene tree error. Methods

also exist to simultaneously infer the gene tree topology and the gene tree reconciliation with

a known species tree (Arvestad et al. (2004); Rasmussen and Kellis (2011)). While these

sophisticated statistical approaches appear very promising, they are computationally intensive,

and it is unclear if they will be tractable for large-scale analyses. Another, perhaps a more

computationally feasible, approach is to allow a limited number of local rearrangements in the

gene tree topology if they reduced the reconciliation cost (Chen et al. (2000); Durand et al.

(2006)).

Previously (Chen et al. (2000); Durand et al. (2006)) described a method to allow NNI-

branch swaps on selected branches of a gene tree to reduce the reconciliation cost. Following

(Chen et al. (2000); Durand et al. (2006)), we address gene tree error in the reconciliation

process by assuming that the correct gene tree can be found in a particular neighborhood

of the given gene tree. We describe this approach for the gene duplication, duplication and

loss, and deep coalescence models, which identify the fewest respective events implied from a

given gene tree and given species tree. This neighborhood consists of all trees that are within

one edit operation of the gene tree. While (Chen et al. (2000); Durand et al. (2006)) use

Nearest Neighbor Interchange (NNI) edit operations to define the neighborhood, we use the

standard tree edit operations SPR (Allen and Steel (2001); Bordewich and Semple (2004)) and

TBR (Allen and Steel, 2001), which significantly extend upon the search space of the NNI

neighborhood. The SPR and TBR local search problems find a tree in the SPR and TBR

neighborhood of a given gene tree, respectively, that has the smallest reconciliation cost when

reconciled with a given species tree. Using the algorithm by Zhang (1997) the best known

(näıve) runtimes are O(n3) for the SPR local search problem and O(n4) for the TBR local

search problem, where n is the number of taxa in the given gene tree. These runtimes typically

are prohibitively long for the computation of larger GT-ST reconciliations. We improve on these

solutions by a factor of n for the SPR local search problem and a factor of n2 for the TBR
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local search problem. This makes the local search under the TBR edit operation as efficient as

under the SPR edit operation, and it provides a high-speed gene tree error-correction protocol

that is computationally feasible for large-scale genomic data sets.

We also evaluated the performance of our algorithms using the implementation of SPR

based local search algorithms. Note, that the SPR neighborhood is properly contained in

the TBR neighborhood for any given tree. Thus the performance of the SPR based program

provides a conservative estimate of the performance of the TBR based program. We test our

programs on a collection of 106 yeast gene trees, some of which contain hundreds of leaves,

and we demonstrate how it can be easily incorporated into large-scale gene tree parsimony

phylogenetic analyses.

6.2 Preliminaries

6.2.1 The Reconciliation Cost Models

A species tree is a phylogenetic tree in which each leaf represents a species, whereas in a

gene tree each leaf represents a sequence, encoding one gene (or gene family), for a given set of

species. We assume that each leaf of the gene tree is labeled with the species from which that

gene was sampled. Let G be a gene tree and S a species tree.

The leaf-mapping LG,S : L(G)→ L(S) is a surjection that maps each leaf g ∈ L(G) to that

unique leaf s ∈ L(S) which has the same label as g. The extensionMG,S : V (G)→ V (S) is the

mapping defined by MG,S(g) := LCA(LG,S(L(Gg))). For convenience, we write M(g) instead

of MG,S(g) when G and S are clear from the context.

Given trees G and S, we say that G is comparable to S if a leaf-mapping LG,S(g) is well

defined.

Definition 4 (Duplication cost).

• The duplication cost from g ∈ V (G) to S, CD(G,S, g) :=


1, if M(g) ∈M(Ch(g));

0, otherwise.

• The duplication cost from G to S, CD(G,S) :=
∑

g∈I(G) CD(G,S, g).



68

Definition 5 (Duplication-loss cost).

• The loss cost from g ∈ V (G) to S,

CL(G,S, g) :=


0, if ∀h ∈ Ch(g) : M(g) =M(h);∑

h∈Ch(g) |dS(M(g),M(h))− 1|, otherwise.

• The duplication-loss cost from G to S, CDL(G,S) :=
∑

g∈I(G)(CD(G,S, g) + CL(G,S, g)).

Definition 6 (Deep coalescence cost).

• The number of lineages from g ∈ V (G) to h ∈ Ch(g) in S,

CDC(G,S, g) :=
∑

h∈Ch(g) dS(M(g),M(h)).

• The deep coalescence cost from G to S, CDC(G,S) :=
∑

g∈I(G) CDC(G,S, g)− |E(S)|.

The reconciliation cost are based on the models of gene duplication (Page (1994); Eulenstein

(1998)), duplication-loss (Zhang, 1997), and deep coalescence (Zhang, 1997).

6.2.2 The error-correction problems

Here we give definitions for rooted tree rearrangement operations TBR (Allen and Steel,

2001) and SPR (Allen and Steel (2001); Bordewich and Semple (2004)), and then formulate

the Error-Correction problems that were motivated in the introduction.

Definition 7 (Tree Bisection and Reconnection (TBR)). Let T be a tree. For this definition,

we regard the planted tree Pl(T ) as the tree obtained from adding the root edge {r, rt(T )} to

E(T ), where r /∈ V (T ). Let e := (u, v) ∈ E(T ), and X and Y be the connected components that

are obtained by removing edge e from T such that v ∈ X and u ∈ Y . We define TBRT (v, x, y)

for x ∈ X and y ∈ Y to be the tree that is obtained from Pl(T ) by first deleting edge e, and

then adjoining a new edge f between X and Y as follows:

1. If x 6= rt(X) then suppress rt(X) and create a new root by subdividing edge (Pa(x), x).

2. Subdivide edges (Pa(y), y) by introducing a new vertex y′.

3. Re-connect components X and Y by adding edge f = (y′, rt(x).
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Figure 6.1 An TBR operation. Tree T ′ = TBRT (v, x, y) results from T after performing single
TBR operation.

4. Suppress the vertex u, and rename vertex y′ as u.

5. Contract the root edge.

We say that, the tree TBRT (v, x, y) is obtained from T by a tree bisection and reconnection

(TBR) operation that bisects the tree T into the components X and Y , and reconnects them

above the nodes x and y. (See Fig. 6.1) We define the following neighborhoods for the TBR

operation:

1. TBRG(v, x) := ∪y∈Y TBRG(v, x, y)

2. TBRG(v) := ∪x∈X TBRG(v, x)

3. TBRG := ∪(u,v)∈E(G) TBRG(v)

Definition 8 (Subtree Prune and Regrafting (SPR)). The SPR operation is defined as a

special case of the TBR operation. Let e := (u, v) ∈ E(T ), and X and Y be the connected

components that are obtained by removing edge e from T such that v ∈ X and u ∈ Y . We

define SPRT (v, y) for y ∈ Y to be TBRT (v, v, y). We say that the tree SPRT (v, y) is obtained

from T by performing subtree prune and regraft (SPR) operation that prunes subtree Tv and

regrafts it above y. (See Fig. 6.2(a).)

We define the following neighborhoods for the SPR operation:

1. SPRG(v) := ∪y∈Y SPRG(v, y)

2. SPRG := ∪(u,v)∈E(G) SPRG(v)
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We now state the SPR based error-correction problems for duplication (D), duplication-loss

(DL), and deep coalescence (DC). Let Γ ∈ {D, DL, DC}.

Problem 5 (SPR based error-correction for Γ (SEC-Γ)).

Instance: A gene tree G and a species tree S.

Find: A gene tree G∗ ∈ SPRG such that CΓ(G∗, S) = minG′∈SPRG
CΓ(G′, S).

The TBR based error-correction for Γ (TEC-Γ) problems are defined analogously to the

SPR based error-correction for Γ (SEC-Γ) problems.

6.3 Solving the SEC-Γ problems

In this section we study the SPR based error-correction problems, for duplication (D),

duplication-loss (DL), and deep coalescence (DC), in more detail. Our efficient solution for

these problems are based on solving restricted versions of these problems efficiently. For each

Γ ∈ {D,DL,DC} we first define a restricted version of the SEC-Γ problem, which we call the

restricted SPR based error-correction for the Γ (R-SEC-Γ) problem.

Problem 6 (Restricted SPR based error-correction for Γ (R-SEC-Γ)).

Instance: A gene tree G, a species tree S, and v ∈ V (G).

Find: A gene tree G∗ ∈ SPRG(v) such that CΓ(G∗, S) = minG′∈SPRG(v) CΓ(G′, S).

Observation 2. Let Γ ∈ {D, DL, DC}. Given a gene tree G and a species tree S, the SEC-Γ

problem can be solved as follows: (i) solve the R-SEC-Γ problem for every v ∈ V (G) where

v 6= rt(G), (ii) under all solutions found return a minimum scoring gene tree G∗.

Näıvely, the R-SEC-Γ problem can be solved in Θ(n2) time by computing the cost CΓ(G′, S)

for each G′ ∈ SPRG(v). The cost for a given gene and species tree can be computed in Θ(n)

time (Zhang, 1997). We introduce a novel algorithm for the R-SEC-Γ problem that improves

by a factor of n on the näıve solution. This speedup is achieved by semi-ordering the trees in

SPRG(v), for each v ∈ V (G), such that the score-difference of any two consecutive trees in this

order can be computed in constant time.
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Ordering the trees in SPRG(v)

Consider a graph on trees in SPRG(v), in which every two adjacent trees are one NNI (Allen

and Steel, 2001) operation apart. We show that such a graph is a rooted full binary tree, after

providing necessary definitions.

Definition 9 (Nearest Neighbor Interchange (NNI)). We define the NNI operation as a special

case of the SPR operation. Let e ∈ E(T ) where e := (u, v), and X and Y be the connected

components that are obtained by removing edge e from T such that v ∈ X and u ∈ Y . We

define NNIT (v) to be SPRT (v, y) for y := Pa(u), and say that NNIT (v) is obtained from T by

performing nearest neighbor interchange (NNI) operation that prunes subtree Tv and regrafts

it above the parent of v’s parent. (See Fig. 6.2(b).)

Definition 10 (NNI distance). Let the NNI-distance, denoted as dNNI(T1, T2), between two

trees T1 and T2 over n taxa be the minimum number of NNI operations required to transform

T1 into T2.

Definition 11 (NNI-adjacency graph). The NNI-adjacency graph, denoted as X = (V,E), is

the graph where V = SPRG(v) and {T1, T2} ∈ E if dNNI(T1, T2) = 1.

Lemma 14. X is a tree.

Proof. We prove it by showing that there exists a unique path between every two vertices in X .

Let G′, G′′ ∈ V (X ), thus G′, G′′ ∈ SPRG(v). Let G′ := SPRG(v, x1) and G′′ := SPRG(v, x2).

We use induction on dG(x1, x2). Let dG(x1, x2) = 1 and assume without loss of generality

that x2 = PaG(x1). Thus, G′ = NNIG′′(Sb(x1)). So the hypothesis holds for dG(x1, x2) = 1.

Assume now that the hypothesis is true for dG(x1, x2) ≤ k and suppose dG(x1, x2) = k + 1.

Since G is a tree, there must be a unique path between x1 and x2; let y be a vertex on this path.

Let dG(y, x1) = 1, and Gn := SPRG(v, y). If y = PaG(x1), then Gn = NNIG′(v); otherwise Gn

= NNIG′(Sb(y)). Since dG(y, x2) = k, thus (by induction hypothesis) the hypothesis is valid

for dG(x1, x2) = k + 1.

Theorem 7. X is a rooted full binary tree.
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Proof. In view of Lemma 14, it suffices to show that except a unique vertex of degree 2 all other

vertices in X are of degree 1 or 3. Let G′ ∈ V (X ), thus G′ = SPRG(v, y) for some y ∈ V (G).

There are three cases:

Case 1: y is a root. Let y1 ∈ ChG(y). Let G1 := SPRG(v, y1), thus G′ = NNIG1(v). Hence

{G1, G′} ∈ E(X ). Since |ChG(y)| = 2, G′ must be a degree 2 vertex in X .

Case 2: y is a leaf. Let y1 = PaG(y). Let G1 := SPRG(v, y1), thus G1 = NNIG′(v). Hence

{G1, G′} ∈ E(X ), and consequently, G′ is a degree 1 vertex in X .

Case 3: y is an internal vertex. Let y1 = PaG(y) and y2 ∈ ChG(y). LetG1 := SPRG(v, y1),

thus G1 = NNIG′(v). Let G2 := SPRG(v, y2), thus G′ = NNIG2(v). Since y has one parent

and two children in G, thus G′ is a degree 3 vertex in X .

This completes the proof.

The score difference of consecutive trees in X

To solve the R-SEC-Γ problems we traverse tree X . Two adjacent trees in V (X ) are one

NNI operation apart. We show that CΓ score of a tree can be computed in constant time from

the LCA computation of its adjacent tree.

Let e := (G′, G′′) be an edge in X . Let x := Pa(v), y := Sb(v), and z, z′ ∈ Ch(y) in G′ (see

Fig. 6.2(b)). Without loss of generality, let G′′ := NNIG′(z). (Observe G′′ is similar to G′r of

Fig. 6.2(b).)

Lemma 15. MG′′,S(y) = MG′,S(x).

Proof. From NNI operation, v, z′ ∈ ChG′′(x) and z, x ∈ ChG′′(y). Also, G′z ' G′′z , G′z′ ' G′′z′ ,

G′v ' G′′v , so Le(G′′y) = Le(G′x). Thus,MG′,S(x) = LCA(LG′,S(Le(G′x))) = LCA(LG′′,S(Le(G′′y)))

= MG′′,S(y).

Lemma 16. MG′′,S(w) = MG′,S(w), for all w ∈ V (G′)\{x, y}.

Proof. For g ∈ V (G′v)
⋃
V (G′z)

⋃
V (G′z′), since G′g ' G′′g , therefore MG′,S(g) = MG′′,S(g).

Also, except for subtree G′x, the rest of the tree remains the same in G′′x. Thus by Lemma



73

Figure 6.2 (a) The tree G is obtained from G by pruning and regrafting subtree Gv to the
root of G. The vertex x ∈ V (G) is suppressed, and the new vertex above root in
G is named x. (b) Two NNI operations NNIG′(z

′) and NNIG′(z) produce left-child
G′l and right-child G′r of G′ in the NNI adjacency graph X .

15, MG′,S(PaG′(x)) = MG′′,S(PaG′′(y)). Inductively, MG′,S(g) = MG′′,S(g), for all g ∈

V (G′)\V (G′x).

Lemma 17. MG′′,S(x) = LCA(MG′,S(v),MG′,S(z′)).

Proof. From Lemma 16, MG′′,S(v) =MG′,S(v) and MG′′,S(z′) =MG′,S(z′). Thus, MG′′,S(x)

= LCA(MG′′,S(v),MG′′,S(z′)) = LCA(MG′,S(v),MG′,S(z′)).

Lemma 18. CΓ(G′′, S, g) = CΓ(G′, S, g), for all g ∈ V (G′′)\{x, y} and Γ ∈ {D,DL,DC}.

Proof. The gene duplication and loss status of a vertex, and the number of lineages from a vertex

to its children in G′ can change in G′′ if its mapping or mapping of any of its children changes

in MG′′,S . From Lemma 16, and also, since MG′′,S(w) = MG′,S(w), for w ∈ Ch(PaG′(x)),

must have CΓ(G′′, S, PaG′(x)) = CΓ(G′, S, PaG′(x)). Thus the Lemma follows.

Let e := (G′, G′′) ∈ E(X ) and Γ ∈ {D, DL, DC}. We define Γe := CΓ(G′′, S) − CΓ(G′, S)

with respect to the given species tree S. Observe that this score can be negative too. We study

how Γe can be computed efficiently for each edge e in X .

Theorem 8. Γe =
∑

g∈{x,y}

(CΓ(G′′, S, g)− CΓ(G′, S, g)).
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Proof. Γe = CΓ(G′′, S)−CΓ(G′, S) =
∑

g∈V (G′′)

(CΓ(G′′, S, g) - CΓ(G′, S, g)) =
∑

g∈V (G′′)\{x,y}

(CΓ(G′′, S, g)

- CΓ(G′, S, g)) +
∑

g∈{x,y}

(CΓ(G′′, S, g)− CΓ(G′, S, g)) =
∑

g∈{x,y}

(CΓ(G′′, S, g)− CΓ(G′, S, g)) .

Definition 12. Let G := SPRG(v, rt(G)), and let PG′ be a path from G to G′ in X . For G′,

we define the score-difference ΓG,G′ as ΓG,G′ :=
∑

e∈E(PG′ )

Γe.

Theorem 9. For given S, G, and v ∈ V (G), the tree G′ ∈ V (X ) is the output of a R-SEC-Γ

problem iff ΓG,G′ = minG′′∈V (X ) ΓG,G′′.

Proof. Let ΓG,G′ = minG′′∈V (X ) ΓG,G′′ . We prove that G′ is the output of R-SEC-Γ problem.

Since ΓG,G′ =
∑

e∈E(PG′ )

Γe = Γ(G′, S)−Γ(G,S), thus G′ gives the minimum normalized CΓ score

over all trees in V (X ). Hence, G′ must be the output of the R-SEC-Γ problem. The other

direction follows similarly.

The algorithm

We describe a general algorithm, called Algo-R-SEC-Γ, to solve the R-SEC-Γ problem for

each Γ ∈ {D,DL,DC}. Initially Algo-R-SEC-Γ computes (i) the root vertex of the NNI-

adjacency graph X , which we call G, by regrafting the subtree Gv above the root of G, (ii) the

LCA mapping from G to S, and (iii) the Γ score from G to S. Then recursively Algo-R-SEC-Γ

computes the LCA mapping and Γ score for every vertex G′ in X when the LCA mapping and

Γ score of its parent vertex in X is known. Algorithm 1 details Algo-R-SEC-Γ.

Algorithm 1 - Algo-R-SEC-Γ

Input: A gene tree G, a species tree S, and v ∈ V (G)

Output: A tree G* ∈ SPRG(v) such that CΓ(G*, S) = minG′∈SPRG(v) CΓ(G′, S)

01. Compute G by pruning Gv and regrafting at rt(G)

02. Compute LCA mapping MG,S

03. Call CΓ(G,S) = Algo-Comp-Score(G,S,MG,S)

04. Set BestTree = G, BestScore = 0

05. Set G′ = G, MG′,S =MG,S, CΓ(G′, S) = CΓ(G,S), ΓG,G′ = 0
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06. For each k 6= rt(GSb(v)) in preorder traversal of GSb(v), do

07. If not backtracking, then

08. Set x = PaG′(v), y = SbG′(v)

09. Set G′′ = NNIG′(SbG′(k))

10. Set MG′′,S =MG′,S, MG′′,S(y) =MG′,S(x)

11. MG′′,S(x) = LCA(MG′,S(k),MG′,S(v))

12. Call Γ{G′,G′′} =
∑

h∈{x,y}Algo-G-Score(G′′, S,MG′′,S , h)−Algo-G-Score(G′, S,MG′,S , h)

13. ΓG,G′′ = ΓG,G′ + Γ{G′,G′′}

14. If ΓG,G′′ < BestScore, then

15. Set BestTree = G′′, BestScore = ΓG,G′′

16. Else,

17. Set x = PaG′(v), y = PaG′(x)

18. Set G′′ = NNIG′(v)

19. Set MG′′,S =MG′,S, MG′′,S(x) =MG′,S(y)

20. Set MG′′,S(y) = LCA(MG′,S(SbG′(x)),MG′,S(k))

21. Call Γ{G′′,G′} =
∑

h∈{x,y}Algo-G-Score(G′, S,MG′,S , h)−Algo-G-Score(G′′, S,MG′′,S , h)

22. Set ΓG,G′′ = ΓG,G′ − Γ(G′′,G′)

23. Set G′ = G′′, MG′,S =MG′′,S, ΓG,G′ = ΓG,G′′

24. Return BestTree

Algorithm 2 - Algo-Comp-Score

Input: A gene tree G, a species tree S, and LCA mapping MG,S

Output: CΓ(G,S)

01. score = 0

02. For each g ∈ I(G) in preorder traversal of G, do

03. Call score = score + Algo-G-Score(G,S,MG,S , g)

04. If Γ is DC, then

05. score = score - |E(S)|

06. Return score
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Algorithm 3 - Algo-G-Score

Input: A gene tree G, a species tree S, LCA mapping MG,S, and g ∈ I(G)

Output: CΓ(G,S, g)

01. If Γ is D, then

02. IfM(g) ∈M(Ch(g)), then

03. Return 1

04. ElseIf Γ is DL, then

05. ls =
∑

h∈Ch(g) |dp(M(h))− dp(M(g))− 1|

06. IfM(g) ∈M(Ch(g)), then

07. Return ls + 1

08. Else

09. Return ls

10. Else //Γ is DC

11. Return
∑

h∈Ch(g) |dp(M(h))− dp(M(g))|

Lemma 19. The R-SEC-Γ problem is correctly solved by Algo-R-SEC-Γ.

Proof. Lemma 14-18 and Theorem 7-9 directly imply that in order to prove the correctness of

algorithm Algo-R-SEC-Γ, it is sufficient to prove that it correctly returns G′ of minimum ΓG,G′

among all G′ ∈ V (X ). We will show that algorithm Algo-R-SEC-Γ accounts each G′ ∈ V (X ),

correctly computes ΓG,G′ for Γ ∈ {D,DL,DC}, and returns the right G′ as output.

From Definition 10, V (X ) = SPRG(v). In Algo-R-SEC-Γ, step 1 prunes subtree Gv and

regrafts it above the root of G to create G. Step 5 sets G′ to G. The for-loop in step 6 traverses

subtree GSb(v) in preorder. For each traversed vertex k 6= rt(GSb(v)), step 9 builds the tree

G′′ := SPRG(v, k) by applying NNI operation on the last build G′. Each for-loop iteration sets

G′ to the last build G′′ in step 23. G and G′′s constitute all the trees in SPRG(v).

For G, step 2 computes the LCA mapping and step 5 sets ΓG,G′ to zero. Following Lemma

15-17 and Theorem 8, step 10 and 11 update the LCA of G′′ and step 12 computes Γ{G′,G′′}
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by calling algorithm Algo-G-Score. Depending on Γ ∈ {D,DL,DC}, there are three cases:

Case 1: Γ is D. Algo-G-Score returns 1, if the vertex g ∈ V (G′′) maps to the same vertex in

S as any of its children maps to, otherwise 0.

Case 2: Γ is DL. Algo-G-Score computes losses by applying the formula of Definition 4. Fur-

ther, it adds 1 if there is a duplication.

Case 3: Γ is DC. Algo-G-Score, returns the number of lineages from g to each of its children

h ∈ Ch(g) in S. For each h ∈ Ch(g), depth of M(g) is subtracted from depth of M(h)

to count number of edges between M(g) and M(h).

In Algo-R-SEC-Γ, step 13 computes ΓG,G′′ by adding ΓG,G′ and Γ{G′,G′′}. When backtracking,

steps 17-22 are executed to restore the right G′ to compute the next unique G′′ ∈ ChX (G).

This ensures that the correct ΓG,G′ is computed for each G′ ∈ V (X ).

In Algo-R-SEC-Γ, step 4 sets G as the BestTree and ΓG,G = 0 as BestScore. Every time

a new G′′ ∈ ChX (G) is encountered, step 14 compares ΓG,G′′ with BestScore, and updates

BestTree with G′′ of the minimum ΓG,G′′ . After the for-loop, step 24 returns the BestTree.

Lemma 20. The R-SEC-Γ and SEC-Γ problems can be solved in Θ(n) and Θ(n2) time, re-

spectively.

Proof. We will prove that the algorithm Algo-R-SEC-Γ solves the restricted SPR based error-

correction problems for each Γ ∈ {D,DL,DC} in Θ(n) time. In Algo-R-SEC-Γ, step 1 takes

constant time. Step 2 precomputes LCA values for species tree in O(n) time (Bender and

Farach-Colton, 2000), and so, finds LCA mapping from G to S in O(n) time in bottom-up

manner. Step 3 computes the duplication, duplication-loss or deep coalescence score of G and

S by calling Algo-Comp-Score. In Algo-Comp-Score, step 1 and step 2 runs for O(1) and O(n)

time, respectively. Step 3 calls Algo-G-Score in each iteration of for-loop. Algo-G-Score runs

for O(1) time for Γ ∈ {D,DL,DC}.

When Γ is DC, steps 4 and 5 are further executed in Algo-Comp-Score for constant time.

Thus in Algo-R-SEC-Γ, step 3 runs for O(n) time. Further, steps 4 and 5 take constant time.

The loop of step 6 runs for Θ(n) time. If condition of step 7 is true, steps 8-10 executes in



78

constant time. With precomputed LCA values from step 2, step 11 executes in constant time.

Algo-G-Score runs for constant time for Γ ∈ {D,DL,DC}, and lets step 12 to execute in

constant time. Further, steps 13-15 execute for constant time too. If the condition in step 7

is false, then steps 17-22 execute in constant time, similarly. Finally, step 23 runs for constant

time, and hence, the R-SEC-Γ problem can be solved in Θ(n) time. From Observation 1, Algo-

R-SEC-Γ is called Θ(n) time to solve SEC-Γ problem. Thus, the SEC-Γ problem can be solved

in Θ(n2) time.

6.4 Solving the TEC-Γ problems

In this section we study the TBR based error-correction problems, for duplication (D),

duplication-loss (DL), and deep coalescence (DC). More precisely, we extend our solution for

the SEC-Γ problems to solve the TEC-Γ problems. A TBR operation can be viewed as an

SPR operation, except that the pruned subtree can be rerooted before it is regrafted. Our

speed-up for the TEC-Γ problems is achieved by observing that the Γ scores of any re-rooted

pruned subtree and its remaining pruned tree are independent of each other. We define the

R-TEC-Γ problems for the TEC-Γ problems, as we defined the R-SEC-Γ problems for the SEC-

Γ problems. We will show that the R-TEC-Γ problems can be solved by solving two smaller

problems separately and combining their solutions.

Definition 13. Let T be a tree and x ∈ V (T ). RR(T, x) is defined to be the tree T , if

x = rt(T ) or x ∈ Ch(rt(T )). Otherwise, RR(T, x) is the tree obtained by suppressing rt(T ),

and subdividing the edge (Pa(x), x) by the new root node.

Lemma 21. Given a tuple 〈G,S, v〉, and G′′ := TBRG(v, x, y), for x ∈ V (Gv), y ∈ V (G)\V (Gv).

Then, CΓ(G′′, S) ≤G′∈TBRG(v) CΓ(G′, S) iff CΓ(RR(Gv, x), S) ≤x′∈V (Gv) CΓ(RR(Gv, x
′), S) and

CΓ(G′′, S) ≤G′∈TBRG(v,x) CΓ(G′, S).

Proof. (⇒) Let G1 := TBRG(v, x1, y), for x1 ∈ V (Gv), and x1 6= x. Now observe that,

∀g ∈ V (G)\V (Gv), CΓ(G′′, S, g) = CΓ(G1, S, g). Also, let G2 := TBRG(v, x, y1), for y1 ∈

V (G)\V (Gv), and y1 6= y. Observe that, ∀g ∈ V (Gv), CΓ(G′′, S, g) = CΓ(G2, S, g). Thus, if

G′′ gives the minimum duplication, duplication-loss, or deep coalescence score among all trees
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in TBRG(v), then the score contribution of vertices in V (Gv) and V (G)\V (Gv) is indepen-

dent. Now looking at vertices of G, the best score is achieved when Gv is rooted at x, i.e.

CΓ(RR(Gv, x), S) ≤x′∈V (Gv) CΓ(RR(Gv, x
′), S); also the best score is achieved when RR(Gv, x)

is regrafted at y, i.e., CΓ(G′′, S) ≤G′∈TBRG(v,x) CΓ(G′, S). (⇐) This follows similarly.

Lemma 8 implies that a tree in TBRG(v) with the minimum duplication, duplication-loss,

or deep coalescence cost can be obtained by optimizing the rooting for the pruned subtree,

and the regraft location, separately. A best rooting for the pruned subtree is linear time

computable (Górecki and Tiuryn, 2006; Chen et al., 2000), and the solution to the R-SEC

problem identifies a best regraft location in Θ(n) time. This allows to obtain a tree in TBRG(v)

with the minimum duplication, duplication-loss, or deep coalescence cost by evaluating only

Θ(n) trees. Thus the R-TEC-Γ problem can be solved in Θ(n) time. The TEC-Γ problem can

be solved by calling the solution of R-TEC-Γ problem Θ(n) times, and Theorem 10 follows.

Theorem 10. The TEC-Γ problem can be solved in Θ(n2) time.

6.5 Experimental results

We tested the performance of the gene tree rearrangement algorithms on a set of 106 gene

alignments containing sequences from 8 yeast taxa from Rokas et al. (2003). There is a well

accepted phylogeny for the yeast species, and the data set has been used to test algorithms for

gene tree parsimony based on the deep coalescence problem (Than and Nakhleh, 2009; Bansal

et al., 2010a). We constructed maximum likelihood gene trees for each gene using RAxML-VI-

HPC version 7.0.4 (Stamatakis, 2006b), the gene trees were rooted with the outgroup Candida

albicans. We used the new error correction algorithms to examine how much a single SPR

rearrangement in the gene tree reduces the reconciliation cost based on deep coalescence and

also gene duplications and losses. Over all genes the SPR error correction reduced the total

deep coalescence cost from 151 to 53 (Table 6.1) and the duplication and loss cost from 481 to

175 (Table 6.2). Both the algorithms took only seconds to run for all 106 genes on a standard

laptop.
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Table 6.1 Error correction based on deep coalescence model. The number of yeast gene trees
with different reconciliation costs based on the deep coalescence model both before
(Original) and after (Post-Correction) the SPR error correction.

Reconciliation Cost Original Post-Correction

0 45 77

1 32 15

2 6 8

3 9 5

4 8 0

>4 6 1

We also implemented a protocol to use the gene rearrangement algorithm to correct for

gene tree error in gene tree parsimony phylogenetic analyses. We first took a collection of

input gene trees and performed a SPR species tree search using Duptree (Wehe et al., 2008),

which seeks the species tree with the minimum gene duplication cost. We used the duplication

only cost (instead of duplications and losses) because when there is no complete sampling of

all existing genes, the loss estimates may be inflated by missing sequences. After finding the

locally optimal species tree, we used our SPR gene tree rearrangement algorithm to find gene

tree topologies with a lower duplication cost. We then performed another SPR species tree

search using Duptree, starting from the locally optimal species tree and using the new gene

tree topologies. This search strategy is similar to re-rooting protocol in Duptree, which checks

for better gene tree roots after a SPR species tree search (Chang et al. (2011); Wehe et al.

(2008)). We tested this protocol on data set of 6,084 genes (with a combined 81, 525 leaves)

from 14 seed plant taxa. This is the same data set used by (Chang et al., 2011), except that all

gene tree clades containing sequences from a single species were collapsed to a single leaf. Our

original SPR tree search found a species tree with 23, 500 duplications. The SPR tree search

after the gene tree rearrangements identified the same species tree, but the new gene trees had

a reconciliation cost of only 18, 213. This tree search protocol took just under 4 hours on a

Mac Powerbook with a 2 GHz Intel Core 2 Duo processor and 2 GB memory.
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Table 6.2 Error correction based on duplication and loss model. The number of yeast gene
trees with different reconciliation costs based on the duplication and loss model
both before (Original) and after (Post-Correction) the SPR error correction.

Reconciliation Cost Original Post-Correction

0 45 77

1-5 32 15

6-10 15 13

11-15 8 0

16-20 5 1

>20 1 0

6.6 Conclusion

GT-ST reconciliation provides a powerful approach to study the patterns and processes of

gene and genome evolution. Yet it can be thwarted by the error that is an inherent part of gene

tree inference. Any reliable method for GT-ST reconciliation must account for gene tree error;

however, any useful method also must be computationally tractable for large-scale genomic

data. We introduce fast and effective algorithms to correct error in the gene trees. These

algorithms, based on SPR and TBR rearrangements, greatly extend upon the range of possible

errors in the gene tree from existing algorithms (Chen et al., 2000; Durand et al., 2006), while

remaining fast enough to use on data sets with thousands of genes. These algorithms can correct

trees based on a broad variety of evolutionary factors that can cause conflict between gene trees

and species trees, including gene duplication, duplications and losses, and deep coalescence.

Our analysis on 106 yeast gene trees demonstrates that even a single SPR correction on the

gene trees can radically improve upon the reconciliation cost. Our results in the yeast analysis

are very similar to the 2-3 fold improvement in implied duplications and losses reported from

the parametric gene tree estimation and reconciliation method of Rasmussen and Kellis (2011).

However, in contrast, to this computationally complex method, the gene tree rearrangement

algorithm is extremely fast, does not require assumption about the rates of duplication and

loss, and is also amenable to corrections based on deep coalescence and duplications as well as

duplications and losses. We do not claim that the gene correction algorithms produce a more
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accurate reconciliation than these parametric methods. However, they do present an extremely

fast and flexible alternative.

We also demonstrated that this error correction protocol could easily be incorporated into

a gene tree parsimony phylogenetic analysis. Previous studies have emphasized that gene tree

parsimony is sensitive to the topology of the input trees. For example, the species tree may

differ whether the gene trees are made using parsimony or maximum likelihood (Burleigh et al.

(2011); Sanderson and McMahon (2007a)). In our study, although the gene tree rearrangement

did not affect the species tree inference, it did greatly reduce the gene duplication reconciliation

cost.

While the results of the experiments are promising, they also suggest several directions for

future research. First, further investigation is needed to characterize the effects of error on

gene tree topologies. For example, it seems likely that gene tree errors may extend beyond

a single SPR or TBR neighborhood. Yet, if we allow unlimited rearrangements, the gene

trees will simply converge on the species tree topology. One simple improvement may be to

weight the possible gene tree rearrangements based on support for different clades in the gene

tree. Thus, well-supported clades may be rarely or never be subject to rearrangement, while

poorly supported clades may be subject to extensive rearrangements. Finally, these approaches

implicitly assume that all differences between gene trees and species trees are due to either

coalescence, duplications, or duplications and losses. Future work will seek to combine these

objectives and also address lateral transfer.
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CHAPTER 7. NP-Completeness Proofs

7.1 Computing the RF Distance between two mul-trees is NP-complete

We reiterate our main problem again as follows:

Problem 7 (Computing RF distance between two mul-trees).

Instance: Two mul-trees T and T ′.

Find: The minimum number of contractions and refinements necessary to transform T into T ′.

The NP-completeness proof relies on a reduction from the following NP-complete problem

(Garey and Johnson, 1979).

Problem 8 (Exact Cover by 3-Sets (X3C)).

Instance: S := {s1, ..., sn}, where n = 3q, and C := {C1, ..., Cm} such that Ci = {si1 , si2 , si3}.

Find: Are there exist sets Ci1 , ..., Ciq such that
⋃q

j=1Cij = S ?

Note that X3C remains NP-complete (Hickey et al., 2008) even when each element of S

occurs in exactly three subsets in C, thus m = n = 3q. We take this version of X3C for

reduction. For a given instance of the X3C problem, we construct two mul-trees T1 and T2 such

that transforming from T1 into T2 (or vice versa) requires κ (to be specified later) contractions

and refinements if and only if an exact cover of S exists.

The mul-trees T1 and T2 are constructed in the following way. For each si ∈ S, we construct

two rooted, binary trees T and T′ that take a “large” number of contractions and refinements

to transform into each other (see Fig. 7.1). Let k and t be two positive integers such that

k + 2 ≥ n2 and k + 2 = 2t. Tree T and T′ have k + 2 leaves. Tree T′ has the same topology

as T, but for each cherry (x, y) in T, x and y are in different subtrees T′u and T′v in T′, where
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a b c d e f g h a c e g b d f h

Figure 7.1 Two possible trees T and T′ on 8 leaves with RF distance 12.

u and v are two children of rt(T′). For each si ∈ S, corresponding trees T and T′ have unique

leaves.

Lemma 22. RF (T,T′) = 2k.

Proof. RF (T,T′) = 2|H(T)\H(T′)|, since T and T′ are binary trees. T and T′ are binary

trees on k + 2 leaves, thus H(T) = H(T′) = k. Thus it suffices to show that no cluster in

T matches any cluster in T′. Let v ∈ I(T), the corresponding cluster C(v) contains leaves of

1 ≤ p ≤ (k+2)/4 cherries. From the construction, T′ has both leaves of each cherry in different

subtrees under the root rt(T′); thus there is no matching cluster for C(v) in T′.

S

C1

C2

Cn

(a)

c1 c2 c3 ck

(b)

Figure 7.2 (a) Structure of mul-tree T1 and (b) A toll sequence of k leaves.

We are now ready for the construction of T1 and T2. Figure 7.2(a) outlines the structure

of T1. The solid rectangles represent toll sequences of k uniquely labeled leaves (Fig. 7.2(b)).

The left side of T1 has n triangles one for each of the n elements in S. Each triangle represents

a tree T corresponding to si ∈ S, connecting through its root. The right side of T1 has n sets of

3 triangles corresponding to the subsets in C; for each subset Ci = {si1 , si2 , si3}, the triangles

represent three trees T′s, corresponding to each sij (for 1 ≤ j ≤ 3), connected through their

roots.
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T2 has the similar structure as T1 except that T2 has tree T′ for each si ∈ S and tree T for

each element of Ci ∈ C (for 1 ≤ i ≤ n). Thus, T2 has T′s on the left side and Ts on the right

side, which is opposite to what T1 has.

Lemma 23. Mul-trees T1 and T2 can be constructed in polynomial time.

Proof. Trees T and T′ are rooted binary trees on k + 2 leaves. T and T′ can be constructed in

polynomial time, and so the 4n copies of each (for T1 and T2). Further, 2n toll sequences (n

for each T1 and T2) can be constructed in polynomial time. There are constant number of rest

of the vertices in T1 and T2. Hence, the Lemma.

Here is the connection between exactly covering S and transforming T1 into T2 by contrac-

tions and refinements: To transform T1 into T2, all we need is to convert each tree T on the

left into T′ and each tree T′ on the right into T. From Lemma 22, this costs 24qk contractions

and refinements. A rather clever technique is to swap 3q Ts on the left with their counterparts

on the right and to transform the remaining 6q T′s on the right into Ts. If an exact cover

Ci1 , ..., Ciq of S exists, we can partition the 3q Ts into q groups according to the cover. For

each Cj (j = i1, ..., iq) in the cover, we swap the corresponding group of trees for sequences

sj1 , sj2 , sj3 with their counterparts.

Lemma 24. All T′s for each Cj (j = i1, ..., iq) can be swapped with corresponding Ts by 2(k+1)

contractions and refinements.

Proof. Take the toll sequence corresponding to Cj and contract its k + 1 edges; i.e., (k −

1) internal edges and 2 edges at both the sides of the toll sequence. Now refine it so that

corresponding Ts move in Cj and T′s stay in the left. This takes 2(k + 1) contractions and

refinements.

From Lemma 29, if the exact cover of S exists, then 6q trees can be transformed by 2q(k+1)

contractions and refinements. Remaining 6q T′s can be transformed into Ts by 12qk contrac-

tions and refinements. Hence, we have the following lemma.

Lemma 25. If set S has an exact cover then the RF distance between T1 and T2 is κ =

2q(k + 1) + 12kq.
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If there is no exact cover of S, then either more than 6q trees (T or T′) are transformed

separately or more than q group swaps are performed. The construction guarantees that both

cases will cost more than the cost of transforming (T1 into T2) in exact cover case. Hence, we

conclude the following.

Theorem 11. Set S has no exact cover if and only if the RF distance between T1 and T2 is

more than κ = 2q(k + 1) + 12kq.

7.2 Tree labeling problem is NP-complete

In this Section, we prove the NP-completeness of the tree labeling problem: Labeling two

unlabeled trees so as to minimize the RF distance between the resulting singly-labeled trees.

Let T be a mul-tree such that T = (T,M,ϕ), where T be an underlying, unrooted tree, M

be the set of labels, and the surjective labeling function ϕ : L(T ) → M maps each leaf of T

with a label in M . A full differentiation of T is a leaf labeled tree T such that T and T are

isomorphic.

Let T = (T,M,ϕ) and T ′ = (T ′,M ′, ϕ′) be two unrooted mul-trees. Two full differentiations

T and T′ of T and T ′, respectively, are consistent if for each a ∈ M ∩ M ′, τ1(ϕ−1(a)) =

τ2(ϕ′−1(a)), where T and T are isomorphic under bijection τ1 : V (T ) → V (T) and T ′ and S

are isomorphic under bijection τ2 : V (T ′)→ V (S). For instance, a consistent full differentiation

can be obtained by relabeling each of the k copies of each leaf label a by a1, a2, . . . , ak in both

the mul-trees.

An unlabeled tree can also be considered as an uniform, mul-tree (i.e., a mul-tree in which

the underlying set contains just one element). Consequently, the tree labeling problem can also

be written in the following way:

Problem 9 (Tree Labeling).

Instance: Two uniform, mul-trees T and T ′.

Find: The full differentiations T and T′ of T and T ′, respectively, such that RF (T,T′) =

min{RF (T, T ′): T and T ′ are full differentiations of T and T ′, respectively}.
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Theorem 12 (Ganapathy et al. (2006)). Let T and T ′ be two mul-trees. Then, RF (T , T ′) =

min{RF (T,T′) : T and T′ are mutually consistent full differentiations of T and T ′, respectively}.

Problem 10 (Computing RF distance between two uniform, mul-trees).

Instance: Two uniform, mul-trees T and T ′.

Find: The minimum number of contractions and refinements necessary to transform T into T ′.

Observe that Problem 10 is the special case of Problem 7, which is proved NP-complete in

Section 7.1. The NP-completeness proof of Problem 10 is given later.

Theorem 13. Problem 9 cannot be solved in polynomial time unless P = NP.

Proof. Follows from the observation that Problem 10 reduces to Problem 9. More precisely, if

there exists a black box that solves Problem 9 then the input of the Problem 10 can be given

to it. The output contains a full differentiations of input mul-trees that minimizes the RF

distance. This RF distance can be computed in linear time (Robinson and Foulds, 1981) to

solve Problem 10 (from Theorem 12).

From now on we work towards proving NP-completeness of Problem 10. Our proof relies on

a reduction from the special case of the Exact Cover by 3-Sets (X3C) problem used in Section

7.1.

For a given instance of the X3C problem, we construct two uniform, mul-trees T1 and

T2, such that transforming from T1 into T2 (or vice versa) requires κ (to be specified later)

contractions and refinements if and only if an exact cover of S exists.

The uniform, mul-trees T1 and T2 are constructed in the following way. For each si ∈ S (1 ≤

i ≤ n), we construct a complete, binary, uniform, mul-tree Ti, and a uniform, caterpillar mul-

tree T′i. Both mul-trees are binary, and take a “large” number of contractions and refinements

to transform into each other. Let f and p be two positive integers such that n < 2p−1 and

f = 2p. For each instance of Problem 7.1, p is the smallest integer that satisfies the two

conditions. Both Ti and T′i have f + 2i leaves, labeled with x. Ti is constructed in the

following way: First a rooted, perfect binary tree of height p is constructed, then left most i

cherries are further extended by attaching a cherry to each of its leaves (see Fig. 7.3).
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Figure 7.3 Structure of the uniform, mul-tree Ti for si ∈ S, where i = 1 and n = 6. Here,
p = 4 and f = 16. The dotted circle shows the first left cherry that is extended
one more level to construct T1 from the perfect binary mul-tree of height 4.

We are now ready for the construction of T1 and T2. Figure 7.4(a) outlines the structure

of T1. The solid rectangles represent toll sequences of 2f leaves labeled with x (Fig. 7.4(b)).

The left side of T1 has n triangles representing Tis (1 ≤ i ≤ n), connecting through its root.

The right side of T1 has n sets of 3 triangles corresponding to Cis (1 ≤ i ≤ n) in C. For each

Ci = {si1 , si2 , si3}, the three dotted triangles represent T′ij s (1 ≤ j ≤ 3), connecting through

their roots.

S

C1

C2

Cn

�1

�2

�n

(a)

x x x x

(b)

Figure 7.4 (a) Structure of uniform, mul-tree T1 and (b) A toll sequence of 2f leaves.

T2 has the similar structure as T1, except that T2 has T′i for each si ∈ S and Tij s for each

sij ∈ Ci (for 1 ≤ i ≤ n and 1 ≤ j ≤ 3), which is opposite to what T1 has.

Lemma 26. Mul-trees T1 and T2 can be constructed in polynomial time.

Proof. Both the uniform, mul-trees Ti and T′i have f+2i leaves. Thus, they can be constructed

in polynomial time, and so the 8n copies of each of them (4n for T1 and 4n for T2). Further,

2n toll sequences (n for each T1 and T2) can be constructed in polynomial time. There are
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constant number of rest of the vertices in T1 and T2. .

Lemma 27. Ti can be converted into T′i by 2(f + 2i− 2− p) contractions and refinements.

Proof. Observe that conversion of Ti to T′i through minimum contractions and refinements

requires all the internal edges, except those in the longest root-to-leaf path, to be contracted,

and refined in the end. The total number of internal edges in Ti is f + 2i− 2, and the number

of internal edges in the longest root-to-leaf path is p. Thus, 2(f + 2i− 2− p) contraction and

refinements must require to convert Ti to T′i.

Lemma 28. For i from 1 to n, all Tis can be converted to corresponding T′is by 2(nf + n2 −

n− np) contractions and refinements.

Proof. From Lemma 27,

contractions and refinements =
n∑

i=1

2(f + 2i− 2− p)

= 2(nf + n(n+ 1)− 2n− pn)

= 2(nf + n2 − n− np)

Here is the connection between exactly covering S and transforming T1 into T2 by contrac-

tions and refinements: To transform T1 into T2, all we need is to convert each Ti on the left

into T′i and each tree T′i on the right into Ti. From Lemma 28, this costs 8(nf + n2− n− np)

contractions and refinements, since for each si ∈ S, there is one Ti and three T′is in T1. A

rather clever technique is to swap all Tis on the left with their counterparts on the right and

to manually transform the remaining 6q T′is on the right into corresponding Tis.

Lemma 29. For Ci = {si1 , si2 , si3} (1 ≤ i ≤ n), all T′ij s (1 ≤ j ≤ 3) can be swapped with

corresponding Tij s by 2(2f + 1) contractions and refinements.

Proof. Take the toll sequence corresponding for Ci and contract its 2f + 1 edges; i.e., (2f −

1) internal edges and 2 edges at both the sides of the toll sequence. Now refine it so that

corresponding Tij s move in Ci and T′ij s stay in the left. This took 2(2f + 1) contractions and

refinements.
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Theorem 14. Set S has an exact cover if and only if the RF distance between T1 and T2 is

not more than κ = 2q(2f + 1) + 4(nf + n2 − n− np).

Proof. Let an exact cover Ci1 , ..., Ciq of S exists. Now the 3q Tis can be partitioned into q

groups according to the cover. For each Cj = {sj1 , sj2 , sj3} (for j = i1, ..., iq) in the cover, we

swap the corresponding T′s (i.e., T′j1 , T′j2 , and T′j3) with their counterparts (i.e., Tj1 , Tj2 ,

Tj3). From Lemma 29, this requires 2q(2f + 1) contractions and refinements. There are 2

more copies of each T′i (1 ≤ i ≤ n) to convert into their corresponding Ti. This requires

4(nf + n2 − n− np) contractions and refinements (Lemma 28). Thus, if S has an exact cover,

the RF distance between T1 and T2 is not more than κ = 2q(2f + 1) + 4(nf + n2 − n− np).

For the other direction, let κ be divided into two parts: κ1 = 2q(2f + 1) and κ2 = 4(nf +

n2 − n − np). Observe that 2q T′is, in the right side of T1, always require to be transformed

manually into their respective Tis. Thus, the κ2 part of κ is fixed. We claim that if S has no

exact cover than κ1 is more than 2q(2f + 1).

Let S has no exact cover. Now n T′is on the left and n T′is on the right side of T1 can be

converted into their counterparts by three ways:

• Swapping more than q triplets. Let q+ σ triplets cover all elements in S (with some

repeated elements). Now swapping n Ti with corresponding T′i in q + σ triplets will

require 2(q + σ)(2f + 1) contractions and refinements.

• Swapping q triplets. Let Ci1 , ..., Ciq be the best q triplets that cover all but σ elements

in S. Swapping these q triplets only converts n− σ Tis and T′is into their counterparts.

Rest 2σ Tis and T′is need to be converted manually. Thus, κ1 is 2q(2f+1) + <2σ manual

conversions>.

• Processing triplets. Let Ci1 , ..., Ciq be the best q triplets that cover all but σ elements

in S. First, we contract corresponding q toll sequences. We add or remove leaves in the

rest σ T′is (caterpillars) so that they correspond to the uncovered Tjs on the left. Now

T′i moved to left and Ti to right. Before refining the cental vertex, the Tis corresponding

to processed T′is are reprocessed to correspond for the original caterpillar mul-tree. This

adds processing cost for uncovered σ elements of S in κ1 in addition to 2q(2f + 1).
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All the above three ways of converting T1 into T2, have κ1 that is more than 2q(2f +1).

Thus, computing the RF distance between two uniform, mul-trees is NP-complete, and

together with Theorem 13, we complete the NP-completeness proof of the tree labeling problem.



92

CHAPTER 8. Conclusion

Phylogenies are of central importance to biology, and so is the construction of the tree of

all life on earth. The proliferation of next generation sequencing technologies has presented

extraordinary opportunities, but it also has drawn attention to many complex computational

problems. This thesis addressed several of theoretical, computational was well as experimental,

computational biology problems that arise along the way towards building the tree of life.

First, we developed a heuristic method for NP-hard unrooted Robinson-Foulds (RF) su-

pertree problem, and showed that it yields more accurate supertrees than those obtained from

Matrix Representation with Parsimony (MRP) and the rooted RF heuristic. For the future, it

appears to be important to incorporate uncertainty within the input trees into an RF supertree

analysis by weighting the splits when calculating the RF distance.

Inferring species trees from conflicting multi-copy gene trees is a critical problem in phy-

logenetics. Most previous methods assume that the gene tree conflict is caused by a specific

biological process such as gene duplication and loss, deep coalescence, or lateral gene gene

transfer. We presented an RF distance measure based approach (MulRF) to infer a species

tree from input multi-copy gene trees, through a generalization of RF distance to multi-labeled

trees. Simulation experiments have shown that this approach produces more accurate species

trees than existing methods when incongruence is caused by gene tree error, duplications and

losses, and/or lateral gene transfer. The effectiveness of the MulRF method suggests that other

tree distance metrics (such as quartet distance) can also be used in inferring species trees from

multi-copy gene trees, opening the doors for further research.

Perhaps the most frustrating aspect of phylogenetics is the myriad of available species tree

inference methods, and the lack of any formal comparative study on the performance of some

of these methods. Our simulation study fills this void, providing a thorough evaluation of the



93

performance of Gene Tree Parsimony (GTP) under duplication and duplication and loss cost

models and a comparison with our MulRF method. We particularly looked at the effects of

various samplings (e.g., gene tree and sequence sampling), gene tree error, and duplication and

loss rates on the accuracy of the phylogenetic estimates by GTP and MulRF. Our results high-

lighted the difficulty in inferring species trees accurately for decreased gene tree and sequence

sampling, and increased duplication and loss rates. In general, MulRF was best in estimating

small species trees (≤ 100 taxa), and duplication and loss cost based GTP for larger species

trees (≥ 250 taxa).

We presented efficient error correction algorithms for gene tree reconciliation based on

duplication, duplication and loss, and deep coalescence. In particular, these algorithms rapidly

search local Subtree Prune and Regraft (SPR) or Tree Bisection and Reconnection (TBR)

neighborhoods of a given gene tree to identify a topology that implies the fewest of these

evolutionary events for a given species tree. One simple extension of this work may be to

weight the possible gene tree rearrangements based on support for different clades in the gene

tree. Thus, well-supported clades may be rarely or never be subject to rearrangement, while

poorly supported clades may be subject to extensive rearrangements.

Finally, we also presented NP-completeness proofs for two open problems in phylogenetics.

The first problem is computing the RF distance between two multi-labeled trees. The second

problem is a tree labeling problem: Labeling two unlabeled trees so as to minimize the RF

distance between the resulting singly-labeled trees. These results help redirecting the future

research towards designing approximation algorithm for these problems, rather than searching

endlessly for exact solutions.

My thesis not only makes useful theoretical additions in the computational biology litera-

ture, but also provides implementations for most of our methods for further research. Further,

our research also draws attention to many, new problems. I believe that exploring them will

be fruitful for the phylogenetics research community.
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APPENDIX A. Commonly used symbols

Chapter 3,4,7

T Unrooted phylogenetic tree

L(T ) Leaf set of tree T

V (T ) Set of all vertices of T

E(T ) Set of all edges of T

I(T ) Set of internal vertices of T

T|U Restriction of T to U

Σ(T ) Set of all non-trivial splits of T

T Rooted phylogenetic tree

rt(T) Root of tree T

Tv Subtree of T rooted at v

H(T) Set of all clusters of T

T Unrooted mul-tree

Chapter 6

T Rooted phylogenetic tree

L(T ) Leaf set of tree T

V (T ) Set of all vertices of T

E(T ) Set of all edges of T

I(T ) Set of internal vertices of T

T|U Restriction of T to U

PaT (v) Parent of vertex v in T
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(u, v) Edge u, v, if u is parent of v

ChT (v) Set of children of v in T

SbT (w) Sibling vertex of w in T

dT (x, y) Number of edges on the unique path between x and y in T
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