
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Identification and analysis of chunks in software
projects
RACHANA S. KONERU
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
KONERU, RACHANA S., "Identification and analysis of chunks in software projects" (2013). Graduate Theses and Dissertations.
13363.
https://lib.dr.iastate.edu/etd/13363

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13363&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13363&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F13363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13363?utm_source=lib.dr.iastate.edu%2Fetd%2F13363&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Identification and analysis of chunks in software projects

by

Rachana S. Koneru

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

David M. Weiss, Major Professor

Robyn R. Lutz

Leslie Miller

Mack Shelley

Iowa State University

Ames, Iowa

2013

Copyright © Rachana S. Koneru, 2013. All rights reserved.

ii

DEDICATION

I dedicate this thesis and all the work that went into it to my parents, who held

me through my little successes and my downfalls alike. A special feeling of gratitude to

my loving mother, Lakshmi Koneru, whose undying love and encouragement gave me

the courage to pursue my dreams in a distant land. She is the strongest woman I know,

who taught me not to back down from anything I believe in. I owe her the strong

independent woman that I am today. My deepest love and admiration to my father and

friend, Bhogeswara Rao Koneru, whose constant support, advice, and motivation pushed

me towards my goals. He showed me how to live life without any regrets and taught me

that failures can only bring out the best in us. He is my role model and my hero.

iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... v

LIST OF TABLES .. vi

ACKNOWLEDGEMENTS ... viii

ABSTRACT… ... ix

CHAPTER 1. INTRODUCTION .. 1

1.1 The idea behind chunks .. 2

1.2 Problem statement ... 3

1.3 Structure of this thesis ... 6

CHAPTER 2. BACKGROUND AND RELATED WORK ... 7

2.1 Chunking approach ... 7

2.1.1 Algorithm .. 9

2.2 Detection of logical couplings and its applications 10

2.2.1 Methods to identify logical couplings ... 11

2.2.2 Mining logical couplings for predictive analyses 14

2.2.3 Relationship between logical coupling and software defects 15

CHAPTER 3. APPROACH .. 19

3.1 Data collection .. 19

3.2 Algorithm(s) to identify chunks .. 23

3.2.1 Commonalities .. 23

3.2.2 Variabilities ... 24

3.2.3 Description of the proposed algorithm ... 25

3.3 Attributes of chunks used for analysis ... 27

CHAPTER 4. RESULTS AND ANALYSIS ... 30

iv

4.1 Eclipse results ... 30

4.2 Moodle results .. 40

4.3 Company-X results .. 50

CHAPTER 5. CHALLENGES IN CHUNKING ANALYSIS 56

5.1 Challenges of data collection and analysis .. 56

5.1.1 Non-compliant and multiple data sources ... 56

5.1.2 Does a commit correspond to a single bug fix? 59

5.1.3 No availability of sources to verify hypotheses 61

5.2 Algorithmic challenges .. 62

CHAPTER 6. VALIDATION .. 65

6.1 Validation of data .. 65

6.2 Validation of algorithm ... 67

CHAPTER 7. CONCLUSION AND FUTURE WORK .. 69

7.1 Conclusions ... 69

7.2 Limitations and future work .. 71

BIBLIOGRAPHY .. 74

APPENDIX. ALGORITHM IMPLEMENTATION .. 77

v

LIST OF FIGURES

 Page

Figure 4.1 Number of Bug Fixes in Eclipse ... 31

Figure 4.2 Percentage Correlation of Top-11 Chunks for All Eclipse Datasets 36

Figure 4.3 Percentage Correlation and Size of Chunks for Europa 37

Figure 4.4 Percentage Correlation and Size of Chunks for Europa-A 37

Figure 4.5 Percentage Correlation and Size of Chunks for Europa-B 37

Figure 4.6 Number of Bug Fixes in Moodle .. 41

Figure 4.7 Percentage Correlation of Top-6 Chunks for All Moodle Datasets 43

Figure 4.8 Percentage Correlation and Size of Chunks for Moodle 43

Figure 4.9 Percentage Correlation and Size of Chunks for Moodle-A 44

Figure 4.10 Percentage Correlation and Size of Chunks for Moodle-B 44

Figure 4.11 Number of Bug Fixes in Company-X ... 51

Figure 4.12 Percentage Correlation of Top-2 Chunks for All Company-X Datasets 52

Figure 4.13 Percentage Correlation and Size of Chunks for Company-X 52

Figure 4.14 Percentage Correlation and Size of Chunks for Company-X-A 53

Figure 4.15 Percentage Correlation and Size of Chunks for Company-X-B 53

Figure 5.1 Moodle Development Workflow Using Git [Moodle] 58

vi

LIST OF TABLES

 Page

Table 3.1 List of Change Data Characteristics Used .. 22

Table 4.1 Number of bug fixing MRs in each Europa dataset 31

Table 4.2 Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Europa ... 32

Table 4.3 Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Europa-A .. 32

Table 4.4 Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Europa-B ... 33

Table 4.5 Chunk to component mappings for Europa, Europa-A, and Europa-B 35

Table 4.6 Number of Bug-Fixing MRs for All Moodle Datasets 41

Table 4.7 Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Moodle .. 42

Table 4.8 Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Moodle-A .. 42

Table 4.9 Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Moodle-B .. 42

Table 4.10 Chunk to component mappings for Moodle, Moodle-A, and Moodle-B 45

Table 4.11 Number of Bug-Fixing MRs for All Company-X Datasets 50

Table 4.12 Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Company-X .. 51

Table 4.13 Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Company-X-A .. 51

vii

Table 4.14 Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Company-X-B .. 52

viii

ACKNOWLEDGEMENTS

There are a lot of people without whom I would not have been able to complete

this thesis and to whom I am greatly indebted.

I wish to thank, first and foremost, my Professor, Dr. David Weiss for his

guidance, encouragement, and support throughout my M.S. program. He motivated me

in the right direction with his high intellect and deep insights during the entire course of

my research. I would like to specially thank him for his patience and composure at times

when we had little hope of any progress. I attribute the persistence and dedication that I

put into this work to him.

I would like to thank my committee members Dr. Robyn Lutz, Dr. Leslie Miller,

and Dr. Mack Shelley for their time and valuable inputs throughout this research. I thank

and extend my sincere appreciation to my colleague Jeff St. Clair for his vast technical

expertise, and valuable time and efforts in this research. He is the best geek I’ve ever

met.

I would like to thank my amazing brothers, Rahul Koneru and Anirudh Pullela,

for being my stress-busters, and standing by me through everything. They are my best

cheerleaders. I would also thank my best friends, Priyanka Reddy, Sudha Lahari, Disha

Reddy, and Ankita Bhangadiya, for being a family to me and for their constant love and

support since the day we met. Finally, I would like to thank all my friends – Loukya,

DT, CT, Satish, and Venky for making Ames feel like home.

ix

ABSTRACT

 Most software systems undergo continuous change in different phases of their

lifecycle such as development or maintenance. Ideally, such changes should correspond

to a system’s modular design. However, some changes span across more than one

component thereby resulting in discrepancies between design and implementation. In

such cases, making a change to one component requires changes to other components

leading to an increase in time and effort to make changes to a software system as it

evolves.

This thesis investigates: 1) an approach to observe how components change

together by identifying tightly coupled changes known as chunks, 2) whether there are

any trends in how chunks evolve over time, and 3) whether chunks can help identify

design issues in a software system.

In this work, a family of algorithms is proposed to identify independently

changing chunks from change data obtained from mining version history repositories of

three large software systems – Moodle, Eclipse, and Company-X. A comprehensive

analysis of certain characteristics of the resulting chunks is conducted. In addition,

evolution of chunks with respect to size in terms of number of files within a chunk, and

percentage of changes crossing a chunk are studied. Lastly, a pragmatic interpretation of

the results to identify necessary code refactoring or system redesign is presented.

x

The findings of this work show that the percentage correlation of a chunk

decreases with an increase in the number of inter-component or subsystem couplings.

We also observed that there is no association between chunk size and percentage

correlation. Identifying chunks that merge helps in a better understanding of the

inconsistencies between how a system is designed for change and how it is actually

changed, and to identify areas of a system that require refactoring or redesign.

Additionally, identifying stable chunks can provide insights into how size and

percentage correlation of the corresponding empirical components change over time.

1

CHAPTER 1. INTRODUCTION

Software undergoes change throughout its life cycle either in the form of

development or maintenance until it is not viable anymore. Often changes to a software

system are made by developers, who do not understand its design, which leads to

discrepancies in design and implementation thereby causing system degradation [Parnas,

1994]. Such changes result in an increase in time and effort to make future changes to

the software system as it evolves. As such, design for change is a key aspect in the

design of sustainable software systems. The underlying notion for the application of such

design principles is modularity, achieved by organizing software in such a way that

certain parts of the system can be created, used and changed independently of others.

Parnas and others have discussed the importance of modularity in modern software

design along with using the information hiding principle and prediction of future

changes as the criteria to isolate design decisions that are likely to change independently

[Parnas et al., 1985].

It is difficult to verify whether a software system has been successfully

modularized. Ideally, in a modular system, every change is associated with a single

module, whose design decision it hides. Identifying the percentage of changes that span

more than one module can be used as a measure to indicate the ease of changeability of a

system. For that, one must observe changes made to a system over a considerable

amount of time during its development when most changes occur, measure the effort

expended in making these changes, and identify changes that violate the system’s

kl

kl

gh

gj

hj

hj

2

information hiding design principles. Furthermore, one can determine whether such

changes introduce new bugs, and observe how they evolve over time in terms of effort

and the number of lines of code touched. This can help software developers and

architects perceive how the structure of a system changes over time with respect to its

original architecture and hence aid them in designing software for change.

1.1 The idea behind chunks

Modelling approaches to design for change and identifying measures that

determine the degree to which a system is amenable to change after it has been in use for

a while are interrelated. Mockus and Weiss identified and explored the concept of

chunks as a measure that can be used to predict how easily changes can be applied to a

software system. We closely follow Mockus and Weiss in defining a chunk as “a set of

code that has the property that a change that touches that set of code touches only that set

of code”. In other words, if a change touches one part of a chunk, then it is likely that it

will touch other parts of the chunk as well. As an inference from the definition of

chunks, a file that belongs to a chunk belongs to only that chunk, considering that

changes modify files. One may think of chunks as the empirical information hiding

modules of a system [Parnas, 1972].

Ideally, we would like to see perfect chunks that are completely independent of

each other, in a way that every change touches only one chunk. However, in real world

software systems, it is implausible to find perfect chunks for a variety of reasons and

perturbing factors, including the following.

3

 Cross-cutting implementation concerns of a system that are inconsistent with the

design and consequently cannot be cleanly separated from the rest of the system

[Breu et al., 2006],

 Bad implementation practices that degrade the modular design of a system over

time,

 Paucity of change in certain parts of a system, resulting in insufficient change

data to identify chunks,

 Changes that touch a large part of a system, affecting many files and therefore

many components. For example, a particular bug fix in the Moodle project

touched 1272 files, and involved running lossless optimization on all .png

(Portable Network Graphics) and .jpeg (Joint Photographic Experts Group)

images that were distributed across various subsystems.

Identifying and analyzing chunks from change information of a particular software

project over a significant fraction of its lifetime can help uncover parts of the system that

are most and least changeable, and imply in which parts of the system its design needs to

be changed.

1.2 Problem statement

The goal of this thesis is to investigate: 1) an approach to observe how modules

in a software system change together by identifying tightly coupled changes known as

chunks, 2) whether there are any trends in how chunks evolve over time, and 3) whether

4

chunks can help identify design issues or where a design decision needs to be changed in

a software system.

A module is a work assignment rather than a sub-program [Parnas, 1972]. In the

context of this thesis, we deviate from the term module as we do not have any

information of the modular structure of the software systems studied. Instead, we use the

term component to mean a set of code contained in files within any one directory in the

master directory of repositories for the projects whose change data we analyzed. A

change should be localized within a single component, since components should contain

independently changeable design decisions. In this thesis we attempt to discover chunks

in software systems by analyzing the changes that have been made to that system over a

significant period of its lifecycle. There are several diverse attributes of change data

pertaining to a software system, such as the type of change – bug fix or enhancement,

the developer who made the change, time at which the change was made, the files

modified by the change, the number of lines of code affected by the change, description

of the change, or the subsystem(s) touched by the change. In this work, we use only a

subset of the change data attributes required to perform chunk identification.

A family of algorithms is proposed to identify independently changing chunks

from change data obtained from mining version history repositories of three large

software systems – Moodle, Eclipse and Company-X (anonymized due to limited

publication rights). A comprehensive analysis of certain characteristics of the resulting

chunks is conducted. In addition, evolution of chunks over time with respect to size in

terms of number of files within a chunk, and percentage of changes crossing a chunk is

5

studied. Lastly, a pragmatic interpretation of the results to identify necessary code

refactoring or system redesign is presented.

The results from this work show that chunks merge over time touching many

components, thereby making it increasingly difficult to make changes and to maintain

the software system. In this thesis we also found that the percentage of changes crossing

a chunk reduces with an increase in component and subsystem couplings. Increasing

discrepancies between the developed software and its original design result in changes

that require modifications to a large part of the system over longer time periods,

therefore resulting in chunks with lower percentage of changes crossing the chunks.

Furthermore, in this work we identified chunks that are stable, i.e., with more

than 65% of the files within the chunk existing commonly in different versions of its

evolution over time. Stability is calculated as the percentage of files in the smaller

version of the chunk that are in common with the larger chunk version over its evolution.

For example, suppose a chunk C1, containing 10 files evolved over time into chunk C2

with 15 files, while having 9 files in common with C1. In this case, stability of the chunk

C1 is 9/10, i.e., 90%. Note that a chunk does not necessarily increase in size over time.

For example, suppose that during the first year of development, changes are made to two

different parts of a component. These changes are then identified as a chunk. Over time,

if the component is restructured, and changes to those two parts are made independently

of each other. This results in a chunk that is smaller than the first, while still containing

files from the common parts of the component. Clearly, a larger chunk has evolved into

a smaller chunk in this scenario.

6

Observing stable chunks as empirical information hiding modules helps in a

better understanding of the inconsistencies between how a system is designed for change

and how it is actually changed. As such, chunks can be used as an indicator of when

redesign of some or all of a software system is beneficial; identifying such design issues

earlier in a project’s lifecycle can prevent the company from losing valuable time in

making changes to their system.

1.3 Structure of this thesis

The rest of this thesis is organized as follows. Chapter 2 discusses related work

and how our approach differs from the others. Chapter 3 describes the data and

approach. Chapter 4 presents the hypotheses, results and interpretation. Comparison of

results from all three software projects — Moodle, Eclipse, and Company-X — are also

included in this chapter. Chapter 5 discusses the challenges and difficulties faced.

Chapter 6 describes the methods used to validate the data and the proposed family of

algorithms. Finally, chapter 7 summarizes this research, and suggests future work in this

area.

7

CHAPTER 2. BACKGROUND AND RELATED WORK

This chapter discusses the terminology used in the rest of this thesis, background

of this work along with related work, and describes how our approach differs from

similar studies.

2.1 Chunking approach

The terminology used in the identification and analysis of chunks in this thesis

and the background of this work is introduced in this section. In their introductory study

on chunks [Mockus and Weiss, 2001], Mockus and Weiss define a chunk as “a set of

code such that a set of work items all change that same set of code”. A work item is

defined as “the assignment of developers to a task, usually to make changes to the

software”. A work item can refer to any change request including an entire new software

version, component, new functionality, modification request or even individual deltas

within a modification request. A new functionality might require implementation of

many components. A modification request (MR) is “a request to incorporate a specific

change into software” [Herbsleb et al., 2001]. The analysis on chunks in this thesis is

based on considering an MR as analogous to a commit in the change data. Every MR

corresponds to a single type of change, such as a bug fix, new feature, enhancement, and

fix on fix (new bugs resulting from fixing an existing bug). Other types of MRs might

include auto installed batch files or header files, code clean up, etc.

We base our study on the work done by Mockus and Weiss, where the notion of

identifying tightly coupled work items that can be developed independently in

8

distributed locations, thereby reducing communication and coordination needs within an

organization is presented [Mockus and Weiss, 2001]. Files that are modified as part of

an MR are tightly coupled as they all change together. As such, work items can be

divided among developers by identifying sets of MRs that have strong inter-coupling

between the MRs within that set, while sharing weak coupling with other MRs, thus

paving the way for independent development or maintenance.

There are two kinds of coupling between any two entities as described below.

They constitute the quantitative measures for dividing work items in distributed software

development environments.

 Absolute coupling: The total number of MRs that modify or change both the

entities. For example, if A and B are two components, then the total number of

MRs that touch both A and B is referred to as absolute coupling between A and

B.

 Relative coupling: The ratio of the total number of MRs that change both the

entities to the total number of MRs that modify either of the entities. In the above

example, relative coupling is the total number of MRs that touch both

components A and B divided by the sum of MRs that touch component A and

component B.

Suppose there are 20 MRs altogether that touch either component A or component B

and 18 MRs that touch both component A and component B. Note that there are 2 MRs

that touch either component A or component B but not both. In this case, the absolute

9

coupling between A and B is 18, while their relative coupling is 0.9. In the context of

global location of developers, relative coupling is the ratio of multisite MRs to total

MRs, and it has to be minimized to decrease coordination needs and increase the speed

of producing new software. Hence, these measures can be used as criteria to optimize for

the generation of chunk candidates.

In this work, we use the term MRs crossing chunk as analogous to absolute

coupling, while percentage correlation is exactly the opposite of relative coupling. The

number of MRs that touch files in both the chunk and rest of the system is referred to as

MRs crossing chunk, whereas the number of MRs that touch only files within the chunk

is termed as MRs within chunk. The ratio of MRs within chunk to the total number of

MRs as a percentage is referred to as percentage correlation of the chunk. In the above

example, suppose A and B represent two different chunks with 1 MR touching only A, 1

MR touching only B, and 18 MRs touching both A and B. In this case, each of the

chunks, A and B will have a percentage correlation of 5.26%. Note that percentage

correlation is not related to any of the statistical terms used for correlation (e.g.

Spearman correlation).

2.1.1 Algorithm

A study of the literature indicates that Mockus and Weiss are the only ones who

proposed an algorithm to identify chunks [Mockus and Weiss, 2001]. The algorithm

generates candidates iteratively as described below and selects the best one based on the

evaluation criterion chosen.

10

 The algorithm takes as input a set of files or modules, a set of MRs and the

associated files that each MR modifies and a desired range of effort for the

resulting candidate chunk.

 A module is randomly chosen as the initial candidate to be a chunk.

 A new candidate is generated by either adding a random module (chosen from

the rest of the system) to the candidate, deleting a random module from the

candidate or exchanging a module from the current candidate with one from the

rest of the system.

 The algorithm accepts the new candidate with a probability p > 1/3 if the value of

the selected evaluation criterion (coupling to the rest of the system) is improved.

The best possible candidate chunk with the highest value of the chosen evaluation

criterion is generated, once the entire solution space is searched and explored.

2.2 Detection of logical couplings and its applications

Larry Constantine first defined the term coupling as the degree to which a

module depends upon other modules [Constantine et al., 1979]. When different entities

of a software system change together, as the system evolves, their common behavior is

referred to as logical coupling [Gall et al., 2003]. It is a measure of the strength of

dependency between the parts of a system that change together. Therefore, identifying

logical couplings in a software system reveals the information hiding design structure of

the entire system and exposes hidden inter-dependencies between files, modules or

subsystems and other source code artifacts. In this section, we discuss several studies

11

aimed at identifying logical couplings (i.e., evolution of dependencies between system

entities with the evolution of changes to a system over time).

2.2.1 Methods to identify logical couplings

Pearse and Oman discussed the use of code-based metrics like Lines of Code

(LOC), and percentage of comment lines before and after a maintenance activity to

identify the maintainability of a software system, and suggested the effects of code

restructuring or addition of new features to existing code [Pearse and Oman, 1995].

Identification of syntactic and semantic dependencies between program entities was

explored by Yang and Horwitz respectively [Yang, 1991], [Horwitz, 1990]. Neamtiu and

others presented a tool to compare different source code versions to observe the

evolution of a system by observing code-level dependencies [Neamtiu et al., 2005]. The

basis of their approach is to find semantic differences between different program

versions by using partial abstract syntax tree matching.

Analyzing structural dependencies on the source code level is quite challenging

for large software systems involving millions of lines of code. Gall and others presented

an approach to uncover logical coupling among modules by using version history data

[Gall et al., 1998] to detect structural shortcomings, hence directing towards modules

that require restructuring. The underlying concept is an empirical evaluation of the

system’s structure contrary to code-based metric approaches. In addition to identifying

logical coupling between modules, such methods can be used to validate code-level

measures that can be used only after the implementation is done and predictive

12

measures, which are derived from a system’s design artifacts. Logical couplings are

identified using a two-step process.

 Common change patterns for modules with respect to the system are identified

over different versions of change history.

 These logical couplings are verified by observing the change reports for modules

that have common change patterns. If the report identifies a common reason for

change across different versions, then the logical coupling is confirmed.

The implementation of their approach used subsystems instead of modules, and

calculated structural interdependencies on the subsystem level. This might hide potential

dependencies at sub-modular or program level, which might lead to an undesirable

increase in subsystem dependencies at a future time, thereby requiring much more cost

and effort to reengineer the system. Arnold, in addition to Griswold and Notkin, in their

works [Arnold, 1993], [Griswold and Notkin, 1993], investigated various software

restructuring and reengineering methods.

 The work that is most closely related to our work is that of Gall, Jazayeri, and

Krajewski [Gall et al., 2003], in which they use version information to find dependencies

between modules based on analyzing evolution of changes between classes and

identifying common change patterns, also called logical couplings. Their work is based

on an earlier study by Gall, Hajek and Jazayeri [Gall et al., 1998], which was discussed

above. They described a method for software evolution analysis by a 3-step incremental

approach. First, growth and change behavior of classes is assessed from the version

13

history information obtained from a CVS repository. Common change patterns across

the system are then identified. Finally, classes that are changed commonly across

different versions of the system are compared to observe evolution of different system

components over time. They compared all changes to classes that were done on the

same date and by the same author, as such changes indicate possible logical couplings

between different classes and uncover potential hidden dependencies between modules

or subsystems. They used the results to reveal architectural shortcomings of a software

system by validating the findings with the development team of the company. A similar

study was conducted by Bieman, Andrews, and Yang [Bieman et al., 2003] to identify

coupling between classes using 39 releases of a commercial object-oriented software

system.

Zimmermann, Diehl, and Zeller investigated an approach to identify such

evolutionary couplings between functions, methods or attributes in a program by

focusing on factual dependencies indicated by the revision history of the system

[Zimmermann et al., 2003]. The emphasis is on the interlinking between entities within a

program rather than higher level components such as modules or subsystems. A

comparison of such evolutionary coupling against logical or analytical coupling,

determined from evolutionary change analysis of programs, can unmask weaknesses in

the system architecture.

A comparative study was conducted by Wong, Cai, Kim, and Dalton, in which an

approach (CLIO) to detect modularity violations that can cause software defects or

modularity decay is discussed [Wong et al., 2011]. Mismatches between how

14

components should change together based on a system’s modular structure and how they

actually change together as divulged by the version history are observed as modularity

violations. The results were evaluated using the version histories of two large scale open

source repositories – 10 releases of Eclipse JDT and 15 releases of Hadoop Common.

Some of the detected violations were confirmed manually by in-depth analysis of the

MRs concerned with a violation, while others are detected automatically by CLIO.

Certain violations were identified a lot earlier in the system’s lifecycle whereas the

associated modules were refactored at a later time. The use of such tools can assist in

identification of poor design in the beginning stages of a project’s development.

However, there was no mention of any design artifacts that were used to validate CLIO’s

findings.

2.2.2 Mining logical couplings for predictive analyses

Ying, Murphy, Ng, and Chu-Carroll investigated an approach to recommend

relevant files that can be possibly changed to a developer while performing a

modification task by using associative rule mining on change data obtained from two

large open source repositories – Mozilla and Eclipse [Ying et al., 2004]. As a developer

starts to make a change to a file, a set of additional files that most likely change together

with the file being changed are suggested. These recommendations are derived from a

frequent pattern mining algorithm based on frequency counts of the instances of files

that change together. In other words, logical couplings between files are first identified,

and then the mining rules for predicting changes are derived. The results were evaluated

by classifying a recommendation as most useful or surprising, if it could not be

15

determined by analytical analysis of the program. The limitation of this approach is that

it does not support mining on the fly.

Another similar approach was presented by Zimmermann, Diehl, and Zeller

[Zimmermann et al., 2005] that uses association rule mining of multi-dimensional

version information to predict further probable changes and supports mining on the fly.

They proposed a tool (ROSE) to detect coupling between program entities such as

functions or variables, generate multi-dimensional association rules by analyzing

different types of changes, and suggest future changes by investigating how changes

evolve over the project’s lifetime.

2.2.3 Relationship between logical coupling and software defects

Another work in recent times that is closely related to this thesis is the one

conducted by Steff and Russo, in which they construct graphs of ordered commits to

identify defective modules and other software defects in the system by observing co-

evolution of commits and files [Steff and Russo, 2012]. Defects with the status “fixed”

were selected from the SVN repository of the Spring project and mapped with the

associated commits containing the corresponding defect ID to obtain information about a

particular change. A list of all files in each commit, and for each file information about

the commit in which it was last changed are obtained. A commit graph is constructed

with each commit representing a node and an edge existing between two nodes if both

corresponding commits commonly changed one or more files, without any other commit

changing any of these files in between.

16

A graph with one large connected component was obtained with an average node

degree of 2, indicating a sparsely connected commit structure, attributed to object-

oriented modularity design principles of the system being studied. Also, there were two

types of special nodes in the commit graph – root and end nodes. A root node has no in-

degree, indicating that none of its files has been changed before. An end node has no out

degree, meaning none of its files has been changed later on, i.e., it is a one-time change

such as a header import. The components of the graph that share a high number of edges

between them correspond to possible logical couplings in the system and are identical to

the chunks observed in this thesis.

Correlations between the history of each commit and defects in that history were

calculated for all files concerned, from which it was observed that both number of

commits and number of files associated with a commit’s history have a high correlation

with the number of defects. It was also found that bug-fixing commits share a higher

number of edges or files between them and are well connected and distributed across the

entire commit graph. Hence, it can be inferred that nodes with a higher degree are more

likely bound to be defects. In other words, higher order logical coupling can be used to

detect risky or defective code structures in files. A limitation of using this approach is

the underlying complexity in constructing a commit graph for large projects containing

hundreds of thousands of commits.

D’Ambros, Lanza, and Robbes analyzed the relationship between change

coupling and software defects, and to statistically investigate if there is a correlation

between change coupling and defects. Change couplings are correlated with defects

17

more than object-oriented or other complexity metrics but less than the number of

changes [D’Ambros et al., 2009]. It was also observed that defects with higher severity

like bug fixes exhibit a higher correlation with change coupling.

In another work conducted by Graves, Karr, Marron, and Siy [Graves et al.,

2000], the extent to which code and its change history are successful in predicting the

distribution of faults that arise in modules. In this context, a module is considered as a

set of related files. Several statistical models were developed to see which attributes of

the change history were likely to indicate the generation of a large number of faults as

the module continued to be developed. Fault potential was predicted by using a sum of

contributions from all changes to the module in its change history, and it was observed

that old changes were weighed down by a factor of around 50% per year, i.e., changes

made a year ago were only about half as influential in fault prediction as changes made

yesterday. A measure of the module’s age gave satisfactory prediction results, while

characteristics like length of the module in terms of number of lines of code, and number

of developers who had made changes to the module did not provide expected results.

Interestingly, their attempt could not predict faults by using information of coupling

between modules, which is a potential attribute of change history to measure defective

code or system architecture.

To our knowledge, the work presented in this thesis is the first one to identify

chunks as well as analyze chunk evolution as an empirical approach to reveal hidden

relations between files, components or modules that assist in exposing potential

shortcomings in the system’s architecture or design, implementation, and

18

maintainability. We propose a family of algorithms to be used for chunk identification.

The approach used in this work differs from other related work in that we not only

identify logical couplings between files but also investigate the evolution of such

couplings by using attributes of chunks rather than measurement metrics of code or

modules, such as number of lines of code, length of the module, etc. As such, our

approach does not require information about the modular structure of a system or other

design artifacts as in other works; however, such knowledge about a system’s

architecture can be valuable in complementing our findings in this study.

19

CHAPTER 3. APPROACH

This chapter describes the approach used for identifying and analyzing chunks

and their evolution by using change history information. A description of how we

collected data from the version control repository of Moodle is presented, along with

references to the data sources of Eclipse and Company-X projects. In addition, the

characteristics of chunks that we considered for analyzing chunk evolution are discussed

in subsequent sections.

3.1 Data collection

Most open source projects maintain and store data concerning changes made to

the system in version control repositories as commits, containing information such as the

author who had made the change, time at which the change was made, description of the

change, etc. as indicated in Table 3.1. These changes are linked to a bug tracker that

contains knowledge about the type of change, patch files if the change is a bug fix, or

files that were modified, including the number of lines of code that is changed. The

algorithm proposed and used in this thesis requires a data source to encompass a set of

MRs – each MR is considered as a change, the number of files modified by each MR

together with the file names, time of change, person who made the change, and a

classification of MRs into bug fixes, enhancements, new features, or automated changes.

After a careful consideration of change histories of about 15 projects, we finally selected

the Moodle course management system, and the Eclipse integrated development

environment because of the availability of appropriate change data and the ease with

20

which this data can be collected. Data from Company-X was generously provided to us

by a colleague and contained all the required information for chunk identification.

Moodle stores all changes made to the source code in their Git repository

[Moodle Git], which is a distributed version control and source code management

system with an emphasis on speed of data storage and access. The Git working directory

of any project is a repository on its own with complete history and tracking capabilities.

Commits in the Git repository are linked to Moodle’s JIRA issue tracking system. We

first cloned their Git repository to obtain a list of MRs each with a commit ID, author of

commit, time of commit in the form of UNIX timestamp, names of files touched by the

MR, description of the MR, and a tracker reference number that allows mapping with the

issue tracker. We used two simple Python scrapers, one to pull this data into a SQLite

database on our server, and the other to pull the issue type of each MR from the issue

tracker into a SQLite database. The issue types of MRs are organized as either a bug,

improvement, sub-task, new feature. For MRs without a tracker reference number (16

MRs accounting for less than 1% of the total MRs), we use pattern matching to search

the commit description for words like “bug” or “fix” in order to identify bug fixes. The

Moodle data that we used in this work spans across 01-Jan-2008 to 31-Dec-2011.

Data for the Eclipse project was provided to us by Krishnan, who used Eclipse’s

change data to perform defect assessment and explored defect prediction of failure-prone

files in the Eclipse product line in his work [Krishnan, 2013]. The data was extracted

from the Eclipse Bugzilla database and CVS change repositories for the Eclipse Classic

product. The CVS log data was mined for six-digit strings that could be matched to bug

21

IDs. A manual review was performed to ensure that this pattern matching caught all the

log data entries containing the word “bug”. He also used the CVSps (Patchsets for CVS)

tool that identifies files committed together as a changeset. This additional processing

had to be done as changes are stored in a CVS repository in terms of each file that is

changed contrary to other repositories such as Git or SVN (Subversion) where changes

correspond to commits involving a set of files modified by the change. Custom PERL

scripts were written to parse the CVS log entries into a SQL database. In addition,

developers at Eclipse provided a bug database containing change history information

required for this study along with an affluence of other details of bug fixes for selected

Eclipse releases in the form of a SQL database. The dataset contributed to us constituted

Eclipse’s Europa (release 3.3) project’s bug data from 02-July-2006 to 31-Dec-2007. We

parsed the necessary information suitable for the algorithm into another SQLite database

using a Python script.

We used a similar Python script as mentioned earlier to parse and extract the

required information from CVS logs of change data from Company-X into a SQLite

database. The dataset is a wealth of information consisting of the entire change history

data collected over the time period 28-July-1993 to 04-June-2009. In this case, the MRs

are classified by their type as either enhancement, initialization, modification, new

feature, problem, or sw_offer_build.

A set of all the change data characteristics used in this work and are essential to

identify chunks for each of the three projects – Moodle, Eclipse, and Company-X is

listed in Table 3.1.

22

Table 3.1: List of Change Data Characteristics Used

Characteristic Description Project Data Type/Value

CS_ID The changeset

(commit) ID, unique

for every commit.

Moodle A sequence of 40 alphanumeric

characters.

Eclipse A numeric sequence of variable

length.

Company-X A numeric sequence of variable

length.

AUTHOR The name or email

ID of the developer

assigned to make

the change.

Moodle Full name or email ID.

Eclipse Email ID.

Company-X Encoded numeric value.

DATE The time at which

the change is made

(committed).

Moodle Unix timestamp.

Eclipse Full date format: yyyy-mm-dd

hh:mm:ss.

Company-X Unix timestamp.

ISSUE_TYPE The type of MR or

change.

Moodle bug, improvement, new feature,

sub-task, and task

Eclipse bug, and enhancement

Company-X enhancement, initialization,

modification, new feature,

problem, and sw_offer_build

MESSAGE A short description

of the change.

Moodle

Eclipse

Company-X

Textual description of the

committed change.

FILE_NAME Names of all the

files modified by the

change;

FILE_COUNT is

consequently

calculated as the

number of files

Moodle File names in the form of file

paths

Eclipse File names in the form of file

paths.

Company-X Encoded in numeric file path

23

Characteristic Description Project Data Type/Value

touched by the

change

format.

E.g. 1/2/3/75/1049

3.2 Algorithm(s) to identify chunks

We use a family of algorithms to identify chunks, a list of whose commonalities

and variabilities is described in detail in this section. Commonalities are the

characteristics shared by all the algorithms, whereas variabilities describe how the

algorithms differ from each other [Weiss and Lai, 1999].

3.2.1 Commonalities

The following functionality characteristics are common to all the algorithms.

 All algorithms analyze changes that have been made to a system over some

significant fraction of its lifetime, usually on the order of 18 months to 5

years, or more if the data is available. Each change is reported and

characterized as an MR.

 All algorithms operate on change history data obtained from software version

control repositories linked to an issue tracker.

 All algorithms start by randomly identifying a chunk candidate.

 All algorithms use a set of optimization criteria to decide whether a chunk

candidate is, in fact, a chunk. Included are criteria such as the number of

Table 3.1: (Continued)

24

changes that touch both the candidate and its complement, and the percent of

changes that touch only the candidate.

 All algorithms generate chunks by adding files to the set of files of an

existing candidate and checking to see if the resulting new chunk improves

the optimization criteria.

 All algorithms terminate after a specified time interval. This time limit is an

estimate of the maximum amount of time after which there is no

improvement in the optimization criteria. It is measured over many trials of

the algorithm and is dependent on the number of MRs and files involved in

the dataset, the system speed, and the selected optimization criteria.

3.2.2 Variabilities

Each variability in the algorithm family is a result of a careful observation of the

chunks generated from the existing algorithms, identifying errors with both the approach

and data, and re-evaluating constraints necessary for a meaningful analysis of chunks.

All algorithms differ by the following characteristics.

 All algorithms vary by how they identify the initial chunk candidate, either

by picking a random subset of files, a random MR, or a random subset of

MRs.

 All algorithms vary by the optimization criteria used. Either or both of the

following optimization criteria whose threshold levels act as constraints to

the algorithm can be used to generate chunk candidates.

25

1. Percentage correlation – this is a measure of how tightly coupled the

files within a chunk are, and as such it should be maximized.

2. MRs crossing chunk – this is a measure of the number of MRs that

touch both the chunk and its complement, and should therefore be

minimized.

 All algorithms vary by constraints imposed on the optimization criteria.

 All algorithms vary by constraints imposed on data, such as the minimum

number of files desired in a chunk, the type of changes to include in the

analysis, the minimum number of files that an MR should touch to be

randomly picked by the algorithm, etc.

3.2.3 Description of the proposed algorithm

A brief description of the steps involved in the algorithm used in this work for

identifying independent chunks is as follows.

1. Randomly pick an MR that touches at least five files from the entire set of

MRs being considered for chunk identification, obtained from the

corresponding project’s change data. The randomization process is dependent

on the programming language used. Python uses a uniform random number

generator. This guarantees a minimum chunk size that is large enough to

eliminate one-time changes, i.e., MRs, such that the files modified by these

MRs are not touched by any other MR. Such MRs are of no interest to us

26

since our goal is to study the evolution of frequently occurring changes or

logical couplings.

2. The set of files touched by this MR forms the initial chunk, which is also the

current candidate chunk.

3. Find a set of all MRs that touch each of the files in the current candidate

chunk.

4. Find a set of all files touched by the MRs in step 3.

5. Add a file from the set of files in step 4 to the initial chunk only if it improves

the optimization criteria; this forms the current candidate chunk.

6. Repeat step 5 until all the files in the set of files in step 4 are considered.

The above steps ensure that the search space for all file combinations is

sequentially explored so that potential candidates are not omitted. This also

leaves out false chunks resulting from combining isolated one-time changes.

7. Repeat steps 3 to 6 as long as adding a file increases the optimization criteria.

8. Repeat steps 1 through 7 if adding a file does not improve the optimization

criteria until all MRs in step 3 are considered.

9. Repeat steps 1 to 8 for a specified time interval, after which the best chunk

candidate based on the best optimization criteria is generated.

10. Remove the files constituting the chunk as well as all MRs within the chunk

generated in step 9 from the initial set of files and MRs considered

respectively, and repeat steps 1 through 9 to generate the next independent

chunk.

27

The algorithm iterates through the above steps for 8000, 4000, and 10000

seconds respectively for Moodle, Eclipse, and Company-X change data, after which it

generates the best candidate chunk. The algorithm was run on a Dell Optiplex 980 with

Intel Core i7 processor.

3.3 Attributes of chunks used for analysis

The structure of change data that we collected enabled us to determine analysis

of chunks by size, percentage correlation, number of undesired MRs referred by MRs

crossing chunk, and time period of changes. As mentioned in Section 3.2.2, percentage

correlation is a measure of coupling between files within a chunk. Let F be the entire set

of files touched by all MRs in the dataset used as input for the algorithm described in

Section 3.2.3 to identify chunks. Let C be a chunk, and C’ be its complement, i.e., C’

contains all files in F that are not in C. Since perfect chunks are usually uncommon due

to undesired couplings between components or cross-cutting concerns, there are a certain

number of MRs in C that also touch files in C’. We refer to the total number of such

MRs as MRs crossing chunk. Correspondingly, the number of changes in C that touch

only files in C is referred to as MRs within chunk. Hence, percentage correlation is

defined as the percent of total MRs in C that touch only files within C. In other words,

percentage correlation is a measure of how close a chunk is to being a perfect chunk,

which has a percentage correlation value of 100%. Therefore, a higher percentage

correlation indicates a more cohesive chunk.

28

 *100%

MRs within chunk
percentage correlation

MRs within chunk MRs crossing chunk

 (3.1)

The number of undesired MRs within a chunk is equivalent to the number of

MRs crossing the chunk. As mentioned above, these correspond to changes that touch

both C and C’. In some cases, taking only percentage correlation into account for

analysis of chunks can lead to false or misleading interpretations. For example, assume

that there two chunks C1 and C2, with two sets of 20 MRs one touching each chunk, in a

way that the two sets of MRs are completely disjoint. That is to say, there are no MRs in

either set that touch both C1 and C2. Assume that there are 5 MRs crossing C1 and 3

MRs crossing C2. In terms of percentage correlation, C2 with 85% correlation appears to

be a significantly better chunk than C1 with only 75% correlation. Alternatively, if we

look at the number of MRs crossing both chunks, the difference is not too high (only 2),

i.e., C1 is almost as good a chunk as C2 since the metric MRs crossing chunk is low for

both C1 and C2. If we set the threshold for percentage correlation as 80%, the algorithm

will only pick C2, eliminating C1 although it is a potential candidate chunk. Such

discrepancies arise especially when there are very few changes touching files in a chunk,

in which case the percentage correlation decreases drastically even with a slight increase

in MRs crossing chunk. In order to account for these disparities, we used both

percentage correlation and MRs crossing chunk as the criteria to be optimized for the

algorithm to generate potential independent chunks.

We also consider different time periods of changes to observe how chunks

evolve over time by looking at chunks that have at least 65% files in common between

29

any two chunks in each such time interval. This might help identify whether chunks are

stable over time, and if so, whether they correspond to any component or subsystem.

The size of a chunk is defined as the number of files within that chunk.

Observing trends of a chunk’s size as it evolves over time can guide towards identifying

plausible design issues of the system being studied. A consistent increase in chunk size

might suggest necessary refactoring of code or design altogether. An extremely large

chunk size indicates that a change to one file within the chunk requires changes to a

large number of other files within that chunk, thus making the system extremely difficult

to maintain. We also look at the association between percentage correlation and size of

chunks over time to see how the size of stable chunks varies over time.

30

CHAPTER 4. RESULTS AND ANALYSIS

 In this chapter, the results generated by the proposed algorithm are discussed. A

detailed analysis of the identified chunks for Moodle, Eclipse, and Company-X data is

also presented in the following sections.

We included MRs that touch 20 files or less for reasons explained in Chapter 5

and the presented discussion in Chapter 7. In addition, we only considered MRs that are

bug fixes because they are more likely to be localized, touching only the component in

which the bug arises. Other types of changes such as enhancements or new features can

touch a number of different components. For example, a new feature might require new

functionality to be added in multiple existing components, thereby resulting in chunks

that span across many components. However, such changes to separate components can

be made independently. In such cases, it is impractical to detect software system design

issues by chunk analysis. On the other hand, it is not possible to make bug-fixing

changes independently to multiple components. Identifying bug fixing chunks that touch

more than one component usually imply limitations in the information hiding design

structure of a system.

4.1 Eclipse results

 We identified chunks for CVS log data of Eclipse’s Europa release over the time

period from 02-July-2006 to 31-Dec-2007, i.e., over an interval of 18 months. We

represent this dataset as Europa. To study the evolution of chunks over time, we divided

this data into two sets of distinct datasets, each containing change data over 9 months,

31

i.e., from 02-July-2006 until 31-Mar-2007, and from 01-Apr-2007 to 31-Dec-2007,

represented as Europa-A and Europa-B respectively. The number of bug fixing MRs

concerning each of the datasets is shown in Table 4.1. We removed duplicate MRs as

discussed in Chapter 6. The change in the number of non-duplicate MRs that are bug

fixes on a quarterly basis are shown in Figure 4.1. Europa’s main release was during

June-2007, indicated by a rise in the plot.

Table 4.1: Number of bug fixing MRs in each Europa dataset

Europa Europa-A Europa-B

11042 5144 5898

After running many trials, we enforced a threshold of 80% as the minimum value

for percentage correlation of candidate chunks generated by the algorithm. In other

words, the identified chunks will have at least 80% MRs within each chunk. With the

specified threshold level, there were enough number of chunks generated for analysis.

The algorithm identified 20 chunks for Europa, 11 for Europa-A, and 16 for Europa-B.

The values for percentage correlation, size in terms of the number of files contained

within the chunk, MRs within chunk, and MRs crossing chunk for all the datasets are

listed in Table 4.2, Table 4.3, and Table 4.4.

Figure 4.1: Number of Bug Fixes in Eclipse

0
1000
2000
3000
4000

N
u

m
b

er
 o

f
b

u
g

fi
xe

s

32

Table 4.2: Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Europa

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

1E

2E

3E

4E

5E

6E

7E

8E

9E

10E

11E

12E

13E

14E

15E

16E

17E

18E

19E

20E

100

100

100

100

94.74

94.64

90.91

90.91

90.48

90

87.8

86.96

86.67

86.67

83.33

83.33

82.86

81.61

81.48

80.3

40

9

26

15

28

14

18

11

11

18

33

30

18

26

14

17

26

62

27

29

13

11

10

19

18

53

10

10

19

18

72

20

13

39

10

10

29

213

22

53

0

0

0

0

1

3

1

1

2

2

10

3

2

6

2

2

6

48

5

13

Table 4.3: Percentage correlation, size, MRs within chunk, and MRs crossing

chunk for Europa-A

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

1E-A

2E-A

3E-A

4E-A

5E-A

6E-A

7E-A

8E-A

9E-A

10E-A

11E-A

94.74

92.86

90.91

89.47

88.24

88.24

85.19

85.11

82.35

82.35

81.25

28

8

32

31

14

55

33

64

44

10

15

18

13

40

17

15

15

46

88

70

14

13

1

1

4

2

2

2

8

6

15

3

3

33

Table 4.4: Percentage correlation, size, MRs within chunk, and MRs crossing

chunk for Europa-B

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

1E-B

2E-B

3E-B

4E-B

5E-B

6E-B

7E-B

8E-B

9E-B

10E-B

11E-B

12E-B

13E-B

14E-B

15E-B

16E-B

100

100

100

100

96.77

93.1

91.67

90.91

90.91

90.91

88.24

87.04

86.79

84

83.53

80

15

40

25

13

29

27

19

27

13

15

19

39

43

26

64

20

18

13

15

10

30

27

11

10

10

10

30

47

46

21

142

12

0

0

0

0

1

2

1

1

1

1

4

7

7

4

28

3

We observed the file structure within each of these chunks to detect potential

stable chunks that might represent empirical information hiding structures, analyze how

chunks evolve over time with respect to their size, and percentage correlation, and

identify chunks that merge into a single large chunk, or chunks that split into multiple

smaller chunks over time. The percentage correlations of the top 11 chunks for each of

the three datasets is shown in Figure 4.2. We chose only the top 11 chunks to be

displayed since Europa-B has only 11 chunks, and to make comparison between the

datasets more meaningful. The percentage correlations of all identified chunks along

with their respective sizes are shown separately for all three datasets in Figure 4.3,

Figure 4.4, and Figure 4.5.

34

The following observations were made from the chunks generated from Europa,

Europa-A, and Europa-B.

 The file structure within the identified chunks is highly compact. We mapped

files within each chunk to their respective directories. According to developers

on Eclipse forums, every such directory in the CVS repository under HEAD,

which is of the form /cvsroot/platform/modules usually represents a component,

and /cvsroot/platform/ represents a subsystem. Most of the chunks contained files

that were mapped to a single destination directory, indicating a one-to-one

mapping between chunks and directories.

Inferences: We attribute this difference to the primary programming language

used by Eclipse - Java, which is an object-oriented language. Hence, chunks from

Eclipse seem more modular.

Detailed Analysis: All chunks from the three datasets that map to more than one

directory or component are listed in Table 4.5, along with the respective chunk

identifiers and, path structure of the all the components touched by each of those

chunks. For example, chunk 20E is mapped to three components

org.eclipse.ui.workbench, org.eclipse.jdt.ui, and org.eclipse.ui.ide. Although they

are all related to the UI (User Interface), they are originally designed as separate

components.

Chunk 7E-A spans across 5 components and 2 subsystems – eclipse and

tools. Such higher level couplings between subsystems might indicate the need

for code refactoring or structural redesign concerning those specific subsystems

35

and their components. Architects or developers can be further consulted to

suggest or verify such claims.

Table 4.5: Chunk to component mappings for Europa, Europa - A, and Europa-B

Dataset Chunk ID Component Mapping Paths

Europa 1E

2E

3E

4E

5E

6E

7E

8E

9E

10E

11E

12E

13E

14E

15E

16E

17E

18E

19E

20E

/cvsroot/webtools/org.eclipse.jsdt/

/cvsroot/webtools/sourceediting/

/cvsroot/eclipse/org.eclipse.pde.runtime/

/cvsroot/eclipse/org.eclipse.ui.views.log/

/cvsroot/webtools/servertools/

/cvsroot/tools/org.eclipse.cdt/

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/modeling/org.eclipse.emf/

/cvsroot/eclipse/org.eclipse.pde/

/cvsroot/eclipse/org.eclipse.update.ui/

/cvsroot/eclipse/org.eclipse.jdt.ui/

/cvsroot/modeling/org.eclipse.emf/

/cvsroot/eclipse/org.eclipse.swt/

/cvsroot/eclipse/org.eclipse.jface.text/

/cvsroot/eclipse/org.eclipse.ui.intro/

/cvsroot/tools/org.eclipse.cdt/

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/modeling/org.eclipse.emf/

/cvsroot/webtools/jeetools/

/cvsroot/webtools/webservices/

/cvsroot/eclipse/org.eclipse.swt/

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/eclipse/org.eclipse.jdt.ui/

/cvsroot/eclipse/org.eclipse.ui.ide/

Europa-A 1E-A

2E-A

3E-A

4E-A

5E-A

6E-A

7E-A

8E-A

9E-A

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/modeling/org.eclipse.emf/

/cvsroot/eclipse/org.eclipse.jdt.ui/

/cvsroot/modeling/org.eclipse.emf/

/cvsroot/eclipse/org.eclipse.jdt.ui/

/cvsroot/modeling/org.eclipse.emf/

/cvsroot/eclipse/org.eclipse.jface.text/

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/eclipse/org.eclipse.jdt.ui/

/cvsroot/tools/org.eclipse.cdt/

/cvsroot/eclipse/org.eclipse.text/

/cvsroot/eclipse/org.eclipse.jdt.ui/

/cvsroot/eclipse/org.eclipse.swt/

/cvsroot/eclipse/org.eclipse.pde.core/

/cvsroot/eclipse/org.eclipse.core.resources/

36

Dataset Chunk ID Component Mapping Paths

10E-A

11E-A

/cvsroot/webtools/jeetools/

/cvsroot/webtools/common/

/cvsroot/webtools/sourceediting/

Europa-B 1E-B

2E-B

3E-B

4E-B

5E-B

6E-B

7E-B

8E-B

9E-B

10E-B

11E-B

12E-B

13E-B

14E-B

15E-B

16E-B

/cvsroot/tools/org.eclipse.cdt/

/cvsroot/webtools/org.eclipse.jsdt/

/cvsroot/webtools/sourceediting/

/cvsroot/eclipse/org.eclipse.ui.intro/

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/eclipse/org.eclipse.debug.ui/

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/eclipse/org.eclipse.jdt.junit/

/cvsroot/eclipse/org.eclipse.ui.ide/

/cvsroot/eclipse/org.eclipse.ltk.ui.refactoring/

/cvsroot/tools/org.eclipse.cdt/

/cvsroot/tools/org.eclipse.cdt/

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/eclipse/org.eclipse.jdt.ui/

/cvsroot/eclipse/org.eclipse.ui.workbench/

/cvsroot/eclipse/org.eclipse.ui.ide/

/cvsroot/modeling/org.eclipse.emf/

/cvsroot/eclipse/org.eclipse.swt/

/cvsroot/eclipse/org.eclipse.jdt.apt.core/

/cvsroot/eclipse/org.eclipse.compare/

Figure 4.2: Percentage Correlation of Top-11 Chunks for All Eclipse Datasets

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

P
er

ce
n

ta
ge

 C
o

rr
el

at
io

n

Chunks

Europa Europa-A Europa-B

 Table 4.5: (Continued)

37

Figure 4.3: Percentage Correlation and Size of Chunks for Europa

Figure 4.4: Percentage Correlation and Size of Chunks for Europa-A

Figure 4.5: Percentage Correlation and Size of Chunks for Europa-B

 The dataset Europa generated the highest number of chunks (20), followed by

Europa-B (16), and Europa-A (11) with percentage correlation above 80%. As

seen from Figure 4.2, the percentage correlation of chunks from Europa-A is

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chunks

Percentage Correlation Size Poly. (Size)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11
Chunks

Percentage Correlation Size Poly. (Size)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Chunks

Percentage Correlation Size Poly. (Size)

38

lower than that of chunks from Europa and Europa-B. Chunks from Europa-B

appear to be relatively better than chunks from the other two datasets with

respect to percentage correlation, meaning that these chunks have tight internal

coupling between their files relative to the rest.

Inferences: 1) Since the number of bug fixing MRs is higher in Europa,

followed by Europa-B and lastly Europa-A, we hypothesize that the number of

chunks generated from each of these datasets follows the same order. This is

because more bug fixes might touch more parts of a system, thus resulting in

more chunks. However, Hamill and Goseva-Popstojanova [Hamill and

Popstojanova, 2009] noted that although non-localized faults are related to

individual bugs, they are mostly contained in a small part of the system.

2) Subsystem coupling identified in chunk 7E-A might be one reason why the

percentage correlation of chunks from Europa-A is lower.

3) Europa-A has the highest number of inter-component couplings when

compared to Europa and Europa-B, where 11 chunks are mapped to 18

components, resulting in an average of 1.63 components touched by every chunk,

followed by Europa and Europa-B, both touching 1.25 components per chunk.

The effort to make changes increases with an increase in inter-component or

subsystem couplings, thus reducing the system’s maintainability resulting in

chunks that touch multiple areas of code. This explains the lower percentage

correlation of chunks from Europa-A.

39

4) Although the average number of components touched per chunk is the same

for both Europa and Europa-B, higher number of MRs in Europa result in

modifications to relatively more parts of the system, and therefore resulting in a

higher proportion of MRs crossing respective chunks. Hence, chunks from

Europa-B are more cohesive than those from Europa.

 There is no consistent increasing or decreasing trend in size of chunks with

respect to percentage correlation as shown by the trend lines in Figure 4.3, Figure

4.4, and Figure 4.5.

Inferences: There is no association between size and percentage correlation of

chunks. Size and percentage correlation depend solely on the MRs touching a

chunk, and the coupling between files touched by these MRs. If a chunk contains

MRs that touch a wider area of code, then the size of that chunk will be large. A

tighter coupling between files touched by MRs within a chunk indicates a higher

percentage correlation.

 We observed two stable chunks. Recall that chunks are considered stable over

time if there are at least 65% of the files within the smaller chunk in common

with the larger chunk. Chunks 1E-A, and 2E-A evolved into chunks 5E, and 6E,

both having a stability of 100%. Chunks 1E-A and 5E are exactly the same.

However, both size and percentage correlation of 6E increased, making it a better

chunk (only if effort remains constant) after its evolution from 2E-A.

Inferences: It appears that both size and percentage correlation of a stable chunk

increases as it evolves over time. We do not have sufficient information to

40

confirm this conclusion since we analyzed the evolution of only one chunk (2E-

A).

 Chunks 8E-A and 9E-A appear to have merged into chunk 18E. In other words,

chunk 18E contains files that are common to both 8E-A and 9E-A, i.e., changes

that could be made independently in Europa-A merged together in a way that

changes to 8E-A requires making changes to 9E-A as well, as indicated by the

merged chunk 18E from Europa. There are 20 files common between 8E-A and

18E, while 9E-A and 18E share 17 files in common. This merging is clearly

visible when we look at the corresponding chunk 15E-B from Europa-B,

indicating that the merging occurred during the time period of Europa-B data.

Since the algorithm picks the highest correlation chunk, 18E has fewer files than

8E-A, and 9E-A combined although it is a combination of MRs involved in 8E-

A, 9E-A and 15E-B.

Inferences: Over time, coupling between files increases, thereby resulting in an

increase in difficulty to independent changes to different parts of a system.

Identification of such merging between chunks over longer time periods can

determine parts of a system that require redesign or restructuring.

4.2 Moodle results

Change history data during the time period 01-Jan-2008 to 31-Dec-2011, i.e.,

over a period of 4 years was collected for this analysis. This dataset is represented as

Moodle. For the sake of analyzing chunk evolution over time, we divided Moodle into

41

two separate datasets, over the time periods 01-Jan-2008 to 31-Dec-2009, and 01-Jan-

2010 until 31-Dec-2011, represented as Moodle-A and Moodle-B respectively. The

number of bug fixing MRs in each of the datasets is shown in Table 4.6. Duplicate MRs

were discarded as with Eclipse and discussed in Chapter 6. The change in the number of

non-duplicate MRs that are bug fixes on a half-yearly basis are shown in Figure 4.6. The

rise in the plot during Dec-2010 marks the release of Moodle 2.0, which was a major

release.

Table 4.6: Number of Bug-Fixing MRs for All Moodle Datasets

Moodle Moodle -A Moodle -B

6016 2444 3572

Figure 4.6: Number of Bug Fixes in Moodle

We enforced a threshold of 80% as the minimum value for percentage correlation

of chunks generated by the algorithm, i.e., each of the identified chunks will have at least

80% MRs within chunk, same as Eclipse. The algorithm identified 10 chunks for

Moodle, 7 for Moodle-A, and 10 for Moodle-B. The values for percentage correlation,

size in terms of the number of files contained within the chunk, MRs within chunk, and

0
500

1000
1500

2000

Ju
n

-0
8

Se
p

-0
8

D
ec

-0
8

M
ar

-0
9

Ju
n

-0
9

Se
p

-0
9

D
ec

-0
9

M
ar

-1
0

Ju
n

-1
0

Se
p

-1
0

D
ec

-1
0

M
ar

-1
1

Ju
n

-1
1

Se
p

-1
1

D
ec

-1
1

N
u

m
b

er
 o

f
B

u
g-

Fi
xi

es

42

MRs crossing chunk for all three datasets are listed in Table 4.7, Table 4.8, and Table

4.9.

Table 4.7: Percentage correlation, size, MRs within chunk, and MRs crossing

chunk for Moodle

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

1M

2M

3M

4M

5M

6M

7M

8M

9M

10M

93.53

88.24

88.24

85.06

84.51

81.68

81.3

81.3

80.77

80

26

36

10

37

13

25

38

48

10

16

130

30

15

148

60

107

100

187

21

64

9

4

2

26

11

24

23

43

5

16

Table 4.8: Percentage correlation, size, MRs within chunk, and MRs crossing

chunk for Moodle-A

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

1M-A

2M-A

3M-A

4M-A

5M-A

6M-A

87.5

87.18

84.45

84

83.56

81.44

29

27

10

15

25

25

14

102

28

21

61

136

2

15

5

4

12

31

Table 4.9: Percentage correlation, size, MRs within chunk, and MRs crossing chunk

for Moodle-B

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

1M-B

2M-B

3M-B

4M-B

5M-B

6M-B

7M-B

8M-B

93.41

89.47

86.67

85.71

84.1

83.9

83.21

82.54

12

19

10

5

28

42

55

41

85

17

13

18

37

99

109

104

6

2

2

3

7

19

22

22

43

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

9M-B

10M-B

82.04

80

37

9

233

16

51

4

The percentage correlations of the top 6 chunks for each of the three datasets is

shown in Figure 4.7. Only the top 11 chunks are displayed since Moodle-A has only 6

chunks, and to make comparison between the datasets meaningful and consistent. The

percentage correlations of all identified chunks along with their respective sizes are

shown separately for all three datasets in Figure 4.8, Figure 4.9, and Figure 4.10.

Figure 4.7: Percentage Correlation of Top-6 Chunks for All Moodle Datasets

Figure 4.8: Percentage Correlation and Size of Chunks for Moodle

75

80

85

90

95

1 2 3 4 5 6

P
er

ce
n

ta
ge

 C
o

rr
el

at
io

n

Chunks

Moodle Moodle-A Moodle-B

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10Chunks

Percentage Correlation Size Poly. (Size)

Table 4.9: (Continued)

44

Figure 4.9: Percentage Correlation and Size of Chunks for Moodle-A

Figure 4.10: Percentage Correlation and Size of Chunks for Moodle-B

The following observations were made from the chunks generated from Moodle,

Moodle-A, and Moodle-B.

 The file structure within the identified chunks is moderately compact relative to

the chunks from Eclipse data. We mapped files within each chunk to their

respective directories. We followed discussions with developers in Moodle

forums and their online documentation to understand how components are stored

in the Git repository [Moodle Docs]. Usually directories correspond to plugins

and are of the form /plugin (or subsystem)/subdirectories (component s).

Although there is no clear-cut component to directory mapping as in Eclipse, the

0

20

40

60

80

100

1 2 3 4 5 6Chunks

Percentage Correlation Size Poly. (Size)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10Chunks

Percentage Correlation Size Poly. (Size)

45

paths to various components are listed. Most of the identified chunks have a one-

to-many mapping with their corresponding file system directories, unlike those

from Eclipse data.

Inferences: As discussed earlier, we attribute this difference to the programming

language used by Eclipse, which is Java – object-oriented and has a more

modular code structure in contrast to PHP of Moodle, which is usually

considered as class-oriented or semi-object-oriented.

Detailed Analysis: All chunks from the three datasets that map to more than one

component are listed in Table 4.10, along with the respective chunk identifiers

and, path structure of all the components touched by each of those chunks. For

example, chunk 8M touches 10 components and 4 subsystems – mod, lib, admin,

and login, pointing towards re-evaluating architecture of the involved

subsystems.

Table 4.10: Chunk to component mappings for Moodle, Moodle-A, and Moodle-B

Dataset Chunk ID Component Mapping Paths

Moodle 1M

2M

3M

4M

admin/report/

admin/cli/

lib/dml/

lib/simpletest/

search/documents/

mod/hotpot/

mod/resource/

mod/glossary/

grade/report/

lib/form/

blocks/quiz_results/

mod/lesson/

mod/survey/

mod/imscp/

mod/label/

mod/page/

46

Dataset Chunk ID Component Mapping Paths

Moodle

4M

5M

6M

7M

8M

9M

10M

mod/workshop/

mod/quiz/

lib/form/

backup/

admin/roles/

admin/report/

enrol/authorize/

mod/hotpot/

mod/wiki/

calendar/

blog/

lib/geoip/

user/

lib/dml/

lib/simpletest/

lib/ddl/

mod/data/

mod/resource/

mod/lesson/

mod/scorm/

admin/roles/

admin/report/

login/

mod/assignment/

course/report/

blocks/completionstatus/

lib/simpletest/

auth/mnet/

mnet/

portfolio/mahara/

repository/remotemoodle/

Moodle-A 1M-A

2M-A

3M-A

4M-A

grade/report/

search/documents/

mod/resource/

mod/hotpot/

course/format/

backup/

admin/roles/

mod/assignment/

course/report/

mod/wiki/

mod/lesson/

enrol/authorize/

mod/scorm/

filter/

course/report/

course/import/

Table 4.10: (Continued)

47

Dataset Chunk ID Component Mapping Paths

Moodle-A 4M-A

5M-A

6M-A

enrol/

mod/data/

mod/resource/

mod/choice/

mod/scorm/

mod/lesson/

mod/folder/

mod/page/

lib/grade/

user/

mod/quiz/

mod/forum/

mod/survey/

Moodle-B 1M-B

2M-B

3M-B

4M-B

5M-B

6M-B

7M-B

8M-B

9M-B

lib/dml/

lib/filestorage/

mod/hotpot/

mod/glossary

lib/form/

search/documents/

admin/user/

mod/quiz/

calendar/

mod/feedback/

mod/chat/

mod/data/

lib/grade/

mnet/

filter/

mod/lesson/

mod/imscp/

mod/quiz/

course/report/

question/type/

question/format/

question/engine/

question/simpletest/

mod/quiz/

lib/htmlpurifier/

lib/simpletest/

lib/filestorage/

lib/pear/

blocks/navigation/

course/report/

blog/

mod/page/

mod/label/

mod/forum/

Table 4.10: (Continued)

48

Dataset Chunk ID Component Mapping Paths

Moodle-B 9M-B

10M-B

admin/roles/

lib/simpletest/

lib/filestorage/

webservice/rest/

user/

course/report/

blocks/completionstatus/

lib/simpletest/

 The datasets Moodle and Moodle-B generated the highest number of chunks (10)

with percentage correlation above 80%, followed by Moodle-A (6). As shown in

Figure 4.7, the percentage correlation of chunks from Moodle-A is lower than

that of chunks from Moodle and Moodle-B. Chunks from Moodle-B are only

slightly better than the chunks from Moodle with respect to percentage

correlation, indicating higher coupling between their files relative to the rest.

Inferences: 1) Since the number of bug fixing MRs is higher in Moodle, and

Moodle-B when compared to Moodle-A, the number of chunks generated from

both these datasets is higher than Moodle-A. Again, we hypothesize that more

bug fixes might touch more parts of the system, thus resulting in more chunks. It

is important to note that Moodle and Moodle-B have the same number of chunks

although Moodle has a higher number of bug fixes. A possible reason for this

might be that MRs in Moodle-B and Moodle span equivalent portions of the

system.

2) Moodle-A has the highest number of subsystem couplings, touching 11

different subsystems relative to Moodle (7) and Moodle-B (7) for the top-6

chunks being compared.

Table 4.11: (Continued)

Table 4.10: (Continued)

49

3) Moodle-A has the highest number of inter-component couplings when

compared to Moodle and Moodle-B, where 6 chunks are mapped to 25

components, resulting in an average of 4.17 components touched per chunk,

followed by Moodle and Moodle-B, touching 3.5 and 3.3 components per chunk

respectively. This reiterates our earlier finding that chunks from Moodle-B are

slightly better in terms of cohesiveness than those from Moodle. The effort to

make changes increases with an increase in inter-component or subsystem

couplings, thus reducing the system’s maintainability resulting in chunks that

touch multiple areas of code. This explains the lower percentage correlation of

chunks from Moodle-A. However, the average inter-component couplings per

chunk for Moodle chunks are more than twice as high as those of chunks from

Eclipse data.

 There is no consistent increasing or decreasing trend in size of chunks with

respect to percentage correlation as shown by the trend lines in Figure 4.8, Figure

4.9, and Figure 4.10.

Inferences: There is no association between size and percentage correlation of

chunks. Size and percentage correlation depend solely on the MRs touching a

chunk, and the coupling between files touched by these MRs.

 We identified three stable chunks. Chunk 1M-A evolved into chunk 2M, with

99.55% stability and 28 files in common between the two chunks. There is an

increase in both size and percentage correlation as shown in Table 4.7 and Table

4.8. Chunk 2M-A evolved into chunk 6M, with a stability of 68%, and a decrease

50

in both size and percentage correlation. Chunk 6M-A evolved into chunk 5M,

with a stability of 69.23%, and a decrease in size and increase in percentage

correlation.

Inferences: There is no association between chunk evolution and how its size

and percentage correlation changes.

4.3 Company-X results

We collected change data during the time period 01-Jan-2004 to 31-Dec-2009 for

this analysis. This dataset is represented as Company-X. We divided Company-X into

two separate datasets, over the time periods 01-Jan-2004 to 31-Mar-2007, and 01-April-

2007 until 31-Dec-2009, represented as Company-X-A and Company-X-B respectively.

The number of bug fixing MRs in each of the datasets is shown in Table 4.11. Duplicate

MRs were discarded as with Eclipse and Moodle. The change in the number of non-

duplicate MRs that are bug fixes on a half-yearly basis are shown in Figure 4.11. It

appears from the plot that major development or maintenance occurred during the period

Jun-2005 to Jun-2009, although this information is not publicly available.

Table 4.11: Number of Bug-Fixing MRs for All Company-X Datasets

Company-X Company-X-A Company-X-B

9949 4994 4955

We enforced a threshold of 70% as the minimum value for percentage correlation

of chunks generated by the algorithm, i.e., each of the identified chunks will have at least

70% MRs within chunk. We decreased the threshold since there were very few chunks

51

identified with percentage correlation above 80%. The algorithm identified 5 chunks for

Company-X, 4 for Company-X-A, and 2 for Company-X-B. The values for percentage

correlation, size in terms of the number of files contained within the chunk, MRs within

chunk, and MRs crossing chunk for all three datasets are listed in Table 4.12, Table 4.13,

and Table 4.14.

Figure 4.11: Number of Bug Fixes in Company-X

Table 4.12: Percentage correlation, size, MRs within chunk, and MRs crossing

chunk for Company-X

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

1X

2X

3X

4X

5X

78.47

78.44

75.54

74.5

73.91

12

9

8

13

20

266

291

278

263

17

73

80

90

90

6

Table 4.13: Percentage correlation, size, MRs within chunk, and MRs crossing

chunk for Company-X-A

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

1X-A

2X-A

3X-A

4X-A

100

84.56

78.95

73.33

24

27

15

28

22

115

15

11

0

21

4

4

0

500

1000

1500

2000

Ju
n

-0
4

O
ct

-0
4

Fe
b

-0
5

Ju
n

-0
5

O
ct

-0
5

Fe
b

-0
6

Ju
n

-0
6

O
ct

-0
6

Fe
b

-0
7

Ju
n

-0
7

O
ct

-0
7

Fe
b

-0
8

Ju
n

-0
8

O
ct

-0
8

Fe
b

-0
9

Ju
n

-0
9

O
ct

-0
9N
u

m
b

er
 o

f
B

u
g-

Fi
xe

s

52

Table 4.14: Percentage correlation, size, MRs within chunk, and MRs crossing

chunk for Company-X-B

Chunk ID Percentage

Correlation

Size MRs within

chunk

MRs crossing

chunk

1X-B

2X-B

89.29

80.95

44

19

25

187

3

44

Figure 4.12: Percentage Correlation of Top-2 Chunks for All Company-X Datasets

The percentage correlations of the top 2 chunks for each of the three datasets is

shown in Figure 4.12. We chose only the top 2 chunks since Company-X-B has only 2

chunks. This would make comparison between the datasets meaningful and consistent.

The percentage correlations of all identified chunks along with their respective sizes are

shown separately for all three datasets in Figure 4.13, Figure 4.14, and Figure 4.15.

Figure 4.13: Percentage Correlation and Size of Chunks for Company-X

0

50

100

150

1 2

P
er

ce
n

ta
ge

 C
o

rr
el

at
io

n

Chunks

Company-X Company-X-A Company-X-B

0

20

40

60

80

100

1 2 3 4 5Chunks

Percentage Correlation Size Poly. (Size)

53

Figure 4.14: Percentage Correlation and Size of Chunks for Company-X-A

Figure 4.15: Percentage Correlation and Size of Chunks for Company-X-B

The following observations were made from the chunks generated from

Company-X, Company-X-A, and Company-X-B.

 We do not have information about the directory structure of Company-X’s

version history repository or how components are stored. Therefore, we could not

perform any mapping between files in chunks and the corresponding components

or subsystems that they touch.

 The dataset Company-X generated the highest number of chunks (5), followed by

Company-X-A (4), and Company-X-B (2) with percentage correlation above 70%.

As shown in Figure 4.12, the percentage correlation of chunks from Company-X

is lower than that of chunks from Company-X-A and Company-X-B. Chunks from

0

50

100

150

1 2 3 4Chunks

Percentage Correlation Size Poly. (Size)

0

50

100

1 2Chunks

Percentage Correlation Size Poly. (Size)

54

Company-X-A are better than the chunks from both Company-X and Company-X-

B with respect to percentage correlation, indicating higher coupling between their

files relative to the rest.

Inferences: 1) Since the number of bug fixing MRs is higher in Company-X,

followed by Company-X-A and lastly Company-X-B, the number of chunks

generated from each of these datasets follows the same order. Our hypothesis is

that more bug fixes touch more parts of a system, thus resulting in more chunks.

2) The identified chunks are lesser in number and have relatively less correlation

when compared to chunks from Moodle and Eclipse. Additionally, there are

more bug-fixes for Company-X data than that of Moodle. As such, we speculate

that Company-X’s system architecture underwent more degradation as opposed to

Moodle and Eclipse. However, we do not have sufficient subsystem or modular

design information to prove our hypothesis.

 There is no consistent increasing or decreasing trend in size of chunks with

respect to percentage correlation as shown by the trend lines in Figure 4.13,

Figure 4.14, and Figure 4.15.

Inferences: There is no association between size and percentage correlation of

chunks. Size and percentage correlation depend solely on the MRs touching a

chunk, and the coupling between files touched by these MRs.

 We identified one stable chunk. Chunk 3X-A evolved into chunk 5X, with 100%

stability. There is an increase in size, but a decrease in percentage correlation of

chunk 3X-A after its evolution into chunk 5X.

55

Inferences: We cannot ascertain how chunk size and percentage of a chunk

changes after it evolves since we only have one evolved chunk, i.e., 3X-A.

56

CHAPTER 5. CHALLENGES IN CHUNKING ANALYSIS

This chapter discusses significant challenges faced in our analysis of chunks and

their evolution. The challenges are organized into those dealing with the data and those

dealing with the proposed algorithm in separate sections. We believe that this will

benefit those who wish to replicate the results presented in this thesis by averting the

mistakes that we made in earlier stages of this research.

5.1 Challenges of data collection and analysis

In this section, we present the difficulties and obstacles that we faced during data

collection, identifying the right type of change data required for the analysis, and during

data analysis. Our focus is on the Moodle project as the other two projects were already

refined to a certain extent when provided to us.

5.1.1 Non-compliant and multiple data sources

 During the initial data collection period, we used Moodle’s Fisheye with REST

(Representational State Transfer) service to obtain MRs from their version history

repository over the time period 01-Jan-2008 to 31-Dec-2011. Fisheye is a revision-

control browser and search engine that provides the notion of changesets and changelog,

and direct resource-based URLs. Fisheye’s REST APIs provide access to data entities

via URI (Uniform Resource Identifier). An URI is a string of characters used to identify

a name or a web resource over a network, such as the World Wide Web using specific

network protocols. Moodle’s Fisheye service provides access to revision data from

specific repositories by making HTTP (Hypertext Transfer Protocol) requests and

57

obtaining data in the form of XML or JSON responses. XML (Extensible Markup

Language) is a simple text format for encoding documents or web resources in both

human readable and machine readable form, and is inefficient as a data interchange

format. JSON (JavaScript Object Notation) is a light weight human readable data

interchange format, with all the advantages of XML and well suited for data interchange.

Moodle has two main repositories concerning changes made to their source code

[Moodle].

 Moodle Integration: When a contributor commits changes and pushes them into

his public repository, Moodle integrators pull these changes from there and if

they like them, they put them into the Moodle Integration repository.

 Moodle Production: The integrated changes from the Moodle Integration

repository are tested, and if passed, are pushed into the Moodle Production

repository.

The development workflow of Moodle is depicted in Figure 5.1, along with their

repositories and the steps involved in applying changes to the source code. The

Integration repository is named as integration.git, while the Production repository is

named as moodle.git in GitHub. This separation of the two repositories was not

documented anywhere in their Fisheye service page, and as such we extracted change

data from their Integration repository instead of the Production repository, which

58

Figure 5.1: Moodle Development Workflow Using Git [Moodle]

contains changes that are actually applied to their source code. We discovered the

difference between the two repositories when we observed a few commits that were

listed as bug fixes, but did not modify any files. Description of the related issue and

other comments related to such commits showed that these changes dealt with branch

merges in the repository, which are of no interest since they do not change any file and

are not really bug fixes. As such, we decided to use MRs from the Moodle Production

repository since integration commits are eliminated from the Production repository. We

also obtained MRs from Moodle’s Git repository (moodle.git) as an alternative data

source. After comparing both datasets containing change data from 01-Jan-2008 to 31-

Dec-2011, we found that Fisheye and GitHub had a different number of MRs over the

same time period. For example, during that time period, there were 5154 bug-fixing

commits using Fisheye against 6066 bug-fixing commits in GitHub. This inconsistency

between the datasets obtained from GitHub and Fisheye created uncertainty as to which

data source to use for our analysis.

59

We collected a sample of 50 non-matching commits between the two datasets

and observed that they were commonly present in both datasets with the same

description, author, timestamp and affecting the same set of files, but with a different

commit ID. Fisheye might have its own repository different from Git, or an integration

of multiple different public repositories, and hence a different list of MRs. Also, there

are certain MRs in GitHub that are missing from the dataset obtained using Fisheye, for

reasons that are unknown and undocumented. Based on information from Moodle

forums and their JIRA issue tracker, we found that Moodle is planning to replace their

Fisheye service with either Stash or by linking issues directly to GitHub. In addition,

Fisheye is a web service, which is slow and inefficient when compared to cloning the Git

repository, which is a faster and more reliable way of obtaining Moodle’s version history

data. Hence, we decided to use MRs obtained from the Git repository as the dataset to be

used in this work. It is important to note that there are inconsistencies between the Git

repository and Production repository.

5.1.2 Does a commit correspond to a single bug fix?

Changes that touch more than 100 files do not correspond to meaningful

modification requests [Ying et al., 2004]. We found certain bug-fixing commits in the

Moodle dataset that touched more than 500 files, which made us skeptical that they

really corresponded to an atomic bug fix. We looked into a sample of 30 bug-fixing

commits that touched more than 100 files to check if they are originally multiple bug

fixes that were committed together. We found that the majority of them were auto-

installed header changes or library imports, which clearly do not represent a single bug-

60

fix, but rather multiple bug fixes committed as a single change. For example, in the

Moodle dataset, there is an MR that touched 633 files, and involves replacing file

permissions of a number of arbitrary files from 755 (executable) to the right permission,

644. The files that were touched by this MR were spread all across the repository and

hence mapped to many directories in the Git repository, indicating that it probably

touched more than one component. However, one might be able to design the system in

such a way that only one component knows the file permission for each file. A change of

such file permissions would then require a change to that component only, and such a

component would represent a chunk.

There are other instances where it is difficult to make a clear judgment if a

commit corresponds to exactly one bug fix for a variety of reasons that include lack of

documentation, clarity in issue description or comments, lack of experience in

distinguishing such commits, etc. This ambiguity hampers a primary assumption in our

analysis that each commit represents a single MR. As such, the algorithm identified

independent chunks out of which one chunk touched more than 2000 files while the

remaining chunks together touched less than 300 files, thus resulting in a bias in our

analysis of the generated chunks. Hence, we excluded MRs that touched 50 files or more

from our analysis. We view this as reducing the number of false positives in chunk

identification.

Still speculative of the results, we again picked a sample of all commits that

touched 20 files or more and less than 50 files and distinguished them into single or

multiple bug-fixing MRs based on the description and comments from developers who

61

fixed the issue [Moodle tracker]. If the commit description and related documentation

hints at a single bug that is fixed by the commit, we refer to that commit as a single bug-

fixing MR. Otherwise, if the commit description points towards fixing more than one

bug, we refer to that commit as a multiple bug-fixing MR. After review by Weiss and

Mockus, who are well acquainted with and share a good knowledge of software chunks,

we observed that 12 out of 24 commits, i.e. 50% of the commits from the sample that we

picked, were in fact multiple bug fixes listed as a single commit. Therefore, we thought

it pertinent to exclude commits that touch more than 20 files from our analysis to ensure

that each bug fix corresponds to a single MR. Such commits account for about 99.6% of

all bug-fixing commits; almost no data is lost during this filtering process.

Considering such cases makes it clear that identification and analysis of chunks

must include careful manual data analysis. In other words, validating the data is critical.

5.1.3 No availability of sources to verify hypotheses

There is no design documentation accessible for any of the projects studied in

this work in order to verify our hypothesis that chunks represent design modules and to

confirm the suggested source code or structural refactorings. It is possible that the

algorithm identifies chunks that are extremely large, i.e., they contain more than 200

files, and yet have a very small percentage of MRs crossing the chunk. Our hypothesis is

that when chunks grow that large in size, they might be representing changes to most of

an entire module, component or a subsystem. Again, there is no way to verify this unless

we discuss it with an architect or developer who is familiar with the architecture or

62

design structure of the system, or have access to appropriate design artifacts, such as the

modular structure, or interface specifications. For both Eclipse and Company-X projects,

we were not provided with any similar or corresponding design documentation. We were

also unable to locate such information anywhere in their available online

documentations.

5.2 Algorithmic challenges

As discussed in Chapter 3, the algorithm picks a random set of files from which

the optimization criteria used for evaluation, i.e., percentage correlation and MRs

crossing chunk, are calculated. This set of files forms the initial candidate chunk only if

it meets the optimization threshold. The process is repeated, and the initial candidate

chunk is replaced by another candidate only if it has a higher percentage correlation

while still satisfying the threshold value for MRs crossing chunk. When the algorithm

terminates after a certain specified time interval, we get the chunk with the highest

percentage correlation.

After a detailed analysis of the top ten resulting chunks identified by one of the

algorithms in the family of algorithms discussed in Chapter 3, different from the

algorithm used in this study, we observed that they were not independent. i.e., there were

files common among multiple chunks. This is because we overlooked the notion that

chunks are independent by definition. Therefore, a clear understanding of the concept of

chunks is paramount in arriving at the right algorithm for chunk identification. We fixed

this issue by removing the files and MRs within the generated chunk from the files and

63

MRs being considered to identify the next chunk, thus eliminating the possibility of

chunks sharing files between them.

It also took us a considerable amount of time to discover that another algorithm

in the family of algorithms identifies multiple chunks as a single chunk, resulting in

chunks with sub-chunks. As an example, two independent chunks each with 80%

correlation can be identified as a single chunk with a percentage correlation of 80% if

the algorithm randomly picks a subset of files that constitute the two independent

chunks. This is an undesirable aspect since it is possible that such an algorithmic

approach can identify a chunk that contains changes touching an entire subsystem by

assimilating multiple chunks that independently change different parts of that subsystem.

This makes it impossible to identify structural weaknesses at the component level or

other lower levels of the system design. We identified this shortcoming of the algorithm

by observing that files contained in a chunk came from different components as

indicated by their file paths. A combination of one-time changes, i.e., changes such that

files touched by such changes are not affected by any other changes, will not have any

MRs crossing chunk, thus resulting in false perfect chunks. We resolved this issue by

enforcing the constraint that every file in a chunk is modified together with at least one

other file in the same chunk, and excluding changes that touch less than two files. Such

issues cannot be identified easily unless one has a deep understanding of the change data

being studied, the logical couplings generated by such data, and their relation to chunks.

Also note that there may be many potential chunks in a large system, but if no changes

are made to the parts of the system where they reside, then they will never be detected

64

by the algorithm. Chunks can only be identified where there is considerable change

going on.

65

CHAPTER 6. VALIDATION

As in any study dealing with data from open source projects with undergoing

development, it is of importance to understand and clean the data, and to ensure that both

the data and the algorithm used for analysis are correct and useful. Reliability of data

and the proposed algorithmic approach is important to replicate the findings as well as to

strengthen our analysis. In this chapter, a detailed description of our validation and

verification processes is presented to provide guidance and confidence to those who

wish to use the chunking approach, either with the same data used in this study, or

version history data of other projects. The methods used to validate data and approach

are organized into separate sections.

6.1 Validation of data

Verification of change data from different projects is crucial to ensure that we

have used the right data for the algorithm to identify valid chunks. A fundamental

assumption of our approach in this regard is that every commit in the repository is

equivalent to a single MR. As discussed in Chapter 5, we only included MRs that

touched 20 files or less for the identification and analysis of chunks presented in this

thesis. For Moodle data, for validation purposes, we collected and manually inspected a

random sample of 50 MRs that touched 20 files or less in order to make sure that each

MR corresponded to a single change request in general and, a single bug fix in

particular. After a careful observation of developers’ comments on how the issue was

66

resolved, and description of the issue, we found that about 92% of them represented

single changes. These results were again cross-verified by Mockus and Weiss.

We also observed that there were multiple duplicates of a few commits, with the

same author, description of change, timestamp, and touching the same set of files, but

with different commit IDs. Such duplicates usually arise when a developer accidentally

commits the same change more than once. Since it is difficult and time consuming to

identify all duplicates and exclude such commits in large datasets, we ensured that such

duplicate MRs do not have any effect on the chunks generated by the algorithm by

imposing a constraint to disallow duplicates files within a chunk. Therefore, there is no

increase or decrease in chunk size, or the number of chunks obtained even if there are

duplicate MRs in the datasets. However, we excluded duplicates from our datasets for

the purpose of analysis in this thesis.

Eclipse data provided by Krishnan was validated, and discussed in his work

[Krishnan, 2013]. In order to validate if the collected data represented the real picture,

Krishnan and his team communicated with developers at Eclipse through forums that

were actively maintained by Eclipse community. The bug database provided to us was

originally provided to Krishnan by a developer team at Eclipse, and this database is

actively used by the developers. The fields in the bug database are verified by the

developer who fixes the bug, in case it is wrongly entered by a user. Hence, we can place

confidence that issues stored in this database are actually bug fixes as required for our

analysis since it is maintained and supervised by developers who make changes and,

commit fixes for the bugs. For the Europa dataset used in this work, six-digit strings

67

from the CVS log data were matched to bug IDs in the bug database. A manual review

was performed to confirm that no entries containing the word “bug” existed, which were

not caught by the performed pattern matching. To ensure that data resulting from

different sources contained matching file names, instances of a certain file pattern was

removed from all files to make them uniform. A CVS rlog tool with date filtering was

used to make sure that all data sources covered the same time periods.

Although we do not have any issue descriptions for each commit or MR for

change data from Company-X, we are confident of its validity as it has been verified by

developers and architects at Company-X.

6.2 Validation of algorithm

We performed a mapping of files within a chunk to the corresponding directory

to which it belongs in the Moodle Git repository. A chunk consisting of mappings to a

large number of different directories might indicate the possibility of sub-chunks within

that chunk. So, we manually inspected the MRs within the generated chunks to make

sure that every file has been changed together with at least one other file within that

chunk, so as to validate that the resulting candidates are in fact chunks rather than just a

set of highly coupled files, and that they are atomic without any sub-chunks. We also

verified that every MR touching the chunk has at least one file modified by that MR

within that chunk. We used a Python script to detect any common file names between

the chunks generated by the algorithm. This ensures that the algorithm identifies

68

independent chunks. Thus, we can place confidence that our algorithm identifies valid

chunks from version history information.

69

CHAPTER 7. CONCLUSION AND FUTURE WORK

This chapter discusses the limitations of this work and scope for future work in

the field of software measurement using chunks and presents the conclusions drawn

from this work.

7.1 Conclusions

This thesis is an attempt to analyze tightly coupled changes represented by

chunks in large software projects that can assist in improving software design and

implementation methods. This work can be replicated by using any alternative

algorithmic approach that can identify areas of code in a software system that tend to

change together. The backbone for generating valid chunks is to collect the right type of

change history data consisting of MRs that correspond to individual single changes,

along with information about each MR, such as the type of change, time of change, and

files touched by the change. Our approach can be used to identify chunks in any

software project, provided it has the required change data available in its version history

repositories. This work can be further extended to incorporate information such as

developer effort, subsystem or module artifacts that can strengthen the findings in this

thesis.

The conclusions drawn from this thesis are as follows.

 We have successfully identified and analyzed chunks in three major software

projects – Eclipse, Moodle, and Company-X.

70

 Chunks from Eclipse are highly modular and more structured with respect to the

file structure within each chunk, and have a higher coupling between the files

constituting them, followed by Moodle and Company-X in that order. This may

be because Eclipse uses Java as its primary programming language, object-

oriented while Moodle’s PHP is only semi-object-oriented and Company-X uses

mostly C.

 There is no association between chunk size and percentage correlation.

 A higher number of inter-component or subsystem couplings requires making

many changes since making a change in one component requires changes to

other components as well, thus resulting in a decrease in percentage correlation

within chunks. Percentage correlation of chunks and maintainability of the

system are therefore inversely correlated.

 As a system evolves over time, making further changes becomes increasingly

difficult due to multiple reasons as discussed in Chapter 1. The evidence was

given by Gall and others in their work [Gall et al., 1998]. Therefore we

hypothesized that as chunks evolve, there will be an increase in size and a

decrease in percentage correlation. This is because over time making a change

requires touching more areas of code, with increasing dependencies between

components or subsystems leading to an increase in size and a decrease in

percentage correlation. However, we could not verify this due to insufficient

number of chunk evolutions in Eclipse, Moodle, and Company-X.

71

 We identified merging of chunks over time in Eclipse into a chunk with reduced

percentage correlation and relatively less cohesive (lesser percentage correlation)

than the merging chunks. This suggests that over time, coupling between files

increases, thereby resulting in an increase in difficulty to independent changes to

different parts of a system, and indicates that the components touched by these

chunks might require refactoring or redesign.

7.2 Limitations and future work

A major limitation of this thesis is the non-availability of design documentation,

such as a module guide of the type discussed by Parnas, Clements, and Weiss [Parnas et

al., 1985], uses structure, or module interface specifications. Hence, we could not find

any substantial evidence or proof that chunks represent design modules and are not just

empirical constructs. Mapping chunks to modules of a software system can provide wide

scope for locating defects in software design or limitations in implementation techniques

followed in the organization or company. If a chunk is mapped to more than one module,

it might suggest necessary source code refactoring. On the other hand, mapping of one

or more chunks to the same module might indicate probable flaws in the system’s

modular design, i.e., it is possible that the module contains more than one design

decision, and can be therefore decomposed into two or more modules.

Studying evolution of chunks over time can help answer many questions or

hypotheses with respect to chunks and their attributes. An increase in the size of chunks

over time along with an increase in effort might provide a measure of difficulty to make

72

a further change as software evolves. It might also indicate increasing inconsistencies

between how a system is designed, and how it is actually being implemented, which puts

forth the need to refactor code, in such a way that it conforms to its design as closely as

possible. Identifying such necessary refactorings earlier in a project’s life cycle can

prevent further decay of the system’s architecture, and save time and effort for making

future changes to software. We can also evaluate developer performance over time by

taking into account developer information, such as proportion of total changes made

within a chunk, effort in terms of the number of hours spent in making all changes

within a chunk, complexity of committed changes, and proportion of changes crossing

chunk. Developers who make a higher number of changes with as few changes crossing

a particular chunk as possible may have better performance relative to others with

respect to making changes that conform to a system’s design. Also, tracking the effort

spent per chunk along with the complexity of changes made and the percentage of

changes crossing that chunk can give insights into how a developer’s performance

evolves over time with respect to making changes that are consistent with a system’s

design.

It would be of interest to see how software maintainability changes by observing

how total effort spent on making all changes within a stable chunk evolves over time. An

increase in effort indicates a decrease in code maintainability and vice versa.

Maintainability can also be determined by identifying similar changes over a time

period, and observing how the number of files touched by such MRs changes over time.

Alternatively, identifying stable chunks and determining trends in their size with respect

73

to the number of files can expose trends in maintainability of a system. An increase in

chunk size would imply a decrease in the system’s maintainability. Additionally,

mapping each of the MRs crossing a chunk to the respective modules can uncover

hidden inter-modular couplings. An increase in number of such couplings points towards

decreasing maintainability.

The concept of stability can be further strengthened by considering other

measures such as effort. Even if a chunk grows or shrink in size over time, if the effort

remains constant, then we might call such a chunk a stable chunk, while considering that

at least 65% of the files remain constant over its evolution. Also, considering LOC for

size of a chunk rather than the number of files might prove to be a better measure.

We believe that this work is a small leap towards providing empirical evidence

for information hiding design shortcomings of a software system by using chunks. We

hope that this work paves way for further research in the field of software chunking.

74

BIBLIOGRAPHY

Arnold R. S. Software Reengineering. In Proceedings of the IEEE Computer Society

Press, 1993.

Bieman, J. M., Andrews, A. A., and Yang, H. J. Understanding change-proneness in OO

software through visualization. In Proceedings of the 11th International Workshop on

Program Comprehension, pages 44–53, May 2003.

Breu, S., Zimmermann, T., and Lindig, C. Mining Eclipse for Cross-Cutting Concerns.

In Proceedings of the 2006 International Workshop on Mining Software Repositories,

MSR ’06, pages 94-97, 2006.

Constantine, L., Myers, G., Stevens, W. Structured Design. Book, Classics in Software

Engineering, pages 205-232, 1979.

D’Ambros, M., Lanza, M., and Robbes, R. On the Relationship between Change

Coupling and Software Defects. In Proceedings of the 16th Working Conference on

Reverse Engineering, WCRE ’09, pages 135-144, Oct. 2009.

Gall, H., Hajek, K., and Jazayeri, M. Detection of Logical Coupling Based on Product

Release History. In Proceedings of the International Conference on Software

Maintenance, ICSM ’98, pages 190-198, Nov. 1998.

Gall, H., Jazayeri, M., and Krajewski, J. CVS Release History Data for Detecting

Logical Couplings. In Proceedings of the 6th International Workshop on Principles of

Software Evolution, IWPSE ’03, pages 13-23, 2003.

Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. Predicting Fault Incidence Using

Software Change History. IEEE Transactions on Software Engineering, 26(7):653-661,

2000.

Griswold, W. G., and Notkin, D. Automated Assistance for Program Restructuring.

ACM Transactions on Software Engineering and Methodology, 2(3):228-269, July 1993.

Hamill, M., Goseva-Popstojanova, K. Common Trends in Software Fault and Failure

Data. IEEE Transactions on Software Engineering, 35(4):484-496, July 2009.

Herbsleb, J. D., Mockus, A., Finholt, T. A., and Grinter, R. E. An Empirical Study of

Global Software Development: Distance and Speed. In Proceedings of the 23rd

International Conference on Software Engineering, ICSE ’01, pages 81-90, 2001.

75

Horwitz, S. Identifying the semantic and textual differences between two versions of a

program. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 234–245, June 1990.

Krishnan, S. Evidence-based Defect Assessment and Prediction for Software Product

Lines. PhD Thesis, Iowa State University.

Mockus, A., and Weiss, D. M. Globalization by Chunking: A Quantitative Approach.

IEEE Software, 18(2):30-37, Mar./Apr. 2001.

Mockus, A., and Weiss, D. M. The Chunking Pattern. DAPSE, 2013.

Neamtiu, I., Foster, J. S., and Hicks, M. Understanding Source Code Evolution Using

Abstract Syntax Tree Matching. In Proceedings of the 2005 International Workshop on

Mining Software Repositories, MSR ’05, pages 1-5, 2005.

Parnas, D. L. On the Criteria To Be Used in Decomposing a System into Modules.

Communications of the ACM, 15(12):1053-1058, Dec. 1972.

Parnas, D. L. Software Aging. In Proceedings of the 16th International Conference on

Software Engineering, ICSE-16, pages 279-287, May 1994.

Parnas, D. L., Clements, P. C., and Weiss, D. M. The Modular Structure of Complex

Systems. IEEE Transactions on Software Engineering, 11(3):259-266, 1985.

Pearse, T., and Oman, P. Maintainability Measurements on Industrial Source Code

Maintenance Activities. In Proceedings of the International Conference on Software

Maintenance, ICSM ’95, pages 295-303, 1995.

Steff, M., and Russo, B. Co-evolution of Logical Couplings and Commits for Defect

Estimation. In Proceedings of the 9th IEEE Working Conference on Mining Software

Repositories, MSR ’12, pages 213-216, 2012.

Weiss, D. M. and Lai, C. T. R. Software Product-Line Engineering: A Family-based

Software Development Process. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1999.

Wong, S., Cai, Y., Kim, M., and Dalton, M. Detecting Software Modularity Violations.

In Proceedings of the 33rd International Conference on Software Engineering, ICSE

’11, pages 411-420, 2011.

Yang, W. Identifying Syntactic Differences between Two Programs. Software - Practice

and Experience, 21(7):739–755, 1991.

76

Ying, A. T. T., Murphy, G. C., Ng, R., and Chu-Carroll, M. C. Predicting Source Code

Changes by Mining Change History. IEEE Transactions on Software Engineering,

30(9), pages 574-586, 2004.

Zimmermann, T., Diehl, S., Zeller, A. How History Justifies System Architecture (or

Not). In Proceedings of the 6th International Workshop on Software Evolution, pages

73-83, 2003.

Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S. Mining Version Histories to

Guide Software Changes. IEEE Transactions on Software Engineering, 31(6):429-445,

2005.

Moodle.git. In Moodle Git repository. Retrieved Feb, 2013, from

http://git.moodle.org/gw. Used Feb, 2013 to May, 2013.

Issues. In Moodle issue tracker. Retrieved Aug, 2012 to May, 2013, from

https://tracker.moodle.org/browse/MDL. Used Aug, 2012 to May, 2013.

Plugins. In Moodle documents. Retrieved Mar, 2013 from

http://docs.moodle.org/dev/Plugins. Used Mar, 2013.

Development workflow for Git. In Moodle documents for developers. Retrieved Apr,

2013, from http://docs.moodle.org/dev/Git_for_developers. Used May, 2013.

http://git.moodle.org/gw
https://tracker.moodle.org/browse/MDL
http://docs.moodle.org/dev/Plugins
http://docs.moodle.org/dev/Git_for_developers

77

APPENDIX. ALGORITHM IMPLEMENTATION

The Python script used in this work to implement the algorithm for chunk

identification is as follows.

#required imports

import random

import heapq

import datetime

import sqlite3

import time

import sys

import copy

from operator import itemgetter

from collections import OrderedDict

class ModReq:

 def __init__(self, _id, _files):

 self.id = _id

 self.files = set(_files)

78

 def doesTouch(self, id):

 return id in self.files

 def getFiles(self):

 return self.files

class SingleFile:

 def __init__(self, _id, _name):

 self.name = _name

 self.id = _id

 self.mrs = set()

 def getName(self):

 return self.name

 def getID(self):

 return self.id

 def getTouchingMRs(self):

 return self.mrs

79

 def addTouchingMR(self, other):

 self.mrs.add(other)

 def __repr__(self):

 return self.name

 def __str__(self):

 return self.name

Given a sequence, seq, returns a random element of seq

def randomElement(seq):

 return list(seq)[random.randint(0, len(seq) - 1)]

#initializes a chunk candidate

class ChunkCandidate:

 def __init__(self):

 self.filesConsidered = 0

 self.optionsTested = 0

 self.files = set()

 self.mrs = set()

 self.correlation = 0.0

80

 self.MRsWithin = 0

class Chunker:

 def __init__(self, pathToDB):

 # Set to true if we can use RAM to cache data

 # If true, all MRs will be cached by the end of initialization (prior to calling

getPercentWithinChunk)

 self.useRAM = True

 self.error = False

 if self.useRAM:

 self.MRtoFilesDict = dict()

 self.FiletoMRsDict = dict()

 self.FileIDtoNameDict = dict()

 self.paused = False

 self.candidatesTried = 0

 self.dbname = pathToDB

 # Initialize database connection

 conn = sqlite3.connect(self.dbname)

 conn.text_factory = str

81

 self.dbcursor = conn.cursor()

 # Start by getting all of the changesets we're dealing with

 query = "select changesets.id from changesets where issuetype='problem' and

filecount<=20 and datetime(date,'unixepoch','localtime')<'2010-01-01' and

datetime(date,'unixepoch','localtime')>='2007-04-01';"

 self.dbcursor.execute(query)

 # At this point, dbcursor contains our results. We need to store the data it provides

before we can use it to execute another query

 activeCSIDs = self.dbcursor.fetchall()

 self.files = set()

 self.mrs = set()

 self.allMR = set()

 # These lines just create a set of all files touched by all active CSIDs - this speeds

up processing later

 if self.useRAM:

 for csid in activeCSIDs:

 tempSet = self.getCSFiles(csid[0], self.dbcursor)

 self.mrs.add(csid[0])

82

 self.allMR.add(csid[0])

 self.files |= tempSet

 self.MRtoFilesDict[csid[0]] = tempSet

 else:

 for csid in activeCSIDs:

 self.mrs.add(csid[0])

 self.files |= self.getCSFiles(csid[0], self.dbcursor)

 # End result is that self.files is the set of all files affected by active CSIDs

 # If self.useRAM is set, self.MRtoFilesDict is a dictionary (map) from CSIDs to

their files, which lets us skip future database queries

Return best candidate after timelimit; sets self.error to true if ctrl-c is captured

 def getNext(self, timeLimit):

 retChunks = []

 MRsTested = set()

 selMR = set()

 retVal = ChunkCandidate()

 retVal.filesConsidered = len(self.files)

 startTime = time.time()

83

 endTime = timeLimit + startTime

 print "init"

 while True:

 if not self.paused:

 try:

 selMR = self.mrs-MRsTested

 if len(selMR)==0:

 return retVal

 randMR = randomElement(selMR)

 # Randomly select MR that affects more than 5 files

 if len(self.MRtoFilesDict[randMR]) < 5:

 continue

 print "rand" + str(randMR)

 if randMR not in MRsTested:

 MRsTested.add(randMR)

 # Temporary chunk created, if it meets the correlation threshold, it is added

to the candidate chunks

 tempRetVal = ChunkCandidate()

84

 curMR = randMR

 curSet=set()

 curSet = self.getCSFiles(curMR, self.dbcursor)

 MRsWithin = self.getMRsWithinChunk(curSet, self.dbcursor)

 correlation = self.getPercentWithinChunk(curSet, self.dbcursor)

 print "MRs within chunk" + str(MRsWithin) + "correlation" +

str(correlation)

 if correlation >= tempRetVal.correlation:

 tempRetVal.MRsWithin = MRsWithin

 tempRetVal.correlation = correlation

 tempRetVal.files = curSet

 mrList = set()

 mrList.add(randMR)

 if tempRetVal.correlation >= retVal.correlation and tempRetVal.correlation

>=70 and tempRetVal.MRsWithin >= 10:

 retVal.MRsWithin = tempRetVal.MRsWithin

 retVal.correlation = tempRetVal.correlation

85

 retVal.files = tempRetVal.files

 retVal.optionsTested = tempRetVal.optionsTested

 while tempRetVal.correlation > 60.0:

 fileset = set()

 tempFileSet = set() #todo

 temp = set() #set of all MRs that touch curSet

 tempCurset = copy.deepcopy(curSet)

 # Store all the MRs that affect the files in question in temp

 for f in curSet:

 tempMRs = self.getFileCSs(f, self.dbcursor)

 temp |= tempMRs

 # Remove the MR randomly chosen from this list because we have already

considered the files it affects

 for m in mrList:

 if m in temp:

 temp.remove(m)

 if len(temp)==0:

 break

86

 #Find a list of all files touched by the MRs in temp

 for mr in list(temp):

 tempFileSet |= self.getCSFiles(mr, self.dbcursor)

 tempFileSet = tempFileSet - tempCurset

 #Add each file to curSet to see if correlation increases, keep file if it does,

else go to next

 for file in list(tempFileSet):

 f=set()

 f.add(file)

 shouldBreak = time.time() > endTime

 if shouldBreak:

 if tempRetVal.correlation >= retVal.correlation and

tempRetVal.correlation >=70 and tempRetVal.MRsWithin >= 10:

 retVal.MRsWithin = tempRetVal.MRsWithin

 retVal.correlation = tempRetVal.correlation

 retVal.files = tempRetVal.files

 retVal.optionsTested = tempRetVal.optionsTested

 return retVal

87

 tempRetVal.optionsTested = tempRetVal.optionsTested + 1

 tempSet = set()

 tempSet = copy.deepcopy(curSet)

 tempSet |= f

 MRsWithin = self.getMRsWithinChunk(tempSet, self.dbcursor)

 correlation = self.getPercentWithinChunk(tempSet, self.dbcursor)

 if correlation >= tempRetVal.correlation:

 tempRetVal.MRsWithin = MRsWithin

 tempRetVal.correlation = correlation

 tempRetVal.files = tempSet

 curSet = tempRetVal.files

 if len(tempCurset)==len(curSet):

 break

 # Adds chunk only if temporary chunk has the number of crossing MRs less

than that of current chunk

 if tempRetVal.correlation >= retVal.correlation and tempRetVal.correlation

>=70 and tempRetVal.MRsWithin >= 10:

 retVal.MRsWithin = tempRetVal.MRsWithin

88

 retVal.correlation = tempRetVal.correlation

 retVal.files = tempRetVal.files

 retVal.optionsTested = tempRetVal.optionsTested

 shouldBreak = time.time() > endTime

 if shouldBreak:

 print str(len(retVal.files))

 return retVal

 except KeyboardInterrupt:

 self.error = True

 return retVal

 def pause(self):

 self.paused = True

 def resume(self):

 self.paused = False

 def getPercentWithinChunk(self, files, cursor):

89

 setOfMRsForFiles = set()

 if len(files) == 0:

 return 0

 for file in files:

 setOfMRsForFiles |= self.getFileCSs(file, cursor)

 numMRs = len(setOfMRsForFiles) * 1.0

 if numMRs == 0:

 return 0

 MRsContained = 0.0

 for mr in setOfMRsForFiles:

 if self.getCSFiles(mr, cursor).issubset(files):

 MRsContained = MRsContained + 1

 return (MRsContained / numMRs) * 100.0

 def getMRsWithinChunk(self, files, cursor):

 setOfMRsForFiles = set()

 if len(files) == 0:

90

 return 0

 for file in files:

 setOfMRsForFiles |= self.getFileCSs(file, cursor)

 numMRs = len(setOfMRsForFiles) * 1.0

 if numMRs == 0:

 return 0

 MRsContained = 0.0

 for mr in setOfMRsForFiles:

 if self.getCSFiles(mr, cursor).issubset(files):

 MRsContained = MRsContained + 1

 return MRsContained

 def getCSFiles(self, int_id, cursor):

 if self.useRAM:

 if int_id in self.MRtoFilesDict:

 return self.MRtoFilesDict[int_id]

 query = "SELECT links.file_id FROM links WHERE cs_id=" + str(int_id) + ";"

 retval = set()

91

 cursor.execute(query)

 for row in cursor:

 retval.add(row[0])

 return retval

 def getFileCSs(self, int_id, cursor):

 #print int_id

 if self.useRAM:

 if int_id in self.FiletoMRsDict:

 return self.FiletoMRsDict[int_id]

 query = "SELECT links.cs_id FROM links WHERE file_id=" + str(int_id) + ";"

 retval = set()

 cursor.execute(query)

 for row in cursor:

 if row[0] in self.allMR:

 retval.add(row[0])

 return retval

 def fileIDtoName(self, int_id, cursor):

92

 if self.useRAM:

 if int_id in self.FileIDtoNameDict:

 return self.FileIDtoNameDict[int_id]

 query = "SELECT files.filename FROM files WHERE id=" + str(int_id) + ";"

 cursor.execute(query)

 result = cursor.fetchone()[0]

 if self.useRAM:

 self.FileIDtoNameDict[int_id] = result

 return result

#returns the text to be written to the output file – chunks with file names of files within

each chunk and percentage correlation, MRs within and crossing chunk

 def stringifyCandidate(self, result, cursor):

 setOfMRsForFiles = set()

 if len(result.files) == 0:

 return 0

 print result.files

 for f in result.files:

 setOfMRsForFiles |= self.getFileCSs(f, cursor)

93

 numMRs = len(setOfMRsForFiles) * 1.0

 if numMRs == 0:

 return 0

 MRsContained = 0.0

 for mr in setOfMRsForFiles:

 if self.getCSFiles(mr, cursor).issubset(result.files):

 MRsContained = MRsContained + 1

 print str(MRsContained) + " " + str(result.correlation)+ "

"+str(MRsContained/numMRs)

 retval = "\n\n" + str(result.correlation) + "% correlation within chunk made up of "

+ str(result.MRsWithin) + " MRs within chunk and " + str(numMRs) + " total

MRs and size " + str(len(result.files)) + ":\n" + "\n".join([self.fileIDtoName(file,

cursor) for file in result.files])

 return retval

 def updateParameters(self, **kwargs):

 if "minFiles" in kwargs:

 self.minFilesPerChunk = kwargs["minFiles"]

94

 if "maxFiles" in kwargs:

 self.maxFilesPerChunk = kwargs["maxFiles"]

if __name__ == "__main__":

 # Set to the path of your database on your hostname (this allows easier testing with

svn checkouts on different machines

 # Socket.gethostname() returns the hostname of your machine (doesn't actually require

that a socket be created)

 import socket

 if socket.gethostname() == 'Rac-Twin':

 dbname = 'companyx.db'

 print "Start"

 c = Chunker(dbname)

 results = []

 for i in range(int(sys.argv[1])):

 print "Starting to process a chunk with " + str(len(c.files)) + " still under

consideration.\n"

 results.append(c.getNext(int(sys.argv[2])))

95

 # list index -1 is last element; this removes the previously returned files

 # from consideration for the next chunk - a file can belong to at most one chunk

 c.files = c.files - results[-1].files

 setOfMRsForFiles = set()

 if len(results[-1].files) == 0:

 continue

 if len(c.files) == 0:

 break

 for file in results[-1].files:

 setOfMRsForFiles |= c.getFileCSs(file, c.dbcursor)

 # Remove MRs already in a chunk for the next candidate chunk as we are looking

for independent chunks

 for mr in setOfMRsForFiles:

 if mr in c.mrs:

 c.mrs.remove(mr)

 if c.error:

 break

 print "Printing results to ./out.dat and exiting\r\n"

96

 f = open("C:\Python27\AvayaNewLast." + str(datetime.date.today()) + ".txt", 'a')

 f.write("\n" + '-' * 80 + "\n")

 f.write("\n" + str(datetime.datetime.now()))

 for chunk in results:

 f.write(str(c.stringifyCandidate(chunk, c.dbcursor)))

	2013
	Identification and analysis of chunks in software projects
	RACHANA S. KONERU
	Recommended Citation

	tmp.1379972527.pdf.avq4b

