
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Automated analysis of Learner's Research Article
writing and feedback generation through Machine
Learning and Natural Language Processing
Deepan Prabhu Babu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Babu, Deepan Prabhu, "Automated analysis of Learner's Research Article writing and feedback generation through Machine Learning
and Natural Language Processing" (2013). Graduate Theses and Dissertations. 13220.
https://lib.dr.iastate.edu/etd/13220

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13220?utm_source=lib.dr.iastate.edu%2Fetd%2F13220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Automated analysis of Learner’s Research Article writing and feedback generation

through Machine Learning and Natural Language Processing

by

DEEPAN PRABHU BABU

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Computer Science; Human Computer Interaction

Program of Study Committee:

Stephen Gilbert, Co-major Professor

Jin Tian, Co-major Professor

Elena Cotos

Iowa State University

Ames, Iowa

2013

ii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Automated Writing Evaluation ... 2

1.3 Perceived Issues with AWE Tools .. 3

1.4 Problem Statement .. 4

1.5 Research Questions ... 5

1.6 Thesis Organization ... 5

CHAPTER 2. LITERATURE REVIEW .. 7

2.1 Computer Assisted Instruction in Pedagogy ... 7

2.2 Intelligent Tutoring Systems ... 8

2.2.1 Foundations .. 8

2.2.2 Automated Essay Scoring using Tutors ... 9

2.3 Discourse Analysis .. 12

2.3.1 Rhetorical Structure Theory ... 13

2.3.2 Genre Analysis ... 13

2.3.3 Move Analysis of Research Articles .. 14

2.4 Automated Text Categorization .. 15

2.4.1 A Formal Definition ... 15

2.4.2 Single-label vs. Multi-label Text Categorization ... 16

2.4.3 Document-pivoted vs. category-pivoted text categorization 17

2.4.4 Machine learning approach to Text Categorization ... 17

CHAPTER 3. SYSTEM ARCHITECTURE .. 32

3.1 Contributions ... 32

3.2 System Architecture of Expert Module ... 33

3.2.1 Corpus Preparation ... 33

3.2.2 Database design .. 35

iii

3.2.3 Training sub-system ... 38

3.2.4 Test sub-system .. 43

3.3 System Architecture of Learner diagnosis module ... 47

3.4 System Architecture of Pedagogical Module .. 48

CHAPTER 4. METHODOLOGY .. 50

4.1 Introduction ... 50

4.2 Training a Classifier .. 51

4.2.2.1 Revised training procedure .. 57

4.2 Testing and practical application ... 58

CHAPTER 5. RESULTS.. 63

5.1 Corpus Dimensions ... 63

5.2 Test data sets ... 64

5.3 Performance Metrics ... 65

CHAPTER 6. DISCUSSION ... 69

6.1 Move Classifier Performance .. 69

6.2 Step Classifier Performance .. 70

6.3 Step Classifier Confusion Matrix .. 72

6.4 Future Work .. 73

6.5 Summary ... 74

REFERENCES ... 76

ACKNOWLEDGEMENTS .. 81

iv

LIST OF TABLES

Table 2-1 CARS model for research article introductions,

adapted from Swales (1990, p.141) .. 14

Table 2-2 Contingency table for Category c_i .. 30

Table 2-3 Global contingency table .. 30

Table 3-1A modified version of Swales move/step

 framework (J. M. Swales, 2004) used for annotation .. 35

Table 3-2 Revised Database Schema .. 38

Table 5-1 Distribution of sentences across moves .. 63

Table 5-2 Distribution of sentences across steps .. 63

Table 5-3 Feature Set - Move classification ... 64

Table 5-4 Feature Set - Step Classification... 65

Table 5-5 Performance of Move Classification .. 66

Table 5-6 Performance of Step Classification .. 67

Table 5-7 Micro Average Precision and Recall - Move classifier .. 68

Table 5-8 Micro Average Precision and Recall - Step classifier .. 68

v

LIST OF FIGURES

Figure 2-1 Hyperplane separates data of two different categories ... 24

Figure 2-2 Hyperplane separates two different categories with a

 maximal margin separation .. 27

Figure 3-1 RWT’s Training Sub-System .. 39

Figure 3-2 User interface connected to Daemon through Sockets ... 45

Figure 4-1 Classifying a sentence ... 51

Figure 5-1 Performance of Move Classification ... 66

Figure 5-2 Performance of Step Classification ... 67

Figure 6-1 Step Classifier - Confusion matrix .. 72

file:///C:/Users/Dpanprbu/Dropbox/Deepan%20Research&Thesis/Thesis%20Drafts/Final%20Thesis%20Draft%20-%20With%20Elena%20Modifications.docx%23_Toc354477792
file:///C:/Users/Dpanprbu/Dropbox/Deepan%20Research&Thesis/Thesis%20Drafts/Final%20Thesis%20Draft%20-%20With%20Elena%20Modifications.docx%23_Toc354477792

vi

ABSTRACT

Teaching academic writing in English to native and non-native speakers is a

challenging task. Quite a variety of computer-aided instruction tools have arisen in the form

of Automated Writing Evaluation (AWE) systems to help students in this regard. This thesis

describes my contribution towards the implementation of the Research Writing Tutor (RWT),

an AWE tool that aids students with academic research writing by analyzing a learner's text

at the discourse level. It offers tailored feedback after analysis based on discipline-aware

corpora.

 At the core of RWT lie two different computational models built using machine

learning algorithms to identify the rhetorical structure of a text. RWT extends previous

research on a similar AWE tool, the Intelligent Academic Discourse Evaluator (IADE)

(Cotos, 2010), designed to analyze articles at the move level of discourse. As a result of the

present research, RWT analyzes further at the level of discourse steps, which are the granular

communicative functions that constitute a particular move. Based on features extracted from

a corpus of expert-annotated research article introductions, the learning algorithm classifies

each sentence of a document with a particular rhetorical move and a step. Currently, RWT

analyzes the introduction section of a research article, but this work generalizes to handle the

other sections of an article, including Methods, Results and Discussion/Conclusion.

This research describes RWT’s unique software architecture for analyzing academic

writing. This architecture consists of a database schema, a specific choice of classification

features, our computational model training procedure, our approach to testing for

performance evaluation, and finally the method of applying the models to a learner’s writing

vii

sample. Experiments were done on the annotated corpus data to study the relation among the

features and the rhetorical structure within the documents. Finally, I report the performance

measures of our 23 computational models and their capability to identify rhetorical structure

on user submitted writing. The final move classifier was trained using a total of 5828

unigrams and 11630 trigrams and performed at a maximum accuracy of 72.65%. Similarly,

the step classifier was trained using a total of 27689 unigrams and 27160 trigrams and

performed at a maximum accuracy of 72.01%. The revised architecture presented also led to

increased speed of both training (a 9x speedup) and real-time performance (a 2x speedup).

These performance rates are sufficient for satisfactory usage of RWT in the classroom. The

overall goal of RWT is to empower students to write better by helping them consider writing

as a series of rhetorical strategies to convey a functional meaning. This research will enable

RWT to be deployed broadly into a wider spectrum of classrooms.

1

CHAPTER 1. INTRODUCTION

1.1 Overview

The Research Writing Tutor (RWT) is an intelligent tutoring system developed at

Iowa State University that assists students in learning academic writing. The RWT analyzes

discourse according to discipline-specific research article genre and offers individualized

feedback. With training data from an annotated corpus of 900 articles across 30 different

disciplines, the tool uses natural language processing techniques and machine learning to

automatically classify discourse markers. Using this expert knowledge captured through

annotation, RWT analyzes a learner’s writing and offers feedback towards improvement.

Creating the RWT poses a number of challenges. How to identify the rhetorical

structure of a student’s writing? What is an appropriate user interface for this software? What

kinds of feedback can be provided for better writing? How are wrong classifications

handled? Could manual rules augment the classification and are they practically viable?

What is the best algorithm presently that could classify rhetorical structure practically fast?

Are SVMs really the best machine learning algorithm for identifying rhetorical moves and

steps? Are rhetorical features really related to the corresponding rhetorical moves and steps

through a Gaussian function? What is the optimal feature vector size that could accurately

identify the rhetorical functions? Could some other weighing measures do the trick with

fewer feature vector size and eventually faster? With all these important questions to address,

this thesis focuses on some of the machine learning challenges in RWT, namely, effective

feature identification and weighing measure that could help identify the different rhetorical

2

functions accurately and an optimal machine learning algorithm that could be trained to use

the features to predict rhetorical functions with usable performance.

1.2 Automated Writing Evaluation

The RWT is an Automated Writing Evaluation (AWE) tool. Sophisticated AWE

systems analyze learner writing and offer immediate feedback regarding grammar, style, and

other features of the text. The automated systems that offer feedback are considered cost

effective ways to replace or enhance instructor feedback. These systems are involved in

range of applications from reports on grammatical errors for ESL learners to evaluating

learner essay writing holistically from content, organizational and mechanical characteristics.

Considering a group of learners, automated writing evaluation offers an economic alternative

to expensive hand scored assessment and feedback. Outside the classroom setting, a major

drive to push evaluation to automated tools, cited by educational testing organizations has

been to test content knowledge and writing competence at a larger scale. Teams of human

raters are a costly investment to train and automated systems that could human raters would

reduce overall cost. Successful implementations of AWE tools are already prevalent in the

market used with a wide variety of applications. Intellimetric (Elliot, 2003) scores learner

essays based on a list of 500 features indicating content, complexity grammar and so on.

Intelligent Essay Assessor (Foltz, Laham, & Landauer, 1999) uses latent semantic analysis

for deriving likelihood and relation of vocabulary used to the context. E-Rater (Attali &

Burstein, 2006) uses 12 different feature variants to assess and score learner essays.

None of these tools, however, attempt to teach academic writing, as does RWT.

Articulating ideas according to conventions of academic writing in English are challenging

3

both to native and non-native speakers. Nonnative speakers especially suffer as they tend to

be less expressive, restricted to simpler style of writing, and often provide fewer claims than

the appropriate amount for their research (Flowerdew, 1998). Huang (2010) documented the

lack and limitation of tools that aid in discipline-specific research and writing. RWT is a

discipline-specific tool built upon a corpus which is representative of particular genre

through natural language processing techniques.

1.3 Perceived Issues with AWE Tools

AWE tools inherently pose limitations in implementations, such as favoring

lengthiness of writing, assessing higher scores to certain types of lexico-grammatical

features, lacking measures to identify illogical or incoherent writing and generating

unspecific feedback during progress (Herrington & Moran, 2001; N. D. Yang, 2004). Most

comments and feedback provided by AWE tools are formulaic, generic information requiring

to be augmented through specific personal comments from human instructors. Formulaic

responses also may encourage students to adjust their writing to the scoring criteria of the

analysis engine.

AWE tools increasingly rely on surface features of responses without considering

creativity or the actual content specified by the responses. They also pose vulnerability as

they are easily cheated when underlying knowledge of training corpus was known. (Yongwei

Yang, Buckendahl, Juszkiewicz, & Bhola, 2002) Certain tools provide unfair evaluation

despite well-organized learner writing responses owing to poor mechanics (Calfee, 2000).

Finally, AWE tools are validated through their own internal measures and the

accuracy of the learning model they are built on rather than the learning and through the

4

teaching impact they produce. Though inter-rater agreement may be high for AWE tools,

their application in academic contexts must be evaluated as well. Neglecting the real-world

application of the tools and their impact on learning make such research studies limited and

outcome-based (Warschauer & Ware, 2006).

All these issues are related to AWE use, especially when it is not principled. It is

therefore important to consider the specific learning needs in specific learning contexts when

new AWE tolls are developed in order to avoid pitfalls like those outlined above.

1.4 Problem Statement

RWT, being an intelligent tutor, addresses some difficulties faced by learners of

academic writing by analyzing at the discourse level considering organization of learner

responses. It also offers individualized discipline-specific feedback across 30 different

disciplines. Rhetorical moves are the particular communicative function performed by a text

section. Rhetorical steps are finer elements of text that realize a rhetorical move. RWT

extends previous research on an AWE tool, The Intelligent Academic Discourse Evaluator

(IADE) (Pendar & Cotos, 2008) by analyzing academic research articles through rhetorical

moves and the steps that collectively form the move.

The challenges particular to RWT include correctly identifying the writer’s moves

and steps, giving the writer the appropriate feedback, and conveying to the writer the

rhetorical norms of his or her discipline. RWT is implemented for all sections of academic

research articles. IADE was restricted to identifying the different moves from a learner’s text

but not the granular steps which comprise a move. IADE generated textual feedback with

numerical percentages indicating the current state of a user’s writing and the remaining goals

5

to be achieved. This format of feedback was not yet optimized for the user, and RWT aspires

to improve on that communication. More importantly, IADE was implemented only for the

introduction section of academic research articles, while RWT can generalize across different

article sections (e.g., methods, results, and discussion/conclusion).

1.5 Research Questions

This research addresses the following questions.

1. Can a machine learning system be developed to accurately identify the rhetorical

steps within an academic writer’s text?

2. What combination of unigram and trigram features from the training corpus are most

appropriate for optimal move and step classification?

3. How is the number of features related to the accuracy, precision and recall of the

prediction task, e.g., is it a linear relationship?

4. Is it feasible to use a single classifier for identifying moves and steps across academic

disciplines by using discipline-specific classification features within the classifier? If so, how

accurate can this approach be?

5. Is odds ratio an appropriate feature identification and weighing measure for

identifying the different rhetorical moves and steps?

1.6 Thesis Organization

This chapter is an introduction to automated writing evaluators, the perceived issues

limitations and issues posed by various AWE tools. It also documents how IADE tried to

solve some of the issues specifically in academic writing genre and how RWT is building on

top of it through improved functionality and research. In this thesis I also document how the

6

synergy of overlapping fields including pedagogy, intelligent tutoring systems, genre

analysis, natural language processing and machine learning address some of the

functionalities for RWT.

Chapter 2 covers the literature backing the research from various fields explaining the

main concepts used with the implementation of RWT. Chapter 3 documents the system

architecture of the different modules within RWT’s backend responsible for analyzing the

data and deriving computational models capable of predicting the rhetorical organization.

Chapter 4 explains the research approach and the preprocessing, training and testing

procedures involved in building a classifier. Chapter 5 contains the results of experiments

and metrics for evaluating the performance of various classifiers built. Chapter 6 summarizes

and discusses the results along with directions to future research.

7

CHAPTER 2. LITERATURE REVIEW

Research Writing Tutor (RWT) derives its focus and approach from four main areas

including pedagogy, intelligent tutoring systems, discourse analysis and automated text

categorization. We review various theoretical concepts on which RWT’s functionality is

implemented.

2.1 Computer Assisted Instruction in Pedagogy

RWT aims to assist learners of research article writing by providing expert feedback

on their writing skills and possible scope for improvement. Pedagogical assistance from

computers has been proven to augment the regular teaching process. Individualized drill and

practice to learners, tutoring of new content and feedback based dialogue with instruction are

some of the successful applications of computers in a classroom scene (Suppes, 1980).

Significant contributions towards effective teaching and positive attitudes of students towards

instruction have been attributed to computers at college teaching. In fact, computers were

quick at their application when compared with conventional teaching methods (Kulik, Kulik,

& Cohen, 1980). Computer assisted language learning is a specific area of application

related to pedagogy in college teaching. Each individual learns a language differently due to

distinct idiosyncratic learning strategies, cognitive abilities and various affective factors

(Dörnyei & Skehan, 2008). Hence, Computers have been proposed as a powerful alternative

to address the individuality and instruct accordingly (Britt, 1967). Learning academic writing

is a natural extrapolation to language learning and computers could assist accordingly.

8

2.2 Intelligent Tutoring Systems

RWT’s audience consists of users attempting to learn research article writing

differing in needs and requiring independent specialized instructions. One of RWT’s goals is

to engage learners in sustained reasoning activity and actively communicate to lead the

learner to a better understanding of the subject being tutored, being made possible through

intelligent tutoring systems. The intelligent tutoring system (ITS) would interact with the

learner through a series of instructions and provide individualized feedback based on their

actions. This is done by considering a human tutor as an educational model and applying

various artificial intelligence techniques to realize it in a computer system. Thus the

“instructor in the box” applies various strategies to reduce the difference between the expert

in the field and a new learner in the subject.

2.2.1 Foundations

ITS lays it foundations on set of independent modules each carrying out a specific

functionality. An expert module (Richardson, 1988) forms the main backbone of domain

knowledge and captures the underlying intelligence behavior. Cognitive expert modules

(Anderson, 1988; Richardson, 1988) aim to simulate the actual human problem solving

capability in a domain. They also strongly consider psychological components essential for

tutoring. A learner diagnosis module (Richardson, 1988) is used to infer the learner's

understanding of the subject being tutored. The inference from this module is used to

generate individualized feedback/action ranging from increasing complexity to offering

crafted feedback towards improvement. Better diagnosis from this module also results on

how close it references learner's misconceptions, erroneous and incorrect knowledge apart

9

from understanding. Pedagogical module is responsible for structuring and sequencing

instructional content, messages and interventions in the ITS. The main challenge involves

separating instruction from the content expertise and offering them alongside for the

betterment of the learning (Anderson, 1988). The final user facing module involves the

Human computer interface module. This interface is implemented for a transparent learning

experience to empower learner to act independently and access the expertise it encapsulates.

This module also integrates the other modules forming a single package suiting content to

interface and vice versa.

2.2.2 Automated Essay Scoring using Tutors

Automated essay scoring through intelligent tutoring systems and providing

appropriate feedback are important realms in essay writing. A wealth of tool implementations

with strong research is prevalent in this space. Major ITS tools aiding automated essay

scoring use a variety of features to analyze, assess and score essay writing.

Elliot’s comprehensive specification of Intellimetric (Elliot, 2003), an automated

essay scoring tool describes a model with 500 component features based on content,

grammar, text complexity, sentence and word variety to intelligently assess user essays and

automatically score them. Applying latent semantic dimension, the model determines

correlation of candidate content to a modeled vocabulary collection. The information in

terms of features gleaned from user writing is used to predict expert human score using a

series intelligent mathematical model. A final score is arrived by optimizing the individual

scores.

10

Intelligent Essay Assessor (Foltz et al., 1999) is yet another intelligent student essay

scoring and assessment tool. It uses a combination of Latent semantic analysis and a

reference database related to the domain to arrive at the likelihood of the vocabulary used in

a written essay and its relation to the context. For e.g. Essays on the topic of computers and

related contexts are weighed using a Computer science reference textbook in digital form.

Relevant vocabulary is awarded a better score through this procedure. Essay valuation and

scoring are done using a variety of techniques including comparing with pre-graded essays,

gold standard ideal essays, comparing to portions of original text or subcomponents and

comparing individual sentences against a reference textbook. An immense hardware and

software requirement of the tool makes it difficult to deploy on desktop systems and hence is

available for use as a web based tool only. Heavy use of statistical techniques to assess

essays makes it difficult to communicate the inner structure of the scoring model eventually a

threat to the scoring. Also statistical methods make assumptions of variance of prediction

scores which may be different from the actual variance.

E-Rater v2.0 scoring system (Attali & Burstein, 2006) uses a combination of 12

different features to score essays. Six different areas of analysis including errors in grammar,

usage , mechanics, style , discourse structure and vocabulary content are collectively used in

order weigh the actual characteristics of writing. A sample of human scored essay data is

used to identify and weigh in features that correspond to various human scoring criteria.

These are used for fitting a model to the training data using a multiple regression procedure.

By varying the sample data, appropriate models can be built for specific writing categories

like grade level, topic level, thesis writing etc. The system shows high agreement with human

scoring, correlation of scores between different prompts and detailed light on the scoring

11

process and its validity. Though functionally confirming, the system is far from covering all

aspects of writing quality which could further be improved by assisting with better feature

engineering measures. The model fitting procedure is also biased to identify good faith

essays and performs poorly with anomalous and off-topic essay entries. Using human scored

samples to build the model doesn’t equip the system to identify different patterns of writing

exhibited by potentially different groups of users for e.g. users of Asian ethnic background

have a different pattern of writing compared to the sample essays from native English

speakers.

Intelligent academic discourse evaluator IADE (Pendar & Cotos, 2008) is a genre

based automated text analysis and feedback tool which targets research article introduction

texts. It classifies learner’s article sentences into communicative moves based on Swales

framework. Similar to E-Rater, sample human annotated research article introductions are

used to identify important features corresponding to communicative modes and a model is fit

using support vector machines. IADE also offers a variety of informational feedback in terms

of color coding and distribution statistics facilitating learner’s writing process.

Yet another approach to building intelligent tutoring systems involves Effort based

tutoring (Arroyo, Mehranian, & Woolf, 2010) where a student’s engagement, domain

knowledge, affect and meta cognition are integrated along with different dimensions of

student behavior to make optimal pedagogical decisions. Specifically, student’s effort at

different practice items is used to distinguish student behavior. Deriving an empirical

estimate of effort along with difficulty of practice item is used to model pedagogical

feedback behavior by the system. The modularity of the tutoring procedure allows usage in

several learning environments and domains.

12

The current research in RWT extends previous work done on Intelligent academic

discourse evaluation Tool (IADE) (Pendar & Cotos, 2008). IADE analyzes research articles

and offers constructive feedback to learner’s discourse at move level. RWT’s goal is to

analyze research articles at move level and specifically at the granular step level which

collectively form a particular move. The approach is very similar in procedure to one used by

IADE but uses a series of support vector machines in order to classify learner article

sentences into particular moves and steps.

2.3 Discourse Analysis

For RWT, high quality analysis of research articles is necessary to offer specialized

feedback to learners. A possible methodology is to consider and dissect learner articles at the

discourse level as they reveal innate organization and structure. Discourse analysis of

academic articles reveals how they are organized, carried and reproduced in a particular way

and as required in certain institutional practices. Knowledge at discourse level is essential to

users learning research writing to compensate sentence level processing difficulties. In efforts

to find basic text structures, a four part model of ‘Situation’, ‘Problem’, ‘Solution’ and

‘Evaluation’ was identified by (Hoey, 1979) which was not related to a particular discipline

or specific text types, and could capture textual structure appropriately. It could be applied to

wide range of disparate discourses. A formal schema is highly helpful in such cases as

studied by Swales in 1990, through his research of nonnative speaker graduate students and

their writing practices.

13

2.3.1 Rhetorical Structure Theory

A descriptive framework for analysis of discourse and text was the Rhetorical

structure theory (Mann & Thompson, 1988) for linguistically describing natural text and

characterizing their structure as relations among different parts of text. It also captures the

transition point, hierarchy and extent of relation among parts of text.

Rhetorical structure theory (RST) accounts for textual coherence independent of

lexical and grammatical forms of text. This is made possible by identifying “discourse

markers” which are indicators of rhetorical relations in text. Functionally, Rhetorical

relations are the effect a writer intends to achieve by having two spans of text alongside.

The asset of RST is the claim that it is a sufficient basis for analyzing vast majority of

text in English language with minimal exceptions.

2.3.2 Genre Analysis

In the research article genre, the discourse structures in a section were related to

communicative functions of text, resulting in analysis through rhetorical moves. A text

section which performed a particular communicative function was termed a “Move”. Moves

being functional units, collectively come together to attain the communicative purpose of the

particular genre (Douglas Biber, Connor, & Upton, 2007). Swales (J. Swales, 1981)

conducted various studies on organizational patterns of research articles, to categorize

discourse units within a text to their rhetorical moves.

Frequently used moves are considered conventional part of the genre whereas rare

once are optional moves. Moves indeed are realized through finer elements of text which are

14

termed as “Steps” by Swales (J. M. Swales, 1990). Series of steps achieve the

communicative purpose of a particular move to which it belongs.

2.3.3 Move Analysis of Research Articles

Swales (J. M. Swales, 1990) proposed a series of moves and steps that defined the

rhetorical structure of Research article introductions. The move and step structure

appropriately captured the interactions between them, apart from performing communicative

functions in scientific texts. The flexibility of the structure allowed moves and steps to

reoccur cyclically; hence each appearance was considered a separate occurrence. Swales

conducted the move analysis on a series of 48 introduction section texts, from research

articles spanning over multiple disciplines. The structure was evidently discipline

independent.

Create a Research Space (CARS) by Swales is a three move model which is largely

likely in most research article introductions.

Table 2-1 CARS model for research article introductions, adapted from Swales (1990, p.141)

Move 1: Establishing a territory

 Step 1 Claiming centrality and/or

 Step 2 Making topic generalizations

and/or

 Step 3 Reviewing items of previous

research

Move 2: Establishing a niche

 Step 1A Counter-claiming or

 Step 1B Indicating a gap or

 Step 1C Question raising or

 Step 1D Continuing a tradition

Move 3: Occupying the niche

 Step 1A Outlining purposes or

 Step 1B Announcing present research

 Step 2 Announcing principal

findings

 Step 3 Indicating RA structure

15

The move analysis implies the existence of definable and predictable moves within

text that makeup a particular genre. This idea could be applied back, to teach novice writers

to write in particular genre, by considering each step and move as building blocks and

structuring writings around them (Dudley-Evans, 1995) .

2.4 Automated Text Categorization

RWT approaches move analysis, by categorizing stretches of learner text into

communicate functions of moves and steps automatically. Text categorization (Sebastiani,

2002) (aka Text classification or Topic spotting) is the automated assignment of topical

categories to natural language texts or documents based on their content and relevance.

Detecting patterns of similarity is thus of central importance in natural language processing

tasks. Abundance of digital documents lately and a growing necessity towards their

management has brought prominence towards text categorization techniques. Most

implementations of text categorization involve either human engineering or statistical

learning methodologies or a combination of two. RWT uses statistical means to learn the

rules of underlying classification task through expert annotated samples. Following sections

are basic underlying concepts related to RWT’s implementation of text categorization.

2.4.1 A Formal Definition

Mathematically, the text categorization problem may be defined as task of assigning

Boolean value to each possible pair of document and a category.

When 𝐷 = {𝑑1, 𝑑2, … . , 𝑑𝑛}, represents the domain of documents and 𝐶 is the set of

predefined topics/categories 𝐶 = {𝑐1, 𝑐2, … . , 𝑐𝑛}, where 〈𝑑𝑗 , 𝑐𝑖〉 ∈ 𝐷 × 𝐶. A value of T

16

assigned to 〈𝑑𝑗 , 𝑐𝑖〉 if 𝑑𝑗 indeed belongs to category 𝑐𝑖 and a value of F is assigned to 〈𝑑𝑗 , 𝑐𝑖〉

otherwise.

If we are able approximate the unknown function, ∶ 𝐷 × 𝐶 → {𝑇, 𝐹} , we have a

classifier which could automatically classify pair of 〈𝑑𝑗 , 𝑐𝑖〉 as T or F , leading to decide if

document 𝑑𝑗 belongs to 𝑐𝑖.

Important assumptions include,

 That categories are indeed just topical symbols and do not contain any helpful

information.

 There is no knowledge from outside to help with the classification. All that is

available is set of documents, its contents and labels alongside.

2.4.2 Single-label vs. Multi-label Text Categorization

Initial implementation of RWT uses single label categorization where each stretch of

text is assigned a single move and a single step. When a particular categorization task forces

only a single category to be assigned to each document, it is considered as a single-label

categorization (aka non-overlapping categories). When the categorization task allows

multiple categories to be associated to each document, it is considered as a Multi-label

categorization problem (aka overlapping categories) (Sebastiani, 2002).

The single-label case is considered more important as it can be used to implement a

multi-label categorization but the converse cannot be done. Thus, when we have a classifier

that can classify a document with a category as true or false, it can be applied to all

categories to find the multiple labels possible for a document.

17

Hence the above formal definition of text categorization problem can be described as

consisting of |𝐶| independent categorization problems , each classifying a document in 𝐷 to a

particular category 𝑐𝑖 , for i = 1,…, |𝐶|. Thus, each classifier for 𝑐𝑖 approximates, 𝜙𝑖: 𝐷 →

{𝑇, 𝐹}.

2.4.3 Document-pivoted vs. category-pivoted text categorization

RWT’s perspective of text categorization is document-pivoted (DPC) wherein an

input document is analyzed to be placed into possible categories. On the other hand given a

particular category, all documents that could possibly belong to the category may also be

analyzed; this is termed as category-pivoted categorization (CPC). Applying DPC is evident

for those text categorization tasks when documents are not readily available but gradually

over a period of time, e.g. email filtering. CPC is applicable when a particular category is

newly added to set of existing categories in a categorization task and documents are required

to be reclassified according to the new set of categories e.g. photo tagging.

2.4.4 Machine learning approach to Text Categorization

Text categorization in RWT is implemented through Machine learning (Sebastiani,

2002),which involves an inductive process resulting in a classifier for a particular category

𝑐, through the observation of characteristics of documents classified as category 𝑐 or 𝑐̅ , by

an expert in the domain. The approach of coming up with a classifier by supervising the

learning using a set of samples, is an example of supervised learning.

Mitchell (Mitchell, 1997) defines Machine Learning as,

18

A Computer program is said to learn from experience E with respect to some class of

tasks T and performance measures P, if its performance at tasks in T, as measured by

P , improves with experience E.

ML approach is completely based on the existence of an initial corpus of manually

categorized document samples Ω = {𝑑1, 𝑑2, … . , 𝑑𝑛} categorized under 𝐶 = {𝑐1, 𝑐2, … . , 𝑐𝑛}.

Hence, the total function �̂� ∶ 𝐷 × 𝐶 → {𝑇, 𝐹} is completely defined for every pair 〈𝑑𝑗 , 𝑐𝑖〉 ∈

Ω × 𝐶, Ω ⊂ 𝐷. When �̂�(𝑑𝑗 , 𝑐𝑖) = 𝑇 , we have a positive example of a document from

category 𝑐𝑖. When 𝜙(𝑑𝑗 , 𝑐𝑖) = 𝐹, we have a negative example of a document from category

𝑐𝑖.

2.4.4.1 Training set and Test set

The initial corpus is split into two independent subsets with elements distributed

randomly, of unequal size.

1. Training set – This is the set of documents and associated categories used for

observing characteristics and inductively building (training) the classifier through

supervision.

2. Test set – This is the set of documents for testing the efficiency of classifier which

was built using the training set. Testing involves comparing the outcome category of the

classifier on an input document with the actual manually assigned category. Effectiveness of

the classifier is reflected by measuring how often the two categories match.

2.4.4.2 Cross Validation

Cross validation (aka rotation estimation) is usually performed, to assess how a

classifier’s performance would generalize on an independent data set. It is usually performed

19

to estimate the accuracy of an inductive process while applied in practice. k-fold cross

validation (Mitchell, 1997, p. 146), involves inducing k different classifiers 𝜙1, 𝜙2 … , 𝜙𝑘

from an initial corpus Ω , by splitting it into k-disjoint equal-sized subsets and iteratively

considering k-1 sets as training sets and remaining set as a test set. The final performance of

inductive process is obtained by averaging the performance measures of the k-different

classifiers.

2.4.4.3 Text Representation

In Text categorization, compact representation of textual material is of paramount

importance as it directly affects the efficiency of the inductive process of building a

classifier. When text is represented concisely, processing is faster in turn speeding up the

supervised training of the classifier.

As in information retrieval, a sentence is represented as a vector of weights,𝑑𝑗 =

〈𝑤1𝑗, 𝑤2𝑗 , … 𝑤|𝑇|𝑗〉, of dimension |𝑇|, where T is known as a set of features. Features are

individual measureable properties of observed phenomena used for learning.

A typical scheme which applies the above representation is the bag of words model.

Here the set of distinct words in whole corpus, are indexed without concern to their order of

occurrence. Thus the set of words become the features of the model. Each sentence is then

represented as a bit vector of the set of all words, having a weight of ‘1’, if the word appears

in the sentence and weight of ‘0’ otherwise; This is fed as input to the induction process for

building the classifier.

20

Apart from using binary weights, other schemes practically use some weighing

scheme, with normalized scores occurring between 0 and 1. Using the actual count of

occurrence of a particular word in a sentence as weight is a well applied weighing scheme.

2.4.4.4 Feature Reduction Techniques

Feature reduction procedures are applied in RWT when training a classifier to reduce

feature space while maintaining the performance of the classifier or improving it. It involves

a set of transformations and combinations performed on the original feature set in order to

identify features of high innate informational value (D. Biber, Conrad, & Reppen, 1998).

Common feature reduction procedures used by RWT are discussed in detail.

2.4.4.4.1 Stop Words Removal

Apart from a compact sentence representation, stop words removal is another

procedure that could reduce the amount of data processing involved. Before processing the

whole corpus towards sentence representation, it is customary to remove all words of low

informational value. Several stop lists are readily available and are usually containing

common grammatical or functional words such as ‘the’, ’of’, and ‘in’. Use of such lists is

common across information retrieval systems, as their removal rarely cause a significant loss

of accuracy (Y. Yang, 1995).

2.4.4.4.2 Term Frequency

Frequency of occurrence of words is a useful measure to assess the relative

importance of terms in documents. The terms with higher frequency are of higher importance

(Rijsbergen, 1979). A natural way to reduce feature space is to consider terms having

occurrence higher than certain threshold frequency. By considering words of frequency 2 or

21

more, the feature space would be reduced to almost half as single frequency terms normally

predominate in a corpus.

2.4.4.4.2 Relative Term Frequency

Term frequency considers global frequency of terms throughout the whole corpus.

Alternatively, term frequencies could be measured relatively among different categories

within in the corpus. Thus, terms whose frequency is different across different categories are

considered more important rather than terms with high frequency in all the categories. This

relativity gives a measure of difference and affinity of a term to a single category. To

consider those words that appear only in a single category is a natural extrapolation but they

are almost rare offering poor performance than expectations.

Some measures of relative importance used in NLP and machine learning include

Information Gain (IG), Mutual Information (MI), T-test, Odds ratio and Chi-Squared (CHI).

(For a review of these and other similar measures, see (Y. Yang & Pedersen, n.d.) and

(Ikonomakis, Kotsiantis, & Tampakas, 2005))

Odds ratio (Bland & Altman, 2000) in particular used by RWT for relative term

frequency, is a measure of effect size, which describes the correlation between two classes or

categories. It can be used effectively as a relative term frequency measure to study

correlation of certain terms occurring prominently in certain specific categories. Occurrence

of these terms indirectly signals association with certain categories.

OddsRatio(fi,cj)= log

P (
fi

cj̅
) (1-P (

fi

¬cj̅̅ ̅̅))

P (
fi

¬cj̅̅ ̅̅) (1-P (
fi

cj̅
))

22

P(𝑓𝑖 𝑐𝑗)⁄ Probability that observed term 𝑓𝑖 belongs to class 𝑐𝑗

P(𝑓𝑖 ¬𝑐𝑗)⁄

Probability that observed term 𝑓𝑖 does not belong to class 𝑐𝑗

2.4.4.5 Term Weighing

Another approach towards reducing the feature space is to weigh features based on

some informational measure and trim those which score low on the scale. This could also be

combined along with other feature reduction procedures to better manage the feature space.

A simple measure is considering the frequency of occurrence of a term in a corpus as a

weight of the term.

Yet another popular weighing scheme is the standard 𝑡𝑓 − 𝑖𝑑𝑓, term frequency –

inverse document frequency measure (Croft, 1987). This measures the importance of a

particular term or word occurring in a document of the corpus, using term frequency which is

the number of times a term occurs in a document and inverse document frequency which is

the log of the total number of documents in the initial corpus over the number of documents

containing the term.

 𝑡𝑓 − 𝑖𝑑𝑓(𝑡𝑖, 𝑑𝑗) =

 (number of times 𝑡𝑖 occurs in 𝑑𝑗)* log2
|𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑟𝑝𝑢𝑠|

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡𝑖 𝑎𝑝𝑝𝑒𝑎𝑟𝑠

Here 𝑡𝑖 – a term or word from the corpus, and 𝑑𝑗- a sentence or document from the

corpus.

The downside of using this measure (and most other measures) is it considers the

importance of a term from a frequency and occurrence perspective rather than weighing

syntactical role or considering into account the order of occurrence of a term.

23

2.4.4.6 Support Vector Machines - Learner Classifier Systems

The core system driving RWT to learn from expert annotated samples and predict for

new samples, is the learner classifier system. Learner classifier systems learn to perform the

best action given its input based on conditions. The core of the learning systems is an

algorithm to process the input data to produce a representation of target knowledge for

requested operation. Once the representation is in place, this can be applied to new test data,

to obtain a general hypothesis about the data in terms of rules/concepts learnt.

Numerous algorithms exist to learn from data and have different assumptions or

inductive bias according to the learning context (Mitchell, 1997). Hence some algorithms

perform in certain areas and contexts better than others and choosing them accordingly

affects their performance in the learning tasks. The bias of algorithms plays a key role in

their applications.

Support vector machines (SVM) (Cortes & Vapnik, 1995) used by RWT, are a class

of learner classifier algorithms which are based on the structural risk minimization principle

from computational learning theory (Vapnik, 1999).

The main idea with a SVM is to identify a hypothesis h of lowest true error possible

and it is guaranteed through structural risk minimization. True error is the probability that a

hypothesis h will make an error on an unseen randomly selected data sample. Error of

hypothesis h on a given training sample and the complexity of the actual hypothesis space

containing h namely H, can be used to calculate an upper bound on the true error. This upper

bound can be further optimized, by minimizing the bound on the true error and SVMs

achieve this by controlling the dimension of hypothesis space H. Notice however, the

24

dimensions of H are in VC dimension. VC dimension is a measure of capacity of a learning

algorithm. It is measured as the cardinality of largest set of points an algorithm can shatter.

SVMs basically learn linear functions but they can be adapted to learn complex

functions using kernels. Kernel trick (Hofmann, Schölkopf, & Smola, 2008), maps

observations/features to a higher dimensional inner product space where observations are

linearly separated using a hyperplane.

SVMs classify by mapping input/observations/features of various categories or

classes to a high dimensional feature space through the use of a non-linear mapping function

chosen as a priori. In this high dimensional space, a linear surface is used to classify features

according to their relevant categories. Thus optimally all features of same category are

separated to the same side of the linear surface. The construction of the linear surface holds

special properties to ensure generality.

Figure 2-1 Hyperplane separates data of two different categories

An optimal linear surface (Cortes & Vapnik, 1995; Vapnik, 1999) or hyperplane for

separable categories separates features of different categories using a maximum margin.

Complex in low dimensions

ns

Simple in high dimensions

Feature map

ns

A separating hyperplane

25

Hence only a few features which lie close to the maximal margin are taken into consideration

to actually determine the margin mathematically. These features which determine the optimal

maximum margin hyperplane decision boundary are named the support vectors.

SVMs measure complexity of the hypothesis through the maximal margin and

optimizing the maximal marginal width. Hence the dimensions of the feature space are

irrelevant to the complexity aiding high dimensional feature vector applications.

Some theoretical concepts justifying application of SVMs to our learner’s research

article analysis and text categorization are discussed in detail.

2.4.4.6.1 Text categorization applications

RWT uses SVMs for identifying moves and steps for stretches of text, as the text

categorization problem has high dimensional features and most features carry useful

information to be discarded irrelevant (Joachims, 1998). SVMs are said to work better for

text categorization applications (Joachims, 1998) as they exhibit the following properties

necessary for building text classifiers. SVMs can handle high dimensional features

(minimum 10,000) as their complexity depends on the composing hypothesis space and not

the size of the features. Hence high dimensional feature spaces help consider more features at

any point of time. Bag of words model applied to text categorization almost always yields

sparse document vectors or feature vectors. Algorithms having similar inductive bias like

SVMs are said to perform well for text categorization applications , empirically and

theoretically (Kivinen, Warmuth, & Auer, 1997). Most text categorization problems could be

solved linearly; SVMs are for finding linear boundaries of maximum marginal separation.

26

Thus above arguments theoretically provide evidence for the role of SVM and their

application in text categorization problems.

2.4.4.6.2 Practical selection of SVM Parameters

Theoretically, SVM Regression is formulated as a minimization of the following

function (Vladimir Cherkassky & Ma, 2004),

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
|𝜔2| + 𝐶 ∑ (𝜉𝑖

∗ + 𝜉𝑖)
𝑛
𝑖=1

Subject to

 𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜔) − 𝑏 ≤ 𝜀 + 𝜉𝑖
∗ , 𝑓(𝑥𝑖, 𝜔) − 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖, 𝜉𝑖

∗, 𝜉𝑖 (𝑆𝑙𝑎𝑐𝑘 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) ≥

0

Here, C is a positive constant known as the regularization parameter and 𝜀 controls the 𝜀 −

𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (Vapnik, 1999) .

𝑓(𝒙, 𝜔) = ∑ 𝜔𝑗𝑔𝑗(𝒙)

𝑚

𝑗=1

+ 𝑏

𝒙 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑖𝑛𝑝𝑢𝑡 , 𝑔𝑗(𝒙) is a set of nonlinear transformation and ‘𝑏’ is the bias

term. The above minimization problem can be solved from the dual problem and its solution

is given by,

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝒙) + 𝑏𝑛

𝑖=1 , subject to the constraints

0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶 (dual variables) . 𝐾(𝑥𝑖, 𝒙) is the symmetric kernel function , satisfying

Mercer’s conditions (Vapnik, 1999).

27

The estimation accuracy of the SVM thus depends on the good setting of hyper

parameters C, 𝜀 and the kernel function’s parameters. Parameter C controls the trade-off

between degree to which deviations larger than value of 𝜀 are tolerated in the optimization

and the model complexity. Parameter 𝜀 controls the width of 𝜀 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑧𝑜𝑛𝑒 to fit the

training data (V. Cherkassky & Mulier, 2007).

Four basic kernel functions used frequently include the following,

 Linear kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗

 Polynomial kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)𝑑 , 𝛾 > 0

 Radial basis function: 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾|𝑥𝑖 − 𝑥𝑗|
2

), 𝛾 > 0

Support

Support

Margin

𝐾(𝑥𝑖, 𝑥𝑗) = ∅𝑇(𝑥𝑖)∅(𝑥𝑗)

Misclassified

𝜉 > 1

𝜉 < 1

b

 𝑤𝑇∅(𝑥) + 𝑏 = −1

 𝑤𝑇∅(𝑥) + 𝑏 = +1

 𝑤𝑇∅(𝑥) + 𝑏 = 0

Figure 2-2 Hyperplane separates two different categories with a maximal margin separation

28

 Sigmoid: 𝐾(𝑥𝑖, 𝑥𝑗) = tanh (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

SVM implementation in RWT uses Radial basis function (RBF) kernel as it can

model a nonlinear relation between features and categorical labels. Moreover, linear kernel is

a special case of RBF kernel when used with the same value of parameter C. RBF kernel also

has fewer hyperparameters when a relation is modeled using it, rather than modeling with a

polynomial kernel. RBF kernel is bound by constraint 0 < 𝐾(𝑥𝑖 , 𝑥𝑗) ≤ 1 , while polynomial

kernels are unbound and may possibly go to zero or infinity when the polynomial is of higher

degree. But like all other kernels, RBF kernels suffer from limitations especially when the

number of features are very large, wherein a linear kernel might be the best applicable.

Practical approaches towards hyper parameter choice of values for C and 𝜀 are

summarized below (Vladimir Cherkassky & Ma, 2004),

 Prior knowledge and/or user expertise can be used to select values for C and 𝜀 (V.

Cherkassky & Mulier, 2007; Schölkopf & Smola, 2002; Vapnik, 1999).

 To set values of 𝜀 proportional to noise variance was proposed by (Kwok & Tsang,

2003; Schölkopf & Smola, 2002) aligning with several other sources on SVM. Large sample

sizes tend to have small 𝜀 value.

 Setting value of parameter C to range of output values (Mattera & Haykin, 1999)

 Computationally intensive cross validation can be used to select appropriate values to

hyper parameters (V. Cherkassky & Mulier, 2007; Schölkopf & Smola, 2002).

 Statistical interpretation of SVM regression opens various possibilities and under this

approach, value of 𝜀 can be tuned for appropriate noise density, whereas parameter C can be

29

estimated using cross validation(Hastie, Tibshirani, & Friedman, 2001; Schölkopf & Smola,

2002).

2.4.4.7 Evaluating Text Categorization Systems

Classifiers trained for RWT are evaluated through experiments rather than analytical

calculations. Experimental evaluation of a classifier is used to measure effectiveness rather

than efficiency, i.e. the right classifications made by a classifier in total are measured to

realize effectiveness in a practical application. The main measures used for RWT include

precision, recall and accuracy as discussed in detail below.

2.4.4.7.1 Precision and Recall

Classic Information retrieval notions of precision 𝜋 and recall 𝜌 are usually adapted

to be used with text categorization systems to measure classification effectiveness.

Precision with respect to a category is defined as the probability that any random

document classified to belong to the category actually belongs to it.

𝜋𝑖 = 𝑃(�̆�(𝑑𝑥, 𝑐𝑖) = 𝑇 𝜙(𝑑𝑥, 𝑐𝑖) = 𝑇⁄) ,

 𝑤ℎ𝑒𝑟𝑒 𝑑𝑥 𝑖𝑠 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 , 𝑐𝑖 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑎𝑛𝑑 𝜋𝑖 𝑖𝑠 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑐𝑖 .

Similarly, Recall with respect to a category is, probability that any random document

belonging to a category is actually classified under it.

𝜌𝑖 = 𝑃(𝜙(𝑑𝑥, 𝑐𝑖) = 𝑇 �̆�(𝑑𝑥, 𝑐𝑖) = 𝑇⁄) ,

 𝑤ℎ𝑒𝑟𝑒 𝑑𝑥 𝑖𝑠 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 , 𝑐𝑖 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑎𝑛𝑑 𝜋𝑖 𝑖𝑠 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑐𝑖 .

The measures are subjective as they measure the expectation of user that system

behaves appropriately when classifying an unseen document under a certain category.

Contingency table organizes and makes calculating measures easy.

30

Table 2-2 Contingency table for Category c_i

Category 𝑐𝑖 Expert Judgments

YES NO

Classifier Judgments YES 𝑇𝑃𝑖 𝐹𝑃𝑖

NO 𝐹𝑁𝑖 𝑇𝑁𝑖

Table 2-3 Global contingency table

Category set 𝐶 =
{𝑐1, 𝑐2, … 𝑐|𝐶|}

Expert Judgments

YES NO

Classifier

Judgments
YES

𝑇𝑃 = ∑ 𝑇𝑃𝑖

|𝐶|

𝑖=1

 𝐹𝑃 = ∑ 𝐹𝑃𝑖

|𝐶|

𝑖=1

NO

𝐹𝑁 = ∑ 𝐹𝑁𝑖

|𝐶|

𝑖=1

 𝑇𝑁 = ∑ 𝑇𝑁𝑖

|𝐶|

𝑖=1

Here,

 𝐹𝑃𝑖 (𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑤𝑟𝑡 𝑐𝑖) is number of test documents incorrectly classified as

under category 𝑐𝑖 .

 𝑇𝑃𝑖(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑤𝑟𝑡 𝑐𝑖) is number of documents correctly classified as under

category 𝑐𝑖.

 𝑇𝑁𝑖(𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑤𝑟𝑡 𝑐𝑖) is number of documents correctly classified as not

belonging to category 𝑐𝑖 which actually don’t belong to 𝑐𝑖.

 𝐹𝑁𝑖(𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑤𝑟𝑡 𝑐𝑖) is number of documents incorrectly classified as not

belonging to category 𝑐𝑖 which actually belong to 𝑐𝑖.

The contingency table can be used to arrive at values of precision and recall of category 𝑐𝑖

accordingly as below.

𝜋�̂� =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 , 𝜌�̂� =

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

31

For obtaining the global precision and recall numbers, two different methods are

adopted as below,

In Micro averaging, 𝜋 𝑎𝑛𝑑 𝜌 are calculated from summing individual decisions,

𝜋�̂� =
∑ 𝑇𝑃𝑖

|𝐶|
𝑖=1

∑ (𝑇𝑃𝑖
|𝐶|
𝑖=1 +𝐹𝑃𝑖)

 , 𝜌�̂� =
∑ 𝑇𝑃𝑖

|𝐶|
𝑖=1

∑ (𝑇𝑃𝑖
|𝐶|
𝑖=1 +𝐹𝑁𝑖)

In Macro averaging, precision and recall are evaluated for individual categories

initially and then averaged to give macro averages,

𝜋�̂� =
∑ �̂�𝑖

|𝐶|
𝑖=1

|𝐶|
 , 𝜌�̂� =

∑ 𝜌�̂�
|𝐶|
𝑖=1

|𝐶|

The two quantities offer different results as their emphasis differs based on generality

of categories. Their application purely depends on requirements.

2.4.4.7.2 Accuracy and Error

Measures other than precision and recall normally used among machine learning

literatures include Accuracy and Error of the classifier on data. But they are insensitive to

variations in number of correct decisions when compared to 𝜋 and 𝜌 (Y. Yang, 1999) due to

large denominator values.

Accuracy is estimated as,

�̂� =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 ,

Error is estimated as,

�̂� =
𝐹𝑃 + 𝐹𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 ,

32

CHAPTER 3. SYSTEM ARCHITECTURE

In this chapter, the design and architecture of subsystems forming the backend of

RWT are discussed in detail. We consider the expert module which is responsible for

analysis and interpretation, the learner diagnosis module providing inference of learner’s

understanding and the pedagogical module providing assistance and feedback to learner. The

backend in turn has two separate independent sub systems, consisting of a training system

which is used to build a classifier from data and a test system where the classifier trained

previously is plugged in for use for manual input and testing.

3.1 Contributions

Research and development of RWT span over a few years and the observed accuracy

of the final move and step analysis classifiers were not near the expected numbers for

practical usage. Ryan (Kirk, 2011) did a great job in extracting the corpus and normalizing

the data across several tables. But the training sub system and test sub system were not their

best and debugging issues related to the accuracy were time consuming. Moreover, the code

was ready only for unigram extraction and consumption and was not naturally extensible to

accommodate trigrams from the corpus.

My initial effort as per need was to extract the trigrams, calculate odds ratios and

accommodate them into model creation and testing. This was completed successfully under

directions from Nick Pendar (Nick Pendar, 2011). As soon as the trigrams, were accounted

for the accuracy increased from 48% to 70% and was ready for classroom usage and testing.

Moreover, Ryan's code involving ensemble learners including Naive Bayes and Lexical

bundles were removed as SVM classifiers showed higher accuracy independently. Trigrams

33

were accounted at move and step hierarchies as database tables, extracted data and Python

source code for extraction, database update, model creation and model testing.

In feature extraction, previous code sections had features unprocessed or partially

stubbed. This was improved to handle recurring patterns mainly URLs, domain names and

HTML special characters. For RWT's model creation modules, research and experiments on

multifarious classifier models that accounted for more than just binary features including

SVMs that accept numerical features like odds ratios and feature frequencies were also coded

in Python to test accuracy.

3.2 System Architecture of Expert Module

3.2.1 Corpus Preparation

Supervised machine learning algorithms require large amount of labeled samples for

training a classifier. Classifiers are built on samples as it might be impossible or impractical

to collect all different possibilities of data for a particular machine learning task. Samples

reflect the desired properties and attributes we wish to learn. A corpus is a structured

collection of samples of text used to represent a target language.

Corpus creation was of immense importance to RWT research and to my portion of

work described. The corpus based approach and construction were mainly carried out by Dr

Elena Cotos and her team of trained annotators, who manually annotated the text files using

modified Swales framework (J. M. Swales, 2004; J. Swales, 1981).

 A corpus of sample research articles was used as it is impossible to collect every

possible variation. Research articles contain 5 major components namely, Introduction,

Methods, Results, Discussion and Conclusion. Termed as “Sections” in RWT, Discussion

34

and Conclusion are combined as a single section, forming four major sections of research

article. Current implementation focuses primarily on research article introduction section.

Research article introductions vary by structure and content across various

disciplines. A stratified sample corpus of research articles from each discipline is compiled to

represent a particular discipline.

Most research articles are PDF files and are not directly usable for textual analysis

and processing. Hence these files are minimally preprocessed to extract the actual text

content and thus converted to plain text files preserving punctuations, paragraph structures

and boundaries. Any special characters, images or symbols without a text representation are

discarded in this step. The main specialized corpus consists of 1,020 research articles and

1,322,089 words. The research articles span over 51 disciplines each represented through 20

texts. All articles in the corpus reported on empirical research from reputed academic

journals published between 2003 and 2009.

The introduction sections from the research articles were made into separate text files

to form the training data. The sub-corpus of introduction sections has 650 articles, totaling

15,460 sentences and 366,089 words.

Plain text files contain very little information to identify organizational structure of

discourse. Especially, the structure of discourse varies across disciplines and doesn’t

necessarily fit under a common skeleton. Hence the text files are annotated manually with

different communicative functions of Moves and Steps.

35

Table 3-1A modified version of Swales move/step framework (J. M. Swales, 2004) used for annotation

Move Step

Move 1: Establishing a territory

 Step 1: Claiming centrality

 Step 2: Making topic generalizations

 Step 3: Reviewing previous research

Move 2: Identifying a niche

 Step 4: Indicating a gap

 Step 5: Highlighting a problem

 Step 6: Raising general questions

 Step 7: Proposing general hypotheses

 Step 8: Presenting a justification

Move 3: Addressing the niche

 Step 9: Introducing present research

descriptively

 Step 10: Introducing present research

purposefully

 Step 11: Presenting research questions

 Step 12: Presenting research hypotheses

 Step 13: Clarifying definitions

 Step 14: Summarizing methods

 Step 15: Announcing principal outcomes

 Step 16: Stating the value of the present

research

 Step 17: Outlining the structure of the paper

The team used calisto workbench (Day, McHenry, Kozierok, & Riek, 2004) with a

custom XML markup to annotate and tag each sentence with a step and a move they

communicate. The XML markup also allows nesting several moves and steps and assigning

multiple steps to multifunctional stretches of text.

3.2.2 Database design

Ryan Kirk (Kirk, 2011) made an initial effort to import annotated data into a

normalized database schema. The annotated corpus contains tagged information indicating

36

the particular move and step a sentence belongs to. This data was loaded onto a database for

faster processing, querying and management. MySQL (MySQL, 2004) was used as the

database management system with a normalized schema, to hold the corpus data in an

equivalent form. Importing data into the MySQL database tables was performed using

custom Python scripts which parse the annotated XML files using an XML parser and import

each sentence to the database along with metadata on moves and steps. XML parsers are

capable of handling nested tags; hence multifunctional sentences are represented multiple

times in the database with different moves and steps capturing both primary and secondary

communicate functions of stretches of texts. The database is based on the following schema,

 Sentences – This table holds all the sentences of the corpus, along with meta data

about the sentences such as discipline to which it belongs, move and step it was tagged onto,

file from which it came from (to backtrack) and importantly the order of occurrence of the

sentence in annotated text file (to reconstruct the actual text back from database).

 Words – This table contains all the unique words present in the whole corpus with a

unique id as a primary key. The primary key is referred by other tables.

 SentenceWords – This is a foreign key association table, referring contents from

Sentences table and Words table. This table is used to link sentences to its constituent words

and vice versa.

 Moves – This table holds an index of all the moves from the CARS model using a

unique identifier as primary key. This is referenced by the Steps table.

 Steps – This table holds an index of all the unique steps from the CARS model with

reference to parent move they belong to. The table’s primary key is referenced by Sentences

table.

37

 TrigramsGlobalfrequency – This table holds an index of all trigram strings found

throughout the corpus with frequency of occurrence globally. A custom Python script which

processes each sentence from the Sentences table arrives at its trigram elements. These

trigrams are inserted into this table with a frequency of 1, or the frequency is incremented if

trigram entry already exists in the table.

 TrigramsLocalFrequency – This table is similar to the global frequency trigram index

but holds local frequency of trigrams found in a particular step for processing. The frequency

values are useful in odds ratio calculations which are used for feature reduction. Step

frequency measures in turn can be used to arrive at move frequency of a particular trigram as

set of steps constitute a move.

 TrigramSentenceOccurrence – The table holds associates TrigramsGlobalFrequency

and Sentences tables. This table links trigrams to the containing sentence and vice versa.

For RWT, the advantage of moving sub-corpus into database is the ease of

management and availability of SQL queries to obtain insights on data. Most of feature

processing, feature reduction measures, calculations, frequency counts can be seamlessly

dealt with complex nested queries instead of handwriting custom Python scripts. Also,

MySQL offers various optimizations to provide high performance and concurrency which

come handy when managing and analyzing corpus data of any size (Schwartz, Zaitsev, &

Tkachenko, 2012) .

Various custom indexes help querying against data a lot faster and easier and have

been implemented in the MySQL database using create index statements.

Mini Database schema diagram - pending

38

3.2.2.1 Database design revision

Dr Evgeny Chukharev Hudilainen (Chukharev Hudilainen, 2013) proposed the

second revision to RWT's database structure aimed at optimizing the training procedure. The

above schema was replaced with a single database table to hold the entire corpus of articles

for different sections. The schema was denormalized and redundant but concise. Apart from

changes to schema, the database engine was replaced from MySQL (MySQL, 2004) to

SQLite (Hipp & KENNEDY, 2007). Once a classifier was trained from the training corpus,

the training corpus can be safely disregarded during testing. This was an important design

decision that chose SQLite over MySQL as MySQL was feature intensive. SQLite on the

other hand stored the entire database in a plain text file, and was only used during the training

procedure. The shift also ensured abstracting the entire training procedure from the test

scripts exposing only the classifier model and set of features instead of the corpus itself. The

revised schema also spawned new Python scripts, modifying the training subsystem entirely.

The details are discussed in the upcoming section. Following is the schematic description of

database fields and their data types.

Table 3-2 Revised Database Schema
Attributes Type

Id TEXT

File TEXT

Discipline TEXT

Section TEXT

Move TEXT

Step TEXT

Is_primary INTEGER

Primary_move TEXT

Primary_step TEXT

Attributes Type

Content TEXT

Sentence_id INTEGER

3.2.3 Training sub-system

The training sub system is an important part of an expert module. Training a classifier

through an inductive process after analyzing data and applying algorithms to actually learn

39

the characteristics pertaining to a category are the main course of actions implemented in this

sub system.

In RWT, the training sub system is in turn implemented integrating independent

building blocks each achieving modular tasks. The integration is brought about by a Python

script which communicates with the building blocks moving data and results inside out.

Following are the building blocks which together constitute the training process for

RWT.

Figure 3-1 RWT’s Training Sub-System

3.2.3.1 Feature Processing

As in Chapter 2, identifying important features that capture characteristics of data we

are trying to learn is necessary for learning algorithms to perform. Feature extraction and

analysis is a repetitive process where each feature set is tested for performance and better

performing (in terms of accuracy of the classifier) sets replace existing ones. Similarly,

various feature reduction measures with experimental parametric values, may be applied each

resulting in completely different set of features.

Prior research on IADE (Pendar & Cotos, 2008) before RWT noted that bigrams had

a negative effect on text categorization towards discourse analysis. In RWT, unigrams and

trigrams are used as the main features to build the classifier. Database tables hold unigram

Feature
Processing

Training file
Creation

SVM Training

40

and trigram strings from the whole corpus along with frequency figures measured along

various hierarchy levels including whole corpus level, move level and the step level.

Before applying feature reduction procedures, a threshold frequency was considered

to cut down unimportant features to further reduce the feature space. Unigrams and trigrams

occurring fewer than “5” times are discarded to proceed with. This could further be increased

to a higher cut off value, if text categorization task using fewer features yields similar

performance. Reducing the feature space augments the performance of all subsequent

processes that follow, including training file creation, actual classifier training and testing

classifier for performance.

Prior implementations by Ryan kirk had numerous Python scripts to achieve feature

weighing and processing. Currently in RWT, SQL statements are used to weigh (Odds ratios)

features instead of custom scripts as they are easier to debug and faster to change/export. The

unigrams and trigrams which exhibit high odds ratios are considered for further processing.

Having the features and their frequency values in the database serves an advantage as most of

the post processing and weighing can be done using simple nested SQL queries rather than

custom Python scripts. Finally the features identified are exported as plain CSV files to aid

training file creation and training of the classifier.

Following is an example SQL Query to identify unigrams globally occurring “5”

times or more, grouped along the particular step in which they occur. The unigrams are listed

in descending order weighed according to odds ratios of a unigram occurring in a particular

step. Similar query can be applied to identify trigrams.

select t.* from

(select w.word,sent.stepid,w.globalFreq,count(*) as

LocalFreq,count(*)/(w.globalfreq-count(*)) as Odds from

sentencewords sw,

41

words w,

sentences sent

where sw.wordID=w.wordID

and sent.sentenceID=sw.sentenceID

and w.GLOBAlfreq >= 5s

group by w.word,sent.stepid

order by w.word ,sent.stepid) t

order by t.odds desc

3.2.3.2 Training file creation

Following feature extraction, training file creation is the next step in line. In Chapter

2, compact representation of corpus and its importance are specified as it affects the

inductive process of training. The training file format in turn depends on the actual algorithm

implementation tool being used for training a classifier. RWT uses the bag of words model

with the specification of actual class/category followed by tab/comma/space separated

feature values. Depending on the classification algorithm and implementation, the individual

elements in a training file can be string labels or numeric values indicating a measure/weight

of a feature.

 A Python script iterating over sentences in the database is used to generate feature

representations for each sentence. Thus a single line of the training file, referring to a

sentence in the database has category/class value as the initial element, followed by feature

values. In case of RWT, the features values are binary though numerical values are

supported. Feature representations can be either dense or sparse. Dense representations

require all features to hold weight or value even if particular feature is absent or has no value

(zero weight is used). Sparse representations on the other hand require specifying only those

features with a value. All features unspecified are automatically equated to zero. Sparse

representations offer small size representations and are relatively less time consuming to

generate.

42

An example of a feature vector represented in dense and sparse formats are given

below, with first cell indicating category and 4 features to follow. Category “1” is separated

with a tab whereas features are separated with a space.

Dense representation – 1 1 0 2 0 0 0 0 0 0 1 0 0 0 1 0 2 0 5 0 0 0 0 0 0 0 0 0 0

Sparse representation – 1 1:1 3:2 10:1 14:1 16:2 17:5

For RWT, LIBSVM (Chang & Lin, 2011) used to implement support vector machines

poses limitations on training file representation. Hence training file in RWT uses a sparse

representation with binary/numerical values for features and numerical values for categories.

3.2.3.3 LIBSVM – Support Vector Machine Library

LIBSVM (Chang & Lin, 2011), a support vector machine implementation library

with bindings to Python was used to train the classifier. LIBSVM supports multi-category

classification. Highly configurable in application, the library’s API interface allows a

developer to set parameters, choose kernels, train a classifier, apply cross validations, save

models trained and load models for future use. The library also allows training based on

probability and returns information about the model trained including mean squared error,

optimization history, accuracy and estimates of probability of classification to particular

categories for each sample. A helper Python script is provided by the library for automating

grid searching and parameter selection to find the best performing values by covering the

parameter space extensively.

3.2.3.4 Revised training sub-system

Post revised database schema (mentioned in 3.1.2.1) adopted for RWT, resulted in

streamlined training subsystem which combined the feature processing and training file

43

creation into a single Python script instead of two different modules. The idea was proposed

by Dr Evgeny Chukharev Hudilainen (Chukharev Hudilainen, 2013) to optimize the training

sub-system to contain fewer highly coupled, simple components thus speeding the entire

training procedure. The script consumed the entire corpus from SQLite database and

produced odds ratio weighed unigram and trigram features as text files. It also transformed

the entire corpus into training files on the fly from the memory. This effort drastically

reduced the time taken for feature extraction and training file creation and optimized the

training sub-system appropriately. The individual steps implemented in the python script are

covered in the next chapter.

3.2.4 Test sub-system

Similar to the training sub system, the functionalities to test a constructed model were

based on independent modules, integrated using Python. Main inputs passed on from the

training sub system include feature sets, trained model file saved to disk by LIBSVM along

with chosen parametric values and set of routines to load the above data into memory as they

are same.

3.2.4.1 Tester Script

A trained SVM model can be loaded on demand to analyze against a test corpus after

representing them as feature vectors. In RWT, the test corpus consists of completely new

data not available during training, but collected and processed similar to the training data.

Performance of a model being tested is calculated by comparing model’s automated

classification with an expert’s classification of the entire test corpus. With the feature set, an

input sentence is converted to feature vector and passed as input to the model for

44

classification. LIBSVM predicts a particular category by minimizing the error of

classification through structural risk minimization. The whole functionality was achieved in

RWT through custom Python scripts.

The script is generic to load any input model and feature vectors to the memory. Once

loaded, it allows a test to be performed on a given set of sample sentences. The script also

produces verbose output on accuracy achieved on the test set using this model and other

metrics including error and probability estimates of classification.

Above mentioned functionality for RWT is achieved through console based programs

and command line activity.

3.2.4.2 User Interface Integration

User interface integration was the next step in the development of RWT. Most of

RWT’s user interface design, development and research were handled by separate UI team

and the whole process is documented in a previous thesis by Nandhini (Cotos, Gilbert, &

Link, 2012; Ramaswamy & Gilbert, 2012; Ramaswamy, 2012). Previous source code from

IADE (Pendar & Cotos, 2008) facilitating communication between analysis engine and the

user interface was reused for RWT as most functionality is similar and the analysis engine is

agnostic by design from changes to the user interface. The source necessarily implemented a

persistent daemon in Python to listen to TCP sockets for incoming messages and respond

appropriately.

45

Figure 3-2 User interface connected to Daemon through Sockets

User interface elements were developed independently using PHP. The user interface

allowed learners to submit their writing for analysis and get annotated results back from

RWT. A daemon process encapsulating the analyzer listens to a TCP connection from the

user interface and persists in memory unless stopped or killed. This daemon is the port of

contact between the user interface and the tester script for passing bytes back and forth. TCP

sockets abstract the complexity in handling multiple simultaneous connections and hence are

best to handle multiple user interface analysis requests with minimum implementation. A

request from the user interface consists of paragraphs of text to be analyzed along with

metadata on the request. TCP sockets carry the request to the expert module on the other

end. Once the textual data is analyzed using feature sets and the classification model, the

result is passed back to the user interface as an XML. XML being a standard allows returning

structured results which may be used for further processing down the line.

User Interface

Daemon – persistent in memory

Python script

Move/Step Classifier

TCP Channel

46

The following is a sample XML with nodes and attributes, listing result of analysis.

<? XML version="1.0" encoding="ISO-8859-1"?>

<RWTtext>

 <labelText>

 <labelText UID="deepan18" SessionID="95afdddec15fdb1b795617b7d01ff485"

AnalyzeSessionID="2012_11_29_22_42_05_746_50b8391db66ec" section="INTR" discipline="AGBE"

ID="1" text="this is a simple test." step="1" agreementSteps="100.0" feedbackSteps="You may

be providing general background about the topic of investigation here." move="1"

agreementMoves="100.0” />

 </labelText>

 <scoreMove>

 <scoreMove UID="deepan18" SessionID="95afdddec15fdb1b795617b7d01ff485"

AnalyzeSessionID="2012_11_29_22_42_05_746_50b8391db66ec" section="INTR" discipline="AGBE"

ID="1" move="1" numSentMove="2" target_numSentMove_min="1" target_numSentMove_low="1"

target_numSentMove_norm="1" target_numSentMove_hi="2" target_numSentMove_max="2"

percentMove="0.666666666667" target_percentMove_min="0.317672483623"

target_percentMove_lo="0.476508725435" target_percentMove_norm="0.635344967246"

target_percentMove_hi="0.794181209058" target_percentMove_max="1.11185369268"

feedbackMove="Too much focus on establishing the territory compared to agricultural and bio-

systems engineering papers.Needs more work." />

 </scoreMove>

 <scoreStep>

 <scoreStep UID="deepan18" SessionID="95afdddec15fdb1b795617b7d01ff485"

AnalyzeSessionID="2012_11_29_22_42_05_746_50b8391db66ec" section="INTR" discipline="AGBE"

ID="1" step="1" move="1" numSentStep="2" target_numSentStep_min="0"

target_numSentStep_low="0" target_numSentStep_norm="0" target_numSentStep_hi="1"

target_numSentStep_max="1" percentStep="0.666666666667"

target_percentStep_min="0.120297499001" target_percentStep_lo="0.180446248502"

target_percentStep_norm="0.240594998002" target_percentStep_hi="0.300743747503"

target_percentStep_max="0.421041246504" feedbackStep="Good work on generalization.Very

similar to agricultural and bio-systems engineering papers." />

 </scoreStep>

</RWTtext>

47

3.3 System Architecture of Learner diagnosis module

The learner diagnosis module is necessary to assess and estimate the current

understanding of the learner regarding the subject to generate valuable feedback. Based on

the analysis of user’s text learner’s model and knowledge structure are to be inferred

(Richardson, 1988). Using corpus data in MySQL database it is possible to arrive at

statistical measures highlighting common trends of introductory texts among various

disciplines.

SQL queries are used to calculate the proportion of sentences and words present in

each step, move under various disciplines of the corpus. Analytical information thus

calculated, from the corpus can be considered to reflect the properties of the target language

from which they are derived. Learner diagnosis can be performed using this information by

comparing word counts & sentence counts of learner’s text to the information we have.

When the learner’s text has properties similar to corpus articles from the same discipline at

move and step levels, similarity of structure and hence the discourse can be inferred.

Similarity measures can also be used to measure the current performance and the

actual goal performance to track gaps in learner’s text. The information can be made more

accessible through graphical information displays.

Whole corpus residing in the MySQL database makes calculating proportions and

other frequency values easier through queries instead of custom Python scripts and iterating

data manually.

A Sample SQL query to calculate total words in the corpus grouped by steps,

SELECT t.stepid,COUNT(t.wc) FROM

(SELECT s.sentenceid,COUNT(*) AS wc,s.stepid FROM sentences s,

sentencewords sw

WHERE s.sentenceid=sw.sentenceid

48

GROUP BY s.sentenceid,s.stepid) t

GROUP BY t.stepid

Similar queries can be used to get statistics about data at move and word levels from

the corpus. In case of calculating word counts for learner’s text, a custom Python script is

used after processing by the expert module. Once analysis is completed, each sentence of

user’s text is tagged with a step and move by the classifier. This information is used to

calculate frequency counts of words of learner’s text at step and move levels.

3.4 System Architecture of Pedagogical Module

Pedagogical module aims to provide help towards improvement for the learner apart

from other functionalities including sequencing and structuring of displayed content. The

functionality of this module spans partly over the user interface and the expert module

forming the backend. Learner diagnosis provides valuable insight towards feedback

generation.

Custom Python code is used to generate two different kinds of feedback to direct

learner and provide assistance. One type of feedback considers learner’s text on the whole.

Based on comparison of structure between learner’s writing and the corpus data in a

particular discipline, feedback is generated by the module to inform how similar learner’s

text complies with the corpus data. It also informs the learner, to work on his/her article to

match the discipline’s structure. Another type of feedback considers learner’s text as set of

granular communicate steps to achieve the purpose of a specific move. Based on probability

estimates from the expert module, Python code generates feedback to inform if a particular

functional step was clear, vague or irrelevant. Thus this feedback is related to each sentence

49

of the learner’s text. All feedback text strings for display are fetched from the MySQL

database table and displayed accordingly.

50

CHAPTER 4. METHODOLOGY

This chapter contains implementation details and the main procedure towards training

a classifier from corpus data. In terms of individual contributions, part of the implementation

including code for loading trained models for testing, interacting with the user interface as a

daemon process were reused with changes from Ryan’s work (Kirk, 2011). My contributions

include code, rebuilding the entire training procedure from scratch including feature

extraction, weighing, training file generation, and model creation. I was also responsible for

integrating trigrams into the training scenario which was previously unavailable.

4.1 Introduction

Automated analysis of learner’s research article introductions has four basic steps: 1)

Feature selection of unigrams and trigrams, 2) Sentence representation through features, 3)

Classifier training and model creation, 4) Testing and evaluation of model. Initial step

involves applying feature weighing schemes and reduction techniques to identify best

features from the corpus of training data. Once features are identified, the whole corpus is

represented in terms of features and their corresponding weights. This is used to train a

classifier, a support vector machine in our case to identify various moves and steps. The

classifier hence constructed is evaluated using test data to estimate efficiency on unseen data.

The process is repeated with various parameters, until the accuracy, precision and recall of

the classifier modeled is best suited for practical purposes and applications.

The CARS model for discourse analysis from chapter 2 and its adaptation in chapter

3, are based on structurally splitting research article introductions into different moves and

into finer steps based on their innate communicative functions. Each sentence of an article is

51

assigned to a move and a step. Hence, sentences can be considered as documents for training

and the moves and steps they signify imply the categories for classification.

Formally each sentence in the corpus C = {𝑐1, 𝑐2, … . , 𝑐𝑛}, is represented as a set of

features as 𝑐𝑖 =< 𝑓1, 𝑓2, … 𝑓𝑘 > where each 𝑓𝑗 measures feature j’s weight in sentence i. Let

M = {m1, m2, m3} denote the set of moves and S = {s1, s2, s3,..,s17} denote the set of steps in

the CARS model. We are required to learn the following mappings; {𝐹: 𝐶 →

𝑀} 𝑎𝑛𝑑 {𝐺: 𝐶, 𝑀 → 𝑆}.Though stretches of text could signify more than one step or move,

the simplest case where each sentence signifies single move and single step is considered.

Sentence representation based on the move feature set is initially used to classify a sentence

to a particular move. Once a move is identified, sentence representation of the same sentence

based on the step feature set, with move as an additional input is used to classify a sentence

to a particular step. Thus classifying a sentence to a move and a step is completed through a

two-step process with move passed on as an input to aid the step classification.

Figure 4-1 Classifying a sentence

4.2 Training a Classifier

As stated in Chapter 3, the main features used to learn attributes of various moves and

steps are unigrams and trigrams (i.e. single words and set of three word sequences) from the

annotated corpus. Moves are totally 3 in number whereas steps number to 17 with the

Input
sentence

Move
Classifier

Predict a
move

Step
classifier

Predict a
step

52

adapted CARS model, hence 2 different feature sets of unigrams and trigrams signify the

moves and steps separately.

The different feature sets are,

 Umovefeatures – Unigram features for moves,

 Ustepfeatures – Unigram features for steps,

 Tmovefeatures – Trigram features for moves,

 Tstepfeatures – Trigram features for steps.

Data was preprocessed before arriving at the final feature set of unigrams and

trigrams as follows,

 Each sentence is tokenized into its constituent words and stop words are removed as

they have low informational value. The order of words in the sentence is unchanged.

 The individual words are stemmed using NLTK’s (Bird, 2006) implementation of

Porter Stemming algorithm (Porter, 2009).

 After analyzing the corpus, frequently occurring patterns are stubbed with

placeholder tokens to increase consistency of resulting features. For e.g. in our corpus, all

year occurrences were replaced with __year__ and all number occurrences were replaced

with __number__. This procedure confirms that all references to years and numbers result in

the same feature. Hence the following trigram features et al 2003, et al 1997 map to the same

trigram feature et al __year__.

 Other patterns that result in tokens include web page references replaced with

__url__, domain names replaced with __domain__ and HTML special characters like "

and & replaced with __html__.

53

 While replacing patterns with tokens, a particular order towards pattern search and

replace is followed to reduce loss of information. For e.g. years are replaced before numbers

as both patterns search for a sequence of digits and an approach vice-versa might result in no

year patterns to replace.

 After replacing patterns with tokens, individual word units are stored in a unigram list

whereas consequently occurring word triplets are stored in a trigram list.

 Considering frequency of the features, insignificant features with occurrence less than

5 are removed to avoid over-fitting. This also helps reducing the feature space.

After arriving at the basic set of features, feature reduction procedures are applied to further

reduce the feature space and to identify the crucial features that help in the actual learning

process. Odds ratio is used as a measure to reduce feature space.

As discussed in chapter 3, Odds ratio describes correlation between two classes or

categories and a high value implies odds of a particular event is more probable than the other

event under consideration.

Odds ratio of a term 𝑡𝑖 (unigram or a trigram) occurring in move 𝑚𝑗is given as,

𝑂𝑅(𝑡𝑖, 𝑚𝑗) =
𝑝(𝑡𝑖|𝑚𝑗). (1 − 𝑝(𝑡𝑖|�̅�𝑗))

(1 − 𝑝(𝑡𝑖|𝑚𝑗)). 𝑝(𝑡𝑖|�̅�𝑗)

Where 𝑝(𝑡𝑖|𝑚𝑗)– Probability that term 𝑡𝑖 occurs in move, given move 𝑚𝑗has occurred,

 𝑝(𝑡𝑖|�̅�𝑗)– Probability that term 𝑡𝑖 does not occur in move, given move 𝑚𝑗has occurred.

Similarly, the odds ratio of a term 𝑡𝑖 (unigram or a trigram) occurring in step 𝑠𝑗is given as

𝑂𝑅(𝑡𝑖, 𝑠𝑗) =
𝑝(𝑡𝑖|𝑠𝑗). (1 − 𝑝(𝑡𝑖|�̅�𝑗))

(1 − 𝑝(𝑡𝑖|𝑠𝑗)). 𝑝(𝑡𝑖|�̅�𝑗)

54

Where 𝑝(𝑡𝑖|𝑠𝑗)– Probability that term 𝑡𝑖 occurs in step, given step 𝑠𝑗has occurred,

 𝑝(𝑡𝑖|�̅�𝑗)– Probability that term 𝑡𝑖 does not occur in step, given step 𝑠𝑗has occurred.

The conditional probabilities are calculated using maximum likelihood estimates,

𝑝(𝑡𝑖|𝑚𝑗) =
𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑟𝑚𝑠 𝑡𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒 𝑚𝑗)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑟𝑚𝑠 𝑡𝑘 𝑖𝑛 𝑚𝑜𝑣𝑒 𝑚𝑗)𝑁
𝑘=1

𝑝(𝑡𝑖|𝑠𝑗) =
𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑟𝑚𝑠 𝑡𝑖 𝑖𝑛 𝑠𝑡𝑒𝑝 𝑠𝑗)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑡𝑒𝑟𝑚𝑠 𝑡𝑘 𝑖𝑛 𝑠𝑡𝑒𝑝 𝑠𝑗)𝑁
𝑘=1

Here N is the total number of terms from the corpus.

For the move feature sets, the odds ratio measures are calculated for each unigram

and trigram against all the 3 different moves. Thus each unigram and trigram has 3 different

odds ratio measures. The final odds ratio measure for a unigram or a trigram is set to be the

maximum of the 3 measures. Once we have a list of unigrams and trigrams and their

corresponding maximum odds ratio measures, the list is sorted in descending order to get the

final feature list. The length of feature space is the total number of individual unigrams and

trigrams after sorting. The feature space could be trimmed further by considering a threshold

odds ratio measure and discarding all features of lower value. A similar procedure is repeated

for step feature sets, where odds ratios for each unigram and trigram are calculated against all

the 17 different steps. The maximum odds ratio for each unigram and trigram is used to

arrive at the final feature set, sorted in descending order. The length of the feature space

could be trimmed similarly based on a threshold value.

Once the feature set of moves and steps are in place, training file generation is the

next step towards building a classifier. As stated in chapter 3, a separate training file is

55

generated for the whole corpus using both the move feature set and the step feature set to

train individual move and step classifiers.

Move classifier’s training file representation uses binary values to specify

presence/absence of a particular feature for a sentence, for e.g. a sentence 𝑐𝑖 from corpus C is

represented as 𝑐𝑖 =< 𝑚𝑓1: 1, 𝑚𝑓2: 0, 𝑚𝑓3: 1. . 𝑚𝑓𝑛: 0 > where 𝑚𝑓1, 𝑚𝑓2. . 𝑚𝑓𝑛 are move

features. Step representation uses similar binary values to specify features, with an additional

array of features representing the actual move to which sentence belongs to, for e.g. sentence

𝑐𝑖 belonging to move 1 may be represented as 𝑐𝑖 =<

𝑚1: 1, 𝑚2: 0, 𝑚3: 0, 𝑠𝑓1: 1, 𝑠𝑓2: 0, 𝑠𝑓3: 1. . 𝑠𝑓𝑙: 0 >. Manually annotated corpus has each

sentence tagged with a particular move and step, which makes generating these

representations straightforward. Sentences from the corpus are preprocessed using the same

procedure used for feature selection specified above. Features from the feature set are marked

with a 1, if found in the preprocessed sentence and with a 0 otherwise, to arrive at the final

training file representation.

Since moves and steps have descriptive string names for representation in the corpus,

the primary key in Moves and Steps database tables are used as numerical identifiers instead

of string identifiers as labels in the training files. Each sentence in the corpus is transformed

into a numerical label (move or step) followed by a set of index value pairs representing

presence/absence of features. The ordinal position of occurrence of a feature in the ordered

feature set is used as an index to indicate the particular feature followed by a colon and

binary digit indicating presence of the feature.

An example of transforming a sentence to a feature representation is as below,

Sentence:

56

Mozilla web browser project is in active development since 1998 and has an excellent

support community. – tagged as move 1.

Move Features:

Unigrams – project - 1, research -2, support -3, community -4, academic -5, proposal -6

Trigrams – development since __year__ -7, et al __year__ -8.

Generated feature representation using Move feature set:

1 1:1,2:0,3:1,4:1,5:0,6:0,7:1,8:0

LIBSVM’s API calls allow loading a training file and training a SVM classifier based

on the above generated format. LIBSVM is implemented in C and has bindings required to

access the functionality from Python scripts. A typical Python script would load the training

file into memory using svm_read_problem function into separate variables, one containing a

list of labels (move or step) and other containing a list of index value pairs corresponding to

these labels. Following this, a call to svm_train is used to train a classifier using the above

loaded training data. The function is also used to specify type of kernel to be used for the

task, values of hyper parameters, if classifier is to be trained using probability measures and

if cross validation is to be applied. After invocation, the function returns the optimized model

for further use. Verbose messages are also displayed during training with information on

optimization of parameters and the final accuracy obtained on cross validation. The model

trained and existing in memory can be saved onto a disk file and loaded later using

svm_save_model and svm_load_model functions. The training procedure is complete when

svm_train returns a model with accuracy and can be validated against test data.

57

After training a model, the only data required for testing and use of the classifier

against user’s writing are the feature sets and the trained model itself. The whole of the

corpus can be disregarded once the accuracy of the classifier and the evaluation measures are

suitable for practical usage and application. The model essentially holds the information in

terms of support vectors whose dimensions are defined by odds ratios of the feature sets

themselves.

Thus two separate classifiers are trained for classifying a sentence to a particular

move and step. The move feature set representation of the training corpus is used to train a

classifier for classifying sentences to a particular move, whereas the step feature set

representation of the corpus is used to train a classifier for classifying sentences to a

particular step. Cascading the classifiers offers better accuracy as a move predicted by a

classifier is passed as an input to a step classifier aiding the prediction task.

4.2.2.1 Revised training procedure

As in the previous chapter, to optimize the entire training procedure in RWT and

decreasing total time taken to process features and create training files, SQLite was adopted

instead of MySQL. This also eventually replaced the existing Python scripts to a single

streamlined script achieving feature processing and training file creation in a single script.

The Python source code of the revised training with feature extraction, training and testing

was my contribution completely.

The python script implemented the following steps,

 Entire annotated corpus in SQLite database is loaded onto memory using sqlite3

library of python, one sentence at a time.

58

 Unigrams and trigrams were extracted from the sentence. They were tokenized,

stemmed and recurring patterns were stubbed at this stage using a python routine. Following

this, their counts were accounted at particular section, move and step level hierarchies.

 Odds ratio measures were calculated for each unigram and trigram using the above

counts.

 The entire unigram and trigram lists were ordered in decreasing odds ratio weight and

a cut off threshold of “15000” was used to trim the feature list.

 The individual lists were dumped as plain text files, trigrams separated by tabs. This

resulted in 4 different feature lists (unigram/trigram for move and step).

 The feature lists in memory were subsequently utilized to generate training files

similar to the prior implementation.

The above mentioned script though runs for hours for a decent corpus containing 100,000

sentences was faster than the MySQL backed implementations.

4.2 Testing and practical application

RWT’s Test scripts share the data preprocessing and sentence representation modules

from the training section of a classifier. This ensures that any changes to preprocessing and

transformation steps during the training process of a classifier are reflected exactly to test

data and thus maintaining consistency. Most of the Python source code for this section was

derived from Ryan Kirk’s original work (Kirk, 2011). I was able to contribute portions of

source code related to trigram integration and fix issues related to buggy feedback.

Applying the trained classifier on a test corpus and eventually on real user’s

introduction texts from research articles is the next step to quantify accuracy, precision and

59

recall for practical usage. In case of training corpus, sentences are annotated and sentence

boundaries are implicitly stated by the actual user annotating them while tagging. But in case

of input user articles, sentence boundaries are to be detected as users paste large chunk of

research article introductions into an input textbox without explicit specification of sentence

boundaries. Moreover manually stating sentence boundaries for a large body of text is user

demanding task and hence would affect usability of the tool. Python’s Natural language

toolkit implements Punkt sentence tokenizing functionality (Garrette & Klein, 2009; Kiss &

Strunk, 2006) as sent_tokenize, which takes a body of text as input and returns an array of

sentences split at boundary for further processing. Sentence tokenizing precedes data

processing steps which act on individual sentences.

Main steps involved in transforming a sentence to feature representation is similar to

the procedure followed for the training corpus,

• Tokenization of individual sentences to words with order of occurrence of words

unchanged.

• Removal of stop words with low informational value.

• Stemming words using porter stemmer (Porter, 2009) implementation from NLTK.

• Replacing common patterns like URLs, year references and numbers with

placeholder tokens.

 The resulting words represent unigrams of the sentence. The trigrams are generated

using unigrams when original order of their occurrence is unchanged. The feature

representation of the sentence is the next step when the unigrams and trigrams of the

sentences are available. Given the set of move and step features identified during training,

60

feature representation marks a particular feature with a binary digit 1 if it is found in the set

of unigrams and trigrams and with a binary digit 0 otherwise. Thus the input sentence is

represented as binary string of features similar to the sentence representation used in training.

Each user sentence results in two different feature representations based on move and step

features separately.

LIBSVM’s API call svm_predict is used to decide a move or step from the above

generated binary feature representations. The function takes 3 inputs namely, a list containing

binary string feature representations, a list containing user predicted classifications

corresponding to the binary string representations and the model to be used towards

prediction. The user predicted classifications are used to calculate accuracy of the classifier

by comparing them alongside model predicted classifications. Accuracy is calculated as the

percentage of results predicted by the classifier that match user predicted classifications.

Inputs of the function being list of values allow multiple sentence representations to be

classified using a single call to svm_predict. The function call returns a list of predicted

labels/classes, accuracy of the prediction and probability estimates of certainty of the

predictions returned.

Two different calls to svm_predict are required for each sentence. Initial call is used

to classify a move feature set based sentence representation to a particular move. The

predicted move is passed as an additional feature input to the step feature based sentence

representation and a second call to the function accounts for the step classification of a

particular sentence. A dedicated Python script sharing module procedures for sentence

transformation from the training sources is used to implement the above functionality. The

61

script takes a body of text as input and returns an array of sentences and their corresponding

move/step classifications.

The above procedures are kept modular and generic to be used externally by other

programs and solutions. Once this infrastructure for transforming sentences and passing it

through the classifier to predict a move and step are in place, the functionality can be

extended to apply on test corpus and user submitted research article introductions. The moves

and steps thus predicted by the classifier can be exported back for future comparison with

expert predictions for studying effectiveness or can be displayed to user to reveal the

discourse structure of article text effectively.

A helper Python script is used to iterate sentences from test corpus and feed them

through the above Python script, to gather the resulting move and step predictions and

calculate the confusion matrix depicting the prediction accuracy, precision and recall. The

modularity of the test scripts also allow data from a user interface to be analyzed and results

of analysis sent back to the user interface appropriately. To facilitate universal consumption

of analysis results across platforms, operating systems and networks, the functionality is

delivered through a web service serving the response of an analysis as an XML, through

sockets. TCP/IP socket implementations are universally available across platforms and

structured XML being plain text can be sent through sockets to any client requesting

discourse analysis of arbitrary text. Sockets also handle multiple concurrent requests from a

number of clients requesting the service, which makes serving multiple clients an innate

functionality. The input to the web service consists of body of text and discipline to which it

belongs.

62

Apart from move/step predictions, the XML results also carry learner diagnosis

calculations and target percentages recommending direction of change for the user/learner to

work on the text. As stated in Chapter 3, Corpus statistics consisting of number of words and

sentences in each move and step level grouped by discipline are calculated using custom

SQL queries and stored in the database. The database schema and normalization specified in

Chapter 3, makes these calculations query only instead of writing custom Python scripts to

calculate them. For a particular usage scenario consisting of user submitting his/her research

article introduction, the proportion of words and sentences in each predicted move and step

are compared with the corpus statistics using Python to generate appropriate feedback. Based

on the proportion, various feedback messages indicating current text’s discourse content

present in each move or step and direction of focus indicating too much presence or a lack of

particular communicative function is implied. Also the proportion values are sent in the XML

aiding graphical display or manipulation of the content presence and focus direction.

63

CHAPTER 5. RESULTS

In this chapter, I present the results of training and performance characteristics of

both move and step classifiers, along with corpus statistics. Some of them were already

published in related conferences (Nick Pendar, Cotos, & Babu, 2012).

5.1 Corpus Dimensions

Data for RWT consists of manually annotated corpus containing 15460 sentences was

split into separate training and test corpuses. Each step and move from the swales schema (J.

Swales, 1981) were given unique numbers to represent them, steps totaling to 17 and moves

totaling to 3 from the introductions section. Following is the distribution of sentences among

various steps and moves in the training and test corpuses specifying volume and dimensions.

Table 5-1 Distribution of sentences across moves

Move Total Counts Training Counts Testing Counts

1 9272 6039 3233

2 2535 1609 926

3 3653 2352 1301

Table 5-2 Distribution of sentences across steps

Step Total Counts Training Counts Testing Counts

1 629 403 226

2 3370 2309 1061

3 5273 3327 1946

4 454 263 191

5 1127 725 402

6 72 54 18

7 276 162 114

8 606 405 201

9 995 636 359

10 348 211 137

11 101 59 42

12 166 113 53

13 51 40 11

14 448 290 158

15 517 352 165

64

16 400 269 131

17 627 382 245

 15460 10000 5460

5.2 Test data sets

Model construction involves feature sets of unigrams and trigrams, for both moves

and steps derived from the corpus. In RWT, the move classifier was trained using 10

different feature sets and the step classifier was trained using 13 different feature sets as in

the tables below. The number of unigrams and trigrams in each feature set is increasing

progressively. Each move/step classifier trained with a particular feature set was tested on a

test corpus to measure performance evaluation metrics of precision, accuracy and recall for

comparison. The total number of features for move classifier had 5825 unigrams and 11630

trigrams. Similarly the total number of features for step classifier had 27689 unigrams and

27160 trigrams.

Following is a list of feature set specification accounting on the varying number of

unigrams and trigrams used to build the classifier.

Table 5-3 Feature Set - Move classification

N-Gram Feature Set

Unigrams # Trigrams

1000 0

2000 0

3000 0

0 1000

0 2000

0 3000

1000 1000

2000 2000

3000 3000

5825 11630

65

Table 5-4 Feature Set - Step Classification

N-Gram Feature Set

Unigrams # Trigrams

1000 0

5000 0

6334 0

10000 0

26789 0

0 1000

0 5000

0 5986

0 10000

1000 1000

5000 5000

10000 10000

27689 27160

For RWT model creation, LIBSVM was used with the following parameters for

training the move and step classifiers. The default standard regularized support vector

classification algorithm C-SVC was used to train the classifiers. Radial basis function kernel

was chosen based on its previous application in IADE. The cost parameter C was set to be

1511after multiple runs, as it offered better measures of accuracy with the training set.

5.3 Performance Metrics

In RWT, towards evaluating the performance of the move and step classifier on the

test corpus, the precision, recall and accuracy of each model was taken into consideration.

The following graphs and tables capture various measures for each individual feature sets

66

used, facilitating comparison and analyzing behavior across feature sets.

Figure 5-1 Performance of Move Classification

Table 5-5 Performance of Move Classification

Legend

U – Unigrams

T - Trigrams

Accuracy Macro Average (Precision) Macro Average (Recall)

1000 U 0 T 68.11355311 59.70482045 48.63274879

2000 U 0 T 67.72893773 59.02765696 50.15838347

3000 U 0 T 67.76556777 60.11068765 51.51218936

0 U 1000 T 63.44322344 69.14748429 41.31325141

0 U 2000 T 63.13186813 64.27648659 41.99449874

0 U 3000 T 63.51648352 62.21151844 43.39843442

1000 U 1000 T 69.85347985 67.93256822 52.32162123

2000 U 2000 T 71.0989011 70.19000299 54.1019552

3000 U 3000 T 70.84249084 68.57402431 54.04897081

5825 U 11630 T 72.65567766 70.28127517 61.15442846

67

Figure 5-2 Performance of Step Classification

Table 5-6 Performance of Step Classification

Legend

U – Unigrams

T - Trigrams

Accuracy Macro Averaging (Precision) Macro Averaging (Recall)

1000 U 0 T 63.6996337 37.72693989 27.63498206

5000 U 0 T 66.52014652 51.25537231 39.64759751

6334 U 0 T 68.99267399 54.54498401 47.66632687

10000 U 0 T 71.08058608 57.41942837 51.79093818

26789 U 0 T 72.67399267 64.84375459 55.75931553

0 U 1000 T 51.22710623 57.60803916 28.9353557

0 U 5000 T 55.21978022 59.26715161 29.45616674

0 U 5986 T 55.65934066 55.21463011 30.24360779

0 U 10000 T 55.73260073 60.64500262 30.41486066

1000 U 1000 T 66.00732601 55.59311107 33.41381714

5000 U 5000 T 68.75457875 54.80574451 40.5975473

10000 U 10000 T 70.86080586 58.77756727 51.76692523

27689 U 27160 T 72.06959707 66.92326901 54.90177966

As stated in chapter 3, global precision, recall numbers for each individual moves and

steps were calculated as micro averages.

68

Table 5-7 Micro Average Precision and Recall - Move classifier

Move # Move name Precision (%) Recall (%) Accuracy (%)

1 Establishing a territory 73.3 89 73.8

2 Identifying a niche 59.2 37.3 82.8

3 Addressing the niche 78.4 57.2 83.8

Average 70.3 61.2 80.2

Table 5-8 Micro Average Precision and Recall - Step classifier

Step # Step name Precision (%) Recall (%)

1 (Move 1) Claiming centrality 70.4 76.6

2 (Move 1) Making topic generalizations 67.9 49.6

3 (Move 1) Reviewing previous research 75.2 55.5

4 (Move 2) Indicating a gap 51.4 55.1

5 (Move 2) Highlighting a problem 86.7 85.2

6 (Move 2) Raising general questions 66.3 50

7 (Move 2) Proposing general hypotheses 44.6 51.9

8 (Move 2) Presenting a justification 64.7 79.8

9 (Move 3) Introducing present research descriptively 92 84.5

10 (Move 3) Introducing present research purposefully 39.8 34.3

11 (Move 3) Presenting research questions 50.6 61.8

12 (Move 3) Presenting research hypotheses 68.9 66.2

13 (Move 3) Clarifying definitions 74.2 43.4

14 (Move 3) Summarizing methods 78.6 67.1

15 (Move 3) Announcing principal outcomes 50 27.8

16 (Move 3) Stating the value of the present research 100 18.2

17 (Move 3) Outlining the structure of the paper 84.6 26.2

Average 68.6 54.9

69

CHAPTER 6. DISCUSSION

RWT offers genre-specific feedback to learners of academic writing, and therefore

the study of both move and step classifier performance is important. The feature sets

containing unigrams and trigrams for both moves and steps are split into three main

categories. Feature sets contained “only unigrams” or “trigrams” or “both unigrams and

trigrams,” progressively increasing in number to study their correlation with performance

characteristics. Based on the individual feature sets, move and step classifiers were built, and

the individual models were evaluated using the performance measures and compared on their

effectiveness.

6.1 Move Classifier Performance

Considering RWT’s move classifier performance through various feature sets

depicted in Figure 5-1 and Table 5-3 of Chapter 5, the accuracies of “unigram only” models

are similar. Increasing the number of unigrams in the feature set doesn’t proportionally

increase the accuracy. Precision and recall increase marginally when the unigrams increase in

the feature set. This implies that the initial move classifier model built on 1000 unigrams

captures most of the features needed to differentiate among moves.

 The “trigram only” models offer better precision numbers compared to the “unigram

only” models, though the precision declines with increase of trigrams into the feature set.

Recall measures are very low compared to “unigram only” models. “Trigram only” models

carry precision information in identifying moves better than “unigram only” models.

By the numbers, combining unigrams and trigrams in a single feature set resulted in

models of better accuracy. Highest accuracy values were result of models with feature sets

70

having “both unigrams and trigrams.” Precision was comparable and significantly high

relative to “trigram only” models. Also, the model’s recall was best when all unigrams and

trigrams were used to train the move classifier and the data suggest that recall values are

proportional to total number of features used. A maximum accuracy of 72.655% for the move

classifier was obtained when 5828 unigrams and 11630 trigrams were collectively used in the

feature set. Macro average precision of 70.28% and macro average recall of 61.15% were the

resulting performance evaluation measures of this model. The micro average precision,

recall, and accuracy numbers of this move classifier are shown in Table 5-7, which shows

that moves “Addressing the niche” (#3) and “Establishing a territory” (#1) are predicted with

higher precision and recall than move “Identifying a niche” (#2). This can be attributed to the

relatively low training and test data available move 2, while the other moves have better

sample data for training (6,039 sentences for move 1; 1,609 sentences for move 2; and 2,352

sentences for move 3). This result is affirming previous research on IADE (Pendar & Cotos,

2008), where move 2 is documented to be difficult to predict owing to sparse data and

possible misclassifying occurrences with move 1.

6.2 Step Classifier Performance

The step classifier performance was analyzed similarly using three different categories of

feature sets, shown in Figure 5-2 and Table 5-6 of Chapter 5. The classifier trained using

“unigram only” features showed good accuracy, proportionally increasing with an increase in

the number of unigrams. Precision and recall, though relatively low when compared to

accuracy, also proportionally increase with increase in unigrams.

71

“Trigram only” step classifier models depict a lower accuracy compared to all other classifier

models. Precision values were not proportional and did not increase with more features. But,

similar to the move classifiers, “trigram only” models carried better precision information

about various steps compared to the “unigram only” models. Recall numbers were the lowest

of all models tested, and increasing the number of features resulted in no change.

Finally, classifier models built using a combination of “both unigrams and trigrams” features

exhibited performance similar with the “unigram only” models, though marginally resulting

in better precision. Recall of the “both” models was similar to the “unigram only” models.

The step classifier using the maximum features of 27,689 unigrams and 27,160 trigrams

delivered an accuracy of 72.01% with a macro average precision of 66.92% and macro recall

of 54.90%. Considering micro average precision and recall of the step classifier in Table 5-8

of Chapter 5, steps belonging to move 1 and move 3 were identified more precisely than

steps belonging to move 2. This result is clearly attributed to the sparse data availability of

move 2 and its constituting steps. Steps which show precision below the average of 68%

include: three steps from move 2 (highlighting a problem, raising general questions,

proposing general hypotheses) and four steps from move 3 (introducing present research

descriptively, summarizing methods, presenting research questions, announcing principal

outcomes).

72

6.3 Step Classifier Confusion Matrix

Figure 6-1 Step Classifier - Confusion matrix

Steps predicted by the step classifier built on the total feature set of 27,689 unigrams

and 27,160 trigrams was compared alongside a human expert’s prediction using the test

corpus (Figure 6-1) is the global contingency table or the confusion matrix). Rows represent

human expert classification while columns represent machine predicted classification of

steps. The diagonal of the matrix is highlighted, showing the machine predictions matching

human expert predictions while other cells imply classification mismatch or misclassification

to a different step. In line with observations of Anthony and Lashika (2003), a step is

confused only within the realm of its move, that is, steps are confused with other steps within

the same move. Step confusion occurred mainly with steps performing under stated average

precision of 68%. In move 1, step 1(claiming centrality), step 2(making topic

generalizations) and step 3 (reviewing previous research) are confused and vice-versa. In

move 2, step 5 (highlighting a problem) was confused with step 6 (raising general questions),

73

step 7(proposing general hypotheses) and step 8 (presenting justification). In move 3, step 9

(introducing present research descriptively) was the most confused, misclassified as step 14

(summarizing methods), step 15 (announcing principal outcomes) and step 16 (stating the

value of present research). Step 14 was also confused with step 15.

The major reason for misclassification also specified in the previous research was the

scarcity of training data and uneven distribution of steps in the overall training corpus. Also,

some steps were naturally heavily utilized and represented by the authors, while the others

where sparingly used, resulting in an uneven distribution. Naturally, stretches of text also

carry multiple rhetorical functions representing more than one step or a different move. The

move and step classifiers are currently capable of predicting a single move and step and

hence allow possible misclassification. Yet another important factor pointed out by Cotos

(2013), was meaning ambiguity. She noticed that, despite annotators of the corpus having

high interrater reliability, they can become confused over the author’s rhetorical intent in the

absence of lexical signals of functional meaning. Some steps are inherently difficult to be

identified using natural language techniques, as they are not completely captured and

encoded in functional language. This situation increases the difficulty operationalizing our

learning models.

6.4 Future Work

In this work, genre analysis and machine learning have come together, relying on

linguistic cues to successfully identify rhetoric functions. The move level classifier classifies

new sentences with an accuracy of 72.6%, and the classifier at the step level performs at an

accuracy of 72.9%. Future research concentrating on improvement of classifier accuracy will

74

directly enhance AWE and ICALL systems. SVMs offer probability-based training and

probability estimates during prediction which could be used to identify secondary moves and

steps in learner texts after experiments. Based on probability estimates on various steps and

moves, the most probable element could be associated with the primary function while the

next probable could be associated with the secondary function. For steps increasingly

difficult to detect, a knowledge-based approach (as in Madnani, Heilman, Tetreault, &

Chodorow, 2012) can be used along with SVMs. Handwritten rules as suggested by

Chukharev-Khudilaynen (2013) could be used to recognize functional language and lexico-

grammatical patterns identifiable in the annotated corpus. Adding this expert knowledge to

the SVM classifier could be used to augment predictions. Yet another implementation to

handle confusing steps involves use of Markov chains to model move/step transitions and

their sequencing. One of the main faulty assumptions with the existing approach is the lack

of accounting for context in each sentence considered. Context plays an important role in

identifying rhetoric functions, and future experiments could also consider context for

building prediction models. Application of boosting algorithms in machine learning and use

of ensembles of learner classifiers are other venues for experimentation towards

improvement.

6.5 Summary

This section summarizes the research work done related to the questions from section

1.5. The Research Writing Tutor (RWT) is able to analyze a student’s research articles at the

discourse level and identify various rhetorical moves and steps (Question 1). This

achievement is a novel contribution to the AWE field, as RWT is one of the pioneer AWE

75

tools implementing discourse evaluation at the step level for the academic writing genre. The

final move classifier was trained using a total of 5828 unigrams and 11630 trigrams and

performed at a maximum accuracy of 72.65%. Similarly, the step classifier was trained using

a total of 27689 unigrams and 27160 trigrams and performed at a maximum accuracy of

72.01%. These statistics address Question 2, on what combination of unigram and trigram

features was most appropriate for optimal move and step classification. But more training

data could always improve the above statistics especially for the steps which are

underperforming in terms of good precision and recall. Odds ratio based feature weighing

scheme, indeed identified the best features as implied by section 5.3. There was no direct

linear relation between number of features and the performance metrics accuracy, precision

and recall. But the overall performance of the classifiers consistently improved with a larger

feature set covering Question 3. This also opens the venue for experiments using a larger

feature set through more training data. Using discipline-specific features weighed by odds

ratio, resulted in a single classifier for both move and step that performed consistently across

different disciplines. This approves the feasibility requirement from Question 4 and also

implies that odds ratio measures indeed identify actual discipline-specific features (Question

5). Odds ratio measures were effective in discarding repetitive features that were common

among various rhetorical moves, steps and disciplines. The default standard regularized

support vector classification algorithm C-SVC was used to train the classifiers. RBF kernel

was chosen with the cost parameter C set to be 1511. From the performance metrics of both

the move and step classifier in section 5.3, an RBF kernel is able to model the relation

between features and the rhetorical moves/steps with a significant accuracy of above 70%.

76

REFERENCES

Anderson, J. R. (1988). The expert module. Foundations of intelligent tutoring systems, 21–

53.

Aston, G. (2002). The learner as corpus designer. Language and Computers, 42(1), 9–25.

Attali, Y., & Burstein, J. (2006). Automated essay scoring with e-rater® V. 2. The Journal of

Technology, Learning and Assessment, 4(3).

Biber, D., Conrad, S., & Reppen, R. (1998). Corpus linguistics: Investigating language

structure and use. Cambridge University Press.

Biber, Douglas, Connor, U., & Upton, T. A. (2007). Discourse on the Move: Using Corpus

Analysis to Describe Discourse Structure. John Benjamins Publishing.

Bird, S. (2006). NLTK: the natural language toolkit. In Proceedings of the COLING/ACL on

Interactive presentation sessions (pp. 69–72). Association for Computational Linguistics.

Bland, J. M., & Altman, D. G. (2000). Statistics Notes: The odds ratio. BMJ : British Medical

Journal, 320(7247), 1468.

Britt, D. H. (1967). Learner types in computer-controlled instruction. Paedagogica

Europaea, 70–96.

Calfee, R. (2000). To grade or not to grade. IEEE Intelligent Systems, 15(5), 35–37.

Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

Chen, C.-F. E., & Cheng, W.-Y. E. (2008). Beyond the design of automated writing

evaluation: Pedagogical practices and perceived learning effectiveness in EFL writing

classes. Language Learning & Technology, 12(2), 94–112.

Cherkassky, V., & Mulier, F. M. (2007). Learning from data: concepts, theory, and methods.

Wiley-IEEE Press.

Cherkassky, Vladimir, & Ma, Y. (2004). Practical selection of SVM parameters and noise

estimation for SVM regression. Neural Networks, 17(1), 113–126. doi:10.1016/S0893-

6080(03)00169-2

Cheville, J. (2004). Automated Scoring Technologies and the Rising Influence of Error. The

English Journal, 93(4), 47–52. doi:10.2307/4128980

Chukharev Hudilainen, E. (2013). Phase 2 - Revised RWT Training and Test Subsystem.

77

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–

297.

Cotos, E. (2010). Automated writing evaluation for non-native speaker English academic

writing: The case of IADE and its formative feedback. Iowa State University.

Cotos, E., Gilbert, S. B., & Link, S. (2012). Scaling Up Automated Writing Evaluation for

Learning.

Croft, B. (1987). An approach to natural language for document retrieval. In Proceedings of

the 10th annual international ACM SIGIR conference on Research and development in

information retrieval (pp. 26–32). ACM.

Day, D., McHenry, C., Kozierok, R., & Riek, L. (2004). Callisto: A Configurable Annotation

Workbench.

Dudley-Evans, T. (1995). Common-core and specific approaches to the teaching of academic

writing. Academic writing in a second language: Essays on research and pedagogy, 298–

312.

Elliot, S. (2003). IntelliMetric: From here to validity. Automated essay scoring: a cross

disciplinary approach. Mahwah, NJ: Lawrence Erlbaum Associates.

Flowerdew, L. (1998). Concordancing on an expert and learner corpus in ESP. CÆLL

Journal, 8(3), 3–7.

Foltz, P. W., Laham, D., & Landauer, T. K. (1999). The intelligent essay assessor:

Applications to educational technology. Interactive Multimedia Electronic Journal of

Computer-Enhanced Learning, 1(2).

Garrette, D., & Klein, E. (2009). An extensible toolkit for computational semantics. In

Proceedings of the Eighth International Conference on Computational Semantics (pp. 116–

127). Association for Computational Linguistics.

Grimes, D., & Warschauer, M. (2006). Automated essay scoring in the classroom. In Annual

Meeting of the American Educational Research Association, San Francisco, CA.

Halff, H. M. (1988). Curriculum and instruction in automated tutors. Foundations of

intelligent tutoring systems, 79–108.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: data

mining, inference, and prediction. Springer New York:

Herrington, A., & Moran, C. (2001). What Happens When Machines Read Our Students’

Writing? College English, 63(4), 480–499. doi:10.2307/378891

Hipp, D. R., & KENNEDY, D. (2007). SQLite. Available fr om: http://www. sqlite. org.

78

Hoey, M. (1979). Signalling in discourse.

Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning.

The annals of statistics, 1171–1220.

Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector

classification.

Huang, L.-S. (2010). Seeing eye to eye? The academic writing needs of graduate and

undergraduate students from students’ and instructors’ perspectives. Language Teaching

Research, 14(4), 517–539.

Hyland, K., & Hyland, F. (2006). Feedback in Second Language Writing: Contexts and

Issues. Cambridge University Press.

Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text classification using machine

learning techniques. WSEAS transactions on computers, 4(8), 966–974.

Joachims, T. (1996). A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text

Categorization. DTIC Document.

Kirk, R. (2011, 2012). Knowledge transfer of existing processes - database, model training

and testing modules.

Kiss, T., & Strunk, J. (2006). Unsupervised multilingual sentence boundary detection.

Computational Linguistics, 32(4), 485–525.

Kivinen, J., Warmuth, M. K., & Auer, P. (1997). The Perceptron algorithm versus Winnow:

linear versus logarithmic mistake bounds when few input variables are relevant. Artificial

Intelligence, 97(1), 325–343.

Kulik, J. A., Kulik, C. L. C., & Cohen, P. A. (1980). Effectiveness of computer-based college

teaching: A meta-analysis of findings. Review of educational research, 50(4), 525–544.

Kwok, J. T., & Tsang, I. W. (2003). Linear dependency between ε and the input noise in ε-

support vector regression. Neural Networks, IEEE Transactions on, 14(3), 544–553.

Lewis, D. D. (1991). Evaluating text categorization. In Proceedings of speech and natural

language workshop (pp. 312–318).

Madnani, N., Heilman, M., Tetreault, J., & Chodorow, M. (2012). Identifying high-level

organizational elements in argumentative discourse. In Proceedings of the 2012 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (pp. 20–28). Association for Computational Linguistics.

Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: Toward a functional

theory of text organization. Text, 8(3), 243–281.

79

Mattera, D., & Haykin, S. (1999). Support vector machines for dynamic reconstruction of a

chaotic system. In Advances in kernel methods (pp. 211–241). MIT Press.

Mitchell, T. M. (1997). Machine learning. McGraw-Hill Boston, MA:

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art.

International Journal of Artificial Intelligence in Education (IJAIED), 10, 98–129.

MySQL, A. B. (2004). MySQL database server. Internet WWW page, at URL: http://www.

mysql. com (last accessed/1/00).

Pendar, N., & Cotos, E. (2008). Automatic identification of discourse moves in scientific

article introductions. In Proceedings of the Third Workshop on Innovative Use of NLP for

Building Educational Applications (pp. 62–70). Association for Computational Linguistics.

Pendar, Nick. (2011, 2013). Unigrams and Trigrams , Odds Ratios and Classifier

construction.

Pendar, Nick, Cotos, E., & Babu, D. P. (2012). NLP-based analysis on rhetorical functions

for AWE feedback. Presented at the Technology for Second Language Learning (TSLL),

Ames,Iowa.

Porter, M. (2009). {The Porter Stemming Algorithm}.

Ramaswamy, N. (2012). Online Tutor for Research Writing (unpublished doctoral

dissertation). Iowa State University, Ames,Iowa.

Ramaswamy, N., & Gilbert, S. (2012). Design and User Experience Study of the Automated

Research Writing Tutor. Presented at the Technology for Second Language Learning

(TSLL), Ames,Iowa.

Rhetorical Structure Theory. (n.d.). Retrieved January 13, 2013, from

http://www.sfu.ca/rst/01intro/intro.html

Richardson, J. J. (1988). Intelligent Tutoring Systems. Psychology Press.

Rijsbergen, C. J. V. (1979). Information Retrieval. Butterworth-Heinemann.

Schölkopf, B., & Smola, A. J. (2002). Learning With Kernels: Support Vector Machines,

Regularization, Optimization and Beyond. MIT Press.

Schwartz, B., Zaitsev, P., & Tkachenko, V. (2012). High Performance MySQL:

Optimization, Backups, and Replication. O’Reilly Media.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing

surveys (CSUR), 34(1), 1–47.

80

Skehan, P. (1989). Individual differences in second-language learning. Cambridge Univ

Press.

Sleeman, D., & Brown, J. S. (1982). Intelligent tutoring systems. Academic Press. Retrieved

from http://books.google.com/books?id=gfBEAAAAYAAJ

Smola, A. J., Murata, N., Schölkopf, B., & Müller, K. R. (1998). Asymptotically optimal

choice of ε-loss for support vector machines. In PROCEEDINGS OF THE 8TH

INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS,

PERSPECTIVES IN NEURAL COMPUTING, PAGES 105--110. Citeseer.

Soergel, D. (1985). Organizing information: principles of data base and retrieval systems.

Morgan Kaufmann.

SQLite Home Page. (n.d.). Retrieved March 25, 2013, from http://www.sqlite.org/

Suppes, P. (1980). The teacher and computer-assisted instruction. The computer in the

school: Tutor, tool, tutee, 231–235.

Swales, J. (1981). Aspects of article introductions. Language Studies Unit, University of

Aston in Birmingham.

Swales, J. M. (1990). Nonnative speaker graduate engineering students and their

introductions: Global coherence and local management. Coherence in writing: Research and

pedagogical perspectives, 187–207.

Towne, D., & Munro, A. (1992). Supporting diverse instructional strategies in a simulation-

oriented training environment. Lawrence Erlbaum, Hillsdale, NJ.

Vapnik, V. (1999). The nature of statistical learning theory. springer.

Warschauer, M., & Ware, P. (2006). Automated writing evaluation: Defining the classroom

research agenda. Language teaching research, 10(2), 157–180.

Yang, N. D. (2004). Using MY Access in EFL Writing. The proceedings of 2004

International Conference and Workshop on TEFL & Applied Linguistics.

Yang, Y. (1995). Noise reduction in a statistical approach to text categorization. In

Proceedings of the 18th annual international ACM SIGIR conference on Research and

development in information retrieval (pp. 256–263). ACM.

Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Information

retrieval, 1(1), 69–90.

Yang, Y., & Pedersen, J. O. (n.d.). A comparative study on feature selection in text

categorization.

81

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to people who helped me at

various stages of my research work and with the thesis. Firstly, I would like to thank my

major professor, Dr. Stephen Gilbert for his guidance, support and for being a wonderful

mentor throughout the course. I admire his direction, way of thinking and especially his

expert research sources and guidance. He gave me an opportunity to work for RWT which I

enjoyed thoroughly and hope i have met some of his expectations. I sincerely thank Dr. Elena

Cotos for all the guidance, feedback and opportunity she gave to work for RWT and

especially the related publications. Her requests for functionality with RWT helped me

understand the goal of RWT and its pedagogical applications. I thank Dr. Jin Tian for his

guidance and pointers towards the latest research in state of the art machine learning

techniques including the deep learning models. His machine learning class was the prior base

to my understanding the requirements of RWT research. I would also like to thank Dr. Nick

Pendar for his valuable consulting time in educating me to use SVMs appropriately and

sharing his practical experience to handle mishap situations when training computational

models. I owe a lot to Dr. Evgeny Chukharev Hudilainen and thank him sincerely for sharing

his professional experience with optimizing architectures and helping me with the same. His

proposals moved RWT a level up and I am happy to implement them. I intensely enjoyed

working with all the great minds above and i truly value and carry important qualities from

each of them. I also thank my peers Ryan Kirk, Nandhini, Andrew Vernon, Jinsook Kim,

Sarah Huffman, Aysel and Vijay Kalivarapu for their help throughout the course of RWT.

Finally I thank my family and friends to whom I dedicate my work and its purpose.

	2013
	Automated analysis of Learner's Research Article writing and feedback generation through Machine Learning and Natural Language Processing
	Deepan Prabhu Babu
	Recommended Citation

	tmp.1371837277.pdf.ectOZ

