
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Automated analysis of Learner's Research Article
writing and feedback generation through Machine
Learning and Natural Language Processing
Deepan Prabhu Babu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Babu, Deepan Prabhu, "Automated analysis of Learner's Research Article writing and feedback generation through Machine Learning
and Natural Language Processing" (2013). Graduate Theses and Dissertations. 13220.
https://lib.dr.iastate.edu/etd/13220

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13220?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


 

 

Automated analysis of Learner’s Research Article writing and feedback generation 

through Machine Learning and Natural Language Processing 

 

 

by 

 

DEEPAN PRABHU BABU 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 

Co-majors:  Computer Science; Human Computer Interaction 

 

 

Program of Study Committee: 

Stephen Gilbert, Co-major Professor 

Jin Tian, Co-major Professor 

Elena Cotos 

 

 

 

 

 

 

 

 

 

 

Iowa State University 

Ames, Iowa 

2013



ii 

 

 

 

TABLE OF CONTENTS 

 

CHAPTER 1. INTRODUCTION ........................................................................................... 1 

1.1 Overview ......................................................................................................................... 1 

1.2 Automated Writing Evaluation ....................................................................................... 2 

1.3 Perceived Issues with AWE Tools .................................................................................. 3 

1.4 Problem Statement .......................................................................................................... 4 

1.5 Research Questions ......................................................................................................... 5 

1.6 Thesis Organization ......................................................................................................... 5 

CHAPTER 2. LITERATURE REVIEW ................................................................................ 7 

2.1 Computer Assisted Instruction in Pedagogy ................................................................... 7 

2.2 Intelligent Tutoring Systems ........................................................................................... 8 

2.2.1 Foundations .............................................................................................................. 8 

2.2.2 Automated Essay Scoring using Tutors ................................................................... 9 

2.3 Discourse Analysis ........................................................................................................ 12 

2.3.1 Rhetorical Structure Theory ................................................................................... 13 

2.3.2 Genre Analysis ....................................................................................................... 13 

2.3.3 Move Analysis of Research Articles ...................................................................... 14 

2.4 Automated Text Categorization .................................................................................... 15 

2.4.1 A Formal Definition ............................................................................................... 15 

2.4.2 Single-label vs. Multi-label Text Categorization ................................................... 16 

2.4.3 Document-pivoted vs. category-pivoted text categorization .................................. 17 

2.4.4 Machine learning approach to Text Categorization ............................................... 17 

CHAPTER 3. SYSTEM ARCHITECTURE ........................................................................ 32 

3.1 Contributions ................................................................................................................. 32 

3.2 System Architecture of Expert Module ......................................................................... 33 

3.2.1 Corpus Preparation ................................................................................................. 33 

3.2.2 Database design ...................................................................................................... 35 



iii 

 

3.2.3 Training sub-system ............................................................................................... 38 

3.2.4 Test sub-system ...................................................................................................... 43 

3.3 System Architecture of Learner diagnosis module ....................................................... 47 

3.4 System Architecture of Pedagogical Module ................................................................ 48 

CHAPTER 4. METHODOLOGY ........................................................................................ 50 

4.1 Introduction ................................................................................................................... 50 

4.2 Training a Classifier ...................................................................................................... 51 

4.2.2.1 Revised training procedure .................................................................................. 57 

4.2 Testing and practical application ................................................................................... 58 

CHAPTER 5. RESULTS...................................................................................................... 63 

5.1 Corpus Dimensions ....................................................................................................... 63 

5.2 Test data sets ................................................................................................................. 64 

5.3 Performance Metrics ..................................................................................................... 65 

CHAPTER 6. DISCUSSION ............................................................................................... 69 

6.1 Move Classifier Performance ........................................................................................ 69 

6.2 Step Classifier Performance .......................................................................................... 70 

6.3 Step Classifier Confusion Matrix .................................................................................. 72 

6.4 Future Work .................................................................................................................. 73 

6.5 Summary ....................................................................................................................... 74 

REFERENCES ....................................................................................................................... 76 

ACKNOWLEDGEMENTS .................................................................................................... 81 

 

  



iv 

 

LIST OF TABLES 

 

Table 2-1 CARS model for research article introductions,  

adapted from Swales (1990, p.141) ........................................................................................ 14 

Table 2-2 Contingency table for Category c_i ........................................................................ 30 

Table 2-3 Global contingency table ........................................................................................ 30 

Table 3-1A modified version of Swales move/step 

 framework (J. M. Swales, 2004) used for annotation ............................................................ 35 

Table 3-2 Revised Database Schema ...................................................................................... 38 

Table 5-1 Distribution of sentences across moves .................................................................. 63 

Table 5-2 Distribution of sentences across steps .................................................................... 63 

Table 5-3 Feature Set - Move classification ........................................................................... 64 

Table 5-4 Feature Set - Step Classification............................................................................. 65 

Table 5-5 Performance of Move Classification ...................................................................... 66 

Table 5-6 Performance of Step Classification ........................................................................ 67 

Table 5-7 Micro Average Precision and Recall - Move classifier .......................................... 68 

Table 5-8 Micro Average Precision and Recall - Step classifier ............................................ 68 

  



v 

 

LIST OF FIGURES 

 

Figure 2-1 Hyperplane separates data of two different categories ......................................... 24 

Figure 2-2 Hyperplane separates two different categories with a 

 maximal margin separation .................................................................................................... 27 

Figure 3-1 RWT’s Training Sub-System ................................................................................ 39 

Figure 3-2 User interface connected to Daemon through Sockets ......................................... 45 

Figure 4-1 Classifying a sentence ........................................................................................... 51 

Figure 5-1 Performance of Move Classification ..................................................................... 66 

Figure 5-2 Performance of Step Classification ....................................................................... 67 

Figure 6-1 Step Classifier - Confusion matrix ........................................................................ 72 

  

file:///C:/Users/Dpanprbu/Dropbox/Deepan%20Research&Thesis/Thesis%20Drafts/Final%20Thesis%20Draft%20-%20With%20Elena%20Modifications.docx%23_Toc354477792
file:///C:/Users/Dpanprbu/Dropbox/Deepan%20Research&Thesis/Thesis%20Drafts/Final%20Thesis%20Draft%20-%20With%20Elena%20Modifications.docx%23_Toc354477792


vi 

 

ABSTRACT 

 

Teaching academic writing in English to native and non-native speakers is a 

challenging task. Quite a variety of computer-aided instruction tools have arisen in the form 

of Automated Writing Evaluation (AWE) systems to help students in this regard. This thesis 

describes my contribution towards the implementation of the Research Writing Tutor (RWT), 

an AWE tool that aids students with academic research writing by analyzing a learner's text 

at the discourse level. It offers tailored feedback after analysis based on discipline-aware 

corpora. 

 At the core of RWT lie two different computational models built using machine 

learning algorithms to identify the rhetorical structure of a text. RWT extends previous 

research on a similar AWE tool, the Intelligent Academic Discourse Evaluator (IADE) 

(Cotos, 2010), designed to analyze articles at the move level of discourse. As a result of the 

present research, RWT analyzes further at the level of discourse steps, which are the granular 

communicative functions that constitute a particular move. Based on features extracted from 

a corpus of expert-annotated research article introductions, the learning algorithm classifies 

each sentence of a document with a particular rhetorical move and a step. Currently, RWT 

analyzes the introduction section of a research article, but this work generalizes to handle the 

other sections of an article, including Methods, Results and Discussion/Conclusion.  

This research describes RWT’s unique software architecture for analyzing academic 

writing. This architecture consists of a database schema, a specific choice of classification 

features, our computational model training procedure, our approach to testing for 

performance evaluation, and finally the method of applying the models to a learner’s writing 



vii 

 

sample. Experiments were done on the annotated corpus data to study the relation among the 

features and the rhetorical structure within the documents. Finally, I report the performance 

measures of our 23 computational models and their capability to identify rhetorical structure 

on user submitted writing. The final move classifier was trained using a total of 5828 

unigrams and 11630 trigrams and performed at a maximum accuracy of 72.65%. Similarly, 

the step classifier was trained using a total of 27689 unigrams and 27160 trigrams and 

performed at a maximum accuracy of 72.01%. The revised architecture presented also led to 

increased speed of both training (a 9x speedup) and real-time performance (a 2x speedup).  

These performance rates are sufficient for satisfactory usage of RWT in the classroom. The 

overall goal of RWT is to empower students to write better by helping them consider writing 

as a series of rhetorical strategies to convey a functional meaning. This research will enable 

RWT to be deployed broadly into a wider spectrum of classrooms. 
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

The Research Writing Tutor (RWT) is an intelligent tutoring system developed at 

Iowa State University that assists students in learning academic writing. The RWT analyzes 

discourse according to discipline-specific research article genre and offers individualized 

feedback. With training data from an annotated corpus of 900 articles across 30 different 

disciplines, the tool uses natural language processing techniques and machine learning to 

automatically classify discourse markers. Using this expert knowledge captured through 

annotation, RWT analyzes a learner’s writing and offers feedback towards improvement. 

Creating the RWT poses a number of challenges. How to identify the rhetorical 

structure of a student’s writing? What is an appropriate user interface for this software? What 

kinds of feedback can be provided for better writing? How are wrong classifications 

handled? Could manual rules augment the classification and are they practically viable? 

What is the best algorithm presently that could classify rhetorical structure practically fast? 

Are SVMs really the best machine learning algorithm for identifying rhetorical moves and 

steps? Are rhetorical features really related to the corresponding rhetorical moves and steps 

through a Gaussian function? What is the optimal feature vector size that could accurately 

identify the rhetorical functions? Could some other weighing measures do the trick with 

fewer feature vector size and eventually faster? With all these important questions to address, 

this thesis focuses on some of the machine learning challenges in RWT, namely, effective 

feature identification and weighing measure that could help identify the different rhetorical 
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functions accurately and an optimal machine learning algorithm that could be trained to use 

the features to predict rhetorical functions with usable performance. 

1.2 Automated Writing Evaluation 

The RWT is an Automated Writing Evaluation (AWE) tool. Sophisticated AWE 

systems analyze learner writing and offer immediate feedback regarding grammar, style, and 

other features of the text. The automated systems that offer feedback are considered cost 

effective ways to replace or enhance instructor feedback. These systems are involved in 

range of applications from reports on grammatical errors for ESL learners to evaluating 

learner essay writing holistically from content, organizational and mechanical characteristics. 

Considering a group of learners, automated writing evaluation offers an economic alternative 

to expensive hand scored assessment and feedback. Outside the classroom setting, a major 

drive to push evaluation to automated tools, cited by educational testing organizations has 

been to test content knowledge and writing competence at a larger scale.  Teams of human 

raters are a costly investment to train and automated systems that could human raters would 

reduce overall cost. Successful implementations of AWE tools are already prevalent in the 

market used with a wide variety of applications. Intellimetric (Elliot, 2003) scores learner 

essays based on a list of 500 features indicating content, complexity grammar and so on. 

Intelligent Essay Assessor (Foltz, Laham, & Landauer, 1999) uses latent semantic analysis 

for deriving likelihood and relation of vocabulary used to the context. E-Rater (Attali & 

Burstein, 2006) uses 12 different feature variants to assess and score learner essays. 

None of these tools, however, attempt to teach academic writing, as does RWT. 

Articulating ideas according to conventions of academic writing in English are challenging 
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both to native and non-native speakers. Nonnative speakers especially suffer as they tend to 

be less expressive, restricted to simpler style of writing, and often provide fewer claims than 

the appropriate amount for their research (Flowerdew, 1998). Huang (2010) documented the 

lack and limitation of tools that aid in discipline-specific research and writing. RWT is a 

discipline-specific tool built upon a corpus which is representative of particular genre 

through natural language processing techniques. 

1.3 Perceived Issues with AWE Tools 

AWE tools inherently pose limitations in implementations, such as favoring 

lengthiness of writing, assessing higher scores to certain types of lexico-grammatical 

features, lacking measures to identify illogical or incoherent writing and generating 

unspecific feedback during progress (Herrington & Moran, 2001; N. D. Yang, 2004). Most 

comments and feedback provided by AWE tools are formulaic, generic information requiring 

to be augmented through specific personal comments from human instructors. Formulaic 

responses also may encourage students to adjust their writing to the scoring criteria of the 

analysis engine.  

AWE tools increasingly rely on surface features of responses without considering 

creativity or the actual content specified by the responses. They also pose vulnerability as 

they are easily cheated when underlying knowledge of training corpus was known. (Yongwei 

Yang, Buckendahl, Juszkiewicz, & Bhola, 2002) Certain tools provide unfair evaluation 

despite well-organized learner writing responses owing to poor mechanics (Calfee, 2000).  

Finally, AWE tools are validated through their own internal measures and the 

accuracy of the learning model they are built on rather than the learning and through the 
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teaching impact they produce. Though inter-rater agreement may be high for AWE tools, 

their application in academic contexts must be evaluated as well. Neglecting the real-world 

application of the tools and their impact on learning make such research studies limited and 

outcome-based (Warschauer & Ware, 2006).  

All these issues are related to AWE use, especially when it is not principled. It is 

therefore important to consider the specific learning needs in specific learning contexts when 

new AWE tolls are developed in order to avoid pitfalls like those outlined above.     

1.4 Problem Statement 

RWT, being an intelligent tutor, addresses some difficulties faced by learners of 

academic writing by analyzing at the discourse level considering organization of learner 

responses. It also offers individualized discipline-specific feedback across 30 different 

disciplines. Rhetorical moves are the particular communicative function performed by a text 

section. Rhetorical steps are finer elements of text that realize a rhetorical move. RWT 

extends previous research on an AWE tool, The Intelligent Academic Discourse Evaluator 

(IADE) (Pendar & Cotos, 2008) by analyzing academic research articles through rhetorical 

moves and the steps that collectively form the move. 

The challenges particular to RWT include correctly identifying the writer’s moves 

and steps, giving the writer the appropriate feedback, and conveying to the writer the 

rhetorical norms of his or her discipline. RWT is implemented for all sections of academic 

research articles. IADE was restricted to identifying the different moves from a learner’s text 

but not the granular steps which comprise a move. IADE generated textual feedback with 

numerical percentages indicating the current state of a user’s writing and the remaining goals 
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to be achieved. This format of feedback was not yet optimized for the user, and RWT aspires 

to improve on that communication. More importantly, IADE was implemented only for the 

introduction section of academic research articles, while RWT can generalize across different 

article sections (e.g., methods, results, and discussion/conclusion).  

1.5 Research Questions 

This research addresses the following questions.  

1. Can a machine learning system be developed to accurately identify the rhetorical 

steps within an academic writer’s text?  

2. What combination of unigram and trigram features from the training corpus are most 

appropriate for optimal move and step classification?  

3. How is the number of features related to the accuracy, precision and recall of the 

prediction task, e.g., is it a linear relationship? 

4. Is it feasible to use a single classifier for identifying moves and steps across academic 

disciplines by using discipline-specific classification features within the classifier? If so, how 

accurate can this approach be?  

5. Is odds ratio an appropriate feature identification and weighing measure for 

identifying the different rhetorical moves and steps? 

1.6 Thesis Organization 

This chapter is an introduction to automated writing evaluators, the perceived issues 

limitations and issues posed by various AWE tools. It also documents how IADE tried to 

solve some of the issues specifically in academic writing genre and how RWT is building on 

top of it through improved functionality and research. In this thesis I also document how the 
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synergy of overlapping fields including pedagogy, intelligent tutoring systems, genre 

analysis, natural language processing and machine learning address some of the 

functionalities for RWT. 

Chapter 2 covers the literature backing the research from various fields explaining the 

main concepts used with the implementation of RWT. Chapter 3 documents the system 

architecture of the different modules within RWT’s backend responsible for analyzing the 

data and deriving computational models capable of predicting the rhetorical organization. 

Chapter 4 explains the research approach and the preprocessing, training and testing 

procedures involved in building a classifier. Chapter 5 contains the results of experiments 

and metrics for evaluating the performance of various classifiers built. Chapter 6 summarizes 

and discusses the results along with directions to future research. 
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CHAPTER 2. LITERATURE REVIEW 

Research Writing Tutor (RWT) derives its focus and approach from four main areas 

including pedagogy, intelligent tutoring systems, discourse analysis and automated text 

categorization. We review various theoretical concepts on which RWT’s functionality is 

implemented. 

2.1 Computer Assisted Instruction in Pedagogy 

RWT aims to assist learners of research article writing by providing expert feedback 

on their writing skills and possible scope for improvement. Pedagogical assistance from 

computers has been proven to augment the regular teaching process. Individualized drill and 

practice to learners, tutoring of new content and feedback based dialogue with instruction are 

some of the successful applications of computers in a classroom scene (Suppes, 1980). 

Significant contributions towards effective teaching and positive attitudes of students towards 

instruction have been attributed to computers at college teaching. In fact, computers were 

quick at their application when compared with conventional teaching methods (Kulik, Kulik, 

& Cohen, 1980).  Computer assisted language learning is a specific area of application 

related to pedagogy in college teaching. Each individual learns a language differently due to 

distinct idiosyncratic learning strategies, cognitive abilities and various affective factors 

(Dörnyei & Skehan, 2008). Hence, Computers have been proposed as a powerful alternative 

to address the individuality and instruct accordingly (Britt, 1967). Learning academic writing 

is a natural extrapolation to language learning and computers could assist accordingly. 
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2.2 Intelligent Tutoring Systems 

RWT’s audience consists of users attempting to learn research article writing 

differing in needs and requiring independent specialized instructions. One of RWT’s goals is 

to engage learners in sustained reasoning activity and actively communicate to lead the 

learner to a better understanding of the subject being tutored, being made possible through 

intelligent tutoring systems. The intelligent tutoring system (ITS) would interact with the 

learner through a series of instructions and provide individualized feedback based on their 

actions. This is done by considering a human tutor as an educational model and applying 

various artificial intelligence techniques to realize it in a computer system. Thus the 

“instructor in the box” applies various strategies to reduce the difference between the expert 

in the field and a new learner in the subject. 

2.2.1 Foundations 

ITS lays it foundations on set of independent modules each carrying out a specific 

functionality. An expert module (Richardson, 1988) forms the main backbone of domain 

knowledge and captures the underlying intelligence behavior. Cognitive expert modules 

(Anderson, 1988; Richardson, 1988) aim to simulate the actual human problem solving 

capability in a domain.  They also strongly consider psychological components essential for 

tutoring. A learner diagnosis module (Richardson, 1988) is used to infer the learner's 

understanding of the subject being tutored. The inference from this module is used to 

generate individualized feedback/action ranging from increasing complexity to offering 

crafted feedback towards improvement. Better diagnosis from this module also results on 

how close it references learner's misconceptions, erroneous and incorrect knowledge apart 
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from understanding. Pedagogical module is responsible for structuring and sequencing 

instructional content, messages and interventions in the ITS. The main challenge involves 

separating instruction from the content expertise and offering them alongside for the 

betterment of the learning (Anderson, 1988). The final user facing module involves the 

Human computer interface module. This interface is implemented for a transparent learning 

experience to empower learner to act independently and access the expertise it encapsulates. 

This module also integrates the other modules forming a single package suiting content to 

interface and vice versa. 

2.2.2 Automated Essay Scoring using Tutors 

Automated essay scoring through intelligent tutoring systems and providing 

appropriate feedback are important realms in essay writing. A wealth of tool implementations 

with strong research is prevalent in this space. Major ITS tools aiding automated essay 

scoring use a variety of features to analyze, assess and score essay writing.  

Elliot’s comprehensive specification of Intellimetric (Elliot, 2003), an automated 

essay scoring tool describes a model with 500 component features based on content, 

grammar, text complexity, sentence and word variety to intelligently assess user essays and 

automatically score them. Applying latent semantic dimension, the model determines 

correlation of candidate content to a modeled vocabulary collection. The information in 

terms of features gleaned from user writing is used to predict expert human score using a 

series intelligent mathematical model. A final score is arrived by optimizing the individual 

scores. 
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Intelligent Essay Assessor (Foltz et al., 1999) is yet another intelligent student essay 

scoring and assessment tool. It uses a combination of Latent semantic analysis and a 

reference database related to the domain to arrive at the likelihood of the vocabulary used in 

a written essay and its relation to the context. For e.g. Essays on the topic of computers and 

related contexts are weighed using a Computer science reference textbook in digital form. 

Relevant vocabulary is awarded a better score through this procedure. Essay valuation and 

scoring are done using a variety of techniques including comparing with pre-graded essays, 

gold standard ideal essays, comparing to portions of original text or subcomponents and 

comparing individual sentences against a reference textbook. An immense hardware and 

software requirement of the tool makes it difficult to deploy on desktop systems and hence is 

available for use as a web based tool only. Heavy use of statistical techniques to assess 

essays makes it difficult to communicate the inner structure of the scoring model eventually a 

threat to the scoring. Also statistical methods make assumptions of variance of prediction 

scores which may be different from the actual variance. 

E-Rater v2.0 scoring system (Attali & Burstein, 2006) uses a combination of 12 

different features to score essays. Six different areas of analysis including errors in grammar, 

usage , mechanics, style , discourse structure and vocabulary content are collectively used in 

order weigh the actual characteristics of writing. A sample of human scored essay data is 

used to identify and weigh in features that correspond to various human scoring criteria. 

These are used for fitting a model to the training data using a multiple regression procedure. 

By varying the sample data, appropriate models can be built for specific writing categories 

like grade level, topic level, thesis writing etc. The system shows high agreement with human 

scoring, correlation of scores between different prompts and detailed light on the scoring 
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process and its validity. Though functionally confirming, the system is far from covering all 

aspects of writing quality which could further be improved by assisting with better feature 

engineering measures. The model fitting procedure is also biased to identify good faith 

essays and performs poorly with anomalous and off-topic essay entries. Using human scored 

samples to build the model doesn’t equip the system to identify different patterns of writing 

exhibited by potentially different groups of users for e.g. users of Asian ethnic background 

have a different pattern of writing compared to the sample essays from native English 

speakers. 

Intelligent academic discourse evaluator IADE (Pendar & Cotos, 2008) is a genre 

based automated text analysis and feedback tool which targets research article introduction 

texts. It classifies learner’s article sentences into communicative moves based on Swales 

framework. Similar to E-Rater, sample human annotated research article introductions are 

used to identify important features corresponding to communicative modes and a model is fit 

using support vector machines. IADE also offers a variety of informational feedback in terms 

of color coding and distribution statistics facilitating learner’s writing process. 

Yet another approach to building intelligent tutoring systems involves Effort based 

tutoring (Arroyo, Mehranian, & Woolf, 2010) where a student’s engagement, domain 

knowledge, affect and meta cognition are integrated along with different dimensions of 

student behavior to make optimal pedagogical decisions. Specifically, student’s effort at 

different practice items is used to distinguish student behavior. Deriving an empirical 

estimate of effort along with difficulty of practice item is used to model pedagogical 

feedback behavior by the system. The modularity of the tutoring procedure allows usage in 

several learning environments and domains. 
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The current research in RWT extends previous work done on Intelligent academic 

discourse evaluation Tool (IADE) (Pendar & Cotos, 2008). IADE analyzes research articles 

and offers constructive feedback to learner’s discourse at move level. RWT’s goal is to 

analyze research articles at move level and specifically at the granular step level which 

collectively form a particular move. The approach is very similar in procedure to one used by 

IADE but uses a series of support vector machines in order to classify learner article 

sentences into particular moves and steps. 

2.3 Discourse Analysis 

For RWT, high quality analysis of research articles is necessary to offer specialized 

feedback to learners. A possible methodology is to consider and dissect learner articles at the 

discourse level as they reveal innate organization and structure. Discourse analysis of 

academic articles reveals how they are organized, carried and reproduced in a particular way 

and as required in certain institutional practices. Knowledge at discourse level is essential to 

users learning research writing to compensate sentence level processing difficulties. In efforts 

to find basic text structures, a four part model of ‘Situation’, ‘Problem’, ‘Solution’ and 

‘Evaluation’ was identified by (Hoey, 1979) which was not related to a particular discipline 

or specific text types, and could capture textual structure appropriately. It could be applied to 

wide range of disparate discourses. A formal schema is highly helpful in such cases as 

studied by Swales in 1990, through his research of nonnative speaker graduate students and 

their writing practices. 
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2.3.1 Rhetorical Structure Theory 

A descriptive framework for analysis of discourse and text was the Rhetorical 

structure theory (Mann & Thompson, 1988) for linguistically describing natural text and 

characterizing their structure as relations among different parts of text. It also captures the 

transition point, hierarchy and extent of relation among parts of text.  

Rhetorical structure theory (RST) accounts for textual coherence independent of 

lexical and grammatical forms of text. This is made possible by identifying “discourse 

markers” which are indicators of rhetorical relations in text.  Functionally, Rhetorical 

relations are the effect a writer intends to achieve by having two spans of text alongside. 

The asset of RST is the claim that it is a sufficient basis for analyzing vast majority of 

text in English language with minimal exceptions. 

2.3.2 Genre Analysis 

In the research article genre, the discourse structures in a section were related to 

communicative functions of text, resulting in analysis through rhetorical moves. A text 

section which performed a particular communicative function was termed a “Move”. Moves 

being functional units, collectively come together to attain the communicative purpose of the 

particular genre  (Douglas Biber, Connor, & Upton, 2007). Swales (J. Swales, 1981) 

conducted various studies on organizational patterns of research articles, to categorize 

discourse units within a text to their rhetorical moves.  

Frequently used moves are considered conventional part of the genre whereas rare 

once are optional moves. Moves indeed are realized through finer elements of text which are 
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termed as “Steps” by Swales  (J. M. Swales, 1990). Series of steps achieve the 

communicative purpose of a particular move to which it belongs. 

2.3.3 Move Analysis of Research Articles 

Swales (J. M. Swales, 1990) proposed a series of moves and steps that defined the 

rhetorical structure of Research article introductions.  The move and step structure 

appropriately captured the interactions between them, apart from performing communicative 

functions in scientific texts. The flexibility of the structure allowed moves and steps to 

reoccur cyclically; hence each appearance was considered a separate occurrence. Swales 

conducted the move analysis on a series of 48 introduction section texts, from research 

articles spanning over multiple disciplines. The structure was evidently discipline 

independent.  

Create a Research Space (CARS) by Swales is a three move model which is largely 

likely in most research article introductions. 

Table 2-1 CARS model for research article introductions, adapted from Swales (1990, p.141) 

Move 1: Establishing a territory  

 Step 1 Claiming centrality and/or 

 Step 2 Making topic generalizations 

and/or 

 Step 3 Reviewing items of previous 

research 

Move 2: Establishing a niche  

 Step 1A Counter-claiming or 

 Step 1B Indicating a gap or 

 Step 1C Question raising or 

 Step 1D Continuing a tradition 

Move 3: Occupying the niche  

 Step 1A Outlining purposes or 

 Step 1B Announcing present research 

 Step 2 Announcing principal 

findings 

 Step 3 Indicating RA structure 
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The move analysis implies the existence of definable and predictable moves within 

text that makeup a particular genre. This idea could be applied back, to teach novice writers 

to write in particular genre, by considering each step and move as building blocks and 

structuring writings around them (Dudley-Evans, 1995) . 

2.4 Automated Text Categorization 

RWT approaches move analysis, by categorizing stretches of learner text into 

communicate functions of moves and steps automatically. Text categorization (Sebastiani, 

2002) (aka Text classification or Topic spotting) is the automated assignment of topical 

categories to natural language texts or documents based on their content and relevance. 

Detecting patterns of similarity is thus of central importance in natural language processing 

tasks. Abundance of digital documents lately and a growing necessity towards their 

management has brought prominence towards text categorization techniques. Most 

implementations of text categorization involve either human engineering or statistical 

learning methodologies or a combination of two. RWT uses statistical means to learn the 

rules of underlying classification task through expert annotated samples. Following sections 

are basic underlying concepts related to RWT’s implementation of text categorization. 

2.4.1 A Formal Definition 

Mathematically, the text categorization problem may be defined as task of assigning 

Boolean value to each possible pair of document and a category.   

When 𝐷 = {𝑑1, 𝑑2, … . , 𝑑𝑛},  represents the domain of documents and 𝐶 is the set of 

predefined topics/categories 𝐶 = {𝑐1, 𝑐2, … . , 𝑐𝑛}, where  〈𝑑𝑗 , 𝑐𝑖〉  ∈  𝐷 × 𝐶. A value of T 
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assigned to 〈𝑑𝑗 , 𝑐𝑖〉 if 𝑑𝑗 indeed belongs to category 𝑐𝑖 and a value of F is assigned to 〈𝑑𝑗 , 𝑐𝑖〉 

otherwise. 

If we are able approximate the unknown function, ∶ 𝐷 × 𝐶 → {𝑇, 𝐹} , we have a 

classifier which could automatically classify pair of 〈𝑑𝑗 , 𝑐𝑖〉 as T or F , leading to decide if 

document 𝑑𝑗 belongs to 𝑐𝑖. 

Important assumptions include, 

 That categories are indeed just topical symbols and do not contain any helpful 

information. 

 There is no knowledge from outside to help with the classification. All that is 

available is set of documents, its contents and labels alongside. 

2.4.2 Single-label vs. Multi-label Text Categorization 

Initial implementation of RWT uses single label categorization where each stretch of 

text is assigned a single move and a single step. When a particular categorization task forces 

only a single category to be assigned to each document, it is considered as a single-label 

categorization (aka non-overlapping categories). When the categorization task allows 

multiple categories to be associated to each document, it is considered as a Multi-label 

categorization problem (aka overlapping categories) (Sebastiani, 2002). 

The single-label case is considered more important as it can be used to implement a 

multi-label categorization but the converse cannot be done. Thus, when we have a classifier 

that can classify a document with a category as true or false, it can be applied to all 

categories to find the multiple labels possible for a document.  
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Hence the above formal definition of text categorization problem can be described as 

consisting of |𝐶| independent categorization problems , each classifying a document in 𝐷 to a 

particular category 𝑐𝑖 , for i = 1,…, |𝐶|. Thus, each classifier for 𝑐𝑖 approximates,  𝜙𝑖: 𝐷 →

{𝑇, 𝐹}. 

2.4.3 Document-pivoted vs. category-pivoted text categorization 

RWT’s perspective of text categorization is document-pivoted (DPC) wherein an 

input document is analyzed to be placed into possible categories. On the other hand given a 

particular category, all documents that could possibly belong to the category may also be 

analyzed; this is termed as category-pivoted categorization (CPC). Applying DPC is evident 

for those text categorization tasks when documents are not readily available but gradually 

over a period of time, e.g. email filtering. CPC is applicable when a particular category is 

newly added to set of existing categories in a categorization task and documents are required 

to be reclassified according to the new set of categories e.g. photo tagging. 

2.4.4 Machine learning approach to Text Categorization 

Text categorization in RWT is implemented through Machine learning  (Sebastiani, 

2002),which  involves an inductive process resulting in a classifier for a particular category 

𝑐, through the observation of characteristics of documents classified as category 𝑐 or 𝑐̅ , by 

an expert in the domain. The approach of coming up with a classifier by supervising the 

learning using a set of samples, is an example of supervised learning. 

Mitchell (Mitchell, 1997) defines Machine Learning as, 
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A Computer program is said to learn from experience E with respect to some class of 

tasks T and performance measures P, if its performance at tasks in T, as measured by 

P , improves with experience E. 

ML approach is completely based on the existence of an initial corpus of manually 

categorized document samples Ω = {𝑑1, 𝑑2, … . , 𝑑𝑛} categorized under 𝐶 = {𝑐1, 𝑐2, … . , 𝑐𝑛}. 

Hence, the total function  �̂� ∶ 𝐷 × 𝐶 → {𝑇, 𝐹} is completely defined for every pair 〈𝑑𝑗 , 𝑐𝑖〉  ∈

Ω × 𝐶, Ω ⊂ 𝐷. When �̂�(𝑑𝑗 , 𝑐𝑖) = 𝑇 , we have a positive example of a document from 

category 𝑐𝑖. When 𝜙(𝑑𝑗 , 𝑐𝑖) = 𝐹, we have a negative example of a document from category 

𝑐𝑖. 

2.4.4.1 Training set and Test set 

The initial corpus is split into two independent subsets with elements distributed 

randomly, of unequal size. 

1. Training set – This is the set of documents and associated categories used for 

observing characteristics and inductively building (training) the classifier through 

supervision. 

2. Test set – This is the set of documents for testing the efficiency of classifier which 

was built using the training set. Testing involves comparing the outcome category of the 

classifier on an input document with the actual manually assigned category. Effectiveness of 

the classifier is reflected by measuring how often the two categories match. 

2.4.4.2 Cross Validation 

Cross validation (aka rotation estimation) is usually performed, to assess how a 

classifier’s performance would generalize on an independent data set. It is usually performed 
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to estimate the accuracy of an inductive process while applied in practice. k-fold cross 

validation (Mitchell, 1997, p. 146), involves inducing k different classifiers 𝜙1, 𝜙2 … , 𝜙𝑘 

from an initial corpus Ω , by splitting it into k-disjoint equal-sized subsets and iteratively 

considering k-1 sets as training sets and remaining set as a test set. The final performance of 

inductive process is obtained by averaging the performance measures of the k-different 

classifiers. 

2.4.4.3 Text Representation 

In Text categorization, compact representation of textual material is of paramount 

importance as it directly affects the efficiency of the inductive process of building a 

classifier. When text is represented concisely, processing is faster in turn speeding up the 

supervised training of the classifier.  

As in information retrieval, a sentence is represented as a vector of weights,𝑑𝑗 =

〈𝑤1𝑗, 𝑤2𝑗 , … 𝑤|𝑇|𝑗〉, of dimension |𝑇|, where T is known as a set of features. Features are 

individual measureable properties of observed phenomena used for learning. 

A typical scheme which applies the above representation is the bag of words model. 

Here the set of distinct words in whole corpus, are indexed without concern to their order of 

occurrence. Thus the set of words become the features of the model. Each sentence is then 

represented as a bit vector of the set of all words, having a weight of ‘1’, if the word appears 

in the sentence and weight of ‘0’ otherwise; This is fed as input to the induction process for 

building the classifier. 
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Apart from using binary weights, other schemes practically use some weighing 

scheme, with normalized scores occurring between 0 and 1. Using the actual count of 

occurrence of a particular word in a sentence as weight is a well applied weighing scheme. 

2.4.4.4 Feature Reduction Techniques 

Feature reduction procedures are applied in RWT when training a classifier to reduce 

feature space while maintaining the performance of the classifier or improving it. It involves 

a set of transformations and combinations performed on the original feature set in order to 

identify features of high innate informational value (D. Biber, Conrad, & Reppen, 1998). 

Common feature reduction procedures used by RWT are discussed in detail.  

2.4.4.4.1 Stop Words Removal 

Apart from a compact sentence representation, stop words removal is another 

procedure that could reduce the amount of data processing involved. Before processing the 

whole corpus towards sentence representation, it is customary to remove all words of low 

informational value. Several stop lists are readily available and are usually containing 

common grammatical or functional words such as ‘the’, ’of’, and ‘in’. Use of such lists is 

common across information retrieval systems, as their removal rarely cause a significant loss 

of accuracy (Y. Yang, 1995). 

2.4.4.4.2 Term Frequency 

Frequency of occurrence of words is a useful measure to assess the relative 

importance of terms in documents. The terms with higher frequency are of higher importance 

(Rijsbergen, 1979). A natural way to reduce feature space is to consider terms having 

occurrence higher than certain threshold frequency. By considering words of frequency 2 or 
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more, the feature space would be reduced to almost half as single frequency terms normally 

predominate in a corpus. 

2.4.4.4.2 Relative Term Frequency 

Term frequency considers global frequency of terms throughout the whole corpus. 

Alternatively, term frequencies could be measured relatively among different categories 

within in the corpus. Thus, terms whose frequency is different across different categories are 

considered more important rather than terms with high frequency in all the categories. This 

relativity gives a measure of difference and affinity of a term to a single category. To 

consider those words that appear only in a single category is a natural extrapolation but they 

are almost rare offering poor performance than expectations. 

Some measures of relative importance used in NLP and machine learning include 

Information Gain (IG), Mutual Information (MI), T-test, Odds ratio and Chi-Squared (CHI). 

(For a review of these and other similar measures, see (Y. Yang & Pedersen, n.d.) and 

(Ikonomakis, Kotsiantis, & Tampakas, 2005)) 

Odds ratio (Bland & Altman, 2000) in particular used by RWT for relative term 

frequency, is a measure of effect size, which describes the correlation between two classes or 

categories. It can be used effectively as a relative term frequency measure to study 

correlation of certain terms occurring prominently in certain specific categories. Occurrence 

of these terms indirectly signals association with certain categories. 

OddsRatio(fi,cj)= log

P (
fi

cj̅
) (1-P (

fi

¬cj̅̅ ̅̅ ))

P (
fi

¬cj̅̅ ̅̅ ) (1-P (
fi

cj̅
))
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P(𝑓𝑖 𝑐𝑗)⁄  Probability that observed term 𝑓𝑖 belongs to class 𝑐𝑗 

P(𝑓𝑖 ¬𝑐𝑗)⁄  

 

Probability that observed term 𝑓𝑖 does not belong to class 𝑐𝑗 

2.4.4.5 Term Weighing 

Another approach towards reducing the feature space is to weigh features based on 

some informational measure and trim those which score low on the scale. This could also be 

combined along with other feature reduction procedures to better manage the feature space. 

A simple measure is considering the frequency of occurrence of a term in a corpus as a 

weight of the term. 

Yet another popular weighing scheme is the standard 𝑡𝑓 − 𝑖𝑑𝑓, term frequency – 

inverse document frequency measure (Croft, 1987). This measures the importance of a 

particular term or word occurring in a document of the corpus, using term frequency which is 

the number of times a term occurs in a document and inverse document frequency which is 

the log of the total number of documents in the initial corpus over the number of documents 

containing the term. 

 𝑡𝑓 − 𝑖𝑑𝑓(𝑡𝑖, 𝑑𝑗) = 

 (number of times 𝑡𝑖 occurs in 𝑑𝑗)* log2
|𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑟𝑝𝑢𝑠|

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡𝑖 𝑎𝑝𝑝𝑒𝑎𝑟𝑠  
 

Here 𝑡𝑖 – a term or word from the corpus, and 𝑑𝑗- a sentence or document from the 

corpus.  

The downside of using this measure (and most other measures) is it considers the 

importance of a term from a frequency and occurrence perspective rather than weighing 

syntactical role or considering into account the order of occurrence of a term. 
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2.4.4.6 Support Vector Machines - Learner Classifier Systems 

The core system driving RWT to learn from expert annotated samples and predict for 

new samples, is the learner classifier system. Learner classifier systems learn to perform the 

best action given its input based on conditions. The core of the learning systems is an 

algorithm to process the input data to produce a representation of target knowledge for 

requested operation. Once the representation is in place, this can be applied to new test data, 

to obtain a general hypothesis about the data in terms of rules/concepts learnt. 

Numerous algorithms exist to learn from data and have different assumptions or 

inductive bias according to the learning context (Mitchell, 1997). Hence some algorithms 

perform in certain areas and contexts better than others and choosing them accordingly 

affects their performance in the learning tasks. The bias of algorithms plays a key role in 

their applications. 

Support vector machines (SVM) (Cortes & Vapnik, 1995) used by RWT, are a class 

of learner classifier algorithms which are based on the structural risk minimization principle 

from computational learning theory (Vapnik, 1999).  

The main idea with a SVM is to identify a hypothesis h of lowest true error possible 

and it is guaranteed through structural risk minimization. True error is the probability that a 

hypothesis h will make an error on an unseen randomly selected data sample. Error of 

hypothesis h on a given training sample and the complexity of the actual hypothesis space 

containing h namely H, can be used to calculate an upper bound on the true error. This upper 

bound can be further optimized, by minimizing the bound on the true error and SVMs 

achieve this by controlling the dimension of hypothesis space H. Notice however, the 
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dimensions of H are in VC dimension. VC dimension is a measure of capacity of a learning 

algorithm. It is measured as the cardinality of largest set of points an algorithm can shatter.  

SVMs basically learn linear functions but they can be adapted to learn complex 

functions using kernels. Kernel trick (Hofmann, Schölkopf, & Smola, 2008), maps 

observations/features to a higher dimensional inner product space where observations are 

linearly separated using a hyperplane.  

SVMs classify by mapping input/observations/features of various categories or 

classes to a high dimensional feature space through the use of a non-linear mapping function 

chosen as a priori. In this high dimensional space, a linear surface is used to classify features 

according to their relevant categories. Thus optimally all features of same category are 

separated to the same side of the linear surface. The construction of the linear surface holds 

special properties to ensure generality.  

 

Figure 2-1 Hyperplane separates data of two different categories 

 

An optimal linear surface (Cortes & Vapnik, 1995; Vapnik, 1999) or hyperplane for 

separable categories separates features of different categories using a maximum margin. 

Complex in low dimensions

ns 

Simple in high dimensions 

Feature map

ns 

A separating hyperplane 
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Hence only a few features which lie close to the maximal margin are taken into consideration 

to actually determine the margin mathematically. These features which determine the optimal 

maximum margin hyperplane decision boundary are named the support vectors.  

SVMs measure complexity of the hypothesis through the maximal margin and 

optimizing the maximal marginal width. Hence the dimensions of the feature space are 

irrelevant to the complexity aiding high dimensional feature vector applications. 

Some theoretical concepts justifying application of SVMs to our learner’s research 

article analysis and text categorization are discussed in detail. 

2.4.4.6.1 Text categorization applications 

RWT uses SVMs for identifying moves and steps for stretches of text, as the text 

categorization problem has high dimensional features and most features carry useful 

information to be discarded irrelevant (Joachims, 1998). SVMs are said to work better for 

text categorization applications (Joachims, 1998) as they exhibit the following properties 

necessary for building text classifiers. SVMs can handle high dimensional features 

(minimum 10,000) as their complexity depends on the composing hypothesis space and not 

the size of the features. Hence high dimensional feature spaces help consider more features at 

any point of time. Bag of words model applied to text categorization almost always yields 

sparse document vectors or feature vectors. Algorithms having similar inductive bias like 

SVMs are said to perform well for text categorization applications , empirically and 

theoretically (Kivinen, Warmuth, & Auer, 1997). Most text categorization problems could be 

solved linearly; SVMs are for finding linear boundaries of maximum marginal separation. 
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Thus above arguments theoretically provide evidence for the role of SVM and their 

application in text categorization problems. 

2.4.4.6.2 Practical selection of SVM Parameters 

Theoretically, SVM Regression is formulated as a minimization of the following 

function (Vladimir Cherkassky & Ma, 2004), 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
|𝜔2| + 𝐶 ∑ (𝜉𝑖

∗ + 𝜉𝑖)
𝑛
𝑖=1  

Subject to 

 𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜔) − 𝑏 ≤  𝜀 + 𝜉𝑖
∗ ,   𝑓(𝑥𝑖, 𝜔) − 𝑏 −  𝑦𝑖 ≤   𝜀 +  𝜉𝑖,   𝜉𝑖

∗, 𝜉𝑖 (𝑆𝑙𝑎𝑐𝑘 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) ≥

0 

Here, C is a positive constant known as the regularization parameter and 𝜀 controls the 𝜀 −

𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (Vapnik, 1999) . 

 

𝑓(𝒙, 𝜔) =  ∑ 𝜔𝑗𝑔𝑗(𝒙)

𝑚

𝑗=1

+ 𝑏 

𝒙 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑖𝑛𝑝𝑢𝑡 , 𝑔𝑗(𝒙) is a set of nonlinear transformation and ‘𝑏’ is the bias 

term. The above minimization problem can be solved from the dual problem and its solution 

is given by,  

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝒙) + 𝑏𝑛

𝑖=1  , subject to the constraints  

 

0 ≤  𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶 (dual variables)  . 𝐾(𝑥𝑖, 𝒙) is the symmetric kernel function , satisfying 

Mercer’s conditions (Vapnik, 1999). 
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The estimation accuracy of the SVM thus depends on the good setting of hyper 

parameters C, 𝜀 and the kernel function’s parameters. Parameter C controls the trade-off 

between degree to which deviations larger than value of 𝜀 are tolerated in the optimization 

and the model complexity. Parameter 𝜀 controls the width of 𝜀 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑧𝑜𝑛𝑒 to fit the 

training data (V. Cherkassky & Mulier, 2007). 

Four basic kernel functions used frequently include the following, 

 Linear kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) =  𝑥𝑖
𝑇𝑥𝑗  

 Polynomial kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)𝑑 , 𝛾 > 0  

 Radial basis function: 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾|𝑥𝑖 − 𝑥𝑗|
2

), 𝛾 > 0 

Support 

Support 

Margin 

𝐾(𝑥𝑖, 𝑥𝑗) =  ∅𝑇(𝑥𝑖)∅(𝑥𝑗) 

 

Misclassified 

𝜉 > 1 

𝜉 < 1 

b 

 𝑤𝑇∅(𝑥) + 𝑏 = −1 

 

 𝑤𝑇∅(𝑥) + 𝑏 = +1 

 

 𝑤𝑇∅(𝑥) + 𝑏 = 0 

 

Figure 2-2 Hyperplane separates two different categories with a maximal margin separation 
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 Sigmoid: 𝐾(𝑥𝑖, 𝑥𝑗) = tanh ( 𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟) 

SVM implementation in RWT uses Radial basis function (RBF) kernel as it can 

model a nonlinear relation between features and categorical labels. Moreover, linear kernel is 

a special case of RBF kernel when used with the same value of parameter C. RBF kernel also 

has fewer hyperparameters when a relation is modeled using it, rather than modeling with a 

polynomial kernel. RBF kernel is bound by constraint 0 <  𝐾(𝑥𝑖 , 𝑥𝑗) ≤ 1 , while polynomial 

kernels are unbound and may possibly go to zero or infinity when the polynomial is of higher 

degree. But like all other kernels, RBF kernels suffer from limitations especially when the 

number of features are very large, wherein a linear kernel might be the best applicable. 

Practical approaches towards hyper parameter choice of values for C and 𝜀 are 

summarized below (Vladimir Cherkassky & Ma, 2004), 

 Prior knowledge and/or user expertise can be used to select values for C and 𝜀 (V. 

Cherkassky & Mulier, 2007; Schölkopf & Smola, 2002; Vapnik, 1999). 

 To set values of 𝜀 proportional to noise variance was proposed by (Kwok & Tsang, 

2003; Schölkopf & Smola, 2002) aligning with several other sources on SVM. Large sample 

sizes tend to have small 𝜀 value. 

 Setting value of parameter C to range of output values (Mattera & Haykin, 1999) 

 Computationally intensive cross validation can be used to select appropriate values to 

hyper parameters (V. Cherkassky & Mulier, 2007; Schölkopf & Smola, 2002). 

 Statistical interpretation of SVM regression opens various possibilities and under this 

approach, value of 𝜀 can be tuned for appropriate noise density, whereas parameter C can be 
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estimated using cross validation(Hastie, Tibshirani, & Friedman, 2001; Schölkopf & Smola, 

2002). 

2.4.4.7 Evaluating Text Categorization Systems 

Classifiers trained for RWT are evaluated through experiments rather than analytical 

calculations. Experimental evaluation of a classifier is used to measure effectiveness rather 

than efficiency, i.e. the right classifications made by a classifier in total are measured to 

realize effectiveness in a practical application. The main measures used for RWT include 

precision, recall and accuracy as discussed in detail below. 

2.4.4.7.1 Precision and Recall 

Classic Information retrieval notions of precision 𝜋 and recall 𝜌 are usually adapted 

to be used with text categorization systems to measure classification effectiveness. 

Precision with respect to a category is defined as the probability that any random 

document classified to belong to the category actually belongs to it. 

𝜋𝑖 = 𝑃(�̆�(𝑑𝑥, 𝑐𝑖) = 𝑇 𝜙(𝑑𝑥, 𝑐𝑖) = 𝑇⁄ ) , 

 𝑤ℎ𝑒𝑟𝑒 𝑑𝑥 𝑖𝑠 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 , 𝑐𝑖 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑎𝑛𝑑 𝜋𝑖 𝑖𝑠 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑐𝑖 . 

Similarly, Recall with respect to a category is, probability that any random document 

belonging to a category is actually classified under it.  

𝜌𝑖 = 𝑃(𝜙(𝑑𝑥, 𝑐𝑖) = 𝑇 �̆�(𝑑𝑥, 𝑐𝑖) = 𝑇⁄ ) , 

 𝑤ℎ𝑒𝑟𝑒 𝑑𝑥 𝑖𝑠 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 , 𝑐𝑖 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑎𝑛𝑑 𝜋𝑖 𝑖𝑠 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑐𝑖 . 

The measures are subjective as they measure the expectation of user that system 

behaves appropriately when classifying an unseen document under a certain category. 

Contingency table organizes and makes calculating measures easy. 
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Table 2-2 Contingency table for Category c_i 

Category 𝑐𝑖 Expert Judgments 

YES NO 

Classifier Judgments YES 𝑇𝑃𝑖 𝐹𝑃𝑖 

NO 𝐹𝑁𝑖 𝑇𝑁𝑖 

 

Table 2-3 Global contingency table 

Category set 𝐶 =
{𝑐1, 𝑐2, … 𝑐|𝐶|} 

Expert Judgments 

YES NO 

Classifier 

Judgments 
YES 

𝑇𝑃 =  ∑ 𝑇𝑃𝑖

|𝐶|

𝑖=1

 𝐹𝑃 = ∑ 𝐹𝑃𝑖

|𝐶|

𝑖=1

 

NO 

𝐹𝑁 =  ∑ 𝐹𝑁𝑖

|𝐶|

𝑖=1

 𝑇𝑁 = ∑ 𝑇𝑁𝑖

|𝐶|

𝑖=1

 

 

Here, 

 𝐹𝑃𝑖  (𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑤𝑟𝑡 𝑐𝑖) is number of test documents incorrectly classified as 

under category 𝑐𝑖 . 

 𝑇𝑃𝑖( 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑤𝑟𝑡 𝑐𝑖) is number of documents correctly classified as under 

category 𝑐𝑖. 

 𝑇𝑁𝑖( 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑤𝑟𝑡 𝑐𝑖) is number of documents correctly classified as not 

belonging to category 𝑐𝑖 which actually don’t belong to 𝑐𝑖. 

 𝐹𝑁𝑖( 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑤𝑟𝑡 𝑐𝑖) is number of documents incorrectly classified as not 

belonging to category 𝑐𝑖 which actually belong to 𝑐𝑖. 

The contingency table can be used to arrive at values of precision and recall of category 𝑐𝑖 

accordingly as below. 

𝜋�̂� =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 , 𝜌�̂� =

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
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For obtaining the global precision and recall numbers, two different methods are 

adopted as below, 

In Micro averaging, 𝜋 𝑎𝑛𝑑 𝜌 are calculated from summing individual decisions, 

𝜋�̂� =
∑ 𝑇𝑃𝑖

|𝐶|
𝑖=1

∑ (𝑇𝑃𝑖
|𝐶|
𝑖=1 +𝐹𝑃𝑖)

 , 𝜌�̂� =
∑ 𝑇𝑃𝑖

|𝐶|
𝑖=1

∑ (𝑇𝑃𝑖
|𝐶|
𝑖=1 +𝐹𝑁𝑖)

  

In Macro averaging, precision and recall are evaluated for individual categories 

initially and then averaged to give macro averages, 

𝜋�̂� =
∑ �̂�𝑖

|𝐶|
𝑖=1

|𝐶|
 , 𝜌�̂� =

∑ 𝜌�̂�
|𝐶|
𝑖=1

|𝐶|
 

The two quantities offer different results as their emphasis differs based on generality 

of categories. Their application purely depends on requirements. 

2.4.4.7.2 Accuracy and Error 

Measures other than precision and recall normally used among machine learning 

literatures include Accuracy and Error of the classifier on data. But they are insensitive to 

variations in number of correct decisions when compared to 𝜋 and 𝜌 (Y. Yang, 1999) due to 

large denominator values.  

Accuracy is estimated as, 

�̂� =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 , 

 

Error is estimated as, 

�̂� =
𝐹𝑃 + 𝐹𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 , 
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CHAPTER 3. SYSTEM ARCHITECTURE 

In this chapter, the design and architecture of subsystems forming the backend of 

RWT are discussed in detail. We consider the expert module which is responsible for 

analysis and interpretation, the learner diagnosis module providing inference of learner’s 

understanding and the pedagogical module providing assistance and feedback to learner. The 

backend in turn has two separate independent sub systems, consisting of a training system 

which is used to build a classifier from data and a test system where the classifier trained 

previously is plugged in for use for manual input and testing.  

3.1 Contributions 

Research and development of RWT span over a few years and the observed accuracy 

of the final move and step analysis classifiers were not near the expected numbers for 

practical usage. Ryan (Kirk, 2011) did a great job in extracting the corpus and normalizing 

the data across several tables. But the training sub system and test sub system were not their 

best and debugging issues related to the accuracy were time consuming. Moreover, the code 

was ready only for unigram extraction and consumption and was not naturally extensible to 

accommodate trigrams from the corpus. 

My initial effort as per need was to extract the trigrams, calculate odds ratios and 

accommodate them into model creation and testing. This was completed successfully under 

directions from Nick Pendar (Nick Pendar, 2011). As soon as the trigrams, were accounted 

for the accuracy increased from 48% to 70% and was ready for classroom usage and testing. 

Moreover, Ryan's code involving ensemble learners including Naive Bayes and Lexical 

bundles were removed as SVM classifiers showed higher accuracy independently. Trigrams 
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were accounted at move and step hierarchies as database tables, extracted data and Python 

source code for extraction, database update, model creation and model testing. 

In feature extraction, previous code sections had features unprocessed or partially 

stubbed. This was improved to handle recurring patterns mainly URLs, domain names and 

HTML special characters. For RWT's model creation modules, research and experiments on 

multifarious classifier models that accounted for more than just binary features including 

SVMs that accept numerical features like odds ratios and feature frequencies were also coded 

in Python to test accuracy. 

3.2 System Architecture of Expert Module 

3.2.1 Corpus Preparation 

Supervised machine learning algorithms require large amount of labeled samples for 

training a classifier. Classifiers are built on samples as it might be impossible or impractical 

to collect all different possibilities of data for a particular machine learning task. Samples 

reflect the desired properties and attributes we wish to learn. A corpus is a structured 

collection of samples of text used to represent a target language. 

Corpus creation was of immense importance to RWT research and to my portion of 

work described. The corpus based approach and construction were mainly carried out by Dr 

Elena Cotos and her team of trained annotators, who manually annotated the text files using 

modified Swales framework (J. M. Swales, 2004; J. Swales, 1981). 

 A corpus of sample research articles was used as it is impossible to collect every 

possible variation. Research articles contain 5 major components namely, Introduction, 

Methods, Results, Discussion and Conclusion. Termed as “Sections” in RWT, Discussion 
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and Conclusion are combined as a single section, forming four major sections of research 

article. Current implementation focuses primarily on research article introduction section. 

Research article introductions vary by structure and content across various 

disciplines. A stratified sample corpus of research articles from each discipline is compiled to 

represent a particular discipline. 

Most research articles are PDF files and are not directly usable for textual analysis 

and processing. Hence these files are minimally preprocessed to extract the actual text 

content and thus converted to plain text files preserving punctuations, paragraph structures 

and boundaries. Any special characters, images or symbols without a text representation are 

discarded in this step. The main specialized corpus consists of 1,020 research articles and 

1,322,089 words. The research articles span over 51 disciplines each represented through 20 

texts. All articles in the corpus reported on empirical research from reputed academic 

journals published between 2003 and 2009.  

The introduction sections from the research articles were made into separate text files 

to form the training data. The sub-corpus of introduction sections has 650 articles, totaling 

15,460 sentences and 366,089 words. 

Plain text files contain very little information to identify organizational structure of 

discourse. Especially, the structure of discourse varies across disciplines and doesn’t 

necessarily fit under a common skeleton. Hence the text files are annotated manually with 

different communicative functions of Moves and Steps. 
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Table 3-1A modified version of Swales move/step framework (J. M. Swales, 2004) used for annotation 

Move Step 

Move 1: Establishing a territory  

 Step 1: Claiming centrality 

 Step 2: Making topic generalizations 

 Step 3: Reviewing previous research 

Move 2: Identifying a niche  

 Step 4: Indicating a gap 

 Step 5: Highlighting a problem 

 Step 6: Raising general questions 

 Step 7: Proposing general hypotheses 

 Step 8: Presenting a justification 

Move 3: Addressing the niche  

 Step 9: Introducing present research 

descriptively 

 Step 10: Introducing present research 

purposefully 

 Step 11: Presenting research questions 

 Step 12: Presenting research hypotheses 

 Step 13: Clarifying definitions 

 Step 14: Summarizing methods 

 Step 15: Announcing principal outcomes 

 Step 16: Stating the value of the present 

research 

 Step 17: Outlining the structure of the paper 

  

The team used calisto workbench (Day, McHenry, Kozierok, & Riek, 2004) with a 

custom XML markup to annotate and tag each sentence with a step and a move they 

communicate. The XML markup also allows nesting several moves and steps and assigning 

multiple steps to multifunctional stretches of text. 

3.2.2 Database design 

Ryan Kirk (Kirk, 2011) made an initial effort to import annotated data into a 

normalized database schema. The annotated corpus contains tagged information indicating 
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the particular move and step a sentence belongs to. This data was loaded onto a database for 

faster processing, querying and management. MySQL (MySQL, 2004) was used as the 

database management system with a normalized schema, to hold the corpus data in an 

equivalent form. Importing data into the MySQL database tables was performed using 

custom Python scripts which parse the annotated XML files using an XML parser and import 

each sentence to the database along with metadata on moves and steps. XML parsers are 

capable of handling nested tags; hence multifunctional sentences are represented multiple 

times in the database with different moves and steps capturing both primary and secondary 

communicate functions of stretches of texts. The database is based on the following schema, 

 Sentences – This table holds all the sentences of the corpus, along with meta data 

about the sentences such as discipline to which it belongs, move and step it was tagged onto, 

file from which it came from (to backtrack) and importantly the order of occurrence of the 

sentence in  annotated text file (to reconstruct the actual text back from database). 

 Words – This table contains all the unique words present in the whole corpus with a 

unique id as a primary key. The primary key is referred by other tables. 

 SentenceWords – This is a foreign key association table, referring contents from 

Sentences table and Words table. This table is used to link sentences to its constituent words 

and vice versa. 

 Moves – This table holds an index of all the moves from the CARS model using a 

unique identifier as primary key. This is referenced by the Steps table. 

 Steps – This table holds an index of all the unique steps from the CARS model with 

reference to parent move they belong to. The table’s primary key is referenced by Sentences 

table. 
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 TrigramsGlobalfrequency – This table holds an index of all trigram strings found 

throughout the corpus with frequency of occurrence globally. A custom Python script which 

processes each sentence from the Sentences table arrives at its trigram elements. These 

trigrams are inserted into this table with a frequency of 1, or the frequency is incremented if 

trigram entry already exists in the table. 

 TrigramsLocalFrequency – This table is similar to the global frequency trigram index 

but holds local frequency of trigrams found in a particular step for processing. The frequency 

values are useful in odds ratio calculations which are used for feature reduction. Step 

frequency measures in turn can be used to arrive at move frequency of a particular trigram as 

set of steps constitute a move. 

 TrigramSentenceOccurrence – The table holds associates TrigramsGlobalFrequency 

and Sentences tables. This table links trigrams to the containing sentence and vice versa. 

 

For RWT, the advantage of moving sub-corpus into database is the ease of 

management and availability of SQL queries to obtain insights on data. Most of feature 

processing, feature reduction measures, calculations, frequency counts can be seamlessly 

dealt with complex nested queries instead of handwriting custom Python scripts. Also, 

MySQL offers various optimizations to provide high performance and concurrency which 

come handy when managing and analyzing corpus data of any size (Schwartz, Zaitsev, & 

Tkachenko, 2012) . 

Various custom indexes help querying against data a lot faster and easier and have 

been implemented in the MySQL database using create index statements.  

Mini Database schema diagram - pending 
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3.2.2.1 Database design revision 

Dr Evgeny Chukharev Hudilainen (Chukharev Hudilainen, 2013) proposed the 

second revision to RWT's database structure aimed at optimizing the training procedure. The 

above schema was replaced with a single database table to hold the entire corpus of articles 

for different sections. The schema was denormalized and redundant but concise. Apart from 

changes to schema, the database engine was replaced from MySQL (MySQL, 2004)  to 

SQLite (Hipp & KENNEDY, 2007). Once a classifier was trained from the training corpus, 

the training corpus can be safely disregarded during testing. This was an important design 

decision that chose SQLite over MySQL as MySQL was feature intensive. SQLite on the 

other hand stored the entire database in a plain text file, and was only used during the training 

procedure. The shift also ensured abstracting the entire training procedure from the test 

scripts exposing only the classifier model and set of features instead of the corpus itself. The 

revised schema also spawned new Python scripts, modifying the training subsystem entirely. 

The details are discussed in the upcoming section. Following is the schematic description of 

database fields and their data types. 

Table 3-2 Revised Database Schema 
Attributes Type 

Id TEXT 

File TEXT 

Discipline TEXT 

Section TEXT 

Move TEXT 

Step TEXT 

Is_primary INTEGER 

Primary_move TEXT 

Primary_step TEXT 

Attributes Type 

Content TEXT 

Sentence_id INTEGER 

3.2.3 Training sub-system 

The training sub system is an important part of an expert module. Training a classifier 

through an inductive process after analyzing data and applying algorithms to actually learn 
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the characteristics pertaining to a category are the main course of actions implemented in this 

sub system.  

In RWT, the training sub system is in turn implemented integrating independent 

building blocks each achieving modular tasks. The integration is brought about by a Python 

script which communicates with the building blocks moving data and results inside out. 

Following are the building blocks which together constitute the training process for 

RWT. 

 

Figure 3-1 RWT’s Training Sub-System 

3.2.3.1 Feature Processing 

As in Chapter 2, identifying important features that capture characteristics of data we 

are trying to learn is necessary for learning algorithms to perform. Feature extraction and 

analysis is a repetitive process where each feature set is tested for performance and better 

performing (in terms of accuracy of the classifier) sets replace existing ones.  Similarly, 

various feature reduction measures with experimental parametric values, may be applied each 

resulting in completely different set of features.  

Prior research on IADE (Pendar & Cotos, 2008) before RWT noted that bigrams had 

a negative effect on text categorization towards discourse analysis. In RWT, unigrams and 

trigrams are used as the main features to build the classifier. Database tables hold unigram 

Feature 
Processing

Training file 
Creation

SVM Training
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and trigram strings from the whole corpus along with frequency figures measured along 

various hierarchy levels including whole corpus level, move level and the step level. 

Before applying feature reduction procedures, a threshold frequency was considered 

to cut down unimportant features to further reduce the feature space. Unigrams and trigrams 

occurring fewer than “5” times are discarded to proceed with. This could further be increased 

to a higher cut off value, if text categorization task using fewer features yields similar 

performance. Reducing the feature space augments the performance of all subsequent 

processes that follow, including training file creation, actual classifier training and testing 

classifier for performance. 

Prior implementations by Ryan kirk had numerous Python scripts to achieve feature 

weighing and processing. Currently in RWT, SQL statements are used to weigh (Odds ratios) 

features instead of custom scripts as they are easier to debug and faster to change/export. The 

unigrams and trigrams which exhibit high odds ratios are considered for further processing. 

Having the features and their frequency values in the database serves an advantage as most of 

the post processing and weighing can be done using simple nested SQL queries rather than 

custom Python scripts. Finally the features identified are exported as plain CSV files to aid 

training file creation and training of the classifier. 

Following is an example SQL Query to identify unigrams globally occurring “5” 

times or more, grouped along the particular step in which they occur. The unigrams are listed 

in descending order weighed according to odds ratios of a unigram occurring in a particular 

step. Similar query can be applied to identify trigrams. 

select t.* from 

(select w.word,sent.stepid,w.globalFreq,count(*) as 

LocalFreq,count(*)/(w.globalfreq-count(*)) as Odds from 

sentencewords sw, 
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words w, 

sentences sent 

where sw.wordID=w.wordID 

and sent.sentenceID=sw.sentenceID 

and w.GLOBAlfreq >= 5s 

group by w.word,sent.stepid 

order by w.word ,sent.stepid ) t 

order by t.odds desc 

3.2.3.2 Training file creation 

Following feature extraction, training file creation is the next step in line. In Chapter 

2, compact representation of corpus and its importance are specified as it affects the 

inductive process of training. The training file format in turn depends on the actual algorithm 

implementation tool being used for training a classifier. RWT uses the bag of words model 

with the specification of actual class/category followed by tab/comma/space separated 

feature values. Depending on the classification algorithm and implementation, the individual 

elements in a training file can be string labels or numeric values indicating a measure/weight 

of a feature. 

 A Python script iterating over sentences in the database is used to generate feature 

representations for each sentence. Thus a single line of the training file, referring to a 

sentence in the database has category/class value as the initial element, followed by feature 

values. In case of RWT, the features values are binary though numerical values are 

supported. Feature representations can be either dense or sparse. Dense representations 

require all features to hold weight or value even if particular feature is absent or has no value 

(zero weight is used). Sparse representations on the other hand require specifying only those 

features with a value. All features unspecified are automatically equated to zero. Sparse 

representations offer small size representations and are relatively less time consuming to 

generate. 
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An example of a feature vector represented in dense and sparse formats are given 

below, with first cell indicating category and 4 features to follow. Category “1” is separated 

with a tab whereas features are separated with a space. 

Dense representation – 1 1 0 2 0 0 0 0 0 0 1 0 0 0 1 0 2 0 5 0 0 0 0 0 0 0 0 0 0 

Sparse representation – 1 1:1 3:2 10:1 14:1 16:2 17:5 

For RWT, LIBSVM (Chang & Lin, 2011) used to implement support vector machines 

poses limitations on training file representation. Hence training file in RWT uses a sparse 

representation with binary/numerical values for features and numerical values for categories.  

3.2.3.3 LIBSVM – Support Vector Machine Library 

LIBSVM (Chang & Lin, 2011), a support vector machine implementation library 

with bindings to Python was used to train the classifier. LIBSVM supports multi-category 

classification. Highly configurable in application, the library’s API interface allows a 

developer to set parameters, choose kernels, train a classifier, apply cross validations, save 

models trained and load models for future use. The library also allows training based on 

probability and returns information about the model trained including mean squared error, 

optimization history, accuracy and estimates of probability of classification to particular 

categories for each sample. A helper Python script is provided by the library for automating 

grid searching and parameter selection to find the best performing values by covering the 

parameter space extensively. 

3.2.3.4 Revised training sub-system 

Post revised database schema (mentioned in 3.1.2.1) adopted for RWT, resulted in 

streamlined training subsystem which combined the feature processing and training file 
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creation into a single Python script instead of two different modules. The idea was proposed 

by Dr Evgeny Chukharev Hudilainen (Chukharev Hudilainen, 2013) to optimize the training 

sub-system to contain fewer highly coupled, simple components thus speeding the entire 

training procedure. The script consumed the entire corpus from SQLite database and 

produced odds ratio weighed unigram and trigram features as text files. It also transformed 

the entire corpus into training files on the fly from the memory. This effort drastically 

reduced the time taken for feature extraction and training file creation and optimized the 

training sub-system appropriately. The individual steps implemented in the python script are 

covered in the next chapter. 

3.2.4 Test sub-system 

Similar to the training sub system, the functionalities to test a constructed model were 

based on independent modules, integrated using Python. Main inputs passed on from the 

training sub system include feature sets, trained model file saved to disk by LIBSVM along 

with chosen parametric values and set of routines to load the above data into memory as they 

are same. 

3.2.4.1 Tester Script 

A trained SVM model can be loaded on demand to analyze against a test corpus after 

representing them as feature vectors. In RWT, the test corpus consists of completely new 

data not available during training, but collected and processed similar to the training data. 

Performance of a model being tested is calculated by comparing model’s automated 

classification with an expert’s classification of the entire test corpus. With the feature set, an 

input sentence is converted to feature vector and passed as input to the model for 
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classification. LIBSVM predicts a particular category by minimizing the error of 

classification through structural risk minimization. The whole functionality was achieved in 

RWT through custom Python scripts. 

The script is generic to load any input model and feature vectors to the memory. Once 

loaded, it allows a test to be performed on a given set of sample sentences. The script also 

produces verbose output on accuracy achieved on the test set using this model and other 

metrics including error and probability estimates of classification. 

Above mentioned functionality for RWT is achieved through console based programs 

and command line activity. 

3.2.4.2 User Interface Integration 

User interface integration was the next step in the development of RWT.  Most of 

RWT’s user interface design, development and research were handled by separate UI team 

and the whole process is documented in a previous thesis by Nandhini (Cotos, Gilbert, & 

Link, 2012; Ramaswamy & Gilbert, 2012; Ramaswamy, 2012). Previous source code from 

IADE (Pendar & Cotos, 2008) facilitating communication between analysis engine and the 

user interface was reused for RWT as most functionality is similar and the analysis engine is 

agnostic by design from changes to the user interface. The source necessarily implemented a 

persistent daemon in Python to listen to TCP sockets for incoming messages and respond 

appropriately. 
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Figure 3-2 User interface connected to Daemon through Sockets 

 

User interface elements were developed independently using PHP. The user interface 

allowed learners to submit their writing for analysis and get annotated results back from 

RWT. A daemon process encapsulating the analyzer listens to a TCP connection from the 

user interface and persists in memory unless stopped or killed. This daemon is the port of 

contact between the user interface and the tester script for passing bytes back and forth. TCP 

sockets abstract the complexity in handling multiple simultaneous connections and hence are 

best to handle multiple user interface analysis requests with minimum implementation. A 

request from the user interface consists of paragraphs of text to be analyzed along with 

metadata on the request.  TCP sockets carry the request to the expert module on the other 

end. Once the textual data is analyzed using feature sets and the classification model, the 

result is passed back to the user interface as an XML. XML being a standard allows returning 

structured results which may be used for further processing down the line. 

 

 

User Interface 

Daemon – persistent in memory 

 

 

 

Python script 

Move/Step Classifier 

TCP Channel 
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The following is a sample XML with nodes and attributes, listing result of analysis.  

<? XML version="1.0" encoding="ISO-8859-1"?> 

<RWTtext> 

 <labelText> 

  <labelText UID="deepan18" SessionID="95afdddec15fdb1b795617b7d01ff485" 

AnalyzeSessionID="2012_11_29_22_42_05_746_50b8391db66ec" section="INTR" discipline="AGBE" 

ID="1" text="this is a simple test." step="1" agreementSteps="100.0" feedbackSteps="You may 

be providing general background about the topic of investigation here." move="1" 

agreementMoves="100.0” /> 

 </labelText> 

 <scoreMove> 

  <scoreMove UID="deepan18" SessionID="95afdddec15fdb1b795617b7d01ff485" 

AnalyzeSessionID="2012_11_29_22_42_05_746_50b8391db66ec" section="INTR" discipline="AGBE" 

ID="1" move="1" numSentMove="2" target_numSentMove_min="1" target_numSentMove_low="1" 

target_numSentMove_norm="1" target_numSentMove_hi="2" target_numSentMove_max="2" 

percentMove="0.666666666667" target_percentMove_min="0.317672483623" 

target_percentMove_lo="0.476508725435" target_percentMove_norm="0.635344967246" 

target_percentMove_hi="0.794181209058" target_percentMove_max="1.11185369268" 

feedbackMove="Too much focus on establishing the territory compared to agricultural and bio-

systems engineering papers.Needs more work."  /> 

 </scoreMove> 

 <scoreStep> 

  <scoreStep UID="deepan18" SessionID="95afdddec15fdb1b795617b7d01ff485" 

AnalyzeSessionID="2012_11_29_22_42_05_746_50b8391db66ec" section="INTR" discipline="AGBE" 

ID="1" step="1" move="1" numSentStep="2" target_numSentStep_min="0" 

target_numSentStep_low="0" target_numSentStep_norm="0" target_numSentStep_hi="1" 

target_numSentStep_max="1" percentStep="0.666666666667" 

target_percentStep_min="0.120297499001" target_percentStep_lo="0.180446248502" 

target_percentStep_norm="0.240594998002" target_percentStep_hi="0.300743747503" 

target_percentStep_max="0.421041246504" feedbackStep="Good work on generalization.Very 

similar to agricultural and bio-systems engineering papers."  /> 

 </scoreStep> 

</RWTtext> 
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3.3 System Architecture of Learner diagnosis module 

The learner diagnosis module is necessary to assess and estimate the current 

understanding of the learner regarding the subject to generate valuable feedback. Based on 

the analysis of user’s text learner’s model and knowledge structure are to be inferred 

(Richardson, 1988). Using corpus data in MySQL database it is possible to arrive at 

statistical measures highlighting common trends of introductory texts among various 

disciplines. 

SQL queries are used to calculate the proportion of sentences and words present in 

each step, move under various disciplines of the corpus. Analytical information thus 

calculated, from the corpus can be considered to reflect the properties of the target language 

from which they are derived. Learner diagnosis can be performed using this information by 

comparing word counts & sentence counts of learner’s text to the information we have. 

When the learner’s text has properties similar to corpus articles from the same discipline at 

move and step levels, similarity of structure and hence the discourse can be inferred. 

Similarity measures can also be used to measure the current performance and the 

actual goal performance to track gaps in learner’s text. The information can be made more 

accessible through graphical information displays. 

Whole corpus residing in the MySQL database makes calculating proportions and 

other frequency values easier through queries instead of custom Python scripts and iterating 

data manually.   

A Sample SQL query to calculate total words in the corpus grouped by steps, 

SELECT t.stepid,COUNT(t.wc) FROM 

(SELECT s.sentenceid,COUNT(*) AS wc,s.stepid FROM sentences s, 

sentencewords sw 

WHERE s.sentenceid=sw.sentenceid 
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GROUP BY s.sentenceid,s.stepid) t 

GROUP BY t.stepid 

 

Similar queries can be used to get statistics about data at move and word levels from 

the corpus. In case of calculating word counts for learner’s text, a custom Python script is 

used after processing by the expert module. Once analysis is completed, each sentence of 

user’s text is tagged with a step and move by the classifier. This information is used to 

calculate frequency counts of words of learner’s text at step and move levels. 

3.4 System Architecture of Pedagogical Module 

Pedagogical module aims to provide help towards improvement for the learner apart 

from other functionalities including sequencing and structuring of displayed content. The 

functionality of this module spans partly over the user interface and the expert module 

forming the backend. Learner diagnosis provides valuable insight towards feedback 

generation.  

Custom Python code is used to generate two different kinds of feedback to direct 

learner and provide assistance. One type of feedback considers learner’s text on the whole. 

Based on comparison of structure between learner’s writing and the corpus data in a 

particular discipline, feedback is generated by the module to inform how similar learner’s 

text complies with the corpus data. It also informs the learner, to work on his/her article to 

match the discipline’s structure. Another type of feedback considers learner’s text as set of 

granular communicate steps to achieve the purpose of a specific move. Based on probability 

estimates from the expert module, Python code generates feedback to inform if a particular 

functional step was clear, vague or irrelevant. Thus this feedback is related to each sentence 
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of the learner’s text. All feedback text strings for display are fetched from the MySQL 

database table and displayed accordingly.  
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CHAPTER 4. METHODOLOGY 

This chapter contains implementation details and the main procedure towards training 

a classifier from corpus data. In terms of individual contributions, part of the implementation 

including code for loading trained models for testing, interacting with the user interface as a 

daemon process were reused with changes from Ryan’s work (Kirk, 2011). My contributions 

include code, rebuilding the entire training procedure from scratch including feature 

extraction, weighing, training file generation, and model creation. I was also responsible for 

integrating trigrams into the training scenario which was previously unavailable.  

4.1 Introduction 

Automated analysis of learner’s research article introductions has four basic steps: 1) 

Feature selection of unigrams and trigrams, 2) Sentence representation through features, 3) 

Classifier training and model creation, 4) Testing and evaluation of model. Initial step 

involves applying feature weighing schemes and reduction techniques to identify best 

features from the corpus of training data. Once features are identified, the whole corpus is 

represented in terms of features and their corresponding weights. This is used to train a 

classifier, a support vector machine in our case to identify various moves and steps. The 

classifier hence constructed is evaluated using test data to estimate efficiency on unseen data. 

The process is repeated with various parameters, until the accuracy, precision and recall of 

the classifier modeled is best suited for practical purposes and applications. 

The CARS model for discourse analysis from chapter 2 and its adaptation in chapter 

3, are based on structurally splitting research article introductions into different moves and 

into finer steps based on their innate communicative functions. Each sentence of an article is 
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assigned to a move and a step. Hence, sentences can be considered as documents for training 

and the moves and steps they signify imply the categories for classification. 

Formally each sentence in the corpus C = {𝑐1, 𝑐2, … . , 𝑐𝑛}, is represented as a set of 

features as 𝑐𝑖 =< 𝑓1, 𝑓2, … 𝑓𝑘 > where each 𝑓𝑗 measures feature j’s weight in sentence i. Let 

M = {m1, m2, m3} denote the set of moves and S = {s1, s2, s3,..,s17} denote the set of steps in 

the CARS model. We are required to learn the following mappings; {𝐹: 𝐶 →

𝑀} 𝑎𝑛𝑑 {𝐺: 𝐶, 𝑀 → 𝑆}.Though stretches of text could signify more than one step or move, 

the simplest case where each sentence signifies single move and single step is considered. 

Sentence representation based on the move feature set is initially used to classify a sentence 

to a particular move. Once a move is identified, sentence representation of the same sentence 

based on the step feature set, with move as an additional input is used to classify a sentence 

to a particular step. Thus classifying a sentence to a move and a step is completed through a 

two-step process with move passed on as an input to aid the step classification. 

 

Figure 4-1 Classifying a sentence 

4.2 Training a Classifier 

As stated in Chapter 3, the main features used to learn attributes of various moves and 

steps are unigrams and trigrams (i.e. single words and set of three word sequences) from the 

annotated corpus. Moves are totally 3 in number whereas steps number to 17 with the 

Input 
sentence

Move 
Classifier

Predict a 
move

Step 
classifier

Predict a 
step



52 

 

adapted CARS model, hence 2 different feature sets of unigrams and trigrams signify the 

moves and steps separately.  

The different feature sets are, 

 Umovefeatures – Unigram features for moves, 

 Ustepfeatures – Unigram features for steps, 

 Tmovefeatures – Trigram features for moves, 

 Tstepfeatures – Trigram features for steps. 

 

Data was preprocessed before arriving at the final feature set of unigrams and 

trigrams as follows, 

 Each sentence is tokenized into its constituent words and stop words are removed as 

they have low informational value. The order of words in the sentence is unchanged. 

 The individual words are stemmed using NLTK’s (Bird, 2006) implementation of 

Porter Stemming algorithm (Porter, 2009). 

 After analyzing the corpus, frequently occurring patterns are stubbed with 

placeholder tokens to increase consistency of resulting features. For e.g. in our corpus, all 

year occurrences were replaced with __year__ and all number occurrences were replaced 

with __number__. This procedure confirms that all references to years and numbers result in 

the same feature. Hence the following trigram features et al 2003, et al 1997 map to the same 

trigram feature et al __year__.  

 Other patterns that result in tokens include web page references replaced with 

__url__, domain names replaced with __domain__ and HTML special characters like &quot 

and &amp replaced with __html__. 
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 While replacing patterns with tokens, a particular order towards pattern search and 

replace is followed to reduce loss of information. For e.g. years are replaced before numbers 

as both patterns search for a sequence of digits and an approach vice-versa might result in no 

year patterns to replace. 

 After replacing patterns with tokens, individual word units are stored in a unigram list 

whereas consequently occurring word triplets are stored in a trigram list. 

 Considering frequency of the features, insignificant features with occurrence less than 

5 are removed to avoid over-fitting. This also helps reducing the feature space. 

After arriving at the basic set of features, feature reduction procedures are applied to further 

reduce the feature space and to identify the crucial features that help in the actual learning 

process. Odds ratio is used as a measure to reduce feature space. 

As discussed in chapter 3, Odds ratio describes correlation between two classes or 

categories and a high value implies odds of a particular event is more probable than the other 

event under consideration. 

Odds ratio of a term 𝑡𝑖 (unigram or a trigram) occurring in move 𝑚𝑗is given as, 

𝑂𝑅(𝑡𝑖, 𝑚𝑗) =
𝑝(𝑡𝑖|𝑚𝑗). (1 − 𝑝(𝑡𝑖|�̅�𝑗))

(1 − 𝑝(𝑡𝑖|𝑚𝑗)). 𝑝(𝑡𝑖|�̅�𝑗)
 

Where 𝑝(𝑡𝑖|𝑚𝑗)– Probability that term 𝑡𝑖 occurs in move, given move 𝑚𝑗has occurred, 

 𝑝(𝑡𝑖|�̅�𝑗)– Probability that term 𝑡𝑖 does not occur in move, given move 𝑚𝑗has occurred. 

Similarly, the odds ratio of a term 𝑡𝑖 (unigram or a trigram) occurring in step 𝑠𝑗is given as 

𝑂𝑅(𝑡𝑖, 𝑠𝑗) =
𝑝(𝑡𝑖|𝑠𝑗). (1 − 𝑝(𝑡𝑖|�̅�𝑗))

(1 − 𝑝(𝑡𝑖|𝑠𝑗)). 𝑝(𝑡𝑖|�̅�𝑗)
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Where 𝑝(𝑡𝑖|𝑠𝑗)– Probability that term 𝑡𝑖 occurs in step, given step 𝑠𝑗has occurred, 

 𝑝(𝑡𝑖|�̅�𝑗)– Probability that term 𝑡𝑖  does not occur in step, given step 𝑠𝑗has occurred. 

The conditional probabilities are calculated using maximum likelihood estimates,  

𝑝(𝑡𝑖|𝑚𝑗) =
𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑟𝑚𝑠 𝑡𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒 𝑚𝑗)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑟𝑚𝑠 𝑡𝑘 𝑖𝑛 𝑚𝑜𝑣𝑒 𝑚𝑗)𝑁
𝑘=1

  

𝑝(𝑡𝑖|𝑠𝑗) =
𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑟𝑚𝑠 𝑡𝑖  𝑖𝑛 𝑠𝑡𝑒𝑝 𝑠𝑗)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑟𝑚𝑠 𝑡𝑘 𝑖𝑛 𝑠𝑡𝑒𝑝 𝑠𝑗)𝑁
𝑘=1

 

Here N is the total number of terms from the corpus. 

For the move feature sets, the odds ratio measures are calculated for each unigram 

and trigram against all the 3 different moves. Thus each unigram and trigram has 3 different 

odds ratio measures. The final odds ratio measure for a unigram or a trigram is set to be the 

maximum of the 3 measures. Once we have a list of unigrams and trigrams and their 

corresponding maximum odds ratio measures, the list is sorted in descending order to get the 

final feature list. The length of feature space is the total number of individual unigrams and 

trigrams after sorting. The feature space could be trimmed further by considering a threshold 

odds ratio measure and discarding all features of lower value. A similar procedure is repeated 

for step feature sets, where odds ratios for each unigram and trigram are calculated against all 

the 17 different steps. The maximum odds ratio for each unigram and trigram is used to 

arrive at the final feature set, sorted in descending order. The length of the feature space 

could be trimmed similarly based on a threshold value. 

Once the feature set of moves and steps are in place, training file generation is the 

next step towards building a classifier. As stated in chapter 3, a separate training file is 
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generated for the whole corpus using both the move feature set and the step feature set to 

train individual move and step classifiers. 

Move classifier’s training file representation uses binary values to specify 

presence/absence of a particular feature for a sentence, for e.g. a sentence 𝑐𝑖 from corpus C is 

represented as 𝑐𝑖 =< 𝑚𝑓1: 1, 𝑚𝑓2: 0, 𝑚𝑓3: 1. . 𝑚𝑓𝑛: 0 > where 𝑚𝑓1, 𝑚𝑓2. . 𝑚𝑓𝑛 are move 

features. Step representation uses similar binary values to specify features, with an additional 

array of features representing the actual move to which sentence belongs to, for e.g. sentence 

𝑐𝑖 belonging to move 1 may be represented as 𝑐𝑖 =<

𝑚1: 1, 𝑚2: 0, 𝑚3: 0, 𝑠𝑓1: 1, 𝑠𝑓2: 0, 𝑠𝑓3: 1. . 𝑠𝑓𝑙: 0 >. Manually annotated corpus has each 

sentence tagged with a particular move and step, which makes generating these 

representations straightforward. Sentences from the corpus are preprocessed using the same 

procedure used for feature selection specified above. Features from the feature set are marked 

with a 1, if found in the preprocessed sentence and with a 0 otherwise, to arrive at the final 

training file representation. 

Since moves and steps have descriptive string names for representation in the corpus, 

the primary key in Moves and Steps database tables are used as numerical identifiers instead 

of string identifiers as labels in the training files. Each sentence in the corpus is transformed 

into a numerical label (move or step) followed by a set of index value pairs representing 

presence/absence of features. The ordinal position of occurrence of a feature in the ordered 

feature set is used as an index to indicate the particular feature followed by a colon and 

binary digit indicating presence of the feature. 

An example of transforming a sentence to a feature representation is as below, 

Sentence:  
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Mozilla web browser project is in active development since 1998 and has an excellent 

support community. – tagged as move 1. 

Move Features: 

Unigrams – project - 1, research -2, support -3, community -4, academic -5, proposal -6 

Trigrams – development since __year__ -7, et al __year__ -8. 

 

Generated feature representation using Move feature set: 

1 1:1,2:0,3:1,4:1,5:0,6:0,7:1,8:0 

 

LIBSVM’s API calls allow loading a training file and training a SVM classifier based 

on the above generated format. LIBSVM is implemented in C and has bindings required to 

access the functionality from Python scripts. A typical Python script would load the training 

file into memory using svm_read_problem function into separate variables, one containing a 

list of labels (move or step) and other containing a list of index value pairs corresponding to 

these labels. Following this, a call to svm_train is used to train a classifier using the above 

loaded training data. The function is also used to specify type of kernel to be used for the 

task, values of hyper parameters, if classifier is to be trained using probability measures and 

if cross validation is to be applied. After invocation, the function returns the optimized model 

for further use. Verbose messages are also displayed during training with information on 

optimization of parameters and the final accuracy obtained on cross validation. The model 

trained and existing in memory can be saved onto a disk file and loaded later using 

svm_save_model and svm_load_model functions. The training procedure is complete when 

svm_train returns a model with accuracy and can be validated against test data. 



57 

 

After training a model, the only data required for testing and use of the classifier 

against user’s writing are the feature sets and the trained model itself. The whole of the 

corpus can be disregarded once the accuracy of the classifier and the evaluation measures are 

suitable for practical usage and application. The model essentially holds the information in 

terms of support vectors whose dimensions are defined by odds ratios of the feature sets 

themselves. 

Thus two separate classifiers are trained for classifying a sentence to a particular 

move and step. The move feature set representation of the training corpus is used to train a 

classifier for classifying sentences to a particular move, whereas the step feature set 

representation of the corpus is used to train a classifier for classifying sentences to a 

particular step. Cascading the classifiers offers better accuracy as a move predicted by a 

classifier is passed as an input to a step classifier aiding the prediction task. 

4.2.2.1 Revised training procedure 

As in the previous chapter, to optimize the entire training procedure in RWT and 

decreasing total time taken to process features and create training files, SQLite was adopted 

instead of MySQL. This also eventually replaced the existing Python scripts to a single 

streamlined script achieving feature processing and training file creation in a single script. 

The Python source code of the revised training with feature extraction, training and testing 

was my contribution completely.  

The python script implemented the following steps, 

 Entire annotated corpus in SQLite database is loaded onto memory using sqlite3 

library of python, one sentence at a time. 
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 Unigrams and trigrams were extracted from the sentence. They were tokenized, 

stemmed and recurring patterns were stubbed at this stage using a python routine. Following 

this, their counts were accounted at particular section, move and step level hierarchies.  

 Odds ratio measures were calculated for each unigram and trigram using the above 

counts. 

 The entire unigram and trigram lists were ordered in decreasing odds ratio weight and 

a cut off threshold of “15000” was used to trim the feature list. 

 The individual lists were dumped as plain text files, trigrams separated by tabs. This 

resulted in 4 different feature lists (unigram/trigram for move and step). 

 The feature lists in memory were subsequently utilized to generate training files 

similar to the prior implementation. 

The above mentioned script though runs for hours for a decent corpus containing 100,000 

sentences was faster than the MySQL backed implementations. 

4.2 Testing and practical application 

RWT’s Test scripts share the data preprocessing and sentence representation modules 

from the training section of a classifier. This ensures that any changes to preprocessing and 

transformation steps during the training process of a classifier are reflected exactly to test 

data and thus maintaining consistency. Most of the Python source code for this section was 

derived from Ryan Kirk’s original work (Kirk, 2011). I was able to contribute portions of 

source code related to trigram integration and fix issues related to buggy feedback. 

Applying the trained classifier on a test corpus and eventually on real user’s 

introduction texts from research articles is the next step to quantify accuracy, precision and 
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recall for practical usage. In case of training corpus, sentences are annotated and sentence 

boundaries are implicitly stated by the actual user annotating them while tagging. But in case 

of input user articles, sentence boundaries are to be detected as users paste large chunk of 

research article introductions into an input textbox without explicit specification of sentence 

boundaries. Moreover manually stating sentence boundaries for a large body of text is user 

demanding task and hence would affect usability of the tool. Python’s Natural language 

toolkit implements Punkt sentence tokenizing functionality (Garrette & Klein, 2009; Kiss & 

Strunk, 2006) as sent_tokenize, which takes a body of text as input and returns an array of 

sentences split at boundary for further processing. Sentence tokenizing precedes data 

processing steps which act on individual sentences. 

Main steps involved in transforming a sentence to feature representation is similar to 

the procedure followed for the training corpus, 

• Tokenization of individual sentences to words with order of occurrence of words 

unchanged. 

• Removal of stop words with low informational value. 

• Stemming words using porter stemmer (Porter, 2009) implementation from NLTK. 

• Replacing common patterns like URLs, year references and numbers with 

placeholder tokens. 

 

 The resulting words represent unigrams of the sentence. The trigrams are generated 

using unigrams when original order of their occurrence is unchanged. The feature 

representation of the sentence is the next step when the unigrams and trigrams of the 

sentences are available. Given the set of move and step features identified during training, 



60 

 

feature representation marks a particular feature with a binary digit 1 if it is found in the set 

of unigrams and trigrams and with a binary digit 0 otherwise. Thus the input sentence is 

represented as binary string of features similar to the sentence representation used in training. 

Each user sentence results in two different feature representations based on move and step 

features separately. 

LIBSVM’s API call svm_predict is used to decide a move or step from the above 

generated binary feature representations. The function takes 3 inputs namely, a list containing 

binary string feature representations, a list containing user predicted classifications 

corresponding to the binary string representations and the model to be used towards 

prediction. The user predicted classifications are used to calculate accuracy of the classifier 

by comparing them alongside model predicted classifications. Accuracy is calculated as the 

percentage of results predicted by the classifier that match user predicted classifications. 

Inputs of the function being list of values allow multiple sentence representations to be 

classified using a single call to svm_predict. The function call returns a list of predicted 

labels/classes, accuracy of the prediction and probability estimates of certainty of the 

predictions returned. 

Two different calls to svm_predict are required for each sentence. Initial call is used 

to classify a move feature set based sentence representation to a particular move. The 

predicted move is passed as an additional feature input to the step feature based sentence 

representation and a second call to the function accounts for the step classification of a 

particular sentence. A dedicated Python script sharing module procedures for sentence 

transformation from the training sources is used to implement the above functionality. The 



61 

 

script takes a body of text as input and returns an array of sentences and their corresponding 

move/step classifications. 

The above procedures are kept modular and generic to be used externally by other 

programs and solutions. Once this infrastructure for transforming sentences and passing it 

through the classifier to predict a move and step are in place, the functionality can be 

extended to apply on test corpus and user submitted research article introductions. The moves 

and steps thus predicted by the classifier can be exported back for future comparison with 

expert predictions for studying effectiveness or can be displayed to user to reveal the 

discourse structure of article text effectively. 

A helper Python script is used to iterate sentences from test corpus and feed them 

through the above Python script, to gather the resulting move and step predictions and 

calculate the confusion matrix depicting the prediction accuracy, precision and recall. The 

modularity of the test scripts also allow data from a user interface to be analyzed and results 

of analysis sent back to the user interface appropriately. To facilitate universal consumption 

of analysis results across platforms, operating systems and networks, the functionality is 

delivered through a web service serving the response of an analysis as an XML, through 

sockets. TCP/IP socket implementations are universally available across platforms and 

structured XML being plain text can be sent through sockets to any client requesting 

discourse analysis of arbitrary text. Sockets also handle multiple concurrent requests from a 

number of clients requesting the service, which makes serving multiple clients an innate 

functionality. The input to the web service consists of body of text and discipline to which it 

belongs. 



62 

 

Apart from move/step predictions, the XML results also carry learner diagnosis 

calculations and target percentages recommending direction of change for the user/learner to 

work on the text. As stated in Chapter 3, Corpus statistics consisting of number of words and 

sentences in each move and step level grouped by discipline are calculated using custom 

SQL queries and stored in the database. The database schema and normalization specified in 

Chapter 3, makes these calculations query only instead of writing custom Python scripts to 

calculate them. For a particular usage scenario consisting of user submitting his/her research 

article introduction, the proportion of words and sentences in each predicted move and step 

are compared with the corpus statistics using Python to generate appropriate feedback. Based 

on the proportion, various feedback messages indicating current text’s discourse content 

present in each move or step and direction of focus indicating too much presence or a lack of 

particular communicative function is implied. Also the proportion values are sent in the XML 

aiding graphical display or manipulation of the content presence and focus direction. 

  



63 

 

CHAPTER 5. RESULTS 

In this chapter, I present the results of training and performance characteristics of 

both move and step classifiers, along with corpus statistics. Some of them were already 

published in related conferences (Nick Pendar, Cotos, & Babu, 2012). 

5.1 Corpus Dimensions 

Data for RWT consists of manually annotated corpus containing 15460 sentences was 

split into separate training and test corpuses. Each step and move from the swales schema (J. 

Swales, 1981) were given unique numbers to represent them, steps totaling to 17 and moves 

totaling to 3 from the introductions section. Following is the distribution of sentences among 

various steps and moves in the training and test corpuses specifying volume and dimensions. 

Table 5-1 Distribution of sentences across moves 

Move Total Counts Training Counts Testing Counts 

1 9272 6039 3233 

2 2535 1609 926 

3 3653 2352 1301 

 

Table 5-2 Distribution of sentences across steps 

Step Total Counts Training Counts Testing Counts 

1 629 403 226 

2 3370 2309 1061 

3 5273 3327 1946 

4 454 263 191 

5 1127 725 402 

6 72 54 18 

7 276 162 114 

8 606 405 201 

9 995 636 359 

10 348 211 137 

11 101 59 42 

12 166 113 53 

13 51 40 11 

14 448 290 158 

15 517 352 165 
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16 400 269 131 

17 627 382 245 

 15460 10000 5460 

5.2 Test data sets 

Model construction involves feature sets of unigrams and trigrams, for both moves 

and steps derived from the corpus. In RWT, the move classifier was trained using 10 

different feature sets and the step classifier was trained using 13 different feature sets as in 

the tables below. The number of unigrams and trigrams in each feature set is increasing 

progressively. Each move/step classifier trained with a particular feature set was tested on a 

test corpus to measure performance evaluation metrics of precision, accuracy and recall for 

comparison. The total number of features for move classifier had 5825 unigrams and 11630 

trigrams. Similarly the total number of features for step classifier had 27689 unigrams and 

27160 trigrams. 

Following is a list of feature set specification accounting on the varying number of 

unigrams and trigrams used to build the classifier. 

Table 5-3 Feature Set - Move classification 

N-Gram Feature Set   

# Unigrams # Trigrams 

1000 0 

2000 0 

3000 0 

0 1000 

0 2000 

0 3000 

1000 1000 

2000 2000 

3000 3000 

5825 11630 
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Table 5-4 Feature Set - Step Classification 

N-Gram Feature Set   

# Unigrams # Trigrams 

1000 0 

5000 0 

6334 0 

10000 0 

26789 0 

0 1000 

0 5000 

0 5986 

0 10000 

1000 1000 

5000 5000 

10000 10000 

27689 27160 

 

For RWT model creation, LIBSVM was used with the following parameters for 

training the move and step classifiers. The default standard regularized support vector 

classification algorithm C-SVC was used to train the classifiers. Radial basis function kernel 

was chosen based on its previous application in IADE. The cost parameter C was set to be 

1511after multiple runs, as it offered better measures of accuracy with the training set. 

5.3 Performance Metrics 

In RWT, towards evaluating the performance of the move and step classifier on the 

test corpus, the precision, recall and accuracy of each model was taken into consideration. 

The following graphs and tables capture various measures for each individual feature sets 
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used, facilitating comparison and analyzing behavior across feature sets.

 

Figure 5-1 Performance of Move Classification 

 

Table 5-5 Performance of Move Classification 

Legend 

U – Unigrams 

T - Trigrams 

Accuracy Macro Average ( Precision) Macro Average ( Recall ) 

1000 U 0 T 68.11355311 59.70482045 48.63274879 

2000 U 0 T 67.72893773 59.02765696 50.15838347 

3000 U 0 T 67.76556777 60.11068765 51.51218936 

0 U 1000 T 63.44322344 69.14748429 41.31325141 

0 U 2000 T 63.13186813 64.27648659 41.99449874 

0 U 3000 T 63.51648352 62.21151844 43.39843442 

1000 U 1000 T 69.85347985 67.93256822 52.32162123 

2000 U 2000 T 71.0989011 70.19000299 54.1019552 

3000 U 3000 T 70.84249084 68.57402431 54.04897081 

5825 U 11630 T 72.65567766 70.28127517 61.15442846 
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Figure 5-2 Performance of Step Classification 

 

 

Table 5-6 Performance of Step Classification 

Legend 

U – Unigrams 

T - Trigrams 

Accuracy Macro Averaging (Precision) Macro Averaging (Recall) 

1000 U 0 T  63.6996337 37.72693989 27.63498206 

5000 U 0 T  66.52014652 51.25537231 39.64759751 

6334 U 0 T  68.99267399 54.54498401 47.66632687 

10000 U 0 T  71.08058608 57.41942837 51.79093818 

26789 U 0 T  72.67399267 64.84375459 55.75931553 

0 U 1000 T  51.22710623 57.60803916 28.9353557 

0 U 5000 T  55.21978022 59.26715161 29.45616674 

0 U 5986 T  55.65934066 55.21463011 30.24360779 

0 U 10000 T  55.73260073 60.64500262 30.41486066 

1000 U 1000 T  66.00732601 55.59311107 33.41381714 

5000 U 5000 T  68.75457875 54.80574451 40.5975473 

10000 U 10000 T  70.86080586 58.77756727 51.76692523 

27689 U 27160 T  72.06959707 66.92326901 54.90177966 

 

As stated in chapter 3, global precision, recall numbers for each individual moves and 

steps were calculated as micro averages. 
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Table 5-7 Micro Average Precision and Recall - Move classifier 

Move # Move name Precision (%) Recall (%) Accuracy (%) 

1 Establishing a territory 73.3 89 73.8 

2 Identifying a niche 59.2 37.3 82.8 

3 Addressing the niche 78.4 57.2 83.8 

Average  70.3 61.2 80.2 
 

 

Table 5-8 Micro Average Precision and Recall - Step classifier 

Step # Step name Precision (%) Recall (%) 

1 (Move 1) Claiming centrality  70.4 76.6 

2 (Move 1) Making topic generalizations 67.9 49.6 

3 (Move 1) Reviewing previous research 75.2 55.5 

4 (Move 2) Indicating a gap 51.4 55.1 

5 (Move 2) Highlighting a problem 86.7 85.2 

6 (Move 2) Raising general questions 66.3 50 

7 (Move 2) Proposing general hypotheses 44.6 51.9 

8 (Move 2) Presenting a justification 64.7 79.8 

9 (Move 3) Introducing present research descriptively 92 84.5 

10 (Move 3) Introducing present research purposefully 39.8 34.3 

11 (Move 3) Presenting research questions 50.6 61.8 

12 (Move 3) Presenting research hypotheses 68.9 66.2 

13 (Move 3) Clarifying definitions 74.2 43.4 

14 (Move 3) Summarizing methods 78.6 67.1 

15 (Move 3) Announcing principal outcomes 50 27.8 

16 (Move 3) Stating the value of the present research 100 18.2 

17 (Move 3) Outlining the structure of the paper 84.6 26.2 

Average  68.6 54.9 
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CHAPTER 6. DISCUSSION 

RWT offers genre-specific feedback to learners of academic writing, and therefore 

the study of both move and step classifier performance is important. The feature sets 

containing unigrams and trigrams for both moves and steps are split into three main 

categories. Feature sets contained “only unigrams” or “trigrams” or “both unigrams and 

trigrams,” progressively increasing in number to study their correlation with performance 

characteristics. Based on the individual feature sets, move and step classifiers were built, and 

the individual models were evaluated using the performance measures and compared on their 

effectiveness. 

6.1 Move Classifier Performance 

Considering RWT’s move classifier performance through various feature sets 

depicted in Figure 5-1 and Table 5-3 of Chapter 5, the accuracies of “unigram only” models 

are similar. Increasing the number of unigrams in the feature set doesn’t proportionally 

increase the accuracy. Precision and recall increase marginally when the unigrams increase in 

the feature set. This implies that the initial move classifier model built on 1000 unigrams 

captures most of the features needed to differentiate among moves. 

 The “trigram only” models offer better precision numbers compared to the “unigram 

only” models, though the precision declines with increase of trigrams into the feature set. 

Recall measures are very low compared to “unigram only” models. “Trigram only” models 

carry precision information in identifying moves better than “unigram only” models.  

By the numbers, combining unigrams and trigrams in a single feature set resulted in 

models of better accuracy. Highest accuracy values were result of models with feature sets 
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having “both unigrams and trigrams.” Precision was comparable and significantly high 

relative to “trigram only” models. Also, the model’s recall was best when all unigrams and 

trigrams were used to train the move classifier and the data suggest that recall values are 

proportional to total number of features used. A maximum accuracy of 72.655% for the move 

classifier was obtained when 5828 unigrams and 11630 trigrams were collectively used in the 

feature set. Macro average precision of 70.28% and macro average recall of 61.15% were the 

resulting performance evaluation measures of this model. The micro average precision, 

recall, and accuracy numbers of this move classifier are shown in Table 5-7, which shows 

that moves “Addressing the niche” (#3) and “Establishing a territory” (#1) are predicted with 

higher precision and recall than move “Identifying a niche” (#2). This can be attributed to the 

relatively low training and test data available move 2, while the other moves have better 

sample data for training (6,039 sentences for move 1; 1,609 sentences for move 2; and 2,352 

sentences for move 3).  This result is affirming previous research on IADE (Pendar & Cotos, 

2008), where move 2 is documented to be difficult to predict owing to sparse data and 

possible misclassifying occurrences with move 1. 

6.2 Step Classifier Performance 

The step classifier performance was analyzed similarly using three different categories of 

feature sets, shown in Figure 5-2 and Table 5-6 of Chapter 5. The classifier trained using 

“unigram only” features showed good accuracy, proportionally increasing with an increase in 

the number of unigrams. Precision and recall, though relatively low when compared to 

accuracy, also proportionally increase with increase in unigrams.  
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“Trigram only” step classifier models depict a lower accuracy compared to all other classifier 

models. Precision values were not proportional and did not increase with more features. But, 

similar to the move classifiers, “trigram only” models carried better precision information 

about various steps compared to the “unigram only” models. Recall numbers were the lowest 

of all models tested, and increasing the number of features resulted in no change.  

Finally, classifier models built using a combination of “both unigrams and trigrams” features 

exhibited performance similar with the “unigram only” models, though marginally resulting 

in better precision. Recall of the “both” models was similar to the “unigram only” models. 

The step classifier using the maximum features of 27,689 unigrams and 27,160 trigrams 

delivered an accuracy of 72.01% with a macro average precision of 66.92% and macro recall 

of 54.90%. Considering micro average precision and recall of the step classifier in Table 5-8 

of Chapter 5, steps belonging to move 1 and move 3 were identified more precisely than 

steps belonging to move 2. This result is clearly attributed to the sparse data availability of 

move 2 and its constituting steps. Steps which show precision below the average of 68% 

include: three steps from move 2 (highlighting a problem, raising general questions, 

proposing general hypotheses) and four steps from move 3 (introducing present research 

descriptively, summarizing methods, presenting research questions, announcing principal 

outcomes). 
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6.3 Step Classifier Confusion Matrix 

 

Figure 6-1 Step Classifier - Confusion matrix 

 

Steps predicted by the step classifier built on the total feature set of 27,689 unigrams 

and 27,160 trigrams was compared alongside a human expert’s prediction using the test 

corpus (Figure 6-1) is the global contingency table or the confusion matrix). Rows represent 

human expert classification while columns represent machine predicted classification of 

steps. The diagonal of the matrix is highlighted, showing the machine predictions matching 

human expert predictions while other cells imply classification mismatch or misclassification 

to a different step. In line with observations of Anthony and Lashika (2003), a step is 

confused only within the realm of its move, that is, steps are confused with other steps within 

the same move. Step confusion occurred mainly with steps performing under stated average 

precision of 68%. In move 1, step 1(claiming centrality), step 2(making topic 

generalizations) and step 3 (reviewing previous research) are confused and vice-versa. In 

move 2, step 5 (highlighting a problem) was confused with step 6 (raising general questions), 
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step 7(proposing general hypotheses) and step 8 (presenting justification). In move 3, step 9 

(introducing present research descriptively) was the most confused, misclassified as step 14 

(summarizing methods), step 15 (announcing principal outcomes) and step 16 (stating the 

value of present research). Step 14 was also confused with step 15. 

The major reason for misclassification also specified in the previous research was the 

scarcity of training data and uneven distribution of steps in the overall training corpus. Also, 

some steps were naturally heavily utilized and represented by the authors, while the others 

where sparingly used, resulting in an uneven distribution. Naturally, stretches of text also 

carry multiple rhetorical functions representing more than one step or a different move. The 

move and step classifiers are currently capable of predicting a single move and step and 

hence allow possible misclassification. Yet another important factor pointed out by Cotos 

(2013), was meaning ambiguity. She noticed that, despite annotators of the corpus having 

high interrater reliability, they can become confused over the author’s rhetorical intent in the 

absence of lexical signals of functional meaning. Some steps are inherently difficult to be 

identified using natural language techniques, as they are not completely captured and 

encoded in functional language. This situation increases the difficulty operationalizing our 

learning models. 

6.4 Future Work 

In this work, genre analysis and machine learning have come together, relying on 

linguistic cues to successfully identify rhetoric functions. The move level classifier classifies 

new sentences with an accuracy of 72.6%, and the classifier at the step level performs at an 

accuracy of 72.9%. Future research concentrating on improvement of classifier accuracy will 
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directly enhance AWE and ICALL systems. SVMs offer probability-based training and 

probability estimates during prediction which could be used to identify secondary moves and 

steps in learner texts after experiments. Based on probability estimates on various steps and 

moves, the most probable element could be associated with the primary function while the 

next probable could be associated with the secondary function. For steps increasingly 

difficult to detect, a knowledge-based approach (as in Madnani, Heilman, Tetreault, & 

Chodorow, 2012 ) can be used along with SVMs. Handwritten rules as suggested by 

Chukharev-Khudilaynen (2013) could be used to recognize functional language and lexico-

grammatical patterns identifiable in the annotated corpus. Adding this expert knowledge to 

the SVM classifier could be used to augment predictions. Yet another implementation to 

handle confusing steps involves use of Markov chains to model move/step transitions and 

their sequencing. One of the main faulty assumptions with the existing approach is the lack 

of accounting for context in each sentence considered. Context plays an important role in 

identifying rhetoric functions, and future experiments could also consider context for 

building prediction models. Application of boosting algorithms in machine learning and use 

of ensembles of learner classifiers are other venues for experimentation towards 

improvement. 

6.5 Summary 

This section summarizes the research work done related to the questions from section 

1.5. The Research Writing Tutor (RWT) is able to analyze a student’s research articles at the 

discourse level and identify various rhetorical moves and steps (Question 1). This 

achievement is a novel contribution to the AWE field, as RWT is one of the pioneer AWE 
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tools implementing discourse evaluation at the step level for the academic writing genre. The 

final move classifier was trained using a total of 5828 unigrams and 11630 trigrams and 

performed at a maximum accuracy of 72.65%. Similarly, the step classifier was trained using 

a total of 27689 unigrams and 27160 trigrams and performed at a maximum accuracy of 

72.01%. These statistics address Question 2, on what combination of unigram and trigram 

features was most appropriate for optimal move and step classification. But more training 

data could always improve the above statistics especially for the steps which are 

underperforming in terms of good precision and recall. Odds ratio based feature weighing 

scheme, indeed identified the best features as implied by section 5.3. There was no direct 

linear relation between number of features and the performance metrics accuracy, precision 

and recall. But the overall performance of the classifiers consistently improved with a larger 

feature set covering Question 3. This also opens the venue for experiments using a larger 

feature set through more training data. Using discipline-specific features weighed by odds 

ratio, resulted in a single classifier for both move and step that performed consistently across 

different disciplines. This approves the feasibility requirement from Question 4 and also 

implies that odds ratio measures indeed identify actual discipline-specific features (Question 

5). Odds ratio measures were effective in discarding repetitive features that were common 

among various rhetorical moves, steps and disciplines. The default standard regularized 

support vector classification algorithm C-SVC was used to train the classifiers. RBF kernel 

was chosen with the cost parameter C set to be 1511. From the performance metrics of both 

the move and step classifier in section 5.3, an RBF kernel is able to model the relation 

between features and the rhetorical moves/steps with a significant accuracy of above 70%. 
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