
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Reasoning with qualitative preferences for
optimization of component-based system
development
Zachary James Oster
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Oster, Zachary James, "Reasoning with qualitative preferences for optimization of component-based system development" (2013).
Graduate Theses and Dissertations. 13341.
https://lib.dr.iastate.edu/etd/13341

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F13341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13341?utm_source=lib.dr.iastate.edu%2Fetd%2F13341&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Reasoning with qualitative preferences for optimization of

component-based system development

by

Zachary James Oster

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Samik Basu, Major Professor

Vasant Honavar

Robyn R. Lutz

Andrew S. Miner

Tien N. Nguyen

Iowa State University

Ames, Iowa

2013

Copyright c© Zachary James Oster, 2013. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. INTRODUCTION . 1

1.1 Component-Based Systems: An Overview . 1

1.2 Challenges in Developing Optimal Component-Based Systems 2

1.3 A New Framework for Component-Based System Development 5

1.4 Contributions of This Work . 7

1.5 Organization . 8

CHAPTER 2. RELATED WORK . 10

2.1 Component-Based Software Systems . 10

2.1.1 Web Service Composition . 11

2.1.2 Software Product Lines . 16

2.2 Goal-Oriented Requirements Engineering . 18

2.3 Preference Reasoning . 22

2.3.1 Quantitative Methods . 22

2.3.2 Qualitative Methods . 24

CHAPTER 3. COMPONENT-BASED SYSTEMS: DEFINITIONS AND

CORE CONCEPTS . 27

3.1 Entities, Components, and Systems . 27

iii

3.2 Traits . 28

3.3 System Requirement . 30

3.4 Preferences . 32

CHAPTER 4. SYSTEM MODELING, REALIZATION, AND VERIFICA-

TION USING MULTIPLE FORMAL METHODS 34

4.1 Example: Medical Records Management . 37

4.2 Problem Decomposition and Modeling . 39

4.3 Identification of Promising Component Sets . 41

4.4 System Realization and Verification . 45

CHAPTER 5. MODELING, REFINING, AND APPLYING QUALITA-

TIVE PREFERENCES OF STAKEHOLDERS 50

5.1 Example: Preferences between Optional Goals of a System 51

5.2 Formalizing Preferences as a CI-Net . 54

5.3 Consistency Checking and Dominance Testing in CI-Nets 55

5.3.1 Kripke Structure Modeling of CI-Net Semantics 58

5.3.2 Model Checking for Verifying Consistency and Dominance 63

5.3.3 Preference Ordering over Sets of Optional Traits 65

5.4 Determining the Most Preferred Alternatives 68

5.5 Implementation and Preliminary Results . 72

CHAPTER 6. A NEW FRAMEWORK FOR DEVELOPING OPTIMAL

COMPONENT-BASED SYSTEMS . 75

6.1 Defining the Problem Space . 77

6.2 Identifying and Modeling the Specific Problem to Solve 79

6.2.1 Identifying the Traits for the System . 80

6.2.2 Defining the System Requirement . 80

6.2.3 Determining Preferences over Traits . 82

6.3 Defining the Solution Space . 84

6.4 Identifying Optimal Solutions for the Problem 87

iv

6.5 Constructing an Optimal Solution and Verifying Correctness 90

6.6 Implementation and Evaluation Plan . 92

CHAPTER 7. CONCLUSION . 98

7.1 Summary . 98

7.2 Future Research . 100

BIBLIOGRAPHY . 105

v

LIST OF TABLES

Table 4.1 List of properties that contribute to satisfying privacy requirement . . 38

Table 4.2 Sample sets of services that satisfy leaf-level properties in Figure 4.1 . 43

Table 5.1 Steps to find ordering of optional goal sets for online book sales example 69

Table 5.2 Results of running preference analysis tool on three case studies 74

Table 6.1 Criteria for evaluating our system development framework 96

vi

LIST OF FIGURES

Figure 2.1 Trentino Transport goal model, taken from [80] 21

Figure 4.1 AND-OR tree showing decomposition of requirements in Table 4.1 . . 41

Figure 4.2 AND-OR graph showing decomposition of requirements for two related

systems . 49

Figure 5.1 Online book sales goal model, taken from [44] (via [60]) 51

Figure 5.2 Induced preference graph for CI-net in online book sales example . . . 57

Figure 5.3 Kripke structure encoding of part of an induced preference graph . . . 64

Figure 6.1 Structure of our framework for developing optimal component-based

systems . 78

Figure 6.2 Goal model for HelpMeOut service . 82

Figure 6.3 Induced preference graph for CI-net statements in HelpMeOut example 85

Figure 6.4 Repository of available component services for HelpMeOut example . . 87

Figure 6.5 States and transitions of the service composition for HelpMeOut 92

Figure 7.1 Time and memory usage for checking CI-net consistency with Cadence

SMV [63] . 102

vii

ACKNOWLEDGEMENTS

Many people and organizations have supported and guided me throughout my graduate

education, so it is fitting that I should recognize a few of them here. Without their support,

my time in the graduate program at Iowa State would not have been as fulfilling or as successful.

First, I thank the National Science Foundation for their partial support of my research

through grants CNS0709217, CCF0702758, and CCF1143734. I also thank Glenn Luecke and

the rest of the High Performance Computing Group in the IT Services department at Iowa

State for introducing me to research in high-performance computing, as well as the support

their assistantship (in cooperation with Cray, Inc.) provided.

As important as funding is, it is much more important to have good mentors, and I think

I have had one of the best in my major professor Samik Basu. His guidance, patience, and

openness have been vital for my growth as a researcher and teacher. I also appreciate the

time and advice given by the other members of my committee. Ganesh Ram Santhanam has

been a valuable colleague, mentor, and source of inspiration throughout my graduate work;

his research on preference reasoning enabled much of the work presented in this dissertation.

Shashi Gadia kindly agreed to substitute for another committee member during my final defense

of this dissertation on very short notice; I thank him for his generosity on that day and for

sharing his wisdom at many other times during my years at Iowa State.

My colleague Michelle Ruse deserves special mention here. Michelle and I have given each

other a great deal of advice and encouragement throughout our journeys to the Ph.D., and I

have her to thank for helping me through my first independent teaching experience.

Finally, I thank my family for their support of my academic pursuits throughout the years.

In particular, I thank my wife Carrie for all of her love, support, and understanding, and I look

forward to the wonderful things we will do together in the future.

expresses requirements in two different

viii

ABSTRACT

A component-based system is a set of entities that work together in well-defined ways to

satisfy a given requirement specified by the stakeholders for the system. This requirement

can be modeled as a set of combinations of traits, which represent acceptable alternatives

for providing the required functionality. A system satisfies its requirement if and only if it

provides one of the required sets of traits in its entirety. Beyond the requirement, system

stakeholders may also have preferences with respect to optional functionality that could be

provided by a system, tradeoffs between non-functional properties, or other system design

options. This work focuses on integrating support for both qualitative preference reasoning and

formal verification into the component-based system design process in order to choose a set of

components for the system that, when composed, will (1) satisfy the stakeholders’ requirement

for the system and (2) provide a set of traits that is optimal with respect to the given preferences.

Our primary research objective is to develop a generic, modular, end-to-end framework for

developing component-based systems of any type which are correct according to the system

requirement and most preferred with respect to the stakeholders’ preferences. Applications of

the framework to problems in Web service composition, goal-oriented requirements engineering,

and other areas will be discussed, along with future work toward integrating multi-stakeholder

preference reasoning and partial satisfaction of traits into the framework.

1

CHAPTER 1. INTRODUCTION

1.1 Component-Based Systems: An Overview

A component-based system (e.g., [39, 40]), sometimes called a compositional system, can be

defined as a set of components that are selected from a (possibly large) set of available entities

and then composed according to one or more composition function(s) to form a system that

satisfies a given requirement specified by the stakeholders in the system. These stakeholders

include the owners and operators of the system, but may also include users, developers, mar-

keters, maintenance staff, management, and others as needed in the setting where the system is

to be used. Along with research specifically oriented toward component-based software systems

(see [38, 39, 40, 47] for some surveys), component-based software development has manifested

itself in several important ways in recent years. Web service composition [2], in which small,

publicly available services with well-defined and relatively simple interfaces are combined to

form useful online software applications, has been used increasingly widely by Web and in-

tranet application developers (e.g., [87]). The widespread adoption of software product line

engineering [23] in industry is another notable example of the success of a component-based

approach to software development. Both of these approaches to component-based software

system development are discussed further in Section 2.1.

Component-based software development is not limited to a few specific paradigms. In fact,

most software system development problems can be modeled as instances of component-based

system development. As part of a standard system development process, software engineers

decompose the overall problem to be addressed into one or more layers of subproblems. Each

subproblem is then solved by one or more “components”, which may be either previously

developed software modules or entirely new code written specifically to solve the subproblem

2

in question. These components are then linked together in some way to form a unified software

system.

Developing a system in a component-based manner can have significant advantages over

more traditional software development methods where every piece of software in the system is

developed specifically for that system. If the inputs, outputs, behaviors, and other properties

of each component are clearly and correctly documented and if the components are designed to

be interoperable, then using previously developed software components can save a great deal

of time and effort [42, 45]. In theory, large systems can be built almost entirely from pre-

existing components or subsystems purchased from vendors (commonly called “commercial-

off-the-shelf” or COTS software) with only limited effort required to integrate the components

into a cohesive system, although such an approach involves significant challenges and risks in

practice [41].

1.2 Challenges in Developing Optimal Component-Based Systems

Although there are notable advantages to component-based system development, it is diffi-

cult to develop component-based software systems that fully satisfy their stakeholders’ needs.

Stakeholders express their needs for a specific system to be developed as a requirement, which

describes the minimum collection of traits or properties that the system must provide in order

to be acceptable to the stakeholders. More often than not, the process of determining the

requirement for the system is iterative: a set of sub-requirements or even a prototype system

is presented to the stakeholders and rejected, the reasons for the rejection are obtained by the

system developers and used to refine the sub-requirement set or prototype, and then the cycle

is repeated until a satisfactory system requirement or design is identified (or until a deadline

arrives, whichever comes first). This cycle of iterative refinement appears to be a natural and

unavoidable part of system requirement and preference modeling [27]. As stakeholders develop

a better understanding of their needs through various iterations of the stated system require-

ment, the requirement can be stated more accurately and in greater detail, possibly being

decomposed into additional levels of sub-requirements. The problem is that systems are often

constructed and delivered before sufficient iterations of this process have been completed, only

3

to find that the delivered system does not satisfy the stakeholders’ needs well enough. Frederick

Brooks’s observation of this phenomenon led him to advise system developers in [15] to “plan

to throw one [system] away; you will, anyhow.”

Instead of building a system and then throwing it away, we aim to present alternative sub-

requirement sets or system designs for stakeholders to compare, evaluate, and refine before

choosing a system to build. To do so, the system designers must be able to correctly model

each sub-requirement given by the stakeholders in order to provide a strong guarantee that

the completed system fully satisfies them. Unfortunately, current component-based system

development methods such as those described in Section 2.1 are often limited to representing

all parts of the system requirement using a single formal language. While the one chosen

formalism may be exactly suited to modeling and verifying one specific type of trait (e.g.,

low-level behavioral properties such as deadlock-freeness or fairness properties may be modeled

using a property written in a temporal logic), it may be difficult or impossible to express other

types of traits using that formalism. Therefore, one important challenge in component-based

system development is to coordinate the specification and verification of sub-requirements for a

system using multiple formal methods. Ideally, component-based system development methods

should take advantage of natural linkages between the requirements for a system and the sets

of components that can satisfy them, helping the system’s stakeholders understand the possible

implications of changes to the requirements.

Beyond the basic requirement, system designers must also account for optional traits that

stakeholders would like the system to possess if possible. These optional traits can include

certain non-functional properties, optional features, enhanced implementations of required fea-

tures, and other aspects that are not necessary to fulfill the basic purpose of the system but

are desirable to the stakeholders. Because it is usually impossible to provide all of the op-

tional traits that stakeholders desire in a system, it is important for system designers to work

together with stakeholders to determine which sets of optional traits the stakeholders prefer

most strongly. The system designers can then attempt to construct a component-based system

that provides a preferred set of optional traits while fulfilling the essential requirement for the

system.

4

Unfortunately, many commonly employed methods for representing and reasoning with

stakeholders’ preferences cannot accurately model the full complexity and nuance of stake-

holders’ preferences. Such preference reasoning methods often follow a set procedure: (1) ask

stakeholders to quantify the relative importance of a number of traits, (2) obtain data to quan-

tify the extent to which each design option provides each trait, (3) execute a multi-criteria

decision making (MCDM) or multi-objective optimization algorithm with these two sets of nu-

meric data, and finally (4) provide a single “preference” or “quality” value produced by the

optimization algorithm for each value. Among other shortcomings, these approaches to pref-

erence reasoning assume both that stakeholders consciously know their true preferences and

that stakeholders are able to quantify these preferences within an expected level of precision.

Such approaches also rely on the assumption that the given MCDM or optimization algorithm

is the correct one to rank the given design options for the problem to be solved. Therefore,

another significant challenge in developing optimal component-based systems is to apply more

accurate and flexible methods to model and reason with stakeholders’ preferences over optional

traits, then select system components according to those preferences. An ideal preference rea-

soning technique for component-based system development would evaluate the possible design

options (i.e., sets of components) with respect to the given preferences in a way that is not

unnecessarily dependent on one specific preference aggregation algorithm.

Finally, even when the requirement and preferences of the stakeholders are correctly mod-

eled and a system design that appears to fulfill them is identified, it is still necessary to im-

plement the system by composing the selected components and then verify that the completed

system actually does satisfy the given requirement and preferences. As an example, a set of

components may be selected so that every part of the overall requirement is provided by some

selected component(s), but unexpected interactions between components may prevent the com-

pleted system from fulfilling some necessary sub-requirement. Many component-based system

development frameworks, techniques, and tools that provide support for verification of the final

system against formal requirements have already been presented in the computer science and

systems engineering literatures, as we will see in Chapter 2. Few of these approaches, however,

provide robust and flexible support for formal specification and verification of system require-

5

ments using multiple specification formalisms; instead, they generally restrict themselves to a

single formalism. Furthermore, because of the problems inherent in commonly used quanti-

tative preference reasoning methods, existing component-based development approaches that

use such methods cannot provide strong formal guarantees that the design choices made dur-

ing the development process are the best possible with respect to the stakeholders’ expressed

preferences. To move beyond previous frameworks, the challenge that must be addressed is to

present a unified framework for component-based system development that composes a set of

selected components into a unified system, formally verifies that the system fully satisfies its

requirement, and ensures that the system provides the optional traits it is committed to provide.

1.3 A New Framework for Component-Based System Development

In this work, we propose a new framework for component-based system development, which

is essentially a component-based system for developing component-based systems. Our new

framework addresses each of the principal challenges discussed in the previous section: (1) help

stakeholders model the given requirement for the system in greater detail by coordinating the

formal specification of sub-requirements using multiple formal methods, (2) help system de-

signers accurately represent and reason with stakeholders’ preferences regarding optional traits

that the system may have, and (3) once a preferred option is identified, construct (realize) a

system from the selected components and verify that the resulting system fulfills its commit-

ments regarding the requirement that it claims to satisfy and the optional traits that it claims

to possess.

The first challenge is to help stakeholders better express their needs for the system by de-

composing the overall system requirement into a number of sub-requirements, which can each

be specified using different formalisms. This decomposition into sub-requirements is a natural

part of system development [89], but too many component-based system design frameworks

make the generous assumption that stakeholders understand and can easily express their spe-

cific needs in detail at the start of system development. Additionally, if sub-requirements will

be formally verified, most existing frameworks assume that one formal language will be used

to specify all sub-requirements. Our framework addresses this challenge by allowing stakehold-

6

ers to first state several high-level sub-requirements and then decompose each of these into

multiple levels of related simpler traits. The overall requirement is eventually encoded as a

Boolean combination of low-level traits, which can each be specified using a different specifi-

cation method. After the selected components are composed into a unified system, the system

can then be verified against each low-level trait using an appropriate verification technique for

each specification method used.

Once the stakeholders and system designers have identified the problem they wish to solve,

the second challenge is to help system designers accurately model and reason with stakeholders’

preferences about optional traits of the system in order to focus on the most preferred choices

within the space of possible system designs (i.e., sets of components) that satisfy the given

requirement. We assume in this work that one or more repositories of components are available

and that appropriate search methods exist for computing the set of possible systems that can

be created from these components. Based on the information each component provides about

the properties it satisfies, it is possible to compute which sets of components are expected to

satisfy the overall requirement when composed to form a system. We propose an automated

method for computing this set of correct system designs, which will save time compared to

doing this analysis manually and may also help stakeholders visualize the consequences of their

expressed requirement. We also present automated methods for deciding whether a group

of set-based qualitative preferences expressed by a stakeholder (or group of stakeholders) is

consistent. Intuitively, a set of preference statements is consistent if no subset of the stated

preferences can be interpreted to mean that a certain set of optional traits is preferred to itself;

consistency of preferences is defined more formally in Section 5.3. If the set of preferences is not

consistent (i.e., if one preference conflicts with other preferences), our methods automatically

identify which preferences are contributing to the inconsistency, allowing the stakeholders to

decide which preference(s) to relax or modify in order to achieve consistency.

After a consistent set of preferences is agreed upon, automated qualitative preference rea-

soning can be applied to determine which system design option(s) will be most preferred based

on the given preferences. Note that more than one option may be presented to the stakeholders

if multiple options are equally preferred, instead of forcing a decision about the single “best”

7

system based on quantitative preference valuations that may not accurately represent the stake-

holders’ true preferences. Simply narrowing the space of possible options to this extent may

allow the stakeholders to see the option that they most prefer; they may alternatively discover

that they dislike all of the “preferred” options, in which case they can reconsider and possibly

modify their specified preferences.

When the stakeholders have selected a promising set of components to be composed into

a system, the third challenge is to compose the selected components and then verify that the

completed system satisfies its commitments regarding the overall requirement that it must sat-

isfy and the optional traits it claims to provide. Our proposed system development framework

serves as a “conductor” for this realization and verification process. It guides composition ac-

tions to realize the system piece-by-piece, and it coordinates calls to the specified verification

methods for each required trait (sub-requirement) and each optional trait that the system is

expected to provide based on the descriptions of its components. If the “first-choice” system

design fails the composition or verification process, our framework can repeat the process with

an alternative that is similarly preferred or slightly less preferred, continuing until a completed

and verified system can be returned or until all possible options are exhausted.

Note that this proposed framework does not make system design decisions for the stake-

holders. While this may seem like an attractive option for stakeholders and system designers

alike, we believe that it is not the role of software engineers or system designers to make major

system requirements or design decisions without meaningful consultation with stakeholders.

Instead, the proposed framework aims to provide easily understood justifications, similar to an

“audit trail”, for every decision made throughout the system development process. The overar-

ching objective of our framework is to support, explain, and (when needed) clarify requirements

or design decisions that the stakeholders must make in order for the stakeholders and system

designers to create a system that fulfills the stakeholders’ needs as fully as possible.

1.4 Contributions of This Work

The contributions of this work follow the threefold motivation given in the previous section.

They are summarized as follows:

8

1. We present a general methodology for automated formal analysis of stakeholders’ pref-

erences. This methodology incorporates an algorithm for automated identification of

inconsistent preferences and generation of feedback to help stakeholders locate and re-

solve any inconsistencies in their combined set of preferences.

2. We define a full formal framework for modeling, decomposition, and analysis of any

given component-based system development problem. This formal framework facilitates

modeling of requirements, stakeholder preferences, and their interplay in forming the

space of possible solutions to the given system development problem.

3. We automate the coordination of all necessary tasks for realizing a given component-

based system, constructing the system’s verification obligation (i.e., the set of traits that

it is expected or committed to provide), and verifying that the completed system truly

fulfills its verification obligation.

4. We provide formal correctness (soundness and completeness) results for our preference

reasoning and system development techniques to the greatest extent possible.

5. We discuss the implementation details and experimental results for those parts of our over-

all system development framework that have already been implemented, and we present

a “roadmap” for completing and evaluating the implementation of the entire framework.

1.5 Organization

The remainder of this dissertation is organized as follows:

• Chapter 2: An overview of previous work in the areas of component-based systems,

requirements engineering, and preference reasoning is given, along with commentary on

how it has informed our work.

• Chapter 3: The basic concepts used in our work, such as traits, requirements, and pref-

erences, are introduced and formally defined. All of these concepts are used throughout

the remaining chapters.

9

• Chapter 4: Our existing techniques for realization of a component-based system and

formal verification of its properties using multiple formal methods are presented.

• Chapter 5: Our work on representing and reasoning with qualitative preferences over

traits of a component-based system is explained, and a method for applying these pref-

erence reasoning techniques to select preferred system designs is presented.

• Chapter 6: A new framework for realizing an optimal (correct and highly preferred)

component-based system and verifying that the system satisfies its verification obligation

is described in detail. This framework ties together elements presented in Chapters 3, 4,

and 5. The usefulness of the framework is demonstrated in the context of developing a

component-based system to coordinate the operations of a roadside assistance business.

• Chapter 7: The contributions of our work thus far are summarized, along with our plans

for long-term future research along these lines.

10

CHAPTER 2. RELATED WORK

This chapter provides an overview of previous work that has informed our research in this

area. Section 2.1 describes previous approaches to the modeling and creation of component-

based systems, including significant work toward improving development of two well-known

types of component-based systems: Web service compositions and software product lines. In

Section 2.2, we provide an overview of related work in the area of software requirements engi-

neering, with a focus on the goal-oriented requirements engineering methodology. Section 2.3

examines the relative merits of various qualitative and quantitative preference modeling and

reasoning methods in order to explain our focus on set-based qualitative preferences in this

work. The remainder of this dissertation will weave threads from these areas together into our

framework for developing optimal component-based systems.

2.1 Component-Based Software Systems

A component-based software system is, simply put, a software system that is constructed

from a set of pre-existing software components instead of being built with code that is en-

tirely new or unique to that particular system. For decades, both academic and industrial

researchers have been trying to find new and improved ways to develop new software systems

using previously developed components. One of the challenges inherent in creating a framework

for developing systems in a component-based manner is that the word “component” can mean

many things. Szyperski [83] provisionally defines a component as having three characteristic

properties, namely “that it is a unit of independent deployment; a unit of third-party compo-

sition; and it has no persistent state.” The Workshop on Component-Oriented Programming

at ECOOP 1996 [84] defined a component more precisely as follows:

11

A software component is a unit of composition with contractually specified interfaces

and explicit context dependencies only. A software component can be deployed

independently and is subject to composition by third parties.

Numerous frameworks and approaches for component-based system development have been

presented in the research literature. A large number of existing component-based system devel-

opment frameworks are summarized and categorized in [39, 40], while additional formal models

for aspects of component-based software development are discussed at length in [38, 47]. Two

areas where many of the concepts of component-based systems have been widely and success-

fully put into practice are Web service composition and software product lines. We introduce

work that has been done in these areas in Sections 2.1.1 and 2.1.2 respectively.

2.1.1 Web Service Composition

Web services [2] are self-contained and self-describing programs that are made available

for use over a network and are designed for interoperability with other Web services across

different platforms. Web service composition [69] is the process of identifying and composing

individual Web services into a single composite service (or composition) in order to provide

certain functionality required by the user. However, to truly fulfill the needs of its users, a

composite service should also provide a set of non-functional properties or NFPs (e.g., cost,

availability, and throughput; sometimes called quality of service (QoS) properties in this setting)

that is optimal with respect to the users’ preferences. Therefore, the objective of the Web service

composition problem is to identify the most preferred possible composite service(s) among those

that satisfy the given requirements.

Many Web service composition frameworks have been proposed in the past decade as the po-

tential for using Web service composition for rapid development of new Web-based applications

has been recognized. All service composition frameworks are designed to produce composite

services that satisfy their stakeholders’ functional requirements. Some also account for low-

level behavioral constraints or non-functional properties, but very few integrate all three of

these aspects in a unified way. We are especially interested in service composition frameworks

12

that apply formal methods to guarantee satisfaction of functional requirements or provision of

non-functional properties (or both). These methods, many of which are surveyed in [86], can

formally guarantee the correctness of the composite services in terms of their required function-

alities. Many of these composition frameworks share a similar basic structure for characterizing

and solving the Web service composition problem:

1. Transform each service’s specification into a formal model.

2. Translate each functional requirement into a formally specified property.

3. Provide an algorithm for choosing and composing services such that the formal model of

the resulting composition satisfies the required properties.

Differences between service composition frameworks are based on the differences in the

semantics assigned by each framework to the given descriptions of Web services and properties.

In the Roman model used by Berardi et al. [16] and the MoSCoE framework developed by

Pathak et al. [68], both the available component services and the desired functionality of the

composition are represented semantically as labeled transition systems (LTS). Hamadi and

Benatallah [33] model services as Petri nets. Pistore et al. [70], in contrast, model Web service

composition as a constraint satisfaction problem, allowing them to take advantage of existing

work toward efficient solutions to such problems. Lin et al. [46] treat Web service composition

as a planning problem, using description logic [7] to express the desired functionality.

However, each of these approaches to the service composition problem specifies one type

of semantics that must be used to interpret the descriptions of the available component ser-

vices and the desired functionality of the composition. In [59], we introduced a new “meta-

framework” for service composition that supports the use of multiple formal semantics, i.e.,

more than one specification language, to specify and verify functional requirements for a com-

posite service. This meta-framework, which forms part of the theoretical foundation of the

component-based system development framework described in this dissertation, is presented in

greater detail in Chapter 4.

Several existing approaches to the Web service composition problem are similar to our meta-

framework in some respects. Both [46] and [90] handle Web service composition by decomposing

13

a task into individual subtasks and then choosing services that can perform each subtask, as

we do in our approach. However, [46] and [90] assume the existence of ontologies that define

the semantics of the problem to solve and the properties to satisfy, and they further assume

that properties are specified using some form of description logic.

In [53], the “type-aware” Web service composition problem, where the functionality specified

by a goal service must be provided and a set of type-correctness constraints must be satisfied,

is reduced by Nam et al. to an instance of the Boolean satisfiability problem (commonly known

as the SAT problem for short) by taking advantage of a type hierarchy that is included in

the problem definition. To the best of our knowledge, this is the only existing approach other

than our “meta-framework” in [59] that directly reduces a type of Web service composition to

Boolean satisfiability. Unfortunately, the framework in [53] considers only properties that can

be expressed as inputs or outputs of the goal service, and it forms compositions based only on

compatibility between services. In contrast, our meta-framework relies on the decomposition of

the given property specification to generate a solution. It requires neither a type hierarchy nor

ontologies to produce a solution, and it supports composition and verification using different

formalisms, including description logics and goal services.

In [87], ter Beek et al. focus on verification of functional requirements in a scenario similar

to our example in Chapter 4. The service-oriented architecture in [87] is modeled as a set of

state machines, which are illustrated as UML-like diagrams. Temporal constraints representing

functional requirements and behavioral constraints are specified in the temporal logic UCTL

(an extension of CTL) and verified over the diagrams using an on-the-fly model checking tool.

Though [87] does not consider non-functional properties, it shows that model checking for

requirement verification is feasible in an industrial-scale application of service composition.

However, the service composition frameworks discussed so far in this section do not allow

for consideration of stakeholders’ preferences over non-functional (or other optional) proper-

ties during the process of selecting components for the composition. Other researchers in the

service-oriented computing community have developed methods for identifying compositions

whose non-functional properties are optimal with respect to a set of user preferences. Some

of these methods are described in [3, 72, 74, 92]. The composition method presented in [92]

14

is representative of many techniques that consider both functional and non-functional proper-

ties. In [92], the entire problem is modeled as an integer linear programming problem, where

simple syntactic matching of inputs and outputs is applied to form the composite service and

quantitative valuations are used to model preferences over NFPs.

Two other methods for service composition that provide robust support for both func-

tional and non-functional properties are the LOEM method [72] and the method of Alrifai

and Risse [3]. The LOEM method works by identifying services for individual subtasks, ap-

plying local selection to identify several services for each subtask that are likely to produce

a preferred composition, enumerating all possible compositions that can be created from the

services identified for each subtask, and then choosing the best composition using mixed inte-

ger programming (MIP). The method presented by Alrifai and Risse in [3] decomposes global

non-functional constraints into local constraints and then applies MIP to determine the opti-

mal composition to solve the given problem. Unfortunately, both [3] and [72] deal specifically

with quality-of-service (QoS) properties, leaving other types of optional traits unsupported. In

addition, although [72] discretizes services’ QoS property valuations into a finite number of

ranges, the methods given in [3] and [72] are restricted to using only quantitative valuations

for non-functional properties, since compositions are selected by maximizing a utility function.

However, this problem is known to be NP-hard for non-functional properties with quantita-

tive valuations [3]. Composition methods that consider non-functional properties also tend to

lack the flexibility that our meta-framework from [59] provides in allowing the use of different

formalisms to specify requirements and appropriate composition techniques.

In contrast, Santhanam et al. [74] use qualitative valuations to select services to compose

based on a set of preferences among NFPs expressed by the stakeholders in a different language

for qualitative preferences, namely tradeoff-enhanced conditional preference networks (TCP-

nets) [14]. This approach informed our extension of our previous “meta-framework” [59] to

handle global qualitative preferences over non-functional properties [62]. After decomposing

the functional requirements for a composition as in [59], our method in [62] then applies NFP

preferences to perform local selection of preferred component services. The result is a ser-

vice composition framework that will always identify a composition which satisfies functional

15

requirements and is at least as preferred as any other composition that satisfies the same func-

tional requirements, as long as all component services being considered are compatible with

each other. The strategy presented in Chapter 5 of this work for handling NFP preferences is

inspired in part by [62] and [74].

A service composition method that specifically focuses on verifying that a composition

provides a given set of NFPs is the method of Sun et al. in [82]. Unlike our meta-framework

in [62], the method in [82] does not attempt to satisfy preferences over various NFPs that

the system might provide, nor does it select services to participate in candidate compositions

according to the NFPs that they do or do not provide. This method applies an existing service

search and composition technique to identify the space of possible service compositions that

fully satisfy the given functional requirement for the system. Although the example in [82]

uses a composition algorithm from [66], any technique that produces a finite-state automaton

for each composition could potentially be used in this context, as in our meta-framework.

Each required NFP is then modeled as a finite-state automaton, after which the synchronous

product of the automata representing all NFPs to be verified is computed. Sun et al. show

that a given service composition provides a certain non-functional property (or composition of

properties) if and only if the automaton for the composite service simulates the automaton for

the property [82]. This verification method for NFPs can be freely applied both within the

context of our meta-framework as described in [59, 62] and as part of the component-based

system development framework presented here.

The vast majority of service composition frameworks that handle non-functional properties

suffer from one or more serious drawbacks that limit their applicability, such as the following:

• They frequently treat all functional requirements as mandatory, choosing between sev-

eral versions of the same low-level functionality instead of considering diverse low-level

implementations of the same high-level functionality.

• They typically do not focus on verifying low-level behavioral constraints.

• They often consider only NFPs that affect the “quality of service” of the composition but

ignore other important NFPs, especially those that are not easily quantified.

16

• They typically require that the names and/or structures of a service’s accepted inputs

and available outputs must exactly match those of other services.

One existing service composition framework that successfully integrates verification of stake-

holders’ functional requirements, low-level behavioral constraints, and non-functional properties

is the TQoS algorithm [31]. TQoS considers both transactional and QoS properties when com-

posing services, selecting services that have locally optimal QoS for each part of the desired

functionality. Additionally, TQoS guarantees by construction that any composite services it

produces satisfy a standard set of transactional constraints. The VeriComp service composi-

tion framework, introduced in [58] and used as a running example in Chapter 6 of this work,

is another framework that was developed specifically to unify verification of these three types

of composite service traits.

2.1.2 Software Product Lines

Software product lines [91] are families of software systems that are designed to take advan-

tage of their common aspects and predicted variabilities. Systems that are part of a software

product line share common assumptions and often share common code in their implementation

but differ from each other in significant ways. For example, different software products in a

product line may provide different sets of features, varying levels of service, or compatibility

with different hardware systems. Developing software systems as a single product line can

produce systems that are more reliable and better customized than systems that are devel-

oped from the ground up, while saving effort that might otherwise go into reimplementing

components or features that were developed for a closely related software system.

The concept of a software product line has a relatively long history, which can be traced

back to David Parnas’s concept of “program families” [64]. Parnas defined a program family

as a set of programs that have sufficiently many properties in common that it is best to first

examine the shared properties of all programs in the set before studying the specific properties

of individual programs. Programs in a program family have a common “ancestor”, which

represents the programs’ shared properties. It follows that a new member of the program family

can be developed by starting from the design decisions (and perhaps the code) contained in the

17

ancestor program, then completing the new program with additional decisions for the specific

environment where it will be applied.

Software product lines can be developed using a process called scope, commonality, and

variability (SCV) analysis [23]. This process determines the product line’s commonalities,

which are the characteristics (e.g., basic features, components, or design decisions) that are

shared among the entire set of systems in the product line, along with its variabilities, which

are assumptions that are not true of all systems in the product line or other aspects that vary

among different members of the product line. Each variability can take a certain range of

values; a software product can be generated, sometimes automatically or semi-automatically,

by specifying a particular set of values for the variabilities and taking advantage of previously

implemented commonalities. The Family-Oriented Abstraction, Specification, and Translation

(FAST) approach to developing software product lines [30], which makes use of SCV analysis,

is one approach that has been successfully adopted for product line development in industry [6].

Having a well-defined specification for the scope, commonalities, and variabilities of a soft-

ware product line makes it possible to create and deliver versions of standard systems that

are customized for specific stakeholders’ needs. This could be accomplished in some cases

by selecting additional components to couple with the base system, where the selection of

components is guided by stakeholders’ preferences over the variabilities of the system. Many

researchers in the software product line engineering community have proposed techniques for

such preference-based customization within a software product line. There has also been an

effort in the software product line research community to automate verification of requirements

among the many software systems that belong to a given product line.

As in the Web service composition setting, a number of formal specification and verification

languages have been applied to address these problems. Mannion [49] uses a hierarchical lattice

of requirements that are specified in first-order propositional logic to verify a product line model

or particular software systems created from that model. Batory [8] employs a formal grammar

to translate details of product-line features that are specified within a feature diagram [36] into

propositional-logic statements, then applies a Boolean satisfiability (SAT) solver to determine

whether the selected features are compatible with one another. To assist in this process,

18

Schobbens et al. [79] provide a unified formal semantics for seven types of feature diagrams.

The relationship between various types of feature diagrams and propositional-logic statements

is examined in greater detail by Czarnecki and Wasowski in [25], and the feasibility of this

approach is explored by Mendonça et al. in [51] and more recently by Apel et al. in [5].

However, existing approaches for product-line verification tend to share many of the same

drawbacks as approaches for verification of Web service compositions. In particular, most

current applications of model checking for product line verification are restricted to verifying

the satisfiability of propositional logic statements, although Cordy et al. [24] have proposed

an approach that can handle numeric-valued features as well as features that appear multiple

times in the same software product. There is therefore a need for a product line verification

framework that can verify requirements specified in diverse formal languages, similar to our

service composition meta-framework in [59, 62].

2.2 Goal-Oriented Requirements Engineering

Although the discipline of requirements engineering (RE) is wide-ranging and difficult to

summarize in a single sentence, van Lamsweerde [89] broadly defines requirements engineer-

ing as “a coordinated set of activities for exploring, evaluating, documenting, consolidating,

revising and adapting the objectives, capabilities, qualities, constraints and assumptions that

the system-to-be should meet based on problems raised by the system-as-is and opportunities

provided by new technologies.” The practice of requirements engineering tries to avoid the

problem of developing “the wrong system”, i.e., a system that does not fulfill the needs of those

who are involved with building, maintaining, owning, or using it. A stakeholder in the system

is defined by van Lamsweerde [89] as “a group or individual affected by the system-to-be, who

may influence the way this system is shaped and has some responsibility in its acceptance.”

If a system does not satisfy the needs and desires of its stakeholders, large amounts of time

and money may be wasted in either reconfiguring the delivered system or, in the worst case,

discarding the new system completely and returning to the previous state of affairs.

Goal-oriented requirements engineering (GORE) [26, 88, 93] is a requirements engineering

methodology in which requirements for a system are defined in terms of goals or objectives

19

specified by the system’s stakeholders. The basic infrastructure of the GORE methodology as

applied in our research is a goal model, which is a formal model based on an AND-OR graph

that encodes the relationships that exist among a set of (required) goals GR and a set of tasks

GT ; a goal model may also incorporate a set of optional goals GO. A (required) goal describes

a condition, outcome, or state of the world that must be achieved [93], while a task indicates a

certain activity that an actor performs to fulfill or realize a required goal in full or in part [44];

in other words, each task realizes or operationalizes a goal.

Within the AND-OR graph at the core of the goal model, the goal located at the root

node of the graph (called the root goal) corresponds to the overall required functionality of

the system, while goals at intermediate levels of the graph (internal nodes) express portions of

the system’s functionality or alternatives for providing that functionality.1 Each goal may be

refined into one or more subgoals through either AND-decomposition, where a goal is divided

into subgoals that must all be satisfied in order to fulfill the original goal, or OR-decomposition,

where each subgoal indicates an alternative way to fully satisfy the original goal. Because tasks

specify (in full or in part) how particular goals will be fulfilled, they form the leaf nodes of

the goal model, where each task’s parent is the goal that it contributes to realizing. A correct

design in this context is a set of tasks that, when taken together, are sufficient to fully satisfy

the root goal.

Optional goals represent conditions that are desirable but are not vital to the system’s

correctness [44], such as non-functional properties. Optional goals need not be organized in a

unifying structure (though this is possible), but they are connected to the goal tree by contri-

bution links. Each link is labeled with MAKE (++) if the required goal supports (contributes

positively to) the optional goal or BREAK (--) if the required goal denies (contributes neg-

atively to) the optional goal. An optional goal in our model is satisfied if and only if it has

(a) no incoming BREAK links from any satisfied required goal and (b) at least one incoming

MAKE link from any satisfied required goal.
1For clarity of explanation, all example goal models used in this chapter and throughout the dissertation form

trees. Our techniques can be easily extended to work with any goal model that forms a directed acyclic graph
(DAG). In a goal model that is not a single tree, multiple “root” nodes may exist; each root node represents the
overall requirement for a different system, so only one root node is ever considered at a time.

20

A GORE goal model can be represented graphically for easier comprehension by both

requirements engineers and system stakeholders. Figure 2.1 shows a graphical representation

of a goal model, which is slightly modified from [80], that describes the hierarchy of required

goals, tasks, and optional goals for the public transportation system in the Trentino region

of Italy. Unshaded ovals indicate (required) goals, hexagons indicate tasks, and shaded ovals

indicate optional goals. Additionally, each goal node is annotated with AND or OR, which

denotes the way in which the goal is decomposed into subgoals. For instance, the root goal

Supply Public Transport Service, which represents the required overall functionality of the

system, is AND-decomposed into four subgoals. Each of the subgoals must be completely

fulfilled in order to realize the root goal. In turn, this implies that the root goal is satisfied if

and only if a set of tasks (leaf nodes, which are drawn as hexagons in Figure 2.1) are selected

from the goal model and implemented so that the combination of tasks is sufficient to satisfy the

AND-OR decomposition of the root goal. We have not considered a similar AND-OR structure

for the optional goals in order to simplify our explanation; however, there is no constraint that

prevents such decomposition of optional goals. Any contributions of required goals or tasks

to optional goals are denoted by dotted edges. For instance, the task Evaluate Alternative

Resources positively contributes to the optional goal Minimize Cost Per User, while the goal

Invest in the Service positively contributes to the optional goal Satisfy Users but negatively

contributes to the optional goals Minimize Cost Per User and Increase Profits.

It should be noted that other interesting and useful concepts can be incorporated into goal

models, e.g., softgoals (which cannot be simply “satisfied” or “unsatisfied” in the usual Boolean

sense [93]), temporal ordering of tasks, and labeled contribution links indicating the degree by

which a softgoal or optional goal is supported or denied by a goal or task (partial satisfaction

semantics). Although we have not considered these additional concepts at this point, our

techniques for preference specification and analysis are complementary to these concepts and

can be directly combined with them in the future. Our plans to add support for these concepts

to our system development framework will be discussed in Section 7.2.

21

OR

Cover
Services’

Costs

Decide
Services’

Cost

Estimate
Services’

Costs

Define
Profits to
Reach

Use
External
Funds

Serve Path

Obtain
Funds

Manage
Services’

Costs

Invest
in the

Service

Use Profits

Improve Old
Services Provide New

Services

Manage
Financial
Budget

Manage
Profits

Estimate
Sale Places

Add Sale
Points on
the Path

Increase Profits

Minimize Cost
Per User

Satisfy Users

Connect
Points

Manage
Mobility

Use Means
of Transport

Build
Infrastructure

Build Means
of Transport

Organize
Public

Competition

Choose
Company

Maintain Means
of Transport

Clean
Means of
Transport

Supply
Means of
Transport

Repair
Means of
Transport

Protect
Means of
Transport

Plan
Transport
Service

Timetable

Regulate
Reserved

Lanes

Public
Services in

Limited Areas

Define Path
(Favor Public

Traffic)

Create
Reserved

Lanes

Make Public
Service

Available

Transport Users
to Destination

Avoid
Fraud

Decide Sale
Strategy

Provide
Tickets

Verify
Tickets

Supply Public
Transport
Service

Evaluate
Alternative
Resources

Check
Drivers’
Attitudes

Check
Drivers’

Capabilities

Check
Drivers’
Health

Guarantee
Drivers’

Capabilities

Sell Tickets Protect Users

Promote
Respect for

the Law

Provide
Rules

Guarantee
User

Behavior

Forbid
Smoking

Ensure
Structures’

Integrity

Protect
from

Pollution

Monitor
Pollution

Provide
Comfort

Improve
Quality of Life

Provide
Visual

ComfortRespect
Rules

Use Special
Means of
Transport

Protect
User Health

Provide
Acoustic
Comfort

Provide
Postural
Comfort

Provide
Climate
Comfort

++

++

++

−−
++

−−
−−

++

AND

AND

AND AND
OR

AND

AND
AND

AND

AND

AND

AND

OR

AND

OR
OR

AND OR

AND

AND AND

AND

Figure 2.1 Trentino Transport goal model, taken from [80]

22

2.3 Preference Reasoning

2.3.1 Quantitative Methods

While any preference reasoning or multi-criteria decision making (MCDM) method can be

used to optimize the selection of traits to be satisfied by a component-based system, some types

of methods are better suited for this purpose than others. The vast majority of component-

based system development frameworks use quantitative methods, such as utility theory [37] or

the Analytic Hierarchy Process (AHP) [73], to represent and reason with preferences. These

methods rely on stakeholders providing exact valuations to indicate the relative preference of the

possible values for each trait and/or the relative importance of the traits under consideration.

The preference valuations are then used to formulate a numerical optimization problem, which is

then solved using integer linear programming or some other well-understood algorithm. Ideally,

this process should establish a correct total order over possible system designs.

Quantitative preference reasoning methods have proven useful in a number of decision-

making settings in industry, such as the applications described in [40, 73]. These methods are

particularly useful in situations where easily quantifiable traits (e.g., cost, capacity, utilization)

are being considered and where it is natural to specify preferences between pairs of individual

traits (as opposed to preferences among larger sets of traits). However, when designing a

component-based system, one cannot assume that the system’s traits are easily quantifiable nor

that all preferences are pairwise between individual traits. As a result, quantitative methods

have several notable drawbacks in this setting:

1. It is easy for a stakeholder to know with certainty that one trait A is more important

than another trait B. It is much more difficult for a stakeholder to be certain about how

much more important A is than B, and in fact stakeholders often do not consciously know

this information [27]. The use of quantitative preference valuations requires stakeholders

to make the latter type of assertion, directly or indirectly specifying numeric weights

that reflect the relative importance of the various traits. Given that the meaning of

“importance” is neither uniform across all preference reasoning methods nor well-defined

in most methods [18, 78], it is entirely possible that the given preference weights will fail

23

to reflect the stakeholders’ true views on the relative importance of the criteria being

considered.

2. Many multi-criteria decision making (MCDM) frameworks, including the popular Ana-

lytic Hierarchy Process (AHP) [73], require stakeholders to specify pairwise preferences

for all pairs of traits under consideration. This work can be time-consuming if many

traits are being considered, and it may seem to be entirely unnecessary drudgery from

the stakeholders’ perspective [27]. To save time, important traits may be omitted, arbi-

trary preference valuations may be assigned for pairs that are considered less important,

or other shortcuts may be taken, compromising the reliability of the decision-making

method’s results [13]. Some recently developed quantitative methods, such as Condi-

tional S-AHP [57], do address this particular shortcoming.

3. Stakeholders may not have meaningful preferences between some pairs or sets of traits.

Instead of representing indifference (i.e., lack of preference) between traits, quantitatively-

valued MCDM methods may consider these traits to be equally preferred. Because these

decision-making methods may consider such weak or nonexistent preferences to be just

as important as stronger preferences, the preference model may not accurately reflect the

stakeholders’ true preferences (or lack thereof); this may distort the results in unexpected

ways [18].

4. Because almost all MCDM methods define a total order over the set of options, they may

report that a given decision is clearly the most preferred when, in reality, several other

possible decisions may be “approximately” equally preferred (or even more preferred) to

the chosen decision [13].

Such sources of hidden error can give stakeholders a false sense of precision about the results

that these methods return. The single “most preferred” system design identified by one of these

methods can obscure alternative system designs that might provide a more acceptable solution

to the system design problem. On the other hand, the use of arbitrary or poorly-quantified

preference valuations and the omission of important traits may significantly reduce stakeholders’

confidence in the eventual results. Consequently, although quantitative methods are useful for

24

naturally quantifiable preferences (e.g., costs), using such methods for other types of preferences

may produce inaccurate or misleading results if proper care is not taken [13, 18, 27].

2.3.2 Qualitative Methods

To avoid the drawbacks associated with using quantitative preference reasoning methods

for component-based system development, our research focuses on reasoning with qualitative

preference valuations (or simply qualitative preferences) to optimize the selection of traits to

be satisfied by a component-based system. Qualitative preference reasoning techniques identify

different levels of preferences between traits or sets of traits, rather than absolute preference

values as used by many quantitative techniques. Many qualitative techniques can also model

a lack of preference (i.e., indifference) between traits. The primary benefit of using qualitative

instead of quantitative preference valuations for reasoning with system stakeholders’ preferences

is that the uncertainty inherent in these statements can be incorporated into the semantics of

the preference model. Qualitative MCDM techniques generally define a partial order over the

set of available design options, indicating when there is no clear preference between two or

more possible system designs.

One qualitative preference language that is useful in many applications is conditional prefer-

ence networks (CP-nets) [11]. CP-nets compactly represent preferences among several options

by using the fact that a stakeholder’s preference regarding one attribute is often entirely or con-

ditionally independent from the stakeholder’s preference regarding other attributes. A CP-net

consists of a directed graph over a set of (qualitative) preference variables, where each variable

is represented by a node in the graph and each edge from a node representing a variable A to a

node representing a variable B indicates that preferences regarding variable B are dependent

(i.e., conditioned) on the value of variable A. Every node in the CP-net graph is annotated

with a conditional preference table, which specifies preferences over the values of that node’s

variable given each possible combination of values for the parent nodes’ variables.

The full set of preferences implied by the CP-net are expressed in an induced preference

graph, whose nodes are all possible combinations of valuations of all preference variables being

considered. The preference graph induced by a CP-net contains an edge from node C to node

25

D if and only if the combination of preference valuations C is preferred to the combination D

according to the CP-net. Tradeoff-enhanced conditional preference networks (TCP-nets) [14]

extend the CP-net formalism by allowing stakeholders to specify the relative importance of the

various attributes in the preference model. The resulting tradeoffs between preference variables

are then incorporated into the preference reasoning algorithm in a consistent way.

Both CP-nets and TCP-nets rely on a ceteris paribus (all else being equal) semantics, which

assumes that any given preference statement holds true all else being equal. In other words, any

preference over the possible values of one trait is considered to be independent of all preferences

over any other trait’s possible values unless explicitly specified otherwise. This ceteris paribus

semantics greatly reduces the size of the preference space to be considered while it limits the

amount of information that stakeholders must provide about their preferences, helping combat

some of the drawbacks of quantitative preference valuations given previously.

Although CP-nets and TCP-nets offer a great deal of flexibility in terms of the preferences

they can model, both languages are restricted to modeling preferences between single properties.

For example, the preference “given low cost but not high security, I prefer high availability to the

combination of strong access control and rapid updates” cannot be expressed in a CP-net nor

a TCP-net. Conditional importance networks (CI-nets) [12] allow such set-based preferences

to be specified in an intuitive way. A CI-net consists of preference statements of the form,

“if the propositions in set S+ are true and those in set S− are false, then it is preferred

to have the set of propositions SA be true instead of those in set SB, all else being equal

[ceteris paribus].” By default, having more true propositions is preferred to having fewer true

propositions, all else being equal (though this preference may be reversed if appropriate for the

scenario); however, specific preference statements may override this default preference. As in

[T]CP-nets, the preference statements in a CI-net together with the default preference form an

induced preference graph that indicates preferences between sets of propositions. The syntax

and semantics of CI-nets are explained in greater detail in Section 5.2.

CI-nets have played an important role in our research. In [60, 61], we used CI-nets to repre-

sent preferences over optional goals in goal models for software systems, while our VeriComp

Web service composition framework [58] modeled preferences over quality-of-service traits and

26

other non-functional properties of composite services. CI-nets are not only useful for developing

compositional systems, though. In [63], we modeled a client’s preferences regarding the relative

sensitivity of various sets of authentication credentials using a CI-net as part of an algorithm

for minimizing the sensitivity of credentials to be disclosed in order to access an online service.

All of these methods relied heavily on techniques for using model checking to verify the consis-

tency of the given preferences and construct a partial order over the set of possible outcomes

(sets of trait valuations), which were developed by Santhanam et al. in [75, 76, 77].

27

CHAPTER 3. COMPONENT-BASED SYSTEMS: DEFINITIONS AND

CORE CONCEPTS

In our work, a component-based system is defined as a collection of individual entities that

are linked or composed together in order to satisfy a requirement specified by the system’s

stakeholders. Each entity has a set of traits or properties that it possesses or satisfies. Some of

these traits are classified as required traits, which form part of the requirement for the system;

in fact, the overall system requirement is expressed in our work as a Boolean combination of

these required traits. Other traits, classified as optional traits, may not contribute toward the

system requirement but may make the resulting system more desirable to the stakeholders.

When developing a component-based system, entities may be chosen to be components of

the system if they contribute toward satisfying part or all of the system requirement. If there

exist many available entities that can make similar contributions to satisfying the requirement,

preferences between various sets of traits that may be satisfied by the entities are used to

determine which entity to include as a component of the system. Our overall objective in

this work is to identify, create, and verify a component-based system that provides both (1) a

sufficient set of required traits so that the given requirement is fully satisfied and (2) a set of

optional traits that is at least as preferred by the stakeholders as any other system that satisfies

the same requirement. In this chapter, we formally define and informally describe each of these

core concepts of our component-based system development framework.

3.1 Entities, Components, and Systems

An entity is a possible component of the system. Let E denote the set of all entities under

consideration while developing a given component-based system. A component of the system

28

is simply an entity in E that has been selected for inclusion in the system. The set of entities

considered for participation in the system depends on the problem domain being addressed. We

assume that either (1) the entities in E are known before beginning the system development

process or (2) there exists a way to quickly (perhaps automatically) discover the set of available

entities during the development process.

A system (more specifically, a component-based system) S is a composition of components

that have been selected from the available set of entities E. Let f be a problem-specific

composition function, which defines the method(s) by which entities may be composed to

become components of a system. Given such a function f and a set of components C chosen

from the set of available entities (C ⊆ E), we formally define a system as S = f(C).

3.2 Traits

We define a trait or property to be a triple ψ = 〈ϕ, F,M〉, where ϕ is the specification of

the trait (property), F is the formal language or other method used to specify ϕ, and M is an

automated or manual verification method that decides in a correct (i.e., sound and complete)

manner whether a given system S satisfies the property ϕ as specified using F (in notation,

S |=F ϕ). In other words, F defines the semantics used to determine whether ϕ is satisfied

by a given entity or system, while M is a decision procedure that correctly verifies whether a

given system (i.e., composition of one or more components) satisfies the trait as specified using

the semantics given by F . Given a correct M , we say that a system S provides or satisfies a

trait ψ = 〈ϕ, F,M〉 if and only if M decides that S |=F ϕ; for simplicity, we write S |= ψ to

mean S |=F ϕ.

Each trait under consideration is a concrete expression of an abstract property that a sys-

tem may possess or provide. This broad definition allows any possible property of a system or

component, whether optional or mandatory, to be modeled as a trait within our framework.

A task that must be performed to help accomplish the system objective (as in goal-oriented

requirements engineering [88, 93]) can be modeled as a trait, and a required low-level behavior

such as an expected input/output sequence can also be modeled as a trait. Similarly, a sys-

temwide high-level requirement to ensure that a certain minimum number of users can use a

29

system simultaneously is considered a trait, and a requirement that a system’s access control

component must encrypt all login names and passwords is also considered a trait. If various

encryption algorithms are being considered, each algorithm can be treated as a separate trait;

stakeholders can then specify preferences over the available encryption algorithm traits (as

described in Section 3.4).

While each abstract trait always remains the same, the formalism F used to concretely

specify each trait may change in order to more accurately represent the intent of the stakehold-

ers. For example, the system designers may determine in consulting with stakeholders that a

low-level temporal property that was previously specified in Linear Temporal Logic (LTL) [71]

would better express the stakeholders’ true meaning if it were specified as a Computation Tree

Logic (CTL) [21] statement instead, because of the differences between the semantics of LTL

and CTL. Further, the method M used to verify a given property may be freely replaced with

any other method that correctly verifies the same property.

Let Ψ denote the set of all traits under consideration as part of a given system development

problem. This set of traits will vary for each problem domain where this solution framework

is applied. As we will see in the next section, it is generally not necessary for a system to

provide all traits in Ψ in order to satisfy the overall system requirement and be acceptable to

its stakeholders. Any system can be expected to provide a (possibly empty) subset of all traits

under consideration in a given problem. We define the set of traits provided by a given system

S as ΨS = {ψ ∈ Ψ : S |= ψ}.

Note that the composition of any two components or systems S1 and S2 must not be

assumed to provide the same set of traits as the union of the individual components’ or systems’

traits: in notation, for any property ψ, S1 |= ψ ∧ S2 |= ψ 6⇒ f(S1, S2) |= ψ. This is because

interactions between the components of a system may generate unanticipated side effects that

prevent the system from satisfying ψ; conversely, such interactions may give rise to so-called

“emergent” properties of the system that are not provided by any of its single components [10].

In our view, it is reasonable to anticipate that a system will provide any properties that its

components provide, and in fact our “meta-framework” for identifying system designs that are

likely to satisfy a given requirement (presented in [59] and in Chapter 4) relies on this approach.

30

However, in practice it is necessary to verify that the final system still provides the same traits

that its individual components satisfy. This requires verifying a system against its “verification

obligation” as defined in the next section.

3.3 System Requirement

Every system design problem involves an overall requirement that must be satisfied by the

system in order for it to be accepted by its stakeholders. The overall requirement for the system

is generally decomposed into sub-requirements, which each specify a part of the functionality

or a non-functional property (such as maximum cost or minimum quality of service) that the

system is required to provide. Some of these are high-level sub-requirements, which describe

functions or use cases that the system must provide, standards for non-functional properties

that the system must meet, or similar system properties. High-level sub-requirements must be

verified in most cases by reference to high-level descriptions of the system and its components or

through empirical observation of the completed system. Others are low-level sub-requirements,

which formally express temporal or other logical properties that the system or its components

will be required to possess. Low-level sub-requirements must be verified by applying an appro-

priate formal verification tool or technique to prove whether a low-level behavioral specification

of the component(s) or system satisfies the given sub-requirement.

In our model, the overall requirement for any component-based system can be decomposed

into a Boolean combination of sub-requirements along an AND-OR graph [54], where the overall

requirement and each sub-requirement form the nodes of the graph. Each higher-level “parent”

sub-requirement in the AND-OR graph may be further decomposed into lower-level “child” sub-

requirements using AND-decomposition or OR-decomposition; these decompositions define the

edges of the AND-OR graph. In AND-decomposition, the parent sub-requirement is satisfied if

and only if all of its child sub-requirements are satisfied, while in OR-decomposition, the parent

sub-requirement is satisfied if and only if one or more of its child sub-requirements are satisfied.

Sub-requirements that cannot be decomposed any further, whether high-level or low-level, are

represented as traits as described in the previous subsection; these form the leaf nodes of the

AND-OR graph. AND-OR decomposition of high-level system requirements is a standard part

31

of the goal-oriented requirements engineering (GORE) methodology [88, 93]. However, one of

our contributions in this work is a novel technique for AND-OR decomposition and verification

of low-level requirements that must be verified using different verification techniques, which

was initially presented in [59] and is described further in Chapter 4.

Following the structure of the AND-OR graph, the overall system requirement R for any

system can be represented as a set of one or more sets of traits ri, where each set of traits

denotes an alternative sufficient set of sub-requirements that will fully satisfy the overall system

requirement. This overall requirement is satisfied if and only if every trait in any one of the sub-

requirement sets ri is satisfied by the proposed system. Observe that if each trait is considered

to be a Boolean (true/false) proposition, then the requirement R is defined as a disjunction of

conjunctions of propositions. Therefore, the requirement R can be viewed as an instance of the

Boolean satisfiability (SAT) problem.

Formally, the requirement for a system is a non-empty set of non-empty sets of traits R ⊆ 2Ψ,

such that a system S will be accepted by its stakeholders if and only if every trait in any set

of traits in R is satisfied by that system. (Note that if requirements R where R = ∅ or ∅ ∈ R

were allowed, such requirements would always be trivially satisfied.) In notation:

S |= R⇔ ∃ri ∈ R : ∀ψ ∈ ri : S |= ψ (3.1)

Observe that it is sufficient for a system to satisfy only one set of traits ri ∈ R, so different

systems may fulfill the requirement R using different sets of traits. The verification obligation

vo(S,R) indicates the sets of traits that the system S can be expected to satisfy in order to fulfill

the requirement R. Formally, vo(S,R) = {ri ∈ R : ri ⊆ ΨS}. Every trait in any one of the sets

of traits in vo(S,R) must be verified to ensure that the system S satisfies the requirement R as

defined in Equation 3.1. This verification obligation is useful because it indicates the minimum

level of verification required to ensure that the system S is acceptable to the stakeholders.

A correct system is a system that satisfies its overall requirement. Formally, a system

S is correct for the problem specified by requirement R if and only if S |= R as defined in

Equation 3.1. This requirement R must be expressible as a Boolean combination of traits (as

defined in Section 3.2), which may be obtained using AND-OR decomposition as described

32

previously. We will describe in Chapter 6 how our component-based system design framework

identifies the verification obligation for every set of components that is likely to satisfy the

overall requirement (Section 6.3) using a technique based on satisfiability (SAT) solving. Once

an optimal (most preferred) set of components is selected, the components are composed and

the resulting system is verified against its verification obligation using the methods specified

for each trait in the obligation for that system (Section 6.5).

3.4 Preferences

The system stakeholders may express preferences over various traits of the system by defin-

ing a dominance relation �: 2Ψ → 2Ψ as follows. For all non-empty sets of traits Ψ1,Ψ2 ∈ 2Ψ

such that Ψ1 ∩Ψ2 = ∅, Ψ1 � Ψ2 if and only if any system with traits Ψ1 is preferred to (dom-

inates) any system with traits Ψ2, all else being equal (ceteris paribus). This formulation is

modeled on the example of [75]. The semantics of the dominance relation are problem-specific,

so any appropriate preference modeling language may be selected for the domain where this

system-development framework is being applied: for example, in Chapters 5 and 6, CI-nets [12]

are used to model qualitative preferences. However, we require that the relation � must define

a partial order over the set of all possible sets of traits, i.e., the powerset of all traits 2Ψ.

Note that no distinction is made between “required traits” and “optional traits” in this

definition: preferences may be specified over traits that contribute toward satisfying the system

requirement as well as traits that are completely optional. This allows stakeholders to indicate

that certain ways of satisfying the overall system requirement may be more preferred than

others. It may also avoid problems if a previously required trait must be reclassified as optional

or vice versa based on input from stakeholders.

The dominance relation over sets of traits � can be extended in an intuitive way to also

define a dominance relation �: 2E → 2E over possible systems (i.e., sets of entities) in the

following way. Given any two sets of entities C1, C2 ⊆ E and two sets of traits Ψ1,Ψ2 ⊆ Ψ,

where C1 6= C2, Ψ1 6= Ψ2, C1 |= Ψ1, and C2 |= Ψ2, we define C1 � C2 if and only if Ψ1 � Ψ2 as

defined previously. Note that the same � notation is used for both of these dominance relations

to indicate the tight coupling between them.

33

A system S is non-dominated if and only if there exists no other system S′ such that

S′ � S, i.e., S′ dominates (is preferred to) S. A most preferred correct system, or equivalently

an optimal system, is a correct system that is also non-dominated with respect to the set of all

other correct systems. Note that there may exist multiple most preferred correct systems for a

given requirement and preference set, since this definition does not require that such a system

must be strictly preferred to (i.e., dominate) all other correct systems.

Although the definition of preferences given in this section is compatible with the use

of quantitative preference reasoning techniques, our overall objective in this work is to use

qualitative preference reasoning techniques to optimize the selection of correct systems in order

to identify the most preferred correct system(s) for solving a given problem. In Chapter 5, we

will apply qualitative preference reasoning based on a dominance relation as described here to

accomplish this objective.

34

CHAPTER 4. SYSTEM MODELING, REALIZATION, AND

VERIFICATION USING MULTIPLE FORMAL METHODS

As explained in Section 2.1, most component-based system development frameworks expect

that the entities they will be composing will be relatively homogeneous, with all verifiable

requirements specified in the same formal language (if one is used). This is generally done

with a view toward a unified verification process, as all requirements can then be verified using

the same technique. If all functional requirements for the system can be correctly expressed

using the chosen formal language, then this is not a problem. For example, if we are only

concerned with properties that specify the outputs to be returned when certain inputs are

received, these properties can be expressed effectively using a description logic. Similarly, if

we are only concerned with specifying the system’s desired temporal behavior, these properties

can be expressed clearly with state machines or temporal logic.

On the other hand, if the desired functionality includes both types of properties, then

using only one formalism (description logic or temporal logic) will not be sufficient to fully

express the functionality. One way to avoid this problem might be to obtain a more general,

more powerful formalism, but this is not always possible. Furthermore, even when such a

formalism can be identified, we claim that verifying the required trait using that formalism

may be computationally expensive or intractable. For instance, while it is possible to combine

temporal logics with description logics, satisfiability in such “temporal description logics” may

be undecidable unless the expressiveness of the description logic or temporal logic is restricted

(see [48] for details).

In this chapter, we discuss the approach to realizing and verifying component-based systems

that we use in our framework for developing optimal component-based systems. This approach

was initially developed as our “meta-framework” for Web service composition in [59] and later

35

refined and generalized to any system that is developed using goal-oriented requirements engi-

neering in [60] (and the related technical report [61]). The core assumption of this approach

is that given a set of specification formalisms (where “formalism” is broadly defined) and their

corresponding verification techniques, the overall functional requirement for the system is de-

composable into individual sub-requirements (traits) that can each be expressed in at least one

of these existing formalisms. The process is divided into the following steps:

1. Decompose the overall requirement for the system R into a Boolean combination of traits

ψ1 � ψ2 � · · · � ψl, where � ∈ {∧,∨} and each property ψi can be fully expressed in

an existing formalism.

2. For each trait ψi, use existing search techniques to identify a collection of components

{wi1, wi2, . . . , wik} that claim to satisfy ψi. Some of these components may be composi-

tions of two or more smaller components.

3. Using these sets and the Boolean relationship between traits ψi, choose at least one set

of components such that their composition is likely to satisfy the overall requirement R.

At the same time, identify the specific traits against which this potential system must be

verified in order to guarantee that it satisfies R (its verification obligation).

4. Attempt to compose the selected components to realize the proposed system and verify

it against its verification obligation. Our work is independent of any particular compo-

sition operator, so any type of composition (e.g., parallel or sequential) may be used. If

successful, the problem has been solved.

In essence, we reduce the problem of finding component-based systems that are likely to

provide the desired functionality to identifying satisfiable assignments of an appropriate propo-

sitional logic formula (the SAT problem), which is generated by using the results obtained from

applying existing composition algorithms to the individual traits (ψis) that constitute R. As an

example, if R is decomposed into ψ1∧ψ2, if {w1, w2} and {w3, w4} are sets of components that

satisfy ψ1 and ψ2 respectively, and if any component that satisfies ψ1 can be combined with

any component that satisfies ψ2, then the solution involves computing a satisfiable assignment

36

to the propositional logic formula (w1 ∨ w2) ∧ (w3 ∨ w4). The reduction is realized by using a

simple AND-OR tree [54] that captures both the dependencies between traits and the set of

services that satisfy each trait while preserving the separate semantics of different traits. Using

the AND-OR tree, our meta-framework indicates exactly which traits must be satisfied by a

given composition of components (step 3).

However, the reduction alone is not sufficient to guarantee the solution’s correctness. A

possible system (composition of components) must still be realized and verified against its

verification obligation to ensure that it does satisfy the requirement R (step 4). Suppose that

components w1 and w3 are incompatible with each other, and suppose further that w4 does

not satisfy ψ2 when composed with either w1 or w2, even though w4 satisfies ψ2 in isolation.

In this case, the only possible system that satisfies both ψ1 and ψ2 will be w2 ⊗ w3.

Because we are interested in which components are being composed (and whether their com-

position is feasible) but not how the components are being composed, we model the composition

process using a generic composition operator ⊗ that can represent any type of composition. For

specific compositions, this generic operator may be freely replaced by the specific composition

operator(s) under consideration (e.g., parallel or sequential). Our technique does not depend

on and is not restricted to any specific types of formalisms used to express traits; in fact, new

formalisms can be incorporated directly into our method.

Our approach was inspired by solution techniques such as those described in [4, 52, 94],

which also involve decomposing a given functional requirement into a set of sub-requirements.

However, these techniques are targeted toward component-based systems created from a library

of components which satisfy certain assumptions. For more general component-based system

development problems, particularly for Web service composition, two main factors work against

these older techniques. First, there is in general no a priori guarantee that any two components

can be composed unless they are specifically designed to work together, such as components

developed as part of a generic library. Second, even when unrelated components such as Web

services can be composed, the resulting composition may not have the same properties as its

individual components. For instance, if a high-security component is composed with a low-

security component, the additional security features of the high-security component may be

37

compromised. An approach to component-based system development that relies on decompos-

ing the problem and then combining partial solutions must address both of these factors.

Note. We will use a scenario centered on creating and verifying a Web service compo-

sition, taken from our previous work in [59], as a running example throughout this chapter.

Much of the explanation given in this chapter is also based on [59]. Consequently, our meta-

framework for requirement modeling and verification will be explained here in terms of Web

service composition. Keep in mind that our meta-framework can easily be generalized to any

type of component-based system, as we will see in Chapters 5 and 6.

4.1 Example: Medical Records Management

Consider a proposed medical record management system to be implemented using Web

services. The primary purpose of the system is to provide remote access to a centralized store

of medical records. In addition, a variety of security, privacy, and other regulatory requirements

form an integral part of the functional requirement for the system. We will focus in this chapter

on one specific high-level privacy requirement for this system:

The system shall provide an appropriate level of access to a patient’s medical record

only to that patient or to persons who are directly involved in that patient’s care.

This requirement is too general to immediately formalize in a meaningful way, so it is decom-

posed into the following two sub-requirements:

1. The system shall ensure that medical information is electronically exchanged between

trusted hosts via secure communication.

2. The system shall provide an appropriate level of access to each patient’s medical record

to each authorized person based on that person’s role in that patient’s care.

Suppose each sub-requirement is further decomposed into a set of atomic properties (i.e., prop-

erties that cannot be decomposed further), such as the seven properties listed in Table 4.1.

A (non-empty) subset of these atomic properties must be satisfied in order for each sub-

requirement to be satisfied. Specifically, sub-requirement 1 is satisfied only if properties ψ1, ψ2,

38

Table 4.1 List of properties that contribute to satisfying privacy requirement

Property Meaning
ψ1 When a message is received from IP address i, a reply message shall be

sent to i eventually.
ψ2 The system shall periodically request each user’s IP address to verify that

it has not changed from its previous value, and terminate if it has.
ψ3 All communications between system components shall be encrypted.
ψ4 A patient may view, but not edit, his or her own medical information.
ψ5 A doctor may view and edit medical information of his or her own patients.
ψ6 A patient or doctor can access medical information from outside the

hospital via automated telephone service.
ψ7 A patient or doctor can access medical information from outside the

hospital via online Web access.

and ψ3 are all satisfied; on the other hand, sub-requirement 2 is fulfilled only if properties ψ4

and ψ5 are satisfied, plus at least one of ψ6 or ψ7 is satisfied. The overall functional requirement

of the medical record management service can be viewed as:

sub-requirement 1︷ ︸︸ ︷
(ψ1 ∧ ψ2 ∧ ψ3) ∧

sub-requirement 2︷ ︸︸ ︷
(ψ4 ∧ ψ5 ∧ (ψ6 ∨ ψ7))

The traits ψi in this example can be naturally expressed in specific formalisms. For instance,

ψ1 and ψ2 can be specified using a temporal logic such as CTL [21], ψ3 can be specified using

WS-SecurityPolicy [56] assertions, and ψ4, ψ5, ψ6, and ψ7 can be specified using a description

logic [7]. Furthermore, it is generally difficult, if not impossible, to unify all property expres-

sions in one formalism without loss of information or without making each property statement

prohibitively complex.

We address this problem by providing a meta-framework that can encode the decomposition

of the top-level requirement into a Boolean combination of sub-requirements or traits expressed

in different formalisms (e.g., ψ1, ψ2, . . . , ψ7 as in Table 4.1). We use this meta-framework to

identify sets of components that are likely to satisfy the overall requirement when composed

by effectively combining the results provided by existing composition methods for each of the

sub-requirements.

39

4.2 Problem Decomposition and Modeling

The service composition problem considers a user-specified functional requirement R that

must be satisfied by composing one or more existing services available in a given service reposi-

tory E. It is clear that this problem is an instance of the more general component-based system

development problem. We claim that R can be decomposed into a set of individual properties

or traits {ψ1, . . . , ψn}, such that (1) the Boolean combination of ψis is equivalent to R and (2)

no single trait ψi can be further decomposed into multiple sub-traits. This forms the central

theme of our meta-framework.

We begin by defining the notion of an atomic property in our context and then define the

notion of decomposing a property into one or more atomic properties.

Definition 1 (Atomic Property) A specification of an atomic property is a tuple ψ
.=

〈ϕ, F 〉, where ϕ is an expression that is interpreted according to a formalism F .

For instance,

ψ1 = 〈ϕ1, F1〉 = 〈AF sendAck,CTL〉

ψ2 = 〈ϕ2, F2〉 = 〈∀caredBy(patient, X).accessDataOf(X, patient),ALC〉
(4.1)

are examples of atomic property tuples. AF sendAck (always, eventually perform the sendAck

operation) is a property expressed in the temporal logic formalism CTL (Computation Tree

Logic [21]). Similarly, the second atomic property states that all patient caregivers have access

to the medical records of the patients assigned to them; this property is expressed in the

description logic ALC [7].

Observe that Definition 1 is nearly identical to the definition of a trait as given in Section 3.2,

but without the verification method M . For simplicity, we omit any mention of a selected

verification method Mi for a given atomic property ψi when we write atomic property tuples

in this chapter.

Definition 2 (Composite Property) A composite property θ is a Boolean composition of

atomic properties, i.e., θ .= ψ1 � ψ2 � · · · � ψn where ∀i ∈ [1, n] : ψi is an atomic property and

� ∈ {∧,∨}.

40

For instance, using Equation 4.1, 〈ϕ1, F1〉 ∧ 〈ϕ2, F2〉 is a Boolean decomposition of a com-

posite property that expresses requirements in two different formalisms: temporal logic and

description logic.

The decomposition of a composite property can be represented using a structure known

as an AND-OR tree [54], where the root node of the tree represents the complete functional

property specification under consideration and each leaf node represents an atomic property.

AND-OR trees are similar to goal graphs or goal models, which are used in the goal-oriented

requirements engineering (GORE) methodology described in Section 2.2 to model, decompose,

and reason about the satisfiability of goals for software systems; this connection will be explored

further in the running example in Chapter 5. AND-OR trees are also similar to feature diagrams,

which are used in software product line engineering to illustrate commonalities and variabilities

between multiple products in a product line [79].

We now formally define the AND-OR tree in our context.

Definition 3 (AND-OR Tree) An AND-OR tree of a composite property θ is denoted by

T θ .= (Q, q0, Q`,∆, L), where Q is the set of nodes, q0 ∈ Q is the root node, Q` ⊆ Q is the set

of leaf nodes, ∆ : Q→ ({∧,∨} × P(Q)) is a transition function such that

∆(q) =


∅ if q ∈ Q`

{op,next(q)} otherwise, where next(q) ∈ P(Q) and |next(q)| = 2

and L : Q→ sf (θ) is a labeling function where

L(q) =


〈ϕ, F 〉 if q ∈ Q`

L(q1) op L(q2) otherwise, where next(q) = {q1, q2} and ∆(q) = {op,next(q)}

In the above, op ∈ {∧,∨} and sf (θ), which denotes the set of subformulas of θ, is defined as:

sf (θ) =


{θ} if θ .= 〈ϕ, F 〉

sf (θ1) ∪ sf (θ2) ∪ {θ1, θ2, θ1 op θ2} if θ .= θ1 op θ2

Example. Figure 4.1 illustrates one possible realization of the AND-OR tree T R, where R

denotes the overall property of the medical record service discussed in Section 4.1. The decom-

position of R is performed according to Table 4.1. Note that there are multiple configurations

41

ϕ 5F〈 , 〉

10

11

6ϕ 6F〈 , 〉

12

7ϕ 7F〈 , 〉

13

2ϕ 2F〈 , 〉

5

3ϕ 3F〈 , 〉

6

4

8

4ϕ 4F〈 , 〉1ϕ 1F〈 , 〉

3

1

2

9

7

5

Figure 4.1 AND-OR tree showing decomposition of requirements in Table 4.1

of T R that can be realized from the Boolean decomposition based on the order in which the

atomic properties are considered.

4.3 Identification of Promising Component Sets

Given an AND-OR tree representation of the desired overall requirement R, we now show

that much (but not all) of the Web service composition problem can be reduced to the AND-OR

tree satisfiability problem, which is related to the Boolean satisfiability (SAT) problem. This

involves the following steps:

1. Reuse of existing composition techniques: For each leaf-level property (atomic property)

〈ϕi, Fi〉 in the AND-OR tree T R, identify the set of services that satisfy 〈ϕi, Fi〉.

2. Feasibility of candidate composite services: Using the above set, identify and realize fea-

sible service compositions, i.e., those that may satisfy the overall requirement R.

3. Verifiability of feasible composite services: From the set of feasible service compositions,

identify those whose behavior does satisfy the requirement R.

Note that the final step goes beyond the reduction to AND-OR tree satisfiability, since this

reduction alone is not sufficient to ensure that interactions between component services do not

42

prevent the requirement R from being completely satisfied. Our meta-framework computes

the verification obligation for each feasible composition that is identified. This verification

obligation is essentially the set of leaf-level properties against which that composition must be

verified to provide this assurance.

Because our meta-framework is independent of any particular type of composition, we con-

tinue to use a generic composition operator ⊗ to represent composition throughout this chap-

ter. The choice of composition paradigm, e.g., parallel or sequential, makes no difference in our

meta-framework until a composition is actually created; at that time, the generic composition

operator may be freely replaced with the actual composition operator(s) to be used.

Identify Services that Satisfy Leaf-Level Sub-Requirements. Recall that the leaf-

level sub-requirements are atomic properties of the form ψi = 〈ϕi, Fi〉, where ϕi is represented

in the formalism Fi. Assume that there exists a method Mi and a corresponding algorithm that

can handle properties expressed in Fi and can (semi-)automatically identify services (atomic

and/or composite) that satisfy ϕi. In other words, Mi can identify one or more services (com-

ponents) w such that w satisfies ϕi by the semantics of formalism Fi; we denote this by

w |= 〈ϕi, Fi〉 or equivalently by w |=Fi ϕi. We use these existing methods to identify the set of

services that satisfy each atomic property at the leaf level of the AND-OR tree T R. Note that

with the addition of a verification method Mi for each atomic property ψi, an atomic property

becomes equivalent to a trait as defined in Section 3.2.

Example. Table 4.2 illustrates sets of services that satisfy some leaf-level atomic prop-

erties in the AND-OR tree T R presented in Figure 4.1. Each set can be identified by using

existing compositional methods that are capable of addressing the composition problem if the

functional requirements are provided in one specific formalism. (Recall that w1⊗w2 denotes a

composite service composed of services w1 and w2.)

Identify Feasible Compositions. Each node in the AND-OR tree T R is the root of

a subtree that corresponds to a subformula of R. For example, in Figure 4.1, node 11 is the

root of T θ11 , where θ11
.= 〈ϕ6, F6〉 ∨ 〈ϕ7, F7〉. (For T R in Figure 4.1, we will use θi to denote

43

Table 4.2 Sample sets of services that satisfy leaf-level properties in Figure 4.1

Services Atomic Property Node #
.

{w4, w5} ψ5
.= 〈ϕ5, F5〉 10

{w1 ⊗ w2, w3} ψ6
.= 〈ϕ6, F6〉 12

{w3, w4} ψ7
.= 〈ϕ7, F7〉 13

the subformula of R that corresponds to the AND-OR subtree rooted at node number i, with

θ1 being R itself.) We identify the set of possible service compositions which, if they can be

realized, are likely to satisfy each composite property θi. This objective is realized by using

the semantics of satisfiability in propositional logic. For instance, θ11 can be satisfied by any

service that satisfies either 〈ϕ6, F6〉 or 〈ϕ7, F7〉, i.e., by any one of the services w1 ⊗ w2, w3, or

w4 as shown in Table 4.2. Furthermore, the choice of service(s) provides information regarding

the subformula(s) that must be satisfied, which we refer to as the verification obligation. In

the current example, if the service w1⊗w2 is selected, then the atomic property 〈ϕ6, F6〉 needs

to be satisfied.

For each node i in T R, we identify a set of pairs (Wi,Ψi), where Wi denotes a set of

services that are likely to satisfy θi when composed and Ψi is the set of formulas capturing the

verification obligation on Wi. We now define a relation mark that is used to identify such a set

of pairs for each node in the AND-OR tree.

Definition 4 Given T θ and a repository of components E, we define a relation ∀q ∈ Q :

mark(q) ⊆ E × sf (θ) such that

1. [q ∈ Q` ∧ ∃i :
⊗
iwi |= L(q)]

⇒ (∪i{wi}, {L(q)}) ∈ mark(q)

2. [∆(q) = {∧, {q1, q2}} ∧ ∃(W1,Ψ1) ∈ mark(q1) ∧ ∃(W2,Ψ2) ∈ mark(q2)]

⇒ (W1 ∪W2,Ψ1 ∪Ψ2) ∈ mark(q)

3. [∆(q) = {∨, {q1, q2}} ∧ ∃q′ ∈ {q1, q2} : ∃(W,Ψ) ∈ mark(q′)]

⇒ (W,Ψ) ∈ mark(q)

(4.2)

44

Example. Consider both Figure 4.1 and Table 4.2. From Rule 1 in Definition 4, we have

{({w4}, {ψ5}), ({w5}, {ψ5})} = mark(q10)

{({w1, w2}, {ψ6}), ({w3}, {ψ6})} = mark(q12)

{({w3}, {ψ7}), ({w4}, {ψ7})} = mark(q13)

Therefore, using Rule 3 in Definition 4, we have
({w1, w2}, {ψ6}), ({w3}, {ψ6}),

({w3}, {ψ7}), ({w4}, {ψ7})

 = mark(q11)

This means that property θ11 at node q11 is satisfiable if w1 ⊗ w2 satisfies ψ6, if w3 satisfies

either ψ6 or ψ7, or if w4 satisfies ψ7. Proceeding using Rule 2 in Definition 4 for node q9, we

have mark(q9) equal to the following set:

({w1, w2, w4}, {ψ6, ψ5}),

({w1, w2, w5}, {ψ6, ψ5}),

({w3, w4}, {ψ6, ψ5}), ({w3, w5}, {ψ6, ψ5}),

({w3, w4}, {ψ7, ψ5}), ({w3, w5}, {ψ7, ψ5}),

({w4}, {ψ7, ψ5}), ({w4, w5}, {ψ7, ψ5})


= mark(q9)

Theorem 1 (Feasibility) For any AND-OR tree T θ, if w1 ⊗ · · · ⊗ wk satisfies θ, then there

exists a subset Ψ of the set of atomic formulas representing θ such that ({w1, . . . , wk},Ψ) ∈

mark(q0), where q0 is the root of T θ.

Proof. The proof proceeds inductively from the child nodes to the parent node of the

AND-OR tree T θ using the definition of the mark relation (Definition 4).

For the leaf nodes, the theorem is trivially true by Rule 1 in Definition 4.

Any intermediate node (including the root node) of T θ has the form ∧ or ∨. Assume the

theorem holds for any node at depth d+1. We prove that the theorem holds for any intermediate

node qdi at depth d. Suppose qdi is an ∧-node; then its “marking” follows Rule 2 in Definition 4.

It takes one element from the marking of each child node (at depth d + 1) and generates the

set of services W and the set of verification obligations Ψ. The set W contains all services

required to satisfy each conjunct of θdi (i.e., each θd+1
j). Further, all possible combinations of

45

elements from the marking of each child node are considered. Therefore, the theorem holds for

any ∧-node at depth d.

Suppose qdi is an ∨-node. Then the “marking” follows Rule 3 of Definition 4, i.e., the union

of the markings of the child nodes is equal to the marking of qdi . In other words, the marking

of qdi includes any set of services that is sufficient to satisfy any one of the disjuncts in θdi (i.e.,

any θd+1
j). �

Corollary 1 For any node q in any AND-OR tree T θ, if w1 ⊗ w2 ⊗ . . . ⊗ wk satisfies L(q),

then there exists a subset Ψq of the set of atomic formulas used to represent L(q) such that

({w1, w2, . . . , wk},Ψq) ∈ mark(q).

4.4 System Realization and Verification

Theorem 1 states a necessary condition for generating a composite service from a set of

component services: if there exists a set of services in a tuple belonging to mark(q0), the

composition of those services (if it can be formed) is likely to satisfy θ. We refer to the set of

services in each tuple of mark(q0) as the feasible composition set. However, this condition is

not sufficient, as the converse of Theorem 1 does not hold. As a counterexample, consider the

case where mark(q0) = {({w1, w2}, {ψ1, ψ2})} and any one of the following is true:

• w1 is not compatible with w2

• w1 ⊗ w2 6|= ψ1

• w1 ⊗ w2 6|= ψ2

In these cases, the composition w1 ⊗ w2 either does not exist or does not satisfy θ, as it does

not satisfy either ψ1 or ψ2. The first condition can be detected by attempting to construct the

composition, while the other conditions can be detected by verification against the resulting

composition.

Therefore, we attempt to realize (i.e., compose or construct) each feasible composite service

by using an appropriate existing composition algorithm. Any composition that cannot be real-

46

ized using an available composition algorithm is removed from the set of feasible compositions.

The remaining feasible compositions proceed to the verifiability-checking step.

Recall that for any tuple in mark(·) for any node in T R, a set of atomic properties is

identified as the verification obligation for that tuple. In essence, the verification obligation

must be satisfied by the composite service to ensure satisfaction of the property at the node

under consideration. This is formally stated in the following theorem.

Theorem 2 (Verifiability) For any T θ, the composition w1 ⊗ w2 ⊗ . . . ⊗ wk satisfies θ if

and only if there exists a subset Ψ of the set of atomic formulas used to represent θ such that

({w1, w2, . . . , wk},Ψ) ∈ mark(q0) and, for all ψ ∈ Ψ, w1 ⊗ w2 ⊗ . . .⊗ wk |= ψ.

Proof. The proof proceeds inductively, as for Theorem 1. �

Note that properties at the leaf level are never considered together at any step, so verifi-

ability of each leaf-level property ψj can be checked using the existing methods Mj that deal

with verifying properties specified using the formalism Fj .

Corollary 2 For any node q of any AND-OR tree T θ, w1⊗w2⊗ . . .⊗wk satisfies L(q) if and

only if there exists a subset Ψ of the set of atomic formulas used to represent L(q) such that

({w1, w2, . . . , wk},Ψ) ∈ mark(q) and, for all ψ ∈ Ψ, w1 ⊗ w2 ⊗ . . .⊗ wk |= ψ.

On-the-fly Checking for Verifiability. Based on Theorem 2, given a property R, we

can obtain a composite service that satisfies R by (a) constructing T R, (b) identifying the set of

services that satisfy the atomic properties in R, (c) “marking” each node in T R, and finally (d)

checking whether there exists a tuple ({w1, w2, . . . , wk},Ψ) in mark(q0) where w1⊗w2⊗· · ·⊗wk

is realizable and ∀ψ ∈ Ψ : w1 ⊗ w2 ⊗ . . .⊗ wk |= ψ. In the worst case, this process will require

∑
(W,Ψ)∈mark(q0)

|mark(q0)| × |Ψ|

verifications, where | · | denotes the size of a relation or set.

We now propose an alternative approach, which is likely to be beneficial if all of the following

are true:

47

• a majority of the feasible composite services are not verifiable

• a majority of the feasible composite services that are not verifiable can be detected near

the leaf level of the AND-OR tree

• the user wants to develop multiple composite services with significant overlap in functional

requirements

The essence of our alternative approach is to combine the feasibility checking process (i.e.,

mark(·) computation) with the verification process. This is realized by computing the verif

relation, defined as follows, for each node in the AND-OR tree.

Definition 5 Given an AND-OR tree T θ and a repository of components E, we define a

relation ∀q ∈ Q : verif (q) ⊆ E × sf (θ) such that

1. [q ∈ Q` ∧ ∃i :
⊗
iwi |= L(q)]

⇒ (∪i{wi}, {L(q)}) ∈ verif (q)

2.

 ∆(q) = {∧, {q1, q2}} ∧ ∃(W1,Ψ1) ∈ verif (q1) ∧ ∃(W2,Ψ2) ∈ verif (q2)

∧ ∀ψ ∈ Ψ1 ∪Ψ2 :
⊗
iwi |= ψ ∧ ∪i{wi} = W1 ∪W2


⇒ (W1 ∪W2,Ψ1 ∪Ψ2) ∈ verif (q)

3. [∆(q) = {∨, {q1, q2}} ∧ ∃q′ ∈ {q1, q2} : ∃(W,Ψ) ∈ verif (q′)]

⇒ (W,Ψ) ∈ verif (q)

(4.3)

The critical difference between the verif and mark relations is emphasized in a box in

Definition 5. Note that in computing the verif relation for the intermediate nodes, we are

incrementally creating the specified composition(s) at the same time; in the previous approach,

the compositions are realized only after the mark relation is computed.

Example. Going back to our AND-OR tree T R in Figure 4.1 and the sets of services

in Table 4.2, suppose w3 ⊗ w4 6|= ψ5, w4 ⊗ w5 6|= ψ7, and w1 is incompatible with w4. If we

had first computed the mark relation and then checked the verification obligations at the root

node, we would have followed the previous example and obtained mark(q9), which contains

48

eight elements. Those eight elements would have been combined with elements of the marking

from q9’s sibling nodes to compute the mark relation for the parent. Instead, if the verif

relation is computed according to Definition 5, verif (q9) will be
({w1, w2, w5}, {ψ6, ψ5}), ({w3, w5}, {ψ6, ψ5}),

({w3, w5}, {ψ7, ψ5}), ({w4}, {ψ7, ψ5})


In short, using on-the-fly verification, it is possible to remove four intermediate composi-

tions that will not satisfy the overall functional property R due to incompatibility between

participating services or unsatisfiability of atomic properties. This reduction can result in a

considerable gain in computation efficiency if the requirement under consideration has many

atomic properties (i.e., if the size of the AND-OR tree is large) and if there are multiple services

(with possible incompatibilities) that satisfy each of the atomic properties.

Additionally, if the stakeholders want to develop multiple composite services with common

requirements, identifying the set of verifiable services for the common requirements will lead

to effective reuse of intermediate results. Consider Figure 4.2, which illustrates an AND-OR

graph unifying AND-OR trees T R and T R′ that share multiple atomic properties. Suppose

that a composition satisfying R has been identified using the verif relation for T R and further

suppose that, for each node qi ∈ T R, the value of verif (qi) was saved for later use. When the

user wants to find a composition that satisfies R′ using on-the-fly verification, the previously

computed values of verif for the shared nodes can be reused; the verif relation needs to be

computed for only the three nodes in T R′ that are not shared with T R.

The following theorem formally states the correctness of our method.

Theorem 3 (Soundness and Completeness) For any T R, w1 ⊗ w2 ⊗ . . .⊗ wk satisfies R

if and only if ({w1, w2, . . . , wk},Ψ) ∈ verif (q0), where q0 is the root of T R and Ψ is a subset of

the set of atomic formulas used to represent R.

Proof. The proof is realized via induction over the depth of the AND-OR tree T R. �

The complexity of our methods (based on Theorems 2 and 3) depends directly on the

size of T R, i.e., the number of choices of services that satisfy each atomic property. Let the

number of atomic properties representing R be N and the maximum number of choices of

49

R : (〈ϕ1, F1〉 ∧ 〈ϕ2, F2〉 ∧ 〈ϕ3, F3〉)

∧ (〈ϕ4, F4〉 ∧ 〈ϕ5, F5〉 ∧ (〈ϕ6, F6〉 ∨ 〈ϕ7, F7〉))

R′ : (〈ϕ3, F3〉 ∧ 〈ϕ8, F8〉)

∧ (〈ϕ4, F4〉 ∧ 〈ϕ5, F5〉 ∧ (〈ϕ6, F6〉 ∨ 〈ϕ7, F7〉))

ϕ 5F〈 , 〉

6ϕ 6F〈 , 〉 7ϕ 7F〈 , 〉

2ϕ 2F〈 , 〉 3ϕ 3F〈 , 〉

4ϕ 4F〈 , 〉 8ϕ 8F〈 , 〉
1ϕ 1F〈 , 〉

5

Figure 4.2 AND-OR graph showing decomposition of requirements for two related systems,
rooted at nodes labeled T R and T R′ respectively. Dotted lines indicate parts of
the graph that belong solely to T R′ .

services satisfying an atomic property be K. The mark relation is essentially identifying a

satisfiable assignment set (in terms of atomic properties) for the Boolean representation of R

and associating services that satisfy each element in the satisfiable assignment set. The size of

the satisfiable assignment set for any Boolean formula with N propositions (atomic properties)

is 2N . Therefore, there are at most KN2N elements in mark(q0) or verif (q0) at the root of

T R. Note that this is not a tight upper bound, particularly for the verif relation. The cost for

computing the verif relation depends on both (a) the reduction in results due to unsatisfiability

of verification obligations or incompatibility of selected services at intermediate nodes and (b)

the increased computation needed to perform verification at each intermediate node.

50

CHAPTER 5. MODELING, REFINING, AND APPLYING

QUALITATIVE PREFERENCES OF STAKEHOLDERS

In the previous chapter, we showed how a correct solution to a component-based system

development problem, i.e., a system that satisfies the overall requirement given by its stake-

holders, can be obtained. However, for any given requirement, there may exist many possible

system designs (i.e., sets of components) that satisfy the requirement. The goal of the system

designers should be to construct and deliver the best such possible system, but to do so requires

a well-defined notion of what is meant by the “best” or “optimal” system. This must be defined

uniquely for each system by the preferences and priorities of the system’s stakeholders with

respect to various combinations of optional traits that a given system may provide beyond the

basic requirement.

Our strategy for achieving this goal within our component-based system development frame-

work is to order all correct component-based system designs, as previously identified using the

meta-framework from Chapter 4, from most to least preferred according to the stakeholders’

preferences. This ordering can be accomplished in two different ways:

1. We could determine which sets of components can actually be composed into correct

systems that solve the given problem, then order these correct systems with respect to

the stakeholders’ preferences. To do so, we must be able to decide whether one system is

preferred to (dominates) another.

2. Alternatively, we could first place all system designs (sets of components) that are likely

to solve the problem correctly in order from most to least preferred. Given this ordering,

we can attempt to realize and verify the most preferred system design. If verification

of this design fails, we can try again with the second-most preferred design, the third-

51

++

Payment Via
Money Order

Charge
Credit Card

Get CC
Authorization

Get Credit
Card Number

Courier
Delivers to
Customer

Payment
Received

Books Delivered

Fulfill Book
Order

Deliver to
Courier

Handle
Receipt

Place Receipt
in Shipment

Payment Via
Credit Card

Provide
Quote

Customer
Requests

Quote

Customer
Places
Order

Quote Given

Books
Available

Books Ordered Books Acquired

Contact
Supplier

Supplier
Provides

Price

Don’t Place
Receipt

in Shipment

Books Arrive
at Warehouse

Supplier
Ships Books

Receipt Sent

Send Printed
Receipt

Send Electronic
Receipt

Print Receipt

Separate
Receipt Sent

Submit Receipt

Deliver Receipt

Customer
Issues

Money Order

Customer
Sends

Money Order

Receive
Money Order

Place Order
to Supplier

Happy Customer

Payment
Traceability

Reduce
Transaction

Costs

Use Robust
Legal

DocumentationAND

AND

AND

AND

AND

OR

OR

OR

++

++ −− ++

−−

AND

AND AND

AND

AND

++

Figure 5.1 Online book sales goal model, taken from [44] (via [60])

most preferred design, and so on until an optimal correct system is realized or until all

possibilities are exhausted. To do so, we need to have a correct method for ordering all

possible solutions in descending order of preference.

This chapter describes the methods that we use to model, refine, and apply the qualitative

preferences of a proposed system’s stakeholders within the component-based system design

process. The methods that we present in this chapter were introduced in our previous work

on preference reasoning with goal-oriented requirements engineering (GORE) in [60, 61] and

explained in more detail in the context of the credential disclosure minimization problem in [63].

We present these preference handling methods using an example set of preferences over optional

goals within a goal model as used in GORE (see Section 2.2 for more details). However, the

methods presented in this chapter are independent of any particular requirements engineering

methodology and are broadly applicable in many settings.

5.1 Example: Preferences between Optional Goals of a System

We will use a modified version of the online book sales goal model introduced by Liaskos et

al. in [44] and adapted for our work in [60, 61] as a running example throughout this chapter.

This goal model is shown in Figure 5.1, which is taken from [60]. An online book selling

52

system developed according to this goal model must fulfill several core goals, such as ensuring

that the ordered books are available, providing a price quote for each order, and receiving

payments. Each of these high-level goals can be decomposed into one or more smaller, well-

defined tasks, which may each be satisfied by a single component or combination of components.

For instance, in order for the book selling system to obtain books to sell, it must contact

suppliers, receive price quotes from those suppliers, and then choose which books to order from

each supplier as well as how many copies of each book to order. This is clearly an instance

of AND-decomposition as described in the previous chapter. Furthermore, some core goals or

subgoals can be satisfied in multiple ways, such as the different payment options commonly

offered to customers. Such a selection of one or more sufficient alternatives for satisfying a goal

is an example of OR-decomposition as defined previously.

Observe that the main part of the goal model in Figure 5.1 (all except for the shaded ovals

and dashed lines) is an instance of an AND-OR tree as described in Section 4.2. The root

node (Fulfill Book Order) describes the overall requirement for the system, which is AND-

decomposed into four subgoals (internal AND or OR nodes) and one task (leaf node or trait).

Tasks always appear as leaf nodes in the tree formed by the goal model, because they represent

basic operations that the system may perform in partial fulfillment of the overall requirement.

The mapping to our meta-framework for problem decomposition in Chapter 4 is clear: each task

can be specified as a trait of the system as defined in Section 3.2, with different semantics and

verification techniques used to verify that the system performs each task, while the goal model

specifies the Boolean combinations of tasks that are sufficient to satisfy the overall requirement.

The primary difference from the meta-framework in Chapter 4 is that every node (goal or task)

in the goal model is given a name. In contrast, only the leaf nodes (traits) in the AND-OR

tree in Section 4.2 are given high-level descriptions beyond a logical operator.

In addition to the main goal model, there are also certain optional goals (non-functional

properties) that the bookseller considers relevant to the success of the system. These include

reduced transaction costs, customer satisfaction, payment traceability, and use of robust doc-

umentation for legal purposes. Unfortunately, it may not be possible to satisfy all of these

optional goals or traits while still providing all of the core functions required by the system.

53

For example, requiring payment by money order instead of credit card would reduce transaction

costs to the business, but it would also reduce customer satisfaction by making payment less

convenient. Realizing this, the bookseller has identified several acceptable tradeoffs between

optional goals:

P1. If robust documentation is used, payment traceability is more important than reducing

transaction costs.

P2. If transaction costs are reduced at the expense of customer satisfaction, then using robust

documentation takes precedence over ensuring payment traceability.

P3. If robust documentation is not provided, then it should be possible to trace payments in

order to satisfy regulatory auditing requirements, even at the expense of reduced customer

satisfaction and increased transaction cost.

Although the goal model in Figure 5.1 can be analyzed by itself to determine the set of all

likely correct designs for the system, information about the stakeholders’ preferences over the

optional goals or traits is also needed to identify the best or most preferred design, i.e., the set

of components that can be combined in a way that provides the required functionality of the

system while fulfilling the most preferred subset of the optional traits. Although it would be

ideal from the stakeholders’ perspective if a single system could fulfill the entire set of optional

goals, this may not be feasible because of the possible existence of optional goals that receive

both positive and negative contributions from two or more goals or tasks that are part of the

same system design.

In Figure 5.1, if a design includes the goals Payment via Money Order and Send Printed

Receipt, then that design cannot fulfill the optional goal Reduce Transaction Costs, since the

first goal positively contributes to this optional goal while the second goal contributes negatively

to it. Also note that this design will not be able to fulfill the optional goals Reduce Transaction

Costs and Payment Traceability because of the satisfaction of the goal Payment via Money

Order, which positively contributes to one optional goal and negatively contributes to the

other.

54

In light of such conflicts, a user will typically ascertain preferences over the set of optional

goals with the objective of obtaining a functionally correct design that is most preferred. A

system design can be considered correct if the goal at the root of the goal tree is satisfied.

The preference of the design, on the other hand, depends directly on the set of optional goals

fulfilled by the design. Therefore, a most preferred correct system design is one that fulfills a

set of optional goals γ such that there exists no other correct design that fulfills another set of

optional goals γ′, where γ′ is preferred to γ.

5.2 Formalizing Preferences as a CI-Net

To capture and reason with preferences over the set of optional goals, we use conditional

importance networks (CI-nets) [12], which allow stakeholders to specify relative importance

among sets of items. A CI-net C is a set of conditional importance statements of the form:

S+, S− : S1 � S2

where S+, S−, S1 and S2 are pairwise disjoint subsets of the set of all optional goals GO.

Informally, such a statement is read as: “Given two designs, if both fulfill the optional goals

in S+ and do not fulfill the optional goals in S−, then the design that fulfills all optional goals

in S1 is preferred to the design that fulfills all optional goals in S2.” For instance, preference

P2 described in Section 5.1 states, “If transaction costs are reduced at the expense of customer

satisfaction, then using robust legal documentation takes precedence over ensuring payment

traceability.” This preference is expressed in the CI-net language as follows:

{Reduced Transaction Cost}, {Happy Customer} :

{Use Robust Legal Documentation} � {Payment Traceability}

Formally, a CI-net C over a set of optional goals GO is satisfiable if and only if there exists

a strict partial order (irreflexive and transitive) relation � over the powerset of GO such that:

1. For each CI-net statement S+, S− : S1 � S2, if γ ⊆ GO \ (S+ ∪ S− ∪ S1 ∪ S2) then

γ ∪ S+ ∪ S1 � γ ∪ S+ ∪ S2.

2. � is monotonic, i.e., γ ⊃ γ′ ⇒ γ � γ′.

55

Based on this definition, the CI-net preference language satisfies the criteria for a dominance

relation for our component-based system development framework as defined in Section 3.4.

Revisiting the preference statement above, by the rule in item 1, the set of optional goals

{Reduced Transaction Cost, Use Robust Legal Documentation} is preferred to (�) the set of

optional goals {Reduced Transaction Cost, Payment Traceability}. By the rule in item 2, a set

of optional goals is preferred to all of its proper subsets.

CI-nets are a natural choice for modeling user preferences over sets of optional goals in goal

models and sets of optional traits that component-based systems may provide for the following

reasons:

1. Preferences in CI-nets are monotonic. According to the semantics of CI-nets, a set of

optional goals is preferred to all its proper subsets. This property is necessary to model

preferences over optional goals because the stakeholders would typically like to see as

many optional goals or traits fulfilled as possible; ideally, all of them would be fulfilled.

2. The CI-net semantics induces a strict partial order among the subsets of the optional

goal set with respect to the given conditional importance statements. Thus, it is possible

to order the subsets of optional goals in a way that is consistent with the semantics of

a CI-net. Such an ordering can be used to search for designs that fulfill more preferred

optional goals ahead of those that fulfill less preferred optional goals.

3. When it is not possible to find a design that satisfies all of the optional goals, stake-

holders are often willing to trade certain sets of optional goals for others, rather than

only choosing between individual optional goals. Unlike many other preference model-

ing languages, these tradeoffs can be directly represented in CI-nets using conditional

importance statements over sets of optional goals.

5.3 Consistency Checking and Dominance Testing in CI-Nets

Given two choices (of sets of optional goals), deciding the preference of one choice over

the other is referred to as dominance testing. Although dominance testing is known to be

56

PSPACE-complete [12, 29], Santhanam et al. demonstrated in [75] an effective model checking-

based approach to dominance testing for certain families of preferences, such as TCP-nets [14].

In this section, we follow a similar approach for dominance testing between choices (of sets of

optional goals) where preferences are represented using CI-nets. This approach relies on an

alternative semantics of CI-nets given in terms of an improving flipping sequence, analogous to

the worsening flipping sequence defined in [12].

Definition 6 (Improving Flipping Sequence [12]) A sequence of sets of optional goals

γ1, γ2, · · · γn−1, γn is an improving flipping sequence with respect to a set of CI-net statements

if and only if, for 1 ≤ i < n, either

1. (Monotonicity Flip) γi+1 ⊃ γi; or

2. (Importance Flip) there exists a conditional importance statement S+, S− : S1 � S2 in

the CI-net, such that all three of the following conditions are satisfied:

(a) γi+1 ⊇ S+, γi ⊇ S+, and γi+1 ∩ S− = γi ∩ S− = ∅;

(b) γi+1 ⊇ S1, γi ⊇ S2, and γi+1 ∩ S2 = γi ∩ S1 = ∅;

(c) if γ = GO \ (S+ ∪ S− ∪ S1 ∪ S2), then γ ∩ S1 = γ ∩ S2.

In this definition, condition 1 states that fulfilling additional optional goals is always pre-

ferred to fulfilling fewer optional goals. Condition 2 states that if the optional goals in set

S+ are fulfilled and the optional goals in set S− are not fulfilled, then fulfilling the set S1 of

optional goals is more important than fulfilling the set S2 of optional goals, all others being

equal (the ceteris paribus condition discussed in Section 2.3, which is ensured by condition

2(c)). Given a CI-net C and two sets γ and γ′ of optional goals, we say that γ is preferred

to γ′ under C, denoted by C |= γ � γ′, if and only if there is an improving flipping sequence

with respect to C from γ′ to γ (Proposition 1 in [12]). In our example CI-net (see Section 5.1),

we can thus say that the set {Reduced Transaction Cost, Use Robust Legal Documentation} is

preferred to the set {Payment Traceability}. This is because the set {Payment Traceability} has

an improving (importance) flip to the set {Reduced Transaction Cost, Payment Traceability},

57

abcd

∅

a b c d

abdabc acd bcd

ad bcacab bd cd

a = Happy Customer
b = Reduce Transaction Costs
c = Payment Traceability
d = Use Robust Legal Documentation

CI-net statements:

P1. {d}, {} : {c} � {b}
P2. {b}, {a} : {d} � {c}
P3. {}, {d} : {c} � {a, b}

Figure 5.2 Induced preference graph for CI-net in online book sales example

which in turn has an improving (monotonicity) flip to {Reduced Transaction Cost, Use Robust

Legal Documentation}.

From this definition, one can construct a graph where each node corresponds to a set of

optional goals and each directed edge from one node to another denotes an “improving flip”,

capturing the fact that the set of optional goals at the destination node is preferred to the set

of optional goals at the source node. This graph is referred to as the induced preference graph.

Definition 7 (Induced Preference Graph) Given a CI-net C over a set of optional goals

GO, the induced preference graph δ(C) = (N,E) is constructed as follows. The nodes N cor-

respond to the powerset of GO, and each directed edge (γ, γ′) ∈ E corresponds to an improving

(monotonicity or importance) flip from γ to γ′ as per the CI-net semantics (Definition 6) such

that γ′ � γ.

Figure 5.2 presents the CI-net statements corresponding to the preferences over optional

goals specified in Section 5.1, along with the induced preference graph constructed from those

statements. The dashed edges between sets of optional goals in this graph correspond to

monotonicity flips and the solid edges correspond to importance flips. Every path in the graph

represents an improving flipping sequence induced by the CI-net.

A set γ′ of optional goals dominates (i.e., is preferred to) another set γ with respect to

CI-net C if and only if the node corresponding to γ′ is reachable from the node corresponding

58

to γ in the induced preference graph δ(C). For example, the set {Reduced Transaction Cost,

Use Robust Legal Documentation} is preferred to the set {Payment Traceability} due to the

existence of the path c→ bc→ bd in Figure 5.2.

The induced preference graph of a CI-net is consistent, meaning that no set of traits is

preferred to itself, if and only if it is cycle-free. Before using the preferences contained in a

CI-net to make decisions about possible system designs, it is necessary to first ensure that the

given set of preferences is consistent.

5.3.1 Kripke Structure Modeling of CI-Net Semantics

We use the NuSMV [20] or Cadence SMV [50] symbolic model checker to verify reachability

(and therefore dominance) from one node to another in the induced preference graph. There

are three primary advantages in using one of these model checking tools for testing dominance.

First, they are equipped with symbolic or binary decision diagram-based algorithms that allow

for efficient state-space exploration of large graphs. Second, they can verify properties beyond

simple reachability in expressive temporal logic (e.g., CTL and LTL), a capability that we will

use in Section 5.3.3 to obtain a preference ordering over sets of optional goals. Finally, the SMV

input language, which is accepted by both NuSMV and Cadence SMV, allows us to directly

encode the CI-net preference statements. The induced preference graph is then automatically

constructed by the model checker to answer dominance (verification) queries.

The model checker takes as input a Kripke structure 〈S, S0, T, L〉, where S is the set of

states, S0 ⊆ S is the set of start states, T ⊆ S × S is the set of transition relations, and L is

a labeling function mapping each state in S to a set of propositions that hold at that state.

In our encoding, we represent each optional goal as a proposition xi, where the value of the

proposition is true when the optional goal is fulfilled and false when the optional goal is not

fulfilled. The propositions are uninitialized, which allows the model checker to consider all

possible valuations of the propositions as initial states of the Kripke structure. Given a set of

CI-net statements C, the Kripke structure KC representing the induced preference graph δ(C)

contains states that are labeled with the truth values of the set of optional-goal propositions xi

along with two types of helper Boolean variables: a set of variables hi and a single variable g.

59

SMV Input Language: Role of Helper Variables. A Kripke structure is encoded in

SMV using a set of variables, each variable’s possible initial valuations, and a set of transition

relations. Each transition relation describes the valuation of one variable based on certain

conditions of the current state-variable valuations. For instance, consider the following partial

SMV encoding of a Kripke structure with two Boolean variables a and b. (Note that in all SMV

code used in this chapter, the value 0 represents “false” and the value 1 represents “true”.)

init(a) := 0;

next(a) := case

a = b : !a;

1 : a;

esac;

This SMV specification states that the initial valuation of a is 0 (false), while the initial

valuation of b can be either 0 or 1 since it is not explicitly given. The corresponding Kripke

structure has two different start states: one where a and b are equal to 0 (false) and another

where a is equal to 0 (false) and b is equal to 1 (true). Furthermore, the transition relation

(described by the next operation) states that the value of a is toggled only when the valuations

of a and b are equal in the current state. The absence of next definitions for b indicates that

the valuation of b can change non-deterministically whenever a change in state occurs in the

Kripke structure.

In the encoding of δ(C) as a Kripke structure KC , attributes over which the CI-net state-

ments are specified are encoded as Boolean variables in KC . Each state in KC corresponds to a

node in δ(C): if x3∧x4 holds (evaluates to true) in a state in KC , that state corresponds to the

node annotated with x3 and x4 in δ(C). Next, note that the existence of a given edge in δ(C)

depends on the contents of the source and destination nodes (improving flip, see Definition 6).

Direct encoding of such edges in SMV requires encoding of transitions in KC where the next

operation on each variable, which describes the enabling condition of the transitions, includes

conditions that depend on the variables’ values in the next states. Encoding such conditions

in SMV may lead to circular dependencies between next operations for two or more variables.

As an example, consider the following SMV code:

60

next(a) := case

next(b) : !a;

1 : a;

esac;

next(b) := case

next(a) : !b;

1 : b;

esac;

From the above encoding, it is not clear what valuation a and b should have in the next state

when the current state valuations of the variables are equal to 1.

Role of hi. To correctly encode the edges of δ(C) as transitions in KC , we use one auxiliary

Boolean variable hi for each proposition xi. Each hi is encoded such that if hi is 0 (false) in the

current state, then in the next state the valuation of xi cannot change; otherwise, the valuation

of xi may change in the next state if a condition matching a CI-net statement is satisfied. All

hi variables are initialized to 0, and the model checker updates the his non-deterministically.

For instance, the semantics of the CI-net statement {d}, {} : {c} � {b} (preference P1 from

Section 5.1, resulting in edges bd→ cd and abd→ acd in δ(C)) can be encoded in SMV as:

next(b) := case

h_a = 0 -- a does not change in next state

& b = 1 & h_b = 1 -- b can change in the next state

& c = 0 & h_c = 1 -- c can change in the next state

& d = 1 & h_d = 0 -- d does not change in next state

: 0

...

esac;

next(c) := case

h_a = 0 -- a does not change in next state

& b = 1 & h_b = 1 -- b can change in the next state

& c = 0 & h_c = 1 -- c can change in the next state

& d = 1 & h_d = 0 -- d does not change in next state

: 1

61

...

esac;

The enabling conditions are identical in both cases to ensure that the valuations of b and c

are updated under identical conditions as specified by the CI-net, namely when d = 1 in both

the current and next states (ensured by hd = 0 in the current state) and when the valuation

of a is unaltered in both the current and next states (ensured by ha = 0 in the current state).

Further, c = 0 and hc = 1 in the current state, which allows the value of c to change in the

next state; similarly, b = 1 and hb = 1 in the current state, which allows for the toggling of b

in the next state.

In this way, the semantics of CI-nets as given in Definition 6 can be directly encoded as

SMV specifications. This encoding eliminates the need to manually construct the induced

preference graph δ(C). Instead, the model checker automatically constructs and explores the

Kripke-structure model representing δ(C).

Role of g. Within this encoding, the different valuations of each hi for the same valuation

of each xi correspond to states in KC that allow different ways in which the valuation of that xi

can be changed. Consequently, KC contains multiple states where an identical set of xis hold

true; all of these states correspond to one node in δ(C). Transitions between these states do

not change the valuation of any xi and, therefore, do not correspond to any edge in δ(C).

The variable g is set to 1 (true) whenever a transition traversed in KC results in a change

in the valuation of at least one of the xis (i.e., when a transition in KC corresponds to an edge

in δ(C)). Conversely, if a transition in KC does not indicate a change in any of the xi variables,

the variable g is set to 0 (false). Consider the following SMV code, which updates g based on

the CI-net statements that encode the preferences expressed in Section 5.1:

next(g) := case

-- Guards corresponding to P1, where g will be set to 1 :

h_a = 0 -- a does not change in next state

& b = 1 & h_b = 1 -- b can change in the next state

& c = 0 & h_c = 1 -- c can change in the next state

62

& d = 1 & h_d = 0 -- d does not change in next state

: 1 -- g is set to 1 indicating that this transition

-- corresponds to a change in "b" or "c"

...

-- Guards corresponding to P2, where g will be set to 1 :

...

-- Guards corresponding to P3, where g will be set to 1 :

...

1: 0 -- default case : if no variables change, then g is 0

esac;

Note that these are precisely the same conditions under which b changes to 0 (false) and c

changes to 1 (true), as defined in the previous SMV code excerpt. The code in this excerpt

sets g to 1 whenever the conditions for changing the value of b and c are satisfied. The full

next(g) block contains conditions for setting g to 1 when any monotonicity or importance flip

causes one or more variables to change; we have omitted the remaining conditions for clarity

of explanation. The 1 condition at the end of the block sets g to 0 if no other condition is met,

i.e., if no variables change during the specified transition. In Section 5.3.3, we show how the

variable g can be used directly to compute the ordering of preferred solutions.

Figure 5.3 shows how the data variables xi, the helper variables hi, and the change variable

g interact within the Kripke structure KC for a node in the induced preference graph δ(C)

containing variables a and b. The most preferred node in δ(C) is the set of all elements, while

the least preferred node is the empty set; nodes containing only a or only b are intermediate

nodes. Each node in δ(C) is modeled by a set of interconnected states in KC .

We have expanded one node of δ(C), where a = 1 and b = 0, in Figure 5.3 to fully show the

corresponding set of states in KC . The expanded node is divided into two subsets of states: the

left subset ag represents the set of states where g = 1, while the right subset a¬g represents the

set of states where g = 0. There are four states in both subsets, one for each possible valuation

63

of the two Boolean variables ha and hb. Any state in ag can be reached immediately from some

state in KC that represents the node where a = 0 and b = 0 in δ(C). States where ha = 0 and

hb = 1 move to states in KC where a = 1 and b = 1, regardless of g’s value. All other states

in ag can move to some state in a¬g by a transition in KC ; however, since g = 0 in all states

in a¬g, any transition to or between the states in a¬g does not correspond to any edge in δ(C).

Note that, as in ag, the state in a¬g where ha = 0 and hb = 1 has transitions to states where

a = 1 and b = 1. The rest of the Kripke structure KC is constructed similarly: each node in

δ(C) corresponds to a set of states in KC , where the number of states in the set is exponential

in the number of variables (optional goals) in δ(C).

Theorem 4 Given a CI-net C, a Kripke structure KC constructed as described in this subsec-

tion preserves the semantics of the induced preference graph δ(C) of the CI-net.

Proof. Consider the induced preference graph δ(C) for CI-net C as defined in Definition 7.

Each state in KC maps onto exactly one node in δ(C). Furthermore, given two nodes γ, γ′ ∈ δ(C)

and two states s, s′ ∈ KC where s maps to γ and s′ maps to γ′, there exists a directed edge

(γ, γ′) ∈ δ(C) if and only if both (1) there exists a transition s→ s′ ∈ KC and (2) g = 1 in state

s′. This transition s→ s′ models the improving flip (γ, γ′) in the induced preference graph. �

5.3.2 Model Checking for Verifying Consistency and Dominance

Given a CI-net C, we use the method in Section 5.3.1 to specify the corresponding Kripke

model KC for input to the Cadence SMV or NuSMV model checker. We begin by verifying

that the induced preference graph δ(C) modeled by KC is consistent (i.e., cycle-free). This is

done by checking KC against the LTL formula F G(g = 0), which is satisfied if and only if

every path from the initial state in KC eventually reaches a point where no xi variable ever

changes (i.e., g is always 0) in any future state.1 If a cycle exists in the induced preference

graph, then every state in the cycle always has at least one outgoing transition from that state

where g = 1, indicating that a variable is changing; this violates the consistency property.
1Details of LTL syntax and semantics can be obtained in [71].

64

Induced

preference

graph

b

a

a

ab

a

b

a

a

a

a

ab

a

b

a

a

= 1g = 0g

ab

itop line: true x variables

ibottom line: true h variables

b

ab

(preference items)

(change variables)

empty line = no true variables

ab

Kripke structure

b

a

Figure 5.3 Kripke structure encoding of part of an induced preference graph

After the model KC is verified to be consistent, it can be used for preference reasoning. For

any sets of optional goals γ and γ′, we use the CTL formula X ⇒ EF (X ′), where X (resp. X ′)

is the propositional formula indicating the presence or absence of optional goals in γ (resp. γ′),

to check whether γ′ is preferred to γ. This property is satisfied by any state in KC where X

holds true and where there is a path leading to a state where X ′ holds true.2 If the property is

satisfied, we conclude that γ′ is preferred to γ. An improving flipping sequence from γ to γ′ can

be obtained by querying the model checker with the negation of the formula X ⇒ EF (X ′); the

counterexample returned by the model checker is a path in the Kripke structure that proves

dominance, which can be used to construct the improving flipping sequence. On the other hand,

if the property X ⇒ EF (X ′) is not satisfied, then there is no improving flipping sequence from

γ to γ′, i.e., γ′ is not preferred to γ. In the CI-net used in our example (see Section 5.1), the

model checker returns true when queried with the formula (bd⇒ EF (acd)), which verifies that

acd is preferred to or dominates bd. When we query the model checker with the CTL formula

¬(bd⇒ EF (acd)), it yields a counterexample corresponding to either the path bd→ cd→ acd

or the path bd→ abd→ acd. Either path proves the dominance of acd over bd.
2Details of CTL syntax and semantics can be obtained in [22].

65

We find the most preferred set of optional goals by verifying the CTL property EF (g = 1)

for all states in KC . This property is satisfied at a state s in KC if and only if s can reach any

state (including itself) where g evaluates to 1 (true). The property is not satisfied at states

in KC that correspond to the top-most node (containing the set of all optional goals) of the

induced preference graph δ(C). This is because the top-most node in δ(C) does not contain any

outgoing edges. Any one of the states in KC that corresponds to the top-most node in δ(C)

is identified by NuSMV or Cadence SMV as a counterexample, proving the unsatisfiability of

the property EF (g = 1). In our running example, this query returns the state where variables

a, b, c, and d are true, which corresponds to the set of all optional goals. This reflects the fact

that fulfilling all given optional goals is the most preferred alternative.

5.3.3 Preference Ordering over Sets of Optional Traits

Once we have modeled the induced preference graph δ(C) as a Kripke-structure model KC

and confirmed using the NuSMV or Cadence SMV model checker that the modeled preferences

are consistent, our next objective is to obtain an ordering of sets of optional goals from most

preferred to least preferred. Note that δ(C) represents a strict partial order between sets of

optional goals. The ordering we obtain using this technique is a total order consistent with

this strict partial order. We achieve this by performing model checking on the model KC and

its modifications against CTL properties. The steps in our approach are as follows.

1. We verify all states in KC against the CTL property EF (g = 1). As noted previously,

this returns the most preferred set of optional goals from the top of δ(C). In general, as

δ(C) is a strict partial order, it may have multiple elements at the top. Any state that

corresponds to any one of the top elements will be returned as the counterexample, which

proves the unsatisfiability of the CTL property.

2. Let γ1, γ2, . . . , γn be the sequence of sets of optional goals that has been obtained so far

(as the total order consistent with the partial order presented in δ(C)). We define the

following formula:

I =
n∨
i=1

∧
j

(xij) (5.1)

66

where Xij is the proposition representing the presence or absence of the jth optional

goal in the set γi. We then query the model checker with the modified CTL property

EF (g = 1) ∨ I. The property is satisfied by state s in KC if and only if (a) all states s′

reachable from s can, in turn, reach some state where g = 1 is true or (b) s corresponds

to nodes γ1, γ2, . . . , γn in δ(C). On the other hand, if the property is not satisfied by

s, then s cannot reach a state where g is set to true and s does not correspond to

nodes γ1, γ2, . . . , γn. In other words, if the property is satisfied, there exists no state in

KC corresponding to a set of optional goals that is at least as preferred as at least one

element in γ1, γ2, . . . , γn.

3. If the model checker returns false, then it identifies (as a counterexample) a state cor-

responding to a set of optional goals γn+1, which is at least as preferred as one of the

previously identified sets of optional goals γ1, γ2, . . . , γn. In this case, we iterate Step 2

using the new sequence γ1, γ2, . . . , γn, γn+1. Otherwise, the property is satisfied by all

states in KC , meaning there exists no set of optional goals that is at least as preferred as

one of the elements in γ1, γ2, . . . , γn. If this occurs, we remove from the Kripke structure

KC all states corresponding to the optional-goal sets γ1, γ2, . . . , γn (obtained by iterating

Step 2 so far) by adding ¬I (see Equation 5.1) to the Kripke structure as an invariant,

since the model checker only considers the states where the invariant holds. Thus, the

reduced model corresponds to the induced preference graph where the nodes correspond-

ing to γ1, γ2, . . . , γn are not considered. We then iterate starting from Step 1 until the

invariant produces a model where no states are considered by the model checker.

Note that in Step 2, the states in the model corresponding to γ1 . . . γn are ignored by the

model checker (although they remain present in the model), as our query is modified to consider

all states except these. This enables us to obtain the top-most nodes one by one in sequence

without altering the model. However, when all of the top-most nodes are obtained, we remove

the states corresponding to γ1 . . . γn from the model in Step 3 by adding ¬I as an invariant

to the current model. This makes it possible to obtain the next set of top-most nodes in the

subsequent iteration. We explain this process using the example δ(C) presented in Figure 5.2.

67

Iteration 1. Initially, the Kripke structure KC encoding of δ(C) is verified against the

property EF (g = 1) following Step 1 above. The result (counterexample) obtained is the top-

most element γ11 = (abcd). In Step 2, model checking is performed again with the property

EF (g = 1) ∨ I, where I = (a ∧ b ∧ c ∧ d) represents the fulfillment of all four optional goals.

The property is satisfied because all states except the ones corresponding to (abcd) can reach a

state where g = 1 (true). Therefore, as per Step 3, we remove from KC the states corresponding

to the node γ11 = (abcd) by adding ¬I = (¬a∨¬b∨¬c∨¬d) as an invariant to KC . As a result,

we have forced the model checker to consider only the states where the invariant holds; at any

state corresponding to the node (abcd), the invariant does not hold. This can be viewed as an

updated KC , which encodes a δ(C) where the nodes {(abc), (acd), (bcd)} are at the top (as in

Figure 5.2, but with the (abcd) node and its incoming edges removed).

Iteration 2. Step 1 is performed again and the model checker returns as a counterexample

one of the states that corresponds to either (abc), (acd), or (bcd). Note that one of these states

is identified non-deterministically by the model checking algorithm. Suppose that the state

corresponding to (abc) is obtained as a counterexample. So far, we have γ11 = (abcd) (obtained

in the previous iteration) followed by γ21 = (abc) in our total ordering of sets of optional goals.

Proceeding to Step 2, we have a new I = (a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ c). Note that the states

corresponding to (abcd) have already been removed by adding the invariant ¬a ∨ ¬b ∨ ¬c ∨ ¬d

before the start of Step 1 in the current iteration. As a result, we do not need to consider

the first disjunct in the new I. When model checking is performed again, one of the states

corresponding to either (acd) or (bcd) is obtained as a counterexample. Suppose that a state

corresponding to γ22 = (acd) is returned as a counterexample.

We proceed to perform Step 2 again with I = (a ∧ b ∧ c) ∨ (a ∧ c ∧ d). The model checker

returns a counterexample state corresponding to the node γ23 = (bcd). Proceeding further,

Step 2 is again performed using I = (a ∧ b ∧ c) ∨ (a ∧ c ∧ d) ∨ (b ∧ c ∧ d). At this point, the

model checker fails to find any counterexamples for the property EF (g = 1) ∨ I. In Step 3,

we remove all of the states corresponding to the nodes (abc), (acd) and (bcd) by adding the

invariant ¬I = (¬a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ ¬c ∨ ¬d) ∧ (¬b ∨ ¬c ∨ ¬d) to the model, and we start

68

a new iteration from Step 1. So far, we have obtained an ordering of sets of optional goals

γ11 = (abcd), γ21 = (abc), γ22 = (acd), γ23 = (bcd).

Remainder of the Process. The iterative process, starting from Step 1, is illustrated in

Table 5.1. The iteration is continued until ¬I results in a KC where no states are considered by

the model checker. The total number of iterations is equal to the height of the partial order in

δ(C). In this example, using δ(C) as shown in Figure 5.2, it is equal to 10. Each such iteration

obtains a sequence of sets of optional goals that are equally preferred (or indistinguishable as

per the given preferences). For instance, in iteration 2, we obtained (abc), (acd), and (bcd),

which are equally preferred. Such elements are obtained by iterating Step 2 multiple times,

with a new value of I each time. The maximum number of iterations starting at Step 2 is equal

to the width of the partial order in δ(C). In this example (Figure 5.2), it is equal to 3.

The main advantage of using the method presented in this section is that a total ordering of

sets of optional goals is obtained without performing all possible pairwise comparisons. Instead,

systematic updates to the model corresponding to the induced preference graph and repeated

model checking using a CTL property are used to automatically find the total order of sets of

optional goals.

5.4 Determining the Most Preferred Alternatives

We now have effective methods for finding the most preferred set of optional goals, as well

as for computing a sequence of optional goals that forms a total ordering over the powerset of

optional goals and is consistent with the stated CI-net preferences. At this point, there are two

options for identifying the most preferred system design alternatives (i.e., sets of tasks) from

the set of all feasible system designs in the goal model (i.e., those that appear to be sufficient

to satisfy the root goal):

1. Verify all feasible system designs to determine which of them can form actual systems

that fulfill the root goal of the goal model, then determine which correct systems are most

preferred based on the set of optional goals satisfied by each correct system.

69

Table 5.1 Steps to find ordering of optional goal sets for online book sales example

Iteration Query Result Action
1. Iteration 1 EF(g = 1) [abcd] I = (abcd)
2. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
3. Iteration 2 EF(g = 1) [abc] I = (abcd̄)
4. EF(g = 1) ∨ I [acd] I = (abcd̄) ∨ (ab̄cd)
5. EF(g = 1) ∨ I [bcd] I = (abcd̄) ∨ (ab̄cd) ∨ (ābcd)
6. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
7. Iteration 3 EF(g = 1) [abd] I = (abc̄d)
8. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
9. Iteration 4 EF(g = 1) [ac] I = (ab̄cd̄)

10. EF(g = 1) ∨ I [ad] I = (ab̄cd̄) ∨ (ab̄c̄d)
11. EF(g = 1) ∨ I [cd] I = (ab̄cd̄) ∨ (ab̄c̄d) ∨ (āb̄cd)
12. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
13. Iteration 5 EF(g = 1) [bd] I = (ābc̄d)
14. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
15. Iteration 6 EF(g = 1) [bc] I = (ābcd̄)
16. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
17. Iteration 7 EF(g = 1) [c] I = (āb̄cd̄)
18. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
19. Iteration 8 EF(g = 1) [ab] I = (abc̄d̄)
20. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
21. Iteration 9 EF(g = 1) [a] I = (ab̄c̄d̄)
22. EF(g = 1) ∨ I [b] I = (ab̄c̄d̄) ∨ (ābc̄d̄)
23. EF(g = 1) ∨ I [d] I = (ab̄c̄d̄) ∨ (ābc̄d̄) ∨ (āb̄c̄d)
24. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
25. Iteration 10 EF(g = 1) [] I = (āb̄c̄d̄)
26. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant
27. EF(g = 1) − No more states to explore. Terminate.

2. Order all feasible system designs in descending order of preference based on the optional

goals they claim to satisfy, then attempt to realize the most preferred system design and

verify that the realized system satisfies its verification obligation regarding both the root

goal and any optional goals it is committed to fulfill. If the most preferred design cannot

be verified, repeat with the second-most preferred design, then the third-most preferred

design, and so on until a verified correct system is found or all designs are exhausted.

Both options produce the same results in the end, but one option may be more efficient than

the other depending on the number of feasible system designs and the complexity of the goal

model. If there are few feasible system designs to be realized and verified, or if the goal model is

70

simple enough that verification can be completed relatively efficiently, then it may be better to

determine which of the designs can be realized and verified as correct systems before considering

preferences; perhaps only one of the systems will be correct, in which case preferences will not

matter. On the other hand, if there are many feasible system designs or if the goal model is

fairly complex, then it may be desirable to place the feasible system designs in descending order

of preference, then realize and verify only the most preferred system designs needed to obtain

an optimal correct system.

Before we proceed to find the most preferred satisfiable set of goals (i.e., the most preferred

system design), we define some additional concepts. Let 2S denote the powerset of set S.

1. Let R be a formula representing the Boolean combination of the goals in the goal model,

where each proposition Ri in the formula indicates the corresponding goal gi ∈ GR (recall

that GR is the set of required goals in the goal model). Then a satisfiable goal assignment

is any set of goals ĜR ⊆ GR such that setting the corresponding propositions to true

satisfies R. Let Sat(R) = Sat(GR) denote the set of all satisfiable goal assignments in

2GR . For instance, Sat(Books Delivered) is a set containing two different solutions: one

solution contains the goal Don’t Place Receipt in Shipment and the other contains the

goal Place Receipt in Shipment. This is because either one of these goals must be satisfied

in order to satisfy the goal Handle Receipt, satisfaction of which is necessary to satisfy

the root goal Books Delivered.

2. Let γ ⊆ GO be a set of optional goals. A contributing goal set, denoted by Contrib(γ),

is a set of goals (equivalently, a set of truth assignments to goal propositions in R) that,

taken together, support (contribute positively to) every optional goal in the set γ. In

other words, for every optional goal sj ∈ γ, both of the following hold:

(a) At least one goal in the set supports (has a ++ link to) sj .

(b) No goal in the set denies (has a -- link to) sj .

For instance, in Figure 2.1, Contrib(Use Robust Legal Documentation) = {Payment Via

Money Order, Send Printed Receipt}.

71

With the help of these two concepts and the method described in Section 5.3.3 for computing

a total preference ordering over the powerset of optional goals using CI-nets, we present our

algorithm to find the most preferred functionally satisfactory assignment of goals in the goal

tree. The aim is to identify a satisfiable goal assignment for the root goal of the goal model

such that the assignment also contributes to the most preferred subset of optional goals GO. In

order to achieve this, we iterate through the possible sets of optional goals in 2GO in descending

order of preference with respect to the given CI-net specification, using the method described

in Section 5.3.3. The algorithm proceeds as follows:

1. Let R be the Boolean formula described above which, when satisfied, results in the satis-

faction of the root goal in the goal model. Let γ1, γ2, . . . , γn be the total order sequence

of sets of optional goals from most preferred to least preferred that was obtained by the

method in Section 5.3.3.

2. For each i from 1 to n, for each x ∈ Sat(R), and for each y ∈ Contrib(γi): If y ⊆ x, then

return x.

3. If the loop terminates, then no satisfiable assignment was identified for any set of optional

goals (including the empty set); in this case, inform the user and return nothing.

In the above procedure, Step (2) is iterated until either (a) a satisfiable goal assignment

that contributes to all of the optional goals in some γi (considered in descending order of

preference) is found or (b) no one satisfiable goal assignment contributes to all of the optional

goals in any γi. Note that in the latter case, indeed there is no satisfiable goal assignment

because the procedure considers all possible subsets of optional goals one by one, including

the set γn = ∅ where none of the optional goals are fulfilled (the least preferred option). In

other words, the above procedure finds a satisfiable goal assignment if one exists. Further, the

procedure considers sets of optional goals in descending order of preference, so it will find a

satisfiable goal assignment (if one exists) that fulfills a more preferred set γi of optional goals

ahead of other assignments that fulfill the set γj (j > i), where γi is preferred to γj .

This establishes the correctness of our procedure and its optimality in finding the most

preferred satisfiable goal assignment — in other words, the most preferred design.

72

Theorem 5 (Soundness and Completeness) If our algorithm returns a satisfiable assign-

ment to R, then there is no satisfiable goal assignment that contributes to a more preferred set

of optional goals than the assignment returned by our algorithm. Furthermore, if our algorithm

does not return a satisfiable assignment to R, then no satisfiable assignment to R exists.

The proof of Theorem 5 follows directly from the steps of our method described above.

5.5 Implementation and Preliminary Results

We have developed a tool in Java to implement our approach for finding the most preferred

goal assignments for a given goal model. The tool’s architecture comprises two main compo-

nents: a Goal Model Analyzer component that serves as the tool’s front-end and a Preference

Reasoner component that provides the tool’s back-end functionality.

The Preference Reasoner uses either the NuSMV or Cadence SMV model checker to com-

pute the next-most-preferred optional goal set at each step of the goal model analysis. This

component reads a text file containing a CI-net specification and automatically generates the

Kripke structure in the SMV language. The functionality of the Preference Reasoner is provided

by two modules, which each have two sub-modules:

1. A pre-processor module that uses two sub-modules to produce input to the model checker,

namely:

(a) Parser: Reads CI-net statements specified in a text input file.

(b) Translator: Automatically translates CI-net statements to generate the SMV input

model.

2. A reasoning driver module that coordinates preference reasoning. Its two sub-modules

invoke the model checker to do different tasks:

(a) Consistency Checker: Checks the consistency of CI-nets, returning true if and only

if the CI-net is consistent.

(b) Rank Order Generator: Takes the model generated by the pre-processor, generates

appropriate temporal logic (CTL or LTL) properties, and invokes the model checker.

73

After the first run of the model checker, it reads the output of the model checker,

appropriately updates the property or refines the model by including invariants, and

repeatedly invokes the model checker until all ordered results are obtained.

The Goal Model Analyzer constructs the goal model, including the AND-OR tree of goals

and tasks, the optional goals, and the contribution links, from a text input file. Once finished

with this task, the Goal Model Analyzer executes the algorithm given in Section 5.4, obtain-

ing preference data from the Preference Reasoner. One important aspect of the Goal Model

Analyzer and its interaction with the Preference Reasoner is that the latter communicates the

best (most preferred) set of optional goals to the former and then waits until it is instructed

to compute the next best set of optional goals. In other words, the Preference Reasoner does

not compute the entire total order sequence of sets of optional goals; instead, it computes one

and sends it to the Goal Model Analyzer. If the Goal Model Analyzer cannot find a satisfiable

assignment that contributes to the set of optional goals, it communicates with the Preference

Reasoner to obtain the next set of optional goals in the sequence of the total order. The Goal

Model Analyzer eventually returns either the most preferred satisfiable goal assignment(s) or

a message stating that no satisfiable goal assignment could be found.

The Preference Reasoner and Goal Model Analyzer are loosely coupled, allowing different

approaches for preference reasoning or goal model analysis to be substituted into the existing

tool with minimal effort. This approach fits naturally into the context of our overall component-

based system development framework, as we will show in the next chapter. In addition, the

data structures for the goal model are designed for extensibility, which will simplify the process

of adding support for additional concepts to the Goal Model Analyzer in the future.

We have tested our implementation of our goal-model analysis framework against modi-

fied versions of three goal models from the existing literature on goal-oriented requirements

engineering. These goal models describe requirements for an online book selling service [44]

(Figure 2.1), a generalized online shopping system [43], and a public transport system [80].

We have also used a CI-net specifying new sets of preferences for each goal model that, in our

opinion, are reasonable for each goal model’s application domain.

74

Table 5.2 Results of running preference analysis tool on three case studies

Mean Calls to Mean Pref.
Required Optional CI-net Total Run Preference Reasoning

Goal Model Goals Tasks Goals Rules Time (s) Reasoner Time (s)
Bookseller [44] 13 22 4 3 0.52 3 0.47
Trentino Transport [80] 24 40 3 3 0.47 2 0.34
Online Shop [43] 7 16 3 2 0.22 1 0.17

Table 5.2 summarizes the results obtained by running our analysis tool on each goal model.

The tests were executed on a Gateway laptop with 4 GB of RAM and an Intel Core 2 Duo T5550

dual-core CPU (1.83 GHz), running 64-bit Windows Vista Service Pack 2. The times shown

in Table 5.2 represent the mean of the running times reported for 20 runs of our tool over each

model under the same configuration. It is clear that the preference reasoner’s CI-net analysis

accounts for the bulk of the running time. The time required for preference reasoning appears

to depend primarily on the number of calls to the preference reasoner, although differences in

the number of optional goals and CI-net preference rules also have an effect. However, the

goal-model analyzer uses very little additional running time: about 0.05 seconds for the two

smaller models and about 0.14 seconds for the much larger transport system model. While we

plan to perform additional experiments with larger goal models and more complex preferences

to further quantify the effects of goal model and CI-net size on running time, these preliminary

results show that our goal model and preference analysis framework is as efficient as other

comparable goal model analysis techniques such as [28] and [80], even though it supports more

expressive preference specifications than those techniques.

75

CHAPTER 6. A NEW FRAMEWORK FOR DEVELOPING OPTIMAL

COMPONENT-BASED SYSTEMS

In this chapter, we introduce our modular, generic, end-to-end, and semi-automatic frame-

work for the development of optimal (i.e., correct and strongly preferred) component-based

systems. Let us clarify what is meant by these four properties of our framework:

• Modular: The framework provides a common infrastructure to connect a number of mod-

ules, each of which provides a portion of the functionality necessary to identify, compose,

and verify a component-based system in the application domain under consideration.

Each large-scale step of the workflow can be customized for a given application domain

by incorporating appropriate modules into the system to provide support for the for-

mal specification, verification, and preference reasoning techniques used in that domain.

Our framework is designed to incorporate a standard module specification that will allow

future users to easily customize the framework for their needs.

• Generic: The framework can handle any type of problem for which a component-based

system can provide a solution. It can incorporate different methods for modeling and

decomposition of requirements, specification of and reasoning over preferences, discovery

of available components, composition of selected components, and verification that a

system satisfies a given set of traits. All that is needed to customize the framework for a

given type of problem is to supply the appropriate modules and data for performing each

task in the system development workflow.

• End-to-end: The framework provides support for component-based system development

from the initial requirements-gathering and problem-modeling stages all the way through

to delivery of the completed system.

76

• Semi-automatic: The framework automates many time-consuming low-level tasks in the

component-based system development process, such as identifying the space of possi-

ble systems, determining which possible systems will be most preferred, and verifying a

system’s correctness with respect to a given requirement. This allows the system’s devel-

opers and stakeholders to focus on higher-level tasks such as identifying and refining the

requirement and preferences for the system. If the framework identifies more than one

“most preferred” system, the stakeholders have the option to manually examine the set

of results and choose a system or to allow the framework to arbitrarily choose a solution.

The intent is not to replace humans in the component-based system development process,

but rather to allow them to work more effectively.

As mentioned in Chapter 1, this framework essentially amounts to a component-based sys-

tem for developing component-based systems. It can identify and construct component-based

systems for solving problems in a wide variety of application domains, given a correct set of

modules for handling problems in that domain and appropriate sets of entities to use in creating

component-based solutions to those problems. Furthermore, modules within this framework

can be easily replaced with other modules to support alternative approaches for identifying and

creating optimal component-based systems. This property allows our framework to potentially

be used as a testbed for comparing different tools or techniques for each part of the system

development process.

Our framework comprises five stages, which are shown in more detail in Figure 6.1:

1. Defining the problem space.

2. Identifying the specific problem to solve.

3. Defining the solution space for the problem to be solved.

4. Identifying one or more solutions (system designs) that are optimal with respect to stake-

holders’ preferences.

5. Constructing an optimal component-based system to solve the given problem and verify-

ing the correctness of the completed system.

77

The framework can be customized by inserting relevant modules into the framework where

they are needed. In the medical records management example from Chapter 4, system de-

signers would use modules that provide techniques for specifying requirements for Web service

compositions (defining the problem space), apply the meta-framework from Section 4.2 to de-

compose the requirement (identifying the problem), access service repositories and read service

descriptions (defining the solution space), decide which combination(s) of services will provide

the needed functionality and the most preferred non-functional properties (identifying optimal

solutions), and execute an on-the-fly composition and verification technique like that described

in Section 4.4 to construct a system and verify it against each trait in its verification obliga-

tion (verifying solution correctness). Likewise, to create an optimal online book selling system

based on the example in Chapter 5, system designers would combine a goal-oriented require-

ments engineering module with a CI-net preference modeling module to define the problem

space and the specific problem, include modules for the search technique(s) of their choice to

define the solution space, call a module that combines satisfiability (SAT) solving with CI-net

preference reasoning to order possible system designs from most to least preferred as described

in Section 5.4, and then verify the correctness of possible system designs from most to least

preferred using verification modules as specified by each design’s verification obligation.

In Sections 6.1 through 6.5, we will discuss our vision for the operations that should occur

during each stage within this framework. We will also give a running example throughout

these sections, originally created by Ali et al. in [1] and modified for use in our work in [58],

which demonstrates how each stage of our framework can be applied to create a component-

based system called HelpMeOut that supports the operations of a roadside assistance business.

Section 6.6 discusses current implementations of our framework, modules that we have previ-

ously produced for use with this framework, and planned long-term work toward evaluating

our framework as well as making our framework more fully unified and easier to use.

6.1 Defining the Problem Space

The first task to be completed is to define the space of problems to be solved using the

framework. This represents the initial customization of the system design framework, as ap-

78

• Type of entity (spec. language)

• Entity composition operator 

• Problem decomposition func. f

Define problem space Define problem

System

traits 

Sys. require-

ment R

Preferences

over trait sets

Define solution space

Set of

entities E

Entity

discovery

algorithm(s)

Identify optimal solutions

Find correct

system

designs

Find most

preferred

system

designs

Set of

optimal

(most

preferred

& correct)

system

designs

Choose a design

(interactively or

automatically)

Verify solution correctness

Construct

system

Verify system

against R

Figure 6.1 Structure of our framework for developing optimal component-based systems

propriate modules need to be chosen or developed for each of the following aspects of the

application domain where the framework is to be applied:

1. The type(s) of entities that are eligible to be selected as components of the system. This

includes any common assumptions that can be made about the type(s) of entities being

considered, any standard specification language(s) that may be used to describe such

entities, or any other information that can be used to reduce the problem space and

therefore the difficulty of finding solutions to such problems.

2. The composition operator(s) ⊗ that will be used to compose components into a unified

system.

3. The problem decomposition function f that will be used to indicate the ways in which

problems may be decomposed into subproblems and subproblems may be related to one

another. This decomposition function must provide semantics for determining whether a

component-based system satisfies a given problem.

79

Note that the composition operator(s)⊗ and the problem decomposition function f work to-

gether to determine whether a given composition of components satisfies a given (sub)problem.

Example. At the start of the system design process, the system designers learn that

the stakeholders in the system (in this case, primarily the owners of the roadside assistance

business) would like to develop a system that makes it easier for a vehicle’s driver to call them

for assistance in case of a roadside emergency. Furthermore, they would like to develop the

system using publicly available Web services that can tie into their existing dispatching and

billing systems. The system designers suggest that the system be developed as a Web service

composition, and the stakeholders agree.

As soon as the decision about the type of solution to be provided is made, the system de-

signers know what type of entities they will use to develop the system, and they can also make

several important assumptions about the components of the system and the ways in which they

can be composed. Specifically, Web services are self-contained, self-describing, and frequently

specified using one of several relatively standard specification languages (e.g., WSDL [17] or

BPEL [55]). The system designers can use these assumptions to select or create a “module”

of techniques that are targeted toward developing and verifying Web service compositions, as

opposed to other types of component-based systems. They also select one or more service com-

position methods ⊗ and any appropriate problem decomposition function(s) f . In this case, the

VeriComp service composition algorithm presented in [58] is selected as the entity composition

operator ⊗ and our “meta-framework” for decomposing a composition design problem [59, 62]

is selected as the problem decomposition function f . With this finished, the system designers

and stakeholders can proceed to define the specific problem to be solved.

6.2 Identifying and Modeling the Specific Problem to Solve

The process of identifying the system design problem to be solved consists of three steps:

identifying the set of traits Ψ to be considered in the system design, defining the system

requirement R, and determining stakeholders’ preferences over individual traits or sets of traits.

As shown in Figure 6.1, these three steps reinforce each other. One or more of these steps may

80

need to be repeated multiple times to iteratively refine the problem specification until it fully

represents the stakeholders’ view of the problem.

6.2.1 Identifying the Traits for the System

The first step in developing a component-based system is to identify the set of traits that

should be considered important enough to include in the problem specification for the system.

This is essentially a “brainstorming” process in which stakeholders identify high-level traits

that the system may be expected to possess, such as tasks that the system may accomplish

or non-functional properties that the system might provide, along with low-level traits such as

behavioral specifications that will ensure the continued correct operation of the system. This

step may also include initial discussion about which traits should form a part of the system

requirement and which traits should be considered optional. However, the full requirement,

which will be expressed as a Boolean combination of the traits identified in this step, will not

be formalized until later.

Although traits do not need to be fully specified and do not need to have a verification

technique chosen in this step of the development process, stakeholders and system designers

should consider what metrics, formal specifications, or other verification methods would be

appropriate for each trait being considered. It will be necessary to meaningfully specify these

traits before attempting to verify a system design for correctness (see Section 6.5). If a trait

cannot be easily formalized or verified, stakeholders should consider decomposing it into simpler

“sub-traits” that are easier to verify, using the concept of AND-OR decomposition as presented

in Section 3.3 to track relationships between traits; these relationships can be reused later to

help define the system requirement. The objective of this step is to identify a set of traits that

will play important roles in the desired system, that can be specified in a verifiable way, and

that cannot be easily decomposed into simpler sub-traits.

6.2.2 Defining the System Requirement

After identifying the initial set of traits, the system stakeholders must define the requirement

R for the system. As presented in Section 3.3, the requirement is a set containing one or more

81

sets of traits, where all traits in any one of these sets must be provided by a system in order for

the system to be acceptable to its stakeholders. The requirement can include both high-level

traits, which indicate functions or non-functional properties to be provided, and low-level traits,

which define required system behaviors and are often specified using statements in a temporal

or other formal logic. Essentially, the requirement R is a Boolean combination of traits that

were identified in the previous step.

Any new or existing requirements elicitation technique or combination of such techniques

may be used to define the requirement. However, at a minimum some form of problem de-

composition must be used. The problem decomposition defines a function f , which indicates

both how the overall requirement is decomposed into alternative sets of individual traits (e.g.,

using an AND-OR graph) and how multiple components that each provide certain traits can

be composed into a system that satisfies the overall requirement (or sub-requirement). It is

important that the composition function f provide a semantics for combining or aggregating

the verification obligations of the selected components (i.e., the traits that each component is

expected to provide) to form the unified verification obligation for the system. The function f

must also provide a method for keeping track of the various verification techniques that must

be used to verify that the entire system satisfies the traits in its verification obligation.

Additional traits may be identified during the requirement elicitation and decomposition

process, as stakeholders discover additional high-level and low-level properties that components

may satisfy or that the system is required to provide. This is to be expected. The newly

identified traits can be added to the existing set of traits and incorporated into the requirement

if necessary, then formalized before verifying a system design.

Example. Figure 6.2 presents the functional requirements for the HelpMeOut system

using a goal model (AND-OR graph) as described in Section 5.1. The required functions in-

clude collecting the vehicle’s location and problem, searching for a nearby point of assistance,

locating a mechanic that can visit the user, receiving payment, and reporting the event. In-

termediate sub-requirements (goals) appear in round-edged boxes in Figure 6.2, while basic

high-level traits that may be realized from available services (tasks) are shown in hexagons.

82

Figure 6.2 Goal model for HelpMeOut service

The graph illustrates dependencies between the requirements. For instance, the root node

(level 0) describes the overall functionality to be provided. This functionality is fully realized

if all of the sub-requirements at level 1 are satisfied (AND-decomposition). In contrast, the

sub-requirement Receive Payment is satisfied if either one of the high-level traits On the Spot

or Later On is satisfied (OR-decomposition).

While these functional requirements describe the necessary functions to be provided by

the system, behavioral constraints encoded as low-level traits (not shown in Figure 6.2) ensure

correct interaction or ordering of the services participating in the composition. These behavioral

constraints are expressed as properties specified in a temporal logic, e.g., CTL [21] or LTL [71].

For example, HelpMeOut requires that if the EFTPOS service or the Cash service is used for

payment on the spot, then a printed report should be sent instead of an electronic report.

Consequently, the corresponding low-level trait becomes a part of the requirement for the

system if either one of these services is chosen to form part of the system.

6.2.3 Determining Preferences over Traits

The stakeholders also need to determine their preferences among various traits of the sys-

tem. Preferences may be used in a number of different ways within the development process:

83

they may be used to express preferences between different ways of satisfying the system require-

ment, to decide which of several optional features to include as part of the finished system,

or to communicate other information as the stakeholders desire. Stakeholders express their

preferences by defining a dominance relation between sets of traits as shown in Section 3.4,

but they do not need to define this relation explicitly. Instead, system developers can use a

preference modeling formalism, such as CI-nets [12] or TCP-nets [14], to create a dominance

relation from informal preferences expressed by the stakeholders. Any preference formalism

that satisfies the constraints in Section 3.4 is compatible with our component-based system

development framework.

Example. Along with functional requirements, Figure 6.2 captures dependencies between

non-functional properties (NFPs) and services. The NFPs, which are modeled here as optional

traits of the system, are represented in boxes which are connected to functional requirements

(goals) via edges annotated with “+” or “-”. The “+” annotation represents the satisfaction

of the functional requirement having a positive impact on the NFP (a MAKE contribution

link), while the “-” annotation represents a negative impact (a BREAK contribution link). For

instance, satisfying the requirement that the user can contact an operator via a phone call

may result in a happier user (positive impact) but will have a negative impact on reducing

operational cost.

It may not be possible to consider a set of basic requirements such that (a) they have only

positive impacts on the NFPs, (b) all NFPs are considered, and (c) the root-level requirement

is satisfied according to the problem decomposition function. Therefore, preferences and trade-

offs over NFPs are important for identifying a preferred set of basic requirements that result in

satisfying the overall requirement for the system. Consider the following preference statements:

1. If robust documentation is used, payment traceability is more important than reducing

operational costs.

2. If costs are reduced at the expense of customer satisfaction, then using robust documen-

tation takes precedence over ensuring payment traceability.

84

These two preferences can be modeled naturally as CI-net statements. The first preference can

be expressed as

{Robust Documentation}; {} :

{Payment Traceability} � {Reduced Operational Costs}
(6.1)

while the second preference can be expressed as

{Reduced Operational Costs}; {Happier User} :

{Robust Documentation} � {Payment Traceability}
(6.2)

Figure 6.3 shows the induced preference graph corresponding to the preferences expressed

by these CI-net statements. As in Section 5.3, each directed edge in the graph represents an

improving flip from a less-preferred set of NFPs to a more-preferred set. Dashed edges (e.g.,

from {c} to {bc}) indicate monotonicity flips; here, the NFP set {Reduced Operational Costs,

Payment Traceability} is preferred because it is a proper superset of the NFP set {Payment

Traceability}. Solid edges (e.g., from {bc} to {bd}) indicate importance flips, which are induced

by a specific CI-net statement (in this case, by statement 6.2 above). Figure 6.3 shows that the

set of all NFPs is most preferred, while the empty set (no NFPs satisfied) is least preferred.

This reflects the natural preference of the stakeholders for the system to provide as many NFPs

as possible.

6.3 Defining the Solution Space

At this point in the system development process, the entire problem model has been con-

structed. The next step is to understand the set of possible solutions, i.e., the set of possible

systems that can be created to solve the given problem. Because a system is represented in our

framework as a composition of components, the set of possible systems (i.e., the solution space)

S is a subset of the powerset of entities (possible components) E that are considered within

the framework for a given problem; in notation, S ⊆ 2E . In general, S = 2E in the absence

of any constraints on the set of possible systems; however, this scenario is unlikely in practice,

as there may be incompatibilities between entities (i.e., entities that cannot be composed with

each other) or other constraints on the structure of the system which eliminate sets of entities

from the set of possible systems S.

85

abcd

∅

a b c d

abdabc acd bcd

ad bcacab bd cd

a = Happier User
b = Reduced Operational Costs
c = Payment Traceability
d = Robust Documentation

CI-net statements:

6.1 {d}, {} : {c} � {b}
6.2 {b}, {a} : {d} � {c}

Figure 6.3 Induced preference graph for CI-net statements in HelpMeOut example

Defining the solution space for the problem is a two-step process. The first step involves

identifying the set of entities E that are available to participate in a component-based system

for this application domain. One or more modules for identifying the set of entities E must be

provided by the system designers based on the type(s) of entities desired. Such a module may

take the form of a list of available entities provided explicitly by the stakeholders, or it may be

a program that computes the set of entities using a problem-specific search algorithm (or set

of algorithms for different types of entities).

The second step is to determine which sets of available entities can be composed to form

systems. A domain-specific module can be included in the framework at this point to efficiently

eliminate sets of entities that are incompatible with each other from consideration. The module

may use any technique to perform this reduction as long as it correctly returns S, i.e., the set of

all sets of entities that can be composed to form systems. By default, if no module is specified,

the framework uses a “brute-force” algorithm to complete this process, listing every set of

entities in 2E and checking whether the entities in each set can be composed to form a system.

Note that this process is intended only to remove sets of entities that cannot be composed

together from consideration, not to consider whether the resulting systems are correct (i.e.,

whether they satisfy the given requirement R).

86

Example. Let us suppose that the developers of the HelpMeOut service have access to

a repository of services (i.e., a set of entities or possible components E) that are available

for use in the composition. Each service in the repository is specified in a standard service

specification language such as WSDL [17] or BPEL [55], which describes the service’s high-

level functionality (semantics) as well as its inputs, outputs, and low-level behavior. A labeled

transition system (LTS) for each service in E, which captures the dynamics of that service,

is then extracted from this complete specification. The extraction of the LTS for each service

can be done automatically using any existing method for transforming service descriptions into

LTSs, such as those in [9] or [65]. These methods may be incorporated into our framework as

separate modules. LTSs for the services in our repository are depicted in Figure 6.4. Because

the PhoneCall and SMS services serve only as interfaces between a user and the system, their

LTSs are not shown to reduce complexity.

The solution space for this problem is the set S of combinations of services (components)

chosen from the repository E that are compatible with each other, meaning that the services in

that combination can be composed to form a working service composition (system). Some of the

possible service compositions in S can be obtained by comparing the inputs (resp. outputs) of

each service to the outputs (resp. inputs) of every other service. If a given set of services contains

at least one internal interface (i.e., between services in the set) that has an unavailable input,

then the services in that set are not all compatible with each other. This input-output analysis

should reduce the set of possible compositions to test in a relatively efficient manner, but it

is susceptible to missing sets of components that are semantically compatible with each other

even though the names of their matching inputs and outputs suggest otherwise. The technique

for identifying and overcoming such “data mismatches” introduced by Ali et al. in [1] can be

applied in this case to help identify possible compositions that would be missed otherwise. Other

methods that make use of more sophisticated interface theories, such as interface grammars

as used in [32] and [34], can also be used for more accurate and complete discovery of sets of

compatible services. Techniques for adaptation of existing services, such as the one proposed

in [67], can expand the space of possible solutions even further.

87

Figure 6.4 Repository of available component services for HelpMeOut. Circled services con-
stitute the final composition.

6.4 Identifying Optimal Solutions for the Problem

After the solution space (i.e., the set of all sets of components that can be composed to form

systems) has been determined, any appropriate technique(s) can be used to search the solution

space in order to identify the set of correct system designs D = {C ⊆ E : vo(f(C), R) 6= ∅}.

This search technique (or set of techniques) must also be supplied to our system development

framework as a separate module. Different modules or combinations of modules may be used

depending on the problem decomposition function f being used. In some cases, an iterative

composition algorithm such as the one used in [60] or [62] may prove useful. In other cases,

some other sort of search algorithm may be a better choice.

After possible system designs that do not satisfy the requirement R are eliminated from

consideration, a qualitative preference reasoning technique is used to determine which of the

correct system designs in D are most preferred according to the dominance relation � specified

by the stakeholders earlier in the process (see Section 6.2.3). Like the other customizable parts

of this framework, the preference reasoning technique to be used is specified by providing a

88

module, which generates calls to the tool that implements the reasoning technique and then

processes the results from this tool. This preference reasoning process computes the set of

most preferred correct designs for the system. Depending on the preferences that are specified,

there may be more than one “most preferred” correct system design. Because the dominance

relation � defines a partial order over the set of designs D, if the most preferred system(s)

cannot be verified to satisfy the system requirement, the next-most-preferred system(s) can be

identified, composed, and verified; this process may be repeated until a system that satisfies

the stakeholders’ requirement is identified [60]. Alternatively, if there are few possible system

designs to consider, then it may be advantageous to determine which designs can be composed

and verified before applying preference reasoning; see Section 5.4 for a fuller discussion of the

relative merits of each approach.

Example. The developers of the HelpMeOut service use the methods presented in [58]

to compute the set of feasible service compositions (system designs) D. As part of this frame-

work, a module named NextPref uses the non-functional properties (NFPs) and the CI-net

statements describing the preferences and tradeoffs over them to compute an ordered sequence

γ1, γ2, . . . , γn. Each γi in the sequence represents a subset of the NFPs where γi+1 6� γi with

respect to the CI-net statements. In other words, the sequence of γis forms a total order

consistent with the partial order of the induced preference graph. Based on the techniques

described in Chapter 5, the NextPref module represents the induced preference graph (see

Figure 6.3) as an input model of a standard model checker (specifically NuSMV [20]) and iden-

tifies sequence γ1, γ2, . . . , γn by verifying carefully selected temporal properties of the induced

preference graph.

Let us examine how the induced preference graph shown in Figure 6.3 is used to generate the

sequence of sets of NFPs from most to least preferred. To conserve space, let a = Happier User,

b = Reduced Operational Costs, c = Payment Traceability, and d = Robust Documentation.

Clearly γ1 = {a, b, c, d} is the most preferred set of NFPs. Next, consider all sets of NFPs

with edges pointing to {a, b, c, d} in the graph. Figure 6.3 contains no edges between three of

these sets, which means that none of them are strictly preferred to each other; however, the

89

graph does contain an edge from {a, b, d} to {a, c, d}, which is induced by CI-net statement 6.1.

Therefore, we assign γ2 = {a, b, c}, γ3 = {b, c, d}, and γ4 = {a, c, d} (although these sets could

be in any order). We then assign γ5 = {a, b, d}, as it is strictly less preferred than γ4 according

to Figure 6.3. This process continues until all sets of NFPs (including the empty set) have been

placed into the sequence, following the process described in Section 5.3.3.

The other part of the framework from [58] that is applied at this stage is the ServSelect

module. This module takes into account the goal model representing the overall functional

requirement R and its relationship with the NFPs, the repository E of available services, and

the sequence of NFP sets γi in order of preference starting from γ1. For each γi, the module

identifies

• the set of services X+
i that realize functional requirements which have only positive im-

pacts on the non-functional properties in γi; and

• the set of services X−i that realize functional requirements which have some negative

impacts on the non-functional properties in γi.

Consider the NFP set γ4 = {a, c, d} given above, along with the goal model in Figure 6.2.

Based on the dependencies between services that satisfy functional requirements (hexagons in

Figure 6.2) and the NFPs that each service satisfies, ServSelect identifies X+
4 = {PhoneCall,

CreditCard, PrintedReport} and X−4 = {SMSCall, Cash, BankChq}. Services in X+
4 have only

positive impacts on the NFPs in γ4, while services in X−4 have a negative impact on some NFP

in γ4.

Next, ServSelect solves the Boolean satisfaction problem encoded by the goal model

to identify the set SR of all sets of services C such that the composition of all services in

C realizes a set of functional requirements which, when satisfied, result in satisfaction of the

overall requirement R. Note that the presence of OR-nodes in the goal model allows R to be

satisfied in multiple ways. Finally, ServSelect verifies X+
i ⊆ C and X−i ∩ C = ∅ for the

selected C. Satisfaction of these conditions ensures that C is the most preferred set of services

that satisfy both R and the non-functional properties in γi. If the conditions are not satisfied

by any assignment (set of components) C, the module considers γi+1 from the sequence of

90

γis. This is repeated until a suitable service set C is obtained. In the worst case, the least-

preferred (empty) NFP set γn will be used; when this occurs, X+
n = X−n = ∅, making the above

conditions vacuously true. Therefore, a non-empty set C will always be obtained if one exists.

Initially, ServSelect uses the goal model in Figure 6.2 and the repository of services that

includes all services in Figure 6.4 to identify all possible compositions of available services that

may satisfy the overall functional requirement R. Recall the sequence of NFP sets identified

by the NextPref module previously. Observe in Figure 6.2 that there exists no combination

of low-level functionalities that leads to satisfaction of γ1 (all NFPs), γ2, or γ3. Fortunately,

the set of services C = {PhoneCall, Vehicle, WorkShop, Mechanic, CreditCard, PrintedReport}

satisfies the required conditions for γ4: X+
4 ⊆ C and X−4 ∩ C = ∅.

6.5 Constructing an Optimal Solution and Verifying Correctness

Now that one or more preferred system designs have been identified, the final step in the

development process is to verify that a preferred system design S = f(C) satisfies one of

the sets of traits in its verification obligation vo(f(C), R). This can be done by identifying the

verification methods Mi that are to be used to verify each trait ψi in the verification obligation.

(Note that any traits which have not yet been fully specified must be given a specification and

a verification method before proceeding any further.) Because the composition function f

tracks both the verification obligation for the given system design (set of components) and the

verification methods Mi used to verify the appropriate set of traits, it is possible to automate

the process of calling the necessary verification methods (through one or more modules that

provide an interface to the method Mi specified by each trait ψi in the verification obligation),

tracking the verification results for each required trait, and finally determining whether the

verification obligation has been satisfied.

At this point, one of the identified optimal (most preferred correct) system designs is selected

to be composed and verified. If desired, the stakeholders may review the available optimal

system designs and choose a design that they think appears especially promising; otherwise, an

optimal system design can be selected arbitrarily by the framework. The appropriate modules

are called to compose the selected components into a unified system and then verify that the

91

resulting system satisfies its verification obligation. If both composition and verification of

the system are completed successfully, then the system development workflow is completed

and an optimal correct component-based system has been created to solve the given problem.

Otherwise, another optimal system design is selected to be composed and verified.

This process is repeated until the set of most preferred system designs is exhausted or until

a system design is successfully composed and verified against its verification obligation. If no

optimal system can be verified to satisfy its verification obligation, then the next-most-preferred

correct system designs are identified and verified one by one; these form the new set of most

preferred solutions. The framework proceeds by identifying, composing, and verifying gradually

less preferred solutions one by one until a system passes verification or until all possible systems

are exhausted.

Example. In the framework from [58] that the developers of the HelpMeOut composite

service are employing, the OrchAndVerif module takes as input the set SR of sets of services

C from the ServSelect module and the set of low-level behavioral constraints Ψ expressed

in CTL. The OrchAndVerif module then verifies whether there exists an orchestration of

the services in C that satisfies Ψ. The core of the verification technique, which was primarily

developed by Ali et al., is a tableau algorithm that takes services in C and constructs their

orchestration in a goal-directed fashion, possibly including interleaving of services; details of

the technique are available in [1]. If the verification fails, a different C is selected from SR and

the process is repeated until a suitable C is identified (success) or all elements of SR have been

considered (failure). Successful termination of the process results in a set of services which (1)

satisfies the overall requirement R, (2) satisfies all behavioral constraints Ψ, and (3) is most

preferred with respect to CI-net preferences over the set of NFPs.

Figure 6.5 presents the successfully generated orchestration of the most preferred set of

services (given in the previous subsection) that fulfills the given behavioral constraints. Recall

that the PhoneCall service serves as an interface only, so it is omitted from Figure 6.5 to reduce

complexity.

92

Figure 6.5 States and transitions of the synthesized service composition for HelpMeOut. Ser-
vices are ordered as: [Vehicle, WorkShop, Mechanic, CreditCard, PrintedReport].

6.6 Implementation and Evaluation Plan

We define an instance of our component-based system development framework as a collec-

tion of modules that collectively provide sufficient support for stakeholders and system designers

to (1) define the problem space, (2) formulate the specific problem to solve, (3) define the so-

lution space for the problem being solved, (4) identify optimal potential solutions from this

solution space, and (5) construct and verify an optimal component-based system so that the

completed system is proven to satisfy its verification obligation. Note that as a direct result of

the modular design of our framework, essentially any related technique for preference reasoning,

problem analysis, component composition, system verification, etc. can be freely substituted

into any instance of our framework as long as it is encapsulated within a “module” that de-

scribes the interface between that technique and the rest of the framework. In fact, one of

the goals of developing this framework is to provide a testbed within which different tools,

techniques, and algorithms for each part of the component-based system development process

can be examined empirically in a well-defined and controlled environment.

93

We have implemented one complete instance of our system development framework: the

VeriComp framework for Web service composition [58] that has been used as a running ex-

ample throughout this section. Because VeriComp incorporates a set of shared assumptions

about all Web services (self-describing, publicly available, etc.), it defines the space of prob-

lems that can be solved using Web service composition. VeriComp combines our work on

goal-model analysis to define the problem to solve and preference reasoning to identify opti-

mal solutions [60, 61] with techniques developed by Ali et al. in [1] specifically for composing

Web services and verifying required traits of the resulting compositions (realizing and verifying

an optimal solution). The VeriComp framework also defines the solution space by combin-

ing customizable connections to searchable repositories of available services (i.e., components)

with novel methods introduced by Ali et al. in [1] for expanding the space of possible service

composition solutions by resolving “data mismatches”, which cause semantically compatible

input-output pairs to be rejected by many service discovery tools because they are syntac-

tically incompatible (e.g., different names). It is clear that the VeriComp framework is an

instance of our more generic component-based system development framework.

Additionally, we have developed several modules that could be combined with other avail-

able modules to form another instance of our framework. The stand-alone goal-oriented re-

quirements engineering tool that we presented in [60, 61] supports formal definition of the

specific problem to solve in terms of a goal model, partial specification of the solution space

in the form of different combinations of tasks that would satisfy the root goal for the system,

and support for identifying optimal solutions by reasoning with a CI-net containing stakehold-

ers’ preferences [63] along with verifying realized solutions to ensure they fulfill the goals they

promise to fulfill. The missing parts of this framework instance, which can (and should) be

customized depending on the available components, are modules to define the problem space,

locate available components that can be included in the system, and construct a system from a

set of selected components. For example, if the system stakeholders prefer to use a preference

reasoning formalism other than CI-nets, such as the Pareto optimality-based method applied

in [62], this other formalism can be freely substituted into the framework by “plugging in” a

module for the appropriate preference reasoning formalism. In fact, the service composition

94

meta-framework in [62] provides an infrastructure to combine numerous formal specification

languages with essentially any preference formalism, adding another level of modularity.

The main long-term goal for this framework is to provide a unified workflow for component-

based system development supported by a standardized user interface, which will guide system

stakeholders and software engineers alike through the stages of system development illustrated

in Figure 6.1. In our view, the key factor that will allow for a unified system development

workflow is the existence of a standard for specifying modules that will be compatible with our

framework. This will require us to define a minimal sufficient interface for modules that aim

to provide support for each stage of the development process, including a set of well-defined

baseline inputs that our framework must expect from a module that targets each stage. Modules

should also have the option to delegate the provision of some of these inputs to sub-modules

in order to preserve maximal flexibility in the system development process. If such a general

module specification standard can be established, it will be a significant step toward a truly

“plug-and-play” modular component-based system development framework.

The current lack of a standardized user interface for our framework also limits its usefulness

for component-based system developers. Part of the vision for our framework is a user interface

that helps stakeholders and system designers visualize the consequences of the ways in which

the problem to be solved and the stakeholders’ preferences are modeled. We would like to

provide a user interface that allows stakeholders to easily answer questions of the form, “What

happens if we make this change to the model?” In our view, allowing stakeholders to explore the

problem and solution spaces before doing the work of realizing and verifying an actual system is

likely to reduce the total effort required for system development while resulting in component-

based systems that better satisfy stakeholders’ needs. We have previously developed (with

Samik Basu, Ganesh Ram Santhanam, Carl Chapman, and Katarina Mitchell) a prototype

graphical user interface (GUI) for CI-net and TCP-net preference reasoning, which could serve

as a building block for a future unified GUI that can manage the entire system development

framework. In addition to helping visualize aspects of the problem under consideration and

its potential solutions, this GUI would be able to locate available modules and manage the

logistical details of adding modules to or removing modules from the overall framework. This

95

functionality would greatly simplify the process of gathering experimental data for comparing

the performance of techniques proposed for use in component-based system development.

Future evaluation of our framework will attempt to answer two questions: whether the

framework reduces development costs (both time and money) for component-based systems and

whether the systems developed using our framework satisfy their stakeholders’ needs better than

systems developed using previous methodologies. Table 6.1 shows some of the criteria that we

anticipate using to determine the contributions of our framework in these areas. The criteria in

the left column, which are primarily meant to address the first question, are quantitative metrics

that can be easily tracked while developing a system using our framework. These metrics can

then compared to the same metrics for similar component-based system development projects

completed without the help of our framework. The right column contains criteria that are

targeted toward answering the second question. These criteria are more qualitative in nature,

as they deal with stakeholders’ and system developers’ evaluations of the system development

process as well as the final delivered system. Data for these criteria can be elicited through

surveys administered both to system stakeholders and to system developers at various points

in the development process.

One possible method of doing a preliminary evaluation along these lines involves asking

students in software engineering courses to design component-based systems to solve any one

of several problems, which could all be solved using components selected from a single repository

of software entities (as defined in Chapter 3). Each problem would be solved by two teams of

students: one team would solve the problem using our component-based system development

framework with appropriate modules, while the other team would solve the same problem with

the same basic techniques, but without our framework to tie them together into a well-defined

process. The goal of this approach would be to measure the contribution provided by the

modular end-to-end framework compared to simply using the individual modules separately.

Another possible evaluation approach would involve a software development group in in-

dustry with experience developing component-based systems adopting (and perhaps adapting)

our framework to build two or more component-based systems for stakeholders within their

organization. If the development group has metrics available from their prior component-based

96

Table 6.1 Criteria for evaluating improvements in component-based system development pro-
cesses and results caused by our framework

Change in development cost and effort Satisfaction with process and results
Directly observable project data, including:

• Total developer effort (person-hours)

• Total money spent on project

• Total time from start of project to final
system acceptance

• Number of intermediate systems deliv-
ered before final system

• Number of changes in requirement or
preferences during development

• Amount of developer effort per change
in requirement or preferences

Data obtained from surveys of developers
and stakeholders, such as:

• Attitudes regarding component-based
system development

• Level of confidence in system designers
and developers

• Level of confidence in trait and require-
ment specifications

• Level of understanding between stake-
holders and developers

• How much input or control stakehold-
ers feel they have in process

• How well final system meets stakehold-
ers’ needs compared to past systems

97

development projects, it may be possible to quantitatively compare our framework to their

previous approaches in terms of developer effort, time or cost overruns, or other measures.

Surveys would be administered to both the development group and the stakeholders for each

system at the start of the development process, during development, and after acceptance of the

initial production version of the system. The initial survey would be designed to measure prior

attitudes and expectations about component-based system development and the system to be

developed; the second survey would obtain opinions about the process, specifically communica-

tion between stakeholders and designers, during development; and the final survey would ask

stakeholders to evaluate how well they feel the delivered system meets their needs in general

as well as how the system compares to other component-based systems developed for them in

the past.

We expect that our framework for component-based system development will produce sys-

tems that satisfy their stakeholders’ needs and desires at least as well as systems developed

using current methodologies, if not significantly better. Another benefit that we expect our

framework to produce is a reduction in the number of intermediate systems, both prototypes

and nearly complete systems, required to eventually produce a satisfactory system for the

stakeholders; this will result in significantly reduced development costs and time-to-delivery.

In addition, we anticipate that stakeholders’ confidence in the overall process and in the devel-

opers producing the system will be significantly greater than with existing methods because of

the improved communication between these two groups that our framework can facilitate.

98

CHAPTER 7. CONCLUSION

7.1 Summary

This dissertation presents and explains our novel framework for developing component-

based systems that are optimal, meaning that they are correct relative to their specified re-

quirement and most preferred with respect to their stakeholders’ preferences over optional traits

of the system. Although many approaches to solving this problem have been proposed and de-

veloped previously, this “component-based system for developing component-based systems”

was motivated by two primary drawbacks of existing component-based system development

frameworks. Most such frameworks do not provide support for modeling and verifying system

requirements using diverse formal methods; rather, it is often expected that all properties to be

formally verified will be specified using the same formal specification language, even though this

may not produce ideal results. Additionally, current component-based development frameworks

generally represent and reason with system stakeholders’ preferences regarding non-functional

properties and other optional traits of the system using primarily quantitative methods. Such

methods are often time-consuming for stakeholders to use, produce results that may be diffi-

cult for stakeholders to correctly understand, and may identify “preferred” options that do not

actually reflect the stakeholders’ true preferences.

In response to these shortcomings of existing frameworks, the modular design of our frame-

work for component-based system development allows support for various formal specification

languages, diverse formal verification techniques, and a broad spectrum of qualitative prefer-

ences over sets of optional properties of the system to be incorporated directly into the system

development process. Following the techniques described in Chapter 4, our framework guides

stakeholders through the process of defining the problem that they wish to solve by decompos-

99

ing the overall requirement for the component-based system into a collection of self-contained

traits, some of which are optional and some of which are required. Each trait is specified in a

certain way, ideally using a formal specification, and each trait provides a method by which its

specification can be verified. The problem decomposition function for the given problem is then

used in combination with a repository of software components to identify a set of components

that are likely to provide a sufficient number of required traits to fulfill the overall system

requirement.

As possible system designs (i.e., sets of components) that are likely to satisfy the overall

requirement for the desired system are identified, qualitative preferences over the possible

values of the optional traits under consideration are examined. If the given preferences are

inconsistent, as determined by the methods described in Chapter 5, our framework explains

to the stakeholders which of their preferences are inconsistent with each other and gives them

an opportunity to resolve those inconsistencies. The framework then identifies which set(s) of

components will be most preferred under this consistent set of qualitative preferences by using

the techniques from Chapter 5 or other appropriate techniques. One such set of components is

then composed using techniques and tools specified in a module for the type(s) of components

being used. Finally, our framework verifies this optimal composition (if one can be realized)

against its verification obligation, which is the entire set of required and optional traits that it

is expected to provide, to ensure that it will fulfill its commitments to the system stakeholders.

We provided an overview of the entire framework and an example of its use in Chapter 6. Any

component-based system that is identified, composed, and verified according to this framework

is an optimal (i.e., correct and most preferred) solution to the given component-based system

development problem as long as the underlying modules produce correct results.

The advantages of our new framework for component-based system development compared

to previous frameworks are:

1. The modular design of our framework allows it to be customized for a specific class

of component-based systems by “plugging in” the appropriate modules to handle the

common characteristics of that class of systems.

100

2. Because of this modular design, our framework is generic enough to use for developing

any type of component-based system.

3. Our framework is end-to-end, meaning that it guides the new system’s stakeholders

through each step of the system development process.

4. Decisions about the problem being solved, the available components, and the preferred

types of solutions are made by the stakeholders, but the difficult and time-consuming

work of finding optimal solutions based on the given preferences and verifying candidate

systems against the given requirements is automated by our semi-automatic framework.

7.2 Future Research

Three principal directions for future research in the context of our framework for component-

based system development are prioritizing and reasoning with the preferences of multiple system

stakeholders, developing more efficient techniques for automatically verifying the consistency

of a given set of preferences, and providing formal support for partial satisfaction of traits

throughout the system development framework. We explain the motivation for each of these

research directions, along with the ways in which each one might affect the framework as it

currently exists.

Reasoning with Multiple Stakeholders’ Preferences. One shortcoming of our for-

mulation of the component-based system design problem as given in Section 3 is that all stake-

holders must agree on a single set of preferences over the traits of the system. In practice, this

single set of preferences may reflect the desires of some stakeholders (e.g., senior management)

while ignoring the preferences of other stakeholders. This can be solved by applying techniques

for representing and reasoning with multiple stakeholders’ preferences, such as those described

in [95].

The basic approach that we envision involves modeling the preferences of each stakeholder

along with a graph representing the relative hierarchy of the stakeholders with respect to their

role in the system design problem. In general, the preferences of stakeholders whose roles

101

place them higher in the hierarchy (e.g., CIO, project manager, or customer representatives)

would be given precedence over preferences held by stakeholders who are lower in the hierar-

chy (e.g., programmers or support staff). Wherever higher-level stakeholders do not specify

preferences between two sets of traits, lower-level stakeholders’ preferences would be taken

into account. Conflicts between higher- and lower-level preferences would be noted and pre-

sented to all involved stakeholders, as this could provide a useful communication channel to

indicate possible future problems or justifications for preferences; this may facilitate better

cooperation throughout the system development process. However, the currently envisioned

multi-stakeholder preference reasoning framework would provide the option to automatically

resolve conflicts between preferences at different levels as part of the process of identifying

optimal systems.

Our existing preference reasoning tool already includes user interface support for multi-

stakeholder preference reasoning according to this model. We plan to initially incorporate

our multi-stakeholder preference reasoning method in the context of our existing tool for goal-

oriented requirements engineering [60], which will serve as a prototype application of this

method. If this prototype is successful, we will generalize the multi-stakeholder preference

reasoning method so it can be fully incorporated into our framework and then applied to

handle preferences for any type of component-based system.

Verifying Consistency of Preferences More Efficiently. A major challenge standing

in the way of this approach for multi-stakeholder preference reasoning is the need for more

efficient methods to check the consistency of a CI-net containing stakeholders’ preferences. The

model checking-based approach in Section 5.3.2 has the twin advantages of being both simple

to implement (as long as an SMV-based model checking tool such as NuSMV or Cadence SMV

is available) and provably correct, but a major drawback of this approach is its high time and

space complexity. The model checker decides the consistency of a CI-net by attempting to verify

that every path through the Kripke-structure representation of the induced preference graph

eventually reaches a state where every optional property is satisfied. Unfortunately, because of

the CI-net semantics (particularly the monotonicity rule) and because the number of nodes in

102

Figure 7.1 Time and memory usage for checking CI-net consistency with Cadence SMV [63]

the induced preference graph is exponential in the number of optional traits being considered,

the number of paths to be verified by the model checker in the worst case is doubly exponential

in the number of optional traits. This “exponential blow-up” in complexity, which is caused

by the model checker’s need to build the entire formal model before performing verification,

makes automated consistency checking for CI-nets via model checking essentially intractable

when dealing with large numbers of optional traits (variables) in the CI-net.

Figure 7.1 displays the results of an experiment we conducted to test the performance of

consistency checking using a model checker in [63]. In this experiment, the exponential blow-up

was especially apparent when performing consistency checking on CI-nets with more than 15

variables and exactly 10 preference statements using the Cadence SMV model checker. On

average, consistency checking for CI-nets with at least 17 variables and exactly 10 statements

required time on the order of minutes and memory on the order of tens of megabytes.

However, we hypothesize that it is possible to take advantage of the properties of the CI-net

consistency checking problem to obtain an algorithm that simulates the model checking-based

approach without always requiring all of the overhead of a model checking tool or even of

103

Tarjan’s algorithm for detecting strongly connected components of a graph [85]. Such an

algorithm would essentially perform an explicit least fixed point computation over the CI-net’s

induced preference graph, which is identical in nature to the least fixed point computation that

is implied by the semantics of the EF construct in CTL (as applied in Section 5.3.2). Unlike

the approach presented in [60, 63] and unlike Tarjan’s algorithm, this new algorithm would not

need to store the entire preference graph in memory, improving space efficiency and perhaps

also time efficiency.

Modeling and Verifying Partial Satisfaction of System Traits. Another useful fea-

ture that we plan to add to our framework in order to better represent stakeholders’ needs and

desires is a partial satisfaction semantics for traits within a given system development problem.

The inspiration for including a partial satisfaction semantics in our framework comes from the

work of Mylopoulos et al. in goal-oriented requirements engineering [19, 35, 80, 93]. In [93],

some goals are classified as softgoals, which are not entirely “satisfied” or “unsatisfied” in the

traditional sense. Instead, softgoals are satisficed (a term coined by Simon [81]) if they are ful-

filled “well enough” to satisfy the stakeholders’ needs or denied otherwise. Mylopoulos and his

collaborators define four types of contributions: MAKE (strong contribution toward satisfic-

ing), HELP (weak contribution toward satisficing), HURT (weak contribution toward denying),

and BREAK (strong contribution toward denying). A softgoal is considered to be satisficed

in the model of Mylopoulos et al. if it has enough positive contribution links to outweigh the

negative contribution links. In [58] and [60], as well as in our examples in Chapters 5 and 6,

we use a simplified version of this model that includes only MAKE and BREAK valuations.

Allowing for partial satisfaction of traits in the preference model could have a number of

potential complicating effects on our component-based system development framework:

• Verification methods for partially satisfied traits must be able to indicate to what degree

a given trait is satisfied.

• The system requirement may indicate the particular degree of satisfaction to be achieved

by a given system.

104

• When composing entities, the partial satisfaction valuations for each trait must be aggre-

gated using a consistent, possibly trait-specific aggregation function. This function must

specify, among other things, whether (and if so, when) two entities that partially satisfy

a trait can be composed in such a way that their composition fully satisfies the trait.

• It becomes possible to specify preferences of the form, “If traits A and B are both satisfied

well enough (satisficed), then I prefer that A be more strongly satisfied than B.” Such

preferences are not supported by the qualitative preference reasoning methods we have

used in the past, so new methods may need to be created or existing methods extended

for this purpose.

Many interesting research problems in the areas of requirements engineering, preference

reasoning, knowledge representation, and others are contained in these research directions.

Taken together, though, these problems all center on the same basic motivation: how do we

create new or improved systems from existing components that truly satisfy the actual needs

of the system’s stakeholders and that best fulfill their preferences over optional traits of the

system while spending the minimum amount of time and money to do so? We believe this

framework represents a significant step on the journey to an ultimate solution for this problem,

and we are looking forward to seeing where the next steps in this journey lead.

105

BIBLIOGRAPHY

[1] Syed Adeel Ali, Partha S. Roop, Ian Warren, and Zeeshan Ejaz Bhatti. Unified manage-

ment of control flow and data mismatches in web service composition. In Jerry Zeyu Gao,

Xiaodong Lu, Muhammad Younas, and Hong Zhu, editors, SOSE, pages 93–101. IEEE,

2011.

[2] Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay Machiraju. Web Services:

Concepts, Architectures and Applications. Springer-Verlag, 2004.

[3] Mohammad Alrifai and Thomas Risse. Combining global optimization with local selection

for efficient QoS-aware service composition. In Juan Quemada, Gonzalo León, Yoëlle S.

Maarek, and Wolfgang Nejdl, editors, WWW, pages 881–890. ACM, 2009.

[4] Luca Anselma, Diego Magro, and Pietro Torasso. Automatically decomposing configura-

tion problems. In Amedeo Cappelli and Franco Turini, editors, AI*IA, volume 2829 of

Lecture Notes in Computer Science, pages 39–52. Springer, 2003.

[5] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk Beyer.

Strategies for product-line verification: Case studies and experiments. In ICSE, pages

482–491, 2013.

[6] Mark A. Ardis, Nigel Daley, Daniel Hoffman, Harvey P. Siy, and David M. Weiss. Software

product lines: A case study. Software: Practice and Experience, 30(7):825–847, 2000.

[7] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and

Applications. Cambridge University Press, 2003.

106

[8] Don S. Batory. Feature models, grammars, and propositional formulas. In J. Henk Obbink

and Klaus Pohl, editors, SPLC, volume 3714 of Lecture Notes in Computer Science, pages

7–20. Springer, 2005.

[9] Piergiorgio Bertoli, Marco Pistore, and Paolo Traverso. Automated composition of Web

services via planning in asynchronous domains. Artificial Intelligence, 174(3-4):316–361,

2010.

[10] Jennifer Black and Philip Koopman. System safety as an emergent property in composite

systems. In DSN, pages 369–378. IEEE, 2009.

[11] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David Poole.

CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference

statements. Journal of Artificial Intelligence Research, 21:135–191, 2004.

[12] Sylvain Bouveret, Ulle Endriss, and Jérôme Lang. Conditional importance networks: A

graphical language for representing ordinal, monotonic preferences over sets of goods. In

Craig Boutilier, editor, IJCAI, pages 67–72, 2009.

[13] Ronen I. Brafman and Carmel Domshlak. Preference handling — an introductory tutorial.

AI Magazine, 30(1):58–86, 2009.

[14] Ronen I. Brafman, Carmel Domshlak, and Solomon Eyal Shimony. On graphical modeling

of preference and importance. Journal of Artificial Intelligence Research, 25:389–424, 2006.

[15] Frederick P. Brooks. The Mythical Man-Month. Addison Wesley Longman, anniversary

edition, 1995.

[16] Diego Calvanese, Giuseppe de Giacomo, Maurizio Lenzerini, Massimo Mecella, and Fabio

Patrizi. Automatic service composition and synthesis: the Roman model. IEEE Data

Engineering Bulletin, 31(3):18–22, 2008.

[17] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weerawarana. Web

Services Description Language version 2.0 part 1: Core language. W3C Recommendation,

World Wide Web Consortium, June 2007.

107

[18] Eng U. Choo, Bertram Schoner, and William C. Wedley. Interpretation of criteria weights

in multicriteria decision making. Computers & Industrial Engineering, 37(3):527–541,

1999.

[19] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-Functional Re-

quirements in Software Engineering. Kluwer Academic, 2000.

[20] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco

Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An open-

source tool for symbolic model checking. In Ed Brinksma and Kim Guldstrand Larsen,

editors, CAV, volume 2404 of Lecture Notes in Computer Science, pages 359–364. Springer,

2002.

[21] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skele-

tons using branching-time temporal logic. In Dexter Kozen, editor, Logic of Programs,

volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

[22] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,

January 2000.

[23] James Coplien, Daniel Hoffman, and David M. Weiss. Commonality and variability in

software engineering. IEEE Software, 15(6):37–45, 1998.

[24] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. Beyond boolean

product-line model checking: Dealing with feature attributes and multi-features. In ICSE,

pages 472–481, 2013.

[25] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and logics: There and back

again. In SPLC, pages 23–34. IEEE Computer Society, 2007.

[26] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed requirements

acquisition. Science of Computer Programming, 20(1-2):3–50, 1993.

[27] Jon Doyle and Richmond H. Thomason. Background to qualitative decision theory. AI

Magazine, 20(2):55–68, 1999.

108

[28] Neil A. Ernst, John Mylopoulos, Alexander Borgida, and Ivan Jureta. Reasoning with

optional and preferred requirements. In Jeffrey Parsons, Motoshi Saeki, Peretz Shoval,

Carson C. Woo, and Yair Wand, editors, ER, volume 6412 of Lecture Notes in Computer

Science, pages 118–131. Springer, 2010.

[29] Judy Goldsmith, Jérôme Lang, Miroslaw Truszczynski, and Nic Wilson. The computa-

tional complexity of dominance and consistency in CP-nets. Journal of Artificial Intelli-

gence Research, 33:403–432, 2008.

[30] Neeraj K. Gupta, Lalita Jategaonkar Jagadeesan, Eleftherios Koutsofios, and David M.

Weiss. Auditdraw: Generating audits the fast way. In RE, pages 188–197. IEEE Computer

Society, 1997.

[31] Joyce El Haddad, Maude Manouvrier, and Marta Rukoz. TQoS: Transactional and QoS-

aware selection algorithm for automatic Web service composition. IEEE Transactions on

Services Computing, 3(1):73–85, 2010.

[32] Sylvain Hallé, Graham Hughes, Tevfik Bultan, and Muath Alkhalaf. Generating interface

grammars from WSDL for automated verification of Web services. In Luciano Baresi, Chi-

Hung Chi, and Jun Suzuki, editors, ICSOC/ServiceWave, volume 5900 of Lecture Notes

in Computer Science, pages 516–530, 2009.

[33] Rachid Hamadi and Boualem Benatallah. A Petri net-based model for Web service com-

position. In 14th Australasian Database Conference, pages 191–200. Australian Computer

Society, Inc., 2003.

[34] Graham Hughes and Tevfik Bultan. Interface grammars for modular software model check-

ing. IEEE Transactions on Software Engineering, 34(5):614–632, 2008.

[35] Ivan Jureta, Alexander Borgida, Neil A. Ernst, and John Mylopoulos. Techne: Towards a

new generation of requirements modeling languages with goals, preferences, and inconsis-

tency handling. In RE, pages 115–124. IEEE Computer Society, 2010.

109

[36] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer

Peterson. Feature-oriented domain analysis (FODA) feasibility study. Technical Report

CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon University, Pitts-

burgh, PA, 1990.

[37] Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Preferences and

Value Tradeoffs. John Wiley and Sons, 1976.

[38] Gary T. Leavens and Murali Sitaraman, editors. Foundations of Component-Based Sys-

tems. Cambridge University Press, 2000.

[39] Mark Shmuilovich Levin. Combinatorial Engineering of Decomposable Systems. Kluwer

Academic Publishers, 1998.

[40] Mark Shmuilovich Levin. Composite Systems Design. Springer, 2006.

[41] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd Petter N. Slyngstad,

and Maurizio Morisio. Development with off-the-shelf components: 10 facts. IEEE Soft-

ware, 26(2):80–87, 2009.

[42] Jingyue Li, Anita Gupta, Jon Arvid Børretzen, and Reidar Conradi. The empirical studies

on quality benefits of reusing software components. In COMPSAC (2), pages 399–402.

IEEE Computer Society, 2007.

[43] Sotirios Liaskos, Marin Litoiu, Marina Daoud Jungblut, and John Mylopoulos. Goal-based

behavioral customization of information systems. In Haralambos Mouratidis and Colette

Rolland, editors, CAiSE, volume 6741 of Lecture Notes in Computer Science, pages 77–92.

Springer, 2011.

[44] Sotirios Liaskos, Sheila A. McIlraith, Shirin Sohrabi, and John Mylopoulos. Integrating

preferences into goal models for requirements engineering. In RE, pages 135–144. IEEE

Computer Society, 2010.

[45] Wayne C. Lim. Effects of reuse on quality, productivity, and economics. IEEE Software,

11(5):23–30, 1994.

110

[46] Naiwen Lin, Ugur Kuter, and James A. Hendler. Web service composition via problem

decomposition across multiple ontologies. In IEEE SCW, pages 65–72. IEEE Computer

Society, 2007.

[47] Zhiming Liu and He Jifeng. Mathematical Frameworks for Component Software: Models

for Analysis and Synthesis, volume 2 of Series on Component-Based Software Development.

World Scientific, 2006.

[48] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description logics: A

survey. In Stéphane Demri and Christian S. Jensen, editors, TIME, pages 3–14. IEEE

Computer Society, 2008.

[49] Mike Mannion. Using first-order logic for product line model validation. In Gary J.

Chastek, editor, SPLC, volume 2379 of Lecture Notes in Computer Science, pages 176–

187. Springer, 2002.

[50] Kenneth L. McMillan. Cadence SMV (software). Release 10-11-02p1. Available at:

http://www.kenmcmil.com/smv.html, 2002.

[51] Marćılio Mendonça, Andrzej Wasowski, and Krzysztof Czarnecki. SAT-based analysis of

feature models is easy. In Dirk Muthig and John D. McGregor, editors, SPLC, volume

446 of ACM International Conference Proceeding Series, pages 231–240. ACM, 2009.

[52] Andrew P. Moore. The specification and verified decomposition of system requirements

using CSP. IEEE Transactions on Software Engineering, 16(9):932–948, 1990.

[53] Wonhong Nam, Hyunyoung Kil, and Dongwon Lee. Type-aware Web service composition

using boolean satisfiability solver. In CEC/EEE, pages 331–334, 2008.

[54] Nils J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, 1971.

[55] OASIS Web Services Business Process Execution Language Technical Committee. Web

Services Business Process Execution Language version 2.0. OASIS Standard, OASIS, April

2007.

111

[56] OASIS Web Services Secure Exchange Technical Committee. WS-SecurityPolicy 1.3. OA-

SIS Standard, OASIS, February 2009.

[57] Ivana Ognjanovic, Dragan Gasevic, Ebrahim Bagheri, and Mohsen Asadi. Conditional

preferences in software stakeholders’ judgments. In William C. Chu, W. Eric Wong,

Mathew J. Palakal, and Chih-Cheng Hung, editors, SAC, pages 683–690. ACM, 2011.

[58] Zachary J. Oster, Syed Adeel Ali, Ganesh Ram Santhanam, Samik Basu, and Partha S.

Roop. A service composition framework based on goal-oriented requirements engineering,

model checking, and qualitative preference analysis. In Chengfei Liu, Heiko Ludwig, Farouk

Toumani, and Qi Yu, editors, ICSOC, volume 7636 of Lecture Notes in Computer Science,

pages 283–297. Springer, 2012.

[59] Zachary J. Oster, Ganesh Ram Santhanam, and Samik Basu. Decomposing the service

composition problem. In Antonio Brogi, Cesare Pautasso, and George Angelos Papadopou-

los, editors, ECOWS, pages 163–170. IEEE Computer Society, 2010.

[60] Zachary J. Oster, Ganesh Ram Santhanam, and Samik Basu. Automating analysis of

qualitative preferences in goal-oriented requirements engineering. In Perry Alexander,

Corina S. Pasareanu, and John G. Hosking, editors, ASE, pages 448–451. IEEE, 2011.

[61] Zachary J. Oster, Ganesh Ram Santhanam, and Samik Basu. Automating analysis of

qualitative preferences in goal-oriented requirements engineering. Technical Report 11-06,

Department of Computer Science, Iowa State University, 2011.

[62] Zachary J. Oster, Ganesh Ram Santhanam, and Samik Basu. Identifying optimal compos-

ite services by decomposing the service composition problem. In ICWS, pages 267–274.

IEEE Computer Society, 2011.

[63] Zachary J. Oster, Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar. Model

checking of qualitative sensitivity preferences to minimize credential disclosure. In Corina

Pasareanu and Gwen Salaün, editors, FACS, volume 7684 of Lecture Notes in Computer

Science, pages 205–223. Springer, 2012.

112

[64] David Lorge Parnas. On the design and development of program families. IEEE Transac-

tions on Software Engineering, 2(1):1–9, 1976.

[65] Jyotishman Pathak. Interactive and Verifiable Web Services Composition, Specification

Reformulation, and Substitution. PhD dissertation, Iowa State University, 2007.

[66] Jyotishman Pathak, Samik Basu, and Vasant Honavar. Modeling Web services by iterative

reformulation of functional and non-functional requirements. In Asit Dan and Winfried

Lamersdorf, editors, ICSOC, volume 4294 of Lecture Notes in Computer Science, pages

314–326. Springer, 2006.

[67] Jyotishman Pathak, Samik Basu, and Vasant Honavar. Composing Web services through

automatic reformulation of service specifications. In IEEE SCC, pages 361–369. IEEE

Computer Society, 2008.

[68] Jyotishman Pathak, Samik Basu, Robyn R. Lutz, and Vasant Honavar. Parallel Web

service composition in MoSCoE: A choreography-based approach. In ECOWS, pages 3–

12. IEEE Computer Society, 2006.

[69] Rodrigo Mantovaneli Pessoa, Eduardo Goncalves da Silva, Marten van Sinderen, Dick

A. C. Quartel, and Lúıs Ferreira Pires. Enterprise interoperability with SOA: a survey

of service composition approaches. In Marten van Sinderen, João Paulo A. Almeida,

Lúıs Ferreira Pires, and Maarten Steen, editors, EDOCW, pages 238–251. IEEE Computer

Society, 2008.

[70] Marco Pistore, Paolo Traverso, Piergiorgio Bertoli, and Annapaola Marconi. Automated

synthesis of composite BPEL4WS Web services. In ICWS, pages 293–301. IEEE Computer

Society, 2005.

[71] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer

Society, 1977.

113

[72] Lianyong Qi, Ying Tang, Wanchun Dou, and Jinjun Chen. Combining local optimization

and enumeration for QoS-aware Web service composition. In ICWS, pages 34–41. IEEE

Computer Society, 2010.

[73] Thomas L. Saaty. Decision making with the Analytic Hierarchy Process. International

Journal of Services Sciences, 1:83–98, 2008.

[74] Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar. TCP-Compose* — a TCP-

net based algorithm for efficient composition of Web services using qualitative preferences.

In Athman Bouguettaya, Ingolf Krüger, and Tiziana Margaria, editors, ICSOC, volume

5364 of Lecture Notes in Computer Science, pages 453–467, 2008.

[75] Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar. Dominance testing via model

checking. In AAAI, pages 357–362. AAAI Press, 2010.

[76] Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar. Efficient dominance testing

for unconditional preferences. In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski,

editors, KR. AAAI Press, 2010.

[77] Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar. Representing and reasoning

with qualitative preferences for compositional systems. Journal of Artificial Intelligence

Research, 42:211–274, 2011.

[78] Stan Schenkerman. Use and abuse of weights in multiple objective decision support models.

Decision Sciences, 22:369–378, 1991.

[79] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Feature diagrams:

A survey and a formal semantics. In RE, pages 136–145. IEEE Computer Society, 2006.

[80] Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos. Simple and minimum-cost

satisfiability for goal models. In CAiSE, pages 20–35, 2004.

[81] Herbert A. Simon. The Sciences of the Artificial. MIT Press, 1981.

114

[82] Hongyu Sun, Samik Basu, Vasant Honavar, and Robyn R. Lutz. Automata-based verifica-

tion of security requirements of composite Web services. In ISSRE, pages 348–357. IEEE

Computer Society, 2010.

[83] Clemens Szyperski. Components and the way ahead. In Leavens and Sitaraman [38],

chapter 1, pages 1–20.

[84] Clemens Szyperski and Cuno Pfister. Workshop on component-oriented programming

(WCOP96), summary. In Max Mühlhäuser, editor, Special Issues in Object-Oriented Pro-

gramming — ECOOP96 Workshop Reader, pages 127–130. dpunkt Verlag, Heidelberg,

1997.

[85] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146–160, 1972.

[86] Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Web service composi-

tion approaches: From industrial standards to formal methods. In ICIW, page 15. IEEE

Computer Society, 2007.

[87] Maurice H. ter Beek, Stefania Gnesi, Nora Koch, and Franco Mazzanti. Formal verification

of an automotive scenario in service-oriented computing. In ICSE, pages 613–622, New

York, NY, USA, 2008. ACM.

[88] Axel van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In RE,

pages 249–263. IEEE Computer Society, 2001.

[89] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models to

Software Specifications. John Wiley and Sons, 2009.

[90] Yingzi Wang, Xiaolin Zheng, and Deren Chen. An ontology-driven discovery architecture

to support service composition. In ICEBE, pages 365–370. IEEE Computer Society, 2009.

[91] David Weiss and Chi Tau Robert Lai. Software Product-Line Engineering: A Family-Based

Software Development Process. Addison-Wesley, 1999.

115

[92] Jung-Woon Yoo, Soundar R. T. Kumara, Dongwon Lee, and Seog-Chan Oh. A Web

service composition framework using integer programming with non-functional objectives

and constraints. In CEC/EEE, pages 347–350, 2008.

[93] Eric S. K. Yu and John Mylopoulos. Understanding ‘why’ in software process modelling,

analysis, and design. In ICSE, pages 159–168, 1994.

[94] Kaizhi Yue. Validating system requirements by functional decomposition and dynamic

analysis. In ICSE, pages 188–196, 1989.

[95] Yuanyuan Zhang, Mark Harman, Anthony Finkelstein, and S. Afshin Mansouri. Com-

paring the performance of metaheuristics for the analysis of multi-stakeholder tradeoffs in

requirements optimisation. Information & Software Technology, 53(7):761–773, 2011.

	2013
	Reasoning with qualitative preferences for optimization of component-based system development
	Zachary James Oster
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Component-Based Systems: An Overview
	1.2 Challenges in Developing Optimal Component-Based Systems
	1.3 A New Framework for Component-Based System Development
	1.4 Contributions of This Work
	1.5 Organization

	2. RELATED WORK
	2.1 Component-Based Software Systems
	2.1.1 Web Service Composition
	2.1.2 Software Product Lines

	2.2 Goal-Oriented Requirements Engineering
	2.3 Preference Reasoning
	2.3.1 Quantitative Methods
	2.3.2 Qualitative Methods

	3. COMPONENT-BASED SYSTEMS: DEFINITIONS AND CORE CONCEPTS
	3.1 Entities, Components, and Systems
	3.2 Traits
	3.3 System Requirement
	3.4 Preferences

	4. SYSTEM MODELING, REALIZATION, AND VERIFICATION USING MULTIPLE FORMAL METHODS
	4.1 Example: Medical Records Management
	4.2 Problem Decomposition and Modeling
	4.3 Identification of Promising Component Sets
	4.4 System Realization and Verification

	5. MODELING, REFINING, AND APPLYING QUALITATIVE PREFERENCES OF STAKEHOLDERS
	5.1 Example: Preferences between Optional Goals of a System
	5.2 Formalizing Preferences as a CI-Net
	5.3 Consistency Checking and Dominance Testing in CI-Nets
	5.3.1 Kripke Structure Modeling of CI-Net Semantics
	5.3.2 Model Checking for Verifying Consistency and Dominance
	5.3.3 Preference Ordering over Sets of Optional Traits

	5.4 Determining the Most Preferred Alternatives
	5.5 Implementation and Preliminary Results

	6. A NEW FRAMEWORK FOR DEVELOPING OPTIMAL COMPONENT-BASED SYSTEMS
	6.1 Defining the Problem Space
	6.2 Identifying and Modeling the Specific Problem to Solve
	6.2.1 Identifying the Traits for the System
	6.2.2 Defining the System Requirement
	6.2.3 Determining Preferences over Traits

	6.3 Defining the Solution Space
	6.4 Identifying Optimal Solutions for the Problem
	6.5 Constructing an Optimal Solution and Verifying Correctness
	6.6 Implementation and Evaluation Plan

	7. CONCLUSION
	7.1 Summary
	7.2 Future Research

	BIBLIOGRAPHY

