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1

CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction and Motivation

Statistical learning refers to a set of methodologies for modeling and understanding data. As an

interdisciplinary field between computer science and statistics, nowadays statistical learning has played

a critical role in many scientific areas and business practices.

In statistical learning, there is one problem that has been a focus of many researchers in the last

two decades. This is the problem of learning Bayesian network structures from the data. A Bayesian

network structure is a directed acyclic graph (DAG) whose nodes represent random variables and whose

edges correspond to the direct probabilistic dependencies. The problem of learning Bayesian network

structures is so attractive because the learned Bayesian network structures not only can be used for

inference but also open a door to cause-and-effect analysis and enable people to discover the underlying

mechanism of the problem domain. For instance, with the semantics of a Bayesian network structure

G, the existence of an edge from node X to node Y in G can be interpreted as the fact that variable

X directly influences variable Y ; and the existence of a directed path from node X to node Y can be

interpreted as the fact that X eventually influences Y .

Therefore, this dissertation will present three different approaches for this learning problem. The

first approach is to propose a dynamic programming algorithm that can compute the exact posterior

probability of any modular feature of a Bayesian network with any general structure prior inO(3n) time.

The second approach is to develop a dynamic programming algorithm for obtaining the k-best Bayesian

network structures and then use these k-best network structures to compute the posterior probabilities

of hypotheses of interest based on Bayesian model averaging. The third approach is to develop new

algorithms to efficiently sample Bayesian network structures according to the exact structure posterior

and then use these sampled structures to construct estimators for the posterior of any feature. These
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three approaches all use dynamic programming techniques to learn Bayesian network structures from

data.

In statistical learning, recently one classification problem has become more and more important as

a sharply increasing number of people join professional social networks and use their search engines for

professional development purposes. This is session identification of people search within a professional

social network. Session is typically defined as a series of queries submitted by a single user during one

episode of interactions between the user and the web search engine for one single information need.

Given all the search queries submitted from a user, session identification is to classify whether or not a

given search query is the start of new session so that a session boundary can be inserted. Once session

identification can be correctly performed, the corresponding analysis is able to serve as the basis to

analyze web users’ search behaviors. Using session analysis, the search quality of current web search

engines can be measured and then the corresponding improvements can possibly be made. Moreover,

the performance of web search can often be improved if all the information in the same session of

current query is used as the context of the search.

Therefore, this dissertation will present the work of session identification and analysis for the do-

main of people search within a professional social network. Two important refinements are proposed

to address the drawbacks of the content-based method, one of two main session identification methods

commonly used in real applications. We describe the underlying rationale of our refinements and then

empirically show that the content-based method equipped with our refinements is able to achieve an

excellent identification performance in the domain. Finally, based on our refined content-based ses-

sion identification method, the corresponding session analysis is performed and the profession-oriented

nature of the domain is illustrated.

1.2 Dissertation Organization

The dissertation consists of four main chapters, preceded by this general introduction. Each of these

four main chapter corresponds to a conference or journal paper. Chapter 2 presents an algorithm that can

compute the exact posterior probability of any modular feature of an Bayesian network with a general

structure prior. Chapter 3 provides an algorithm that can find the k-best Bayesian network structures and
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proposes to use these k-best structures to compute the posterior probabilities of hypotheses of interest

by Bayesian model averaging technique. Chapter 4 describes sampling algorithms including the first

algorithm that is able to efficiently sample Bayesian network structures according to the exact structure

posterior. Chapter 5 presents session identification and analysis for the domain of people search within

a professional social network. Finally Chapter 6 concludes the dissertation.

1.3 Background

Before describing the four main chapters, in this section we introduce some background knowledge

for the dissertation.

1.3.1 Probability

In the subsection, we introduce one important definition in probability which serves a basis for

Bayesian networks. Please refer to (Casella and Berger, 2002) for other basic knowledge in probability

and statistics. Please also note that we focus on the case of discrete random variables.

Definition 1 (Conditional independence) Let X, Y and Z be three sets of random variables. We say

that X is conditionally independent of Y given Z, denoted as X ⊥ Y|Z, if P (X = x,Y = y|Z = z) =

P (X = x|Z = z) · P (Y = y|Z = z) for all the values x, y, z of X, Y, Z such that P (Z = z) > 0.

1.3.2 Graph

In this subsection, we cover some important concepts in graph that are closely related to our work.

You can refer to (Cormen et al., 2001; Koller and Friedman, 2009) for the comprehensive knowledge in

graph.

A directed graph G is a pair (V,E), where V is a finite set and E is a binary relation on V . The set

V is called the node set of G, and its elements are called nodes. The set E is called the edge set of G,

and its elements are called edges, which are ordered pairs of nodes. By convention, we use u → v to

represent an edge, where u, v ∈ V . The notation v ← u is equivalent to u→ v.

In a directed graph G = (V,E), If u → v ∈ E, we say that u → v leaves node u and enters node

v. In G, the in-degree of a node is the number of edges entering it, and the out-degree of a node is the
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number of edges leaving it.

In a directed graph G = (V,E), a undirected path of length k from a node u to a node u′ is defined

as a sequence < v0, v1, v2, · · · , vk > such that u = v0, u′ = vk, and for each i ∈ {1, 2, · · · , k}, either

vi−1 → vi ∈ E or vi−1 ← vi ∈ E. Different from a undirected path, a directed path of length k from a

node u to a node u′ is defined as a sequence < v0, v1, v2, · · · , vk > such that u = v0, u′ = vk, and for

each i ∈ {1, 2, · · · , k}, vi−1 → vi ∈ E.

In a directed graph G, a directed path < v0, v1, v2, · · · , vk > forms a cycle if v0 = vk and k ≥ 1.

If G has no cycle, it is called acyclic. We also take the first letters of “directed acyclic graph” and call

such a graph as a DAG.

In a directed graph G = (V,E), whenever we have u → v ∈ E, we say that u is the parent of v in

G, and that v is the child of u in G. We use Pa(u) to denote the set of all the parents of u, Ch(u) to

denote the set of all the children of u. We say that u is an ancestor of v, and that v is a descendant of

v, if there exists a directed path from u to v. We use Anc(u) to denote the set of all the ancestors of u,

Des(u) to denote the set of all the descendants of u, and NonDes(u) to denote the set of all the nodes

in V −Des(u), i.e., the set of all the non-descendants of u.

1.3.3 Bayesian Network

In this subsection, we cover the background knowledge for Bayesian network (BN).

Definition 2 (Bayesian network structure) A Bayesian network structureG is a DAG (directed acyclic

graph) whose nodes represent random variablesX1, X2, · · · , Xn. A BN structureG encodes the follow-

ing set of conditional independence assumptions (denoted by Il(G)): for each variable (node)Xi, Xi is

conditionally independent of its non-descendants given its parents, i.e., Xi ⊥ NonDes(Xi)|Pa(Xi).

Il(G) is often called the set of local Markov independencies of G.

Definition 3 (Independencies in P ) Let P be a distribution over a set of random variables V =

{X1, X2, · · · , Xn}. We define I(P ) to be the set of independence assertions of the form (X ⊥ Y|Z)

that hold in P .

Definition 4 (Factorization) LetG be a BN structure over a set of random variables V = {X1, X2, · · · , Xn}.

We say that a distribution P over the same set V factorizes according to G if P can be expressed as
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a product P (X1, X2, · · · , Xn) =
∏n
i=1 P (Xi|Pa(Xi)). This equation is called the chain rule for

Bayesian networks. The individual factors P (Xi|Pa(Xi)) are called conditional probability distribu-

tions (CPDs).

Definition 5 (Bayesian network) A Bayesian network is a pair (G,P ), where G be a BN structure,

and P factorizes according to G and is specified as a set of CPDs associated with G’s nodes.

Definition 6 (d-separation) Let G be a BN structure. A collider on a undirected path p in G is a node

with two incoming edges that belong to p. A path p between node X and node Y given a conditioning

set Z in G is active, if (i) every collider of p is in Z or has some descendant in Z, and (ii) no other

node on p is in Z (Pearl, 1988). If a path is not active, then it is blocked. Let X, Y, Z be three sets

of nodes in G. We say that X and Y are d-separated given Z, denoted by d-sepG(X;Y|Z), if there is

no active path between any node X ∈ X and any node Y ∈ Y given Z. We let I(G) denote the set of

independencies that corresponds to d-separation, i.e., I(G) = {(X ⊥ Y|Z) : d-sepG(X;Y|Z)}. I(G)

is often called the set of global Markov independencies of G.

Definition 7 (I-map, D-map and P-map) Let G be a BN structure over a set of random variables V

and let P be a distribution over the same set V . We say that G is an I-map (Independency map) for

P if I(G) ⊆ I(P ). We say that G is a minimal I-map for P if one of its edges can be deleted without

destroying its I-mapness. We say that G is a D-map (Dependency map) for P if I(G) ⊇ I(P ). We say

that G is a P-map (Perfect map) for P if I(G) = I(P ).

Definition 8 (I-equivalence) Two BN structures G1 and G2 over the same random variable set V are

said to be I-equivalent (Independence equivalent) if I(G1) = I(G2). Since the I-equivalence relation is

an equivalence relation (reflexive, symmetric and transitive), the set of all DAGs over V is partitioned

into a set of mutually exclusive and exhaustive I-equivalence classes.

1.3.4 Learning Bayesian Network Structures

In the last two decades, there have been a large number of researches focusing on the problem

of learning Bayesian network structure(s) from the data. These researches deal with a common real

situation where the underlying Bayesian network is typically unknown so that it has to be learned from
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the observed data. Note that learning BN structures constitutes the central and the most challenging part

of the learning of whole Bayesian networks. Once a BN structure is learned, the remaining learning

task for the whole Bayesian network, the learning of the corresponding parameters in the distribution,

is relatively easy. It is essentially a standard parameter estimation problem which has been well studied

in statistics and has closed-form solutions under appropriate distribution assumptions.

There are three general approaches for learning BN structures from data in the literature: the

constraint-based approach, the score-based approach and the Bayesian model averaging approach. In

the following we will introduce these general learning approaches.

The first BN structure learning approach is constraint-based approach (Margaritis and Thrun, 1999;

Spirtes et al., 2001; Aliferis et al., 2003; Tsamardinos et al., 2003; Pellet and Elisseeff, 2008). The

constraint-based approach views a BN structure G as a representation of a set of conditional indepen-

dence/dependence relations and uses these represented relations to discover the underlyingG, under the

assumption of P-mapness. Based on the (conditional independence/dependence) conclusions returned

from some statistical test procedure (such as Pearson X2 test or G2 test ), a constraint-based method

learn each local structural feature (the existence/nonexistence of the undirected edge feature and edge

direction feature). All these learned local structural features can be combined to rebuild a global BN

structure (or more precisely an I-equivalence class of BN structures) that has the best incorporation of

these conditional independence/dependence conclusions.

Constraint-based methods are very intuitive since they directly follow the semantics of BN structure.

Under the assumption of bounded in-degree, the number of statistical tests of many constraint-based

methods are polynomial in terms of the number of variables n, i.e., their complexity are polynomial in

n. However, there are one general problem inherent in the constraint-based approach. The correctness

of the constraint-based approach relies on the assumption that their used statistical conditional indepen-

dence tests are perfect, i.e., there is no error (neither type I error nor type II error) in each performed

test. Such an assumption, of course, does not hold in the reality and any kind of statistical test will

have some probability of making errors. Unfortunately, the constraint-based approach is sensitive to

an error from an individual statistical test. An error of a statistical test can lead to the wrong decision

in the correspondingly local structural feature, which can further result in the propagated errors in the

consequent learning process.
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The second BN structure learning approach is the score-based approach (Heckerman et al., 1995;

Chickering, 2002a,b; Castelo and Kocka, 2003; Singh and Moore, 2005; Silander and Myllymaki,

2006). The score-based approach views a BN structure as a statistical model and addresses the learning

as a model selection problem. Each score-based method defines a space of potential models (i.e., the

set of all the possible BN structures) as well as a scoring function Score(G : D) that evaluates how

well a BN structure G fits the observed data D. (In Bayesian approach, the score of a DAG G is simply

the posterior p(G|D) of G given data D.) Then the main task of score-based approach is to find a best

scoring BN structure by searching through the space of all the possible BN structures. Finally, this best

scoring BN structure (or its I-equivalence class) is used for the future prediction.

The advantage of the score-based approach is that it views the whole BN structure at once so that it

is less sensitive to the error in some local structure discovery. The main challenge for any score-based

method is that the space of BN structures is super-exponential so that the exhaustive search over the

whole space is not tractable for the domain including a large number of variables. In general, such a

search problem is NP-hard (Chickering et al., 1994) and some heuristic search skills have to be applied

for the large domain. For a domain with less than 30 variables, recently researchers (Singh and Moore,

2005; Silander and Myllymaki, 2006) develop the method to learn a truly best scoring network using

dynamic programming techniques. Another problem in the usage of the score-based approach is in the

situations where the amount of data is small relative to the size of the model. In these situations, there

are often many high-scoring models so that using a single model will probably lead to unwarranted

conclusions about the structural features and poor predictions about new observations.

The third approach of learning BN structures is the Bayesian model averaging approach (Madigan

and York, 1995; Friedman and Koller, 2003; Koivisto and Sood, 2004; Koivisto, 2006; Eaton and Mur-

phy, 2007; Grzegorczyk and Husmeier, 2008; Parviainen and Koivisto, 2011; Niinimaki et al., 2011). In-

stead of learning and then using only one single DAG (i.e., BN structure), this approach intends to make

the prediction based on a set of all the possible DAGs. The approach assigns each DAG G a posterior

P (G|D) based on the observed dataD. Then P (h|D), the posterior probability of any hypothesis of in-

terest h, can be computed by averaging over all possible DAGs as P (h|D) =
∑

G P (h|G,D)P (G|D).

Bayesian model averaging approach directly addresses the problem in score-based approach when

the size of the observed data is small relative to the size of the model. However, just as we have
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described for score-based approach, since the space of BN structures is super-exponential, the main

challenge in Bayesian model averaging approach is also its computational costs. When the exact full

Bayesian model averaging is intractable, some approximate techniques are often resorted for Bayesian

model averaging. In this dissertation, we will describe three methods for Bayesian model averaging:

one performs the exact full model averaging and the other two methods use approximate techniques in

the model averaging.
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CHAPTER 2. COMPUTING POSTERIOR PROBABILITIES OF STRUCTURAL

FEATURES IN BAYESIAN NETWORKS BY FULL BAYESIAN MODEL

AVERAGING

A paper published in Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence

Jin Tian and Ru He

Abstract

We study the problem of learning Bayesian network structures from data. Koivisto and Sood (2004) and

Koivisto (2006) presented algorithms that can compute the exact posterior probability of a subnetwork,

e.g., a single edge, in O(n2n) time and the posterior probabilities for all n(n − 1) potential edges in

O(n2n) total time, assuming that the in-degree, i.e., the number of parents per node, is bounded by a

constant. One main drawback of their algorithms is the requirement of a special structure prior that is

non uniform and does not respect Markov equivalence. In this paper, we develop an algorithm that can

compute the exact posterior probability of a subnetwork in O(3n) time and the posterior probabilities

for all n(n− 1) potential edges in O(n3n) total time. Our algorithm also assumes a bounded in-degree

but allows general structure priors. We demonstrate the applicability of the algorithm on several data

sets with up to 20 variables.

2.1 Introduction

Bayesian networks are being widely used for probabilistic inference and causal modeling (Pearl,

2000; Spirtes et al., 2001). One major challenge is to learn the structures of Bayesian networks from

data. In the Bayesian approach, we provide a prior probability distribution over the space of possible

Bayesian networks and then computer the posterior distributions P (G|D) of the network structure G
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given data D. We can then compute the posterior probability of any hypothesis of interest by averaging

over all possible networks. In many applications we are interested in structural features. For example,

in causal discovery, we are interested in the causal relations among variables, represented by the edges

in the network structure (Heckerman et al., 1999).

The number of possible network structures is super-exponential O(n!2n(n−1)/2) in the number of

variables n. For example, there are about 104 directed acyclic graphs (DAGs) on 5 nodes, and 1018

DAGs on 10 nodes. As a result, it is impractical to sum over all possible structures unless for very

small networks (less than 8 variables). One solution is to compute approximate posterior probabilities.

Madigan and York (1995) used Markov chain Monte Carlo (MCMC) algorithm in the space of network

structures. Friedman and Koller (2003) developed a MCMC procedure in the space of node orderings

which was shown to be more efficient than MCMC in the space of DAGs. One problem to the MCMC

approach is that there is no guarantee on the quality of the approximation in finite runs.

Recently, a dynamic programming (DP) algorithm was developed that can compute the exact marginal

posterior probabilities of any subnetwork (e.g., an edge) in O(n2n) time (Koivisto and Sood, 2004) and

the exact posterior probabilities for all n(n− 1) potential edges in O(n2n) total time (Koivisto, 2006),

assuming that the in-degree, i.e., the number of parents of each node, is bounded by a constant. One

main drawback of the DP algorithm and the order MCMC algorithm is that they both require a special

form of the structure prior P (G). The resulting prior P (G) is non uniform, and does not respect Markov

equivalence (Friedman and Koller, 2003; Koivisto and Sood, 2004). Therefore the computed posterior

probabilities could be biased. MCMC algorithms have been developed that try to fix this structure prior

problem (Eaton and Murphy, 2007; Ellis and Wong, 2008).

Inspired by the DP algorithm in (Koivisto and Sood, 2004; Koivisto, 2006), we have developed an

algorithm for computing the exact posterior probabilities of structural features that does not require a

special prior P (G) other than the standard structure modularity (see Eq. (4.6)). Assuming a bounded

in-degree, our algorithm can compute the exact marginal posterior probabilities of any subnetwork in

O(3n) time, and the posterior probabilities for all n(n − 1) potential edges in O(n3n) total time. The

memory requirement of our algorithm is O(n2n), which is the same as the one of the DP algorithm

in (Koivisto and Sood, 2004; Koivisto, 2006). We have demonstrated our algorithm on data sets with

up to 20 variables. The main advantage of our algorithm is that it can use very general structure prior
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P (G) that can simply be left as uniform and can satisfy Markov equivalence requirement. We acknowl-

edge here that our algorithm was inspired by and used many techniques in (Koivisto and Sood, 2004;

Koivisto, 2006). Their algorithm is based on summing over all possible total orders (leading to the bias

on prior P (G) that graphs consistent with more orders are favored). Our algorithm directly sums over

all possible DAG structures by exploiting sinks, nodes that have no outgoing edges, and roots, nodes

that have no parents, and as a result the computations involved are more complicated. We note that

the dynamic programming techniques have also been used to learn the optimal Bayesian networks in

(Singh and Moore, 2005; Silander and Myllymaki, 2006).

The rest of the paper is organized as follows. In Section 4.2 we briefly review the Bayesian approach

to learn Bayesian networks from data. In Section 2.3 we present our algorithm for computing the

posterior probability of a single edge and in Section 2.4 we present our algorithm for computing the

posterior probabilities of all potential edges simultaneously. We empirically demonstrate the capability

of our algorithm in Section 4.4 and discuss its potential applications in Section 4.5.

2.2 Bayesian Learning of Bayesian Networks

A Bayesian network is a DAG G that encodes a joint probability distribution over a set X =

{X1, . . . , Xn} of random variables with each node of the graph representing a variable in X . For

convenience we will typically work on the index set V = {1, . . . , n} and represent a variable Xi by

its index i. We use XPai ⊆ X to represent the set of parents of Xi in a DAG G and use Pai ⊆ V to

represent the corresponding index set.

Assume we are given a training data set D = {x1, x2, . . . , xN}, where each xi is a particular

instantiation over the set of variables X . We only consider situations where the data are complete, that

is, every variable in X is assigned a value. In the Bayesian approach to learn Bayesian networks from

the training data D, we compute the posterior probability of a network G as

P (G|D) =
P (D|G)P (G)

P (D)
. (2.1)

We can then compute the posterior probability of any hypothesis of interest by averaging over all pos-

sible networks. In this paper, we are interested in computing the posteriors of structural features. Let f

be a structural feature represented by an indicator function such that f(G) is 1 if the feature is present
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in G and 0 otherwise. We have

P (f |D) =
∑
G

f(G)P (G|D). (2.2)

Assuming global and local parameter independence, and parameter modularity, P (D|G) can be

decomposed into a product of local marginal likelihood often called local scores as (Cooper and Her-

skovits, 1992; Heckerman et al., 1995)

P (D|G) =

n∏
i=1

P (xi|xPai : D) ≡
n∏
i=1

scorei(Pai : D), (2.3)

where, with appropriate parameter priors, scorei(Pai : D) has a closed form solution. In this paper we

will assume that these local scores can be computed efficiently from data.

For the prior P (G) over all possible DAG structures we will assume structure modularity (Friedman

and Koller, 2003):

P (G) =
n∏
i=1

Qi(Pai). (2.4)

In this paper we consider modular features:

f(G) =

n∏
i=1

fi(Pai), (2.5)

where fi(Pai) is an indicator function with values either 0 or 1. For example, an edge j → i can be

represented by setting fi(Pai) = 1 if and only if j ∈ Pai and setting fl(Pal) = 1 for all l 6= i. In this

paper, we are interested in computing the posterior P (f |D) of the feature, which can be obtained by

computing the joint probability P (f,D) as

P (f,D) =
∑
G

f(G)P (D|G)P (G) (2.6)

=
∑
G

n∏
i=1

fi(Pai)Qi(Pai)scorei(Pai : D)

=
∑
G

n∏
i=1

Bi(Pai), (2.7)

where for all Pai ⊆ V − {i} we define

Bi(Pai) ≡ fi(Pai)Qi(Pai)scorei(Pai : D). (2.8)
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It is clear from Eq. (2.6) that if we set all features fi(Pai) to be constant 1 then we have P (f = 1, D) =

P (D). Therefore we can compute the posterior P (f |D) if we know how to compute the joint P (f,D).

In the next section, we show how the summation in Eq. (2.7) can be done by dynamic programming in

time complexity O(3n).

2.3 Computing Posteriors of Features

Every DAG must have a root node, that is, a node with no parents. Let G denote the set of all DAGs

over V , and for any S ⊆ V let G+(S) be the set of DAGs over V such that all variables in V −S are root

nodes (setting G+(V ) = G). Since every DAG must have a root node we have G = ∪j∈V G+(V −{j}).

We can compute the summation over all the possible DAGs in Eq. (2.7) by summing over the DAGs

in G+(V − {j}) separately. However, there are overlaps between the set G+(V − {j1}) and the set

G+(V − {j2}) for any j1 6= j2 in V ; and in fact ∩j∈TG+(V − {j}) = G+(V − T ). We can correct for

those overlaps using the inclusion-exclusion principle. Define the following function for all S ⊆ V

RR(S) ≡
∑

G∈G+(S)

∏
i∈S

Bi(Pai). (2.9)

We have P (f,D) = RR(V ) since G+(V ) = G. Then by the weighted inclusion-exclusion principle,

Eq. (2.7) becomes

P (f,D) = RR(V ) =
∑
G∈G

n∏
i=1

Bi(Pai)

=

|V |∑
k=1

(−1)k+1
∑
T⊆V
|T |=k

∑
G∈G+(V−T )

n∏
i=1

Bi(Pai)

=

|V |∑
k=1

(−1)k+1
∑
T⊆V
|T |=k

∏
j∈T

Bj(∅)
∑

G∈G+(V−T )

∏
i∈V−T

Bi(Pai)

=

|V |∑
k=1

(−1)k+1
∑
T⊆V
|T |=k

∏
j∈T

Bj(∅)RR(V − T ), (2.10)

which says that P (f,D) can be computed in terms ofRR(S). Next we show thatRR(S) for all S ⊆ V

can be computed recursively. We define the following function for each i ∈ V and all S ⊆ V − {i}

Ai(S) ≡
∑
Pai⊆S

Bi(Pai), (2.11)
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where in particular Ai(∅) = Bi(∅). We have the following results, which roughly correspond to the

backward computation in (Koivisto, 2006).

Proposition 1

P (f,D) = RR(V ), (2.12)

where RR(S) can be computed recursively by

RR(S) =

|S|∑
k=1

(−1)k+1
∑
T⊆S
|T |=k

RR(S − T )
∏
j∈T

Aj(V − S) (2.13)

with the base case RR(∅) = 1.

Proof: We will say a node j ∈ S is a source node in G ∈ G+(S) if none of j’s parents are in S, that

is, Paj ∩ S = ∅. For T ⊆ S let G+(S, T ) denote the set of DAGs in G+(S) such that all the variables

in T are source nodes (setting G+(S, ∅) = G+(S)). It is clear that G+(S) = ∪j∈SG+(S, {j}), and that

∩j∈TG+(S, {j}) = G+(S, T ). The summation over the DAGs in G+(S) in Eq. (2.9) can be computed

by summing over the DAGs in G+(S, {j}) separately and correcting for the overlapped DAGs. Define

RF (S, T ) ≡
∑

G∈G+(S,T )

∏
i∈S

Bi(Pai), for any T ⊆ S, (2.14)

where RF (S, ∅) = RR(S). Then by the weighted inclusion-exclusion principle, RR(S) in Eq. (2.9)

can be computed as

RR(S) =

|S|∑
k=1

(−1)k+1
∑

T⊆S,|T |=k

RF (S, T ). (2.15)

RR(S) and RF (S, T ) can be computed recursively as follows. For T = {j} ⊆ S,

RF (S, {j}) =
∑

G∈G+(S,{j})

Bj(Paj)
∏

i∈S−{j}

Bi(Pai)

= [
∑

Paj⊆V−S
Bj(Paj)][

∑
G∈G+(S−{j})

∏
i∈S−{j}

Bi(Pai)]

(see Figure 2.1(a))

= Aj(V − S)RR(S − {j}). (2.16)
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Figure 2.1: Figures Illustrating the Proof of Proposition 1

Similarly, for any T ⊆ S,

RF (S, T ) =
∑

G∈G+(S,T )

∏
j∈T

Bj(Paj)
∏

i∈S−T
Bi(Pai)

=
∏
j∈T

[
∑

Paj⊆V−S
Bj(Paj)][

∑
G∈G+(S−T )

∏
i∈S−T

Bi(Pai)]

(see Figure 2.1(b))

=
∏
j∈T

Aj(V − S) ·RR(S − T ). (2.17)

Combing Eqs. (2.15) and (2.17) we obtain Eq. (2.13).

2

Based on Proposition 1, provided that the functions Aj have been computed, P (f,D) can be

computed in the manner of dynamic programming, starting from the base case RR(∅) = 1, then

RR({j}) = Aj(V − {j}), and so on, until RR(V ).

Given the functions Bi, the functions Ai as defined in Eq. (2.11) can be computed using the fast

Möbius transform algorithm in time O(n2n) (for a fixed i) (Kennes and Smets, 1991). In the case of a

fixed in-degree bound k, Bi(Pai) is zero when Pai contains more than k elements. Then Ai(S) for all

S ⊆ V − {i} can be computed more efficiently using the truncated Möbius transform algorithm given

in (Koivisto and Sood, 2004) in time O(k2n) (for a fixed i).

The functions RR may be computed more efficiently if we precompute the product of Aj . Define

AA(S, T ) ≡
∏
j∈T

Aj(V − S) for T ⊆ S ⊆ V. (2.18)
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Then using Eq. (2.18) for AA(S, T − {j}) we have

AA(S, T ) = Aj(V − S)AA(S, T − {j}) for any j ∈ T. (2.19)

For a fixed S, AA(S, T ) for all T ⊆ S can be computed in the manner of dynamic programming in

O(2|S|) time starting with AA(S, {j}) = Aj(V − S). We then compute RR(S) using

RR(S) =

|S|∑
k=1

(−1)k+1
∑
T⊆S
|T |=k

RR(S − T )AA(S, T ) (2.20)

in O(2|S|) time. The functions RR(S) for all S ⊆ V can be computed in O(
∑n

k=0

(
n
k

)
2k) = O(3n)

time.

In summary, we obtain the following results.

Theorem 1 Given a fixed maximum in-degree k, P (f |D) can be computed in O(3n + kn2n) time.

2.4 Computing Posterior Probabilities for All Edges

If we want to compute the posterior probabilities of all O(n2) potential edges, we can compute

RR(V ) for each edge separately and solve the problem inO(n23n) total time. However, there is a large

overlapping in the computations for different edges. After computing P (D) with constant features

fi(Pai) = 1 for all i ∈ V , the computation for an edge i→ j only needs to change the function fj and

therefore Bj and Aj . We can take advantage of this overlap and reduce the total time for computing for

all edges.

Inspired by the forward-backward algorithm in (Koivisto, 2006), we developed an algorithm that

can compute all edge posterior probabilities in O(n3n) total time. The computations of P (f,D) in

Section 2.3 are based exploiting root nodes and roughly correspond to the backward computation in

(Koivisto, 2006). Next we first describe a computation of P (f,D) by exploiting sink nodes (nodes

that have no outgoing edges) which roughly corresponds to the computation in (Koivisto and Sood,

2004) called forward computation in (Koivisto, 2006). Then we describe how to combine the two

computations to reduce the total computation time.
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2.4.1 Computing P (f,D) by Exploiting Sinks

For any S ⊆ V , let G(S) denote the set of all the possible DAGs over S, and G(S, T ) denote the set

of all the possible DAGs over S such that all the variables in T ⊆ S are sinks. We have G(V ) = G and

G(S, ∅) = G(S). For any S ⊆ V define

H(S) ≡
∑

G∈G(S)

∏
i∈S

Bi(Pai). (2.21)

We have P (f,D) = H(V ) since G(V ) = G. As in Section 2.3 we can show thatH(S) can be computed

recursively. For any T ⊆ S ⊆ V , define

F (S, T ) ≡
∑

G∈G(S,T )

∏
i∈S

Bi(Pai), (2.22)

where F (S, ∅) = H(S). We have the following results.

Proposition 2

P (f,D) = H(V ), (2.23)

and H(S) can be computed recursively by

H(S) =

|S|∑
k=1

(−1)k+1
∑
T⊆S
|T |=k

H(S − T )
∏
j∈T

Aj(S − T ) (2.24)

with the base case H(∅) = 1.

Proof: Since every DAG has a sink we have G(S) = ∪j∈SG(S, {j}). It is clear that ∩j∈TG(S, {j}) =

G(S, T ). The summation over the DAGs in G(S) in Eq. (2.21) can be computed by summing over the

DAGs in G(S, {j}) separately and correcting for the overlapped DAGs. By the weighted inclusion-

exclusion principle, H(S) in Eq. (2.21) can be computed as

H(S) =

|S|∑
k=1

(−1)k+1
∑

T⊆S,|T |=k

F (S, T ). (2.25)
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H(S) and F (S, T ) can be computed recursively as follows. For T = {j} ⊆ S, we have

F (S, {j}) =
∑

G∈G(S,{j})

∏
i∈S

Bi(Pai)

= [
∑

Paj⊆S−{j}

Bj(Paj)][
∑

G∈G(S−{j})

∏
i∈S−{j}

Bi(Pai)]

(see Figure 2.2(a))

= Aj(S − {j})H(S − {j}). (2.26)

Similarly, for any j ∈ T ⊆ S,

F (S, T ) =
∑

G∈G(S,T )

∏
i∈S

Bi(Pai)

= [
∑

Paj⊆S−T
Bj(Paj)][

∑
G∈G(S−{j},T−{j})

∏
i∈S−{j}

Bi(Pai)]

(see Figure 2.2(b))

= Aj(S − T )F (S − {j}, T − {j}). (2.27)

Let T = {j1, . . . , jk}. Repeatedly applying Eq. (2.27) and using the fact (S−T ′)− (T −T ′) = S−T

for any T ′ ⊆ T , we obtain

F (S, T ) = Aj1(S − T )Aj2(S − T )F (S − {j1, j2}, T − {j1, j2})

= . . .

= Aj1(S − T ) · · ·Ajk−1
(S − T )F (S − {j1, . . . , jk−1}, {jk})

= H(S − T )
∏
j∈T

Aj(S − T ), (2.28)

where Eq. (2.26) is applied in the last step. Finally combining Eqs. (2.28) and (2.25) leads to (2.24).

2

Based on Proposition 2, H(S) can be computed in the manner of dynamic programming. Each H(S)

is computed in time O(
∑|S|

k=1

(|S|
k

)
k) = O(|S|2|S|−1). All H(S) for S ⊆ V can be computed in time

O(
∑n

k=1

(
n
k

)
k2k−1) = O(n3n−1). We could store all F (S, T ) and compute all H(S) in time O(3n).

But the memory requirement would become O(3n + n2n) instead of O(n2n).

We could compute the posterior of a feature using P (f,D) = H(V ) but this is a factor of n

slower than computing RR(V ). Next we show how to reduce the total time for computing the posterior

probabilities of all edges by combining the contributions of H(S) and RR(S).
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j

S−{j} S−T

j T−{j}

(a) (b)

Figure 2.2: Figures Illustrating the Proof of Proposition 2

2.4.2 Computing Posteriors for All Edges

Consider the summation over all the possible DAGs in Eq. (2.7). Assume that we are interested in

computing the posterior probability of an edge i → v. We want to extract the contribution of Bv from

the rest of Bi. The idea is as follows. For a fixed node v, we can break a DAG into the set of ancestors

U of v and the set of nonancestors V −{v}−U .1 Roughly speaking, conditioned on U , the summation

over all DAGs can be decomposed into the contributions from the summation over DAGs over U , which

corresponds to the computation of H(U), and the contributions from the summation over DAGs over

V − {v} − U with the variables in U ∪ {v} as root nodes, which corresponds to the computation of

RR(V − {v} − U).

Define, for any v ∈ V and U ⊆ V − {v} the following function

Kv(U)

≡
∑

T⊆V−{v}−U

(−1)|T |RR(V − {v} − U − T )
∏
j∈T

Aj(U). (2.29)

We have the following results.

Proposition 3

P (f,D) =
∑

U⊆V−{v}

Av(U)H(U)Kv(U). (2.30)

The proof of Proposition 3 is given in the appendix.
1Or we can break a DAG into the set of nondescendants U of v and the set of descendants V −{v}−U . It could be shown

that we can also use this way of breaking DAGs to derive Proposition 3. But this is not exploited in the paper.
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Note that in Eq. (2.30) the computations of H(U) and Kv(U) do not rely on Bv and all the contri-

bution from Bv to P (f,D) is represented by Av. After we have computed the functions Av, H and Kv,

P (f,D) can be computed using Eq. (2.30) in time O(2n).

To compute Kv(U), we can precompute the product of Aj . Define

η(U, T ) ≡
∏
j∈T

Aj(U). (2.31)

Then Kv(U) can be computed as

Kv(U) =
∑

T⊆V−{v}−U

(−1)|T |RR(V − {v} − U − T )η(U, T ), (2.32)

where η(U, T ) can be computed recursively as

η(U, T ) = Aj(U)η(U, T − {j}) for any j ∈ T. (2.33)

For a fixed U , all η(U, T ) for T ⊆ V −{v}−U can be computed inO(2n−1−|U |) time, and thenKv(U)

can be computed in O(2n−1−|U |) time. For a fixed v all Kv(U) for U ⊆ V − {v} can be computed in

O(
∑n−1

k=0

(
n−1
k

)
2n−1−k) = O(3n−1) time.

Based on Proposition 3, to compute the posterior probabilities for all possible edges, we can use the

following algorithm.

1. Precomputation. Set constant feature f(G) ≡ 1. Compute functions Bi, Ai, RR, H , and Ki.

2. For each edge u→ v:

(a) For all S ⊆ V − {v}, recompute Av(S).

(b) Compute P (f,D) using Eq. (2.30). Then P (f |D) = P (f,D)/RR(V ).

For a fixed maximum in-degree k, Step 1 takes time O(n3n) as discussed before, and Step 2 takes time

O(n2(k2n + 2n)). It takes O(n3n + kn22n) total time to compute the posterior probabilities for all

possible edges.

The computation time of Step 2 can be further reduced by a factor of n using the techniques de-
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scribed in (Koivisto, 2006). Plug in the definition of Av(U) into Eq. (2.30)

P (f,D) =
∑

U⊆V−{v}

[
∑

Pav⊆U
Bv(Pav)]H(U)Kv(U)

=
∑

Pav⊆V−{v}

Bv(Pav)
∑

Pav⊆U⊆V−{v}

H(U)Kv(U)

=
∑

Pav⊆V−{v}

Bv(Pav)Γv(Pav), (2.34)

where for all Pav ⊆ V − {v} we define

Γv(Pav) ≡
∑

Pav⊆U⊆V−{v}

H(U)Kv(U). (2.35)

For a fixed maximum in-degree k, since we set Bv(Pav) to be zero for Pav containing more than k

variables, we need to compute the function Γv(Pav) only at sets Pav containing at most k elements,

which can be computed using the k-truncated downward Möbius transform algorithm described in

(Koivisto, 2006) in O(k2n) time for all Pav (for a fixed v). Then P (f,D) for an edge u → v can be

computed as

P (u→ v,D) =
∑

u∈Pav⊆V−{v}
|Pav |≤k

Bv(Pav)Γv(Pav), (2.36)

which takes O(nk−1) time.

In summary, we propose the algorithm in Figure 2.3 to compute the posterior probabilities for all

possible edges. The main result of the paper is summarized in the following theorem.

Theorem 2 For a fixed maximum in-degree k, the posterior probabilities for all n(n−1) possible edges

can be computed in O(n3n) total time.

2.5 Experimental Results

The algorithm in Figure 2.3 has been implemented in our C++ software tool called POSTER, which

is available at http://www.cs.iastate.edu/ rhe/POSTER/; and we run various experiments to demonstrate

its capabilities. We compared our implementation with REBEL2, a C++ language implementation of

the DP algorithm in (Koivisto, 2006).
2REBEL is available at http://www.cs.helsinki.fi/u/mkhkoivi/REBEL/.
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Algorithm Computing posteriors of all edges given maximum in-degree k

1. Precomputation. Set trivial feature f(G) ≡ 1

(a) For all i ∈ V , Pai ⊆ V − {i} with |Pai| ≤ k, compute Bi(Pai). Time complexity
O(nk+1).

(b) For all i ∈ V , S ⊆ V − {i}, compute Ai(S). Time complexity O(kn2n).

(c) For all S ⊆ V , compute RR(S). Time complexity O(3n).

(d) For all S ⊆ V , compute H(S). Time complexity O(n3n).

(e) For all i ∈ V , S ⊆ V − {i}, compute Ki(S). Time complexity O(n3n).

(f) For all i ∈ V , Pai ⊆ V − {i} with |Pai| ≤ k, compute Γi(Pai). Time complexity
O(kn2n).

2. For each edge u → v, compute P (u → v|D) using Eq. (2.36), and output P (u → v|D) =

P (u→ v,D)/RR(V ). Time complexity O(nk+1).

Figure 2.3: Algorithm for Computing the Posterior Probabilities for All Possible Edges in Time Com-
plexity O(n3n) Assuming a Fixed Maximum In-degree k

We used BDe score for scorei(Pai : D) (with the hyperparameters αxi;pai = 1/(|Dm(Xi)| ·

|Dm(Pai)|)) (Heckerman et al., 1995). In the experiments our algorithm used a uniform structure

prior P (G) = 1 and REBEL used a structure prior specified in (Koivisto, 2006). All the experiments

were run under Linux on an ordinary desktop PC with a 3.0GHz Intel Pentium processor and 2.0GB of

memory.

2.5.1 Speed Test

We tested our algorithm on several data sets from the UCI Machine Learning Repository (Asuncion

and Newman, 2007): Iris, Tic-Tac-Toe, and Zoo. All the data sets contain discrete variables (or are

discretized) and have no missing values. We also tested our algorithm on a synthetic data set coming

with REBEL. For each data set, we ran our algorithm and REBEL to compute the posterior probabilities

for all potential edges. The time taken under different maximum in-degree k is reported in Table 3.1,

which also lists the number of variables n and the number of instances m for each data set. We also

show the time TB for computing all the local scores in Table 3.1 as this time also depends on the number

of instances m in a data set.

The results demonstrate that our algorithm is capable of computing the posterior probabilities for
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Table 2.1: Speed of the Algorithm for Computing Posteriors of All Edges (Time Is in Seconds)

Name n m k TB Ours REBEL
Iris 5 150 4 2.2e-3 3.5e-3 3.1e-3

TicTacToe 10 958 4 4.7e-1 6.2e-1 5.1e-1
5 9.1e-1 1.1 9.4e-1
6 1.3 1.5 1.4
9 1.7 1.9 1.7

Zoo 17 101 4 1.4 602.3 13.4
5 4.4 607.0 19.2
6 11.5 610.6 28.7

Synthetic 20 500 4 9.2 23083 128.3

all the potential edges in networks over around n = 20 variables. The memory requirement of the

algorithm is O(n2n), the same as REBEL, which will limit the use of the algorithm to about n = 25

variables. It may take our current implementation a few months for n = 25.

2.5.2 Comparison of Computations

For the Tic-Tac-Toe data set with n = 10, our algorithm is capable of computing the “true” exact

edge posterior probabilities by setting the maximum in-degree k = 9,3 although an exhaustive enumer-

ation of DAGs with n = 10 would not be feasible. We then vary the maximum in-degree k and compare

the edge posterior probabilities computed by our algorithm with the true probabilities. The results are

shown as scatter plots in Figure 3.1 (Note that in these graphs most of the points are located at (0,0)

or closely nearby). Each point in a scatter plot corresponds to an edge with its x and y coordinates

denoting the posterior computed by the two compared algorithms. We see that with the increase of k

the computed probabilities gradually approach the true probabilities. With k = 3 the computed proba-

bilities already converge to the true probabilities. Studying the effects of the approximation due to the

maximum in-degree restriction in general need more substantial experiments and is beyond the scope

of this paper.

We also compared the exact posterior probabilities computed by REBEL (setting k = 9) with the

true probabilities. The results are shown in Figure 3.2. We see that the exact probabilities computed
3We will call the exact posterior probabilities computed using uniform structure prior P (G) = 1 the “true” probabilities.
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Figure 2.4: Scatter Plots that Compare Posterior Probability of Edges on the Tic-Tac-Toe Data Set as
Computed by Our Algorithm with Different k against the True Posterior
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Figure 2.5: Scatter Plot that Compares Posterior Probability of Edges on the Tic-Tac-Toe Data Set as
Computed by REBEL against the True Posterior
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by REBEL without in-degree bound sometimes still differ with the true probabilities. This is due to the

highly non uniform structure prior used by REBEL.

We compared our algorithm with REBEL over a larger network, the synthetic data set with n = 20.

The results are shown in Figure 2.6. We see that with the same maximum in-degree, the computed

probabilities often differ. Again, this can be attributed to the non uniform structure prior used by

REBEL.

2.6 Conclusion

We have presented an algorithm that can compute the exact posterior probability of a modular

feature such as a single edge inO(3n) time and the exact posterior probabilities for all n(n−1) potential

edges in O(n3n) total time. We demonstrated its capability on data sets containing up to 20 variables.

The main advantage of our algorithm over the current state-of-the-art algorithms, the DP algorithm

in (Koivisto, 2006) and the order MCMC in (Friedman and Koller, 2003), for computing the posterior

probabilities of structural features is that those algorithms require special structure prior P (G) that is

highly non uniform while we allow general prior P (G).

Our algorithm computes exact posterior probabilities and works in moderate size networks (about

20 variables), which make it a useful tool for studying several problems in learning Bayesian networks.

One application is to assess the quality of the DP algorithm due to the influence of non uniform prior

P (G). Another application is to study the effects of the approximation due to the maximum in-degree

restriction. We have shown some initial experimental results in Section 4.4. Other potential applications

include assessing the quality of approximate algorithms (e.g., MCMC algorithms), studying the effects

of data sample size on the learning results, and studying the effects of model parameters (such as

parameter priors) on the learning results.

2.7 Appendix: Proof of Proposition 3

For a fixed node v, we can break a DAG uniquely into the set of ancestors S of v and the set of

nonancestors V − {v} − S. For v /∈ S let Gv(S) denote the set of DAGs over S ∪ {v} such that

every node in S is an ancestor of v. Then the summation over all possible DAGs in Eq. (2.7) can be
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decomposed into

P (f,D) =
∑

S⊆V−{v}

[
∑

G∈Gv(S)

∏
i∈S∪{v}

Bi(Pai)]

·[
∑

G∈G+(V−{v}−S)

∏
i∈V−{v}−S

Bi(Pai)]

=
∑

S⊆V−{v}

LLv(S)RR(V − {v} − S), (2.37)

where for any S ⊆ V − {v} we define

LLv(S) ≡
∑

G∈Gv(S)

∏
i∈S∪{v}

Bi(Pai). (2.38)

Gv(S) consists of the set of DAGs over S ∪ {v} in which v is the unique sink. We have

G(S ∪ {v}, {v}) = Gv(S) ∪ (∪j∈SG(S ∪ {v}, {v, j})), (2.39)

from which, by the weighted inclusion-exclusion principle, we obtain

LLv(S) =
∑

G∈G(S∪{v},{v})

∏
i∈S∪{v}

Bi(Pai)

−
|S|∑
k=1

(−1)k+1
∑
T⊆S
|T |=k

∑
G∈G(S∪{v},T∪{v})

∏
i∈S∪{v}

Bi(Pai)

= F (S ∪ {v}, {v})−
|S|∑
k=1

(−1)k+1
∑
T⊆S
|T |=k

F (S ∪ {v}, T ∪ {v})

=
∑
T⊆S

(−1)|T |F (S ∪ {v}, T ∪ {v})

=
∑
T⊆S

(−1)|T |Av(S − T )F (S, T )

=
∑
U⊆S

(−1)|S|−|U |Av(U)F (S, S − U). (2.40)
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Plugging Eq. (2.40) into Eq. (2.37), we obtain

P (f,D) =
∑

S⊆V−{v}

∑
U⊆S

(−1)|S|−|U |Av(U)

· F (S, S − U)RR(V − {v} − S)

=
∑

U⊆V−{v}

∑
U⊆S⊆V−{v}

(−1)|S|−|U |Av(U)

· F (S, S − U)RR(V − {v} − S)

=
∑

U⊆V−{v}

Av(U)H(U)
∑

U⊆S⊆V−{v}

(−1)|S|−|U |

·
∏

j∈S−U
Aj(U)RR(V − {v} − S)

=
∑

U⊆V−{v}

Av(U)H(U)Kv(U), (2.41)

where we have used the definition of function Kv(U) in Eq. (2.29).
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CHAPTER 3. BAYESIAN MODEL AVERAGING USING THE K-BEST BAYESIAN

NETWORK STRUCTURES

A paper published in Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence

Jin Tian, Ru He and Lavanya Ram

Abstract

We study the problem of learning Bayesian network structures from data. We develop an algorithm for

finding the k-best Bayesian network structures. We propose to compute the posterior probabilities of

hypotheses of interest by Bayesian model averaging over the k-best Bayesian networks. We present

empirical results on structural discovery over several real and synthetic data sets and show that the

method outperforms the model selection method and the state-of-the-art MCMC methods.

3.1 Introduction

Bayesian networks (BN) are being widely used in various data mining tasks for probabilistic infer-

ence and causal modeling (Pearl, 2000; Spirtes et al., 2001). One major challenge in the applications of

BN is to learn the structures of BNs from data. In the Bayesian approach, we provide a prior probability

distribution over the space of possible Bayesian networks and then compute the posterior distributions

P (G|D) of the network structureG given dataD. We can then compute the posterior probability of any

hypothesis of interest by averaging over all possible networks. In some applications we are interested

in structural features. For example, in causal discovery, we are interested in the causal relations among

variables, represented by the edges in the network structure (Heckerman et al., 1999). In other appli-

cations we are interested in predicting the posterior probabilities of new observations, for example, in

classification tasks.
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The number of possible network structures is super-exponential O(n!2n(n−1)/2) in the number of

variables n. For example, there are about 104 directed acyclic graphs (DAGs) on 5 nodes, and 1018

DAGs on 10 nodes. As a result, it is impractical to sum over all possible structures unless for tiny

domains (less than 8 variables). The most common solution is to use model selection approach in

which we use P (D,G) = P (G|D)P (D) or other measures as a scoring metric and we attempt to

find a single network with the best score, the MAP network. We then use that model (or its Markov

equivalence class) to make future predictions. This may be a good approximation if the amount of

data is large relative to the size of the model such that the posterior is sharply peaked around the MAP

model. However, in domains where the amount of data is small relative to the size of the model there

are often many high-scoring models with non-negligible posterior. In this situation using a single model

could lead to unwarranted conclusions about the structure features and also poor predictions about new

observations. For example, the edges that appear in the MAP model do not necessarily appear in other

approximately equally likely models. Also the model selection may be sensitive to the data samples

given in the sense that a different set of data (from the same distribution) might well lead to a different

MAP model. In such cases, using Bayesian model averaging is preferred.

Recently there has been progress on computing exact posterior probabilities of structural features

such as edges or subnetworks using dynamic programming techniques (Koivisto and Sood, 2004;

Koivisto, 2006; Tian and He, 2009). These techniques have exponential time and memory complex-

ity and are capable of handling data sets with up to around 20 variables. One problem with these

algorithms is that they can only computer posteriors over modular features such as directed edges but

can not compute non-modular features such as paths (“is there a path between nodes X and Y ”). An-

other problem is that it is very expensive to perform data prediction tasks. They can compute the exact

posterior of new observational data P (x|D) but the algorithms have to be re-run for each new data case

x.

When computing exact posterior probabilities of features is not feasible, one solution that has been

proposed is to approximate full Bayesian model averaging by finding a set of high-scoring networks

and making prediction using these models (Madigan and Raftery, 1994; Heckerman et al., 1999). This

leaves open the question of how to construct the set of representative models. One possible approach

is to use the bootstrap technique which has been studied in (Friedman et al., 1999). However there are
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still many questions that need further study on how to use the bootstrap to approximate the Bayesian

posterior.

One theoretically well-founded approach is to use Markov Chain Monte Carlo (MCMC) techniques.

Madigan and York (1995) used MCMC algorithm in the space of network structures (i.e., DAGs).

Friedman and Koller (2003) developed a MCMC procedure in the space of node orderings which was

shown to be more efficient than MCMC in the space of DAGs and to outperform the bootstrap approach

in (Friedman et al., 1999) as well. Eaton and Murphy (2007) developed a hybrid MCMC method

(DP+MCMC) that first uses the dynamic programming technique in (Koivisto, 2006) to develop a global

proposal distribution and then runs MCMC in the DAG space. Their experiments showed that the

DP+MCMC algorithm converged faster than previous two methods (Madigan and York, 1995; Friedman

and Koller, 2003) and resulted in more accurate structure learning. One common problem to the MCMC

and bootstrap approach is that there is no guarantee on the quality of the approximation in finite runs.

Madigan and Raftery (1994) has proposed to discard the models whose posterior probability is much

lower than the best ones (as well as complex models whose posterior probability is lower than some

simpler one). In this paper, we study the approach of approximating Bayesian model averaging using

a set of best Bayesian networks. It is intuitive to make predictions using a set of the best models, and

we believe it is due to the computational difficulties of actually finding the best networks that this idea

has not been systematically studied. In this paper, we develop an algorithm for finding the k-best net-

work structures by generalizing the dynamic programming algorithm for finding the optimal Bayesian

network structure (i.e. the MAP network structure) in (Singh and Moore, 2005; Silander and Mylly-

maki, 2006). We demonstrate the algorithm on several real data sets from the UCI Machine Learning

Repository (Asuncion and Newman, 2007) and synthetic data sets from a gold-standard network. We

then empirically study the quality of Bayesian model averaging using the k-best networks in structure

discovery and show that the method outperforms the model selection method and the state-of-the-art

MCMC methods.
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3.2 Bayesian Learning of Bayesian Networks

A Bayesian network is a DAG G that encodes a joint probability distribution over a set X =

{X1, . . . , Xn} of random variables with each node of the graph representing a variable in X . For

convenience we will typically work on the index set V = {1, . . . , n} and represent a variable Xi by

its index i. We use XPai ⊆ X to represent the set of parents of Xi in a DAG G and use Pai ⊆ V to

represent the corresponding index set.

In the problem of learning BNs from data we are given a training data set D = {x1, x2, . . . , xN},

where each xi is a particular instantiation over the set of variables X . In this paper we only consider

situations where the data are complete, that is, every variable in X is assigned a value. In the Bayesian

approach to learning Bayesian networks from the training data D, we compute the posterior probability

of a network G as

P (G|D) =
P (D|G)P (G)

P (D)
. (3.1)

Assuming global/local parameter independence, and parameter modularity, lnP (D|G) can be decom-

posed into a summation of so-called (log) local scores as (Cooper and Herskovits, 1992; Heckerman

et al., 1995)

lnP (D|G) =
n∑
i=1

scorei(Pai : D) ≡ score(G : D), (3.2)

where, with appropriate parameter priors, scorei(Pai : D) has a closed form solution. In this paper

we will focus on discrete random variables assuming that each variable Xi can take values from a finite

domain. We will use the popular BDe score for scorei(Pai : D) and we refer to (Heckerman et al.,

1995) for its detailed expression. Often for convenience we will omit mentioning D explicitly and

use scorei(Pai) and score(G). Then with the additional assumption of structure modularity P (G)

=
∏n
i=1Qi(Pai), ln[P (D|G)P (G)] can be decomposed as

∑n
i=1[scorei(Pai : D) + lnQi(Pai)].

In the Bayesian framework, we compute the posterior probability of any hypothesis of interest h by

averaging over all possible networks.

P (h|D) =
∑
G

P (h|G,D)P (G|D). (3.3)

Since the number of possible DAGs is super-exponential in the number of variables n, it is impractical

to sum over all DAGs unless for very small networks. One solution is to approximate this exhaustive
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enumeration by using a selected set of networks, denoted by G,

P̂ (h|D) =

∑
G∈G P (h|G,D)P (G|D)∑

G∈G P (G|D)
(3.4)

=

∑
G∈G P (h|G,D)P (G,D)∑

G∈G P (G,D)
, (3.5)

where P̂ (.) denote approximated probabilities. In the model selection approach, we find a high-scoring

model Gs and use it to make predictions:

P̂ (h|D) = P (h|Gs, D). (3.6)

In this paper we will perform model averaging using the set G of k-best networks.

We can estimate the posterior probability of a network G ∈ G as

P̂ (G|D) =
P (G,D)∑
G∈G P (G,D)

. (3.7)

Since
∑

G∈G P (G,D) is not greater than P (D), the estimate P̂ (G|D) is always an upper bound of

P (G|D), and it is a good estimate only if
∑

G∈G P (G|D) is close to 1. We can then estimate the

posterior probability of hypothesis h by

P̂ (h|D) =
∑
G∈G

P (h|G,D)P̂ (G|D). (3.8)

When we are interested in computing the posteriors of structural features such as edges, paths, Markov

Blankets, etc., we let f denote a structural feature represented by an indicator function such that f(G)

is 1 if the feature is present in G and 0 otherwise. We have P (f |G,D) = f(G) and

P̂ (f |D) =
∑
G∈G

f(G)P̂ (G|D). (3.9)

When we are interested in predicting the posteriors of future observations, we let DT denote a set

of new data examples sampled independently of D (i.e., D and DT are independent and identically

distributed). Then

P̂ (DT |D) =
∑
G∈G

P (DT |G,D)P̂ (G|D), (3.10)

and

lnP (DT |G,D) = ln[P (DT , D|G)/P (D|G)] (3.11)

= score(G : DT , D)− score(G : D). (3.12)
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3.3 Finding the k-best Network Structures

We find the k-best structures using the dynamic programming techniques extending the algorithm

for finding the optimal Bayesian network structures in (Silander and Myllymaki, 2006). Our algorithm

consists of three steps:

1. Compute the local scores for all possible n2n−1 (i, Pai) pairs.

2. For each variable i ∈ V , find the k-best parent sets in parent candidate set C for all C ⊆ V \ {i}.

3. Find the k-best networks.

Step 1 is exactly the same as in (Silander and Myllymaki, 2006) and we will use their algorithm.

Assuming that we have calculated all the local scores, next we describe how to accomplish Steps 2

and 3 using dynamic programming technique.

3.3.1 Finding the k-best Parent Sets

We can find the k-best parent sets for a variable v from a candidate set C recursively. The k-best

parent sets in C for v are the k-best sets among the whole candidate set C itself, and the k-best parent

sets for v from each of the smaller candidate sets {C \ {c}|c ∈ C}. Therefore, to compute the k-best

parent sets for v for every candidate set C ⊆ V \ {v}, we start with sets of size |C| = 1, then consider

sets of |C| = 2, and so on, until the set C = V \ {v}.

The skeleton algorithm for finding the k-best parent sets for v from a candidate set C is given

in Algorithm 1, where we use bestParentsv[S] to denote the k best parent sets for variable v from

candidate set S stored in a priority queue, and the operation Merge(., .) outputs a priority queue of the

k best parents given the two input priority queues of k elements. Assuming that the merge operation

takes time T (k), finding the k-best parent sets for v from a candidate set C takes time O(T (k) ∗ |C|),

and computing for all C ⊆ V \ {v} takes time O(
∑n−1
|C|=1 T (k) ∗ |C| ∗

(
n−1
|C|
)
) = O(T (k)(n− 1)2n−2).

3.3.2 Finding the k-best Network Structures

Having calculated the k-best parent sets for each variable v from any set C, finding the k-best

network structures over a variable set W can be done recursively. We will exploit the fact that every
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Algorithm 1 Finding the k-best parent sets for variable v from a candidate set C
Input:
scorev(C): local scores
bestParentsv[S]: priority queues of the k-best parent sets for variable v from candidate set S for all
S ⊆ C with |S| = |C| − 1

Output:
bestParentsv[C]: a priority queue of the k-best parents of v from the candidate set C
Initialize bestParentsv[C]

for all S ⊆ C such that |S| = |C| − 1 do {
bestParentsv[C]←Merge(bestParentsv[C], bestParentsv[S])

}
Insert C into bestParentsv[C] if scorev(C) is larger than the minimum score in bestParentsv[C]

DAG has a sink, a node that has no outgoing edges. First for each variable s ∈ W , we can find the

k-best networks over W with s as a sink. Then the k-best networks over W are the k-best networks

among {the k-best networks over W with s as a sink : s ∈W}.

The k-best networks overW with s as a sink can be identified by looking at the k-best parent sets for

s from the set W \ {s} and the k-best networks over W \ {s}.1 More formally, let bestParentss[C][i]

denote the ith best parent set for variable s in the candidate parent set C. Let bestNets[W ][j] denote

the jth best network over W . Define the function value(i, j) as

value(i, j) =scores(bestParentss[W \ {s}][i])

+ score(bestNets[W \ {s}][j]). (3.13)

Then the k-best networks over W with s as a sink can be identified by finding the k-best scores among

{value(i, j) : i = 1, . . . , k, j = 1, . . . , k.}. (3.14)

This can be done by using a standard best-first graph search algorithm over a search space {(i, j) : i =

1, . . . , k, j = 1, . . . , k} with root node (1, 1), children of (i, j) being (i+ 1, j) and (i, j+ 1), and the

value of each node given by value(i, j).

The skeleton algorithm for finding the k-best network structures over a set W is given in Algorithm

2. Let the time spent on the best-first search be T ′(k). In the worst case all k2 nodes may need to be

1This is because for any networks not constructed out of these parents sets for s and networks over W \{s} we can always
produce k better networks.
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Algorithm 2 Finding the k-best network structures over set W
Input:
bestParentsi[S]: priority queues of k-best parent sets for each variable i ∈ V from any candidate set
S ⊆ V − {i}
bestNets[S]: priority queues of k-best network structures over all S ⊆W with |S| = |W | − 1

Output:
bestNets[W ]: a priority queue of k-best networks over W
for all s ∈W do {

do a best-first graph search over the space {(i, j)} until value(i, j) < score(bestNets[W ][k]) {
Construct a BN G from the network bestNets[W \{s}][j] and setting the set
bestParentss[W \ {s}][i] as the parents of s

Insert the network G into bestNets[W ] if G is not in the queue yet
}
}

visited. The complexity of finding the k-best network structures is O(
∑n
|W |=1 T

′(k) ∗ |W | ∗
(
n
|W |
)
)

= O(T ′(k)n2n−1).

3.4 Experiments

We used BDe score for scorei(Pai : D) with a uniform structure prior P (G) and equivalent sample

size 1 (Heckerman et al., 1995). We have implemented our algorithm in C++ language and all the

experiments on our method were run under Linux on an ordinary desktop PC with a 3.0GHz Intel

Pentium processor and 2.0GB memory.

We tested our algorithm on several data sets from the UCI Machine Learning Repository (Asuncion

and Newman, 2007): Iris, Nursery, Tic-Tac-Toe, Zoo and Letter. We also tested our algorithm on

synthetic data sets of various sample sizes from a gold-standard 15-variable Bayesian network with

known structure and parameters. All the data sets contain discrete variables (or are discretized) and

have no missing values.

3.4.1 Performance Evaluation

For each data set, we learned the k-best networks for certain k, then we can estimate the posterior

probabilities P̂ (h|D) of any hypotheses using Eqs. (4.25) and (3.8). To get an idea on how close the

estimation is to the true posteriors we used the algorithm in (Tian and He, 2009) to compute the exact
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P (D). We can then evaluate the quality of the posterior estimation as follows. Define the following

quantity:

∆ ≡
∑

G∈G P (G,D)

P (D)
=
∑
G∈G

P (G|D). (3.15)

∆ represents the cumulative true probability mass of the graphs in G. From Eqs. (3.1) and (4.25) we

obtain

P (G|D)

P̂ (G|D)
= ∆. (3.16)

Note that ∆ ≤ 1 and the larger value of ∆ means the closer estimation P̂ (G|D) to exact P (G|D). In

general we have the following results on the quality of estimation P̂ (h|D).

Proposition 4

− (1−∆)P̂ (h|D) ≤ P (h|D)− P̂ (h|D) ≤ (1−∆)(1− P̂ (h|D)), (3.17)

or equivalently

∆P̂ (h|D) ≤ P (h|D) ≤ ∆P̂ (h|D) + 1−∆. (3.18)

The proof is given in the appendix.

In practice, in the cases we do not have a large amount of data, ∆ may be much smaller than 1 and

the bounds in proposition 4 could be too loose to be useful. Therefore, we introduce another measure for

the quality of the posterior estimation, the relative ratio of the posterior probability of the MAP network

Gmap to the posterior of the worst network Gmin of the k best networks (the k-th best network):

λ ≡ P̂ (Gmap|D)

P̂ (Gmin|D)
=
P (Gmap|D)

P (Gmin|D)
(3.19)

It has been argued in (Madigan and Raftery, 1994) that we should make predictions using a set of the

best models by discarding those models that predict the data far less well even though the very many

models with small posterior probabilities may contribute substantially to the sum (such that ∆ is much

smaller than 1). A cutoff value of λ = 20 is suggested in (Madigan and Raftery, 1994) by analogy with

the 0.05 cutoff for P-values.
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3.4.2 Experimental Results on the k-best Networks

We tested our algorithm on several data sets and the experimental results are reported in Table 3.1,

which lists for each data set the number of variables n, the number of instances (sample size) m, the

value k, the time Tl for computing local scores (the time depends on m but not k), the total running

time Tt for finding the k-best networks, and the quality measure ∆ and λ.

As expected the values of ∆ and λ (as a measure of estimation quality) increases as k increases.

We see that ∆ value is often too small for Proposition 4 to be useful, however Proposition 4 can indeed

provide guarantee on the quality of approximation in nontrivial cases like Nursey and Tic-Tac-Toe data

sets which are still too large for exhaustive enumeration of all possible networks. Based on the λ value,

the best 100 networks are not enough to get reliable estimation for Zoo and letter data sets. For the

synthetic data set, λ increases as the sample size m increases. Based on the λ value, the best 100

networks should give reliable estimation for m = 3000 and m = 5000.

The exact posterior probabilities of k-best networks for each data set are shown in Figures 3.1 and

3.2. We see that there could be multiple networks having the same posterior probability. For example,

the number of best networks sharing the largest posterior probability is as follows: 2 for Nursery case,

76 for Tic-Tac-Toe case, 12 for Letter case, 26 for synthetic data withm = 200, and 6 for synthetic data

with m = 5000. This is mainly due to that BDe scoring criterion has the likelihood-equivalence prop-

erty, i.e., it assigns the same score to the Bayesian networks within the same independence equivalence

class. However, we have found that it is also possible that the networks across the different equivalence

classes have the same posterior probability. Take Tic-Tac-Toe case for example, we have found that

the 76 best networks actually belong to multiple equivalence classes which have different skeletons.

This exceptional case shows that one can not always assert that the networks having the same posterior

probability must be within the same equivalence class.

In Table 3.2 we show the difference between the best equivalence class and the second best equiv-

alence class for each case. The second column lists the number of different undirected edges between

these 2 best equivalence classes and the third column shows λ (the relative ratio of their posterior prob-

abilities). The result shows that their difference is typically small for each case.
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Table 3.1: Experimental Results of the Algorithm for Finding k-best Bayesian Networks

Statistics (time in sec.)
Name n m Tl k Tt ∆ λ

Iris 5 150 0.3 900 1.3 1.000 2.08e+6
Nursery 9 12960 0.4 100 2.9 1.000 2.07e+16

Tic-Tac-Toe 10 958 0.3 1000 261 0.759 2.17e+4
Zoo 17 101 9 1 22 1.31e-10 1

10 131 1.24e-09 1.089
100 5945 1.013e-08 1.516

Letter 17 20000 277 1 290 0.00159 1
10 380 0.0159 1
100 5976 0.156 1.022

Synthetic 15 200 4 1 7 1.55e-07 1
10 30 1.55e-06 1
100 889 1.27e-05 1.698

Synthetic 15 1000 11 1 14 2.54e-06 1
10 36 2.37e-05 1.203
100 884 7.00e-05 12.49

Synthetic 15 3000 17 1 20 4.77e-07 1
10 41 3.37e-06 1.319
100 886 3.77e-06 1282

Synthetic 15 5000 21 1 24 2.59e-07 1
10 45 1.80e-06 4.30
100 874 2.94e-06 2406

Table 3.2: Difference across 2 Best Equivalence Classes

Name No. of diff. edges λ

Iris 2 2.30
Nursery 1 15.32

Tic-Tac-Toe 4 1.00
Zoo 1 1.03

Letter 1 1.02
Synthetic (m = 200) 1 1.01

Synthetic (m = 1000) 1 1.03
Synthetic (m = 5000) 1 4.30
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Figure 3.1: Exact Posterior Probabilities of the k-best Networks
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Figure 3.2: Exact Posterior Probabilities of the k-best Networks (Continued)



42

3.4.3 Structural Discovery

In order to evaluate the ability of the k-best networks method in structural discovery, we tested on

the synthetic data set from the gold-standard 15-variable Bayesian network. We computed edge feature

between each pair of variables by Eq. (3.9) under the different values of k ∈ {1, 10, 100}. For the

comparison, we also computed the exact posterior probability of each edge by the method of full model

averaging in (Tian and He, 2009). Since we have the true gold-standard network, we could compute all

the corresponding ROC curves. The results are shown in Figures 3.3 and 3.4.

The figures indicate the usefulness of k-best method in structural discovery. We observe that the

area under ROC (AUC) is a non-decreasing function of k. Even a small increase of k from 1 to 10

will lead to a non-negligible improvement in the corresponding ROC, even though ∆ is tiny (such as

2.37e − 05) and λ is small (such as 1.203). For the data set with m = 5, 000, the performance of Top

100 is almost the same as that of full model averaging method when λ is big (2, 406), regardless of the

fact that ∆ is still tiny (2.94e− 06).

The comparison with MCMC approach also demonstrates the usefulness of our method. In this

paper we compared our method with the hybrid method (DP+MCMC) proposed by Eaton and Murphy

(2007), which was shown to have the statistically significant improvement in structural discovery over

other MCMC methods (Madigan and York, 1995; Friedman and Koller, 2003). For DP+MCMC, we

set the pure global proposal (with local proposal choice β = 0) since such a setting was reported to

have the best performance (with the largest mean and the smallest variance of AUC) for edge discovery

in their experimental results. The tool BDAGL provided by the authors in (Eaton and Murphy, 2007)

was used for the experiments on DP+MCMC. We ran totally 120, 000 iterations and discarded the first

100, 000 iterations as burn-in period. Then we set the thinning parameter as 2 to get final 10, 000

samples (networks). Finally the posterior probability of each edge was computed based on the model

averaging among these 10, 000 networks and the corresponding ROC was drawn.

Because of the randomness nature of MCMC, we repeated the above process 10 times for each data

set.2 The best, worst and median of these 10 ROCs were shown in the figures, compared with the ROC
2The DP step (including marginal likelihood computation) took 221 seconds and MCMC iterations took the mean of 134

seconds in the case of m = 1, 000. The most part of BDAGL was written in Matlab and we ran BDAGL under Windows XP
on an ordinary laptop with 1.60GHz Intel Pentium processor and 1.5GB memory. Due to the different hardware, platforms and
programming languages used, the time statistics of DP+MCMC can not be directly compared with the ones of our method.
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from Top 100 (i.e. the 100 best). In the case of m = 1, 000, the figure shows that the performance of

DP+MCMC still has a non-negligible variability and the performance of Top 100 is no worse than the

performance of the median of DP+MCMC. In the case ofm = 5, 000, the variability of the performance

of DP+MCMC decreases. However, even the best of DP+MCMC could not outperform Top 100. The

good performance of our model averaging over only 100 networks is not surprising: the 100 networks

used here are the top 100 networks so that they are relatively more important than all the other networks

in the model average process. Figure 3.2 has clearly demonstrated such a relative importance of these

top 100 networks.

3.5 Conclusion

We develop an algorithm for finding the k-best Bayesian network structures. We present empirical

results on the structural discovery by Bayesian model averaging over the k best Bayesian networks. One

nice feature of the method is that we can monotonically improve the estimation accuracy by spending

more time to compute for larger k. Another interesting feature shown by our experiments is that we

may evaluate the quality of the estimation based on the value of λ. The relation between the estimation

quality and λ is worth more substantial study in the future.

As the experimental results show, there are many equivalent networks in the set of best networks.

It is desirable if we can directly find the k best equivalence classes. However, the proposed algorithm

does not search in the equivalence class space. The algorithm will find the top k individual networks

regardless of the existence of equivalent networks. It seems that the dynamic programming idea cannot

be naturally generalized to the equivalence class space (at least we were not able to achieve this). How

to directly find the k best equivalence classes is a research direction that is worth to pursue.
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3.6 Appendix: Proof of Proposition 4

P (h|D)− P̂ (h|D)

=
∑
G

P (h|G,D)P (G|D)−
∑
G∈G

P (h|G,D)P̂ (G|D)

=
∑
G∈G

P (h|G,D)[P (G|D)− P̂ (G|D)] +
∑
G 6∈G

P (h|G,D)P (G|D)

=
∑
G∈G

P (h|G,D)P̂ (G|D)(∆− 1) +
∑
G6∈G

P (h|G,D)P (G|D)

= −(1−∆)P̂ (h|D) +
∑
G6∈G

P (h|G,D)P (G|D) (3.20)

Since the second term in Eq. (3.20) is no less than zero we have proved

P (h|D)− P̂ (h|D) ≥ −(1−∆)P̂ (h|D). (3.21)

Since P (h|G,D) ≤ 1, from Eq. (3.20) we have

P (h|D)− P̂ (h|D)

≤ −(1−∆)P̂ (h|D) +
∑
G 6∈G

P (G|D)

= −(1−∆)P̂ (h|D) + 1−∆

= (1−∆)(1− P̂ (h|D)). (3.22)
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CHAPTER 4. STRUCTURE LEARNING IN BAYESIAN NETWORKS OF

MODERATE SIZE BY EFFICIENT SAMPLING

A paper to be submitted to The Journal of Machine Learning Research

Ru He, Jin Tian and Huaiqing Wu

Abstract

We study the Bayesian model averaging approach to learning Bayesian network structures which are

directed acyclic graphs (DAGs) from data. We develop new algorithms including the first algorithm

that is able to efficiently sample DAGs according to the exact structure posterior. The DAG samples

can then be used to construct estimators for the posterior of any feature. We theoretically prove good

properties of our estimators and empirically show that our estimators considerably outperform the ones

from previous state-of-the-art methods.

4.1 Introduction

Bayesian networks are graphical representations of multivariate joint probability distributions and

have been widely used in various data mining tasks for probabilistic inference and causal modeling

(Pearl, 2000; Spirtes et al., 2001).

The core of a Bayesian network (BN) representation is its Bayesian network structure. A Bayesian

network structure is a DAG (directed acyclic graph) whose nodes represent the random variablesX1, X2,

· · · , Xn in the problem domain and whose edges correspond to the direct probabilistic dependencies.

Semantically, a Bayesian network structure G encodes a set of conditional independence assumptions:

for each variable (node) Xi, Xi is conditionally independent of its non-descendants given its parents.

With the above semantics, a Bayesian network structure provides a compact representation for joint
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distributions and supports efficient algorithms for answering probabilistic queries. Furthermore, with

its semantics, a Bayesian network structure can often provide a deep insight into the problem domain

and open the door to the cause-and-effect analysis.

In the last two decades, there have been a large number of researches focusing on the problem

of learning Bayesian network structure(s) from the data. These researches deal with a common real

situation where the underlying Bayesian network is typically unknown so that it has to be learned from

the observed data. One motivation for the structure learning is to use the learned structure for inference

or decision making. For example, we can use the learned model to predict or classify a new instance of

data. Another structure-learning motivation, which is more closely related to the semantics of Bayesian

network structures, is for discovering the structure of the problem domain. For example, in the context

of biological expression data, the discovery of the causal and dependence relation among different genes

is often of primary interests. With the semantics of a Bayesian network structure G, the existence of

an edge from node X to node Y in G can be interpreted as the fact that variable X directly influences

variable Y ; and the existence of a directed path from node X to node Y can be interpreted as the

fact that X eventually influences Y . Furthermore, under certain assumptions (Heckerman et al., 1999;

Spirtes et al., 2001), the existence of a directed path from node X to node Y indicates that X causes Y .

Thus, with the learned Bayesian network structure, we can answer interesting questions such as whether

gene X controls gene Y which in turn controls gene Z by examining whether there is a directed path

from node X via node Y to node Z in the learned structure. Just as mentioned by Friedman and Koller

(2003), the extraction of these kinds of interested structural features is often the primary goal in the

discovery task.

There are several general approaches to learning BN structures. One approach is to treat it as a

model selection problem. This approach defines a scoring criterion that measures how well a network

structure (DAG) fits the data and finds the DAG (or a set of equivalent DAGs) with the optimal score

(Silander and Myllymaki, 2006). (In Bayesian approach, the score of a DAG G is simply the posterior

p(G|D) ofG given dataD.) However, when the data size is small relative to the number of variables, the

posterior p(G|D) often gives significant support to a number of DAGs, and using a single maximum-

a-posteriori (MAP) model could lead to unwarranted conclusions (Friedman and Koller, 2003). It is

therefore desirable to use the Bayesian model averaging approach by which the posterior probability of
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any feature of interest is computed by averaging over all the possible DAGs (Heckerman et al., 1999).

Bayesian model averaging is, however, computationally challenging because the number of possible

network structures is between 2n(n−1)/2 and n!2n(n−1)/2, super-exponential in the number of variables

n. Tractable algorithms have been developed for special cases of averaging over trees (Meila and

Jaakkola, 2006) and averaging over DAGs given a node ordering (Dash and Cooper, 2004). Since 2004,

dynamic programming (DP) algorithms have been developed for computing exact posterior probabilities

of structural features such as edges or subnetworks (Koivisto and Sood, 2004; Koivisto, 2006; Tian and

He, 2009). These algorithms have exponential time and space complexity and are capable of handling

Bayesian networks of moderate size with up to around 25 variables (mainly due to their space cost

O(n2n)). A big limitation of these algorithms is that they can only compute posteriors of modular

features such as an edge but can not compute non-modular features such as a path (“is there a path from

node X to node Y ”), a combined path (“is there a path from node X via node Y to node Z” or “is

there a path from node X to node Y and no path from node X to node Z”), or a limited-length path (“is

there a path of length at most 3 from node X to node Y ”). Recently, Parviainen and Koivisto (2011)

have developed a DP algorithm that can compute the exact posterior probability of a path feature under

a certain assumption. (The assumption, which called order-modular assumption, will be discussed in

details soon.) This DP algorithm has (even higher) exponential time and space complexity and can

only handle a Bayesian network with fewer than 20 variables (mainly due to its space cost O(3n)).

Since this DP algorithm can only deal with a path feature, all the other non-modular features (such as

a combined path) which various users would be interested in for their corresponding problems still can

not be computed by any DP algorithm proposed so far. Note that generally the posterior p(f |D) of a

combined feature f = (f1, f2, . . . , fJ) can not be obtained only from the posterior of each individual

feature p(fj |D) (j ∈ {1, 2, . . . , J}) because the independence among these features does not hold

generally. Actually, by comparing p(f2|f1, D) with p(f2|D), a user can know the effect of the feature

f1 upon the feature f2; but to obtain p(f2|f1, D) (= p(f1, f2|D)/p(f1|D)), the user typically also needs

to obtain p(f1, f2|D) first. Another limitation of all these DP algorithms is that it is very expensive for

them to perform data prediction tasks. They can compute the exact posterior of a new observational

data case p(x|D) but the algorithms have to be re-run for each new data case x.

One solution to computing the posterior of an arbitrary non-modular feature is drawing DAG sam-
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ples {G1, . . . , GT } from the posterior p(G|D), which can then be used to approximate the full Bayesian

model averaging to estimate the posterior of an arbitrary feature f as p(f |D) ≈ 1
T

∑T
i=1 f(Gi), or the

posterior predictive distribution as p(x|D) ≈ 1
T

∑T
i=1 p(x|Gi). A number of algorithms have been de-

veloped for drawing sample DAGs using the bootstrap technique (Friedman et al., 1999) or the Markov

Chain Monte Carlo (MCMC) techniques (Madigan and York, 1995; Friedman and Koller, 2003; Eaton

and Murphy, 2007; Grzegorczyk and Husmeier, 2008; Niinimaki et al., 2011). Madigan and York (1995)

developed the Structure MCMC algorithm that uses the Metropolis-Hastings algorithm in the space of

DAGs. Friedman and Koller (2003) developed the Order MCMC procedure that operates in the space

of orders. The Order MCMC was shown to be able to considerably improve over the Structure MCMC

the mixing and convergence of the Markov chain and to outperform the bootstrap approach of Friedman

et al. (1999) as well. Eaton and Murphy (2007) developed the Hybrid MCMC method (i.e., DP+MCMC

method) that first runs the DP algorithm (Koivisto, 2006) to develop a global proposal distribution and

then runs the MCMC phase in the DAG space. Their experiments showed that the Hybrid MCMC

converged faster than both the Structure MCMC and the Order MCMC so that the Hybrid MCMC re-

sulted in more accurate structure learning performance. An improved MCMC algorithm (often denoted

as REV-MCMC) traversing in the DAG space with the addition of a new edge reversal move was de-

veloped by Grzegorczyk and Husmeier (2008) and was shown to be superior to the Structure MCMC

and nearly as efficient as the Order MCMC in the mixing and convergence. Recently, Niinimaki et al.

(2011) have proposed the Partial Order MCMC method which operates in the space of partial orders.

The Partial Order MCMC includes the Order MCMC as its special case (by setting the parameter bucket

size b to be 1) and has been shown to be superior to the Order MCMC in terms of the mixing and the

structural learning performance when a more appropriate bucket size b > 1 is set. One common draw-

back of these MCMC algorithms is that there is no guarantee on the quality of the approximation in

finite runs. The approach to approximating full Bayesian model averaging using the K-best Bayesian

network structures was studied by Tian et al. (2010) and was shown to be competitive with the Hybrid

MCMC.

Several of these state-of-the-art algorithms work in the order space, including the exact algorithms

(Koivisto and Sood, 2004; Koivisto, 2006; Parviainen and Koivisto, 2011) and the approximate algo-

rithms: the Order MCMC (Friedman and Koller, 2003) and the Partial Order MCMC (Niinimaki et al.,
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2011). They all assume a special form of the structure prior, termed as order-modular prior (Fried-

man and Koller, 2003; Koivisto and Sood, 2004), for computational convenience. (Please refer to the

beginning of Section 4.2.1 for the definition of the order-modular prior.) However, the assumption of

order-modular prior has the consequence that the corresponding prior p(G) cannot represent some de-

sirable priors such as a uniform prior over the DAG space; and the computed posterior probabilities

are biased since a DAG that has a larger number of topological orders will be assigned a larger prior

probability. Whether a computed posterior with the bias from the order-modular prior is inferior to its

counterpart without such a bias depends on the application scenario and is beyond the scope of this

paper. For the detailed discussion about this issue, please see the related papers (Friedman and Koller,

2003; Grzegorczyk and Husmeier, 2008; Parviainen and Koivisto, 2011). One method that helps the

Order MCMC (Friedman and Koller, 2003) to correct this bias was proposed by Ellis and Wong (2008).

In this paper, first we develop a new algorithm that can use the results of the DP algorithm (Koivisto

and Sood, 2004) to efficiently sample orders according to the exact order posterior under the assumption

of order-modular prior. Next, since a DAG consistent with a given order can be sampled as described by

Friedman and Koller (2003) (with the assumed maximum node-indegree), our order sampling algorithm

leads to the first algorithm (called DDS) that can be proved to be able to sample DAGs according to

the exact DAG posterior with the same order-modular prior assumption. With our time-saving strategy

for sampling DAGs, our DDS algorithm is shown to be both considerably more accurate and consid-

erably more efficient than the Order MCMC and the Partial Order MCMC when n is moderate so that

our DDS algorithm is applicable. Moreover, the estimator based on our DDS algorithm has several

desirable properties; for example, unlike these MCMC algorithms, the quality of our estimator can be

guaranteed by controlling the number of DAGs sampled by our DDS algorithm. The main contribution

of our DDS algorithm is to solve the limitation of the exact DP algorithms (Koivisto and Sood, 2004;

Koivisto, 2006; Parviainen and Koivisto, 2011) (whose usage is restricted to modular features or path

features for moderate n) to estimate the posteriors of various non-modular features arbitrarily speci-

fied by users. Additionally our DDS algorithm can also be used to efficiently perform data prediction

tasks in estimating p(x|D) for a large number of data cases. Finally, we develop an algorithm (called

IW-DDS) to correct the bias (due to the order-modular prior) in the DDS algorithm by addressing the

drawbacks of the strategy of Ellis and Wong (2008). We theoretically prove that the estimator based on
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our IW-DDS has several good properties; then we empirically show that our estimator is superior to the

estimators based on the Hybrid MCMC method (Eaton and Murphy, 2007) and theK-best method (Tian

et al., 2010), two state-of-the-art algorithms that can estimate the posterior of any feature without the

order-modular prior assumption. Analogously, our IW-DDS algorithm mainly solves the limitation of

the exact DP algorithm (Tian and He, 2009) to estimate the posteriors of arbitrary non-modular features

and can additionally be used to efficiently perform data prediction tasks when an application situation

prefers to avoid the bias from order-modular prior.

The rest of the paper is organized as follows. In Section 4.2 we briefly review the Bayesian approach

to learning Bayesian networks from data, the related DP algorithms (Koivisto and Sood, 2004; Koivisto,

2006) and the Order MCMC algorithm (Friedman and Koller, 2003). In Section 4.3 we present our

order sampling algorithm, DDS algorithm, and IW-DDS algorithm; and prove good properties of the

estimators based on our algorithms. We empirically demonstrate the advantages of our algorithms in

Section 4.4. Section 4.5 concludes the paper. Finally, the appendix provides the proofs of all the

conclusions including the propositions, theorems and corollary referenced in the paper.

4.2 Bayesian Learning of Bayesian Networks

A Bayesian network is a DAG G that encodes a joint probability distribution over a set X =

{X1, . . . , Xn} of random variables with each node of the DAG representing a variable in X . For

convenience we typically work on the index set V = {1, . . . , n} and represent a variable Xi by its

index i. We use XPai ⊆ X to represent the parent set of Xi in a DAG G and use Pai ⊆ V to

represent the corresponding index set. (A pair (i, Pai) is often called a family.) Thus, a DAG G can be

represented as a vector (Pa1, . . . , Pan).

Assume that we are given a training data set D = {x1, x2, . . . , xm}, where each xi is a particular

instantiation over the set of variables X . We only consider situations where the data are complete, that

is, every variable in X is assigned a value. In the Bayesian approach to learning Bayesian networks

from the training data D, we compute the posterior probability of a DAG G as

p(G|D) =
p(D|G)p(G)

p(D)
=

p(D|G)p(G)∑
G p(D|G)p(G)

.

Assuming global and local parameter independence, and parameter modularity, p(D|G) can be
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decomposed into a product of local marginal likelihoods (often called local scores) as (Cooper and

Herskovits, 1992; Heckerman et al., 1995)

p(D|G) =

n∏
i=1

p(xi|xPai : D) :=

n∏
i=1

scorei(Pai : D), (4.1)

where, with appropriate parameter priors, scorei(Pai : D) (the local score for a family (i, Pai)) has a

closed form solution. In this paper we will assume that these local scores can be computed efficiently

from data. The standard assumption for structure prior p(G) is structure-modular prior (Friedman and

Koller, 2003):

p(G) =
n∏
i=1

pi(Pai), (4.2)

where pi is some nonnegative function over the subsets of V − {i}.

Combing Eq. (4.1) and Eq. (4.2), we have

p⊀(G,D) = p(D|G)p(G) =

n∏
i=1

scorei(Pai : D)pi(Pai). (4.3)

Note that the subscript ⊀ is intentionally added by us to mean that the corresponding probability is

the one obtained without order-modular prior assumption. This is different from the probability com-

puted with order-modular prior assumption, which will be marked by the subscript≺ for the distinction.

We can compute the posterior probability of any hypothesis of interest by averaging over all the

possible DAGs. For example, we are often interested in computing the posteriors of structural features.

Let f be a structural feature represented by an indicator function such that f(G) is 1 if the feature is

present in G and 0 otherwise. By the full Bayesian model averaging, we have the posterior of f as

p(f |D) =
∑
G

f(G)p(G|D). (4.4)

Note that p⊀(f |D) will be obtained if p(G|D) in Eq. (4.4) is p⊀(G|D); p≺(f |D) will be obtained

if p(G|D) in Eq. (4.4) is p≺(G|D). This difference is the key to understanding the bias issue which will

be described in details later.

Since summing over all the possible DAGs is generally infeasible, one approach to computing the

posterior of f is to draw DAG samples {G1, . . . , GT } from the posterior p⊀(G|D) or p≺(G|D), which

can then be used to estimate the posterior p⊀(f |D) or p≺(f |D) as

p̂(f |D) =
1

T

T∑
i=1

f(Gi). (4.5)
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4.2.1 The DP Algorithms

The DP algorithms (Koivisto and Sood, 2004; Koivisto, 2006) work in the order space rather than

the DAG space. We define an order ≺ of variables as a total order (a linear order) on V represented as

a vector (U1, . . . , Un), where Ui is the set of predecessors of i in the order ≺. To be more clear we may

use U≺i . We say that a DAG G = (Pa1, . . . , Pan) is consistent with an order (U1, . . . , Un), denoted

by G ⊆≺, if Pai ⊆ Ui for each i. If S is a subset of V , we let L(S) denote the set of linear orders on

S. In the following we will largely follow the notation from Koivisto (2006).

The algorithms working in the order space assume order-modular prior defined as follows: if G is

consistent with ≺, then

p(≺, G) =

n∏
i=1

qi(Ui)ρi(Pai), (4.6)

where each qi and ρi is some function from the subsets of V − {i} to the nonnegative real numbers. (If

G is not consistent with ≺, then p(≺, G) = 0.)

A modular feature is defined as:

f(G) =
n∏
i=1

fi(Pai),

where fi(Pai) is an indicator function returning a 0/1 value. For example, an edge j → i can be

represented by setting fi(Pai) = 1 if and only if j ∈ Pai and setting fl(Pal) = 1 for all l 6= i.

With the order-modular prior, we are interested in the posterior p≺(f |D) = p≺(f,D)/p≺(D).

p≺(f |D) can be obtained if the joint probability p≺(f,D) can be computed (since p≺(D) = p≺(f ≡

1, D) where f ≡ 1, meaning that f always equals 1, can be easily achieved by setting each fi(Pai) to

be the constant 1). Koivisto and Sood (2004) show that

p(f,≺, D) =
n∏
i=1

αi(U
≺
i ), (4.7)

and

p≺(f,D) =
∑
≺

n∏
i=1

αi(U
≺
i ), (4.8)

where the function αi is defined for each i ∈ V and each S ⊆ V − {i} as

αi(S) = qi(S)
∑
Pai⊆S

βi(Pai),
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in which the function βi is defined for each i ∈ V and each Pai ⊆ V − {i} as

βi(Pai) = fi(Pai)ρi(Pai)scorei(Pai : D).

Thus, the DP algorithm (Koivisto and Sood, 2004) consists of the following three steps. The first step

computes βi(Pai) for each i ∈ V and each Pai ⊆ V − {i}. The time complexity of this step is

O(nk+1C(m)) under the assumption of the maximum in-degree k, where n is the number of variables,

and C(m) is the cost of computing a single local marginal likelihood scorei(Pai : D) for m data

instances. The second step computes αi(S) for each i ∈ V and each S ⊆ V − {i}. With the assumed

maximum in-degree k, this step takes O(kn2n) time by using the truncated Möbius transform tech-

nique (Koivisto and Sood, 2004) which is extended from the standard fast Möbius transform algorithm

(Kennes and Smets, 1991). The third step computes p≺(f,D) by defining the following function (called

forward contribution) for each S ⊆ V :

L(S) =
∑
≺∈L(S)

∏
i∈S

αi(U
≺
i ), (4.9)

where U≺i is the set of variables in S ahead of i in the order ≺∈ L(S). It can be shown that for every

S ⊆ V the corresponding L(S) can be computed recursively using the DP technique according to the

following equation (Koivisto and Sood, 2004; Koivisto, 2006):

L(S) =
∑
i∈S

αi(S − {i})L(S − {i}), (4.10)

starting with L(∅) = 1 and ending with L(V ). Combining Eq. (4.8) and Eq. (4.9), we have

p≺(f,D) = L(V ). (4.11)

The third step takes O(n2n) time when L(V ) is computed using the above DP technique. Therefore, in

summary, the whole DP algorithm (Koivisto and Sood, 2004) can compute the posterior of any modular

feature (such as an edge feature) in O(nk+1C(m) + kn2n) time and O(n2n) space.

As the extended work of Koivisto and Sood (2004), Koivisto (2006) includes the DP algorithm

(Koivisto and Sood, 2004) as its first three steps and appends two additional steps so that all the n(n−1)

edges can be computed in O(nk+1C(m) + kn2n) time and O(n2n) space. The foundation of the two

additional steps is the introduction of the following function (called backward contribution) for each
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T ⊆ V :

R(T ) =
∑

≺′∈L(T )

∏
i∈T

αi((V − T ) ∪ U≺′i ). (4.12)

Like L(S), R(T ) can also be computed recursively using some DP technique. Please refer to the paper

of Koivisto (2006) for further details of the two additional steps.

While the DP algorithms (Koivisto and Sood, 2004; Koivisto, 2006) make significant contributions

to the structure learning of Bayesian networks, their limitation is also obvious: they can only compute

the posteriors of modular features. In the next section of this paper, we will show how to use the results

of the DP algorithm (Koivisto and Sood, 2004) to efficiently draw DAG samples, which can then be

used to compute the posteriors of arbitrary features.

4.2.2 Order MCMC

The idea of the Order MCMC is to use the Metropolis-Hastings algorithm to draw order samples

{≺1, . . . ,≺No} that have p(≺ |D) as the invariant distribution, where No is the number of sampled

orders. For this purpose we need to be able to compute p(≺, D), which can be obtained from Eq. (4.7)

by setting f ≡ 1. Let β′i(Pai) denote βi(Pai) resulted from setting each fi(Pai) to be the constant

1. Similarly, we define α′i(S) and L′(S) as the special cases of αi(S) and L(S) respectively by setting

each fi(Pai) to be the constant 1. Then from Eq. (4.7) and (4.11) we have

p(≺, D) =
n∏
i=1

α′i(U
≺
i ), (4.13)

and

p≺(D) = L′(V ). (4.14)

The Order MCMC can estimate the posterior of a modular feature as

p̂≺(f |D) =
1

No

No∑
i=1

p(f | ≺i, D). (4.15)

For example, from Propositions 3.1 and 3.2 stated by Friedman and Koller (2003) as well as the

definitions of β′i and α′i, the posterior of a particular choice of parent set Pai ⊆ U≺i for node i given an

order is

p((i, Pai)| ≺, D) =
β′i(Pai)

α′i(U
≺
i )/qi(U

≺
i )
, (4.16)
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and the posterior of the edge feature j → i given an order is

p(j → i| ≺, D) = 1−
α′i(U

≺
i − {j})/qi(U

≺
i − {j})

α′i(U
≺
i )/qi(U

≺
i )

. (4.17)

In order to compute arbitrary non-modular features, we further draw DAG samples after drawing

No order samples. Given an order, a DAG can be sampled by drawing parents for each node according

to Eq. (4.16). Given DAG samples {G1, . . . , GT }, we can then estimate any feature posterior p≺(f |D)

using p̂≺(f |D) shown in Eq. (4.5).

4.3 Order Sampling Algorithm and DAG Sampling Algorithms

In this section we present our order sampling algorithm, DDS algorithm and IW-DDS algorithm.

We also prove good properties of the estimators based on our algorithms.

4.3.1 Order Sampling Algorithm

In this subsection, we show that using the results including α′i(S) (for each i ∈ V and each S ⊆

V − {i}) and L′(S) (for each S ⊆ V ) computed from the DP algorithm (Koivisto and Sood, 2004), we

can draw order samples efficiently by drawing each element in the order one by one. Let an order ≺ be

represented as (σ1, . . . , σn) where σi is the ith element in the order.

Proposition 5 The conditional probability that the kth (1 ≤ k ≤ n) element in the order is σk given

that the n− k elements after it along the order are σk+1, . . . , σn respectively is as follows:

p(σk|σk+1, . . . , σn, D) =
L′(U≺σk)α′σk(U≺σk)

L′(U≺σk+1
)

, (4.18)

where σk ∈ V − {σk+1, . . . , σn}, and U≺σi = V − {σi, σi+1, . . . , σn} so that U≺σi denotes the set of

predecessors of σi in the order ≺.

Specifically for k = n, we essentially have

p(σn = i|D) =
L′(V − {i})α′i(V − {i})

L′(V )
, (4.19)

where i ∈ V .

Note that all the proofs in this paper are provided in the appendix.
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It is clear that for each k ∈ {1, . . . , n},
∑

i∈U≺σk+1
p(σk = i|σk+1, . . . , σn, D) = 1 because of

Eq. (4.10) and U≺σk = U≺σk+1
−{σk}. Thus, p(σk|σk+1, . . . , σn, D) is a probability mass function (pmf)

with k possible σk values from U≺σk+1
.

Based on Proposition 5, we propose the following order sampling algorithm to sample an order ≺:

• Sample σn, the last element of the order ≺, according to Eq. (4.19).

• For each k from n− 1 down to 1: given the sampled (σk+1, . . . , σn), sample σk, the kth element

of the order ≺, according to Eq. (4.18).

Sampling an order using the above algorithm takes only O(n2) time since sampling each element

σk (k ∈ {1, . . . , n}) in the order takes O(n) time.

The following proposition guarantees the correctness of our order sampling algorithm.

Proposition 6 An order≺ sampled according to our order sampling algorithm has its pmf equal to the

exact posterior p(≺ |D) under the order-modular prior, because

n∏
k=1

p(σk|σk+1, . . . , σn, D) = p(≺ |D). (4.20)

The key to our order sampling algorithm is that we realize that the results including α′i(S) and

L′(S) computed from the DP algorithm of Koivisto and Sood (2004) are already sufficient to guide

the order sampling process. In an abstract point of view, the results computed from the DP algorithm

of Koivisto and Sood (2004) correspond to the answers from the #P-oracle stated in Theorem 3.3 of

Jerrum et al. (1986). Theorem 3.3 of Jerrum et al. (1986) states that with the aid of a #P-oracle that can

always answer the exact information about the number of accepting configurations from the currently

given configuration, a probabilistic Turing Machine can serve as a uniform generator so that every

accepting configuration will be reached with an equal positive probability. In our situation we intend

to sample each order according to the exact order posterior distribution p(≺ |D) instead of the uniform

probability 1/(n!). Thus, we use the information including α′i(S) and L′(S), which actually contains

all the information necessary to guide the order sampling process.
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4.3.2 DDS Algorithm

After drawing an order sample, then we can easily sample a DAG by drawing parents for each

node according to Eq. (4.16) as described by Friedman and Koller (2003) (with the assumed maximum

indegree). This naturally leads to our algorithm, termed Direct DAG Sampling (DDS), as follows:

• Step 1: Run the DP algorithm of Koivisto and Sood (2004) with each fi(Pai) set to be the

constant 1.

• Step 2 (Order Sampling Step): SampleNo orders such that each order≺ is independently sampled

according to our order sampling algorithm.

• Step 3 (DAG Sampling Step): For each sampled order ≺, one DAG is independently sampled by

drawing a parent set for each node of the DAG according to Eq. (4.16).

The correctness of our DDS algorithm is guaranteed by the following theorem.

Theorem 3 The No DAGs sampled according to the DDS algorithm are independent and identically

distributed (iid) with the pmf equal to the exact posterior p≺(G|D) under the order-modular prior.

The time complexity of the DDS algorithm is as follows. Step 1 takes O(nk+1C(m) + kn2n)

time (Koivisto and Sood, 2004), which has been discussed in Section 4.2.1. In Step 2, sampling each

order takes O(n2) time. In Step 3, sampling each DAG takes O(nk+1) time. Thus, the overall time

complexity of our DDS algorithm is O(nk+1C(m) + kn2n + n2No + nk+1No). Since typically we

assume k ≥ 1, the order sampling process (Step 2) does not affect the overall time complexity of the

DDS algorithm because of its efficiency.

The time complexity of our DDS algorithm depends on the assumption of the maximum in-degree

k. Such an assumption is fairly innocuous, as discussed on page 101 in the article of Friedman and

Koller (2003), because DAGs with very large families tend to have low scores. (The maximum-in-

degree assumption is also justified in the context of biological expression data on page 270 in the

article of Grzegorczyk and Husmeier 2008.) Accordingly, this assumption has been widely used in the

literature (Friedman and Koller, 2003; Koivisto and Sood, 2004; Ellis and Wong, 2008; Grzegorczyk

and Husmeier, 2008; Niinimaki et al., 2011; Parviainen and Koivisto, 2011) and the assumed maximum

in-degree k is set to be no greater than 6 for their algorithms in all their experiments.
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Note that the DAG sampling step of the DDS algorithm takes O(nk+1No) time. This will actually

dominate the overall running time of the DDS algorithm (even if k is assumed to be 3 or 4), when n is

moderate (n ≤ 25) and the sample size No reaches a number around several thousands. Therefore, for

the efficiency of our DDS algorithm, we also provide the time-saving strategy for the DAG sampling

step, which will be described in details in Remark 1.

Given DAG samples, p̂≺(f |D), the estimator for the exact posterior of any arbitrary feature f , can

be constructed by Eq. (4.5). If Cn,f denotes the time cost of determining the structural feature f in a

DAG of n nodes, then constructing p̂≺(f |D) takesO(Cn,fNo) time. (For example,Cn,fe = O(1) for an

edge feature fe; and Cn,fp = O(n2) for a path feature fp.) If we only need order samples, the algorithm

consisting of Steps 1 and 2 will be called Direct Order Sampling (DOS). Given order samples, for some

modular feature f such as a parent-set feature or an edge feature, p(f | ≺i, D) can be computed by

Eq. (4.16) or (4.17), and then p≺(f |D) can be estimated by Eq. (4.15). (Since computing a parent-set

feature or an edge feature by Eq. (4.16) or (4.17) takes O(1) time , estimating p≺(f |D) by Eq. (4.15)

only takes O(No) time.)

As for the space costs of our DDS algorithm, please note that both a total order and a DAG can be

represented in O(n) space (since a total order can be represented as a vector (U1, . . . , Un) and a DAG

can be represented as a vector (Pa1, . . . , Pan).) Since Step 1 of our DDS algorithm requires O(n2n)

space, the overall memory requirement of our DDS algorithm is O(n2n + nNo). Since typically tens

of thousands of DAG samples are sufficient for estimating p≺(f |D), the additional O(nNo) space cost

will not become the space issue at all. However, if a very large No (such as being above the magnitude

of 1× 106) is needed for the estimation due to some specific purpose of a user, No can be replaced with

a smaller value of Nbl in the DDS algorithm, where Nbl is the size of a sample block, and then Steps

2 and 3 can be repeated dNo/Nble times. This will not change the properties of the estimator coming

from the DDS algorithm but can reduce the overall memory requirement of our DDS toO(n2n+nNbl).

Note for the performance of our time-saving strategy for the DAG sampling step (described in Remark

1), a large Nbl is actually preferred. Thus, Nbl can take a value that is large but still does not lead to

the memory issue for a computer. (For instance, the value of Nbl can be set to be around millions for a

computer with 2.0 to 8.0 GB memory.) In addition, note that the estimator p̂≺(f |D) can be constructed

by Eq. (4.5) on the fly when each DAG gets sampled so that the memory of storing all the No sampled
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DAGs can be saved.

Due to Theorem 3, the estimator p̂≺(f |D) based on our DDS algorithm has the following desirable

properties.

Corollary 1 For any structural feature f , with respect to the exact posterior p≺(f |D), the estimator

p̂≺(f |D) based on the No DAG samples from the DDS algorithm using Eq. (4.5) has the following

properties:

(i) p̂≺(f |D) is an unbiased estimator for p≺(f |D).

(ii) p̂≺(f |D) converges almost surely to p≺(f |D).

(iii) If 0 < p≺(f |D) < 1, then the random variable
√
No(p̂≺(f |D)− p≺(f |D))√
p̂≺(f |D)(1− p̂≺(f |D))

has a limiting standard normal distribution.

(iv) For any ε > 0, any 0 < δ < 1, if No ≥ ln(2/δ)/(2ε2), then p(|p̂≺(f |D) − p≺(f |D)| < ε)

≥ 1− δ.

In particular, Corollary 1 (iv), which is essentially from Hoeffding bound (Hoeffding, 1963; Koller and

Friedman, 2009): p(|p̂≺(f |D) − p≺(f |D)| ≥ ε) ≤ 2e−2Noε
2
, states that in order to ensure that the

probability that the error of the estimator p̂≺(f |D) from the DDS algorithm is bounded by ε is at least

1 − δ, we just need to require the sample size No ≥ ln(2/δ)/(2ε2). This property, which the MCMC

algorithms (Friedman and Koller, 2003; Niinimaki et al., 2011) do not have, can be used to obtain

quality guarantee for the estimator from our DDS algorithm.

Remark 1 About our time-saving strategy for the DAG sampling step of the DDS.

The running time of the DAG sampling step (Step 3) of the DDS algorithm is O(nk+1No), which

will actually dominate the overall running time of the DDS algorithm when n is moderate and the

sample size No reaches a number around several thousands. Thus, in the following we will introduce

our strategy which is able to effectively reduce the running time of the DAG sampling step so that the

efficiency of the overall DDS algorithm can be achieved.

In the DAG sampling step, each sampled order ≺i = (σ1, . . . , σn)≺i (1 ≤ i ≤ No) can be repre-

sented as {(σ1, Uσ1)≺i , . . . , (σn, Uσn)≺i}, where Uσj denotes the set of predecessors of σj in the order.



62

For each sampled order ≺i, for each (σj , Uσj )
≺i (1 ≤ j ≤ n), we need to sample one Paσj of σj (one

parent set of σj) from a list {Paσjz}
σj
z including every parent set Paσjz ⊆ U≺iσj . Let Zj be the length

of such a list. Since Zj =
∑min{k,j−1}

i=0

(
j−1
i

)
= O(nk), sampling one Paσj for σj takes O(nk) time

and sampling one DAG takes O(nk+1) time. Note that Zj is actually an increasing function of j but in

the following we use the notation Z instead of Zj for notational convenience when the context is clear.

However, for No > 1, the overall running time of the DAG sampling step can be reduced as fol-

lows. Let θ
(σj ,Uσj )

≺i
z be P ((σj , Paσjz)| ≺i, D) = P ((σj , Paσjz)|(σj , Uσj )≺i , D) = β′σj (Paσjz)/

[α′σj (U
≺i
σj )/qσj (U

≺i
σj )], for z ∈ {1, . . . , Z}. First, using the common strategy of sampling from a dis-

crete distribution (Koller and Friedman, 2009), for (σj , Uσj )
≺i we can create S

(σj ,Uσj )
≺i

I , a sequence

of Z probability intervals with the form of < [0, θ
(σj ,Uσj )

≺i

1 ), [θ
(σj ,Uσj )

≺i

1 , θ
(σj ,Uσj )

≺i

1 + θ
(σj ,Uσj )

≺i

2 ),

. . . , [
∑Z−2

z=1 θ
(σj ,Uσj )

≺i
z ,

∑Z−1
z=1 θ

(σj ,Uσj )
≺i

z ), [
∑Z−1

z=1 θ
(σj ,Uσj )

≺i
z , 1) >, where the lth interval is [

∑l−1
z=1

θ
(σj ,Uσj )

≺i
z ,

∑l
z=1 θ

(σj ,Uσj )
≺i

z ). Note that S
(σj ,Uσj )

≺i

I can be created in time O(Z) and sampling one

Paσj for σj from a list {Paσjz}
σj
z can then be achieved using binary search in time O(logZ) based on

S
(σj ,Uσj )

≺i

I . Then the following observation is the key reason for reducing the running time of the DAG

sampling step. For two sampled orders ≺i and ≺i′ (1 ≤ i, i′ ≤ No), even if ≺i 6=≺i′ , it is possible that

(σj , Uσj )
≺i = (σj , Uσj )

≺i′ for some j ∈ {1, . . . , n}. This is because for each j, (σj , Uσj ) essentially

has a multinomial distribution with No trials and a set of n
(
n−1
j−1
)

cell probabilities {P ((σj , Uσj )|D)}.

Actually, for any j, the following relation holds for each cell probability:

P ((σj , Uσj )|D) ∝ α′σj (Uσj )L
′(Uσj )R

′(V − Uσj − {σj}), (4.21)

where R′(.) is the special case of R(.) by setting f ≡ 1 and R(.) is defined in Eq. (4.12). Its proof

is very similar to the derivation shown by Koivisto (2006) and is provided in the appendix. Note that

(σj , Uσj )
≺i = (σj , Uσj )

≺i′ implies S
(σj ,Uσj )

≺i

I = S
(σj ,Uσj )

≺i′

I . Thus, by storing the created S
(σj ,Uσj )

≺i

I

in the memory, once (σj , Uσj )
≺i = (σj , Uσj )

≺i′ for i′ > i, creating S
(σj ,Uσj )

≺i′

I can be avoided and

sampling one Paσj for σj takes only O(logZ) time.

On one hand, our strategy will definitely save the running time for these j’s such that n
(
n−1
j−1
)

(the

number of all the possible values of (σj , Uσj )) is smaller than No if every created S
(σj ,Uσj )

I is stored.

This is because the running time of sampling Paσj of σj is only O(logZ) in at least No − n
(
n−1
j−1
)

samples out of the overall No samples. (In the worst case, S
(σj ,Uσj )

I will be created for each possible
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(σj , Uσj ).) For example, when j = n, the number of all the possible values of (σj , Uσj ) is only n and

Zj (the length of the list {Paσjz}
σj
z ) achieves its maximum among all the j’s so that sampling one

Paσn for σn takes O(logZn) time in at least No − n samples. Accordingly, when j = n, the worst-

case running time of sampling the No (σn, Paσn) families is O(n(Zn + logZn) + (No − n)logZn)

= O(nZn+NologZn). On the other hand, our strategy usually can also save the running time even for

these j’s such that the number of all the possible values of (σj , Uσj ) is larger than No. This is because

the probability mass usually is not uniformly distributed among the set of all the possible values of

(σj , Uσj ). Once the majority of probability mass pΣ is concentrated on rj (σj , Uσj ) values, where rj

is a number smaller than No, the probability that only these rj (σj , Uσj ) values appear in all the No

order samples is (pΣ)No . Accordingly, with the probability (pΣ)No , the running time of sampling Paσj

for σj is O(logZj) in at least No − rj samples. As a result, the expected running time of sampling

the No (σj , Paσj ) families is below O([rjZj + NologZj ](pΣ)No + No(Zj + logZj)(1 − (pΣ)No));

the expected running time of sampling the No DAGs is below O(
∑n

j=1{[rjZj + NologZj ](pΣ)No +

No(Zj + logZj)(1 − (pΣ)No)}). Typically, when m is not small, local score scorei(Pai : D) will

not be uniform at all. Correspondingly, it is likely that the multinomial probability mass function

P ((σj , Uσj )|D) will concentrate dominant probability mass on a small number of (σj , Uσj ) candi-

dates that these (σj , Paσj )’s having large local scores are consistent with. As a result, our time-saving

strategy will usually become more effective when m is not small.

Note that we also include the policy of recycling the created S
(σj ,Uσj )

I s for our strategy because it is

possible that all the memory in a computer will be exhausted in order to store all the created S
(σj ,Uσj )

I s,

especially when n is not small but m is small. (The space complexity of storing all the S
(σj ,Uσj )

I s is

O(
∑n

j=1 n
(
n−1
j−1
)
Zj) = O(nk+12n−1).) For this paper, we use a simple recycling method as follows.

Some upper limit for the total number of the probability intervals (representing [
∑l−1

z=1 θ
(σj ,Uσj )

≺i
z ,∑l

z=1 θ
(σj ,Uσj )

≺i
z ) ) is pre-specified based on the memory of the used computer. Each time such an

upper limit is reached during the DAG sampling step of the DDS, which indicates a large amount of

memory has been used to store S
(σj ,Uσj )

I s, we recycle the currently stored S
(σj ,Uσj )

I s according to their

usage frequencies which serve as the estimates of P ((σj , Uσj )|D)s. The memory for each infrequently

used S
(σj ,Uσj )

I will be reclaimed to ensure that at least a pre-specified number of probability intervals

will be recycled from the memory. In addition, in order to have a better use of each created S
(σj ,Uσj )

I
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before it possibly gets reclaimed, we sort the No sampled orders according to the posterior p(≺ |D)

just before executing the DAG sampling step of the DDS. The underlying rationale is that if p(≺i |D)

is relatively close to p(≺i′ |D), which indicates p(≺i, D) is relatively close to p(≺i′ , D) (since p≺(D)

is a constant), due to Eq. (4.13), it is likely that ≺i and ≺i′ share some (σj , Uσj ) component(s). (The

extreme situation is that if p(≺i |D) equals p(≺i′ |D), it is very likely that ≺i equals ≺i′ so that ≺i

and ≺i′ share every (σj , Uσj ).) Thus, ≺i and ≺i′ having similar posteriors tend to be close to each

other after the sorting so that it is likely that the common S
(σj ,Uσj )

I will be used before the reclamation.

Furthermore, asNo increases, the probability that two orders (out of theNo sampled orders) share some

(σj , Uσj ) component(s) increases. Accordingly, after the sorting, the probability of reusing S
(σj ,Uσj )

I

before its reclamation will also increase. As a result, the benefit of our time-saving strategy will typically

increase when No increases.

The experimental results show that our time-saving strategy for the DAG sampling step of the DDS

is very effective. Please see the discussion in Section 4.4 about µ̂(TDAG) and σ̂(TDAG), the sample

mean and the sample standard deviation of the running time of the DAG sampling step of the DDS,

which are reported in Table 4.2 and Table 4.4.

4.3.3 IW-DDS Algorithm

In this subsection we present our DAG sampling algorithm under the general structure-modular

prior (Eq. (4.2)) by effectively correcting the bias due to the use of the order-modular prior.

As mentioned in Section 4.1, p≺(f |D) has the bias due to the assumption of the order-modular prior.

This is essentially because p≺(G|D), which equals
∑
≺s.t.G⊆≺ p(≺, G|D), does not equal p⊀(G|D),

which is based on the standard structure-modular prior assumption instead of the order-modular prior

assumption. In fact, with the common setting that qi(Ui) always equals 1 (qi(Ui) ≡ 1), if ρi(Pai) in

Eq. (4.6) is set to be always equal to pi(Pai) in Eq. (4.2) (ρi(Pai) ≡ pi(Pai)), the following relation

holds:

p≺(G|D) =
p⊀(D)

p≺(D)
· | ≺G | · p⊀(G|D) (4.22)

where | ≺G | is the number of orders that G is consistent with. (The proof of Eq. (4.22) is given in the
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appendix. ) Accordingly,

p⊀(f |D) =
∑
G

f(G)p⊀(G|D) =
∑
G

f(G)
p≺(D)

p⊀(D)
· 1

| ≺G |
p≺(G|D).

Since p≺(D) and p⊀(D) can be computed by the DP algorithm of Koivisto and Sood (2004) and the

DP algorithm of Tian and He (2009) respectively, if | ≺Gi | is known for each sampled Gi (i ∈

{1, 2, . . . , No}), we can use importance sampling to obtain a good estimator

p̃⊀(f |D) =
1

No

No∑
i=1

f(Gi)
p≺(D)

p⊀(D)
· 1

| ≺Gi |
, (4.23)

where each Gi is sampled from our DDS algorithm. Unfortunately, | ≺Gi | is #P hard to compute for

each Gi (Brightwell and Winkler, 1991); and the state-of-the-art DP algorithm proposed by Niinimaki

and Koivisto (2013) for computing | ≺Gi | takes O(n2n) time. Therefore, due to the expensive compu-

tation cost, in the following we will propose an algorithm which can construct an estimator other than

the estimator shown in Eq. (4.23).

Because p≺(f |D) has the bias with respect to p⊀(f |D), a good estimator p̂≺(f |D) for p≺(f |D)

typically is not appropriate to be directly used to estimate p⊀(f |D). Noticing this problem, Ellis and

Wong (2008) propose to correct this bias for the Order MCMC method as follows: first run the Order

MCMC to draw order samples; then for each unique order ≺ out of the sampled orders, keep drawing

DAGs consistent with ≺ until the sum of joint probabilities for the unique sampled DAGs,
∑

i p(≺

, Gi, D), is no less than a pre-specified large proportion (such as 95%) of p(≺, D) =
∑

G⊆≺ p(≺

, G,D); finally the resulting union of all the DAG samples is treated as an importance-weighted sample

for the structural discovery.

Unfortunately, the strategy of Ellis and Wong (2008) has some drawbacks in terms of both compu-

tation costs and the properties of the sampled DAGs. (Please refer to Remark 2 for detailed discussion.)

To address the drawbacks, we propose our bias-corrected algorithm, termed IW-DDS (Importance-

weighted DDS), as follows:

• Step 1 (DDS Step): Run the DDS algorithm with the setting that qi(Ui) ≡ 1 and ρi(Pai) ≡

pi(Pai).

• Step 2 (Bias Correction Step): Make the union set G of all the sampled DAGs by eliminating the

duplicate DAGs.
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Given G, p̂⊀(f |D), the estimator for the exact posterior of any feature f , can then be constructed as

p̂⊀(f |D) =
∑
G∈G

f(G)p̂⊀(G|D), (4.24)

where

p̂⊀(G|D) =
p⊀(G,D)∑
G∈G p⊀(G,D)

, (4.25)

and p⊀(G,D) is given in Eq. (4.3).

In order to easily obtain the estimator p̂⊀(G|D) using Eq. (4.24) and (4.25), the joint probability

p⊀(Gi, D) needs to be conveniently obtained for each sampled Gi. One way is to record only p(D|Gi)

with each sampled Gi if a uniform prior p(G) is used, and to record both p(D|Gi) and p(Gi) with each

sampled Gi if a non-uniform prior p(G) is used. By this way, obtaining p⊀(Gi, D) for each sampled

Gi can be achieved by Eq. (4.3) in O(1) time.

Since checking the equality of two DAGs takes O(n) time by using their vector representations, for

the bias correction step of the IW-DDS algorithm, with the usage of a hash table, its expected time cost

is O(nNo) and its space cost is O(nNo). Therefore, the expected time cost of our IW-DDS algorithm is

O(nk+1C(m) + kn2n + n2No + nk+1No), and the required memory space of our IW-DDS algorithm

is O(n2n + nNo).

Let Cn,f denote the time cost of determining the structural feature f in a DAG of n nodes. Just

as the analysis for the estimator from the DDS, constructing the estimator p̂⊀(f |D) from the IW-DDS

takes O(Cn,fNo) time when the joint probability p⊀(Gi, D) can be obtained for each sampled Gi in

O(1) time.

While Ellis and Wong (2008) show the effectiveness of their methods in correcting the bias merely

by the experiments, we first prove good properties of p̂⊀(f |D) based on our IW-DDS as follows.

Theorem 4 For any structural feature f , with respect to the exact posterior p⊀(f |D), the estimator

p̂⊀(f |D) based on the DAG samples from the IW-DDS algorithm using Eq. (4.24) has the following

properties:

(i) p̂⊀(f |D) is an asymptotically unbiased estimator for p⊀(f |D).

(ii) p̂⊀(f |D) converges almost surely to p⊀(f |D).

(iii) The convergence rate of p̂⊀(f |D) is o(aNo) for any 0 < a < 1.
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(iv) Define the quantity ∆ =
∑

G∈G p⊀(G|D), then

∆ · p̂⊀(f |D) ≤ p⊀(f |D) ≤ ∆ · p̂⊀(f |D) + 1−∆. (4.26)

Note that the introduced quantity ∆ =
∑

G∈G p⊀(G,D)/p⊀(D) and ∆ ∈ [0, 1] essentially repre-

sents the cumulative posterior probability mass of the DAGs in G. Eq. (4.26) provides the sound interval

which p⊀(f |D) must reside in. (The “sound interval” is stronger than the concept of “confidence inter-

val” because there is no probability that p⊀(f |D) is outside the sound interval.) Also note that ∆ is a

nondecreasing function of No (because if we increase the original No to a larger N ′o, the resulting G′ is

always the superset of the original G). Thus, for the cases wherem (the number of data instances) is not

very small, it is possible for ∆ to approach 1 by a tractable numberNo of DAG samples so that a desired

small-width interval for p⊀(f |D) can be obtained. (Please refer to Section 4.4 for the corresponding

experimental results.)

Similar to the DDS algorithm, if a very large No (such as being above the magnitude of 1× 106) is

needed to obtain p̂⊀(G|D) = (
∑

G∈G f(G)p⊀(G,D))/(
∑

G∈G p⊀(G,D)) or the corresponding sound

interval, the following memory-saving strategy can be used to reduce the memory requirement of the

IW-DDS algorithm. No can be replaced with a smaller value of Nbl in the IW-DDS algorithm, where

Nbl is the size of a sample block, and then Steps 2 and 3 of the DDS as well as the bias correction step

can be repeated dNo/Nble times. (Similar to the DDS algorithm, Nbl can take a value that is large but

still does not lead to the memory issue for a computer.) After each bias correction step, up to Nbl DAGs

get sorted according to p(D|G) and then are stored as a file on the hard disk. Finally, after dNo/Nble

loops are done, each time some score threshold pthr can always be found (based on p(D|G) of the

corresponding quantile of the sorted DAGs) such that O(Nbl) DAGs whose p(D|G) is no greater than

pthr are newly retrieved from these dNo/Nble files and reloaded into the memory each time. Thus,

the elimination of the duplicate DAGs only needs to be performed among these DAGs in the memory

so that both the denominator and the numerator of p̂⊀(G|D) can be updated accordingly. When all

the DAGs have been retrieved from these dNo/Nble files, p̂⊀(G|D) is obtained and its denominator∑
G∈G p⊀(G,D) can also be used to obtain ∆. Using this strategy, the expected time cost of the IW-

DDS becomesO(nk+1C(m)+kn2n+n2No+nk+1No+Nbllog(Nbl)dNo/Nble+Cw,r(n)No+nNo)

= O(nk+1C(m) + kn2n + n2No + nk+1No + log(Nbl)No + Cw,r(n)No), where Cw,r(n) is the time
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cost that a DAG of n nodes is written to the hard disk and then is reloaded from the hard disk to the

memory. The corresponding memory requirement is O(n2n + nNbl), with the addition of the O(nNo)

space in the hard disk required to record O(No) DAGs among the dNo/Nble files.

Remark 2 About our solution to the drawbacks of the strategy proposed by Ellis and Wong (2008).

Our bias-correction strategy used in the IW-DDS solves the computation problem existing in the

idea of Ellis and Wong (2008) and ensures the good properties of our estimator p̂⊀(f |D) stated in

Theorem 4.

Since in the Order MCMC, sampling an order is much more computationally expensive than sam-

pling a DAG given an order, the strategy of Ellis and Wong (2008) emphasizes making the full use of each

sampled order ≺, that is, keeping drawing DAGs consistent with each sampled ≺ until the sum of joint

probabilities for the unique sampled DAGs,
∑

i p(≺, Gi, D), is no less than a large proportion (such as

95%) of p(≺, D). Unfortunately, such a strategy has a computational problem when the number of vari-

ables n is not small and the number of data instances m is small. Because there are super-exponential

number (2O(knlog(n))) of DAGs consistent with each order (Friedman and Koller, 2003), it is possible

that a non-negligible portion of probability mass p(≺, D) will be distributed almost uniformly to a ma-

jority of these consistent DAGs when m is small. Consequently, N≺G , the required number of DAGs

sampled per each sampled order ≺, will be extremely large, leading to large computation costs. For

sampling DAGs consistent with each sampled order≺, its expected time cost is O(nk+1 +nlog(n)N≺G )

and its memory requirement isO(nN≺G ). If the memory requirement exceeds the memory of the running

computer, the hard disk has to be used to temporarily store the sampled DAGs in some way, such as the

way that our memory-saving strategy uses for the IW-DDS. (We notice that Ellis and Wong (2008) limit

their experiments to the data sets with at most 14 variables.) If we take the data set “Child” (Tsamardi-

nos et al., 2006) with n = 20 and m = 100 for example, for an order ≺ randomly sampled by our

order sampling algorithm, our experiment shows that 1 × 107 DAGs (which contain 932, 137 unique

DAGs) need to be sampled to let the ratio
∑

i p(≺, Gi, D) /p(≺, D) reach 94.071%; 1.5 × 107 DAGs

(which contain 1, 204, 262 unique DAGs) need to be sampled to let the ratio
∑

i p(≺, Gi, D) /p(≺, D)

reach 94.952%. To address this problem, based on the efficiency of our order sampling algorithm, our

strategy samples only one DAG from each sampled order in the DDS step so that the large computation
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costs per each sampled order are avoided for any data set. Meanwhile, unlike the strategy of Ellis and

Wong (2008), our strategy does not delete the duplicate order samples. Therefore, if an order ≺ gets

sampled j (≥ 1) times in the order sampling step, essentially j DAGs will be sampled for such a unique

order in the DAG sampling step. Thus, j, the number of occurrences, implicitly serves as an importance

indicator for ≺ among the orders.

Furthermore, the strategy of Ellis and Wong (2008) can not guarantee that the sampled DAGs are

independent, even if large computation costs are spent in sampling a huge number of DAGs per each

sampled order. This is essentially because multiple DAGs sampled from a fixed order according to the

strategy of Ellis and Wong (2008) are not independent. For example, given that a DAG G with an edge

X → Y gets sampled from an order ≺ , which implies that node X precedes node Y in the given

order ≺, then the conditional probability that any DAG G′ with a reverse edge Y → X gets sampled

under the fixed order ≺ becomes zero, so that G and G′ are not independent. In general, once the

number of sampled orders is fixed, even if the number of sampled DAGs per each sampled order keeps

increasing, every DAG that is consistent with none of the sampled orders will still have no chance of

getting sampled. In contrast, the sampling strategy in our IW-DDS is able to guarantee the property

that all the DAGs sampled from the DDS step are independent, which has been stated in Theorem 3.

Such a property actually is the key to ensuring the good properties of our estimator p̂⊀(f |D) stated in

Theorem 4.

The competing state-of-the-art algorithms also applicable to Bayesian networks of moderate size

are the Hybrid MCMC method (Eaton and Murphy, 2007) and the K-best method. (Tian et al., 2010).

The first competing method, the Hybrid MCMC, includes the DP algorithm of Koivisto (2006) (with

time complexity O(nk+1C(m)+ kn2n) and space complexity O(n2n)) as its first phase and then uses

the computed posteriors of all the edges to make the global proposal for its second phase (MCMC

phase). When its MCMC phase eventually converges, the Hybrid MCMC will correct the bias coming

from the order-prior assumption and provide DAG samples according to the DAG posterior so that the

estimator p̂⊀(f |D) can be constituted using Eq. (4.5) for any feature f . The Hybrid MCMC has been

empirically shown to converge faster than both the Structure MCMC and the Order MCMC so that

the more accurate structure learning performance can be obtained (Eaton and Murphy, 2007). Note
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that since the REV-MCMC method (Grzegorczyk and Husmeier, 2008) is shown to be only nearly as

efficient as the Order MCMC in the mixing and convergence, the Hybrid MCMC even converges faster

than the REV-MCMC method as long as n is moderate so that the Hybrid MCMC is applicable. (But the

REV-MCMC method has its own value in learning Bayesian networks of a large n since all the methods

using some DP technique (including the Hybrid MCMC, the K-best method and our IW-DDS method)

are infeasible for a large n due to the space cost.) One big limitation of the Hybrid MCMC is that it can

not obtain the interval for p⊀(f |D) as specified by Theorem 4 (iv). Additionally, the convergence rate

of the estimator from the Hybrid MCMC is not theoretically provided by its authors.

The second competing method, the K-best method, applies some DP technique to obtain a collec-

tion G of DAGs with the K best scores and then uses these DAGs to constitute the estimator p̂⊀(f |D)

by Eq. (4.24) and (4.25). One advantage of the K-best method is that its estimator also has the property

specified as Theorem 4 (iv) so that it can provide the sound interval for p⊀(f |D) just as our IW-DDS.

However, since the K-best method has time complexity O(nk+1C(m)+ T ′(K)n2n−1) and space com-

plexity O(Kn2n), (where T ′(K) is the time spent on the best-first search,) the increase in K will

dramatically increase the computation costs of the K-best method. Thus, to obtain the interval of the

width similar to the one from our IW-DDS, much more time and space costs are required for theK-best

method. This computation problem becomes extremely severe for n ≥ 19 since K can only take some

small value (such as no more than 40) in order to prevent the K-best method from exhausting the mem-

ory of current desktop computers. According, ∆ obtained from the K-best method is usually smaller

than the one from our IW-DDS (so that the interval from the K-best method is usually wider) even if

the setting of K reaches the memory limit of a computer. (Please refer to Section 4.4.2 for detailed

discussion.)

4.4 Experimental Results

We have implemented our algorithm in C++ language and run several experiments to demonstrate

its capabilities. Our tested data sets include several real data sets from the UCI Machine Learning

Repository (Asuncion and Newman, 2007): “Wine,” “Housing,” “Zoo,” “Letter,” and “German”. Our

tested data sets also include three synthetic data sets: the first one is a synthetic data set “Syn15”



71

generated from a gold-standard 15-node Bayesian network built by us; the second one is a synthetic

data set “Insur19” generated from a 19-node subnetwork of “Insurance” Bayesian network (Binder

et al., 1997) such that the 19-node subnetwork is causally sufficient (Spirtes et al., 2001); and the third

one is a synthetic data set “Child” from a 20-node “Child” Bayesian network used by Tsamardinos et al.

(2006). All the data sets contain only discrete variables (or are discretized) and have no missing values.

For the four data sets (“Syn15,” “Letter,” “Insur19” and “Child”), since a large number of data instances

are available, we also vary m (the number of instances) to see the corresponding learning performance.

All the experiments in this section were run under Linux on one ordinary desktop PC with a 3.0GHz

Intel Pentium processor and 2.0GB of memory if no extra specification is provided. In addition, the

maximum in-degree k is assumed to be 5 for all the experiments.

4.4.1 Experimental Results for the DDS

In this subsection, we compare our DDS algorithm with the Partial Order MCMC method (Niini-

maki et al., 2011), the state-of-the-art learning method under the order-modular prior.

The Partial Order MCMC (PO-MCMC) method is implemented in BEANDisco, a C++ language

tool provided by Niinimaki et al. (2011). (BEANDisco is available at http://www.cs.helsinki.fi/u/tzniinim

/BEANDisco/.) The current version of BEANDisco can only estimate the posterior of an edge feature,

but as Niinimaki et al. (2011) have stated, the PO-MCMC readily enables estimating the posterior of

any structural feature by further sampling DAGs consistent with an order.

Since n (the size of the problems) is moderate, we are able to use REBEL, a C++ language im-

plementation of the DP algorithm of Koivisto (2006), to get the exact posterior of every edge under

the assumption of the order-modular prior. (REBEL is available at http://www.cs.helsinki.fi/u/mkhkoivi

/REBEL/.) Thus we can use the criterion of the sum of the absolute differences (SAD) (Eaton and Mur-

phy, 2007) to measure the feature learning performance, where SAD is
∑

ij |p≺(i → j|D) − p̂≺(i →

j|D)|, p≺(i → j|D) is the exact posterior of edge i → j, and p̂≺(i → j|D) is the corresponding esti-

mator. A smaller SAD will indicate a better performance in structure discovery. Note that the criterion

SAD is closely related to another criterion MAD (the mean of the absolute differences) since MAD =

SAD/(n(n − 1)). Thus, for each data case the conclusion based on the comparison of SAD values is

the same as the one based on the comparison of MAD values since n(n− 1) is just a constant for each
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Table 4.1: Comparison of the PO-MCMC, the DOS & the DDS in Terms of SAD

Name n m PO-MCMC DOS DDS
µ̂(SAD) σ̂(SAD) µ̂(SAD) σ̂(SAD) µ̂(SAD) σ̂(SAD)

Wine 13 178 0.1616 0.0403 0.0505 0.0138 0.0839 0.0137
Housing 14 506 0.3205 0.1303 0.0691 0.0146 0.1150 0.0117

Zoo 17 101 0.6079 0.1809 0.1020 0.0130 0.2756 0.0137
German 21 1,000 2.8802 2.0191 0.0994 0.0295 0.1298 0.0338
Syn15 15 100 0.9024 0.2258 0.1246 0.0142 0.2622 0.0190

200 0.6449 0.1569 0.0975 0.0163 0.2228 0.0172
500 0.3424 0.1214 0.0651 0.0153 0.1116 0.0126

1,000 0.1558 0.0496 0.0515 0.0128 0.0724 0.0118
2,000 0.0465 0.0209 0.0359 0.0075 0.0473 0.0071
5,000 0.0217 0.0144 0.0196 0.0064 0.0247 0.0086

Letter 17 100 0.9530 0.1285 0.1559 0.0210 0.2948 0.0229
200 0.3854 0.0825 0.0827 0.0153 0.1758 0.0142
500 0.4369 0.1529 0.0755 0.0157 0.1326 0.0107

1,000 0.3007 0.1254 0.0537 0.0140 0.0828 0.0171
2,000 1.3740 0.9177 0.0895 0.0238 0.1386 0.0288
5,000 0.0669 0.0139 0.0218 0.0059 0.0292 0.0088

Insur19 19 100 0.6150 0.1995 0.0947 0.0179 0.1575 0.0213
200 0.4428 0.1319 0.0663 0.0111 0.1024 0.0162
500 0.2757 0.1127 0.0436 0.0140 0.0594 0.0099

1000 0.4539 0.3031 0.0301 0.0088 0.0422 0.0134
2000 0.0100 0.0073 0.0073 0.0042 0.0079 0.0029
5000 0.0110 0.0100 0.0094 0.0041 0.0116 0.0043

Child 20 100 0.4997 0.1153 0.0745 0.0147 0.1772 0.0146
200 0.1896 0.0528 0.0425 0.0081 0.0982 0.0101
500 0.2385 0.0702 0.0434 0.0068 0.0816 0.0123

1,000 0.1079 0.0525 0.0307 0.0093 0.0406 0.0080
2,000 0.0864 0.0521 0.0231 0.0090 0.0275 0.0083
5,000 0.0938 0.0539 0.0235 0.0078 0.0246 0.0066

data case.

For fair comparison, for our algorithms, we used the K2 score (Heckerman et al., 1995) and we set

qi(Ui) = 1 and ρi(Pai) = 1/
(
n−1
|Pai|

)
for each i, Ui, Pai, where |Pai| is the size of the set Pai, since

such a setting is used in both BEANDisco and REBEL.

For the setting of the PO-MCMC, we set the bucket size b to be 10, which is based on the suggestion

for the optimal setting from Niinimaki et al. (2011). We ran the first 10, 000 iterations for “burn-

in,” and then took 200 partial order samples at intervals of 50 iterations. Thus, there were 20, 000

iterations in total. (The time cost of each iteration in the PO-MCMC is O(nk+1 + n22bn/b).) In

the PO-MCMC, for each sampled partial order Pi, p(f |D,Pi) is obtained by p(D, f, Pi)/p(D,Pi) =

p(D, f, Pi)/p(D, f ≡ 1, Pi), where p(D, f, Pi) =
∑
≺⊇Pi

∑
G⊆≺ f(G) p(≺, G)p(D|G). The notation∑

≺⊇Pi means that all the total order ≺’s that are linear extensions of the sampled partial order Pi will
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Table 4.2: Comparison of the PO-MCMC, the DOS & the DDS in Terms of Time (Time Is in Seconds)

Name n m PO-MCMC DOS DDS DDS
µ̂(Tt) µ̂(Tt) µ̂(Tt) µ̂(TDP ) σ̂(TDP ) µ̂(Tord) σ̂(Tord) µ̂(TDAG) σ̂(TDAG)

Wine 13 178 374.17 2.56 2.53 1.63 0.0121 0.35 0.0039 0.53 0.0024
Housing 14 506 510.65 4.92 4.54 3.88 0.0143 0.40 0.0033 0.23 0.0020

Zoo 17 101 1,331.80 13.75 21.90 12.05 0.0837 0.62 0.0039 9.20 0.1156
German 21 1,000 4,887.33 333.43 356.17 330.64 1.3304 0.97 0.0087 24.52 0.4441
Syn15 15 100 677.29 4.82 7.13 3.49 0.0824 0.50 0.0021 3.12 0.0337

200 677.47 5.91 8.91 4.59 0.0473 0.47 0.0044 3.83 0.0258
500 686.51 8.56 8.44 7.41 0.1911 0.48 0.0100 0.53 0.0050

1,000 716.31 13.01 12.52 11.78 0.0927 0.48 0.0115 0.24 0.0022
2,000 731.50 21.70 21.24 20.58 0.5310 0.49 0.0086 0.15 0.0016
5,000 731.05 48.01 47.26 46.63 0.4110 0.47 0.0031 0.14 0.0008

Letter 17 100 1,322.43 16.35 21.91 14.64 0.2160 0.64 0.0036 6.60 0.0497
200 1,315.01 19.74 20.46 18.14 0.0809 0.55 0.0026 1.74 0.0234
500 1,338.33 27.97 28.21 26.35 0.0489 0.51 0.0066 1.32 0.0130

1,000 1,343.88 39.45 39.03 38.11 0.3011 0.47 0.0051 0.43 0.0089
2,000 1,358.29 61.75 61.44 60.52 0.5109 0.47 0.0078 0.42 0.0063
5,000 1,610.37 126.53 126.49 125.67 0.7967 0.52 0.0058 0.27 0.0053

Insur19 19 100 2,616.56 53.39 86.06 51.06 0.2520 0.86 0.0091 34.11 0.9630
200 2,633.44 62.12 77.44 59.95 0.3025 0.84 0.0083 16.61 0.2278
500 2,680.85 80.70 85.03 77.89 0.7618 0.79 0.0082 6.32 0.0535

1000 2,734.10 106.37 109.39 104.63 1.0958 0.89 0.0122 3.85 0.0296
2000 2,915.60 155.05 158.31 154.26 3.7703 0.90 0.0154 3.13 0.0155
5000 3,445.84 297.31 300.51 297.41 4.7737 0.96 0.0090 2.11 0.0091

Child 20 100 3,710.49 102.42 181.38 99.71 0.3497 1.07 0.0109 80.56 1.1980
200 3,717.10 112.68 168.48 110.05 0.1793 1.04 0.0078 57.36 0.5335
500 3,757.76 136.98 193.11 134.32 0.4652 1.07 0.0111 57.69 0.7276

1,000 3,799.47 174.18 186.15 171.54 1.9832 1.08 0.0104 13.50 0.9244
2,000 4,018.03 241.48 254.26 238.37 2.4952 1.15 0.0214 14.71 0.4833
5,000 4,531.20 443.54 455.30 441.64 4.8785 1.16 0.0068 12.47 0.4113
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be included to obtain p(D, f, Pi). For example, for a data set with n = 20, since our bucket size

b = 10, there are 20!/(10!10!) = 184, 756 total orders that will be included for each sampled partial

order Pi. The inclusion of the information of a very large number of total orders consistent with each

sampled partial order gives great learning power to the PO-MCMC method; and such an inclusion can

be efficiently computed by the algorithm of Parviainen and Koivisto (2010) with the assumptions of the

order-modular prior and the maximum in-degree k. Finally, for the PO-MCMC, the estimated posterior

of each edge is computed using p̂≺(f |D) = (1/T )
∑T

i=1 p(f |D,Pi).

Because the to-be-learned feature is the edge feature, we can also use our DOS algorithm for the

comparison. For both the DOS algorithm and the DDS algorithm, we set No = 20, 000, that is, 20, 000

(total) orders were sampled.

Theoretically, we expect that the learning performance of the DOS should be better than the per-

formance of the DDS because the additional approximation coming from the DAG sampling step is

avoided by the DOS. By listing the performance of the DOS, we mainly intend to examine how much

the performance of the DDS decreases due to the additional approximation from sampling one DAG

per order. However, since the DDS but not the DOS can learn a non-modular feature, the comparison

between the PO-MCMC method and the DDS method is our main task.

Table 4.1 shows experimental results in terms of SAD for each data case with n variables and m

instances, while Table 4.2 lists the results about the total running time Tt corresponding to Table 4.1.

For each of the three methods, we performed 15 independent runs for each data case. The sample

mean and the sample standard deviation of the 15 SAD values of each method, denoted by µ̂(SAD) and

σ̂(SAD) respectively, are listed along each method in Table 4.1. Correspondingly, the sample mean of

the total running time Tt of each method, denoted by µ̂(Tt), is shown in Table 4.2. (Precisely speaking,

the reported total running time Tt of the DDS method includes not only the time of running the three

steps of the DDS but also the small O(No) time cost of computing p̂≺(f |D) for each edge f using

Eq. (4.5) at the end. Similarly, the reported total running time Tt of the DOS method also includes

the small O(No) time cost of computing p̂≺(f |D) for each edge f using Eq. (4.17) and Eq. (4.15) at

the end.) In addition, the sample mean and the sample standard deviation of the running time of three

steps of the DDS (including the DP step, the order sampling step and the DAG sampling step), denoted

by µ̂(TDP ), σ̂(TDP ), µ̂(Tord), σ̂(Tord), µ̂(TDAG) and σ̂(TDAG) respectively, are listed in the last six
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columns in Table 4.2. Note that we still show µ̂(TDP ), the mean running time of the DP step of the

DDS in the 15 independent runs, though the DP step is not a random algorithm at all. The running time

of the DP step is not exactly the same for each run due to the randomness from uncontrolled factors

such as the internal status of the computer. Using µ̂(TDP ), we can clearly see the percentage of the total

running time that the DP step typically takes by comparing µ̂(TDP ) and µ̂(Tt).

Tables 4.1 and 4.2 clearly illustrate the performance advantage of our DDS method over the PO-

MCMC method. The overall time costs of our DDS based on 20, 000 DAG samples are much smaller

than the corresponding costs of the PO-MCMC method based on 20, 000 MCMC iterations in the partial

order space. Using much shorter time, µ̂(SAD) using our DDS method is much smaller than µ̂(SAD)

using the PO-MCMC method for 24 out of all the 28 data cases. The four exceptional cases are Syn15

with m = 2, 000, Syn15 with m = 5, 000, Insur19 with m = 2, 000, and Insur19 with m = 5, 000.

(For Insur19 with m = 2, 000, µ̂(SAD) using our DDS method is still smaller than the one using the

PO-MCMC method but their difference is not large relatively to σ̂(SAD) from the PO-MCMC method.)

Furthermore, since both µ̂(SAD) and σ̂(SAD) are given, by the two-sample t test (Casella and Berger,

2002) with unequal variances, we can conclude with very strong evidence (at the significance level

5×10−4) that the real mean of SAD using our DDS method is smaller than the real mean of SAD using

the PO-MCMC method for each of the 24 data cases. For each of the four exceptions, by the same t

test we accept (with the p-value > 0.2) the null hypothesis that there is no significant difference in the

real means of SAD. Thus, the advantage of our DDS algorithm over the PO-MCMC method in learning

Bayesian networks of a moderate n can be clearly seen, though the value of the PO-MCMC method

still remains for a larger n where our DDS algorithm is infeasible.

In terms of the total running time of the DDS algorithm, Table 4.2 shows that the running time of

the DP step always accounts for the largest portion. The running time of the DAG sampling step is less

than 81 seconds to get 20, 000 DAG samples for all the 28 cases. Though both the order sampling step

and the DAG sampling step involve randomness, the variability of their running time is actually small.

This can be seen from the ratio of σ̂(Tord) to µ̂(Tord) (which is always less than 2.40% for all the 28

cases) and the ratio of σ̂(TDAG) to µ̂(TDAG) (which is always less than 6.85% for all the 28 cases).

The ratio of µ̂(TDAG) to µ̂(Tord) ranges from 0.29 to 75.29 across the 28 cases, which is much smaller

than the upper bound of the ratio of O(nk+1No) to O(n2No). This indicates that our time-saving
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strategy introduced in Remark 1 can effectively reduce the running time of the DAG sampling step. In

addition, the running time of the DAG sampling step often decreases further when m increases, which

can be clearly seen from all the four data sets (Syn15, Letter, Insur19 and Child) with different values

of m. Take the data set Letter for example, when m increases from 100 to 1, 000, the corresponding

µ̂(TDAG) decreases from 6.60 to 0.43 second, a 93.48% of decrease. In summary, the effectiveness of

our time-saving strategy introduced in Remark 1 has been clearly shown in Table 4.2.

4.4.2 Experimental Results for the IW-DDS

In this subsection, we compare our IW-DDS algorithm with the Hybrid MCMC (i.e., DP+MCMC)

method (Eaton and Murphy, 2007) and the K-best method (Tian et al., 2010), two state-of-the-art

methods that can estimate the posteriors of any features without the order-modular prior assumption.

The implementation of the Hybrid MCMC method (called BDAGL) and the implementation of the K-

best method (called K-best) are both made available online by their corresponding authors. (BDAGL

is available at http://www.cs.ubc.ca/∼murphyk/Software/BDAGL/. Most part of BDAGL is written in

Matlab. The original BDAGL code for the DP+MCMC method has very expensive time cost and space

cost because it pre-computes the local scores of all the n2n−1 possible families and stores them in an

array. Therefore, we have updated the original Matlab code in BDAGL so that only the local scores of

all the families whose sizes are no more than the assumed maximum in-degree are pre-computed and

stored in a hash table.) (K-best is available at http://www.cs.iastate.edu∼/rhe/KBest−POSTER/.)

Again, since n is moderate, we are able to use POSTER, a C++ language implementation of the DP

algorithm of Tian and He (2009) to get p⊀(i→ j|D), the exact posterior of each edge i→ j under the

assumption of the structure-modular prior instead of the order-modular prior. (POSTER is available at

http://www.cs.iastate.edu/∼rhe/POSTER/.) Thus we can also use the SAD criterion (
∑

ij |p⊀(i→ j|D)

−p̂⊀(i→ j|D)|) to measure the performance of these three methods in the structural learning.

For fair comparison, for our algorithm we used the BDeu score (Heckerman et al., 1995) with

equivalent sample size 1 and set pi(Pai)(≡ ρi(Pai)) ≡ 1, since these settings are also used in POSTER

and the implementation of the K-best method.

As for the DP+MCMC method, we note that most part of its implementation in BDAGL tool is

written in Matlab, which is different from the implementations of the K-best method and our IW-DDS



77

Table 4.3: Comparison of the DP+MCMC, the K-best & the IW-DDS in Terms of SAD

Name n m DP DP’ DP+MCMC K-best IW-DDS K-best IW-DDS
SAD SAD µ̂(SAD) σ̂(SAD) SAD µ̂(SAD) σ̂(SAD) ∆ µ̂(∆) σ̂(∆)

Wine 13 178 1.4786 1.4676 0.4605 0.2968 0.2011 0.1041 0.0075 9.023E-01 9.670E-01 1.700E-03
Housing 14 506 5.6478 7.3294 8.0000 3.3408 9.1179 4.8276 0.0624 2.880E-02 1.096E-01 1.200E-03

Zoo 17 101 8.2142 20.1560 32.4189 10.0953 35.1215 19.7025 4.0767 3.815E-08 1.652E-11 1.211E-11
German 21 1,000 3.7261 5.4604 5.0207 3.2223 5.5902 0.9891 0.0449 7.800E-02 7.422E-01 7.200E-03
Syn15 15 100 4.9321 11.7195 12.8705 7.6384 11.8685 10.1341 0.1495 1.604E-04 1.183E-04 4.664E-06

200 3.2557 7.5427 4.5090 2.5875 7.5232 4.9079 0.0583 2.700E-03 7.300E-03 1.265E-04
500 6.9798 8.5252 5.5466 1.9175 4.4379 4.2965 0.1619 1.526E-01 2.388E-01 4.900E-03

1,000 1.3000 1.1990 0.3974 0.3299 0.0848 0.0498 0.0048 9.699E-01 9.843E-01 8.909E-04
2,000 1.7192 2.4594 1.8263 1.7095 0.3701 0.1081 0.0147 8.521E-01 9.703E-01 3.300E-03
5,000 1.9473 2.1511 0.0304 0.0094 8.89E-04 0.0022 0.0002 9.998E-01 9.994E-01 9.821E-05

Letter 17 100 9.2140 19.8831 27.1507 4.0940 24.4313 15.8780 0.2764 2.908E-04 1.621E-04 5.336E-06
200 7.2855 11.9685 15.1587 3.5615 9.4512 6.7936 0.1191 7.800E-03 1.220E-02 3.341E-04
500 6.0961 9.8180 3.4637 4.6789 1.7237 0.6347 0.0119 6.948E-01 8.808E-01 3.000E-03

1,000 0.6394 0.9274 0.1761 0.0166 0.0837 0.0766 0.0039 9.834E-01 9.864E-01 8.678E-04
2,000 2.3913 3.6437 3.5085 3.1132 2.0976 0.1338 0.0213 6.859E-01 9.756E-01 2.700E-03
5,000 0.8407 1.5749 0.1182 0.0442 0.0160 0.0072 0.0005 9.948E-01 9.972E-01 2.077E-04

Insur19 19 100 5.3356 9.8493 9.4318 3.9576 11.7779 6.5062 0.0891 6.000E-03 2.010E-02 4.767E-04
200 5.9844 5.8133 5.5465 2.7295 2.2572 1.4630 0.0557 4.495E-01 7.049E-01 1.120E-02
500 1.8274 2.0374 0.3605 0.2287 0.4970 0.1328 0.0105 7.464E-01 9.379E-01 3.000E-03

1000 1.7386 3.0339 0.2186 0.0762 0.7498 0.0623 0.0111 5.866E-01 9.785E-01 2.600E-03
2000 1.2737 1.2602 0.1217 0.0380 0.0174 0.0062 0.0012 9.900E-01 9.976E-01 4.864E-04
5000 1.9511 2.0935 0.1765 0.0594 0.0103 0.0092 0.0010 9.970E-01 9.973E-01 2.086E-04

Child 20 100 6.9783 14.2007 11.8987 3.1086 11.6189 7.0304 0.0909 7.848E-04 2.700E-03 1.066E-04
200 3.2826 5.9934 4.7066 4.3749 5.0729 2.8510 0.0192 4.800E-03 1.506E-01 1.200E-03
500 2.5580 3.3813 2.4716 1.3489 1.5304 0.5416 0.0305 3.582E-01 8.222E-01 5.100E-03

1,000 2.4708 2.9516 2.6061 2.2909 0.7066 0.1499 0.0198 7.013E-01 9.545E-01 3.400E-03
2,000 2.3330 2.3932 1.4286 1.2290 1.5279 0.0662 0.0161 6.509E-01 9.828E-01 2.800E-03
5,000 2.0365 2.0479 1.2533 1.7313 0.8783 0.0150 0.0013 8.209E-01 9.940E-01 4.696E-04

method, which are written in C++. In order to make relatively fair comparison in terms of the running

time, we used REBEL tool, a C++ implementation of the DP algorithm of Koivisto (2006), to perform

the computation in the DP phase; but for fair comparison we changed its scoring criterion into the BDeu

score with equivalent sample size 1 and set qi(Ui) ≡ 1. We tried two different ρi(Pai) prior settings

for our data cases: ρi(Pai) ≡ 1 and ρi(Pai) = 1/
(
n−1
|Pai|

)
. Consistent with the experimental results

shown by Eaton and Murphy (2007), our experiments also show that the former prior setting introduces

smaller biases in most of the data cases. (Please refer to the two columns DP and DP’ in Table 4.3

and later discussion.) Thus, in order to get better performance of the DP+MCMC method, we used

the former prior setting ρi(Pai) ≡ 1 in the DP phase of the DP+MCMC. To perform the computation

in the MCMC phase, we had to use the Matlab implementation and we ran it under Windows 7 on an

ordinary laptop with 2.40 Intel Core i5 CPU and 4.0 GB memory. The MCMC used the pure global
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Table 4.4: Comparison of the DP+MCMC, the K-best & the IW-DDS in Terms of Time (Time Is in
Seconds)

Name n m DP+MCMC K-best IW-DDS IW-DDS
µ̂(Tt) Tt µ̂(Tt) µ̂(TDP ) σ̂(TDP ) µ̂(Tord) σ̂(Tord) µ̂(TDAG) σ̂(TDAG)

Wine 13 178 2.44 + 1,127.80 153.06 3.52 2.15 0.0199 0.63 0.0061 0.74 0.0057
Housing 14 506 4.83 + 1,421.00 335.23 5.67 4.21 0.0813 0.63 0.0042 0.52 0.0043

Zoo 17 101 22.33 + 2,107.50 5,543.67 26.16 12.49 0.1853 1.11 0.0048 12.05 0.1898
German 21 1,000 600.19 + 1,849.90 10,993.15 540.61 392.25 2.8656 1.68 0.0207 146.65 1.4290
Syn15 15 100 5.21 + 1,284.00 901.83 9.41 3.56 0.0667 0.81 0.0048 4.80 0.0273

200 6.28 + 1,286.20 913.09 10.29 4.76 0.2090 0.80 0.0111 4.53 0.0256
500 9.64 + 1,336.80 911.28 9.59 7.50 0.0821 0.85 0.0051 1.08 0.0128

1,000 13.69 + 1,364.60 922.62 13.35 12.15 0.7578 0.85 0.0156 0.33 0.0038
2,000 22.64 + 1,372.10 918.88 21.98 20.81 0.5200 0.85 0.0061 0.30 0.0019
5,000 54.79 + 1,356.70 944.82 52.07 47.80 1.0887 3.99 0.0235 0.28 0.0023

Letter 17 100 25.53 + 1,572.60 7,650.88 20.27 15.83 0.0601 1.15 0.0062 2.83 0.0292
200 30.01 + 1,576.80 7,978.11 25.87 20.22 0.1769 1.09 0.0069 4.21 0.0304
500 39.58 + 1,598.90 8,269.46 31.88 29.84 0.1575 0.95 0.0055 1.01 0.0123

1,000 52.85 + 1,575.60 8,392.43 44.48 42.93 0.4835 0.98 0.0093 0.56 0.0100
2,000 77.48 + 1,591.00 7,631.15 69.14 66.34 0.5184 2.01 0.0241 0.78 0.0068
5,000 157.69 + 1,636.40 8,146.71 136.95 134.94 1.6127 1.36 0.0097 0.65 0.0067

Insur19 19 100 101.47 + 1,828.00 6,757.27 112.28 55.85 0.1540 1.41 0.0117 54.71 0.5438
200 113.79 + 1,896.10 6,795.62 82.52 68.12 0.4187 1.45 0.0120 12.90 0.1329
500 137.18 + 1,864.40 6,906.01 98.96 91.44 0.4547 1.43 0.0128 6.07 0.0358

1,000 168.55 + 1,862.30 6,978.76 133.87 123.42 0.8007 1.44 0.0157 9.00 0.0601
2,000 226.36 + 1,781.70 7,289.46 185.02 177.66 1.3165 3.30 0.0483 4.06 0.0356
5,000 380.78 + 1,814.80 7,073.62 336.03 329.78 4.5841 1.89 0.0220 4.34 0.0713

Child 20 100 203.44 + 1,785.10 15,097.72 223.62 106.01 0.3976 1.67 0.0176 115.60 1.3183
200 215.70 + 1,760.80 14,234.72 225.76 119.82 1.8604 1.69 0.0107 104.09 0.9659
500 248.17 + 1,818.70 14,028.80 214.91 149.73 0.8344 1.67 0.0183 63.48 0.5783

1,000 292.40 + 1,817.20 15,516.68 232.11 193.18 1.1041 1.72 0.0135 37.20 0.3176
2,000 371.12 + 1,841.40 16,121.77 306.42 268.78 2.3209 1.82 0.0165 35.81 0.3680
5,000 589.99 + 1,846.40 15,384.47 524.63 483.90 6.7403 1.93 0.0160 38.80 0.5411

proposal (with local proposal choice β = 0) since such a setting was reported by Eaton and Murphy

(2007) to have the best performance for edge discovery when up to about 190, 000 MCMC iterations

were performed in their experimental results. We ran totally 190,000 MCMC iterations each time and

discarded the first 100,000 iterations as the burn-in period. Then we set the thinning parameter to be 3

to get the final 30,000 DAG samples. As a result, the time statistics of the DP phase (the number before

+ sign) but not the MCMC phase (the number after + sign) can be directly compared with the ones of

the other two methods. For each data case, we performed 20 independent MCMC runs based on the DP

outcome from REBEL to get the results.

For our method, we set No = 30, 000. We performed 20 independent runs for each data case to

get the results. For the K-best method, note that its SAD is fixed since there is no randomness in the
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computed results. So we only ran it once to get the result. We set K to be 100 for Wine, Housing, Zoo,

Syn15, and Letter, that is, we got the 100 best DAGs from Wine, Housing, Zoo, each of the six cases of

Syn15, and each of the six cases of Letter. We set K to be only 40 for Insur19 because our experiments

showed that for Insur19 the K-best program ran out of memory with the setting of K > 40. For the

same out-of-memory issue, We set K to be only 20 for Child and only 9 for German. The fact that K

can only take a very small value for n ≥ 19 confirms our claim about the computation problem of the

K-best method in terms of its space cost.

Table 4.3 shows experimental results in terms of SAD for each data case while Table 4.4 shows

experimental results in terms of the total running time Tt corresponding to Table 4.3. The column named

DP in Table 4.3 shows the SAD (
∑

ij |p⊀(i → j|D) −p≺(i → j|D)|), where each edge posterior

p⊀(i → j|D) is computed by the exact DP method of Tian and He (2009), and each edge posterior

p≺(i→ j|D) is computed by the exact DP method of Koivisto (2006) with the prior setting ρi(Pai) ≡

1. The column named DP’ in Table 4.3 shows the SAD (
∑

ij |p⊀(i → j|D) −p≺(i → j|D)|), where

each edge posterior p⊀(i → j|D) is still computed by the exact DP method of Tian and He (2009),

but each edge posterior p≺(i → j|D) is computed by the exact DP method of Koivisto (2006) with

the prior setting ρi(Pai) = 1/
(
n−1
|Pai|

)
. The SAD values reported in these two columns indicate the bias

due to the assumption of the order-modular prior. Since the SAD in the DP column is smaller than the

one in the DP’ column for 24 out of 28 cases, we use the prior setting ρi(Pai) ≡ 1 for the DP phase

so that the DP+MCMC method can have better performance. Next to the DP and DP’ columns, the

SAD values of the three methods are listed in Table 4.3. Both the DP+MCMC method and the IW-DDS

method are random so that both µ̂(SAD) and σ̂(SAD) are shown for these two methods. The outcome

of the K-best method is not random so that only its SAD is shown. Finally Table 4.3 also shows ∆ for

both the K-best method and the IW-DDS method.

Tables 4.3 and 4.4 clearly demonstrate the advantage of our method over the other two methods.

By using much shorter computation time, µ̂(SAD) using our method is less than the corresponding one

using the DP+MCMC method for 27 out of the 28 data cases. The only exceptional case is Syn15 with

m = 200. Furthermore, based on the two-sample t test with unequal variances, we can conclude at

the significance level 0.05 that the real mean of SAD using our method is less than the corresponding

one using the DP+MCMC method for each of the 26 cases. The two exceptional cases are Syn15 with
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m = 100 and Syn15 with m = 200. Meanwhile, σ̂(SAD) using our method is always much smaller

than the one using the DP+MCMC for each of the 28 cases, which indicates higher stability of the

performance of our method. Similarly, using much shorter computation time, µ̂(SAD) of our method is

less than the one using theK-best method for 27 out of 28 cases. The only exception is Syn15 withm =

5,000. Furthermore, based on the one-sample t test (Casella and Berger, 2002), we can conclude at the

significance level 5× 10−4 that the real mean of SAD using our method is less than the corresponding

one using the K-best method for each of these 27 cases.

There are several other interesting things shown in Tables 4.3 and 4.4. In terms of the SAD, for

very small m, µ̂(SAD) using the DP+MCMC method is even larger than the SAD from the DP phase

(Koivisto, 2006) itself. For example, for the data set Zoo, the SAD from the DP phase is 8.2142 but

µ̂(SAD) obtained after the MCMC phase of the DP+MCMC method is 32.4189. Similar situations

also occur in Syn15, Letter, Insur19, and Child when m = 100. This indicates that for very small

m, the MCMC phase of the DP+MCMC method is unable to reduce the bias from the DP method

(Koivisto, 2006) for all these cases based on 190, 000 MCMC iterations. With regard to the running

time, please note that µ̂(TDP ) of our IW-DDS is always less than the running time of the DP phase of

the DP+MCMC method. This is because the DP step of our method uses the DP algorithm of Koivisto

and Sood (2004), that is, the first three steps of the DP algorithm of Koivisto (2006); while the DP

phase of the DP+MCMC method uses all the five steps of the DP algorithm of Koivisto (2006). In other

words, compared with the DP algorithm of Koivisto and Sood (2004), the DP algorithm of Koivisto

(2006) includes a larger constant factor hidden in the O(nk+1C(m) + kn2n) notation though these

two DP algorithms have the same time complexity. This difference will make the total running time

of our IW-DDS even less than the running time of the DP phase of the DP+MCMC method when the

remaining steps of the IW-DDS run faster than the last two steps of the DP algorithm of Koivisto (2006).

For example, for the data set Child with m = 5, 000, µ̂(Tt) of the IW-DDS is 524.63 seconds while the

corresponding running time of the DP phase of the DP+MCMC method is 589.99 seconds. Actually,

Table 4.4 shows that there are 20 out of the 28 cases where µ̂(Tt) of the IW-DDS is less than the running

time of the DP phase of the DP+MCMC method. In addition, just as shown in Subsection 4.4.1, the

effectiveness of our time-saving strategy can also be clearly seen from Table 4.4. For example, the ratio

of µ̂(TDAG) to µ̂(Tord) ranges from 0.07 to 87.29 across the 28 cases, which is much smaller than the
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upper bound of the ratio of O(nk+1No) to O(n2No).

Table 4.3 also shows the resulting ∆ from the K-best method and our IW-DDS method for all the

data cases. (Note that ∆ is computed by the formula ∆ =
∑

G∈G p⊀(G,D)/p⊀(D), where p⊀(D) is

computed using POSTER tool.) In the table, µ̂(∆) from our IW-DDS is greater than ∆ from the K-best

method for 24 out of 28 data cases. The four exceptional cases are Zoo, Syn15 with m = 100, Syn15

with m = 5, 000, and Letter with m = 100. Interestingly, for three out of the four exceptional cases (as

well as the other 24 cases), µ̂(SAD) from our IW-DDS is significant smaller than SAD from the K-best

method. One possible reason is that the K best DAGs tend to have the same or similar local structures

(family (i, Pai)’s) that have relatively large local scores while a large number of DAGs sampled from

our IW-DDS include various local structures for each node i. When ∆ is far from 1, the inclusion of

various local structures seems to be more effective in improving the structural learning performance.

Table 4.3 also shows that when m is not very small (such as no smaller than 500 or 1, 000), ∆ from

our IW-DDS with No = 30, 000 can reach a large percentage (such as greater than 90%). As a result,

we can obtain the sound interval of p⊀(f |D) with the width less than 0.1 for any feature f .

To further demonstrate that our IW-DDS method can obtain a large ∆ efficiently whenm is not very

small, we increased No from 100, 000 to 600, 000 with each increment 100, 000 to see its performance

for the data sets Letter with m = 500, Child with m = 500, and German. Again, we performed 20

independent runs for each data case to get the results. Figures 4.1, 4.3 and 4.5 show the increase in ∆

with respect to the increase in No for these three data cases. Correspondingly, Figures 4.2, 4.4 and 4.6

indicate the increase in µ̂(Tt), µ̂(Tord) and µ̂(TDAG) with respect to the increase in No for these three

data cases, where the running time is in seconds. Combining these figures, it is clear that our IW-DDS

can efficiently achieve a large ∆. Take the data set German for example, with the time cost µ̂(Tt) =

1, 493.02 seconds, our IW-DDS can collect No = 600, 000 DAG samples so that the corresponding

mean of ∆ can reach 91.74%. Therefore, for any feature f in the data set German, our IW-DDS can

provide the sound interval of p⊀(f |D) with the width less than 0.083. Note that the K-best method

can only provide the sound interval of p⊀(f |D) with the huge width 0.922 because its corresponding

∆ can only reach 0.078 before running out of the memory. Also note that the ratio of µ̂(TDAG) to

µ̂(Tord) decreases from 56.45 to 30.95 when No increases from 100, 000 to 600, 000. (The increase

rate of µ̂(Tord) is a constant with respect to No; but the increase rate of µ̂(TDAG) actually decreases as
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Figure 4.1: Plot of ∆ versus No for Letter
(m = 500)
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Figure 4.2: Plot of the Running Time versus
No for Letter (m = 500)

No increases.) This witnesses the statement in Remark 1 that the benefit from our time-saving strategy

will typically increase when No increases. In addition, the ratio of µ̂(TDAG) to µ̂(Tord) is always much

smaller than the upper bound of the ratio of O(nk+1No) to O(n2No), which indicates the effectiveness

of our time-saving strategy for the DAG sampling step.

As for the data set Insur19 with small m = 200, Figures 4.7 and 4.8 show that our IW-DDS method

can use the memory-saving strategy introduced in Section 4.3.3 to efficiently collect large No DAGs

samples and obtain a large ∆. We increased No from 2× 106 to 1.2× 107 with each increment 2× 106

and showed the corresponding change of ∆ and the running time in Figures 4.7 and 4.8. (Again, 20

independent runs were performed for each data case to get the results.) By temporarily storing the

sampled DAGs in the hard disk, our IW-DDS can sample No = 1.27 DAGs so that the resulting mean

of ∆ can achieve 95.39% with the time cost µ̂(Tt) = 1, 933.44 seconds. Note that the ratio of µ̂(TDAG)

to µ̂(Tord) is around the constant 2.07 across the different values of No since we fixed Nbl = 2 × 106

as the size of the sample block.

4.4.3 Learning Performance of Non-modular Features

In Sections 4.4.1 and 4.4.2 we did not provide experimental results on the learning performance of

non-modular features. We did not do so in Section 4.4.2 because there is no known method to com-

pute the true/exact posterior probability of any non-modular feature p⊀(f |D) except by the brute force
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Figure 4.3: Plot of ∆ versus No for Child
(m = 500)
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Figure 4.4: Plot of the Running Time versus
No for Child (m = 500)
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Figure 4.5: Plot of ∆ versus No for German
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Figure 4.6: Plot of the Running Time versus
No for German
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Figure 4.7: Plot of ∆ versus No for Insur19
(m = 200)
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Figure 4.8: Plot of the Running Time versus
No for Insur19 (m = 200)

enumeration over all the (super-exponential number of) DAGs so that the quality of the corresponding

p̂⊀(f |D) learned from any method cannot be precisely measured. We did not do so in Section 4.4.1

because the current PO-MCMC tool (BEANDisco) only supports the estimation of the posterior of an

edge feature so that the comparison of our method and the PO-MCMC can only be made for the edge

feature. (Thus, we did not make the comparison for the path feature (which is one particular non-

modular feature), though the DP algorithm of Parviainen and Koivisto (2011) can compute the exact

posterior of a path feature p≺(f |D).) Our idea is that by showing that our algorithms have significantly

better performance in computing one feature (a directed edge feature), which should be due to the better

quality of our DAG samples with respect to the corresponding p⊀(G|D) or p≺(G|D), we expect that

they will also be superior in computing other features using the same set of DAG samples.

To verify our expectation, we performed the experiments on the real data set “Iris” (with n =

5) from the UCI Machine Learning Repository (Asuncion and Newman, 2007) and the well-studied

data set “Coronary” (Coronary Heart Disease) (with n = 6) (Edwards, 2000). Since n is small, by

enumerating all the DAGs we were able to compute p⊀(fi|D), the true posterior probability for several

interesting non-modular features: f1, a directed path feature; f2, a limited-length directed path feature

that has its path length no more than 2; f3, a combined directed path feature that represents a directed

path from node i via node j to node k. Then we compared the SAD performance of the (directed) edge

feature from the DP+MCMC, the K-best and the IW-DDS with the corresponding SAD performance
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Figure 4.9: SAD of the Learned Edge Features
for Coronary
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Figure 4.10: SAD of the Learned Path Fea-
tures for Coronary
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Figure 4.11: SAD of the Learned Limited-
length-path Features for Coronary
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Figure 4.12: SAD of the Learned Combined-
path Features for Coronary

of feature fi (i ∈ {1, 2, 3}) from these three methods. The experimental results on both data sets show

that if the SAD of the IW-DDS is significantly smaller than the SAD of the competing method (the

DP+MCMC or the K-best) for the edge feature, then the SAD of the IW-DDS will also be smaller

(usually significantly smaller) than the SAD of the competing method for each feature fi. Thus, our

expectation is supported by the experiments. The detailed experimental results are as follows.

The following is our experimental design for the data set Coronary with n = 6 and m = 1841.

For the IW-DDS, we tried the sample size No = 1, 000 · i, where i ∈ {1, 2, . . . , 20}. For each i, we

independently ran the IW-DDS 20 times to get the sample mean and sample standard deviation of SAD
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for the (directed) edge feature and three non-modular features (f1, f2, and f3). For the DP+MCMC,

we ran 10, 000 · i MCMC iterations, where i ∈ {1, 2, . . . , 20}. For each i, we discarded the first

5, 000 · i MCMC iterations for ”burn-in” and set the thinning parameter to be 5 so that 1, 000 · i DAGs

got sampled. Again, for each i, we independently ran the MCMC 20 times to get the sample mean and

sample standard deviation of SAD for the edge feature, f1, f2, and f3. For the K-best method, we ran

the K-best with K = 10 · i, where i ∈ {1, 2, . . . , 20}. For each i, we ran the K-best just once to get

SAD for the edge feature, f1, f2, and f3 since there is no randomness in the outcome of the K-best

algorithm.

Figure 4.9 shows the SAD performance of the three methods with each i for the edge feature,

where an error bar represents one sample standard deviation across 20 runs for the DP+MCMC or the

IW-DDS at each i. Correspondingly, Figure 4.10 shows the SAD performance (
∑

xy |p⊀(x  y|D)

−p̂⊀(x  y|D)|) of the three methods with each i for the path feature x  y; Figure 4.11 shows

the SAD performance (
∑

xy |p(x  y|D) − p̂(x  y|D)|) of the three methods with each i for

the path feature x  y whose length is no more than 2; Figure 4.12 shows the SAD performance

(
∑

xyz |p⊀(x  y  z|D) −p̂⊀(x  y  z|D)|) of the three methods with each i for the combined

path feature x y  z. Combining Figure 4.9 and each of Figures 4.10, 4.11, and 4.12, one can clearly

see that if the SAD of the IW-DDS is significantly smaller than the SAD of the competing method (the

DP+MCMC or the K-best) for the edge feature, then the SAD of the IW-DDS will also be significantly

smaller than the SAD of the competing method for each of the three investigated non-modular features.

We also performed the same experiments for the data set Iris with n = 5 and m = 150. The results

are shown in Figures 4.13, 4.14, 4.15, and 4.16. A conclusion similar to the one from Coronary can be

drawn to support our expectation: if the SAD of the IW-DDS is significantly smaller than the SAD of

the competing method for the edge feature, then the SAD of the IW-DDS will also be smaller than the

SAD of the competing method for each of the three investigated non-modular features and such a SAD

decrease due to the IW-DDS is usually significant.

4.4.4 Performance Guarantee for the DDS Algorithm

To testify the quality guarantee for the estimator based on the DDS algorithm (Corollary 1 (iv)),

we performed experiments based on two data cases (Syn15 with m = 100 and Letter with m = 100),
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Figure 4.13: SAD of the Learned Edge Fea-
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length-path Features for Iris
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which have relatively large µ̂(SAD) or µ̂(MAD) ( = µ̂(SAD) /(n(n− 1)) ) shown in Table 4.1. Based

on the hypothesis testing, we can conclude with very strong evidence that performance guarantee for

our estimator holds for both data cases. The details of the experiments are as follows.

For the first set of experiments, we choose the data set Letter with m = 100, which has the largest

µ̂(SAD) shown in Table 4.1. We first consider the setting of the parameters specified as ε = 0.02

and δ = 0.05, which serves as our performance requirement. By setting the DAG sample size No

= d(ln(2/δ))/(2ε2)e= 4612, we intend to show that the estimator p̂≺(f |D) coming from our DDS has

the performance guarantee such that the Hoeffding inequality p(|p̂≺(f |D)− p≺(f |D)| ≥ ε) ≤ δ holds.

Each directed edge feature f is investigated here since the posterior of each edge p≺(f |D) can be easily

obtained by using the DP algorithm of Koivisto (2006). Meanwhile, the corresponding p̂≺(f |D) based

on No (= 4612) DAG samples can be obtained by our DDS algorithm. For each edge f , we call the

event of |p̂≺(f |D)−p≺(f |D)| ≥ ε as the event of violation (of the pre-specified estimation error bound)

in the learning of f . Define the indication variable W for the event of violation in the learning of f .

Thus, W is a Bernoulli random variable with the success probability pvio = p(|p̂≺(f |D)−p≺(f |D)| ≥

ε). We independently repeat the DDS algorithm (with the same No) R = 400 times and use the average

of W as the estimator p̂vio for each edge. Note that the mean of p̂vio is pvio and the variance of p̂vio

is pvio(1 − pvio)/R because Rp̂vio has a binomial distribution with the trial number R and success

probability pvio. Since we expect that pvio will be small so that pvio(1 − pvio) will be large relative to

pvio, we choose large R = 400 to make the variance of p̂vio relatively small with respect to the mean

of p̂vio. Figure 4.17 shows the histogram of p̂vio for each of all the n(n− 1) = 272 directed edges. For

each of the 272 edges, it can be clearly seen that the corresponding p̂vio is much less than δ = 0.05

marked by the vertical bar. For 257 out of the 272 edges, the corresponding p̂vio’s are exactly equal

to 0. Even for the largest p̂vio = 0.015, corresponding to 6 successes among 400 trials, we can use

the one-sided hypothesis testing to reject the null hypothesis that pvio = 0.05 and to conclude that pvio

< 0.05 with the p-value less than 2× 10−4. Therefore, the Hoeffding inequality holds for the learning

of each edge in this parameter setting.

Next, we consider another setting of the parameters with ε= 0.01 and δ = 0.02, which has more de-

manding performance requirement. By setting the DAG sample sizeNo = d(ln(2/δ))/(2ε2)e= 23026,

we want to show that the estimator p̂≺(f |D) coming from our DDS has the performance guarantee sat-
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isfying the Hoeffding inequality. With the same logic, We independently repeat the DDS algorithm

(with the same No) R = 1250 times and use the average of W as the estimator p̂vio for each edge.

(Here we choose even larger R since we expect that pvio will be smaller in this parameter setting.)

Figure 4.18 shows the histogram of p̂vio for each of all the 272 directed edges. For each edge, it can be

clearly seen that the corresponding p̂vio is much less than δ = 0.02. Even for the largest p̂vio = 0.004,

corresponding to 5 successes among 1250 trials, we can use the one-sided hypothesis testing to reject

the null hypothesis that pvio = 0.02 and to conclude that pvio < 0.02 with the p-value less than 2×10−6.

Therefore, the Hoeffding inequality also holds in this parameter setting.

For the second set of experiments, we choose the data case Syn15 with m = 100, which has the

largest µ̂(MAD) (= µ̂(SAD) /(n(n−1))) shown in Table 4.1. The same experiments are also performed

for this data case. For the parameter setting with ε = 0.02 and δ = 0.05, the corresponding result is

shown in Figure 4.19. For each of the 210 edges, the corresponding p̂vio is clearly much less than

δ = 0.05. Even for the largest p̂vio = 0.01, corresponding to 4 successes among 400 trials, we can

use the one-sided hypothesis testing to conclude that pvio < 0.05 with the p-value less than 2 × 10−5.

For the parameter setting with ε = 0.01 and δ = 0.02, the corresponding result is shown in Figure

4.20. For each edge, the corresponding p̂vio can be clearly seen to be much less than δ = 0.02. Even

for the largest p̂vio = 0.004, corresponding to 5 successes among 1250 trials, we can use the one-sided

hypothesis testing to conclude that pvio < 0.02 with the p-value less than 2×10−6. Thus, the Hoeffding

inequality also holds in the set of experiments for this data case.

Finally, for the data case Syn15 with m = 100, we fix ε = 0.02 but increase No from 2, 000 to

12, 000 by an increment of 2, 000 each time. For each No, we plot the Hoeffding bound 2e−2Noε
2

for the probability of violation pvio = p(|p̂≺(f |D) − p≺(f |D)| ≥ ε) in Figure 4.21. (Note that the

Hoeffding bound decreases at an exponential rate as No increases.) Then for each No, we also plot

both the maximum and the mean of all the n(n − 1) p̂vio’s in Figure 4.21. Again p̂vio for each edge

is the average of W by independently running the DDS algorithm (with the same No) R times. We set

R = max{400, No/10} and use the larger R for the larger No since we expect that p̂vio will be smaller

for the larger No. From Figure 4.21, we can clearly see that p̂∗vio, the maximum of all the n(n − 1)

p̂vio’s, is always far below the Hoeffding bound for each No. Furthermore, for each No we can use

the one-sided hypothesis testing to reject the null hypothesis that pvio ≥ 2e−2Noε
2

and to conclude that
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pvio < 2e−2Noε
2

with the p-value less than 3 × 10−3. Therefore, the Hoeffding inequality holds in the

learning for each No.

4.5 Conclusion

We develop new algorithms for efficiently sampling Bayesian network structures (DAGs) of mod-

erate size. The sampled DAGs can then be used to build estimators for the posteriors of any features.

Our algorithms address the limitations of the exact algorithms (Koivisto and Sood, 2004; Parviainen

and Koivisto, 2011; Tian and He, 2009) so that the posteriors of arbitrary non-modular features can be

estimated when the size of the Bayesian network is moderate. We theoretically prove good properties

of our estimators. Finally we empirically show that the performance of our estimators is considerably

better than the performance of the estimators from previous state-of-the-art methods with or without

assuming the order-modular prior.

4.6 Appendix: Proofs of Propositions, Theorems and Corollary

This appendix provides the proofs of the propositions, theorems and corollary referenced in the

paper.
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Proof of Proposition 5

We first prove a lemma for Proposition 1.

Let an order ≺ be represented as (σ1, . . . , σn) where σi is the ith element in the order.

Lemma 1 The probability that the last n − k + 1 elements along the order are σk, σk+1, . . . , σn re-

spectively is given by

p(σk, σk+1, . . . , σn, D) = L′(U≺σk)

n∏
i=k

α′σi(U
≺
σi),

where U≺σi = V − {σi, σi+1, . . . , σn}.

Proof:

p(σk, σk+1, . . . , σn, D)

=
∑

≺′∈L(U≺σk )

p(≺′, σk, σk+1, . . . , σn, D)

=
n∏
i=k

α′σi(U
≺
σi)

∑
≺′∈L(U≺σk )

∏
i∈U≺σk

α′i(U
≺
i ) (from (4.13))

= L′(U≺σk)
n∏
i=k

α′σi(U
≺
σi). (from (4.9))
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2

Proposition 5 can be directly proved from the conclusion of Lemma 1 according to the definition of

conditional probability.

Proof of Proposition 6

Proof:

From Proposition 5 and L′(U≺σ1
= ∅) = 1 we have

n∏
k=1

p(σk|σk+1, . . . , σn, D)

=

∏n
i=1 α

′
σi(U

≺
σi)

L′(V )

=
p(≺, D)

p≺(D)
(from (4.13) & (4.14) )

= p(≺ |D),

which proves Eq. (4.20). 2

Proof of Theorem 3

Proof:
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First, we show that each DAG G sampled according to our DDS algorithm has its pmf ps(G) equal

to the exact posterior p≺(G|D) by assuming the order-modular prior.

On one hand, from the following derivation, we can get the exact form for p≺(G|D):

p≺(f |D)

=
∑
≺
p(≺ |D)p(f | ≺, D)

=
∑
≺
p(≺ |D)

∑
G⊆≺

f(G)p(G| ≺, D)

=
∑
≺

∑
G⊆≺

f(G)p(≺, G|D)

=
∑
G

f(G)
∑

≺s.t.G⊆≺
p(≺, G|D). (4.27)

Thus, for each possible DAG Gi, by setting f(G) to be the indication function I[G = Gi] and then

relating Eq. (4.27) with Eq. (4.4), we know that p≺(Gi|D) =
∑
≺s.t.Gi⊆≺ p(≺, Gi|D) for each Gi.

On the other hand, the event that a DAG G gets sampled according to our DDS algorithm occurs if

and only if one of the orders that G is consistent with gets sampled in Step 2 of the DDS algorithm and

then G gets sampled from the sampled order in Step 3 of the DDS algorithm. Therefore, based on Total

Probability Formula, ps(G) =
∑
≺s.t.G⊆≺ p(≺ |D)p(G| ≺, D) =

∑
≺s.t.G⊆≺ p(≺, G|D) = p≺(G|D).

Second, sinceNo orders are sampled independently and each DAG per sampled order is sampled in-

dependently, ps(G1, G2, . . . , GNo |D) =
∏No
i=1[
∑
≺s.t.G⊆≺ p(≺ |D)p(Gi| ≺, D)] =

∏No
i=1 p≺(Gi|D).

Therefore, Theorem 3 is proved.

2

Proof of Corollary 1

Proof:

For each Gi in the DAG set {G1, G2, . . . , GNo} sampled from the DDS algorithm, f(Gi) ∈ {0, 1}.

SinceG1, G2, . . . , GNo are iid with pmf p≺(G|D) (by Theorem 3), f(G1), f(G2), . . . , f(GNo) are iid

with Bernoulli pmf.
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For each Gi, the following is true for E(f(Gi)), the expectation of f(Gi).

E(f(Gi))

=
∑
G

f(G)p≺(G|D)

= p≺(f |D).

Thus, f(G1), f(G2), . . . , f(GNo) are iid with Bernoulli(p≺(f |D)). In other words, f(G1), f(G2),

. . . , f(GNo) are independent; and for each Gi, P (f(Gi) = 1) = p≺(f |D) and P (f(Gi) = 0) =

1− p≺(f |D).

(i) Proof that p̂≺(f |D) is an unbiased estimator for p≺(f |D), that is, E(p̂≺(f |D)) = p≺(f |D).

E (p̂≺(f |D))

= E

(
1

No

No∑
i=1

f(Gi)

)

=
1

No

No∑
i=1

E (f(Gi))

=
1

No
Nop≺(f |D)

= p≺(f |D).

(ii) Proof that p̂≺(f |D) converges almost surely to p≺(f |D).

Since f(G1), f(G2), . . . , f(GNo) are iid with E(f(Gi)) = p≺(f |D) <∞, and since

p̂≺(f |D) =
1

No

No∑
i=1

f(Gi),

based on the Strong Law of Large Numbers (Theorem 5.5.9) (Casella and Berger, 2002), p̂≺(f |D)

converges almost surely to p≺(f |D) (as No →∞).

Note that, by Theorem 2.5.1 (Athreya and Lahiri, 2006), the property that p̂≺(f |D) converges

almost surely to p≺(f |D) implies that p̂≺(f |D) converges in probability to p≺(f |D), that is, p̂≺(f |D)

is a consistent estimator for p≺(f |D).

(iii) Proof that if 0 < p≺(f |D) < 1, then the random variable
√
No(p̂≺(f |D)− p≺(f |D))√
p̂≺(f |D)(1− p̂≺(f |D))
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has a limiting standard normal distribution, denoted by

√
No(p̂≺(f |D)− p≺(f |D))√
p̂≺(f |D)(1− p̂≺(f |D))

−→d N (0, 1).

Since f(G1), f(G2), . . . , f(GNo) are iid with Bernoulli(p≺(f |D)), for each Gi, the following is

true for V ar(f(Gi)), the variance of f(Gi).

V ar(f(Gi))

= E(f(Gi))(1− E(f(Gi)))

= p≺(f |D)(1− p≺(f |D))

<∞.

Since 0 < p≺(f |D) < 1, V ar(f(Gi)) is also strictly greater than 0.

Again, we have already known that E(f(Gi)) = p≺(f |D) <∞.

Thus, by the Central Limit Theorem (Theorem 5.5.15) (Casella and Berger, 2002),

√
No(p̂≺(f |D)− E(f(G)))√

V ar(f(G))
−→d N (0, 1),

that is,

√
No(p̂≺(f |D)− p≺(f |D))√
p≺(f |D)(1− p≺(f |D))

−→d N (0, 1).

Since p̂≺(f |D) converges in probability to p≺(f |D), denoted by p̂≺(f |D) −→p p≺(f |D), by the

Continuous Mapping Theorem (Theorem 5.5.4) (Casella and Berger, 2002),

√
p̂≺(f |D)(1− p̂≺(f |D)) −→p

√
p≺(f |D)(1− p≺(f |D)).

Finally, by Slutsky’s Theorem (Theorem 5.5.17) (Casella and Berger, 2002),

√
No(p̂≺(f |D)− p≺(f |D))√
p̂≺(f |D)(1− p̂≺(f |D))

−→d N (0, 1).

(iv) Proof that for any ε > 0, any 0 < δ < 1, if No ≥ ln(2/δ)/(2ε2), then p(|p̂≺(f |D) −

p≺(f |D)| < ε) ≥ 1− δ.
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Since f(G1), f(G2), . . . , f(GNo) are iid with Bernoulli(p≺(f |D)), the Hoeffding bound (Hoeffd-

ing, 1963; Koller and Friedman, 2009) holds:

p(|p̂≺(f |D)− p≺(f |D)| ≥ ε) ≤ 2e−2Noε
2
.

This is equivalent to

p(|p̂≺(f |D)− p≺(f |D)| < ε) ≥ 1− 2e−2Noε
2
,

and the conclusion is implied straightforward.

2

Proof of Equation (4.21)

Proof: For any j ∈ {1, . . . , n}:

P ((σj , Uσj )|D)

∝ P ((σj , Uσj ), D)

=
∑

(σ1,...,σj−1)
∈L(Uσj )

∑
(σj+1,...,σn)

∈L(V−Uσj−{σj})

P (σ1, . . . , σj−1, σj , σj+1, . . . , σn, D)

=
∑

(σ1,...,σj−1)
∈L(Uσj )

∑
(σj+1,...,σn)

∈L(V−Uσj−{σj})

n∏
i=1

α′σi(Uσi)

= α′σj (Uσj )L
′(Uσj )R

′(V − Uσj − {σj}).

2
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Proof of Equation (4.22)

Proof:

p≺(G|D)

=
∑

≺s.t.G⊆≺
p(≺, G|D)

=
1

p≺(D)

∑
≺s.t.G⊆≺

p(≺, G,D)

=
1

p≺(D)

∑
≺s.t.G⊆≺

p(≺, G)p(D|G)

=
1

p≺(D)

∑
≺s.t.G⊆≺

(
n∏
i=1

qi(Ui)ρi(Pai))p(D|G)

=
1

p≺(D)

∑
≺s.t.G⊆≺

(

n∏
i=1

pi(Pai))p(D|G)

=
1

p≺(D)

∑
≺s.t.G⊆≺

p(G)p(D|G)

=
1

p≺(D)
· | ≺G | · p⊀(G,D)

=
p⊀(D)

p≺(D)
· | ≺G | · p⊀(G|D).

Since both p⊀(D) > 0 and p≺(D) > 0, p≺(G|D) ∝

| ≺G | · p⊀(G|D), which also has been shown by Ellis and Wong (2008).

2

Proof of Theorem 4

Proof:

Let Ω denote the set of all the DAGs. Define U+ = {G ∈ Ω : p⊀(G,D) > 0}. U+ will equal

Ω if the user chooses a prior such that p(G) > 0 for every DAG G (such as a uniform DAG prior

p(G) ≡ 1). However, if the user has some additional domain knowledge so that he/she sets some prior to

exclude some DAGs a priori, U+ will be a proper subset of Ω. Note that p⊀(f |D) = p⊀(f,D)/p⊀(D),

where p⊀(f,D) =
∑

G f(G)p⊀(G,D) =
∑

G∈U+ f(G)p⊀(G,D), and p⊀(D) = p⊀(f ≡ 1, D) =∑
G p⊀(G,D) =

∑
G∈U+ p⊀(G,D).
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Let I[] denote the indicator function. Rewrite p̂⊀(f |D) in Eq. (4.24) as p̂⊀(f,D)/p̂⊀(D), where

p̂⊀(f,D) =
∑

G∈G f(G)p⊀(G,D) =
∑

G f(G) p⊀(G,D)I[G ∈ G] =
∑

G∈U+ f(G)p⊀(G,D)I[G ∈

G], and p̂⊀(D) = p̂⊀(f ≡ 1, D) =
∑

G∈G p⊀(G,D) =
∑

G p⊀(G,D)I[G ∈ G] =
∑

G∈U+ p⊀(G,D)I[G ∈

G].

Note that by Theorem 3, P (G ∈ G) = 1− (1− p≺(G|D))No , where p≺(G|D) is the exact posterior

of G under the order-modular prior assumption. Also note that by Eq. (4.22), ∀G : (p⊀(G,D) > 0)⇒

(p≺(G|D) > 0).

(i) Proof that p̂⊀(f |D) is an asymptotically unbiased estimator for p⊀(f |D), that is,

lim
No→∞

E(p̂⊀(f |D)) = p⊀(f |D). (4.28)

For notational convenience, let γ denote p̂⊀(f,D), and let τ denote p̂⊀(D). Define g(γ, τ) = γ/τ

so that g(γ, τ) is essentially p̂⊀(f |D).

Note that

E(γ)

= E(p̂⊀(f,D))

= E

 ∑
G∈U+

f(G)p⊀(G,D)I[G ∈ G]


=
∑
G∈U+

E(f(G)p⊀(G,D)I[G ∈ G])

=
∑
G∈U+

f(G)p⊀(G,D)P (G ∈ G)

=
∑
G∈U+

f(G)p⊀(G,D)(1− (1− p≺(G|D))No).
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Thus,

lim
No→∞

E(γ)

= lim
No→∞

 ∑
G∈U+

f(G)p⊀(G,D)(1− (1− p≺(G|D))No)


=
∑
G∈U+

f(G)p⊀(G,D) lim
No→∞

(1− (1− p≺(G|D))No)

=
∑
G∈U+

f(G)p⊀(G,D)

= p⊀(f,D).

Similarly, by setting f ≡ 1, we have

E(τ)

= E(p̂⊀(D))

=
∑
G∈U+

p⊀(G,D)(1− (1− p≺(G|D))No),

and

lim
No→∞

E(τ) = p⊀(D).

Next, by Taylor’s Theorem (with the Lagrange form of the remainder),

g(γ, τ)

= g(E(γ), E(τ))

+

[
∂g(γ, τ)

∂γ

]
γ=E(γ),τ=E(τ)

(γ∗ − E(γ))

+

[
∂g(γ, τ)

∂τ

]
γ=E(γ),τ=E(τ)

(τ∗ − E(τ)),

where γ∗ = E(γ) + θ(γ −E(γ)), τ∗ = E(τ) + θ(τ −E(τ)), and θ is a random variable such that

0 < θ < 1.

Examine the components separately:

g(E(γ), E(τ))

= E(γ)/E(τ).



100

[
∂g(γ, τ)

∂γ

]
γ=E(γ),τ=E(τ)

=
[
τ−1

]
γ=E(γ),τ=E(τ)

= (E(τ))−1.

[
∂g(γ, τ)

∂τ

]
γ=E(γ),τ=E(τ)

=
[
−γ(τ)−2

]
γ=E(γ),τ=E(τ)

= −E(γ)(E(τ))−2.

Since neither E(γ) nor E(τ) is random,

E (g(γ, τ))

= E(γ)/E(τ)

+ (E(τ))−1E(γ∗ − E(γ))

− E(γ)(E(τ))−2E(τ∗ − E(τ))

= E(γ)/E(τ)

+ (E(τ))−1E(θ(γ − E(γ)))

− E(γ)(E(τ))−2E(θ(τ − E(τ))).

Consider the limit of each component separately:

lim
No→∞

(E(γ)/E(τ))

=

(
lim

No→∞
E(γ)

)
/

(
lim

No→∞
E(τ)

)
= p⊀(f,D)/p⊀(D)

= p⊀(f |D).



101

lim
No→∞

(E(τ))−1

=

(
lim

No→∞
E(τ)

)−1
= (p⊀(D))−1.

lim
No→∞

−E(γ)(E(τ))−2

= −
(

lim
No→∞

E(γ)

)(
lim

No→∞
E(τ)

)−2
= −p⊀(f,D)(p⊀(D))−2.

Note that both (p⊀(D))−1 and −p⊀(f,D)(p⊀(D))−2 are constant real numbers.

Finally, we intend to prove the following two equalities:

lim
No→∞

E(θ(γ − E(γ))) = 0, (4.29)

lim
No→∞

E(θ(τ − E(τ))) = 0. (4.30)

Once this is done,

lim
No→∞

E (g(γ, τ))

= lim
No→∞

(E(γ)/E(τ))

+ lim
No→∞

(E(τ))−1 · 0

+ lim
No→∞

(
−E(γ)(E(τ))−2

)
· 0

= p⊀(f |D).

The whole proof for Eq. (4.28) will then be done.

The proof for Eq. (4.29) is as follows.

Based on the definition of limit, proving Eq. (4.29) is equivalent to proving

lim
No→∞

|E(θ(γ − E(γ)))| = 0. (4.31)
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Since

|E(θ(γ − E(γ)))|

≤ E (|θ(γ − E(γ))|)

= E (|θ| · |γ − E(γ)|)

≤ E (|γ − E(γ)|) (due to 0 < θ < 1 ),

and |E(θ(γ − E(γ)))| ≥ 0, to prove Eq. (4.31), it is sufficient to prove

lim
No→∞

E (|γ − E(γ)|) = 0. (4.32)

E (|γ − E(γ)|)

= E

∣∣∣∣∣∣
∑
G∈U+

f(G)p⊀(G,D)I[G ∈ G]

−
∑
G∈U+

f(G)p⊀(G,D)P (G ∈ G)

∣∣∣∣∣∣


= E

∣∣∣∣∣∣
∑
G∈U+

f(G)p⊀(G,D)(I[G ∈ G]− P (G ∈ G))

∣∣∣∣∣∣


≤ E

 ∑
G∈U+

f(G)p⊀(G,D) |I[G ∈ G]− P (G ∈ G)|


=
∑
G∈U+

f(G)p⊀(G,D)E (|I[G ∈ G]− P (G ∈ G)|)

=
∑
G∈U+

f(G)p⊀(G,D)[(1− P (G ∈ G))P (G ∈ G)

+ (P (G ∈ G)− 0)(1− P (G ∈ G))]

=
∑
G∈U+

f(G)p⊀(G,D)[2P (G ∈ G)(1− P (G ∈ G))]

=
∑
G∈U+

f(G)p⊀(G,D)[2(1− (1− p≺(G|D))No)

× (1− p≺(G|D))No ].
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Since ∀G ∈ U+ : p≺(G|D) > 0,

lim
No→∞

∑
G∈U+

f(G)p⊀(G,D)[2(1− (1− p≺(G|D))No)

× (1− p≺(G|D))No ]

=
∑
G∈U+

f(G)p⊀(G,D) lim
No→∞

[2(1− (1− p≺(G|D))No)

× (1− p≺(G|D))No ]

=
∑
G∈U+

f(G)p⊀(G,D) · 0

= 0,

Eq. (4.32) is proved, and the proof for Eq. (4.29) is done.

Setting f ≡ 1 in Eq. (4.29) leads to Eq. (4.30).

Thus, the whole proof for Eq. (4.28) is done.

(ii) Proof that p̂⊀(f |D) converges almost surely to p⊀(f |D), denoted by p̂⊀(f |D) −→a.s. p⊀(f |D).

Remember that Ω denotes the set of all the DAGs, that is, Ω = {G1, G2, . . . , GW ∗}, where W ∗ is

|Ω|, the number of all the DAGs. Note that W ∗ is a finite positive integer though it is super-exponential

in the number of variables n.

Let F be P(Ω), the power set of Ω. Thus, F is a σ−algebra on Ω (Athreya and Lahiri, 2006).

Define for any A ∈ F , µ(A) =
∑

Gj∈A p≺(Gj |D). It is well-known that µ is a probability measure on

F so that (Ω,F , µ) is a probability space (Athreya and Lahiri, 2006).

For each i ≥ 1, let Ωi = Ω, Fi = F and µi = µ. Let Ω∞ = {(G(1), G(2), . . .) : G(i) ∈ Ωi, i ≥ 1}.

Let a cylinder set A
:

= A1 ×A2 × . . .×Ak ×Ωk+1 ×Ωk+2 × . . ., where there exists 1 ≤ k <∞ such

that Ai ∈ Fi for 1 ≤ i ≤ k and Ai = Ωi for i > k. Let F∞ = σ < {A
:

: A
:

is a cylinder set } >, that

is, F∞ is a σ−algebra generated by the set of all the A
:

’s. F∞ is a a σ−algebra on Ω∞ and is called a

product σ−algebra.

Define, for each (A1, A2, . . . , Ak,Ωk+1,Ωk+2, . . .) ∈ F∞, µ∞(A1, A2, . . . , Ak,Ωk+1,Ωk+2, . . .)

= µ1(A1) × µ2(A2) × . . . × µk(Ak). By Kolmogorov’s consistency theorem, (Ω∞,F∞, µ∞) is a

probability space (Athreya and Lahiri, 2006).
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Let Ω∞,0 = {(G(1), G(2), . . .) ∈ Ω∞ : ∃G ∈ U+ : ∀i ≥ 1 : G(i) 6= G}. Let Ω∞,1 = Ω∞ − Ω∞,0.

Thus, Ω∞,1 = {(G(1), G(2), . . .) ∈ Ω∞ : ∀G ∈ U+ : ∃i ≥ 1 : G(i) = G}.

Define, for each ω∞ ∈ Ω∞,

p̂No⊀ (ω∞) =

∑
G∈U+ f(G)p⊀(G,D)I[G ∈ GNo(ω∞)]∑

G∈U+ p⊀(G,D)I[G ∈ GNo(ω∞)]
,

where GNo(ω∞) is the DAG set including the first No coordinates of ω∞. By the definition, we know

that p̂No⊀ (ω∞) = p̂⊀(f |D).

For each ω∞ ∈ Ω∞,1, for eachG ∈ U+, letN(G,ω∞) be the smallest integer such thatG(N(G,ω∞)) =

G. Let N(ω∞) = maxG∈U+N(G,ω∞). Then for each No ≥ N(ω∞), for each G ∈ U+, I[G ∈

GNo(ω∞)] = 1.

Accordingly, for each ω∞ ∈ Ω∞,1, there exists N(ω∞) such that for each No ≥ N(ω∞):

p̂No⊀ (ω∞)

=

∑
G∈U+ f(G)p⊀(G,D)∑

G∈U+ p⊀(G,D)

= p⊀(f |D).

This implies that limNo→∞ p̂
No
⊀ (ω∞) = p⊀(f |D) for each ω∞ ∈ Ω∞,1.

Finally, we intend to prove the following equality:

µ∞(Ω∞,1) = 1. (4.33)

Once this is done, the whole proof for p̂⊀(f |D) −→a.s. p⊀(f |D) is done.

Proving Eq. (4.33) is equivalent to proving

µ∞(Ω∞,0) = 0. (4.34)

For any G ∈ Ω, let Ω∞,0,G = {(G(1), G(2), . . .) ∈ Ω∞ : ∀i ≥ 1 : G(i) 6= G}. Thus, Ω∞,0

=
⋃
G∈U+ Ω∞,0,G. Accordingly, µ∞(Ω∞,0) ≤

∑
G∈U+ µ∞(Ω∞,0,G).

For each j ≥ 1, let Ω∞,0,G,j = {(G(1), G(2), . . .) ∈ Ω∞ : ∀i ∈ {1, . . . , j} : G(i) 6= G}. Note

Ω∞,0,G,1 ⊇ Ω∞,0,G,2 ⊇ . . . ⊇ Ω∞,0,G,j−1 ⊇ Ω∞,0,G,j for each j ≥ 1. Thus, Ω∞,0,G =
⋂∞
j=1 Ω∞,0,G,j .
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Finally, for any G ∈ U+,

µ∞(Ω∞,0,G)

= µ∞(

∞⋂
j=1

Ω∞,0,G,j)

= lim
j→∞

µ∞(Ω∞,0,G,j)

= lim
j→∞

µ1(Ω− {G})× µ2(Ω− {G})× . . .× µj(Ω− {G})

= lim
j→∞

[1− µ({G})]j

= lim
j→∞

[1− p≺(G|D)]j

= 0.

Thus,
∑

G∈U+ µ∞(Ω∞,0,G) = 0, so that Eq. (4.34) is proved. The whole proof is done.

Note that, by Theorem 2.5.1 (Athreya and Lahiri, 2006), the property that p̂⊀(f |D) converges al-

most surely to p⊀(f |D) implies that p̂⊀(f |D) converges in probability to p⊀(f |D), that is, p̂⊀(f |D) is

a consistent estimator for p⊀(f |D).

(iii) Proof that the convergence rate of p̂⊀(f |D) is o(aNo) for any 0 < a < 1.

In the proof for (ii), we have shown that for each ω∞ ∈ Ω∞,1, there exists N(ω∞) such that for

each No ≥ N(ω∞), p̂No⊀ (ω∞) = p⊀(f |D). This means that for any 0 < a < 1, (aNo)−1[p̂No⊀ (ω∞) −

p⊀(f |D)] = 0. Thus, limNo→∞(aNo)−1[p̂No⊀ (ω∞)− p⊀(f |D)] = 0 so that the proof is done.

(iv) Proof that if the quantity ∆ =
∑

G∈G p⊀(G|D), then ∆·p̂⊀(f |D) ≤ p⊀(f |D) ≤ ∆·p̂⊀(f |D)+

1−∆.
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On one hand,

∆ · p̂⊀(f |D)

=

∑
G∈G p⊀(G,D)

p⊀(D)
·
∑

G∈G f(G)p⊀(G,D)∑
G∈G p⊀(G,D)

=

∑
G∈G f(G)p⊀(G,D)

p⊀(D)

=

∑
G f(G)p⊀(G,D)

p⊀(D)
−
∑

G/∈G f(G)p⊀(G,D)

p⊀(D)

≤
∑

G f(G)p⊀(G,D)

p⊀(D)

= p⊀(f |D).

On the other hand,

∆ · p̂⊀(f |D) + 1−∆

=

∑
G∈G f(G)p⊀(G,D)

p⊀(D)
+

∑
G/∈G p⊀(G,D)

p⊀(D)

≥
∑

G∈G f(G)p⊀(G,D)

p⊀(D)
+

∑
G/∈G f(G)p⊀(G,D)

p⊀(D)

=

∑
G f(G)p⊀(G,D)

p⊀(D)

= p⊀(f |D).

Combining the two proved inequalities, the whole proof is done.

2
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CHAPTER 5. SESSION ANALYSIS OF PEOPLE SEARCH WITHIN A

PROFESSIONAL SOCIAL NETWORK

A paper published in The Journal of the American Society for Information Science and Technology

Ru He, Jiong Wang, Jin Tian, Cheng-Tao Chu, Bradley Mauney and Igor Perisic

Abstract

We perform session analysis for our domain of people search within a professional social network. We

find that the content-based method is appropriate to serve as a basis for the session identification in

our domain. However, there remain some problems reported in previous research which degrade the

identification performance (such as accuracy) of the content-based method. Therefore, in this article, we

propose two important refinements to address these problems. We describe the underlying rationale of

our refinements and then empirically show that the content-based method equipped with our refinements

is able to achieve an excellent identification performance in our domain (such as 99.820% accuracy

and 99.707% F-measure in our experiments). Next, because the time-based method has extremely

low computation costs, which makes it suitable for many real-world applications, we investigate the

feasibility of the time-based method in our domain by evaluating its identification performance based

on our refined content-based method. Our experiments demonstrate that the performance of the time-

based method is potentially acceptable to many real applications in our domain. Finally, we analyze

several features of the identified sessions in our domain and compare them with the corresponding ones

in general web search. The results illustrate the profession-oriented characteristics of our domain.
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5.1 Introduction

Session identification and analysis have been important research areas in web search in the last two

decades (Silverstein et al., 1999; Lau and Horvitz, 1999; He et al., 2002; Ozmutlu et al., 2004; Jansen

et al., 2007). Session is typically defined as a series of queries submitted by a single user during one

episode of interactions between the user and the web search engine for one single information need.

Once session identification can be correctly performed, the corresponding analysis is able to serve as

the basis to analyze web users’ search behaviors. Using session analysis, the search quality of current

web search engines can be measured and then the corresponding improvement can possibly be made.

Meanwhile, the performance of web search can often be improved if all the information in the same

session of current query is used as the context of the search.

All the session analysis is based on the accurate and effective session identification. Currently there

are two main session identification approaches that are computation-inexpensive and easily adopted in

real application. The first one is the time-based method (Silverstein et al., 1999; Jansen et al., 2007). It

is the most commonly used session identification method and has extremely low computation costs. The

time-based method examines the time gap between two consecutive search queries (Qi and Qi+1) from

a user and then compares it with a pre-specified time-out threshold (e.g. 10 minutes). Qi+1 is identified

as the start of a new session if and only if the time gap exceeds the threshold. The main drawback of

such a method is that users of search engine have various search behaviors so that it is possible that a

user changes his search for a different information need within the specified time threshold or continues

his search for the same information need after a long idle time. In these cases, the time-based method

can not accurately identify sessions.

The second approach is the content-based method (He et al., 2002; Jansen et al., 2007), which iden-

tifies Qi+1 as the start of a new session if and only if there is no common term between two consecutive

search queries Qi and Qi+1 from a user. The content-based method is based on the users’ search re-

finement patterns and several researchers (He et al., 2002; Jansen et al., 2007) argue that such a method

is directly related to a user’s information need and should be superior to its time-based counterpart.

However, there are also problems degrading the identification performance (such as accuracy) of the

content-based method, which have been reported in the previous researches (He et al., 2002; Jansen
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et al., 2007). For example, in the comparison between the time-based method and the content-based

method made by Jansen et al. (2007), they find that the accuracy rate of the content-based method

(95.55%) is actually lower than that of the time-based method (98.95%). T hey explain the reasons for

the problems, for example, main errors associated with the content-based method are caused by typos.

However, they do not provide any solution to address these problems.

In recent years, as a sharply increasing number of people join professional social networks and use

their search engines for professional development purposes, people search within a professional social

network has become an emerging sub-domain worth special study in the web search area. Therefore,

in this article, we will examine these two main session identification approaches in our specific domain

and perform the corresponding session identification and analysis, which have not been substantially

studied in the previous researches.

We first argue that because of the profession-oriented feature of our domain, the content-based

method is able to serve as a basis for our session identification. At the same time, to address the

problems of the content-based method, we provide two important refinements to improve identification

performance. The first refinement is to filter out common stop words in our domain and the second

refinement is to add the similarity check between terms. We describe the underlying reasons why

our refinements effectively address the problems and then develop a new efficient similarity check

algorithm suitable for our second refinement purpose. Our experimental results show that the content-

based method with our two refinements is able to achieve an excellent identification performance (such

as no worse than 99.820% accuracy) in our domain. We also show that the improvement from our two

refinements is statistically significant and will potentially have an impact on practical applications in

our domain.

Next, we investigate the feasibility of the time-based session identification method in our domain

because the computation costs of the time-based method are extremely low and it will become a good

candidate in the real applications as long as its identification performance is close to its content-based

counterpart. Based on our refined content-based method, we evaluate the identification performance of

the time-based method by varying its time-out thresholds. We empirically find the optimal threshold

for the time-based method in our domain and show that its corresponding performance is potentially

acceptable to many real applications.
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Finally, we examine several features of the sessions in our domain which are identified by our

refined content-based method. These features such as session length and session duration are analyzed

and then compared with the corresponding ones in general web search. These results give more insights

into the characteristics of our domain of people search inside a professional network, which have not

been shown in the previous researches.

5.2 Related Work

As noted in Section 5.1, the time-based method is the most commonly used session identification

method. One example using the time-based session identification method is the analysis performed

by Silverstein et al. (1999), where they analyze search query log that includes about 1 billion entries

from AltaVista search engine from August 2, 1998 to September 13, 1998. Their work includes session

analysis as well as the analysis of individual queries, query duplicates and correlation of log entries. In

their study, they use cookies to identify the users and then use the time-based method with 5-minute

time-out threshold to define sessions within the search process of each single user. Based on their

session identification method, they show that most of sessions are very short, for example, 77.6% of

sessions include only one query.

Lau and Horvitz (1999) propose the methodology of query refinement classes when they manually

tag 4,690 search queries submitted to Excite search engine on September 16, 1997. They define a set

of exhaustive and mutually exclusive query refinement classes including new, generalization, special-

ization, reformulation etc. so that each query can be manually tagged into exactly one refinement class.

Especially, each search query in the query refinement class of “new” corresponds to a query seeking for

a new information need, that is, the start of a new session. They also mention the feasibility of automatic

assignment of refinement class but they do not develop a concrete algorithm. Based on their manual as-

signment of query refinement classes and information goals, they perform the corresponding statistical

analysis about users’ search activities and manually build Bayesian network models to describe users’

search processes.

He et al. (2002) propose a new approach to identify session boundaries inside search queries of

each user based on Reuters log data including 9,534 search records from March 30, 1999 to April 7,
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1999. In their paper, the content-based session identification method is developed by automatically

using the methodology of query refinement classes. The main idea of the content-based method is

simple: If there is no common term between two consecutive search queries Qi and Qi+1 from a user,

then the search pattern is new, that is, Qi+1 is the start of a new session. Otherwise, these two queries

are in the same session and the more specific search pattern such as generalization, specialization,

reformulation, or repetition can further be determined based on the relation between the terms in Qi

and the terms Qi+1. The content-based approach is computation-inexpensive and their experimental

results show that the content-based approach is significantly better than the time-based approach in

the performance of session identification. However, they find that the content-based approach is more

accurate in determining generalization, specialization, and repetition but less accurate in determining

new (i.e. session boundary) and reformulation. Since session boundary identification is typically of

primary importance, on the basis of Dempster-Shafer theory, He et al. further combine the time-based

approach and the content-based approach using statistical evidences of both time intervals and search

patterns. Their experiments show that the new combined approach is a small improvement on the pure

content-based approach: for instance, recall increases from 96.63% into 98.15% and precision only

decreases from 59.85% to 59.55%.

Several computation-expensive techniques have also been proposed by researchers. Ozmutlu et al.

(2004) propose using neural networks to perform session identification. A sample of about 10,000

queries from Excite data log are first manually examined so that binary tags about session change

or session continuation are marked. At the same time each query is categorized in terms of its time

interval and search pattern. The first half of the data are used to train a neural network and the second

half of the data are used to test the identification performance of the trained neural network. Their

experiments show that 76% of session changes and 92% of session continuations are identified correctly.

By extending this work, Ozmutlu et al. (2008) then report that it is possible for neural networks to

perform effective session identification even if the training data and test data are from different search

engine data logs.

Sriram et al. (2004) suggest a statistical method to perform session identification. First, they sug-

gest measuring the difference between two terms based on Jensen-Shannon (JS) Divergence, which

compares the probability distribution of two terms over a given set of web pages. Then the difference
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scores between two queries Qi and Qj can be calculated by summing JS Divergence of each term in

these two queries, i.e.,
∑

i

∑
j JS(ti, tj) where ti and tj are terms from Qi and Qj respectively. Fi-

nally Qj will be identified as the start of a new session if and only if the difference scores exceed some

specified threshold.

Jansen et al. (2007) examine three major methods of identifying web search sessions based on

2,465,145 interactions from 534,507 users of Dogpile.com on May 6, 2005. These three examined ses-

sion identification methods are: (1) IP and cookie; (2) IP, cookie, and 30-minute time-out threshold;

and (3) IP, cookie, and content change (based on query refinement patterns). Note that Method (1)

essentially groups all the daily queries from each user into one session; Method (2) is the time-based

method; and Method (3) is the content-based method. All these three session identification methods are

computation-inexpensive and can be easily adopted in the real application. They show that the appli-

cation of each method will lead to the similar conclusion that sessions are usually short: for example,

the mean session length is less than three queries and the mean session duration is less than 30 minutes.

Meanwhile, they argue that Method (3) is the best session identification method because it can address

the contextual aspects which the other two methods can not address. Unfortunately, their experiments,

based on their 2,000 manually identified queries, show that the accuracy rate of Method (2) is 98.95%

whereas the accuracy rate of Method (3) is 95.55%. They point out the reasons that the accuracy rate

of Method (3) is lower than the one of Method (2): most of identification errors of Method (3) are from

typos misspelled by users. (See our detailed discussion in Section 5.3.3.) However, they do not provide

any method to reduce these errors to improve the identification accuracy of Method (3).

In addition, session identification problem also occurs in the domain of web usage mining, which

uses data mining techniques to discover users’ web navigation patterns from web log data. There are

also two main session identification approaches in web usage mining. One is the time-oriented approach

(Cooley et al., 1999; Spiliopoulou and Faulstich, 1999; Frias-martinez and Karamcheti, 2003), which

uses either the entire duration threshold or the time-out gap threshold to identify the session boundaries

inside a group of web pages. The other is the navigation-oriented approach (Cooley et al., 1999, 2000),

which uses the hyper-link relations among web pages to group related web pages into the same session.

Huang et al. (2004) propose a new session definition method using statistical language modeling. By

assuming a set of web pages (or objects) for the same information need are frequently visited one after
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another, they claim that the corresponding sequence of web pages (or objects) has a high estimated

probability and low empirical entropy. Therefore, when a new web page (or object) is observed in

the sequence that is not related to the original information need, the resulting sequence will have a

detectable increase in its empirical entropy, serving as a natural signal for adding a session boundary.

Recently, Bayir et al. (2009) combine the time-oriented approach and the navigation-oriented approach

and then define a session as a set of paths (in the web graph) where each path corresponds to a user’s

navigation among web pages.

In the last several years, because of the dramatically increasing number of people around the world

who get engaged in professional social network sites and use their search engines, people search within

a professional social network has become an emerging sub-domain in web search. Within a profes-

sional social network, each member provides his professional information which is stored as his profile

document in the professional social networking site. When a member performs people search in the

corresponding social networking site, based on the content of his search query as well as the searcher’s

own personal information, the search engine will return the searcher the professional information of the

most relevant people.

A number of studies (Travers and Milgram, 1969; Kleinberg, 2000; Haynes and Perisic, 2009)

related to people search within a social network have already been made, from several aspects other than

session analysis. Travers and Milgram (1969) empirically show the small-world phenomenon which is

often called “six degrees of separation”, that is, two arbitrary persons can be connected in about six steps

on average in a worldwide social network. Kleinberg (2000) demonstrates that social networks include

the information fundamental for finding a short path between an arbitrary pair of persons in social

networks. Recently, Haynes and Perisic (2009) empirically show that the social network structure has

great value in improving the search result relevance, even after adjusting other factors including result

rank, geodesic distance (shortest path length) from the searcher, and the search type, based on LinkedIn

data including 3,835,364 search queries in a week of March 2008 as well as the information about

LinkedIn members.

In contrast with all the previous researches introduced above, in this article, we contribute to the

existing literature by performing session identification and analysis particularly for the domain of peo-

ple search within a professional social network. First, we show that equipped with two important and
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efficient refinements which we propose, the content-based session identification method is able to effec-

tively reduce identification errors, especially those typo-related errors reported by Jansen et al. (2007),

and achieve an excellent identification performance in our domain. Next, based on our refined content-

based method, we investigate the applicability of the time-based method in our domain by evaluating

its identification performance with various time-out thresholds. Finally, we analyze several features of

identified sessions to illustrate further the profession-oriented nature of our domain, which has not been

well studied in previous research.

5.3 Our Content-based Session Identification Approach

We use LinkedIn daily people search log files for the week from June 14, 2010 (Monday) to June

20, 2010 (Sunday) as the data source for our session analysis on people search within a professional

social network. LinkedIn is a popular professional social networking site and provides people search

service inside its social network which includes more than 70 million members (registered users). Each

LinkedIn daily people search log file records all the people search queries submitted from its members

on the given day. Because every member within LinkedIn social network has been assigned a unique

member id in the system, the search records from each user can be easily grouped based on his member

id, which is more accurate than the user identification methods based on IP address and/or cookies used

by many previous researchers for general web search.

In this article we will use the following format to present our analysis. We first describe in details

our analysis for the data for June 14, 2010. The extended analysis over the whole week from June 14,

2010 to June 20, 2010 will then be demonstrated either in the main part of the paper or in the Appendix,

depending on its importance and relevance. The data for June 14, 2010 we have used include 5,552,891

search queries from 806,799 users, where these 806,799 users are randomly sampled from all the users

who submitted at least one query on June 14, 2010. The data of each of other six days include the

queries from 270,000 randomly sampled users.
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5.3.1 Preliminary Analysis Based on User Identification

We first perform some preliminary analysis based on the method that groups daily people search

queries purely according to user identification. Such a method corresponds to session identification

method (1) performed by Jansen et al. (2007), which is even directly used as a session identification

method in many Web-searching studies (Spink and Jansen, 2004). Our preliminary analysis will serve

as the basis for the further session analysis in this article.

To ease the analysis, we define a random variable X to be the number of people search queries

submitted by a single user on the investigated day. The (empirical) distribution of X based on the data

for June 14, 2010 is given in Table 5.1 and its corresponding histogram is shown in Fig. 5.1.

The distribution of X indicates that a LinkedIn user typically submits a small number of people

search queries per day. For example, 33.085% of users submitted only one query and 60.273% of users

submitted no greater than three queries during the whole day of June 14, 2010. At the same time, the

distribution of X has a very heavy right tail. For example, there were still 1.222% of users submitting

31 - 40 queries on June 14, 2010. Note that 0.013% of users submitted more than 500 queries on that

day and the maximum value of X even reached 2,699. However, based on our manual examination as

well as the commonsense reasoning, we believe that they were most likely to be the queries submitted

by software agents instead of human beings.

In addition, we make a brief comparison between X in our domain and the corresponding one

obtained from method (1) of Jansen et al. (2007) as follows. The reported adjusted mean of X from

method (1) of Jansen et al. (2007) is 2.85, which is based on the daily data excluding all the records

from the users who submitted more than 99 search queries a day. In our domain, the corresponding

adjusted mean of X is 5.94, which does not decrease much from 6.88, the original mean of X. This

comparison shows that a user in our domain submits relatively more search queries per day on average.

Because any time-based or content-based method needs to further identify sessions inside all the

search queries from each user, the analysis of X will have an important impact on the further session

analysis. For example, the distribution of X will affect the corresponding distribution of session length.

We can safely conclude that at least 33.085% of session length will be 1 on June 14, 2010 because one

single daily query from one single user will trivially become one session with session length 1 by any
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Table 5.1: Distribution of X on June 14, 2010

X Count Percentage X Count Percentage
1 266,927 33.085% 11 - 20 65,407 8.107%
2 135,241 16.763% 21 - 30 21,670 2.686%
3 84,107 10.425% 31 - 40 9,857 1.222%
4 57,988 7.187% 41 - 50 5,728 0.710%
5 42,598 5.280% 51 - 100 9,916 1.229%
6 31,378 3.889% 101 - 500 4,134 0.512%

7 - 10 71,740 8.892% 501 - 2699 108 0.013%

Table 5.2: Descriptive Statistics of X over a Week

Date Min 1st Qu. Median Mean 3rd Qu. Max SD
06/14/2010 1 1 3 6.88 6 2,699 18.63
06/15/2010 1 1 3 7.03 6 4,430 19.19
06/16/2010 1 1 3 6.85 6 2,082 17.67
06/17/2010 1 1 3 7.19 6 3,431 19.47
06/18/2010 1 1 3 7.63 7 1,679 18.71
06/19/2010 1 1 3 6.64 6 1,553 18.40
06/20/2010 1 1 3 6.53 6 3,102 18.75

time-based or content-based method.

Meanwhile, the question whether the distribution of X remains the same across multiple days is

often an interesting topic. Therefore, we also list some descriptive statistics of X over the week from

June 14, 2010 to June 20, 2010 in Table 5.2. The listed descriptive statistics of X include minimum,

first quartile, median, mean, third quartile, maximum and standard deviation. With the Kolmogorov-

Smirnov (KS) two-sample test (Conover, 1999), we can conclude that the distribution of X on each day

from June 15, 2010 to June 20, 2010 is the same as the distribution of X on June 14, 2010. Please refer

to Appendix C for the details.

5.3.2 Consideration of Content-based Session Identification Method

Remember that session definition emphasizes one single information need from one user. Because

the identification of one user is relatively easy in our domain, the identification of one information need
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Figure 5.1: Histogram of X on June 14, 2010

becomes the critical part in our session definition. To get a general idea about how to identify one

information need of each user from the recorded data, we first manually go through a small random

sample from the search log files over the week from June 14, 2010 to June 20, 2010. We find that

because of the professional-social-network nature of LinkedIn, information needs in LinkedIn people

search are always profession-oriented and can neatly fall into one of the following four categories: (1)

search for person(s) based on one particular name; (2) search for persons who are qualified for one

particular job title; (3) search for persons in one particular company; (4) search for persons in one

particular school.

Meanwhile, in LinkedIn people search log file each record corresponds to one submitted people

search query. There are the following eight fields in each record closely related to our session analysis:

(1) member id; (2) tracking time; (3) keywords; (4) query first name; (5) query last name; (6) query

title; (7) query company; (8) query school.

Field (1) records the unique id of the user who submits the query and field (2) records the query

submission time (UTC Time). In this paper, we assume that all the queries on the investigated day are
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ordered by the pair of these two fields, (member id, tracking time), so that on the given day all the

queries from the same user are grouped together and sorted according to the ascending order of their

submission time. This assumption, which can be easily achieved by the modern database techniques,

will simplify the demonstration in the paper.

Each field from (3) to (8) records the words the user enters in the text-box denoted with the corre-

sponding name on the web page. Note that field (3) appears in both basic search and advanced search

while each field from (4) to (8) appears only in advanced search. LinkedIn users can choose to use either

basic search or advanced search according to their wishes. If a user uses basic search, the contents in

field (3) typically include the information about one or more fields from (4) to (8).

It can be clearly seen that the fields from (3) to (8) directly correspond to the four categories of

information needs we have pointed out. Accordingly, we find that the content-based method is appro-

priate to serve as the basis for the session identification in our domain. In other words, because the

terms in a query in our domain are directly related to the name of one particular person, one particular

job title, the name of one particular company or the name of one particular school, we find that “in most

cases” the fact that there is no common term between two consecutive queries Qi and Qi+1 of a user

implies that a new information need (i.e., a new session) starts at Qi+1.

Meanwhile, we also observe that “in most cases” does not mean “in all the cases.” There are some

cases in which there is some common (case-insensitive) term between two consecutive queries Qi and

Qi+1 of a user but Qi+1 should be identified as the start of a new session. There are also some cases

that even if there is no common term between Qi and Qi+1, Qi and Qi+1 still should be grouped into

the same session. These mentioned cases are the main difficulties which degrade the identification

performance of the original content-based method. To address these cases, in the next subsection,

we will propose two important refinements to improve the original content-based method. These two

refinements are general enough to improve any content-based session identification method for web

search. Furthermore, because of the characteristics of our domain, both refinements can be realized

with very low computation costs to help the content-based method to achieve an excellent performance.
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5.3.3 Two Important Refinements to Content-based Method

5.3.3.1 Refinement 1: Filter Out Stop Words.

The first refinement is to filter out some trivial words (terms) from two consecutive search queries

Qi and Qi+1 before starting looking for any common words between them. The purpose of this re-

finement is to avoid missing some true session boundaries. There are some words, such as articles and

prepositions, whose concurrence in two consecutive queries does not necessarily imply the continua-

tion of the same session. In this paper, we call these words as “stop words,” a common term used in the

search industry.

Accordingly, we create a short list of the most common stop words whose occurrence should be

omitted when determining a session boundary in our domain. On one hand, the list includes some

common stop words in web search: “the,” “a,” “an,” “and,” “or,” and “of.” On the other hand, it also

includes the following stop words that are specific to our domain. In regard to the information need of

school query, the terms “school,” “university,” and “college” themselves convey no concrete information

about the name of the searched school so that we add them into our stop-word list. For example, if Qi

is “University of Maryland” and Qi+1 is “University of Washington,” then Qi+1 obviously should be

the start of a new session even though there are two common words (“university” and “of”) between

Qi and Qi+1. Similarly, in terms of the information need of company query, the terms “company,”

“LLC” (Limited Liability Company), and “inc.” (incorporation) are in the stop-word list. Note that the

length of the resulting stop-word list is just a small constant. However, our experiments in Section 5.3.5

will show that our short stop-word list can non-negligibly improve the identification performance of the

content-based method.

5.3.3.2 Refinement 2: Check Similar Terms.

The second refinement is to perform a similarity check between the terms in Qi and the terms in

Qi+1, which plays a critical role in improving the identification performance (such as accuracy) of the

content-based method. This refinement is based on our observation that in two consecutive queries Qi

and Qi+1 of a user, some term T in Qi can possibly be modified mildly into the corresponding term T ′

in Qi+1 but T and T ′ really mean the same thing from the user’s perspective. This is usually because of
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the following two common situations. The first situation is that T is the term including some typo that

a user accidently inputs in Qi and T ′ is the term that the user enters in Qi+1 to correct the typo. The

second situation is that a user does not know the exact spelling of the query term so that he submits his

guessed T inQi. When he does not get the desired search result, he modifies T into newly guessed T ′ in

Qi+1 to see whether the better search result can be returned to him. The second situation is particularly

common in our domain of people search within a professional social network. For example, a recruiter

user may only know the pronunciation of the name of his interested person so that he has to try several

times to guess the spelling of the name.

In both situations, Qi and Qi+1 are really for the same information need while the string T in Qi

and the string T ′ in Qi+1 are only similar but not exactly the same in their surface forms. If we only

use the exact (case-insensitive) string-match method, it will lead to the identification error that a session

boundary is incorrectly inserted between two consecutive queries when every term T in Qi is modified

mildly into the corresponding term T ′ in Qi+1. This kind of errors have been reported by Jansen et al.

as the main error source degrading the performance of the content-based method, though they do not

provide a corresponding solution (Jansen et al., 2007). Therefore, in this paper we will address this kind

of errors by adding the similarity check for two terms between Qi and Qi+1.

We notice that many conventional similarity check algorithms are expensive in time and space costs.

One type of algorithms compute the Levenshtein distance (edit distance) (Levenshtein, 1966) between

two terms for the similarity check. The Levenshtein distance between two strings is defined as the

minimum number of edits needed to transform one string into the other, where three allowed operations

are insertion, deletion, and substitution of a single symbol. Unfortunately, this type of algorithms use

dynamic programming technique and have time complexity O(m · n) and space complexity O(m)

(Wagner and Fischer, 1974), where m and n are the length of two strings. The high time and space

complexity make this type of algorithms undesirable for the similarity check for a large number of

people search queries submitted to the website every minute.

Another type of algorithms are N-gram algorithms (Manning and Schuetze, 1999), where N is a

pre-specified positive integer and a N-gram is a N-length subsequence from a term. By converting each

term into a set of all the possible N-grams of this term, N-gram algorithms examine the similarity of

two terms on the basis of the similarity measure of two sets of N-grams. Different similarity measures
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of two sets of N-grams can be used according to different scenarios. Since N-gram algorithms have

much cheaper time complexity O(m + n) and space complexity O(m), we will consider them as the

candidates for our similarity check. Please refer to Appendix A for the details of the N-gram algorithms

that we use for our domain.

Meanwhile, based on our examination of the LinkedIn search log files, we also propose a new

efficient similarity check algorithm suitable for our domain, which has both O(1) time complexity and

O(1) space complexity. Our algorithm is based on the following important observation: when a user

in our domain modifies a term T into T ′ for the same information need, he usually modifies a very

small portion of T and leaves the rest unchanged. Therefore, to check the similarity of two terms in

our domain, it is usually enough to perform the constant-length string-match check from the beginning

(head) and/or from the end (tail) of these two terms. This constitutes the essential idea of our algorithm

“isSimilarByHeadOrTail()”, whose details are shown in Algorithm 1.

Remark 3 Explanation of Algorithm 1.

In Algorithm 1, the input parameters term1 and term2 are the two terms for which we intend to

perform the similarity check, and the input parameter thresholdLen is the constant-length threshold

(upper bound) with which we will perform the string-match check. The output result of Algorithm 1 is a

Boolean value which indicates whether term1 and term2 are similar or not. In Line 1 and 2, term1 and

term2 are transformed into str1 and str2 which include only lower-case characters since the similarity

check is case-insensitive. From Line 3 to Line 6, four variables involving the lengths are initialized in a

straightforward fashion.

From Line 7 to Line 20, the string-match check from the left end (beginning) of two terms is per-

formed. This check addresses the situation that a user’s modification(s) is/are near the end of T so that

the part from the beginning of T remains unchanged. leftLen is the variable recording the number of

same symbols from the left end of two terms. Once leftLen reaches the threshold, our algorithm will

immediately return true in Line 19, that is, the two terms are similar. However, there are also situa-

tions that both terms themselves are shorter than the threshold so that leftLen is impossible to reach

the threshold. In these situations, if leftLen is large enough with respect to the lengths of two terms,

our algorithm will still return true to claim the similarity. These situations are checked in these “or”
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conditions in Line 18. From Line 21 to Line 34, the string-match check from the right end of two terms

is performed, which is exactly symmetric to the check from Line 7 to Line 20. Finally, the string-match

check based on both sides is performed from Line 35 to Line 38. This addresses the situation that a

user’s modification(s) is/are near the middle of T .

5.3.4 Evaluation Strategy for Session Identification Methods

To investigate the performance of the content-based method and the effects of two refinements

we propose, in this subsection we describe our evaluation strategy which will be used to measure the

performance of any session identification method including the content-based method or the time-based

method. Our evaluation strategy is consistent with a commonly used evaluation strategy described by

Yang (1999).

We will use a binary string to represent the session identification for a series of queries submitted

on the investigated day. We let one bit represent one query. Bit 0 indicates that the current query is the

start of a new session whereas bit 1 indicates that the current query belongs to the same session that

the previous query is in. In this way the number of 0’s in the binary string will equal the number of

identified sessions.

For a series of queries submitted on a given day, we call the binary string representing the correct

session identification the gold-standard binary string. At the same time, a binary string representing

the session identification returned from a session identification method is the corresponding reported

binary string. We use the Hamming distance between the gold-standard binary string and the reported

binary string, that is, the number of different bits in these two strings, to represent the number of errors

made by the corresponding session identification method. We define the accuracy rate (also just called

accuracy) of the session identification method as 1 minus the quotient of the number of errors and the

length of the binary string.

We will also use some common performance measurements of classifiers for our evaluation purpose.

We regard bit 0 as positive symbol and bit 1 as negative symbol. Therefore, the number of true positive

(TP) is the number of 0’s that are both in the reported binary string and in the gold-standard binary

string; the number of false positive (FP) is the number of 0’s that are in the reported binary string but
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not in the gold-standard binary string; the number of true negative (TN) is the number of 1’s that are both

in the reported binary string and in the gold-standard binary string; and the number of false negative

(FN) is the number of 1’s that are in the reported binary string but not in the gold-standard binary string.

Then true positive rate (also called recall) (TPR = TP / (TP + FN)), false positive rate (FPR = FP / (TN

+ FP)), precision (TP / ( TP + FP)) and F-measure (2 × TPR × precision / (TPR + precision )) are all

defined in the usual way. Also note that the previously defined accuracy rate can be expressed as 1 −

(FP + FN) / (TP + TN + FP + FN) = (TP + TN) / (TP + TN + FP + FN).

5.3.5 Evaluation of Our Content-based Method

To evaluate the content-based session identification method and the effects of our two refinements,

we use the following sampling strategy to get the subset of the data set on June 14, 2010. We define 50

buckets such that each bucket i (i ∈ {1, 2, · · · , 49, 50}) is the group of users who submitted i people

search queries during the day. Then we randomly sample 10 users within each bucket so that we have

in total 500 users. Finally, all the search records of these 500 users are retrieved so that totally 12, 750

(10×
∑50

i=1 i) records (queries) are used as the sample for our evaluation purpose. (Again, we assume

that all these 12,750 records are ordered by the pair (member id, tracking time).)

The reason that we use the above sampling strategy (random sample of users inside each bucket)

instead of complete random sample of users directly from the daily search log file is that the latter

strategy will lead to a sample where the number of search records from a user per day is usually small.

As we have shown in Table 5.1 and 5.2, 33.085% of users submitted only one query on June 14,

2010 and the mean of X (i.e., the mean number of search queries from a user on that day) is 6.88. If

the mean of X is small, the performance of a session identification method will be measured trivially

high. For example, all the records including only one query from a user per day will be correctly

but trivially identified as one session by any time-based or content-based method. In general, the first

query of every user will always be correctly but trivially identified as the start of a new session. As

a consequence, the percentage of correctly but trivially identified records equals the reciprocal of the

mean of X. Therefore, we intentionally use the new sampling strategy described above to increase the

mean of X into 25.5 ((1+50)/2) and decrease the percentage of correctly but trivially identified records

into 3.92% (500/12750 = 1/25.5) in the resulting sample.
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Given the sample of 12, 750 records (queries), we first perform the manual session identification

to get the corresponding gold-standard binary string of length 12, 750. (Please refer to Remark 4 at

the end of Section 5.3.5 for our manual session identification process.) Based on the gold-standard

binary string, the performance of various content-based session identification methods is then recorded

in Table 5.3.

The first row of the table gives the performance of the original content-based session identification

method. Correspondingly, the details of the original content-based method we have used are described

in Algorithm 2. Given two consecutive queries Q1 and Q2, Algorithm 2 will output the corresponding

Boolean value to indicate whether Q1 and Q2 are in the same session. The pseudo code from Line 4 to

Line 11 in Algorithm 2 is the main part of the original content-based method, describing how to decide

whether two nonempty consecutive queries from the same user are in the same session or not. (The

pseudo code from Line 12 to Line 15 describes our solution for the infrequent cases that at least one

query is empty based on LinkedIn domain context. Please refer to Remark 5 at the end of Section 5.3.5

for the details.) From the first row of Table 5.3, we can see both accuracy and F-measure of the original

content-based method are good (98.565% and 97.706%), which indicates that it can be used as a good

starting point for session identification in our domain.

Extended from Algorithm 2, Algorithm 3 presents the details of the content-based method with our

two refinements. The pseudo code from Line 7 to Line 8 is for Refinement 1 and the pseudo code from

Line 11 to Line 12 is for Refinement 2. The second row in Table 5.3 gives the performance of the

content-based method with only Refinement 1. It shows that Refinement 1 can effectively reduce FN so

that the performance has a non-negligible increase.

Starting from the third row of Table 5.3, we record the performance of our content-based method

with both Refinement 1 and Refinement 2. We try different algorithms and/or parameters for the

similarity-check function isSimilar() (in Line 11 of Algorithm 3) to see their effects on the performance.

In the cases that we use purely N-gram algorithm as the similarity-check function, the setting of N =

4, that is, 4-gram, leads to the best performance result. In such a setting, the number of errors decreases

to 40; and the accuracy rate and F-measure increase to 99.686% and 99.493% respectively. (Please refer

to Appendix A for the details of N-gram algorithms we use.) In the cases that we use purely HeadOrTail

algorithm, that is, isSimilarByHeadOrTail() shown in Algorithm 1, as the similarity-check function, the
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setting of thresholdLen = 4 gives the best performance result (with accuracy 99.820% and F-measure

99.707%).

Finally, we try the similarity-check algorithm that combines N-gram algorithm and HeadOrTail

algorithm, with its performance recorded in the last row of Table 5.3. Our combined similarity-check

algorithm first uses HeadOrTail algorithm with thresholdLen = 4. If HeadOrTail algorithm returns

true, then the similarity check is done. Otherwise, our combined algorithm uses 4-gram algorithm to

do the second-round similarity check. This second-round check is designed to safeguard against the

case that a user simultaneously updates the term T both near its beginning and near its end so that

HeadOrTail algorithm fails to report the similarity. Table 5.3 shows that our combined similarity-check

algorithm leads to the same best performance (accuracy 99.820% and F-measure 99.707%) as the purely

HeadOrTail algorithm with thresholdLen = 4.

For the remaining parts of the paper, based on its reported optimal performance, our refined content-

based identification method will be the content-based method that includes two refinements and utilizes

our combined similarity-check algorithm (with thresholdLen = 4 and N = 4) for Refinement 2. Re-

member that our sampling strategy intentionally increases the mean of X and reduces the number of

trivially correct session identification. Therefore, we can expect that in the real situation, with more

trivially correct session identification, our refined content-based method will have even better perfor-

mance than reported here. As a result, our refined content-based method really can achieve an excellent

identification performance in our domain.

Note that the improvement from our refined content-based method is significant in terms of theory.

Actually, we can conclude (with an extremely small p-value) that the accuracy of our refined content-

based method is statistically significantly better than the accuracy of the original content-based method

based on either the sign test (Conover, 1999) or the McNemar test (Conover, 1999). Such a conclusion

is mainly based on the fact that the total number of our investigated queries is large (12, 750), though

the conclusion may seem surprising at first glance because the reported accuracy of our refined method

(99.820%) is close to the corresponding one of the original method (98.565%). Please refer to Appendix

E for the details of the statistical tests.

Also note that the improvement from our refined content-based method will potentially have an

impact on the applications in our domain. In the future all the context information within the same
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Table 5.3: Performance of Various Content-based Session Identification Methods (Based on the Sample
of 12,750 Queries)

Method TP FP TN FN No. of Errors Accuracy F-measure
Original 3,898 150 8,669 33 183 98.565% 97.706%
Filter-Out 3,930 151 8,668 1 152 98.808% 98.103%
Filter-Out & 3-gram 3,881 23 8,796 50 73 99.427% 99.068%
Filter-Out & 4-gram 3,924 33 8,786 7 40 99.686% 99.493%
Filter-Out & 5-gram 3,926 46 8,773 5 51 99.600% 99.355%
Filter-Out & HeadOrTail

3,831 8 8,811 100 108 99.153% 98.610%
(thresholdLen = 3)
Filter-Out & HeadOrTail

3,920 12 8,807 11 23 99.820% 99.707%
(thresholdLen = 4)
Filter-Out & HeadOrTail

3,925 24 8,795 6 30 99.765% 99.619%
(thresholdLen = 5)
Filter-Out & HeadOrTail +

3,918 10 8,809 13 23 99.820% 99.707%
4-gram (thresholdLen = 4)

session is intended to be used by our LinkedIn search engine to improve the performance of people

search within the professional social network so that the users can find the appropriate professionals

more easily and quickly. Although all the information from a correctly identified session can help

our search engine to improve its search performance, the information from an incorrectly identified

session can also mislead our search engine and degrade its performance. Because we intend to minimize

occurrences of the latter situation, especially for those important users who have bought their business

accounts and perform extensive people searches in our domain, it is desirable for our search engine to

have a computation-inexpensive session identification method that has the best possible identification

performance. In fact, because of a huge number of users and their submitted daily search queries in our

professional social network, even a one percent increase in accuracy could have non-negligible effects.

Take the investigated data of June 14, 2010, which include 806, 799 users and 5, 552, 891 search queries

for example, by excluding the 500 queries that have been correctly but trivially identified from the

sample of 12, 750 manually identified records, the nontrivial accuracy of the original contented-based

method on the sample of 12, 750 records is actually 98.51% ((3, 898 + 8, 669− 500)/(12, 750− 500))

and the corresponding nontrivial accuracy of our refined contented-based method is actually 99.81%

((3, 918 + 8, 809− 500)/(12, 750− 500)). We can do the following rough calculation to see the effects



127

after the nontrivial accuracy increases from 98.51% to 99.81% for the investigated data of June 14, 2010.

With reference to the queries, the number of correctly identified queries is expected to increase by about

61, 699 ((5, 552, 891 − 806, 799) × (0.9981 − 0.9851)), which is still a large number. In terms of the

users, among the 135, 241 users who submitted two queries on that day (which is shown in Table 5.1),

the probability that a user has all his queries correctly identified will roughly increase from 0.9851(2−1)

to 0.9981(2−1) so that about 1, 758 (135, 241 × (0.9981 − 0.9851)) more users are expected to have

all their queries correctly identified. Similarly, among the 84, 107 users who submitted three queries

on that day, by assuming that the identification results of multiple queries from a user are independent

and identically distributed (iid), the probability that a user has all his queries correctly identified will

roughly increase from 0.9851(3−1) to 0.9981(3−1) so that about 2, 168 (84, 107× (0.99812− 0.98512))

more users are expected to have all their queries correctly identified. Applying the same logic to all the

525, 714 users who submitted 2 ∼ 50 queries on that day, roughly 38, 078 (1, 758 + 2, 168 + · · ·+ 182)

more users on that day are expected to have all their queries correctly identified so that they will get the

better service from our search engine in the future.

Remark 4 About Our Manual Session Identification Process.

The manual session identification for our sample of 12,750 queries is performed in the following

way. First, to ease our manual check, we build a visualization tool which generates one html page for

each selected user. Each html page lists all the queries from the corresponding user according to the

ascending order of their submission time. Inside each html page different colors are used to highlight

the changes of terms of two consecutive queries. Then each session is manually identified based on the

combination of syntax and semantics.

(1) We manually check whether a common term between two consecutive queries Qi and Qi+1 is a

significant word which helps to indicate the same entity of person, company, school, or job title based

on its relationship to the semantics of the queries. If it is not a significant word, we will omit such a

common term because its existence can not imply the continuation of a session. If it is, then we assign

Qi and Qi+1 into the same session.

(2) We manually perform the similarity check for significant terms. On the basis of the syntax as

well as the context of two consecutive queries, we usually can relatively easily recognize whether two
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terms are similar or not.

(3) The most challenging cases to our manual check are when there is semantic connection between

T in Qi and some term T ′ in Qi+1 but T and T ′ are not similar at all in their surface forms. One

real example is as follows: Qi is “internal audit” and Qi+1 is “kpmg.” Based on the surface forms

a session boundary should be inserted between Qi and Qi+1, but in semantics “kpmg” is a company

providing the audit service. For these cases, we typically use auxiliary relevant information stored in

our system (such as the background information of the corresponding user) to decide whether to insert a

session boundary. For the above example, because the user is actually a recruiter in financial services,

we can reasonably assume that the user has one information purpose to search persons suitable for a

particular job title “internal audit” and another different information purpose to search persons inside

the company “kpmg” so that a session boundary is needed. Fortunately, these challenging situations

occur rarely so that our additional effort of manually checking auxiliary relevant information is not

tremendous.

Remark 5 About Our Identification Solution for Empty Queries.

In those cases in which two consecutive queries involve at least one empty query, different ses-

sion identification solutions have been used by different researchers based on the contexts of studied

applications. In this paper, our solution is based on the context of LinkedIn people search domain.

The service of empty query search is provided by LinkedIn people search in the following way. If

a user submits an empty query, he will get the search result including the professional information of

all the people directly or indirectly connected in the user’s social network. According to this context,

we use the following strategy to address the situation when at least one query is empty in the two

consecutive queries Qi and Qi+1. If exactly one query (either Qi or Qi+1 but not both) is empty (such

a situation accounts for about 1.74% of two consecutive queries on the day of June 14, 2010), the user

is considered to check all the connections in his network so that Qi+1 is regarded as the start of a new

session. If both Qi and Qi+1 are empty (such a situation constitutes about 4.53% of two consecutive

queries on the day of June 14, 2010), the user is considered to continue checking all the connections in

his network so that Qi and Qi+1 are regarded as being in the same session. This strategy is used in our

manual check as well as both the original content-based method (the pseudo code from Line 12 to Line
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15 in Algorithm 2) and our refined content-based method (the pseudo code from Line 16 to Line 19 in

Algorithm 3).

5.4 Evaluation of Time-based Session Identification Method

Because our refined content-based session identification method is highly accurate, its identification

result can be regarded as the approximate gold-standard session identification for our LinkedIn daily

people search log file, which includes millions of records and makes manual checking infeasible. We

are then able to evaluate the performance of the time-based session identification method with different

time-out thresholds for our daily people search log file. (Remark 6 at the end of this section will explic-

itly show that the evaluation result based on the true gold-standard session identification is very similar

to the one based on our refined content-based identification method.) Because the time-based method

is extremely cheap in time and space, it will become an effective session identification method in our

everyday application if its performance is not much different from its content-based counterpart. There-

fore, we intend to find out the optimal time-out threshold and examine its corresponding identification

performance in our domain.

To make our experimental results more meaningful and useful, we preprocess our daily data from

June 14, 2010 to June 20, 2010 in the following way. We exclude all the records from the users who

submitted more than 500 people search queries a day because these users are very likely to be software

agents. Note that here we use the large and conservative threshold of 500, which is much larger than

the threshold of 99/100 used in previous papers (Jansen and Spink, 2005; Jansen et al., 2005, 2007).

The reason of using the large threshold of 500 is that in our domain there are some users (especially

recruiters or urgent job-hunters) who have bought their business accounts and submit a lot of search

queries every day. With the conservative threshold of 500, we ensure that we will not discard queries

from these important and active users, though many software agents’ queries will also not be discarded

at the same time.

The experimental results based on the preprocessed data on June 14, 2010 are shown in Fig. 5.2,

where the preprocessed data on that day includes 5,472,206 search queries from 806,691 users. (Again,

we assume that all the records are ordered by (member id, tracking time).) We vary the time-out
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thresholds from 0.25 to 30 minutes. We increase thresholds with 0.25-minute increments in the interval

from 0.25 to 5 minutes and then increase thresholds with 0.5-minute increments in the interval from 5.5

to 30 minutes. Note that the thresholds we have investigated include those commonly used thresholds

in other papers (Silverstein et al., 1999; Jansen et al., 2007).

Fig. 5.2 (a) shows that the accuracy rate increases quickly in the threshold interval from 0.25 minute

to 2 minutes and then decreases slowly afterwards. The optimal accuracy rate 81.14% of time-based

method is achieved (with TP = 1,483,601, FP = 273,032, TN = 2,956,688, FN = 758,885) when the

threshold is set at 2 minutes. The four thresholds between 1.75 minutes and 2.5 minutes are the four

best thresholds whose corresponding accuracy rates are all above 81.07%. Fig. 5.2 (b) demonstrates

that the F-measure increases sharply in the threshold interval from 0.25 minute to 1 minute and then

decreases steeply afterwards. The optimal F-measure 75.40% is reached (with TP = 1,644,972, FP =

476,073, TN = 2,753,647, FN = 597,514) when the threshold is set at 1 minute. The four thresholds

between 0.75 minute and 1.5 minutes are the four best thresholds whose corresponding F-measures are

all above 74.91%.

Our experiments show that the optimal time-out thresholds for both accuracy rate and F-measure are

very small in our domain. In addition, it can be seen that the optimal time-out threshold for F-measure

is even smaller than the one for accuracy rate. The question about which performance measure is better

to use depends on the application scenario and is beyond the scope of this paper. Once the appropriate

measure is chosen, the corresponding best time-out threshold can be chosen to optimize its performance.

Therefore, if in some real application the overall optimal performance such as 81.14% accuracy rate or

75.40% F-measure is acceptable, then the time-based method can be used with its extreme cheap costs

in time and space.

The experiments based on the preprocessed daily data from June 15, 2010 to June 20, 2010 show

the similar patterns. Please refer to Appendix B for the details.

Remark 6 Experimental Results based on the True Gold-standard Identification

We also perform similar evaluation experiments on the sample of 12,750 records, for which we

have manually made the identification as the gold-standard in Section 5.3.5. The optimal accuracy

rate 80.11% of the time-based method can be reached when the time-out threshold is set at 2.25 or
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Figure 5.2: Plot of Performance vs. Time-out on June 14, 2010

3.5 minutes. All the seven thresholds between 2.25 and 3.75 minutes are good thresholds since their

corresponding accuracy rates are all above 80.03%. The optimal F-measure 65.32% can be achieved

when the threshold is set at 0.75 minute. The four thresholds between 0.5 and 1.25 minutes are the four

best thresholds whose corresponding F-measures are all above 64.15%.

Note that if we use the approximate gold-standard identification from our refined content-based

method on the sample of 12,750 records, the evaluation results will be very similar to the ones based

on the manual gold-standard identification. Based on the approximate gold-standard identification, the

optimal accuracy rate is 79.89% when the time-out threshold is set at 2.25 minutes or 3.5 minutes; the

optimal F-measure is 64.90% when the time-out threshold is set at 0.75 minute. This indicates that our

refined content-based method, with its excellent identification performance, can be used to evaluate the

time-based method and to find the corresponding optimal time-out threshold.

Please also note that these optimal values for the sample of 12,750 records are not exactly the

same as the ones for preprocessed data including 5,472,206 records on June 14, 2010. The underlying

reason is that in the manually identified sample we intentionally increase the mean of X (i.e., the mean

number of search queries from a user on that day) to lower the percentage of correctly but trivially

identified records, as we have described in Section 5.3.5. As a result, the increased mean of X changes

the corresponding optimal thresholds, and the lowered percentage of correctly but trivially identified
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Table 5.4: Descriptive Statistics of Session Length

Date Min 1st Qu. Median Mean 3rd Qu. Max SD
06/14/2010 1 1 1 2.44 2 413 4.82
06/15/2010 1 1 1 2.41 2 497 4.79
06/16/2010 1 1 1 2.41 2 482 4.74
06/17/2010 1 1 1 2.44 2 469 4.90
06/18/2010 1 1 2 2.67 3 459 4.82
06/19/2010 1 1 1 2.50 2 399 4.58
06/20/2010 1 1 1 2.51 2 390 4.61

records decreases the corresponding performance of the time-based method.

5.5 Statistics of Sessions

In this section, on the basis of our refined content-based session identification method, we analyze

the following four features of the sessions in LinkedIn people search: (1) the session length (the number

of queries in one session); (2) the session duration (the period from the submission of the first query

to the submission of the last query in one session); (3) the time gap between two sessions, denoted by

TGB; and (4) the time gap between two queries inside the same session, denoted by TGI . All these four

features are random variables whose distributions demonstrate the characteristics of people search in

our domain. We get the (empirical) distributions of these four features based on the same preprocessed

daily data from June 14, 2010 to June 20, 2010, which have been used in Section 5.4.

5.5.1 Session Length & Duration

The distribution of session length is shown in Table 5.4, 5.5 and Fig. 5.3. They clearly indicate that

the session length is usually very small. For example, on each day from June 14, 2010 to June 20, 2010,

the mean of session length is no greater than 2.67; on the day of June 14, 2010, 60.554% of session

length is 1, 86.016% of session length is no greater than 3, and 96.956% of session length is no greater

than 10. Compared with the distribution of X shown in Table 5.1, the distribution of session length

shown in Table 5.5 has more probability mass on the smaller values. This implies that users usually

submit a very small number of queries for one information need. Note that the fact that the maximum
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Table 5.5: Distribution of Session Length on June 14, 2010

Session Length Count Percentage Session Length Count Percentage
1 1,357,916 60.554% 8 - 10 41,901 1.869%
2 405,631 18.088% 11 - 20 48,694 2.171%
3 165,342 7.373% 21 - 30 10,401 0.464%
4 90,575 4.039% 31 - 40 4,048 0.181%
5 53,554 2.388% 41 - 50 1,929 0.086%
6 35,117 1.566% 51 - 100 2,546 0.114%
7 24,195 1.079% 101 - 413 637 0.028%

Table 5.6: Descriptive Statistics of Session Duration (in Seconds)

Date Min 1st Qu. Median Mean 3rd Qu. Max SD
06/14/2010 0 0 0 279.6 26.8 86,394.6 2,617.4
06/15/2010 0 0 0 271.9 25.8 86,231.0 2,556.7
06/16/2010 0 0 0 262.7 26.1 86,012.8 2,398.4
06/17/2010 0 0 0 260.9 25.8 86,193.0 2,455.2
06/18/2010 0 0 0.003 217.8 25.7 86,308.1 2,034.8
06/19/2010 0 0 0 191.0 23.2 85,244.9 2,177.3
06/20/2010 0 0 0 210.7 22.9 86,316.3 2,343.8

of session length can reach hundreds (such as 413) is very likely caused by software agents.

In addition, based on the Kolmogorov-Smirnov two-sample test (Conover, 1999), we can also con-

clude that the distribution of session length on each day from June 15, 2010 to June 20, 2010 is the

same as the one on June 14, 2010. (Please refer to Appendix C for the details.)

Table 5.6 and Fig. 5.4 show the distribution of session duration. Note that according to the definition

of session duration, session duration will be 0 second if the length of the session is 1. Table 5.6 and Fig.

5.4 clearly indicate that session duration is usually small. For example, on each day from June 14, 2010

to June 20, 2010, the mean session duration is less than 280 seconds and the 3rd quartile is less than 27

seconds; on June 14, 2010, 89.087% of session duration is less than 2 minutes. This implies that users

spend an extremely short time on one information need in our domain. We notice that the maximum of

session duration can be close to 24 hours (86,400 seconds), which mainly comes from the situation that

some users around the world would continue to search for the same information needs on the next day
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Table 5.7: Comparison between Our Domain and General Web Search Reported by Jansen et al. (2007)

Percentage of Session Length Percentage of Session Duration
Length Our Domain General Web Search Duration Our Domain General Web Search
1 60.55% 71.64% < 1 min 83.46% 82.32%
2 18.09% 15.85% 1 to < 5 min 10.36% 8.94%
3 7.37% 6.06% 5 to < 10 min 2.12% 2.90%
4 4.04% 2.81% 10 to < 15 min 0.87% 1.27%
5 2.39% 1.47% 15 to < 30 min 1.10% 1.42%
6 1.57% 0.80% 30 to < 60 min 0.73% 1.31%
7 1.08% 0.46% 60 to < 120 min 0.53% 0.78%
8 0.78% 0.29% 120 to < 180 min 0.23% 0.34%
9 0.60% 0.18% 180 to < 240 min 0.14% 0.20%
≥10 3.52% 0.42% ≥ 240 min 0.45% 0.50%

in their time zones.

The comparison between the session length or duration in our domain and the one in general web

search also demonstrates the characteristics of our domain. Here we use the session length and duration

generated from the content-based method (Method (3)) of Jansen et al. (2007) as the one in general web

search for the purpose of the comparison. The session length and duration in our domain are generated

from our preprocessed daily data on June 14, 2010. The detailed comparison results are shown in Table

5.7.

In terms of session length, Table 5.7 clearly shows that the session length in our domain has rel-

atively larger probability (percentage) than the one in general web search of having a value greater

than 1. For example, session length 6 has the probability 1.57% in our domain, almost doubling the

probability 0.80% in general web search. When session length increases to 9, the probability becomes

0.60% in our domain, three times more than the probability 0.18% in the general search. We believe

that such a difference is mainly from the profession-oriented characteristics of our domain. Our domain

has more serious searchers such as recruiters or job-hunters who are more likely to keep searching for

every information need until they get satisfactory search results.

Concerning session duration, Table 5.7 indicates that the session duration in our domain has rela-

tively smaller probability than the one in general web search of having a value no less than five minutes.

Again, we believe that such a difference comes from the characteristics of our domain. A user in our
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Table 5.8: Descriptive Statistics of TGB (Time Gap between Sessions) (in Seconds)

Date Min 1st Qu. Median Mean 3rd Qu. Max SD
06/14/2010 0.0 26.8 99.3 2,635.4 842.2 86,284.3 8,216.5
06/15/2010 0.0 25.7 90.7 2,553.3 759.9 86,119.1 8,070.1
06/16/2010 0.0 25.9 91.9 2,444.6 755.3 86,302.7 7,640.5
06/17/2010 0.0 25.8 90.3 2,479.6 730.9 86,277.8 7,911.0
06/18/2010 0.0 24.9 79.8 2,016.0 574.7 86,213.0 6,491.3
06/19/2010 0.0 21.5 54.0 1,761.2 244.3 85,665.8 7,102.3
06/20/2010 0.0 21.9 58.7 2,001.3 301.1 86,055.0 7,728.5

Table 5.9: Descriptive Statistics of TGI (Time Gap between Queries inside the Same Session) (in
Seconds)

Date Min 1st Qu. Median Mean 3rd Qu. Max SD
06/14/2010 0.0 8.8 16.3 194.2 33.8 85,951.9 2,068.4
06/15/2010 0.0 8.8 16.3 192.4 33.8 85,684.5 2,040.1
06/16/2010 0.0 8.8 16.4 186.6 34.0 85,935.9 1,911.7
06/17/2010 0.0 8.6 16.1 181.4 33.4 86,193.0 1,934.8
06/18/2010 0.0 4.6 12.9 130.2 27.8 84,932.4 1,476.8
06/19/2010 0.0 5.2 13.2 127.5 27.3 84,514.2 1,687.9
06/20/2010 0.0 5.1 13.2 139.4 27.4 83,618.5 1,818.6

domain has a relatively simple and profession-related purpose of searching right person(s) within a pro-

fessional social network, rather than those diversified purposes such as seeking for some entertainment-

related material which a user would spend more time in reading. Therefore, a user in our domain tends

to finish searching for a single information need faster than a user in general search.

5.5.2 Time Gap TGB & TGI

The distribution of TGB (time gap between two sessions) is shown in Table 5.8 and Fig. 5.5

whereas the distribution of TGI (time gap between two queries inside the same session) is shown in

Table 5.9 and Fig. 5.6. The difference of these two distributions is significant and TGB tends to be

much larger than TGI . Such a difference can be easily seen by comparing Fig. 5.5 with Fig. 5.6. For

instance, on June 14, 2010, 91.546% of TGI is in the interval less than 2 minutes while only 52.855%
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Figure 5.6: Histogram of TGI on June 14, 2010
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Table 5.10: Conditional Probability that a Time Gap TG is TGB Given that TG Is in the Specified
Time Interval Ti (Ti Is in Seconds)

i Interval Ti MB
i +M I

i Cond. Pr. of TGB i Interval Ti MB
i +M I

i Cond. Pr. of TGB

1 [0, 15) 1,675,173 0.1037 16 [270, 300) 28,302 0.6135
2 [15, 30) 1,043,020 0.2124 17 [300, 360) 45,880 0.6313
3 [30, 45) 415,879 0.2977 18 [360, 420) 36,365 0.6473
4 [45, 60) 217,089 0.3608 19 [420, 480) 29,233 0.6676
5 [60, 75) 136,550 0.4038 20 [480, 540) 24,283 0.6806
6 [75, 90) 96,888 0.4424 21 [540, 600) 21,085 0.6965
7 [90, 105) 72,990 0.4720 22 [600, 900) 74,007 0.7181
8 [105, 120) 57,984 0.4987 23 [900, 1200) 45,880 0.7531
9 [120, 135) 47,439 0.5113 24 [1200, 1500) 32,480 0.7759
10 [135, 150) 40,029 0.5337 25 [1500, 1800) 24,822 0.7887
11 [150, 165) 34,313 0.5460 26 [1800, 3600) 84,030 0.8243
12 [165, 180) 29,522 0.5517 27 [3600, 7200) 76,006 0.8576
13 [180, 210) 49,316 0.5726 28 [7200, 14400) 67,776 0.8869
14 [210, 240) 39,937 0.5914 29 [14400, 28800) 51,594 0.8997
15 [240, 270) 33,455 0.6029 30 [28800, 86400) 34,188 0.8833

of TGB is in the same interval. Such a difference will also be seen by comparing some statistic (such

as median/mean) of TGB with the one of TGI . For example, on each day from June 14, 2010 to June

20, 2010, the median of TGB (shown in Table 5.8) is much larger than the median of TGI (shown in

Table 5.9).

The difference between TGB and TGI will become even clearer if we examine the conditional

probability that a time gap TG is TGB instead of TGI given that the value of TG is known. For demon-

stration purposes, in Table 5.10 we partition 24-hour period of June 14, 2010 into 30 time intervals and

then show the corresponding (estimated) conditional probability of being TGB in each time interval Ti,

that is, the (estimated) conditional probability that a time gap TG is TGB given that the value of TG

is in the interval Ti. The conditional probability of being TGB in each Ti (i ∈ {1, 2, · · · , 30}) can be

computed by the following formula:
MB
i

MB
i +M I

i

,

where MB
i = |{TGB : TGB ∈ Ti}|, denoting the number of TGB’s that are in Ti; M I

i = |{TGI :

TGI ∈ Ti}|, denoting the number of TGI ’s that are in Ti. In other words, the conditional probability

of being TGB in each Ti is the ratio of the number of TGB’s that are in Ti to the total number of time
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Figure 5.7: Conditional Probability of Being TGB on June 14, 2010

gaps that are in Ti.

From Table 5.10, we can see that the conditional probability of being TGB in each Ti increases

as i increases, except for the last i = 30. The corresponding plot of the conditional probability of

being TGB versus the interval number i is also shown in Fig. 5.7. It implies that the larger a time

gap TG is, the more likely the time gap is a gap between two sessions. This indicates the underlying

rationale of the time-based method: in most cases we are able to successfully distinguish whether or not

a given time gap is between two different sessions merely based on its value. Note that the conditional

probability that a time gap TG is TGB starts being larger than 0.5 when the value of TG is no less than

the threshold of 120 seconds, that is, TG ∈ ∪30i=9Ti. Based on decision theory framework (Bickel and

Doksum, 2001), since the zero-one loss is used for accuracy rate, this 120-second threshold essentially

equals the time-out threshold for the optimal accuracy rate computed in Section 5.4.

When the threshold is set at 120 seconds, from Table 5.10, the accuracy rate can be computed

as (
∑30

i=9M
B
i +

∑8
i=1M

I
i )/

∑30
i=1(M

B
i + M I

i ) = 77.88%, which is actually consistent with our

evaluation result in Section 5.4. Remember that for 5,472,206 queries in preprocessed data on June

14, 2010, there are 806,691 trivial TP’s (true positives) coming from 806,691 users. If we exclude
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these trivial TP’s, the optimal accuracy rate computed in Section 5.4 will exactly decrease into 77.88%

(with TP = 1, 483, 601 − 806, 691 = 676, 910, FP = 273,032, TN = 2,956,688, FN = 758,885) with

2-minute threshold. Note that our optimal nontrivial accuracy rate for the time-based method, 77.88%,

is much worse than the counterpart obtained from Jansen et al. (2007). In their study, the accuracy

rate is 98.85% when the time-out threshold is set at 30 minutes for 2,000 manually identified queries.

Since their reported mean of X (the number of queries per user) is 2.85, there are about 2, 000/2.85

trivial TP’s. If these trivial TP’s are excluded, the nontrivial accuracy rate in their study will become

(2, 000× 98.95%− 2, 000/2.85)/(2, 000− 2, 000/2.85) = 98.38%. Therefore, the optimal nontrivial

accuracy rate for the time-based method in our domain, which can only reach 77.88% due to the feature

of our domain, is much worse than the nontrivial accuracy rate for the time-based method in the domain

studied by Jansen et al. (2007).

The similar relation between the conditional probability of being TGB and the interval number i is

found on each day from June 15, 2010 to June 20, 2010. Please refer to Appendix D for the details.

5.6 Summary & Future Work

We perform session analysis on the domain of people search within LinkedIn professional social

network. We propose two effective and efficient refinements to the original content-based session identi-

fication method and show the excellent identification performance of the refined method in our domain.

Using our refined content-based method as the gold-standard, we then evaluate the performance of the

time-based session identification method and find the optimal time-out threshold in our domain. Finally,

we analyze several features of identified sessions to provide more insights into the nature of our domain.

In the future, we will first investigate possible solutions for identifying the semantic connection

between two consecutive queries from a user, whose occurrences constitute the most challenging cases

of the session identification in our domain. (Please see Remark 4 in Section 5.3.5. ) For example, a

user submitting the query “software developer” followed by the query “java expert” has more likely

the same information need in these two queries, while neither the original content-based method nor

our refined content-based method can address this case. A solution to this kind of cases can improve

further the identification performance of our refined content-based method. Second, we will develop
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approaches to improve the performance of our search engine based on the contextual information gained

from identified sessions in our domain. This study will have a direct impact on real-world applications

in our industry. Third, we intend to combine a wide variety of information (such as users’ background

information) stored in our system to investigate the underlying factors that affect the users’ search

behavior in our domain. The identified factors may enable us to provide customized search service for

various users.

5.7 Appendix

Appendix A

The N-gram algorithms that we use in Section 5.3.5 are described in Algorithm 4. Given two terms

term1 and term2 and one pre-specified positive integer N, Algorithm 4 will output a Boolean value to

indicate whether term1 and term2 are similar.

In our algorithm the function f (minStrLen, N) is used to set requiredNumOfSimilarNgrams, the

required number of common N-grams in A1 and A2, which serves as the similarity measure between

A1 and A2. The following four forms of f (including f1, f2, f3 and f4) are tested in our experiments.

f1 ≡ 1 sets requiredNumOfSimilarNgrams to be the constant threshold 1, which says that A1 and

A2 are regarded to be similar as long as there exists at least 1 common N-gram in A1 and A2. Let

I[·] be an indicator function. f2 = 1 + I[minStrLen − N ≥ 2] applies the constant increase 1 to

requiredNumOfSimilarNgrams if the condition minStrLen − N ≥ 2 is true. f3 = 1 + b(minStrLen −

N)/2c and f4 = 1 + b(minStrLen− N) · (4/5)c apply linear increase with the corresponding increase

rates 1/2 and 4/5 to requiredNumOfSimilarNgrams respectively. The performance of our N-gram

algorithms with different N’s and f ’s based on the sample of 12, 750 queries is listed in Table 5.11.

Note that for each N ∈ {3, 4, 5}, we select the performance of N-gram algorithm with its best f choice

and list it from the third row to the fifth row in Table 5.3 respectively. For the combined similarity-check

algorithm in the last row of Table 5.3, we use 4-gram with f2 choice for the second-round similarity

check since such a setting has the best performance in Table 5.11.
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Table 5.11: Performance of N-gram Algorithms with Different N’s and f ’s (Based on the Sample of
12, 750 Queries)

Method TP FP TN FN No. of Errors Accuracy F-measure
Filter-Out & 3-gram with f1 3,671 9 8,810 260 269 97.890% 96.466%
Filter-Out & 3-gram with f2 3,863 15 8,804 68 83 99.349% 98.937%
Filter-Out & 3-gram with f3 3,881 23 8,796 50 73 99.427% 99.068%
Filter-Out & 3-gram with f4 3,891 43 8,776 40 83 99.349% 98.945%
Filter-Out & 4-gram with f1 3,903 22 8,797 28 50 99.608% 99.364%
Filter-Out & 4-gram with f2 3,924 33 8,786 7 40 99.686% 99.493%
Filter-Out & 4-gram with f3 3,927 42 8,777 4 46 99.639% 99.418%
Filter-Out & 4-gram with f4 3,928 62 8,757 3 65 99.490% 99.179%
Filter-Out & 5-gram with f1 3,926 46 8,773 5 51 99.600% 99.355%
Filter-Out & 5-gram with f2 3,929 58 8,761 2 60 99.529% 99.242%
Filter-Out & 5-gram with f3 3,930 64 8,755 1 65 99.490% 99.180%
Filter-Out & 5-gram with f4 3,930 77 8,742 1 78 99.388% 99.017%

Appendix B

The experimental results for the time-based method based on the preprocessed daily data from June

15, 2010 to June 20, 2010 are shown in Fig. 5.8. It can be seen that the shape of everyday curve is

somewhat similar. For the detailed comparison, Table 5.12 lists, for each examined day, Accuracyopt

(the optimal accuracy), ThresholdoptAcc (the time-out threshold for the optimal accuracy), F-Measureopt

(the optimal F-measure ), and ThresholdoptF−M (the time-out threshold for the optimal F-measure). Table

5.12 shows that the optimal threshold (ThresholdoptAcc /ThresholdoptF−M ) is generally quite similar on each

day of the examined week but it does decrease slightly at the weekend.

Appendix C

In Section 5.3.1 we use the Kolmogorov-Smirnov (KS) two-sample test (Conover, 1999) to check

whether the distribution of X on each day from June 15, 2010 to June 20, 2010 is the same as the

distribution of X on June 14, 2010. The KS two-sample test is a commonly used statistical test to check

whether two examined distributions are the same. The test has its null hypothesisH0 that two examined

distributions are the same. Then the corresponding KS statistic can be computed as the measure of

the difference of two distributions. If KS statistic is larger than the threshold set from a specified level
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Figure 5.8: Plot of Performance vs. Time-out from June 15, 2010 to June 20, 2010

α such as 0.05, we can reject H0 that two distributions are the same with the corresponding level.

Otherwise, we will conclude H0 that two distributions are the same. Our test results are shown in Table

5.13. Since the KS statistic in each row of Table 5.13 is much smaller than the corresponding threshold,

we can conclude that the distribution of X on each day from June 15, 2010 to June 20, 2010 is the same

as the one on June 14, 2010.

Similarly, we use the Kolmogorov-Smirnov two-sample test to check whether the distribution of

session length on each day from June 15, 2010 to June 20, 2010 is the same as the one on June 14,

2010 in Section 5.5. The corresponding test results are shown in Table 5.14. On one hand, we still

can conclude that the distribution of session length on each day from June 15, 2010 to June 20, 2010

is the same as the one on June 14, 2010 since the KS statistic in each row of Table 5.14 is smaller than

the corresponding threshold. On the other hand, the increased KS statistics at the weekend (from June

18, 2010 to June 20, 2010) shows that there is an increase in the difference between the distribution of

session length on June 14, 2010 and the corresponding one at the weekend.

Appendix D

Using the similar logic in Section 5.5.2, Fig. 5.9 shows the curve of the conditional probability of

being TGB versus the interval number i on each day from June 15, 2010 to June 20, 2010. Generally
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Table 5.12: Optimal Performances and Their Corresponding Time-out Thresholds (in Minutes) from
June 14, 2010 to June 20, 2010

Date Accuracyopt ThresholdoptAcc F-Measureopt ThresholdoptF−M
06/14/2010 81.14% 2 75.40% 1
06/15/2010 80.43% 1.75 74.66% 1
06/16/2010 80.55% 1.75 74.93% 1
06/17/2010 80.51% 1.75 74.55% 1
06/18/2010 82.17% 1.75 74.51% 0.75
06/19/2010 80.92% 1.25 74.33% 0.75
06/20/2010 81.37% 1.5 74.84% 0.75

Table 5.13: Comparison of X’s Distribution over a Week (Based on Kolmogorov-Smirnov Two-sample
Test)

vs. 06/14/2010 KS statistic Threshold (α = 0.1 ) Threshold (α = 0.05 ) H0

06/15/2010 0.0101 0.0749 0.0835 Conclude
06/16/2010 0.0062 0.0758 0.0845 Conclude
06/17/2010 0.0168 0.0745 0.0830 Conclude
06/18/2010 0.0474 0.0754 0.0841 Conclude
06/19/2010 0.0108 0.0833 0.0928 Conclude
06/20/2010 0.0088 0.0817 0.0910 Conclude

speaking, each of these six curves shows the similar trend as the curve on June 14, 2010. Again, on the

basis of decision theory framework, for each day from June 15, 2010 to June 20, 2010, the threshold

over which the conditional probability of being TGB starts being larger than 0.5 is the same as the

corresponding time-out threshold for the optimal accuracy rate listed in Table 5.12.

Appendix E

In this appendix we describe how to draw the conclusion that the accuracy rate of our refined

content-based method (Method 2) is statistically significantly better than the accuracy rate of the original

content-based method (Method 1), which has been claimed in the subsection Evaluation of Our Content-

based Method.

First, we use the following notation for clarity. Let pCC denote the probability that a query will be
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Table 5.14: Comparison of the Distribution of Session Length over a Week (Based on Kolmogorov-
Smirnov Two-sample Test)

vs. 06/14/2010 KS statistic Threshold (α = 0.1 ) Threshold (α = 0.05 ) H0

06/15/2010 0.0061 0.1090 0.1215 Conclude
06/16/2010 0.0055 0.1112 0.1239 Conclude
06/17/2010 0.0009 0.1089 0.1214 Conclude
06/18/2010 0.1100 0.1118 0.1246 Conclude
06/19/2010 0.0732 0.1195 0.1332 Conclude
06/20/2010 0.0723 0.1185 0.1321 Conclude

correctly identified by both Method 1 and Method 2. Let pII denote the probability that a query will

be incorrectly identified by both Method 1 and Method 2. Let pCI denote the probability that a query

will be correctly identified by Method 1 but will be incorrectly identified by Method 2. Let pIC denote

the probability that a query will be incorrectly identified by Method 1 but will be correctly identified by

Method 2.

Accordingly, given totally N queries, letNCC denote the number of queries that are correctly identi-

fied by both Method 1 and Method 2; letNII denote the number of queries that are incorrectly identified

by both Method 1 and Method 2; let NCI denote the number of queries that are correctly identified by

Method 1 but are incorrectly identified by Method 2; let NIC denote the number of queries that are

incorrectly identified by Method 1 but are correctly identified by Method 2.

Note that the random vector (NCC , NII , NCI , NIC) has the Multinomial distribution with the

total number N and probability vector (pCC , pII , pCI , pIC), denoted by ((NCC , NII , NCI , NIC) ∼

Multinomial(N ; pCC , pII , pCI , pIC), where N = NCC +NII +NCI +NIC and pCC +pII +pCI +

pIC = 1.

Here we set up the null hypothesisH0 that pCC +pIC = pCC +pCI , that is, pIC = pCI , which says

that the accuracy of Method 2 is the same as the accuracy of Method 1. Correspondingly, the alternative

hypothesis HA is the claim that pCC + pIC > pCC + pCI , that is, pIC > pCI , which says that the

accuracy of Method 2 is better than the accuracy of Method 1.

Conditioning on the number of queries for which the Method 1 and Method 2 disagree, N∗ =

NCI + NIC , the above hypothesis test is performed as the sign test (Conover, 1999) based on the
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Figure 5.9: Conditional Probability of Being TGB from June 15, 2010 to June 20, 2010

binomial distribution with sample size N∗ and success probability 0.5. In addition, if N∗ is large

enough, typically N∗ is required to be no less than 25, the McNemar test (Conover, 1999) based on the

normal approximation can also be used.

For our problem, NCC = 12555, NII = 11, NCI = 12, andNIC = 172. Therefore, if we perform

the sign test, the sign test statistic Tsign = NIC = 172. Under H0, Tsign has the binomial distribution

with sample size 184 (N∗ = NCI + NIC = 184) and success probability 0.5, denoted by Tsign ∼

Binomial(184, 0.5). The corresponding p-value of the one-sided sign test is less than 1e − 30. If

we perform the McNemar test, the McNemar test statistic TMc = (NCI − NIC)2/(NCI + NIC) =

139.1304. Under H0, TMc has the central chi-square distribution with one degree of freedom, denoted

by TMc ∼ χ2(1). The corresponding p-value of the one-sided McNemar test is also less than 1e− 30.

Since the p-values from both the sign test and the McNemar test are tiny, using either test we can reject

H0 with very strong evidence and conclude that the accuracy of Method 2 is better than the accuracy of

Method 1.

The above conclusion may seem surprising at first glance since in Table 5.3 we see that the accuracy

of Method 2 (99.820%) is close to the accuracy of Method 1 (98.565%). However, since N , the total
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number of queries we have examined, is very large (12, 750), the value of N∗ is already sufficiently

large though it only constitutes a small portion of N . As a result, the tiny p-values are obtained from

both tests so that we can safely conclude the alternative hypothesis HA.
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Algorithm 1 isSimilarByHeadOrTail(term1, term2, thresholdLen)
1: str1← toLowerCase(term1)
2: str2← toLowerCase(term2)
3: str1Len← length(str1)
4: str2Len← length(str2)
5: minStrLen← min(str1Len, str2Len)
6: maxStrLen← max(str1Len, str2Len)
7: leftLen← 0
8: for i← 0 to minStrLen − 1 do
9: if str1[i] = str2[i] then

10: leftLen← leftLen + 1
11: if leftLen ≥ thresholdLen then
12: break
13: end if
14: else
15: break
16: end if
17: end for
18: if (leftLen ≥ thresholdLen)

or (leftLen ≥ 2 and minStrLen = 3 and maxStrLen = 3)
or (leftLen ≥ 3 and minStrLen ≤ 4 and maxStrLen ≤ 4)
or . . .
or (leftLen ≥ thresholdLen − 1 and minStrLen ≤ thresholdLen and maxStrLen ≤ thresholdLen)
then

19: return true
20: end if
21: rightLen← 0
22: for i← 0 to minStrLen − 1 do
23: if str1[str1Len − 1 − i] = str2[str2Len − 1 − i] then
24: rightLen← rightLen + 1
25: if rightLen ≥ thresholdLen then
26: break
27: end if
28: else
29: break
30: end if
31: end for
32: if (rightLen ≥ thresholdLen)

or (rightLen ≥ 2 and minStrLen = 3 and maxStrLen = 3)
or (rightLen ≥ 3 and minStrLen ≤ 4 and maxStrLen ≤ 4)
or . . .
or (rightLen ≥ thresholdLen − 1 and minStrLen ≤ thresholdLen and maxStrLen ≤ thresholdLen)
then

33: return true
34: end if
35: if (leftLen + rightLen ≥ thresholdLen + 1)

or (leftLen + rightLen ≥ 2 and minStrLen = 3 and maxStrLen = 3)
or (leftLen + rightLen ≥ 3 and minStrLen ≤ 4 and maxStrLen ≤ 4)
or . . .
or (leftLen + rightLen ≥ thresholdLen and minStrLen ≤ thresholdLen + 1 and maxStrLen ≤ thresholdLen +
1)
then

36: return true
37: end if
38: return false
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Algorithm 2 isSameSession(Q1, Q2) (Original Content-based Method)

Require: All the query records are ordered by (member id, tracking time)
Require: Q1 and Q2 are two consecutive queries in the ordered records

1: if Q1 and Q2 have different member id’s then
2: return false
3: end if
4: if Q1 and Q2 are both nonempty then
5: TS1← the set of all the terms in Q1

6: TS2← the set of all the terms in Q2

7: if there exist some term T1i in TS1 and some T2j in TS2 such that isEqualIgnoreCase(T1i, T2j)
= true then

8: return true
9: else

10: return false
11: end if
12: else if Q1 and Q2 are both empty then
13: return true
14: else
15: return false
16: end if
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Algorithm 3 isSameSession(Q1, Q2) (Content-based Method with Two Refinements)
Require: All the query records are ordered by (member id, tracking time)
Require: Q1 and Q2 are two consecutive queries in the ordered records

1: if Q1 and Q2 have different member id’s then
2: return false
3: end if
4: if Q1 and Q2 are both nonempty then
5: TS1← the set of all the terms in Q1

6: TS2← the set of all the terms in Q2

7: Filter out all the terms in TS1 that are also in the stop-word List
8: Filter out all the terms in TS2 that are also in the stop-word List
9: if there exist some term T1i in TS1 and some T2j in TS2 such that isEqualIgnoreCase(T1i, T2j)

= true then
10: return true
11: else if there exist some term T1i in TS1 and some T2j in TS2 such that isSimilar(T1i, T2j) = true

then
12: return true
13: else
14: return false
15: end if
16: else if Q1 and Q2 are both empty then
17: return true
18: else
19: return false
20: end if

Algorithm 4 isSimilarByNgram(term1, term2, N)
1: str1Len← length(term1)
2: str2Len← length(term2)
3: minStrLen← min(str1Len, str2Len)
4: if minStrLen < N then
5: return false
6: end if
7: str1← toLowerCase(term1)
8: str2← toLowerCase(term2)
9: construct A1, the set of all N-grams (substrings with length N) of str1

10: construct A2, the set of all N-grams of str2
11: compute numOfSimilarNgrams, the number of common elements in both A1 and A2
12: set requiredNumOfSimilarNgrams to be f (minStrLen, N)
13: if numOfSimilarNgrams ≥ requiredNumOfSimilarNgrams then
14: return true
15: else
16: return false
17: end if
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CHAPTER 6. GENERAL CONCLUSIONS

In this dissertation, we have described three methods for learning Bayesian network structures as

well as our session identification and analysis for people search within a professional social network.

In Chapter 2, we develop a dynamic programming (DP) algorithm which uses the full Bayesian

model averaging to compute the exact posterior probability of any subnetwork. Such an algorithm

avoids the bias problem inherent in previous work (Koivisto and Sood, 2004; Koivisto, 2006) and is able

to compute the exact posterior probability of a subnetwork inO(3n) time and the posterior probabilities

for all n(n−1) potential edges in O(n3n) total time. We demonstrate the applicability of the algorithm

on several data sets with up to 20 variables.

In Chapter 3, we develop a DP algorithm for finding the k-best Bayesian network structures. Then

we propose to compute the approximate posterior probability of any hypothesis of interest by Bayesian

model averaging over these k-best Bayesian networks. We present empirical results on structural dis-

covery over several real and synthetic data sets and show that our method outperforms the score-based

method and the state-of-the-art MCMC methods.

In Chapter 4, we develop new algorithms for efficiently sampling Bayesian network structures

(DAGs) of moderate size. The sampled DAGs can then be used to build estimators for the posteri-

ors of any features. Our algorithms address the limitations of the exact algorithms previously proposed

so that the posteriors of arbitrary non-modular features can be estimated when the size of the Bayesian

network is moderate. We theoretically prove good properties of our estimators and empirically show

that our estimators considerably outperform the ones from previous state-of-the-art methods.

In Chapter 5, we perform session analysis on the domain of people search within LinkedIn profes-

sional social network. We propose two effective and efficient refinements to the original content-based

session identification method and show the excellent identification performance of the refined method

in the domain. Using our refined content-based method as the gold-standard, we then evaluate the per-
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formance of the time-based session identification method and find the optimal time-out threshold in the

domain. Finally, we analyze several features of identified sessions to provide more insights into the

nature of the domain.
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