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ABSTRACT 

 

 Most software systems undergo continuous change in different phases of their 

lifecycle such as development or maintenance. Ideally, such changes should correspond 

to a system’s modular design. However, some changes span across more than one 

component thereby resulting in discrepancies between design and implementation. In 

such cases, making a change to one component requires changes to other components 

leading to an increase in time and effort to make changes to a software system as it 

evolves.  

This thesis investigates: 1) an approach to observe how components change 

together by identifying tightly coupled changes known as chunks, 2) whether there are 

any trends in how chunks evolve over time, and 3) whether chunks can help identify 

design issues in a software system.  

In this work, a family of algorithms is proposed to identify independently 

changing chunks from change data obtained from mining version history repositories of 

three large software systems – Moodle, Eclipse, and Company-X. A comprehensive 

analysis of certain characteristics of the resulting chunks is conducted. In addition, 

evolution of chunks with respect to size in terms of number of files within a chunk, and 

percentage of changes crossing a chunk are studied. Lastly, a pragmatic interpretation of 

the results to identify necessary code refactoring or system redesign is presented. 
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The findings of this work show that the percentage correlation of a chunk 

decreases with an increase in the number of inter-component or subsystem couplings.  

We also observed that there is no association between chunk size and percentage 

correlation. Identifying chunks that merge helps in a better understanding of the 

inconsistencies between how a system is designed for change and how it is actually 

changed, and to identify areas of a system that require refactoring or redesign. 

Additionally, identifying stable chunks can provide insights into how size and 

percentage correlation of the corresponding empirical components change over time.
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CHAPTER 1. INTRODUCTION 

Software undergoes change throughout its life cycle either in the form of 

development or maintenance until it is not viable anymore. Often changes to a software 

system are made by developers, who do not understand its design, which leads to 

discrepancies in design and implementation thereby causing system degradation [Parnas, 

1994]. Such changes result in an increase in time and effort to make future changes to 

the software system as it evolves. As such, design for change is a key aspect in the 

design of sustainable software systems. The underlying notion for the application of such 

design principles is modularity, achieved by organizing software in such a way that 

certain parts of the system can be created, used and changed independently of others. 

Parnas and others have discussed the importance of modularity in modern software 

design along with using the information hiding principle and prediction of future 

changes as the criteria to isolate design decisions that are likely to change independently 

[Parnas et al., 1985]. 

It is difficult to verify whether a software system has been successfully 

modularized. Ideally, in a modular system, every change is associated with a single 

module, whose design decision it hides. Identifying the percentage of changes that span 

more than one module can be used as a measure to indicate the ease of changeability of a 

system. For that, one must observe changes made to a system over a considerable 

amount of time during its development when most changes occur, measure the effort 

expended in making these changes, and identify changes that violate the system’s 

kl
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information hiding design principles. Furthermore, one can determine whether such 

changes introduce new bugs, and observe how they evolve over time in terms of effort 

and the number of lines of code touched. This can help software developers and 

architects perceive how the structure of a system changes over time with respect to its 

original architecture and hence aid them in designing software for change. 

1.1 The idea behind chunks 

Modelling approaches to design for change and identifying measures that 

determine the degree to which a system is amenable to change after it has been in use for 

a while are interrelated. Mockus and Weiss identified and explored the concept of 

chunks as a measure that can be used to predict how easily changes can be applied to a 

software system. We closely follow Mockus and Weiss in defining a chunk as “a set of 

code that has the property that a change that touches that set of code touches only that set 

of code”. In other words, if a change touches one part of a chunk, then it is likely that it 

will touch other parts of the chunk as well. As an inference from the definition of 

chunks, a file that belongs to a chunk belongs to only that chunk, considering that 

changes modify files. One may think of chunks as the empirical information hiding 

modules of a system [Parnas, 1972]. 

Ideally, we would like to see perfect chunks that are completely independent of 

each other, in a way that every change touches only one chunk. However, in real world 

software systems, it is implausible to find perfect chunks for a variety of reasons and 

perturbing factors, including the following. 
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 Cross-cutting implementation concerns of a system that are inconsistent with the 

design and consequently cannot be cleanly separated from the rest of the system 

[Breu et al., 2006], 

 Bad implementation practices that degrade the modular design of a system over 

time, 

 Paucity of change in certain parts of a system, resulting in insufficient change 

data to identify chunks, 

 Changes that touch a large part of a system, affecting many files and therefore 

many components. For example, a particular bug fix in the Moodle project 

touched 1272 files, and involved running lossless optimization on all .png 

(Portable Network Graphics) and .jpeg (Joint Photographic Experts Group) 

images that were distributed across various subsystems. 

Identifying and analyzing chunks from change information of a particular software 

project over a significant fraction of its lifetime can help uncover parts of the system that 

are most and least changeable, and imply in which parts of the system its design needs to 

be changed. 

1.2 Problem statement 

The goal of this thesis is to investigate: 1) an approach to observe how modules 

in a software system change together by identifying tightly coupled changes known as 

chunks, 2) whether there are any trends in how chunks evolve over time, and 3) whether 
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chunks can help identify design issues or where a design decision needs to be changed in 

a software system. 

A module is a work assignment rather than a sub-program [Parnas, 1972]. In the 

context of this thesis, we deviate from the term module as we do not have any 

information of the modular structure of the software systems studied. Instead, we use the 

term component to mean a set of code contained in files within any one directory in the 

master directory of repositories for the projects whose change data we analyzed. A 

change should be localized within a single component, since components should contain 

independently changeable design decisions. In this thesis we attempt to discover chunks 

in software systems by analyzing the changes that have been made to that system over a 

significant period of its lifecycle. There are several diverse attributes of change data 

pertaining to a software system, such as the type of change – bug fix or enhancement, 

the developer who made the change, time at which the change was made, the files 

modified by the change, the number of lines of code affected by the change, description 

of the change, or the subsystem(s) touched by the change. In this work, we use only a 

subset of the change data attributes required to perform chunk identification.  

A family of algorithms is proposed to identify independently changing chunks 

from change data obtained from mining version history repositories of three large 

software systems – Moodle, Eclipse and Company-X (anonymized due to limited 

publication rights). A comprehensive analysis of certain characteristics of the resulting 

chunks is conducted. In addition, evolution of chunks over time with respect to size in 

terms of number of files within a chunk, and percentage of changes crossing a chunk is 
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studied. Lastly, a pragmatic interpretation of the results to identify necessary code 

refactoring or system redesign is presented.  

The results from this work show that chunks merge over time touching many 

components, thereby making it increasingly difficult to make changes and to maintain 

the software system. In this thesis we also found that the percentage of changes crossing 

a chunk reduces with an increase in component and subsystem couplings. Increasing 

discrepancies between the developed software and its original design result in changes 

that require modifications to a large part of the system over longer time periods, 

therefore resulting in chunks with lower percentage of changes crossing the chunks.  

Furthermore, in this work we identified chunks that are stable, i.e., with more 

than 65% of the files within the chunk existing commonly in different versions of its 

evolution over time. Stability is calculated as the percentage of files in the smaller 

version of the chunk that are in common with the larger chunk version over its evolution. 

For example, suppose a chunk C1, containing 10 files evolved over time into chunk C2 

with 15 files, while having 9 files in common with C1. In this case, stability of the chunk 

C1 is 9/10, i.e., 90%. Note that a chunk does not necessarily increase in size over time. 

For example, suppose that during the first year of development, changes are made to two 

different parts of a component. These changes are then identified as a chunk. Over time, 

if the component is restructured, and changes to those two parts are made independently 

of each other. This results in a chunk that is smaller than the first, while still containing 

files from the common parts of the component. Clearly, a larger chunk has evolved into 

a smaller chunk in this scenario. 
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Observing stable chunks as empirical information hiding modules helps in a 

better understanding of the inconsistencies between how a system is designed for change 

and how it is actually changed. As such, chunks can be used as an indicator of when 

redesign of some or all of a software system is beneficial; identifying such design issues 

earlier in a project’s lifecycle can prevent the company from losing valuable time in 

making changes to their system.  

1.3 Structure of this thesis 

The rest of this thesis is organized as follows. Chapter 2 discusses related work 

and how our approach differs from the others. Chapter 3 describes the data and 

approach. Chapter 4 presents the hypotheses, results and interpretation. Comparison of 

results from all three software projects — Moodle, Eclipse, and Company-X — are also 

included in this chapter. Chapter 5 discusses the challenges and difficulties faced. 

Chapter 6 describes the methods used to validate the data and the proposed family of 

algorithms. Finally, chapter 7 summarizes this research, and suggests future work in this 

area. 
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CHAPTER 2. BACKGROUND AND RELATED WORK 

This chapter discusses the terminology used in the rest of this thesis, background 

of this work along with related work, and describes how our approach differs from 

similar studies. 

2.1 Chunking approach 

The terminology used in the identification and analysis of chunks in this thesis 

and the background of this work is introduced in this section. In their introductory study 

on chunks [Mockus and Weiss, 2001], Mockus and Weiss define a chunk as “a set of 

code such that a set of work items all change that same set of code”. A work item is 

defined as “the assignment of developers to a task, usually to make changes to the 

software”. A work item can refer to any change request including an entire new software 

version, component, new functionality, modification request or even individual deltas 

within a modification request. A new functionality might require implementation of 

many components. A modification request (MR) is “a request to incorporate a specific 

change into software” [Herbsleb et al., 2001]. The analysis on chunks in this thesis is 

based on considering an MR as analogous to a commit in the change data. Every MR 

corresponds to a single type of change, such as a bug fix, new feature, enhancement, and 

fix on fix (new bugs resulting from fixing an existing bug). Other types of MRs might 

include auto installed batch files or header files, code clean up, etc. 

We base our study on the work done by Mockus and Weiss, where the notion of 

identifying tightly coupled work items that can be developed independently in 
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distributed locations, thereby reducing communication and coordination needs within an 

organization is presented [Mockus and Weiss, 2001]. Files that are modified as part of 

an MR are tightly coupled as they all change together. As such, work items can be 

divided among developers by identifying sets of MRs that have strong inter-coupling 

between the MRs within that set, while sharing weak coupling with other MRs, thus 

paving the way for independent development or maintenance.   

There are two kinds of coupling between any two entities as described below. 

They constitute the quantitative measures for dividing work items in distributed software 

development environments. 

 Absolute coupling: The total number of MRs that modify or change both the 

entities. For example, if A and B are two components, then the total number of 

MRs that touch both A and B is referred to as absolute coupling between A and 

B. 

 Relative coupling: The ratio of the total number of MRs that change both the 

entities to the total number of MRs that modify either of the entities. In the above 

example, relative coupling is the total number of MRs that touch both 

components A and B divided by the sum of MRs that touch component A and 

component B. 

Suppose there are 20 MRs altogether that touch either component A or component B 

and 18 MRs that touch both component A and component B. Note that there are 2 MRs 

that touch either component A or component B but not both. In this case, the absolute 
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coupling between A and B is 18, while their relative coupling is 0.9. In the context of 

global location of developers, relative coupling is the ratio of multisite MRs to total 

MRs, and it has to be minimized to decrease coordination needs and increase the speed 

of producing new software. Hence, these measures can be used as criteria to optimize for 

the generation of chunk candidates.  

In this work, we use the term MRs crossing chunk as analogous to absolute 

coupling, while percentage correlation is exactly the opposite of relative coupling. The 

number of MRs that touch files in both the chunk and rest of the system is referred to as 

MRs crossing chunk, whereas the number of MRs that touch only files within the chunk 

is termed as MRs within chunk. The ratio of MRs within chunk to the total number of 

MRs as a percentage is referred to as percentage correlation of the chunk. In the above 

example, suppose A and B represent two different chunks with 1 MR touching only A, 1 

MR touching only B, and 18 MRs touching both A and B. In this case, each of the 

chunks, A and B will have a percentage correlation of 5.26%. Note that percentage 

correlation is not related to any of the statistical terms used for correlation (e.g. 

Spearman correlation). 

2.1.1 Algorithm 

A study of the literature indicates that Mockus and Weiss are the only ones who 

proposed an algorithm to identify chunks [Mockus and Weiss, 2001]. The algorithm 

generates candidates iteratively as described below and selects the best one based on the 

evaluation criterion chosen. 
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 The algorithm takes as input a set of files or modules, a set of MRs and the 

associated files that each MR modifies and a desired range of effort for the 

resulting candidate chunk. 

 A module is randomly chosen as the initial candidate to be a chunk.  

 A new candidate is generated by either adding a random module (chosen from 

the rest of the system) to the candidate, deleting a random module from the 

candidate or exchanging a module from the current candidate with one from the 

rest of the system. 

 The algorithm accepts the new candidate with a probability p > 1/3 if the value of 

the selected evaluation criterion (coupling to the rest of the system) is improved. 

The best possible candidate chunk with the highest value of the chosen evaluation 

criterion is generated, once the entire solution space is searched and explored. 

2.2 Detection of logical couplings and its applications 

Larry Constantine first defined the term coupling as the degree to which a 

module depends upon other modules [Constantine et al., 1979]. When different entities 

of a software system change together, as the system evolves, their common behavior is 

referred to as logical coupling [Gall et al., 2003]. It is a measure of the strength of 

dependency between the parts of a system that change together. Therefore, identifying 

logical couplings in a software system reveals the information hiding design structure of 

the entire system and exposes hidden inter-dependencies between files, modules or 

subsystems and other source code artifacts. In this section, we discuss several studies 
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aimed at identifying logical couplings (i.e., evolution of dependencies between system 

entities with the evolution of changes to a system over time). 

2.2.1 Methods to identify logical couplings  

Pearse and Oman discussed the use of code-based metrics like Lines of Code 

(LOC), and percentage of comment lines before and after a maintenance activity to 

identify the maintainability of a software system, and suggested the effects of code 

restructuring or addition of new features to existing code [Pearse and Oman, 1995]. 

Identification of syntactic and semantic dependencies between program entities was 

explored by Yang and Horwitz respectively [Yang, 1991], [Horwitz, 1990]. Neamtiu and 

others presented a tool to compare different source code versions to observe the 

evolution of a system by observing code-level dependencies [Neamtiu et al., 2005]. The 

basis of their approach is to find semantic differences between different program 

versions by using partial abstract syntax tree matching.  

Analyzing structural dependencies on the source code level is quite challenging 

for large software systems involving millions of lines of code. Gall and others presented 

an approach to uncover logical coupling among modules by using version history data 

[Gall et al., 1998] to detect structural shortcomings, hence directing towards modules 

that require restructuring. The underlying concept is an empirical evaluation of the 

system’s structure contrary to code-based metric approaches. In addition to identifying 

logical coupling between modules, such methods can be used to validate code-level 

measures that can be used only after the implementation is done and predictive 
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measures, which are derived from a system’s design artifacts. Logical couplings are 

identified using a two-step process. 

 Common change patterns for modules with respect to the system are identified 

over different versions of change history. 

 These logical couplings are verified by observing the change reports for modules 

that have common change patterns. If the report identifies a common reason for 

change across different versions, then the logical coupling is confirmed. 

The implementation of their approach used subsystems instead of modules, and 

calculated structural interdependencies on the subsystem level. This might hide potential 

dependencies at sub-modular or program level, which might lead to an undesirable 

increase in subsystem dependencies at a future time, thereby requiring much more cost 

and effort to reengineer the system. Arnold, in addition to Griswold and Notkin, in their 

works [Arnold, 1993], [Griswold and Notkin, 1993], investigated various software 

restructuring and reengineering methods.  

 The work that is most closely related to our work is that of Gall, Jazayeri, and 

Krajewski [Gall et al., 2003], in which they use version information to find dependencies 

between modules based on analyzing evolution of changes between classes and 

identifying common change patterns, also called logical couplings. Their work is based 

on an earlier study by Gall, Hajek and Jazayeri [Gall et al., 1998], which was discussed 

above. They described a method for software evolution analysis by a 3-step incremental 

approach. First, growth and change behavior of classes is assessed from the version 
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history information obtained from a CVS repository. Common change patterns across 

the system are then identified. Finally, classes that are changed commonly across 

different versions of the system are compared to observe evolution of different system 

components over time.  They compared all changes to classes that were done on the 

same date and by the same author, as such changes indicate possible logical couplings 

between different classes and uncover potential hidden dependencies between modules 

or subsystems. They used the results to reveal architectural shortcomings of a software 

system by validating the findings with the development team of the company. A similar 

study was conducted by Bieman, Andrews, and Yang [Bieman et al., 2003] to identify 

coupling between classes using 39 releases of a commercial object-oriented software 

system. 

Zimmermann, Diehl, and Zeller investigated an approach to identify such 

evolutionary couplings between functions, methods or attributes in a program by 

focusing on factual dependencies indicated by the revision history of the system 

[Zimmermann et al., 2003]. The emphasis is on the interlinking between entities within a 

program rather than higher level components such as modules or subsystems. A 

comparison of such evolutionary coupling against logical or analytical coupling, 

determined from evolutionary change analysis of programs, can unmask weaknesses in 

the system architecture. 

A comparative study was conducted by Wong, Cai, Kim, and Dalton, in which an 

approach (CLIO) to detect modularity violations that can cause software defects or 

modularity decay is discussed [Wong et al., 2011]. Mismatches between how 
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components should change together based on a system’s modular structure and how they 

actually change together as divulged by the version history are observed as modularity 

violations. The results were evaluated using the version histories of two large scale open 

source repositories – 10 releases of Eclipse JDT and 15 releases of Hadoop Common. 

Some of the detected violations were confirmed manually by in-depth analysis of the 

MRs concerned with a violation, while others are detected automatically by CLIO. 

Certain violations were identified a lot earlier in the system’s lifecycle whereas the 

associated modules were refactored at a later time. The use of such tools can assist in 

identification of poor design in the beginning stages of a project’s development. 

However, there was no mention of any design artifacts that were used to validate CLIO’s 

findings.  

2.2.2 Mining logical couplings for predictive analyses 

Ying, Murphy, Ng, and Chu-Carroll investigated an approach to recommend 

relevant files that can be possibly changed to a developer while performing a 

modification task by using associative rule mining on change data obtained from two 

large open source repositories – Mozilla and Eclipse [Ying et al., 2004]. As a developer 

starts to make a change to a file, a set of additional files that most likely change together 

with the file being changed are suggested. These recommendations are derived from a 

frequent pattern mining algorithm based on frequency counts of the instances of files 

that change together. In other words, logical couplings between files are first identified, 

and then the mining rules for predicting changes are derived. The results were evaluated 

by classifying a recommendation as most useful or surprising, if it could not be 
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determined by analytical analysis of the program. The limitation of this approach is that 

it does not support mining on the fly. 

Another similar approach was presented by Zimmermann, Diehl, and Zeller 

[Zimmermann et al., 2005] that uses association rule mining of multi-dimensional 

version information to predict further probable changes and supports mining on the fly. 

They proposed a tool (ROSE) to detect coupling between program entities such as 

functions or variables, generate multi-dimensional association rules by analyzing 

different types of changes, and suggest future changes by investigating how changes 

evolve over the project’s lifetime. 

2.2.3 Relationship between logical coupling and software defects 

Another work in recent times that is closely related to this thesis is the one 

conducted by Steff and Russo, in which they construct graphs of ordered commits to 

identify defective modules and other software defects in the system by observing co-

evolution of commits and files [Steff and Russo, 2012]. Defects with the status “fixed” 

were selected from the SVN repository of the Spring project and mapped with the 

associated commits containing the corresponding defect ID to obtain information about a 

particular change. A list of all files in each commit, and for each file information about 

the commit in which it was last changed are obtained. A commit graph is constructed 

with each commit representing a node and an edge existing between two nodes if both 

corresponding commits commonly changed one or more files, without any other commit 

changing any of these files in between.  
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A graph with one large connected component was obtained with an average node 

degree of 2, indicating a sparsely connected commit structure, attributed to object-

oriented modularity design principles of the system being studied. Also, there were two 

types of special nodes in the commit graph – root and end nodes. A root node has no in-

degree, indicating that none of its files has been changed before. An end node has no out 

degree, meaning none of its files has been changed later on, i.e., it is a one-time change 

such as a header import. The components of the graph that share a high number of edges 

between them correspond to possible logical couplings in the system and are identical to 

the chunks observed in this thesis. 

Correlations between the history of each commit and defects in that history were 

calculated for all files concerned, from which it was observed that both number of 

commits and number of files associated with a commit’s history have a high correlation 

with the number of defects. It was also found that bug-fixing commits share a higher 

number of edges or files between them and are well connected and distributed across the 

entire commit graph. Hence, it can be inferred that nodes with a higher degree are more 

likely bound to be defects. In other words, higher order logical coupling can be used to 

detect risky or defective code structures in files. A limitation of using this approach is 

the underlying complexity in constructing a commit graph for large projects containing 

hundreds of thousands of commits. 

D’Ambros, Lanza, and Robbes analyzed the relationship between change 

coupling and software defects, and to statistically investigate if there is a correlation 

between change coupling and defects. Change couplings are correlated with defects 
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more than object-oriented or other complexity metrics but less than the number of 

changes [D’Ambros et al., 2009]. It was also observed that defects with higher severity 

like bug fixes exhibit a higher correlation with change coupling.  

In another work conducted by Graves, Karr, Marron, and Siy [Graves et al., 

2000], the extent to which code and its change history are successful in predicting the 

distribution of faults that arise in modules. In this context, a module is considered as a 

set of related files. Several statistical models were developed to see which attributes of 

the change history were likely to indicate the generation of a large number of faults as 

the module continued to be developed. Fault potential was predicted by using a sum of 

contributions from all changes to the module in its change history, and it was observed 

that old changes were weighed down by a factor of around 50% per year, i.e., changes 

made a year ago were only about half as influential in fault prediction as changes made 

yesterday. A measure of the module’s age gave satisfactory prediction results, while 

characteristics like length of the module in terms of number of lines of code, and number 

of developers who had made changes to the module did not provide expected results. 

Interestingly, their attempt could not predict faults by using information of coupling 

between modules, which is a potential attribute of change history to measure defective 

code or system architecture. 

To our knowledge, the work presented in this thesis is the first one to identify 

chunks as well as analyze chunk evolution as an empirical approach to reveal hidden 

relations between files, components or modules that assist in exposing potential 

shortcomings in the system’s architecture or design, implementation, and 
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maintainability. We propose a family of algorithms to be used for chunk identification. 

The approach used in this work differs from other related work in that we not only 

identify logical couplings between files but also investigate the evolution of such 

couplings by using attributes of chunks rather than measurement metrics of code or 

modules, such as number of lines of code, length of the module, etc. As such, our 

approach does not require information about the modular structure of a system or other 

design artifacts as in other works; however, such knowledge about a system’s 

architecture can be valuable in complementing our findings in this study.  
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CHAPTER 3. APPROACH 

This chapter describes the approach used for identifying and analyzing chunks 

and their evolution by using change history information. A description of how we 

collected data from the version control repository of Moodle is presented, along with 

references to the data sources of Eclipse and Company-X projects. In addition, the 

characteristics of chunks that we considered for analyzing chunk evolution are discussed 

in subsequent sections. 

3.1 Data collection 

Most open source projects maintain and store data concerning changes made to 

the system in version control repositories as commits, containing information such as the 

author who had made the change, time at which the change was made, description of the 

change, etc. as indicated in Table 3.1. These changes are linked to a bug tracker that 

contains knowledge about the type of change, patch files if the change is a bug fix, or 

files that were modified, including the number of lines of code that is changed. The 

algorithm proposed and used in this thesis requires a data source to encompass a set of 

MRs – each MR is considered as a change, the number of files modified by each MR 

together with the file names, time of change, person who made the change, and a 

classification of MRs into bug fixes, enhancements, new features, or automated changes. 

After a careful consideration of change histories of about 15 projects, we finally selected 

the Moodle course management system, and the Eclipse integrated development 

environment because of the availability of appropriate change data and the ease with 
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which this data can be collected. Data from Company-X was generously provided to us 

by a colleague and contained all the required information for chunk identification. 

Moodle stores all changes made to the source code in their Git repository 

[Moodle Git], which is a distributed version control and source code management 

system with an emphasis on speed of data storage and access. The Git working directory 

of any project is a repository on its own with complete history and tracking capabilities. 

Commits in the Git repository are linked to Moodle’s JIRA issue tracking system. We 

first cloned their Git repository to obtain a list of MRs each with a commit ID, author of 

commit, time of commit in the form of UNIX timestamp, names of files touched by the 

MR, description of the MR, and a tracker reference number that allows mapping with the 

issue tracker. We used two simple Python scrapers, one to pull this data into a SQLite 

database on our server, and the other to pull the issue type of each MR from the issue 

tracker into a SQLite database. The issue types of MRs are organized as either a bug, 

improvement, sub-task, new feature. For MRs without a tracker reference number (16 

MRs accounting for less than 1% of the total MRs), we use pattern matching to search 

the commit description for words like “bug” or “fix” in order to identify bug fixes. The 

Moodle data that we used in this work spans across 01-Jan-2008 to 31-Dec-2011.  

Data for the Eclipse project was provided to us by Krishnan, who used Eclipse’s 

change data to perform defect assessment and explored defect prediction of failure-prone 

files in the Eclipse product line in his work [Krishnan, 2013]. The data was extracted 

from the Eclipse Bugzilla database and CVS change repositories for the Eclipse Classic 

product. The CVS log data was mined for six-digit strings that could be matched to bug 
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IDs. A manual review was performed to ensure that this pattern matching caught all the 

log data entries containing the word “bug”. He also used the CVSps (Patchsets for CVS) 

tool that identifies files committed together as a changeset. This additional processing 

had to be done as changes are stored in a CVS repository in terms of each file that is 

changed contrary to other repositories such as Git or SVN (Subversion) where changes 

correspond to commits involving a set of files modified by the change. Custom PERL 

scripts were written to parse the CVS log entries into a SQL database. In addition, 

developers at Eclipse provided a bug database containing change history information 

required for this study along with an affluence of other details of bug fixes for selected 

Eclipse releases in the form of a SQL database. The dataset contributed to us constituted 

Eclipse’s Europa (release 3.3) project’s bug data from 02-July-2006 to 31-Dec-2007. We 

parsed the necessary information suitable for the algorithm into another SQLite database 

using a Python script. 

We used a similar Python script as mentioned earlier to parse and extract the 

required information from CVS logs of change data from Company-X into a SQLite 

database. The dataset is a wealth of information consisting of the entire change history 

data collected over the time period 28-July-1993 to 04-June-2009. In this case, the MRs 

are classified by their type as either enhancement, initialization, modification, new 

feature, problem, or sw_offer_build.  

A set of all the change data characteristics used in this work and are essential to 

identify chunks for each of the three projects – Moodle, Eclipse, and Company-X is 

listed in Table 3.1.  
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Table 3.1: List of Change Data Characteristics Used 

Characteristic Description Project Data Type/Value 

CS_ID The changeset 

(commit) ID, unique 

for every commit. 

Moodle A sequence of 40 alphanumeric 

characters. 

Eclipse A numeric sequence of variable 

length. 

Company-X A numeric sequence of variable 

length. 

AUTHOR The name or email 

ID of the developer 

assigned to make 

the change. 

Moodle Full name or email ID. 

Eclipse Email ID. 

Company-X Encoded numeric value. 

DATE The time at which 

the change is made 

(committed). 

Moodle Unix timestamp. 

Eclipse Full date format: yyyy-mm-dd 

hh:mm:ss. 

Company-X Unix timestamp. 

ISSUE_TYPE The type of MR or 

change. 

Moodle bug, improvement, new feature, 

sub-task, and task 

Eclipse bug, and enhancement 

Company-X enhancement, initialization, 

modification, new feature, 

problem, and sw_offer_build 

MESSAGE A short description 

of the change. 

Moodle 

Eclipse 

Company-X 

Textual description of the 

committed change. 

FILE_NAME Names of all the 

files modified by the 

change; 

FILE_COUNT is 

consequently 

calculated as the 

number of files 

Moodle File names in the form of file 

paths 

Eclipse File names in the form of file 

paths. 

Company-X Encoded in numeric file path 
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Characteristic Description Project Data Type/Value 

touched by the 

change 

format.  

E.g. 1/2/3/75/1049 

 

3.2 Algorithm(s) to identify chunks 

We use a family of algorithms to identify chunks, a list of whose commonalities 

and variabilities is described in detail in this section. Commonalities are the 

characteristics shared by all the algorithms, whereas variabilities describe how the 

algorithms differ from each other [Weiss and Lai, 1999].  

3.2.1 Commonalities 

The following functionality characteristics are common to all the algorithms. 

 All algorithms analyze changes that have been made to a system over some 

significant fraction of its lifetime, usually on the order of 18 months to 5 

years, or more if the data is available. Each change is reported and 

characterized as an MR. 

 All algorithms operate on change history data obtained from software version 

control repositories linked to an issue tracker. 

 All algorithms start by randomly identifying a chunk candidate. 

 All algorithms use a set of optimization criteria to decide whether a chunk 

candidate is, in fact, a chunk. Included are criteria such as the number of 

Table 3.1: (Continued) 
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changes that touch both the candidate and its complement, and the percent of 

changes that touch only the candidate. 

 All algorithms generate chunks by adding files to the set of files of an 

existing candidate and checking to see if the resulting new chunk improves 

the optimization criteria. 

 All algorithms terminate after a specified time interval. This time limit is an 

estimate of the maximum amount of time after which there is no 

improvement in the optimization criteria. It is measured over many trials of 

the algorithm and is dependent on the number of MRs and files involved in 

the dataset, the system speed, and the selected optimization criteria. 

3.2.2 Variabilities 

Each variability in the algorithm family is a result of a careful observation of the 

chunks generated from the existing algorithms, identifying errors with both the approach 

and data, and re-evaluating constraints necessary for a meaningful analysis of chunks. 

All algorithms differ by the following characteristics. 

 All algorithms vary by how they identify the initial chunk candidate, either 

by picking a random subset of files, a random MR, or a random subset of 

MRs. 

 All algorithms vary by the optimization criteria used. Either or both of the 

following optimization criteria whose threshold levels act as constraints to 

the algorithm can be used to generate chunk candidates. 
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1. Percentage correlation – this is a measure of how tightly coupled the 

files within a chunk are, and as such it should be maximized. 

2. MRs crossing chunk – this is a measure of the number of MRs that 

touch both the chunk and its complement, and should therefore be 

minimized. 

 All algorithms vary by constraints imposed on the optimization criteria. 

 All algorithms vary by constraints imposed on data, such as the minimum 

number of files desired in a chunk, the type of changes to include in the 

analysis, the minimum number of files that an MR should touch to be 

randomly picked by the algorithm, etc. 

3.2.3 Description of the proposed algorithm 

A brief description of the steps involved in the algorithm used in this work for 

identifying independent chunks is as follows. 

1. Randomly pick an MR that touches at least five files from the entire set of 

MRs being considered for chunk identification, obtained from the 

corresponding project’s change data. The randomization process is dependent 

on the programming language used. Python uses a uniform random number 

generator. This guarantees a minimum chunk size that is large enough to 

eliminate one-time changes, i.e., MRs, such that the files modified by these 

MRs are not touched by any other MR. Such MRs are of no interest to us 
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since our goal is to study the evolution of frequently occurring changes or 

logical couplings. 

2. The set of files touched by this MR forms the initial chunk, which is also the 

current candidate chunk. 

3. Find a set of all MRs that touch each of the files in the current candidate 

chunk.  

4. Find a set of all files touched by the MRs in step 3. 

5. Add a file from the set of files in step 4 to the initial chunk only if it improves 

the optimization criteria; this forms the current candidate chunk.  

6. Repeat step 5 until all the files in the set of files in step 4 are considered. 

The above steps ensure that the search space for all file combinations is 

sequentially explored so that potential candidates are not omitted. This also 

leaves out false chunks resulting from combining isolated one-time changes.  

7. Repeat steps 3 to 6 as long as adding a file increases the optimization criteria. 

8. Repeat steps 1 through 7 if adding a file does not improve the optimization 

criteria until all MRs in step 3 are considered. 

9. Repeat steps 1 to 8 for a specified time interval, after which the best chunk 

candidate based on the best optimization criteria is generated.  

10. Remove the files constituting the chunk as well as all MRs within the chunk 

generated in step 9 from the initial set of files and MRs considered 

respectively, and repeat steps 1 through 9 to generate the next independent 

chunk. 
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The algorithm iterates through the above steps for 8000, 4000, and 10000 

seconds respectively for Moodle, Eclipse, and Company-X change data, after which it 

generates the best candidate chunk. The algorithm was run on a Dell Optiplex 980 with 

Intel Core i7 processor. 

3.3 Attributes of chunks used for analysis 

The structure of change data that we collected enabled us to determine analysis 

of chunks by size, percentage correlation, number of undesired MRs referred by MRs 

crossing chunk, and time period of changes. As mentioned in Section 3.2.2, percentage 

correlation is a measure of coupling between files within a chunk. Let F be the entire set 

of files touched by all MRs in the dataset used as input for the algorithm described in 

Section 3.2.3 to identify chunks. Let C be a chunk, and C’ be its complement, i.e., C’ 

contains all files in F that are not in C. Since perfect chunks are usually uncommon due 

to undesired couplings between components or cross-cutting concerns, there are a certain 

number of MRs in C that also touch files in C’. We refer to the total number of such 

MRs as MRs crossing chunk. Correspondingly, the number of changes in C that touch 

only files in C is referred to as MRs within chunk. Hence, percentage correlation is 

defined as the percent of total MRs in C that touch only files within C. In other words, 

percentage correlation is a measure of how close a chunk is to being a perfect chunk, 

which has a percentage correlation value of 100%. Therefore, a higher percentage 

correlation indicates a more cohesive chunk. 
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MRs within chunk
percentage correlation

MRs within chunk MRs crossing chunk



            (3.1)

          

The number of undesired MRs within a chunk is equivalent to the number of 

MRs crossing the chunk. As mentioned above, these correspond to changes that touch 

both C and C’. In some cases, taking only percentage correlation into account for 

analysis of chunks can lead to false or misleading interpretations. For example, assume 

that there two chunks C1 and C2, with two sets of 20 MRs one touching each chunk, in a 

way that the two sets of MRs are completely disjoint. That is to say, there are no MRs in 

either set that touch both C1 and C2. Assume that there are 5 MRs crossing C1 and 3 

MRs crossing C2. In terms of percentage correlation, C2 with 85% correlation appears to 

be a significantly better chunk than C1 with only 75% correlation. Alternatively, if we 

look at the number of MRs crossing both chunks, the difference is not too high (only 2), 

i.e., C1 is almost as good a chunk as C2 since the metric MRs crossing chunk is low for 

both C1 and C2. If we set the threshold for percentage correlation as 80%, the algorithm 

will only pick C2, eliminating C1 although it is a potential candidate chunk. Such 

discrepancies arise especially when there are very few changes touching files in a chunk, 

in which case the percentage correlation decreases drastically even with a slight increase 

in MRs crossing chunk. In order to account for these disparities, we used both 

percentage correlation and MRs crossing chunk as the criteria to be optimized for the 

algorithm to generate potential independent chunks.  

We also consider different time periods of changes to observe how chunks 

evolve over time by looking at chunks that have at least 65% files in common between 
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any two chunks in each such time interval. This might help identify whether chunks are 

stable over time, and if so, whether they correspond to any component or subsystem.  

The size of a chunk is defined as the number of files within that chunk. 

Observing trends of a chunk’s size as it evolves over time can guide towards identifying 

plausible design issues of the system being studied. A consistent increase in chunk size 

might suggest necessary refactoring of code or design altogether. An extremely large 

chunk size indicates that a change to one file within the chunk requires changes to a 

large number of other files within that chunk, thus making the system extremely difficult 

to maintain. We also look at the association between percentage correlation and size of 

chunks over time to see how the size of stable chunks varies over time. 
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CHAPTER 4. RESULTS AND ANALYSIS 

 In this chapter, the results generated by the proposed algorithm are discussed. A 

detailed analysis of the identified chunks for Moodle, Eclipse, and Company-X data is 

also presented in the following sections.  

We included MRs that touch 20 files or less for reasons explained in Chapter 5 

and the presented discussion in Chapter 7. In addition, we only considered MRs that are 

bug fixes because they are more likely to be localized, touching only the component in 

which the bug arises. Other types of changes such as enhancements or new features can 

touch a number of different components. For example, a new feature might require new 

functionality to be added in multiple existing components, thereby resulting in chunks 

that span across many components. However, such changes to separate components can 

be made independently. In such cases, it is impractical to detect software system design 

issues by chunk analysis. On the other hand, it is not possible to make bug-fixing 

changes independently to multiple components. Identifying bug fixing chunks that touch 

more than one component usually imply limitations in the information hiding design 

structure of a system. 

4.1 Eclipse results 

 We identified chunks for CVS log data of Eclipse’s Europa release over the time 

period from 02-July-2006 to 31-Dec-2007, i.e., over an interval of 18 months. We 

represent this dataset as Europa. To study the evolution of chunks over time, we divided 

this data into two sets of distinct datasets, each containing change data over 9 months, 
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i.e., from 02-July-2006 until 31-Mar-2007, and from 01-Apr-2007 to 31-Dec-2007, 

represented as Europa-A and Europa-B respectively. The number of bug fixing MRs 

concerning each of the datasets is shown in Table 4.1. We removed duplicate MRs as 

discussed in Chapter 6. The change in the number of non-duplicate MRs that are bug 

fixes on a quarterly basis are shown in Figure 4.1. Europa’s main release was during 

June-2007, indicated by a rise in the plot. 

Table 4.1:  Number of bug fixing MRs in each Europa dataset 

Europa Europa-A Europa-B 

11042 5144 5898 

 

After running many trials, we enforced a threshold of 80% as the minimum value 

for percentage correlation of candidate chunks generated by the algorithm. In other 

words, the identified chunks will have at least 80% MRs within each chunk. With the 

specified threshold level, there were enough number of chunks generated for analysis. 

The algorithm identified 20 chunks for Europa, 11 for Europa-A, and 16 for Europa-B. 

The values for percentage correlation, size in terms of the number of files contained 

within the chunk, MRs within chunk, and MRs crossing chunk for all the datasets are 

listed in Table 4.2, Table 4.3, and Table 4.4. 

 

Figure 4.1: Number of Bug Fixes in Eclipse 
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Table 4.2: Percentage correlation, size, MRs within chunk, and MRs crossing chunk 

for Europa 

Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

1E 

2E 

3E 

4E 

5E 

6E 

7E 

8E 

9E 

10E 

11E 

12E 

13E 

14E 

15E 

16E 

17E 

18E 

19E 

20E 

100 

100 

100 

100 

94.74 

94.64 

90.91 

90.91 

90.48 

90 

87.8 

86.96 

86.67 

86.67 

83.33 

83.33 

82.86 

81.61 

81.48 

80.3 

40 

9 

26 

15  

28 

14 

18 

11 

11 

18 

33 

30 

18 

26 

14 

17 

26 

62 

27 

29 

13 

11 

10 

19 

18 

53 

10 

10 

19 

18 

72 

20 

13 

39 

10 

10 

29 

213 

22 

53 

0 

0 

0 

0 

1 

3 

1 

1 

2 

2 

10 

3 

2 

6 

2 

2 

6 

48 

5 

13 

 

Table 4.3:  Percentage correlation, size, MRs within chunk, and MRs crossing 

chunk for Europa-A 

Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

1E-A 

2E-A 

3E-A 

4E-A 

5E-A 

6E-A 

7E-A 

8E-A 

9E-A 

10E-A 

11E-A 

94.74 

92.86 

90.91 

89.47 

88.24 

88.24 

85.19 

85.11 

82.35 

82.35 

81.25 

28 

8 

32 

31 

14 

55 

33 

64 

44 

10 

15 

18 

13 

40 

17 

15 

15 

46 

88 

70 

14 

13 

1 

1 

4 

2 

2 

2 

8 

6 

15 

3 

3 
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Table 4.4:  Percentage correlation, size, MRs within chunk, and MRs crossing 

chunk for Europa-B 

Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

1E-B 

2E-B 

3E-B 

4E-B 

5E-B 

6E-B 

7E-B 

8E-B 

9E-B 

10E-B 

11E-B 

12E-B 

13E-B 

14E-B 

15E-B 

16E-B 

100 

100 

100 

100 

96.77 

93.1 

91.67 

90.91 

90.91 

90.91 

88.24 

87.04 

86.79 

84 

83.53 

80 

15 

40 

25 

13 

29 

27 

19 

27 

13 

15 

19 

39 

43 

26 

64 

20 

18 

13 

15 

10 

30 

27 

11 

10 

10 

10 

30 

47 

46 

21 

142 

12 

0 

0 

0 

0 

1 

2 

1 

1 

1 

1 

4 

7 

7 

4 

28 

3 

 

We observed the file structure within each of these chunks to detect potential 

stable chunks that might represent empirical information hiding structures, analyze how 

chunks evolve over time with respect to their size, and percentage correlation, and 

identify chunks that merge into a single large chunk, or chunks that split into multiple 

smaller chunks over time. The percentage correlations of the top 11 chunks for each of 

the three datasets is shown in Figure 4.2. We chose only the top 11 chunks to be 

displayed since Europa-B has only 11 chunks, and to make comparison between the 

datasets more meaningful. The percentage correlations of all identified chunks along 

with their respective sizes are shown separately for all three datasets in Figure 4.3, 

Figure 4.4, and Figure 4.5. 
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The following observations were made from the chunks generated from Europa, 

Europa-A, and Europa-B. 

 The file structure within the identified chunks is highly compact. We mapped 

files within each chunk to their respective directories. According to developers 

on Eclipse forums, every such directory in the CVS repository under HEAD, 

which is of the form /cvsroot/platform/modules usually represents a component, 

and /cvsroot/platform/ represents a subsystem. Most of the chunks contained files 

that were mapped to a single destination directory, indicating a one-to-one 

mapping between chunks and directories.  

Inferences:  We attribute this difference to the primary programming language 

used by Eclipse - Java, which is an object-oriented language. Hence, chunks from 

Eclipse seem more modular. 

Detailed Analysis:  All chunks from the three datasets that map to more than one 

directory or component are listed in Table 4.5, along with the respective chunk 

identifiers and, path structure of the all the components touched by each of those 

chunks. For example, chunk 20E is mapped to three components 

org.eclipse.ui.workbench, org.eclipse.jdt.ui, and org.eclipse.ui.ide. Although they 

are all related to the UI (User Interface), they are originally designed as separate 

components. 

Chunk 7E-A spans across 5 components and 2 subsystems – eclipse and 

tools. Such higher level couplings between subsystems might indicate the need 

for code refactoring or structural redesign concerning those specific subsystems 
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and their components. Architects or developers can be further consulted to 

suggest or verify such claims. 

Table 4.5:   Chunk to component mappings for Europa, Europa - A, and Europa-B 

Dataset Chunk ID Component Mapping Paths 

Europa 1E 

 

2E 

 

3E 

4E 

5E 

6E 

7E 

8E 

9E 

10E 

11E 

 

12E 

13E 

14E 

15E 

16E 

17E 

18E 

19E 

20E 

/cvsroot/webtools/org.eclipse.jsdt/ 

/cvsroot/webtools/sourceediting/ 

/cvsroot/eclipse/org.eclipse.pde.runtime/ 

/cvsroot/eclipse/org.eclipse.ui.views.log/ 

/cvsroot/webtools/servertools/ 

/cvsroot/tools/org.eclipse.cdt/ 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/modeling/org.eclipse.emf/ 

/cvsroot/eclipse/org.eclipse.pde/ 

/cvsroot/eclipse/org.eclipse.update.ui/ 

/cvsroot/eclipse/org.eclipse.jdt.ui/ 

/cvsroot/modeling/org.eclipse.emf/ 

/cvsroot/eclipse/org.eclipse.swt/ 

/cvsroot/eclipse/org.eclipse.jface.text/ 

/cvsroot/eclipse/org.eclipse.ui.intro/ 

/cvsroot/tools/org.eclipse.cdt/ 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/modeling/org.eclipse.emf/ 

/cvsroot/webtools/jeetools/ 

/cvsroot/webtools/webservices/ 

/cvsroot/eclipse/org.eclipse.swt/ 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/eclipse/org.eclipse.jdt.ui/ 

/cvsroot/eclipse/org.eclipse.ui.ide/ 

Europa-A 1E-A 

2E-A 

3E-A 

4E-A 

5E-A 

6E-A 

7E-A 

 

 

 

 

8E-A 

9E-A 

 

 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/modeling/org.eclipse.emf/ 

/cvsroot/eclipse/org.eclipse.jdt.ui/ 

/cvsroot/modeling/org.eclipse.emf/ 

/cvsroot/eclipse/org.eclipse.jdt.ui/ 

/cvsroot/modeling/org.eclipse.emf/ 

/cvsroot/eclipse/org.eclipse.jface.text/ 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/eclipse/org.eclipse.jdt.ui/ 

/cvsroot/tools/org.eclipse.cdt/ 

/cvsroot/eclipse/org.eclipse.text/ 

/cvsroot/eclipse/org.eclipse.jdt.ui/ 

/cvsroot/eclipse/org.eclipse.swt/ 

/cvsroot/eclipse/org.eclipse.pde.core/ 

/cvsroot/eclipse/org.eclipse.core.resources/ 



36 

 

Dataset Chunk ID Component Mapping Paths 

10E-A 

 

11E-A 

/cvsroot/webtools/jeetools/ 

/cvsroot/webtools/common/ 

/cvsroot/webtools/sourceediting/ 

Europa-B 1E-B 

2E-B 

 

3E-B 

4E-B 

5E-B 

6E-B 

7E-B 

8E-B 

 

9E-B 

10E-B 

11E-B 

12E-B 

13E-B 

 

14E-B 

15E-B 

 

16E-B 

/cvsroot/tools/org.eclipse.cdt/ 

/cvsroot/webtools/org.eclipse.jsdt/ 

/cvsroot/webtools/sourceediting/ 

/cvsroot/eclipse/org.eclipse.ui.intro/ 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/eclipse/org.eclipse.debug.ui/ 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/eclipse/org.eclipse.jdt.junit/ 

/cvsroot/eclipse/org.eclipse.ui.ide/ 

/cvsroot/eclipse/org.eclipse.ltk.ui.refactoring/ 

/cvsroot/tools/org.eclipse.cdt/ 

/cvsroot/tools/org.eclipse.cdt/ 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/eclipse/org.eclipse.jdt.ui/ 

/cvsroot/eclipse/org.eclipse.ui.workbench/ 

/cvsroot/eclipse/org.eclipse.ui.ide/ 

/cvsroot/modeling/org.eclipse.emf/ 

/cvsroot/eclipse/org.eclipse.swt/ 

/cvsroot/eclipse/org.eclipse.jdt.apt.core/ 

/cvsroot/eclipse/org.eclipse.compare/ 

 

 

Figure 4.2:  Percentage Correlation of Top-11 Chunks for All Eclipse Datasets 
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Figure 4.3:  Percentage Correlation and Size of Chunks for Europa 

 

Figure 4.4:  Percentage Correlation and Size of Chunks for Europa-A 

 

Figure 4.5:  Percentage Correlation and Size of Chunks for Europa-B 

 The dataset Europa generated the highest number of chunks (20), followed by 
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lower than that of chunks from Europa and Europa-B. Chunks from Europa-B 

appear to be relatively better than chunks from the other two datasets with 

respect to percentage correlation, meaning that these chunks have tight internal 

coupling between their files relative to the rest.  

Inferences:  1) Since the number of bug fixing MRs is higher in Europa, 

followed by Europa-B and lastly Europa-A, we hypothesize that the number of 

chunks generated from each of these datasets follows the same order. This is 

because more bug fixes might touch more parts of a system, thus resulting in 

more chunks. However, Hamill and Goseva-Popstojanova [Hamill and 

Popstojanova, 2009] noted that although non-localized faults are related to 

individual bugs, they are mostly contained in a small part of the system. 

2) Subsystem coupling identified in chunk 7E-A might be one reason why the 

percentage correlation of chunks from Europa-A is lower.  

3) Europa-A has the highest number of inter-component couplings when 

compared to Europa and Europa-B, where 11 chunks are mapped to 18 

components, resulting in an average of 1.63 components touched by every chunk, 

followed by Europa and Europa-B, both touching 1.25 components per chunk. 

The effort to make changes increases with an increase in inter-component or 

subsystem couplings, thus reducing the system’s maintainability resulting in 

chunks that touch multiple areas of code. This explains the lower percentage 

correlation of chunks from Europa-A.  
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4) Although the average number of components touched per chunk is the same 

for both Europa and Europa-B, higher number of MRs in Europa result in 

modifications to relatively more parts of the system, and therefore resulting in a 

higher proportion of MRs crossing respective chunks. Hence, chunks from 

Europa-B are more cohesive than those from Europa. 

 There is no consistent increasing or decreasing trend in size of chunks with 

respect to percentage correlation as shown by the trend lines in Figure 4.3, Figure 

4.4, and Figure 4.5.  

Inferences:  There is no association between size and percentage correlation of 

chunks. Size and percentage correlation depend solely on the MRs touching a 

chunk, and the coupling between files touched by these MRs. If a chunk contains 

MRs that touch a wider area of code, then the size of that chunk will be large. A 

tighter coupling between files touched by MRs within a chunk indicates a higher 

percentage correlation. 

 We observed two stable chunks. Recall that chunks are considered stable over 

time if there are at least 65% of the files within the smaller chunk in common 

with the larger chunk. Chunks 1E-A, and 2E-A evolved into chunks 5E, and 6E, 

both having a stability of 100%. Chunks 1E-A and 5E are exactly the same. 

However, both size and percentage correlation of 6E increased, making it a better 

chunk (only if effort remains constant) after its evolution from 2E-A. 

Inferences:  It appears that both size and percentage correlation of a stable chunk 

increases as it evolves over time. We do not have sufficient information to 
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confirm this conclusion since we analyzed the evolution of only one chunk (2E-

A). 

 Chunks 8E-A and 9E-A appear to have merged into chunk 18E. In other words, 

chunk 18E contains files that are common to both 8E-A and 9E-A, i.e., changes 

that could be made independently in Europa-A merged together in a way that 

changes to 8E-A requires making changes to 9E-A as well, as indicated by the 

merged chunk 18E from Europa. There are 20 files common between 8E-A and 

18E, while 9E-A and 18E share 17 files in common. This merging is clearly 

visible when we look at the corresponding chunk 15E-B from Europa-B, 

indicating that the merging occurred during the time period of Europa-B data. 

Since the algorithm picks the highest correlation chunk, 18E has fewer files than 

8E-A, and 9E-A combined although it is a combination of MRs involved in 8E-

A, 9E-A and 15E-B. 

Inferences:  Over time, coupling between files increases, thereby resulting in an 

increase in difficulty to independent changes to different parts of a system. 

Identification of such merging between chunks over longer time periods can 

determine parts of a system that require redesign or restructuring. 

4.2 Moodle results 

Change history data during the time period 01-Jan-2008 to 31-Dec-2011, i.e., 

over a period of 4 years was collected for this analysis. This dataset is represented as 

Moodle. For the sake of analyzing chunk evolution over time, we divided Moodle into 
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two separate datasets, over the time periods 01-Jan-2008 to 31-Dec-2009, and 01-Jan-

2010 until 31-Dec-2011, represented as Moodle-A and Moodle-B respectively. The 

number of bug fixing MRs in each of the datasets is shown in Table 4.6. Duplicate MRs 

were discarded as with Eclipse and discussed in Chapter 6. The change in the number of 

non-duplicate MRs that are bug fixes on a half-yearly basis are shown in Figure 4.6. The 

rise in the plot during Dec-2010 marks the release of Moodle 2.0, which was a major 

release. 

Table 4.6: Number of Bug-Fixing MRs for All Moodle Datasets 

Moodle Moodle -A Moodle -B 

6016 2444 3572 

 

 

Figure 4.6: Number of Bug Fixes in Moodle 
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MRs crossing chunk for all three datasets are listed in Table 4.7, Table 4.8, and Table 

4.9.  

Table 4.7:  Percentage correlation, size, MRs within chunk, and MRs crossing 

chunk for Moodle 

Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

1M 

2M 

3M 

4M 

5M 

6M 

7M 

8M 

9M 

10M 

93.53 

88.24 

88.24 

85.06 

84.51 

81.68 

81.3 

81.3 

80.77 

80 

26 

36 

10 

37 

13 

25 

38 

48 

10 

16 

130 

30 

15 

148 

60 

107 

100 

187 

21 

64 

9 

4 

2 

26 

11 

24 

23 

43 

5 

16 

 

Table 4.8:  Percentage correlation, size, MRs within chunk, and MRs crossing 

chunk for Moodle-A 

Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

1M-A 

2M-A 

3M-A 

4M-A 

5M-A 

6M-A 

87.5 

87.18 

84.45 

84 

83.56 

81.44 

29 

27 

10 

15 

25 

25 

14 

102 

28 

21 

61 

136 

2 

15 

5 

4 

12 

31 
 

Table 4.9: Percentage correlation, size, MRs within chunk, and MRs crossing chunk 

for Moodle-B 

Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

1M-B 

2M-B 

3M-B 

4M-B 

5M-B 

6M-B 

7M-B 

8M-B 

93.41 

89.47 

86.67 

85.71 

84.1 

83.9 

83.21 

82.54 

12 

19 

10 

5 

28 

42 

55 

41 

85 

17 

13 

18 

37 

99 

109 

104 

6 

2 

2 

3 

7 

19 

22 

22 
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Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

9M-B 

10M-B 

82.04 

80 

37 

9 

233 

16 

51 

4 

 

The percentage correlations of the top 6 chunks for each of the three datasets is 

shown in Figure 4.7. Only the top 11 chunks are displayed since Moodle-A has only 6 

chunks, and to make comparison between the datasets meaningful and consistent. The 

percentage correlations of all identified chunks along with their respective sizes are 

shown separately for all three datasets in Figure 4.8, Figure 4.9, and Figure 4.10. 

 

Figure 4.7:  Percentage Correlation of Top-6 Chunks for All Moodle Datasets 

 

Figure 4.8:  Percentage Correlation and Size of Chunks for Moodle 
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Figure 4.9:  Percentage Correlation and Size of Chunks for Moodle-A 

 

Figure 4.10:  Percentage Correlation and Size of Chunks for Moodle-B 
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paths to various components are listed. Most of the identified chunks have a one-

to-many mapping with their corresponding file system directories, unlike those 

from Eclipse data.  

Inferences:  As discussed earlier, we attribute this difference to the programming 

language used by Eclipse, which is Java – object-oriented and has a more 

modular code structure in contrast to PHP of Moodle, which is usually 

considered as class-oriented or semi-object-oriented. 

Detailed Analysis:  All chunks from the three datasets that map to more than one 

component are listed in Table 4.10, along with the respective chunk identifiers 

and, path structure of all the components touched by each of those chunks. For 

example, chunk 8M touches 10 components and 4 subsystems – mod, lib, admin, 

and login, pointing towards re-evaluating architecture of the involved 

subsystems. 

Table 4.10: Chunk to component mappings for Moodle, Moodle-A, and Moodle-B 

Dataset Chunk ID Component Mapping Paths 

Moodle 1M 

 

 

 

2M 

 

 

 

 

 

3M 

4M 

 

 

 

 

admin/report/ 

admin/cli/ 

lib/dml/ 

lib/simpletest/ 

search/documents/ 

mod/hotpot/ 

mod/resource/ 

mod/glossary/ 

grade/report/ 

lib/form/ 

blocks/quiz_results/ 

mod/lesson/ 

mod/survey/ 

mod/imscp/ 

mod/label/ 

mod/page/ 
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Dataset Chunk ID Component Mapping Paths 

Moodle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4M 

5M 

6M 

 

 

 

 

 

 

7M 

 

 

 

8M 

 

 

 

 

 

 

 

 

 

9M 

 

 

 

10M 

 

 

 

mod/workshop/ 

mod/quiz/ 

lib/form/ 

backup/ 

admin/roles/ 

admin/report/ 

enrol/authorize/ 

mod/hotpot/ 

mod/wiki/ 

calendar/ 

blog/ 

lib/geoip/ 

user/ 

lib/dml/ 

lib/simpletest/ 

lib/ddl/ 

mod/data/ 

mod/resource/ 

mod/lesson/ 

mod/scorm/ 

admin/roles/ 

admin/report/ 

login/ 

mod/assignment/ 

course/report/ 

blocks/completionstatus/ 

lib/simpletest/ 

auth/mnet/ 

mnet/ 

portfolio/mahara/ 

repository/remotemoodle/ 

Moodle-A 1M-A 

 

 

 

 

2M-A 

 

 

 

 

 

 

3M-A 

4M-A 

grade/report/ 

search/documents/ 

mod/resource/ 

mod/hotpot/ 

course/format/ 

backup/ 

admin/roles/ 

mod/assignment/ 

course/report/ 

mod/wiki/ 

mod/lesson/ 

enrol/authorize/ 

mod/scorm/ 

filter/ 

course/report/ 

course/import/ 

Table 4.10:  (Continued) 



47 

 

Dataset Chunk ID Component Mapping Paths 

Moodle-A 4M-A 

5M-A 

 

 

 

 

 

 

 

 

6M-A 

 

enrol/ 

mod/data/ 

mod/resource/ 

mod/choice/ 

mod/scorm/ 

mod/lesson/ 

mod/folder/ 

mod/page/ 

lib/grade/ 

user/ 

mod/quiz/ 

mod/forum/ 

mod/survey/ 

Moodle-B 1M-B 

 

2M-B 

 

 

 

3M-B 

4M-B 

5M-B 

 

 

 

 

 

 

6M-B 

 

 

 

7M-B 

 

 

 

 

8M-B 

 

 

 

 

 

9M-B 

 

 

 

lib/dml/ 

lib/filestorage/ 

mod/hotpot/ 

mod/glossary 

lib/form/ 

search/documents/ 

admin/user/ 

mod/quiz/ 

calendar/ 

mod/feedback/ 

mod/chat/ 

mod/data/ 

lib/grade/ 

mnet/ 

filter/ 

mod/lesson/ 

mod/imscp/ 

mod/quiz/ 

course/report/ 

question/type/ 

question/format/ 

question/engine/ 

question/simpletest/ 

mod/quiz/ 

lib/htmlpurifier/ 

lib/simpletest/ 

lib/filestorage/ 

lib/pear/ 

blocks/navigation/ 

course/report/ 

blog/ 

mod/page/ 

mod/label/ 

mod/forum/ 

Table 4.10:  (Continued) 
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Dataset Chunk ID Component Mapping Paths 

Moodle-B 9M-B 

 

 

 

 

10M-B 

admin/roles/ 

lib/simpletest/ 

lib/filestorage/ 

webservice/rest/ 

user/ 

course/report/ 

blocks/completionstatus/ 

lib/simpletest/ 

 

 The datasets Moodle and Moodle-B generated the highest number of chunks (10) 

with percentage correlation above 80%, followed by Moodle-A (6). As shown in 

Figure 4.7, the percentage correlation of chunks from Moodle-A is lower than 

that of chunks from Moodle and Moodle-B. Chunks from Moodle-B are only 

slightly better than the chunks from Moodle with respect to percentage 

correlation, indicating higher coupling between their files relative to the rest.  

Inferences:  1) Since the number of bug fixing MRs is higher in Moodle, and 

Moodle-B when compared to Moodle-A, the number of chunks generated from 

both these datasets is higher than Moodle-A. Again, we hypothesize that more 

bug fixes might touch more parts of the system, thus resulting in more chunks. It 

is important to note that Moodle and Moodle-B have the same number of chunks 

although Moodle has a higher number of bug fixes. A possible reason for this 

might be that MRs in Moodle-B and Moodle span equivalent portions of the 

system. 

2) Moodle-A has the highest number of subsystem couplings, touching 11 

different subsystems relative to Moodle (7) and Moodle-B (7) for the top-6 

chunks being compared.  

Table 4.11:  (Continued) 

Table 4.10:  (Continued) 
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3) Moodle-A has the highest number of inter-component couplings when 

compared to Moodle and Moodle-B, where 6 chunks are mapped to 25 

components, resulting in an average of 4.17 components touched per chunk, 

followed by Moodle and Moodle-B, touching 3.5 and 3.3 components per chunk 

respectively. This reiterates our earlier finding that chunks from Moodle-B are 

slightly better in terms of cohesiveness than those from Moodle. The effort to 

make changes increases with an increase in inter-component or subsystem 

couplings, thus reducing the system’s maintainability resulting in chunks that 

touch multiple areas of code. This explains the lower percentage correlation of 

chunks from Moodle-A. However, the average inter-component couplings per 

chunk for Moodle chunks are more than twice as high as those of chunks from 

Eclipse data. 

 There is no consistent increasing or decreasing trend in size of chunks with 

respect to percentage correlation as shown by the trend lines in Figure 4.8, Figure 

4.9, and Figure 4.10.  

Inferences:  There is no association between size and percentage correlation of 

chunks. Size and percentage correlation depend solely on the MRs touching a 

chunk, and the coupling between files touched by these MRs. 

 We identified three stable chunks. Chunk 1M-A evolved into chunk 2M, with 

99.55% stability and 28 files in common between the two chunks. There is an 

increase in both size and percentage correlation as shown in Table 4.7 and Table 

4.8. Chunk 2M-A evolved into chunk 6M, with a stability of 68%, and a decrease 
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in both size and percentage correlation. Chunk 6M-A evolved into chunk 5M, 

with a stability of 69.23%, and a decrease in size and increase in percentage 

correlation. 

Inferences:  There is no association between chunk evolution and how its size 

and percentage correlation changes. 

4.3 Company-X results 

We collected change data during the time period 01-Jan-2004 to 31-Dec-2009 for 

this analysis. This dataset is represented as Company-X. We divided Company-X into 

two separate datasets, over the time periods 01-Jan-2004 to 31-Mar-2007, and 01-April-

2007 until 31-Dec-2009, represented as Company-X-A and Company-X-B respectively. 

The number of bug fixing MRs in each of the datasets is shown in Table 4.11. Duplicate 

MRs were discarded as with Eclipse and Moodle. The change in the number of non-

duplicate MRs that are bug fixes on a half-yearly basis are shown in Figure 4.11. It 

appears from the plot that major development or maintenance occurred during the period 

Jun-2005 to Jun-2009, although this information is not publicly available. 

Table 4.11: Number of Bug-Fixing MRs for All Company-X Datasets 

Company-X Company-X-A Company-X-B 

9949 4994 4955 

 

We enforced a threshold of 70% as the minimum value for percentage correlation 

of chunks generated by the algorithm, i.e., each of the identified chunks will have at least 

70% MRs within chunk. We decreased the threshold since there were very few chunks 
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identified with percentage correlation above 80%. The algorithm identified 5 chunks for 

Company-X, 4 for Company-X-A, and 2 for Company-X-B. The values for percentage 

correlation, size in terms of the number of files contained within the chunk, MRs within 

chunk, and MRs crossing chunk for all three datasets are listed in Table 4.12, Table 4.13, 

and Table 4.14.  

 

Figure 4.11: Number of Bug Fixes in Company-X 

Table 4.12:  Percentage correlation, size, MRs within chunk, and MRs crossing 

chunk for Company-X 

Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

1X 

2X 

3X 

4X 

5X 

78.47 

78.44 

75.54 

74.5 

73.91 

12 

9 

8 

13 

20 

266 

291 

278 

263 

17 

73 

80 

90 

90 

6 

 

Table 4.13:  Percentage correlation, size, MRs within chunk, and MRs crossing 

chunk for Company-X-A 

Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

1X-A 

2X-A 

3X-A 

4X-A 

100 

84.56 

78.95 

73.33 

24 

27 

15 

28 

22 

115 

15 

11 

0 

21 

4 

4 
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Table 4.14:  Percentage correlation, size, MRs within chunk, and MRs crossing 

chunk for Company-X-B 

Chunk ID Percentage 

Correlation 

Size MRs within 

chunk 

MRs crossing 

chunk 

1X-B 

2X-B 

89.29 

80.95 

44 

19 

25 

187 

3 

44 

 

 

Figure 4.12:  Percentage Correlation of Top-2 Chunks for All Company-X Datasets 

The percentage correlations of the top 2 chunks for each of the three datasets is 

shown in Figure 4.12. We chose only the top 2 chunks since Company-X-B has only 2 

chunks. This would make comparison between the datasets meaningful and consistent. 

The percentage correlations of all identified chunks along with their respective sizes are 

shown separately for all three datasets in Figure 4.13, Figure 4.14, and Figure 4.15. 

 

Figure 4.13:  Percentage Correlation and Size of Chunks for Company-X 
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Figure 4.14:  Percentage Correlation and Size of Chunks for Company-X-A 

 

Figure 4.15:  Percentage Correlation and Size of Chunks for Company-X-B 

The following observations were made from the chunks generated from 

Company-X, Company-X-A, and Company-X-B. 

 We do not have information about the directory structure of Company-X’s 

version history repository or how components are stored. Therefore, we could not 

perform any mapping between files in chunks and the corresponding components 

or subsystems that they touch.  

 The dataset Company-X generated the highest number of chunks (5), followed by 

Company-X-A (4), and Company-X-B (2) with percentage correlation above 70%. 
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Company-X-A are better than the chunks from both Company-X and Company-X-

B with respect to percentage correlation, indicating higher coupling between their 

files relative to the rest.  

Inferences:  1) Since the number of bug fixing MRs is higher in Company-X, 

followed by Company-X-A and lastly Company-X-B, the number of chunks 

generated from each of these datasets follows the same order. Our hypothesis is 

that more bug fixes touch more parts of a system, thus resulting in more chunks.  

2) The identified chunks are lesser in number and have relatively less correlation 

when compared to chunks from Moodle and Eclipse. Additionally, there are 

more bug-fixes for Company-X data than that of Moodle. As such, we speculate 

that Company-X’s system architecture underwent more degradation as opposed to 

Moodle and Eclipse. However, we do not have sufficient subsystem or modular 

design information to prove our hypothesis. 

 There is no consistent increasing or decreasing trend in size of chunks with 

respect to percentage correlation as shown by the trend lines in Figure 4.13, 

Figure 4.14, and Figure 4.15.  

Inferences:  There is no association between size and percentage correlation of 

chunks. Size and percentage correlation depend solely on the MRs touching a 

chunk, and the coupling between files touched by these MRs. 

 We identified one stable chunk. Chunk 3X-A evolved into chunk 5X, with 100% 

stability. There is an increase in size, but a decrease in percentage correlation of 

chunk 3X-A after its evolution into chunk 5X.  
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Inferences:  We cannot ascertain how chunk size and percentage of a chunk 

changes after it evolves since we only have one evolved chunk, i.e., 3X-A. 
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CHAPTER 5. CHALLENGES IN CHUNKING ANALYSIS 

This chapter discusses significant challenges faced in our analysis of chunks and 

their evolution. The challenges are organized into those dealing with the data and those 

dealing with the proposed algorithm in separate sections. We believe that this will 

benefit those who wish to replicate the results presented in this thesis by averting the 

mistakes that we made in earlier stages of this research. 

5.1 Challenges of data collection and analysis 

In this section, we present the difficulties and obstacles that we faced during data 

collection, identifying the right type of change data required for the analysis, and during 

data analysis. Our focus is on the Moodle project as the other two projects were already 

refined to a certain extent when provided to us. 

5.1.1 Non-compliant and multiple data sources 

 During the initial data collection period, we used Moodle’s Fisheye with REST 

(Representational State Transfer) service to obtain MRs from their version history 

repository over the time period 01-Jan-2008 to 31-Dec-2011. Fisheye is a revision-

control browser and search engine that provides the notion of changesets and changelog, 

and direct resource-based URLs. Fisheye’s REST APIs provide access to data entities 

via URI (Uniform Resource Identifier). An URI is a string of characters used to identify 

a name or a web resource over a network, such as the World Wide Web using specific 

network protocols. Moodle’s Fisheye service provides access to revision data from 

specific repositories by making HTTP (Hypertext Transfer Protocol) requests and 
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obtaining data in the form of XML or JSON responses. XML (Extensible Markup 

Language) is a simple text format for encoding documents or web resources in both 

human readable and machine readable form, and is inefficient as a data interchange 

format. JSON (JavaScript Object Notation) is a light weight human readable data 

interchange format, with all the advantages of XML and well suited for data interchange. 

Moodle has two main repositories concerning changes made to their source code 

[Moodle]. 

 Moodle Integration: When a contributor commits changes and pushes them into 

his public repository, Moodle integrators pull these changes from there and if 

they like them, they put them into the Moodle Integration repository. 

 Moodle Production: The integrated changes from the Moodle Integration 

repository are tested, and if passed, are pushed into the Moodle Production 

repository. 

The development workflow of Moodle is depicted in Figure 5.1, along with their 

repositories and the steps involved in applying changes to the source code. The 

Integration repository is named as integration.git, while the Production repository is 

named as moodle.git in GitHub. This separation of the two repositories was not 

documented anywhere in their Fisheye service page, and as such we extracted change 

data from their Integration repository instead of the Production repository, which  
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Figure 5.1:  Moodle Development Workflow Using Git [Moodle] 

contains changes that are actually applied to their source code. We discovered the 

difference between the two repositories when we observed a few commits that were 

listed as bug fixes, but did not modify any files. Description of the related issue and 

other comments related to such commits showed that these changes dealt with branch 

merges in the repository, which are of no interest since they do not change any file and 

are not really bug fixes. As such, we decided to use MRs from the Moodle Production 

repository since integration commits are eliminated from the Production repository. We 

also obtained MRs from Moodle’s Git repository (moodle.git) as an alternative data 

source. After comparing both datasets containing change data from 01-Jan-2008 to 31-

Dec-2011, we found that Fisheye and GitHub had a different number of MRs over the 

same time period. For example, during that time period, there were 5154 bug-fixing 

commits using Fisheye against 6066 bug-fixing commits in GitHub. This inconsistency 

between the datasets obtained from GitHub and Fisheye created uncertainty as to which 

data source to use for our analysis.  
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We collected a sample of 50 non-matching commits between the two datasets 

and observed that they were commonly present in both datasets with the same 

description, author, timestamp and affecting the same set of files, but with a different 

commit ID. Fisheye might have its own repository different from Git, or an integration 

of multiple different public repositories, and hence a different list of MRs. Also, there 

are certain MRs in GitHub that are missing from the dataset obtained using Fisheye, for 

reasons that are unknown and undocumented. Based on information from Moodle 

forums and their JIRA issue tracker, we found that Moodle is planning to replace their 

Fisheye service with either Stash or by linking issues directly to GitHub. In addition, 

Fisheye is a web service, which is slow and inefficient when compared to cloning the Git 

repository, which is a faster and more reliable way of obtaining Moodle’s version history 

data. Hence, we decided to use MRs obtained from the Git repository as the dataset to be 

used in this work. It is important to note that there are inconsistencies between the Git 

repository and Production repository. 

5.1.2 Does a commit correspond to a single bug fix? 

Changes that touch more than 100 files do not correspond to meaningful 

modification requests [Ying et al., 2004]. We found certain bug-fixing commits in the 

Moodle dataset that touched more than 500 files, which made us skeptical that they 

really corresponded to an atomic bug fix. We looked into a sample of 30 bug-fixing 

commits that touched more than 100 files to check if they are originally multiple bug 

fixes that were committed together. We found that the majority of them were auto-

installed header changes or library imports, which clearly do not represent a single bug-
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fix, but rather multiple bug fixes committed as a single change. For example, in the 

Moodle dataset, there is an MR that touched 633 files, and involves replacing file 

permissions of a number of arbitrary files from 755 (executable) to the right permission, 

644. The files that were touched by this MR were spread all across the repository and 

hence mapped to many directories in the Git repository, indicating that it probably 

touched more than one component. However, one might be able to design the system in 

such a way that only one component knows the file permission for each file. A change of 

such file permissions would then require a change to that component only, and such a 

component would represent a chunk.  

There are other instances where it is difficult to make a clear judgment if a 

commit corresponds to exactly one bug fix for a variety of reasons that include lack of 

documentation, clarity in issue description or comments, lack of experience in 

distinguishing such commits, etc. This ambiguity hampers a primary assumption in our 

analysis that each commit represents a single MR. As such, the algorithm identified 

independent chunks out of which one chunk touched more than 2000 files while the 

remaining chunks together touched less than 300 files, thus resulting in a bias in our 

analysis of the generated chunks. Hence, we excluded MRs that touched 50 files or more 

from our analysis. We view this as reducing the number of false positives in chunk 

identification. 

Still speculative of the results, we again picked a sample of all commits that 

touched 20 files or more and less than 50 files and distinguished them into single or 

multiple bug-fixing MRs based on the description and comments from developers who 
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fixed the issue [Moodle tracker]. If the commit description and related documentation 

hints at a single bug that is fixed by the commit, we refer to that commit as a single bug-

fixing MR. Otherwise, if the commit description points towards fixing more than one 

bug, we refer to that commit as a multiple bug-fixing MR. After review by Weiss and 

Mockus, who are well acquainted with and share a good knowledge of software chunks, 

we observed that 12 out of 24 commits, i.e. 50% of the commits from the sample that we 

picked, were in fact multiple bug fixes listed as a single commit. Therefore, we thought 

it pertinent to exclude commits that touch more than 20 files from our analysis to ensure 

that each bug fix corresponds to a single MR. Such commits account for about 99.6% of 

all bug-fixing commits; almost no data is lost during this filtering process. 

Considering such cases makes it clear that identification and analysis of chunks 

must include careful manual data analysis. In other words, validating the data is critical. 

5.1.3 No availability of sources to verify hypotheses 

There is no design documentation accessible for any of the projects studied in 

this work in order to verify our hypothesis that chunks represent design modules and to 

confirm the suggested source code or structural refactorings. It is possible that the 

algorithm identifies chunks that are extremely large, i.e., they contain more than 200 

files, and yet have a very small percentage of MRs crossing the chunk. Our hypothesis is 

that when chunks grow that large in size, they might be representing changes to most of 

an entire module, component or a subsystem. Again, there is no way to verify this unless 

we discuss it with an architect or developer who is familiar with the architecture or 
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design structure of the system, or have access to appropriate design artifacts, such as the 

modular structure, or interface specifications. For both Eclipse and Company-X projects, 

we were not provided with any similar or corresponding design documentation. We were 

also unable to locate such information anywhere in their available online 

documentations. 

5.2 Algorithmic challenges 

As discussed in Chapter 3, the algorithm picks a random set of files from which 

the optimization criteria used for evaluation, i.e., percentage correlation and MRs 

crossing chunk, are calculated. This set of files forms the initial candidate chunk only if 

it meets the optimization threshold. The process is repeated, and the initial candidate 

chunk is replaced by another candidate only if it has a higher percentage correlation 

while still satisfying the threshold value for MRs crossing chunk. When the algorithm 

terminates after a certain specified time interval, we get the chunk with the highest 

percentage correlation.  

After a detailed analysis of the top ten resulting chunks identified by one of the 

algorithms in the family of algorithms discussed in Chapter 3, different from the 

algorithm used in this study, we observed that they were not independent. i.e., there were 

files common among multiple chunks. This is because we overlooked the notion that 

chunks are independent by definition. Therefore, a clear understanding of the concept of 

chunks is paramount in arriving at the right algorithm for chunk identification. We fixed 

this issue by removing the files and MRs within the generated chunk from the files and 
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MRs being considered to identify the next chunk, thus eliminating the possibility of 

chunks sharing files between them. 

It also took us a considerable amount of time to discover that another algorithm 

in the family of algorithms identifies multiple chunks as a single chunk, resulting in 

chunks with sub-chunks. As an example, two independent chunks each with 80% 

correlation can be identified as a single chunk with a percentage correlation of 80% if 

the algorithm randomly picks a subset of files that constitute the two independent 

chunks. This is an undesirable aspect since it is possible that such an algorithmic 

approach can identify a chunk that contains changes touching an entire subsystem by 

assimilating multiple chunks that independently change different parts of that subsystem. 

This makes it impossible to identify structural weaknesses at the component level or 

other lower levels of the system design. We identified this shortcoming of the algorithm 

by observing that files contained in a chunk came from different components as 

indicated by their file paths. A combination of one-time changes, i.e., changes such that 

files touched by such changes are not affected by any other changes, will not have any 

MRs crossing chunk, thus resulting in false perfect chunks. We resolved this issue by 

enforcing the constraint that every file in a chunk is modified together with at least one 

other file in the same chunk, and excluding changes that touch less than two files. Such 

issues cannot be identified easily unless one has a deep understanding of the change data 

being studied, the logical couplings generated by such data, and their relation to chunks. 

Also note that there may be many potential chunks in a large system, but if no changes 

are made to the parts of the system where they reside, then they will never be detected 
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by the algorithm. Chunks can only be identified where there is considerable change 

going on. 
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CHAPTER 6. VALIDATION 

As in any study dealing with data from open source projects with undergoing 

development, it is of importance to understand and clean the data, and to ensure that both 

the data and the algorithm used for analysis are correct and useful. Reliability of data 

and the proposed algorithmic approach is important to replicate the findings as well as to 

strengthen our analysis. In this chapter, a detailed description of our validation and 

verification processes is presented to provide guidance and confidence to those who 

wish to use the chunking approach, either with the same data used in this study, or 

version history data of other projects. The methods used to validate data and approach 

are organized into separate sections. 

6.1 Validation of data 

Verification of change data from different projects is crucial to ensure that we 

have used the right data for the algorithm to identify valid chunks. A fundamental 

assumption of our approach in this regard is that every commit in the repository is 

equivalent to a single MR. As discussed in Chapter 5, we only included MRs that 

touched 20 files or less for the identification and analysis of chunks presented in this 

thesis. For Moodle data, for validation purposes, we collected and manually inspected a 

random sample of 50 MRs that touched 20 files or less in order to make sure that each 

MR corresponded to a single change request in general and, a single bug fix in 

particular. After a careful observation of developers’ comments on how the issue was 
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resolved, and description of the issue, we found that about 92% of them represented 

single changes. These results were again cross-verified by Mockus and Weiss.  

We also observed that there were multiple duplicates of a few commits, with the 

same author, description of change, timestamp, and touching the same set of files, but 

with different commit IDs. Such duplicates usually arise when a developer accidentally 

commits the same change more than once. Since it is difficult and time consuming to 

identify all duplicates and exclude such commits in large datasets, we ensured that such 

duplicate MRs do not have any effect on the chunks generated by the algorithm by 

imposing a constraint to disallow duplicates files within a chunk. Therefore, there is no 

increase or decrease in chunk size, or the number of chunks obtained even if there are 

duplicate MRs in the datasets. However, we excluded duplicates from our datasets for 

the purpose of analysis in this thesis. 

Eclipse data provided by Krishnan was validated, and discussed in his work 

[Krishnan, 2013]. In order to validate if the collected data represented the real picture, 

Krishnan and his team communicated with developers at Eclipse through forums that 

were actively maintained by Eclipse community. The bug database provided to us was 

originally provided to Krishnan by a developer team at Eclipse, and this database is 

actively used by the developers. The fields in the bug database are verified by the 

developer who fixes the bug, in case it is wrongly entered by a user. Hence, we can place 

confidence that issues stored in this database are actually bug fixes as required for our 

analysis since it is maintained and supervised by developers who make changes and, 

commit fixes for the bugs.  For the Europa dataset used in this work, six-digit strings 
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from the CVS log data were matched to bug IDs in the bug database. A manual review 

was performed to confirm that no entries containing the word “bug” existed, which were 

not caught by the performed pattern matching. To ensure that data resulting from 

different sources contained matching file names, instances of a certain file pattern was 

removed from all files to make them uniform. A CVS rlog tool with date filtering was 

used to make sure that all data sources covered the same time periods. 

Although we do not have any issue descriptions for each commit or MR for 

change data from Company-X, we are confident of its validity as it has been verified by 

developers and architects at Company-X.  

6.2 Validation of algorithm 

We performed a mapping of files within a chunk to the corresponding directory 

to which it belongs in the Moodle Git repository. A chunk consisting of mappings to a 

large number of different directories might indicate the possibility of sub-chunks within 

that chunk. So, we manually inspected the MRs within the generated chunks to make 

sure that every file has been changed together with at least one other file within that 

chunk, so as to validate that the resulting candidates are in fact chunks rather than just a 

set of highly coupled files, and that they are atomic without any sub-chunks. We also 

verified that every MR touching the chunk has at least one file modified by that MR 

within that chunk. We used a Python script to detect any common file names between 

the chunks generated by the algorithm. This ensures that the algorithm identifies 
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independent chunks. Thus, we can place confidence that our algorithm identifies valid 

chunks from version history information. 
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CHAPTER 7. CONCLUSION AND FUTURE WORK 

This chapter discusses the limitations of this work and scope for future work in 

the field of software measurement using chunks and presents the conclusions drawn 

from this work. 

7.1 Conclusions 

This thesis is an attempt to analyze tightly coupled changes represented by 

chunks in large software projects that can assist in improving software design and 

implementation methods. This work can be replicated by using any alternative 

algorithmic approach that can identify areas of code in a software system that tend to 

change together. The backbone for generating valid chunks is to collect the right type of 

change history data consisting of MRs that correspond to individual single changes, 

along with information about each MR, such as the type of change, time of change, and 

files touched by the change. Our approach can be used to identify chunks in any 

software project, provided it has the required change data available in its version history 

repositories. This work can be further extended to incorporate information such as 

developer effort, subsystem or module artifacts that can strengthen the findings in this 

thesis. 

The conclusions drawn from this thesis are as follows. 

 We have successfully identified and analyzed chunks in three major software 

projects – Eclipse, Moodle, and Company-X. 
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 Chunks from Eclipse are highly modular and more structured with respect to the 

file structure within each chunk, and have a higher coupling between the files 

constituting them, followed by Moodle and Company-X in that order. This may 

be because Eclipse uses Java as its primary programming language, object-

oriented while Moodle’s PHP is only semi-object-oriented and Company-X uses 

mostly C. 

 There is no association between chunk size and percentage correlation. 

 A higher number of inter-component or subsystem couplings requires making 

many changes since making a change in one component requires changes to 

other components as well, thus resulting in a decrease in percentage correlation 

within chunks. Percentage correlation of chunks and maintainability of the 

system are therefore inversely correlated. 

 As a system evolves over time, making further changes becomes increasingly 

difficult due to multiple reasons as discussed in Chapter 1. The evidence was 

given by Gall and others in their work [Gall et al., 1998]. Therefore we 

hypothesized that as chunks evolve, there will be an increase in size and a 

decrease in percentage correlation. This is because over time making a change 

requires touching more areas of code, with increasing dependencies between 

components or subsystems leading to an increase in size and a decrease in 

percentage correlation. However, we could not verify this due to insufficient 

number of chunk evolutions in Eclipse, Moodle, and Company-X. 
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 We identified merging of chunks over time in Eclipse into a chunk with reduced 

percentage correlation and relatively less cohesive (lesser percentage correlation) 

than the merging chunks. This suggests that over time, coupling between files 

increases, thereby resulting in an increase in difficulty to independent changes to 

different parts of a system, and indicates that the components touched by these 

chunks might require refactoring or redesign. 

7.2 Limitations and future work 

A major limitation of this thesis is the non-availability of design documentation, 

such as a module guide of the type discussed by Parnas, Clements, and Weiss [Parnas et 

al., 1985], uses structure, or module interface specifications. Hence, we could not find 

any substantial evidence or proof that chunks represent design modules and are not just 

empirical constructs. Mapping chunks to modules of a software system can provide wide 

scope for locating defects in software design or limitations in implementation techniques 

followed in the organization or company. If a chunk is mapped to more than one module, 

it might suggest necessary source code refactoring. On the other hand, mapping of one 

or more chunks to the same module might indicate probable flaws in the system’s 

modular design, i.e., it is possible that the module contains more than one design 

decision, and can be therefore decomposed into two or more modules. 

Studying evolution of chunks over time can help answer many questions or 

hypotheses with respect to chunks and their attributes. An increase in the size of chunks 

over time along with an increase in effort might provide a measure of difficulty to make 



72 

 

a further change as software evolves. It might also indicate increasing inconsistencies 

between how a system is designed, and how it is actually being implemented, which puts 

forth the need to refactor code, in such a way that it conforms to its design as closely as 

possible. Identifying such necessary refactorings earlier in a project’s life cycle can 

prevent further decay of the system’s architecture, and save time and effort for making 

future changes to software. We can also evaluate developer performance over time by 

taking into account developer information, such as proportion of total changes made 

within a chunk, effort in terms of the number of hours spent in making all changes 

within a chunk, complexity of committed changes, and proportion of changes crossing 

chunk. Developers who make a higher number of changes with as few changes crossing 

a particular chunk as possible may have better performance relative to others with 

respect to making changes that conform to a system’s design. Also, tracking the effort 

spent per chunk along with the complexity of changes made and the percentage of 

changes crossing that chunk can give insights into how a developer’s performance 

evolves over time with respect to making changes that are consistent with a system’s 

design.  

It would be of interest to see how software maintainability changes by observing 

how total effort spent on making all changes within a stable chunk evolves over time. An 

increase in effort indicates a decrease in code maintainability and vice versa. 

Maintainability can also be determined by identifying similar changes over a time 

period, and observing how the number of files touched by such MRs changes over time. 

Alternatively, identifying stable chunks and determining trends in their size with respect 
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to the number of files can expose trends in maintainability of a system. An increase in 

chunk size would imply a decrease in the system’s maintainability. Additionally, 

mapping each of the MRs crossing a chunk to the respective modules can uncover 

hidden inter-modular couplings. An increase in number of such couplings points towards 

decreasing maintainability. 

The concept of stability can be further strengthened by considering other 

measures such as effort. Even if a chunk grows or shrink in size over time, if the effort 

remains constant, then we might call such a chunk a stable chunk, while considering that 

at least 65% of the files remain constant over its evolution. Also, considering LOC for 

size of a chunk rather than the number of files might prove to be a better measure.  

We believe that this work is a small leap towards providing empirical evidence 

for information hiding design shortcomings of a software system by using chunks. We 

hope that this work paves way for further research in the field of software chunking.  
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APPENDIX.  ALGORITHM IMPLEMENTATION 

The Python script used in this work to implement the algorithm for chunk 

identification is as follows. 

#required imports 

import random 

import heapq 

import datetime 

import sqlite3 

import time 

import sys 

import copy 

from operator import itemgetter 

from collections import OrderedDict 

class ModReq: 

    def __init__(self, _id, _files): 

        self.id = _id 

        self.files = set(_files) 
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    def doesTouch(self, id): 

        return id in self.files 

    def getFiles(self): 

        return self.files 

class SingleFile: 

    def __init__(self, _id, _name): 

        self.name = _name 

        self.id = _id 

        self.mrs = set() 

    def getName(self): 

        return self.name 

    def getID(self): 

        return self.id 

    def getTouchingMRs(self): 

        return self.mrs 
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    def addTouchingMR(self, other): 

        self.mrs.add(other) 

    def __repr__(self): 

        return self.name 

    def __str__(self): 

        return self.name 

# Given a sequence, seq, returns a random element of seq 

def randomElement(seq): 

    return list(seq)[random.randint(0, len(seq) - 1)] 

#initializes a chunk candidate 

class ChunkCandidate: 

    def __init__(self): 

        self.filesConsidered = 0 

        self.optionsTested = 0 

        self.files = set() 

        self.mrs = set() 

        self.correlation = 0.0 
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        self.MRsWithin = 0   

class Chunker: 

    def __init__(self, pathToDB): 

        # Set to true if we can use RAM to cache data 

        # If true, all MRs will be cached by the end of initialization (prior to calling 

getPercentWithinChunk) 

        self.useRAM = True 

        self.error = False 

        if self.useRAM: 

            self.MRtoFilesDict = dict() 

            self.FiletoMRsDict = dict() 

            self.FileIDtoNameDict = dict() 

        self.paused = False 

        self.candidatesTried = 0 

        self.dbname = pathToDB 

        # Initialize database connection 

        conn = sqlite3.connect(self.dbname) 

        conn.text_factory = str 
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        self.dbcursor = conn.cursor() 

        # Start by getting all of the changesets we're dealing with 

        query = "select changesets.id from changesets where issuetype='problem' and 

filecount<=20 and datetime(date,'unixepoch','localtime')<'2010-01-01' and 

datetime(date,'unixepoch','localtime')>='2007-04-01';" 

        self.dbcursor.execute(query) 

        # At this point, dbcursor contains our results. We need to store the data it provides 

before we can use it to execute another query 

        activeCSIDs = self.dbcursor.fetchall() 

        self.files = set() 

        self.mrs = set() 

        self.allMR = set() 

        # These lines just create a set of all files touched by all active CSIDs - this speeds 

up processing later 

        if self.useRAM: 

            for csid in activeCSIDs: 

                tempSet = self.getCSFiles(csid[0], self.dbcursor) 

                self.mrs.add(csid[0]) 
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                self.allMR.add(csid[0]) 

                self.files |= tempSet 

                self.MRtoFilesDict[csid[0]] = tempSet 

        else: 

            for csid in activeCSIDs: 

             self.mrs.add(csid[0]) 

                self.files |= self.getCSFiles(csid[0], self.dbcursor)         

        # End result is that self.files is the set of all files affected by active CSIDs 

        # If self.useRAM is set, self.MRtoFilesDict is a dictionary (map) from CSIDs to 

their files, which lets us skip future database queries 

# Return best candidate after timelimit; sets self.error to true if ctrl-c is captured 

    def getNext(self, timeLimit): 

        retChunks = [] 

        MRsTested = set() 

        selMR = set() 

        retVal = ChunkCandidate() 

        retVal.filesConsidered = len(self.files) 

        startTime = time.time() 
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        endTime = timeLimit + startTime 

        print "init" 

        while True: 

            if not self.paused: 

                try: 

                    selMR = self.mrs-MRsTested 

                    if len(selMR)==0: 

                        return retVal 

                    randMR = randomElement(selMR) 

                 # Randomly select MR that affects more than 5 files 

                    if len(self.MRtoFilesDict[randMR]) < 5: 

                        continue 

                    print "rand" + str(randMR) 

                    if randMR not in MRsTested: 

                        MRsTested.add(randMR) 

                    # Temporary chunk created, if it meets the correlation threshold, it is added 

to the candidate chunks 

                    tempRetVal = ChunkCandidate() 
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                    curMR = randMR 

                    curSet=set() 

                    curSet = self.getCSFiles(curMR, self.dbcursor) 

                    MRsWithin = self.getMRsWithinChunk(curSet, self.dbcursor) 

                    correlation = self.getPercentWithinChunk(curSet, self.dbcursor) 

                    print "MRs within chunk" + str(MRsWithin) + "correlation" + 

str(correlation)                           

                    if correlation >= tempRetVal.correlation:  

                        tempRetVal.MRsWithin = MRsWithin 

                        tempRetVal.correlation = correlation  

                        tempRetVal.files = curSet  

                    mrList = set() 

                    mrList.add(randMR) 

                     

                    if tempRetVal.correlation >= retVal.correlation and tempRetVal.correlation 

>=70 and tempRetVal.MRsWithin >= 10: 

                        retVal.MRsWithin = tempRetVal.MRsWithin 

                        retVal.correlation = tempRetVal.correlation 
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                        retVal.files = tempRetVal.files 

                        retVal.optionsTested = tempRetVal.optionsTested  

                    while tempRetVal.correlation > 60.0:  

                        fileset = set() 

                        tempFileSet = set() #todo 

                        temp = set() #set of all MRs that touch curSet 

                        tempCurset = copy.deepcopy(curSet) 

                        # Store all the MRs that affect the files in question in temp 

                        for f in curSet: 

                            tempMRs = self.getFileCSs(f, self.dbcursor) 

                            temp |= tempMRs  

            # Remove the MR randomly chosen from this list because we have already      

considered the files it affects     

                        for m in mrList: 

                            if m in temp: 

                                temp.remove(m) 

                        if len(temp)==0: 

                            break  
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                        #Find a list of all files touched by the MRs in temp 

                        for mr in list(temp): 

                         tempFileSet |= self.getCSFiles(mr, self.dbcursor)  

                        tempFileSet = tempFileSet - tempCurset  

                        #Add each file to curSet to see if correlation increases, keep file if it does, 

else go to next 

                        for file in list(tempFileSet): 

                            f=set() 

                            f.add(file) 

                            shouldBreak = time.time() > endTime 

                            if shouldBreak: 

                             if tempRetVal.correlation >= retVal.correlation and 

tempRetVal.correlation >=70 and tempRetVal.MRsWithin >= 10: 

                                    retVal.MRsWithin = tempRetVal.MRsWithin 

                                    retVal.correlation = tempRetVal.correlation  

                                    retVal.files = tempRetVal.files 

                                    retVal.optionsTested = tempRetVal.optionsTested  

                             return retVal  
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                            tempRetVal.optionsTested = tempRetVal.optionsTested + 1 

                            tempSet = set() 

                            tempSet = copy.deepcopy(curSet)    

                            tempSet |= f 

                            MRsWithin = self.getMRsWithinChunk(tempSet, self.dbcursor) 

                            correlation = self.getPercentWithinChunk(tempSet, self.dbcursor)  

                            if correlation >= tempRetVal.correlation:  

                                tempRetVal.MRsWithin = MRsWithin 

                                tempRetVal.correlation = correlation  

                                tempRetVal.files = tempSet  

                        curSet = tempRetVal.files  

                        if len(tempCurset)==len(curSet): 

                            break                 

                    # Adds chunk only if temporary chunk has the number of crossing MRs less 

than that of current chunk     

                    if tempRetVal.correlation >= retVal.correlation and tempRetVal.correlation 

>=70 and tempRetVal.MRsWithin >= 10: 

                        retVal.MRsWithin = tempRetVal.MRsWithin 
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                        retVal.correlation = tempRetVal.correlation 

                        retVal.files = tempRetVal.files 

                        retVal.optionsTested = tempRetVal.optionsTested 

                            

                    shouldBreak = time.time() > endTime 

                    if shouldBreak: 

                        print str(len(retVal.files)) 

                        return retVal 

                except KeyboardInterrupt: 

                        self.error = True 

                        return retVal 

    def pause(self): 

        self.paused = True 

 

    def resume(self): 

        self.paused = False 

    def getPercentWithinChunk(self, files, cursor):  
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        setOfMRsForFiles = set() 

        if len(files) == 0: 

            return 0 

        for file in files: 

            setOfMRsForFiles |= self.getFileCSs(file, cursor) 

        numMRs = len(setOfMRsForFiles) * 1.0  

        if numMRs == 0: 

            return 0 

        MRsContained = 0.0 

        for mr in setOfMRsForFiles: 

            if self.getCSFiles(mr, cursor).issubset(files): 

                MRsContained = MRsContained + 1 

        return (MRsContained / numMRs) * 100.0 

     

    def getMRsWithinChunk(self, files, cursor):  

        setOfMRsForFiles = set() 

        if len(files) == 0: 



90 

 

            return 0 

        for file in files: 

            setOfMRsForFiles |= self.getFileCSs(file, cursor) 

        numMRs = len(setOfMRsForFiles) * 1.0 

        if numMRs == 0: 

            return 0 

        MRsContained = 0.0 

        for mr in setOfMRsForFiles: 

            if self.getCSFiles(mr, cursor).issubset(files): 

                MRsContained = MRsContained + 1 

        return MRsContained  

    def getCSFiles(self, int_id, cursor): 

        if self.useRAM: 

            if int_id in self.MRtoFilesDict: 

                return self.MRtoFilesDict[int_id] 

        query = "SELECT links.file_id FROM links WHERE cs_id=" + str(int_id) + ";" 

        retval = set() 



91 

 

        cursor.execute(query) 

        for row in cursor: 

            retval.add(row[0]) 

        return retval  

    def getFileCSs(self, int_id, cursor): 

        #print int_id 

        if self.useRAM: 

            if int_id in self.FiletoMRsDict: 

                return self.FiletoMRsDict[int_id] 

        query = "SELECT links.cs_id FROM links WHERE file_id=" + str(int_id) + ";" 

        retval = set() 

        cursor.execute(query) 

        for row in cursor: 

            if row[0] in self.allMR: 

               retval.add(row[0]) 

        return retval  

    def fileIDtoName(self, int_id, cursor): 
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        if self.useRAM: 

            if int_id in self.FileIDtoNameDict: 

                return self.FileIDtoNameDict[int_id] 

        query = "SELECT files.filename FROM files WHERE id=" + str(int_id) + ";" 

        cursor.execute(query) 

        result = cursor.fetchone()[0] 

        if self.useRAM: 

            self.FileIDtoNameDict[int_id] = result 

        return result  

#returns the text to be written to the output file – chunks with file names of files within 

each chunk and percentage correlation, MRs within and crossing chunk 

    def stringifyCandidate(self, result, cursor):  

        setOfMRsForFiles = set() 

        if len(result.files) == 0:  

            return 0 

        print result.files 

        for f in result.files: 

            setOfMRsForFiles |= self.getFileCSs(f, cursor) 
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        numMRs = len(setOfMRsForFiles) * 1.0  

        if numMRs == 0: 

            return 0 

        MRsContained = 0.0 

        for mr in setOfMRsForFiles: 

            if self.getCSFiles(mr, cursor).issubset(result.files): 

                MRsContained = MRsContained + 1 

        print str(MRsContained) + " " + str(result.correlation)+ " 

"+str(MRsContained/numMRs) 

        retval = "\n\n" + str(result.correlation) + "% correlation within chunk made up of " 

+ str(result.MRsWithin) + " MRs within chunk and " + str(numMRs) + " total 

MRs and size " + str(len(result.files)) + ":\n" + "\n".join([self.fileIDtoName(file, 

cursor) for file in result.files]) 

        return retval 

 

    def updateParameters(self, **kwargs): 

        if "minFiles" in kwargs: 

            self.minFilesPerChunk = kwargs["minFiles"] 
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        if "maxFiles" in kwargs: 

            self.maxFilesPerChunk = kwargs["maxFiles"] 

 

if __name__ == "__main__": 

    # Set to the path of your database on your hostname (this allows easier testing with 

svn checkouts on different machines 

    # Socket.gethostname() returns the hostname of your machine (doesn't actually require 

that a socket be created) 

    import socket 

    if socket.gethostname() == 'Rac-Twin': 

        dbname = 'companyx.db' 

    print "Start" 

    c = Chunker(dbname) 

    results = [] 

    for i in range(int(sys.argv[1])): 

        print "Starting to process a chunk with " + str(len(c.files)) + " still under 

consideration.\n" 

        results.append(c.getNext(int(sys.argv[2]))) 
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        # list index -1 is last element; this removes the previously returned files 

        # from consideration for the next chunk -  a file can belong to at most one chunk 

        c.files = c.files - results[-1].files 

        setOfMRsForFiles = set() 

        if len(results[-1].files) == 0: 

            continue 

        if len(c.files) == 0: 

            break 

        for file in results[-1].files: 

            setOfMRsForFiles |= c.getFileCSs(file, c.dbcursor)  

        # Remove MRs already in a chunk for the next candidate chunk as we are looking 

for independent chunks 

        for mr in setOfMRsForFiles: 

            if mr in c.mrs: 

                c.mrs.remove(mr)       

        if c.error: 

            break 

    print "Printing results to ./out.dat and exiting\r\n"  
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    f = open("C:\Python27\AvayaNewLast." + str(datetime.date.today()) + ".txt", 'a') 

    f.write("\n" + '-' * 80 + "\n") 

    f.write("\n" + str(datetime.datetime.now()))  

    for chunk in results: 

        f.write(str(c.stringifyCandidate(chunk, c.dbcursor))) 
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