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ABSTRACT

Biologists represent evolutionary history of species through phylogenetic trees. Leaves of

a phylogenetic tree represent the species and internal vertices represent the extinct ancestors.

Given a collection of input phylogenetic trees, a common problem in computational biology is

to build a supertree that captures the evolutionary history of all the species in the input trees,

and is consistent with each of the input trees. In this document we study the tree compatibility

and agreement supertree problems.

Tree compatibility problem is NP-complete but has been shown to be fixed parameter

tractable when parametrized by number of input trees. We characterize the compatible su-

pertree problem in terms of triangulation of a structure called the display graph. We also give

an alternative characterization in terms of cuts of the display graph. We show how these char-

acterizations are related to characterization given in terms of triangulation of the edge label

intersection graph. We then give a characterization of the agreement supertree problem.

In real world data, consistent supertrees do not always exist. Inconsistencies can be dealt

with by contraction of edges or removal of taxa. The agreement supertree edge contraction

(AST-EC) problem asks if a collection of k rooted trees can be made to agree by contraction

of at most p edges. Similarly, the agreement supertree taxon removal (AST-TR) problem asks

if a collection of k rooted trees can be made to agree by removal of at most p taxa. We give

fixed parameter algorithms for both cases when parametrized by k and p.

We study the long standing conjecture on the perfect phylogeny problem; there exists a

function f(r) such that a given collection C of r-state characters is compatible if and only if

every f(r) subset of C is compatible. We will show that for r ≥ 2, f(r) ≥ b r2c · d
r
2e+ 1.
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CHAPTER 1. INTRODUCTION

In Chapter 2, we give various definitions and notations. In Chapter 7, we give open problems

for further research. The rest of the thesis (Chapters 3-6) can broadly be organized into three

parts.

1.1 Chapters 3 & 4

Tree compatibility is a fundamental problem in phylogenetics. Given a collection of phy-

logenetic trees, the tree compatibility problem asks if there exists a supertree that is consis-

tent with all the input trees. Agreement supertree problem is a more restrictive version of

the compatible supertree problem. Both agreement and tree compatibility problems are NP-

complete [Steel (1992)] but polynomial time solvable when all the trees in the collection are

rooted [Aho et al. (1981); Ng and Wormald (1996)]. Unrooted tree compatibility problem is

fixed parameter tractable (FPT) when parametrized by the number of input trees [Bryant and

Lagergren (2006)]. Fixed parameter tractability of agreement supertree problem is unknown.

The result in [Bryant and Lagergren (2006)] is derived by transforming the problem into

a bounded treewidth graph problem in monadic second order logic and then using the results

of Courcelle (1990) and Arnborg et al. (1991). This is done by making using of a structure

called the display graph and showing that its treewidth is bounded by the number of input

trees. This result does not easily translate into an algorithm. Though an explicit algorithm

can be derived using the result, it has huge running constants.

A goal of our research is to derive explicit and practical FPT algorithms for tree compatibil-

ity and agreement supertree problems using graph theoretic concepts. In Chapter 1, we derive

a characterization of the tree compatibility problem in terms of triangulation of the display
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graph. We then study various properties of the display graph. In Chapter 2, we derive an

alternative characterization of the tree compatibility problem in terms of cuts of the display

graph. We show how this characterization is related to an alternative characterization given

in [Gysel et al. (2012)]. We also give a characterization of the agreement supertree problem in

terms of cuts of the display graph.

1.2 Chapter 5

Real world data is inconsistent. More often than not, real world collections of input phylo-

gentic trees will not have an agreement supertree. These inconsistent collections can be made

consistent by contraction of internal edges or by removal of taxons (leaves) from input trees.

We specifically consider the following problems.

Given a collection T of k rooted trees, can the trees in T be made to agree by contraction

of at most p edges. We call this the agreement supertree edge contraction AST-EC problem.

Similarly, given a collection T of k rooted trees, the agreement supertree taxon removal AST-

TR problem asks if the trees in T be made to agree by removal of at most p taxons. An FPT

algorithm for the taxon removal problem when the trees are all binary is given in Guillemot

and Berry (2010). We will give FPT algorithms for both problems when parametrized by k

and p.

1.3 Chapter 6

Given a collection of full characters with at most r states, the perfect phylogeny prob-

lem asks if the characters in the collection are compatible. Perfect phylogeny problem is

NP-complete [Bodlaender et al. (1992); Steel (1992)] but fixed parameter tractable when

parametrized by number of states [Agarwala and Fernández-Baca (1994); Dress and Steel

(1992); Gusfield (1991); Kannan and Warnow (1994)]. We study a long standing conjecture

which says, there exists a function f(r) such that a collection of full characters with at most r

states is compatible if and only if every r-subset of the collection is compatible.

For long, the known lower bound on f(r) was r [Meacham (1983)]. Recently, Lam et al.
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(2011) showed that f(3) = 3. Habib and To [Habib and To (2011)] gave a construction which

showed that f(4) ≥ 5 thus improving on the long known lower bound of r. We will relate

quartet compatibility to character compatibility and show that for r ≥ 2, f(r) ≥ b r2c · d
r
2e+ 1.
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CHAPTER 2. PRELIMINARIES

In this section, we review the notions of separators, cuts and triangulations in graphs. We

then define tree compatibility, agreement supertrees, and splits compatibility. For every non

negative integer m, we denote the set {1, . . . ,m} by [m].

2.1 Separators, Cuts, and Triangulations

Let G be a graph. We represent the vertices and edges of G by V (G) and E(G) respectively.

Given a vertex v of G, we represent the neighbors of v in G by NG(v). For any U ⊆ V (G),

G−U represents the graph derived by removing vertices of U and their incident edges from G.

Similarly, for any F ⊆ E(G), G − F represents the graph with vertex set V (G) and edge set

E(G) \F . A clique of G is a complete subgraph of G. A clique C is maximal if there does not

exist another clique C ′ of G where V (C) ⊂ V (C ′). We denote the set of all maximal cliques of

G by MC(G).

2.1.1 Separators and cuts

For any two nonadjacent vertices a and b of G, an a-b separator U ⊆ V (G) is a set of

vertices such that a and b are in different connected components of G − U . An a-b separator

U is minimal if for every U ′ ⊂ U , U ′ is not an a-b separator. A set U ⊆ V (G) is a minimal

separator if U is a minimal a-b separator for some nonadjacent vertices a and b of G. A

connected component H of G − U is full if for every u ∈ U there exists some vertex v ∈ H

where {u, v} ∈ E(G).

Lemma 1. [Parra and Scheffler (1997)] For a graph G and any U ⊂ V (G), U is a minimal

separator of G if and only if G− U has at least two full components.
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Two minimal separators U and U ′ are parallel if G−U contains at most one component H

where V (H) ∩ U ′ 6= ∅. We represent the set of all minimal separators of graph G by 4G.

Assume that G is connected. A cut is a subset of edges of G whose removal disconnects G.

A cut F is minimal if there does not exist F ′ ⊂ F where F ′ is also a cut of G. Note that if F

is minimal, there will exactly be two connected components in G− F .

2.1.2 Triangulation, treewidth, and tree decomposition

A chord is an edge between two nonadjacent vertices of a cycle. A graph H is chordal if

and only if every cycle of length four or greater in H has a chord. A chordal graph H is a

triangulation of graph G if and only if V (G) = V (H) and E(G) ⊆ E(H). The set E(H)\E(G)

is called a fill-in for G and the edges in it are called fill-in edges. We denote the fill-in of G with

respect the triangulation H of G by ξ(G,H). Triangulation H of G is a minimal triangulation

if for every edge e ∈ ξ(G,H), H − e is not a triangulation of G.

The width of triangulation H is defined as the maximum value of |V (C)|−1 over all cliques

C of H. The treewidth of graph G, denoted by tw(G), is the smallest width among all possible

triangulations of G.

A tree decomposition for a graph G is a pair (T,B), where T is a tree and B is a mapping

from V (T ) to subsets of V (G) that satisfies the following three properties.

(TD1) (Vertex Coverage) For every v ∈ V (G) there is an x ∈ V (T ) such that v ∈ B(x).

(TD2) (Edge Coverage) For every edge {u, v} ∈ E(G) there exists an x ∈ V (T ) such that

{u, v} ⊆ B(x).

(TD3) (Coherence) For every u ∈ V (G) the set of vertices {x ∈ V (T ) : u ∈ B(x)} forms a

subtree of T .

It is well known that if G is chordal, G has a tree-decomposition (T,B) where (i) there is

a one-to-one mapping C from the vertices of T to the maximal cliques of G and (ii) for each

vertex x in T , B(x) consists precisely of the vertices in the clique C(x) [Heggernes (2005)].

This sort of tree decomposition is called a clique tree for G. Conversely, let (T,B) be a tree
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decomposition of a graph G and let F be the set of all {u, v} /∈ E(G) such that {u, v} ⊆ B(x)

for some x ∈ V (T ). Then, F is a chordal fill-in for G [Heggernes (2005)]. We shall refer to this

set F as the chordal fill-in of G associated with tree-decomposition (T,B) and to the graph G′

obtained by adding the edges of F to G as the triangulation of G associated with (T,B).

2.1.3 Relation between minimal separators and minimal triangulations

Let G be a graph and let F be a collection of subsets of V (G). We represent by GF the

graph derived from G by making the set of vertices of X a clique in G for every X ∈ F .

Theorem 1. [Bouchitté and Todinca (2001); Heggernes (2006); Parra and Scheffler (1997)]

Let F be a maximal set of pairwise parallel minimal separators of G and let H be a minimal

triangulation of G. Then, the following statements hold.

1. GF is a minimal triangulation of G.

2. Let (T,B) be a clique tree of GF . There exists a minimal separator F ∈ F if and only if

there exist two adjacent vertices x and y in T where B(x) ∩B(y) = F .

3. 4H is a maximal set of pairwise parallel minimal separators of G and G4H
= H.

2.2 Compatibility and Agreement Supertrees

2.2.1 Phylogenetic trees

An unrooted phylogenetic tree T (or just unrooted tree) is a tree whose leaves are bijectively

mapped to a label set L(T ) and has no vertex of degree two. An unrooted tree is binary if

every internal vertex has degree exactly three. A quartet is a binary unrooted tree with exactly

four leaves. A quartet with with label set {a, b, c, d} is denoted ab|cd if the path between the

leaves labelled a and b does not have any vertex in common with the path between the leaves

labelled c and d.

A rooted phylogenetic tree (or just rooted tree) is a tree whose leaves are bijectively mapped

to a label set L(T ), has a distinguished vertex called the root, and no vertex other than the

root has degree two. A rooted tree is binary if the root vertex has degree two and every other
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internal vertex has degree three. A triplet is a rooted binary tree with exactly three leaves.

A triplet with label set {a, b, c} is denoted ab|c if the path between the leaves labeled a and b

avoids the path between the leaf labeled c and the root vertex.

Given a tree T , we denote the internal vertices, internal edges and leaf vertices of a tree

T by I(T ), Ê(T ), L(T ) respectively. Let P be a collection of unrooted (rooted) trees. We

call P a profile and denote
⋃
T∈P L(T ) by L(P). We will use the words profile and collection

interchangeably in this document. A supertree for P is an unrooted (rooted) tree S whose label

set is L(P).

2.2.2 Splits compatibility

A split of a label set L is a bipartition of L consisting of non-empty sets. We denote a split

{X,Y } by X|Y . Let T be an unrooted tree. Consider an internal edge e of T . Deletion of e

disconnects T into two subtrees T1 and T2. If L1 and L2 denote the set of all labels in T1 and

T2, respectively, then L1|L2 is a split of L(T ). We denote the split corresponding to edge e of

T by σe(T ) and we denote by Σ(T ) the set of all splits corresponding to all internal edges of T .

An unrooted tree T displays a split X|Y if there exists an internal edge e of T where

σe(T ) = X|Y . Then, we also say T is compatible with X|Y . A set of splits is compatible if

there exists an unrooted tree which displays all the splits in the set. Two splits A1|A2 and

B1|B2 are compatible if and only if at least one of A1 ∩ B1, A1 ∩ B2, A2 ∩ B1 and A2 ∩ B2 is

empty [Semple and Steel (2003)]. By the Splits Equivalence Theorem [Buneman (1971); Semple

and Steel (2003)], a collection of splits is compatible if and only if every pair is compatible.

Theorem 2. (Splits-Equivalence Theorem [Buneman (1971); Semple and Steel (2003)]) Let Σ

be a collection of splits over a label set L. Then, Σ = Σ(S) for some unrooted tree S if and

only if the splits in Σ are pairwise compatible. Such tree is unique up to isomorphism.

By the Splits Equivalence Theorem, two phylogenetic trees T1 and T2 are isomorphic if

Σ(T1) = Σ(T2).
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2.2.3 Tree compatibility

Let S be an unrooted tree. For any Y ⊆ L(S), S[Y ] denotes minimal subtree of S connecting

the leaves in Y . Tree S|Y denotes the tree obtained by suppressing any degree two vertices in

S[Y ]. Let T be an unrooted tree where L(T ) ⊆ L(S). We say that S displays an unrooted tree

T if T can be derived from S|L(T ) by contraction of edges. Note that, S displays T if and only

if Σ(T ) ⊆ Σ(S|L(T )).

Similarly, let S be a rooted tree. For any Y ⊆ L(S), S[Y ] denotes the tree derived from

the minimal subtree of S connecting the labels in Y by distinguishing the vertex closest to the

root of S as the root. Tree S|Y denotes the tree derived from S[Y ] by suppressing any degree

two vertices other than the root. We say that S displays a rooted tree T if T can be derived

from S|L(T ) by contraction of edges.

Given a profile P of unrooted (rooted) trees, the unrooted (rooted) tree compatibility problem

asks if there exists a supertree of P that displays all the trees in P. If such a supertree S exists,

we say that P is compatible and S is a compatible tree of P.

2.2.4 Agreement supertrees

Let S and T be two unrooted (rooted) trees where L(T ) ⊆ L(S). Tree T is an induced

subtree of S if and only if S|L(T ) = T . Let P be a profile of unrooted (rooted) trees. An

unrooted (rooted) supertree S of P is an agreement supertree (or just AST ) of P if and only

if every input tree of P is an induced subtree of S. Note that, if S and T are unrooted trees,

then T is an induced subtree of S if and only if Σ(T ) = Σ(S|L(T )). If P has an agreement

supertree, we say that the trees in P agree.

2.2.5 Display graphs

Let T be a phylogenetic tree over label set L(T ). Since there exists a bijective function from

leaves of T to L(T ), we will represent leaves of T by their labels. Let P = {T1, T2, · · · , Tk} be a

profile of k unrooted trees. For any two trees Ti and Tj in P, we assume that the sets of internal

vertices of Ti and Tj are disjoint. The display graph [Bryant and Lagergren (2006)] of profile P,
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Figure 2.1: (i) First input tree. (ii) Second input tree, which is compatible with the first. (iii)

Display graph of the input trees. (iv) Edge label intersection graph of the input trees. For

every vertex, uv represents label {u, v}.

denoted by G(P), is a graph whose vertex set is
⋃
i∈[k] V (Ti) and edge set is

⋃
j∈[k]E(Tj) (see

Fig. 2.1). A vertex v of G(P) is a leaf if v ∈ L(P). Every other vertex of G(P) is an internal.

An edge of G(P) is internal if both its endpoints are internal; otherwise, it is noninternal. Let

H be a subgraph of G(P). We represent by L(H), the set of all leaf vertices of H.

2.2.6 Edge label intersection graphs

The line graph of a graph G, denoted by LG(G), is a graph whose vertex set is E(G) and

two vertices of LG(G) are adjacent if the corresponding edges in G share an endpoint. For

rest of the paper we denote the line graph LG(G(P)) of G(P) by LG(P). Graph LG(P) is

the modified edge label intersection graph defined in [Gysel et al. (2012)]. Note that if G(P) is

connected, then so is LG(P). The line graph of a display graph can be seen in Figure 2.1.

2.3 Character Compatibility

A character on a label set L is a partition χ of a subset Lχ ⊆ L; each subset in χ is called

a state. If Lχ = L, we call χ a full character. Otherwise χ is a partial character. Note that,

a split of a label set L is a full character with exactly two states. A character with at most
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r states is called a r-state character. A character χ is convex on a phylogenetic tree T if, for

every {A,B} ⊆ χ, subtrees T [A] and T [B] have no vertex in common.

Let C = {χ1, χ2, . . . , χk} be a collection of characters on label set L. We say C is compatible,

if there exists a phylogenetic tree S on L where, every χ ∈ C is convex on S. Given a collec-

tion C of full characters, the perfect phylogeny problem asks if C is compatible. The partition

intersection graph of C is the graph Int(C) where V (Int(C)) = {(χ,A) : χ ∈ C, A ∈ χ} and

{(χi, A), (χj , B)} ∈ E(Int(C)) if and only if A∩B 6= ∅. A triangulation of Int(C) is legal if and

only if there is no fill-in edge of type {(χ,A), (χ,B)} for any χ ∈ C. The following result is well

known.

Theorem 3. [Buneman (1974)] A collection of characters C is compatible if and only if Int(C)

has a legal triangulation.

Corollary 1. Let C be a collection of two characters. Then C is compatible if and only if

G(C) is acyclic.

There is a close connection between character compatibility and tree compatibility. Let

P be a profile of unrooted trees. The character representation of P is the set of characters

CP =
⋃
T∈P Σ(T ). It is straightforward to see that a set of trees P is compatible if and only if

its character representation is compatible.
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CHAPTER 3. GRAPH TRIANGULATIONS AND THE

COMPATIBILITY OF UNROOTED PHYLOGENETIC TREES

Sudheer Vakati, David Fernández-Baca

Modified from a paper published in the journal Appl. Math. Lett.

Abstract

We characterize the compatibility of a collection of unrooted phylogenetic trees as a question

of determining whether a graph derived from these trees — the display graph — has a specific

kind of triangulation, which we call legal. Our result is a counterpart to the well known

triangulation-based characterization of the compatibility of undirected multi-state characters.

We then derive a more compact characterization using a modified version of the display graph.

The modified display graph is a structure of interest in its own right. We study the relation

between unrooted tree compatibility and the treewidth of the modified display graphs.

A collection of unrooted trees is compatible if there is no contradiction among them, and

there is a tree that represents all the evolutionary relationships among species present in them.

While compatibility cannot be guaranteed, it is always possible to make an incompatible collec-

tion of trees compatible by either contracting certain edges in the input trees or by eliminating

some subset of the input trees. We show that the problem of finding such sets of edges or

trees to contract or remove is closely related to the triangulation-based characterization of the

modified display graph.

3.1 Introduction

Given a profile P = {T1, T2, · · · , Tk} of phylogenetic trees, the phylogenetic tree compatibility

problem asks whether or not P is compatible. This question arises when trying to assemble a
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collection of phylogenies for different sets of species into a single phylogeny (a supertree) for

all the species [Gordon (1986)]. The phylogenetic tree compatibility problem asks whether or

not it is possible to do so via a supertree that displays each of the input trees. In this chapter

unless otherwise mentioned we only consider unrooted phylogenetic trees.

Phylogenetic tree compatibility is NP-complete [Steel (1992)] (but the problem is polynomially-

solvable for rooted trees [Aho et al. (1981)]. Nevertheless, Bryant and Lagergren have shown

that the problem is fixed-parameter tractable for fixed k [Bryant and Lagergren (2006)]. Their

argument relies on a partial characterization of compatibility in terms of tree-decompositions

and tree-width of the display graph of a profile. Here we build on their argument to produce a

complete characterization of compatibility in terms of the existence of a special kind of triangu-

lation of the display graph. These legal triangulations (defined in Section 3.2) only allow certain

kinds of edges to be added. Our result is a counterpart to the well-known characterization of

character compatibility in terms of triangulations of a class of intersection graphs [Buneman

(1974)], which has algorithmic consequences [Gusfield (2009); McMorris et al. (1994)]. Our

characterization of tree compatibility may have analogous implications.

Tree compatibility can determined by breaking down input trees into quartets and then

determining the compatibility of the smaller trees. Grunewald et al. (2008) provide a way to

determine quartet compatibility by building a special graph called the quartet graph. Tree

compatibility can also be determined in terms of character compatibility by converting the

input trees into characters [Steel (1992)]. These methods have some redundancy, since the

quartets or characters that are built from single tree are already known to be compatible.

Our characterization in terms of triangulation of display graph provides a more direct way to

determine compatibility.

Inconsistencies are common in real world data; hence, collections of incompatible trees

are prevalent. These incompatibilities are dealt with in different ways. One is by identifying

a subset of trees in the collection whose removal makes the collection compatible. The tree

removal problem asks whether a collection of phylogenetic trees can be made compatible by

removal of at most p trees. An alternative and more fine-grained way to achieve compatibility

is to identify a set of internal edges in the input trees whose contraction makes the collection
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compatible. The edge contraction problem asks if a collection of phylogenetic trees can be made

compatible by contracting at most p internal edges. The edge contraction and tree removal

problems are NP-hard even for p = 0.

This chapter is organized as follows. We characterize unrooted tree compatibility using

triangulations of display graph in Section 3.2. In Section 3.3, we modify the display graph

to derived a more concise characterization of tree compatibility. In the same section we also

study various properties of this modified display graph. We relate treewidth of the modified

display graph to tree compatibility in Section 3.4. Lastly, we give characterizations of the edge

contraction and tree removal problems in Section 3.5.

3.2 Legal Triangulations and Compatibility

Let P be a profile of unrooted trees. A triangulation G′ of the display graph G(P) is legal

if it satisfies the following conditions.

(LT1) Suppose a clique in G′ contains an internal edge. Then, this clique can contain no other

edge from G(P) (internal or non-internal).

(LT2) Fill-in edges can only have internal vertices as their endpoints.

Note that the above conditions rule out a chord between vertices of the same tree. Also,

in any legal triangulation of G(P), any clique that contains a non-internal edge cannot contain

an internal edge from any tree. See Figure 3.1.

The importance of legal triangulations derives from the next results, which are proved in

the next section.

Lemma 2. Suppose a profile P = {T1, . . . , Tk} of unrooted phylogenetic trees is compatible.

Then G(P) has a legal triangulation.

Lemma 3. Suppose the display graph of a profile P = {T1, . . . , Tn} of unrooted trees has a

legal triangulation. Then P is compatible.

The preceding lemmas immediately imply our main result.
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Figure 3.1: (i) First input tree. (ii) Second input tree. (iii) The display graph of the input tress

with two fill-in edges, indicated by dashed lines. Edge 1 cannot appear in a legal triangulation,

since the result would violate (LT1). Edge 2 is not allowed, because it would result in a violation

of (LT2). (iv) The display graph with a legal triangulation, indicated by dashed lines.

Theorem 4. A profile P = {T1, . . . , Tk} of unrooted trees is compatible if and only if G(P)

has a legal triangulation.

3.2.1 Proofs

The proofs of Lemmas 2 and 3 rely on a new concept. Suppose T1 and T2 are phylogenetic

trees such that L(T2) ⊆ L(T1). An embedding function from T1 to T2 is a surjective map φ

from a subgraph of T1 to T2 satisfying the following properties.

(EF1) For every ` ∈ L(T2), φ maps the leaf ` in T1 to the leaf ` in T2.

(EF2) For every vertex v of T2 the set φ−1(v) is a connected subgraph of T1.

(EF3) For every edge {u, v} of T2 there is a unique edge {u′, v′} in T1 such that φ(u′) = u and

φ(v′) = v.

The next result extends Lemma 1 of [Bryant and Lagergren (2006)].

Lemma 4. Let T1 and T2 be phylogenetic trees and L(T2) ⊆ L(T1). Tree T1 displays tree T2 if

and only if there exists an embedding function φ from T1 to T2.
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Proof. The “only if” part was already observed by Bryant and Lagergren (see Lemma 1 of

[Bryant and Lagergren (2006)]). We now prove the other direction.

To prove that T1 displays T2, we argue that T2 can be obtained from T1|L(T2) by a series

of edge contractions, which are determined by the embedding function φ from T1 to T2. Let

T ′1 be the graph obtained from T1|L(T2) by considering each vertex v of T2 and identifying all

vertices of φ−1(v) in T1|L(T2) to obtain a single vertex u′ with φ(u′) = v. Property (EF2)

ensures that, each such operation is well defined and yields a tree. By properties (EF1)–(EF3),

each vertex v of T1|L(T2) is in the domain of φ. Thus, function φ is now a bijection between T2

and T ′1 that satisfies (EF1)–(EF3). We now prove that T ′1 is isomorphic to T2. It then follows

from property (EF1) that T1 displays T2.

We claim that for any two vertices u, v ∈ V (T2), there is an edge {u, v} ∈ E(T2) if and

only if there is an edge {φ−1(u), φ−1(v)} ∈ E(T ′1). The “only if” part follows from property

(EF3). For the other direction, assume by way of contradiction that {x, y} /∈ E(T2), but that

{φ−1(x), φ−1(y)} ∈ E(T ′1). Let P be the path between vertices x and y in T2. By property

(EF3), there is a path between nodes φ−1(x), φ−1(y) in tree T ′1 that does not include the edge

{φ−1(x), φ−1(y)}. This path along with the edge {φ−1(x), φ−1(y)} forms a cycle in T ′1, which

gives the desired contradiction. Thus, the bijection φ between T2 and T ′1 is an isomorphism

between the two trees.

The preceding lemma immediately implies the following characterization of compatibility.

Lemma 5. Profile P = {T1, . . . , Tk} is compatible if and only if there exist a supertree S for

P and functions φ1, . . . , φk, where, for i = 1, . . . , k, φi is an embedding function from S to Ti.

Proof of Lemma 2. If P is compatible, there exists a supertree for P that displays Ti for i =

1, . . . , k. Let S be any such supertree. By Lemma 5, for i = 1, . . . , k, there exists an embedding

function φi from S to Ti. We will use S and the φis to build a tree decomposition (T,B)

corresponding to a legal triangulation of G(P). The construction closely follows that given by

Bryant and Lagergren in their proof of Theorem 1 of [Bryant and Lagergren (2006)]; thus, we

only summarize the main ideas.
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Initially we set T = S and, for every v ∈ V (T ), B(v) = {φi(v) : v in the domain of φi; 1 ≤

i ≤ k}. Now, (T,B) satisfies the vertex coverage property and the coherence property, but not

edge coverage [Bryant and Lagergren (2006)]. To obtain a pair (T,B) that satisfies all three

properties, subdivide the edges of T and extend B to the new vertices. Do the following for each

edge {x, y} of T . Let F = {{u1, v1}, . . . , {um, vm}} be set of edges of G(P) such that ui ∈ B(x)

and vi ∈ B(y). Observe that F contains at most one edge from Ti, for i = 1, . . . , k (thus,

m ≤ k). Replace edge {x, y} by a path x, z1, . . . , zm, y, where z1, . . . , zm are new vertices.

For i = 1, 2, . . . ,m, let B(zi) = (B(x) ∩ B(y)) ∪ {v1, . . . , vi, ui, . . . , um}. The resulting pair

(T,B) can be shown to be a tree decomposition of G(P) of width k (see [Bryant and Lagergren

(2006)]).

The preceding construction guarantees that (T,B) satisfies two additional properties:

(i) For any x ∈ V (T ), if B(x) contains both endpoints of an internal edge of Ti, for some i,

then B(x) cannot contain both endpoints of any other edge, internal or not.

(ii) Let x ∈ V (T ) be such that B(x) contains a labeled vertex v ∈ V (G(P)). Then, for every

u ∈ B(x) \ {v}, {v, u} ∈ E(G(P)).

Properties (i) and (ii) imply that the triangulation of G(P) associated with (T,B) is legal.

Next, we prove Lemma 3. For this, we need some definitions and auxiliary results. Assume

that G(P) has a legal triangulation H. Let (T,B) be a clique tree for H. For each vertex

v ∈ V (G(P)), let C(v) denote the set of all nodes in the clique tree T that contain v. Observe

that the coherence property implies that C(v) induces a subtree of T .

Lemma 6. Suppose vertex v is a leaf in tree Ti, for some i ∈ {1, . . . , k}. Let U(v) =⋃
x∈C(v)B(x). Then, for any j ∈ {1, . . . , k}, at most one internal vertex u from input tree Tj

is present in U(v). Furthermore, for any such a vertex u we must have that {u, v} ∈ E(G(P)).

Proof. Follows from condition (LT2).

Lemma 7. Suppose e = {u, v} is an internal edge from input tree Ti, for some i ∈ {1, . . . , k}.

Let U(e) =
⋃
x∈C(u)∩C(v)B(x). Then,
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(i) U(e) contains at most one vertex of Tj, for any j ∈ {1, . . . , k}, j 6= i, and

(ii) V (Ti) ∩ U(e) = {u, v}.

Proof. Part (ii) follows from condition (LT1). We now prove part (i).

Assume by way of contradiction that the claim is false. Then, there exists a j 6= i and an

edge {x, y} ∈ T such that e ⊆ B(x), e ⊆ B(y), and there are vertices a, b ∈ V (Tj), a 6= b, such

that a ∈ B(x) and b ∈ B(y).

Deletion of edge {x, y} partitions V (T ) into two sets X and Y . Let P = {a ∈ V (Tj) : a ∈

B(z) for some z ∈ X} and Q = {b ∈ V (Tj) : b ∈ B(z) for some z ∈ Y }. By the coherence

property, (P,Q) is a partition of V (Tj). There must be a vertex p in set P and a vertex q in

set Q such that {p, q} ∈ E(Tj). Since H is a legal triangulation, there must be a node z in T

such that p, q ∈ B(z). Irrespective of whether z is in set X or Y , the coherence property is

violated, a contradiction.

A legal triangulation of the display graph of a profile is concise if

(C1) each internal edge is contained in exactly one maximal clique in the triangulation and

(C2) every vertex that is a leaf in some tree is contained in exactly one maximal clique of the

triangulation.

Lemma 8. Let P be a profile. If G(P) has a legal triangulation, then G(P) has a concise legal

triangulation.

Proof. Let H be a legal triangulation of G(P) that is not concise. Let (T,B) be a clique tree

for H. We will build a concise legal triangulation for G(P) by repeatedly applying contraction

operations on (T,B). The contraction of an edge e = {x, y} in T is the operation that consists

of (i) replacing x and y by a single (new) node z, (ii) adding edges from node z to every neighbor

of x and y, and (iii) making B(z) = B(x)∪B(y). Note that the resulting pair (T ′, B′) is a tree

decomposition for G(P) (and H); however, it is not guaranteed to be a clique tree for H.

We proceed in two steps. First, for every leaf v of G(P) such that |C(v)| > 1, contract each

edge e = {x, y} in T such that x, y ∈ C(v). In the second step, we consider each edge e = {u, v}
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of G(P) such that |C(u)∩C(v)| > 1, contract each edge {x, y} in T such that x, y ∈ C(u)∩C(v).

Lemma 6 (respectively, Lemma 7) ensures that each contraction done in the first (respectively,

second) step leaves us with a new tree decomposition whose associated triangulation is legal.

Furthermore, the triangulation associated with the final tree decomposition is concise.

Proof of Lemma 3. We will show that, given a legal triangulation H of G(P), we can generate

a supertree S for P along with an embedding function φi from S to Ti, for i = 1, . . . , k. By

Lemma 5, this immediately implies that P is compatible

By Lemma 8, we can assume that H is concise. Let (T,B) be a clique tree for H. Initially,

we make S = T . Next, for each node x of S, we consider three possibilities:

Case 1: B(x) contains a labeled vertex ` of G(P). Then, ` is a leaf in some input tree Ti;

further, by conciseness, x is the unique node in S such that v ∈ B(x), and, by the edge

coverage property, if u is the neighbor of ` in Ti, u ∈ B(x). Now, do the following.

(i) Add a new node ` and a new edge {x, `} to S.

(ii) For each i ∈ {1, . . . , k} such that ` is a leaf in Ti, make φi(`) = ` and φi(x) = u,

where u is the neighbor of v in Ti.

Case 2: B(x) contains both endpoints of an internal edge e = {u, v} of some input tree Ti. By

legality, B(x) does not contain both endpoints of any other edge of any input tree,

and, by conciseness, x is the only node of S that contains both endpoints of e. Now,

do the following.

(i) Replace node x with nodes xu and xv, and add edge {xu, xv}.

(ii) Add an edge between node xu and every node neighbor y of x such that u ∈ B(y).

(iii) Add an edge between node xv and every neighbor y of x such that v ∈ B(y).

(iv) For each neighbor y of x such that u /∈ B(y) and v /∈ B(y), add an edge from

y to node xu or node xv, but not to both (the choice of which edge to add is

arbitrary).
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(v) For every j ∈ {1, . . . , k}, (j 6= i) such that B(x) ∩ V (Tj) 6= ∅, make φj(xu) =

φj(xv) = z where, z is the vertex of Tj contained in B(x). Also, make φi(xu) = u

and φi(xv) = v.

Case 3: B(x) contains at most one internal vertex from Ti for i ∈ {1, . . . , k}. Then, for every

i such that B(x) ∩ V (Ti) 6= ∅ make φi(x) = v, where v is the vertex of Ti contained in

B(x).

By construction (Case 1) and the legality and conciseness of (T,B), for every ` ∈
⋃k
i=1 L(Ti)

there is exactly one leaf x ∈ V (S) that is labeled `. Thus, S is a supertree of profile P.

Property (TD1) also ensures that the function φi is a surjective map from a subgraph of S

to Ti. Furthermore, the handling of Case 1 guarantees that φi satisfies (EF1). The coherence

of (T,B) and the handling of all cases ensures that φi satisfies (EF2). The handling of Case

2 and conciseness ensure that φi satisfies (EF3). Thus, φi is an embedding function, and, by

Lemma 5, profile P is compatible.

3.3 Modified Display Graph

Let T be a phylogenetic tree. We define a function θ from L(T ) to I(T ), where θ(`) = v if

and only if {v, `} ∈ E(T ). We call θ the label mapping function of T .

Let P = {T1, T2, . . . , Tk} be a collection of unrooted trees and for every i ∈ [k] let θi be the

label mapping function of Ti. The modified display graph of P, denoted by G(P), is the graph

whose vertex set is
⋃
i∈[k] I(Ti) and there is an edge between vertices u and v if and only if one

of the following conditions hold.

1. {u, v} ∈ E(Ti) for some i ∈ [k]

2. θ−1i (u) ∩ θ−1j (v) 6= ∅ where, 1 ≤ i 6= j ≤ k, u ∈ V (Ti) and v ∈ V (Tj)

An edge in E(G(P)) is a tree edge if it is an edge in some input tree. Any edge which is not

a tree edge is called an added edge. Note that every vertex in G(P) is an internal vertex in some

input tree and every tree edge of G(P) is an internal edge of some input tree. We represent the
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Figure 3.2: (i) First input tree. (ii) Second input tree. (iii) Display graph of the input trees.

(iv) Modified display graph of the input trees. Solid lines represent the tree edges and the

dashed lines represent the added edges.

tree edges of G(P) by Ê(G(P)). A vertex of G(P) is a labelled vertex if it has an added edge

incident on it. Display graphs and modified display graphs are illustrated in Figure 3.2.

A modified display graph of P can be alternatively be defined as follows. For every leaf ` in

G(P), make all its neighbors a clique and delete `. The resulting graph is the modified display

graph of P.

3.3.1 Compatibility with modified display graphs

A triangulation H of G(P) is legal if there no clique in H which contains more than one tree

edge. The following lemma characterizes unrooted tree compatibility in terms of triangulation

of modified display graphs.

Lemma 9. Let P be a profile of unrooted trees. Then, G(P) has a legal triangulation if and

only if G(P) has a legal triangulation.

Proof. Let G′ be a legal triangulation of G(P). For every leaf ` ∈ G(P), make the neighbors of

` a clique. Let H ′ be the modified graph. There is a chordless cycle C in H ′ if and only if G(P)

also has chordless cycle C. Add the fill-in edges of ξ(G(P), G′) to H ′. The resulting graph H ′′

is a triangulation of G(P). Since G′ is a legal triangulation of G(P) and there is no chord in

H ′′ with a leaf vertex as an endpoint, H ′′ is a legal triangulation of G(P).
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Let H ′ be a legal triangulation of G(P). Consider any chordless cycle C in G(P) which has

a leaf vertex `. To triangulate C, there should be a fill in edge with either ` as an endpoint or

there should be an edge with the neighbors of ` as endpoints. Since the former gives an illegal

fill-in, any legal fill-in of C, will have a fill-in edge with neighbors of ` as endpoints. Consider

any two neighbors v1 and v2 of a leaf vertex ` in H ′ which do not have a fill-in edge between

them. Adding a fill in edge between v1 and v2 will not create any new chordless cycles. Let

F represent the set of edges required to make the neighbors of any leaf in G(P) a clique. Let

F ′ represent the set of fill-in edges in H ′ with both endpoints as neighbors of some leaf vertex.

Add the edges of F \ F ′ to H ′ and let H ′′ be the resulting graph. Graph H ′′ is triangulated.

Delete the leaf vertices from H ′′. The resulting graph is a triangulation of G(P) and is legal.

A legal triangulation G′ of G(P) is concise, if for every tree edge in G(P) there is exactly

one maximal clique in G′ which contains both its endpoints. By a slight modification of the

proof of Lemma 8, we can conclude the following.

Lemma 10. If a modified display graph has a legal triangulation, it also has a concise legal

triangulation.

Given a modified display graph G(P) of a collection of phylogenetic trees P, the only

information required to determine the compatibility of the collection is the partitioning of

the edges in G(P) into tree and added edges. Note that, the added edges of G(P) capture

the dependencies between the labels of various trees. Given two collections P1 and P2 of

phylogenetic trees, if collection P1 is compatible if and only if collection P2 is compatible, we

say P1 and P2 are equivalent.

Let P be a profile of k unrooted trees. The added edge clique set of G(P), denoted AC(P),

is the set of all maximal cliques in G(P) where, there is no clique in AC(P) that contains two

vertices from the same tree in P and, for every added edge in G(P), there is at least one clique

in AC(P) that contains both its end points.

We apply the following transformation to the trees of P.

1. For every i ∈ [k] let T ′i be the tree where V (T ′i ) = I(Ti) and every internal edge of Ti is

also an edge of T ′i .
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2. For every clique C in AC(P) we create a new label ` and do the following. If v is a vertex

in C and v ∈ V (Ti) for some i ∈ [k], add a new vertex ` to V (T ′i ) and add the edge {v, `}

to E(T ′i )

3. For every i ∈ [k], suppress degree two vertices in T ′i .

Let P ′ represent the profile {T ′1, T ′2, . . . , T ′k}. Note that, by the way of construction, every

tree in P ′ is a phylogenetic tree. We call P ′ the reduced profile of P. We can prove the following

results.

Lemma 11. Profiles P and P ′ are equivalent.

Proof. After step 2 in the transformation, for every i ∈ [k], do the following. For every degree

2 vertex v in tree T ′i , add a new label `v to L(T ′i ) and add the edge {v, `v} to E(T ′i ). Let T ′′i

be the resulting tree and let P ′′ represent the profile {T ′′1 , T ′′2 , . . . , T ′′k }. We prove the lemma,

by first showing that, profiles P and P ′′ are equivalent. We then show that profiles P ′ and P ′′

are equivalent, thus proving the lemma.

For every i ∈ [k], let θi, θ
′′
i represent the label mapping functions of Ti, T

′′
i respectively. By

construction, the vertices and tree edges of both G(P) and G(P ′′) are the same. We now show

that the graphs G(P) and G(P ′′) are the same by showing that the added edges in G(P) and

G(P ′′) are the same. Consider an added edge {u, v} in G(P) where u ∈ V (Ti) and v ∈ V (Tj)

for some 1 ≤ i 6= j ≤ k. Then, there exists a clique C in AC(P) which contains both u and v

and thus, there will exist a label ` in L(P ′′) where θ′′i (`) = u and θ′′j (`) = v. Hence, there will

exist an edge {u, v} in G(P ′′).

Now assume that there exists an added edge {u, v} in G(P ′′) where u ∈ V (T ′′i ) and v ∈

V (T ′′j ) for some 1 ≤ i 6= j ≤ k. Thus there exists an ` in L(P ′′) where, θ′′i (`) = u and θ′′j (`) = v,

and hence, there exists a clique C in AC(P) which contains both u and v. The graph G(P)

thus contains the added edge {u, v}. Since the vertices and edges of G(P) and G(P ′′) are the

same, graphs G(P) and G(P ′′) are the same. Profiles P and P ′′ are compatible if and only if

G(P) has a legal triangulation. Thus, profiles P and P ′′ are equivalent.

For every i ∈ [k], tree T ′i can be derived from T ′′i by deletion of zero or more leaf vertices and

suppression of degree two vertices. Any supertree which displays T ′′i also displays T ′i . Thus, if
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P ′′ is compatible then P ′ is compatible. Similarly, for every i ∈ [k], T ′′i can be derived from T ′i

by repeatedly breaking the edges and adding leaf vertices labelled by labels in L(T ′′i ) \ L(T ′i ).

If there exists a supertree S that displays tree T ′i , then S can be modified to display tree T ′′i

by repeated breaking of edges and addition of labelled leaf vertices. This addition of these leaf

vertices would not have any effect on other input trees being displayed since the labels being

added are unique to a single tree. Thus, if P ′ is compatible, then P ′′ is compatible. Profiles P ′

and P ′′ are thus equivalent.

Corollary 2. If AC(P) contains a k-clique, the compatibility of P can be determined in poly-

nomial time.

Proof. Consider the reduced profile P ′ of P. Since AC(P) contains a k-clique, there exists a

label ` ∈ L(P ′) where, for every tree T ∈ P ′, ` ∈ L(T ). Convert every tree T ∈ P ′ into a

rooted tree as follows. Let v be the vertex adjacent to leaf vertex ` in T . Make v the root of T

and delete ` from T . Let R represent the profile of resulting rooted phylogenetic trees. Profiles

R and P ′ are equivalent [Steel (1992)]. By equivalence of profiles P and P ′ from Lemma 11,

profiles P and R are equivalent. There exists a polynomial time algorithm to determine the

compatibility of rooted trees [Aho et al. (1981)] and thus compatibility of P can be determined

in polynomial time.

The above lemmas provide the advantages of determining unrooted phylogenetic tree com-

patibility by triangulation of modified display graphs. By lemma 11, any profile P of phyloge-

netic trees can be reduced to an equivalent profile P ′ where, the number of labels of P ′ is equal

to the number of elements of the added edge clique set of G(P). If there exists a label ` ∈ L(P)

where every tree in P has a leaf labelled `, compatibility of P can be determined in polynomial

time [Steel (1992)]. Corollary 2 identifies special cases of unrooted phylogenetic tree profiles

whose compatibility can be determined in polynomial time, though there is no common label

which is in every input tree in the profile. An example of such case is given in Figure 3.3.
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Figure 3.3: (i), (ii), and (iii) : Input trees P ,Q, and R, where L(P ) ∩ L(Q) ∩ L(R) = ∅.
(iv) Modified display graph of P , Q, and R. Vertices 1, 3, and 5 form a 3-clique. Hence the

compatibility of these input trees can be determined in polynomial time.

3.3.2 Modified minor operation

Let G and G′ be two modified display graphs of some profiles. Display graph G′ is a

modified minor of display graph G, if it can be derived from G by zero or more of the following

operations: (a) Deletion of an added edge. (b) Contraction of a tree edge. (c) Deletion of

vertices U ⊆ V (G) where, (i) the subgraph G[U ] of G induced by U is connected, (ii) every

edge in G[U ] is a tree edge and (iii) There is no tree edge {u, v} ∈ E(G) where u ∈ U and

v ∈ {V (G) \ U}.

Theorem 5. If there exists a legal triangulation for a modified display graph G, then there

exists a legal triangulation for any modified minor of G.

Proof. Let G′ be a modified minor of G. We use induction on m, the number of modified minor

operations required to derive G′ from G. When m = 0 both G and G′ are the same and hence

the theorem holds. Let G′′ be the modified minor of G after the first m − 1 operations. By

induction hypothesis, assume that there exists a legal triangulation H of G′′. We now have the

following cases.

Edge Deletion: Suppose the mth operation is the deletion of an added edge e from G′′. The

fill-in ξ(G′′, H) ∪ e is a legal fill-in of G′
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Edge Contraction: Suppose the mth operation contracts a tree edge e = {u, v}. Let w =

V (G′) \ V (G′′) and let (T,B) be the clique tree of H. For every vertex x ∈ V (T ) where

B(x) contains u or v, set B(x) = (B(x)\{u, v})∪{w}. The resulting pair (T,B′) is a valid

tree decomposition of G′. Since every clique in H is legal, there is no vertex x ∈ V (T )

where B′(x) contains more than one tree edge. Thus the triangulation corresponding to

(T,B′) is a legal triangulation of G′.

Vertex Deletion: Suppose the mth operation deletes vertices in U . Delete the vertices of

U in H and let H ′ be the resulting graph. Since H is legally triangulated, any induced

subgraph of H is also legally triangulated. Thus, H ′ is a legal triangulation of G′.

Intuitively, contraction of a tree edge in a display graph G corresponds to contraction of an

internal edge in some input tree. Similarly, deletion of a vertices in U in operation 3 correspond

to deleting an input tree from the collection. In both these cases, if P is compatible, the

resulting collection is also compatible. Deletion of an added edge e from the display graph G

corresponds to renaming of certain labels such that if P is compatible, the resulting collection

also compatible and has a display graph same as G except for edge e. The significance of

modified minors can be seen from the following lemma.

Lemma 12. Let P = {T1, T2}. Then, P is incompatible if and only if G(P) has a K4 with two

non-adjacent tree edges as a modified minor.

Proof. The “if” part follows from Theorem 5. To prove the “only if” part, assume that, P

is incompatible. Then, there will exist four labels {a, b, c, d} ⊆ {L(T1) ∩ L(T2)} where, the

quartets induced by the vertices a, b, c, d in T1 and T2 are incompatible.

Without loss of generality, let ab|cd, ac|bd be the quartets induced by vertices a, b, c, d in

T1 and T2 respectively. For every i ∈ [2], let θi be the label mapping function of tree Ti. Let

P be the path of tree edges between vertices θ1(a) and θ1(b) in G(P). Similarly, let Q be the

path of tree edges between vertices θ1(c) and θ1(d) in G(P). Paths P and Q do not intersect
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in G(P) and are separated by a path of tree edges R = {r1, . . . , ri} where i ≥ 2, r1 ∈ P , and

ri ∈ Q. Contract all the tree edges of T1 in G(P) except for {r1, r2}.

Similarly, let P ′ be the path of tree edges between vertices θ2(a) and θ2(c) in G(P) and let

Q′ be the path of tree edges between vertices θ2(b) and θ2(d) in G(P). Paths P ′ and Q′ do not

intersect in G(P) and are separated by a path of tree edges R′ = {r′1, . . . , r′j} where j ≥ 2, r′1 in

path P ′, and r′j in path Q′. Contract all the tree edges of T2 in G(P) except for {r′1, r′2}. The

resulting graph G′ is a K4 with two tree edges {r1, r2} and {r′1, r′2}. Since G′ is derived from

G(P) by contraction of tree edges, G′ is a modified minor of G(P).

3.3.3 Relation to partition intersection graphs

Let P = {T1, . . . , Tk} be a profile of unrooted trees where, for every i ∈ [k], Ti has at most

one internal edge. Consider the graph GP = (V (G(P)), E(G(P)) \ Ê(G(P))). We have the

following.

Lemma 13. Graphs GP and Int(CP) are isomorphic.

Proof. For every i ∈ [k], let θi be the label mapping function of tree Ti. For every i ∈ [k],

Σ(Ti) contains exactly one split and let χi be that split. If {u, v} are the internal vertices of

tree Ti, then χi = {θ−1i (u), θ−1i (v)}. Let f be a function from V (Int(CP)) to V (GP) defined as

follows. For every i ∈ [k] and A ∈ χi, set f((χi, A)) to θi(`) for some ` ∈ A. Note that, for

any {`1, `2} ⊆ A, θi(`1) = θi(`2). Since, θ−1i (u) ∈ χi for any internal vertex u in Ti, f
−1(u) is

unique and hence, f is bijective.

Let {(χi, A), (χj , B)} be an edge in Int(CP). Let ` ⊆ A ∩ B. Then, f((χi, A)) = θi(`) and

f((χj , B)) = θj(`). Since, θ−1i (θi(`))∩θ−1j (θj(`)) 6= ∅, there will exist an edge {f((χi, A)), f((χj , B))}

in GP . Similarly, let {u, v} be an edge in GP where u ∈ V (Ti) and v ∈ V (Tj) for 1 ≤ i 6= j ≤ k.

Then f−1(u) = (χi, θ
−1
i (u)) and f−1(v) = (χj , θ

−1
j (v)). Since θ−1i (u) ∩ θ−1j (v) 6= ∅, there exists

an edge {(χi, θ−1i (u)), (χj , θ
−1
j (v))} in Int(CP).

From Lemma 13, there exists a bijection f : V (Int(CP)) → V (GP) where is an edge {u, v}

in Int(CP) if and only if there is an edge {f(u), f(v)} in GP . Lemmas 14 and 15 give the

relationship between the legal triangulations of G(P) and Int(CP). Given a legal triangulation
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of G(P) (Int(CP) resp.), it is possible to transform it into a legal triangulation of Int(CP) (G(P)

resp.). The proofs of Lemmas 14 and 15 give those transformations.

Lemma 14. Given a concise legal triangulation G′ of G(P), there exists a legal triangulation

H of int(CP) where, for every edge {u, v} in ξ(Int(CP), H), there exists an edge {f(u), f(v)}

in ξ(G(P), G′).

Proof. Let (T,B) be a clique tree of G′. For every internal edge {u, v} ∈ E(G(P)), we do the

following transformation on (T,B). Since G′ is a concise legal triangulation, there is exactly

one vertex x ∈ V (T ) where {u, v} ⊆ B(x).

1. Add two vertices xu and xv to V (T ) and set B(xu) to B(x) \ v and B(xv) to B(x) \ u.

2. For every vertex x′ ∈ NT (x), if u ∈ B(x′), add an edge {x′, xu} to E(T ). Otherwise, add

an edge {x′, xv}. Delete edge {x, x′} from E(T )

3. Delete x from V (T ). Add an edge {xu, xv} to E(T )

Let (T ′, B′) denote the transformed tree. Note that, (T ′, B′) satisfies the vertex coverage and

coherence properties. We build a legal triangulation H of Int(CP) by first building the tree

decomposition (T ′′, B′′) corresponding to H. First, set T ′′ = T ′ and B′′ = B′. For every

x ∈ V (T ′′) and v ∈ B′′(x), substitute v in B′′(x) with f−1(v). Since f is a bijective function,

(T ′′, B′′) also satisfies vertex coverage and coherence properties. For every edge {u, v} in

Int(CP) there exists an edge {f(u), f(v)} in G(P). Since there exists a vertex x ∈ V (T ′) where

{f(u), f(v)} ⊆ B′(x), {u, v} ⊆ B′′(x). Thus, (T ′′, B′′) satisfies the edge coverage property and

is a tree decomposition of Int(CP).

Let H be the triangulation corresponding to the tree decomposition (T ′′, B′′) of Int(CP).

For any i ∈ [k], let u, v be the two vertices in Int(CP) that correspond to the sets of partition

χi. Note that, f(u) and f(v) are the internal vertices of tree Ti. Since G′ is concise, and

by construction, there is no vertex x ∈ V (T ′) where {f(u), f(v)} ⊆ B′(x). Thus, there is no

vertex x ∈ V (T ′′) where {u, v} ⊆ B′′(x). Hence H is a legal triangulation of Int(CP). Also the

transformation from (T ′, B′) to (T ′′, B′′) makes sure that, for every edge {u, v} in ξ(Int(CP), H)

there is an fill-in edge {f(u), f(v)} in ξ(G(P), G′).
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Lemma 15. Given a legal triangulation H of Int(CP), there exists a concise legal triangulation

G′ of G(P) where, for every edge {u, v} in ξ(Int(CP), H), there exists an edge {f(u), f(v)} in

ξ(G(P), G′).

Proof. Let (T,B) be a clique tree of H. We do the following transformation on (T,B) for every

character χ ∈ CP . Let u, v be the vertices in Int(CP) representing the sets of the partition

χ. Consider the path x, x1, . . . , xm, y in T where u ∈ B(x), v ∈ B(y) and, for any j ∈ [m],

u /∈ B(xj), and v /∈ B(xj) . There exists exactly one such path. Note that, the subpath

x1, x2, . . . , xm can be empty. For every j ∈ [m], add u to B(xj). The resulting tree (T ′, B′) is

still a tree decomposition of H.

We build the legal triangulation G′ of G(P) by building the tree decomposition (T ′′, B′′)

corresponding to G′. First set T ′′ = T ′ and B′′ = B′. Transform (T ′′, B′′) as follows. For

every x ∈ V (T ′′) and v ∈ B′′(x), substitute v in B′′(x) with f(v). Since f is bijective (T ′′, B′′)

satisfies the vertex coverage and coherence properties. To satisfy the edge coverage property we

do the following. Subdivide every edge {x, y} ∈ E(T ′′) as follows. Let {x1, x2, . . . , xp} ⊆ B′′(x)

and {y1, y2, . . . , yp} ⊆ B′′(y) such that for every i ∈ [p], {xi, yi} = Ê(Tj) for some j ∈ [k] and

p is the maximum such value. The edge {x, y} is subdivided p times into vertices v1, v2, . . . , vp

where B′′(vi) = {B(x) ∩ B(y)} ∪ {xj : i ≤ j ≤ p} ∪ {yj : 1 ≤ j ≤ i}. For every i ∈ [p], {xi, yi}

is the only edge of any input tree present in B(vi). Similarly, for every z ∈ T ′′ and i ∈ [p]

where z 6= vi, {xi, yi} 6⊂ B(z). The pair (T ′′, B′′) now satisfies the edge coverage property and

is a valid tree decomposition of G(P). The triangulation G′ of G(P) corresponding to the tree

decomposition (T ′′, B′′) is a concise legal triangulation. Also the transformation from (T,B) to

(T ′′, B′′) ensures that, for every edge {u, v} in ξ(Int(CP), H), there exists an edge {f(u), f(v)}

in ξ(G(P), G′) .

Let P be a collection of phylogenetic trees. Using transformations similar to the ones used

in the proofs of Lemmas 14 and 15, it is possible to convert a legal triangulation of G(P) to

legal triangulation of Int(CP) and vice versa. In either case, the supertree need not be built.



29

3.4 Treewidth and Tree Compatibility

Let P = {T1, T2, . . . , Tk} be a profile of unrooted trees. Bryant and Lagergren have shown

the following in [Bryant and Lagergren (2006)].

Lemma 16. If P is compatible, tw(G(P)) ≤ k.

By a similar argument, it can be shown that,

Lemma 17. If P is compatible, tw(G(P)) ≤ k.

The converse of Lemma 17 is not necessarily true as can be seen from Fig. 3.4. We will first

show the relation between treewidth and compatibility for a special class of phylogenetic trees.

Theorem 6. Let P = {T1, T2, . . . , Tk} be a profile of unrooted trees where for any 1 ≤ i 6= j ≤ k,

L(Ti) = L(Tj). Profile P is compatible if and only if G(P) has treewidth at most k.

Proof. The ‘only if” part follows from Lemma 17. To prove the “if” part, we first prove the

following characterization of the minimal separators in G(P). Every minimal separator U in

G(P) will satisfy at least one of the following conditions.

1. U contains at least one vertex from every tree in P. If U contains vertices from two

different trees, then it will contain a vertex from every tree in P.

2. There are at least 3 vertices from some tree T ∈ P.

For every i ∈ [k] let θi be the label mapping function of Ti. Consider any minimal a − b

separator U . Let a ∈ V (Ti) and b ∈ V (Tj). Assume that, in G(P) \ U , there exists a path

from a to a′ ∈ V (Ti) where θi(`) = a′ for some ` ∈ L(P), and, there exists a path from b to

b′ ∈ V (Tj) where θj(`
′) = b′ for some ` ∈ L(P). In case, vertex a (b) is labelled, then both a

(b) and a′ (b′) would be the same. Note that, ` and `′ cannot be the same. For any h where

i 6= h and j 6= h, there is a path P = a − a′ − c − d − b′ − b in G(P) where θh(`) = c and

θh(`′) = d. The subpath c − d in P passes only through vertices of tree Th. So, U should

contain at least one vertex each from every tree Th where i 6= h and j 6= h. There is a path

P ′ = a− a′ − b′′ − b in G(P) where θj(`) = b′′. Similarly, there is a path P ′′ = a− a′′ − b′ − b
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in G(P) where θi(`
′) = a′′. To break paths P ′ and P ′′, U should contain at least a vertex each

from Ti and Tj . So, U will contain at least one vertex from every tree in P. If U contains two

vertices from two different trees, then there will exist paths from a to a labelled vertex in Ti

and from b to a labelled vertex in Tj . Thus, U will contain a vertex from every input tree.

Now, assume that there is no path from a to any labelled vertex belonging to Ti in G(P)−U .

This implies that a is not labelled. Any unlabelled vertex will have degree 3. Thus, U will

contain at least 3 vertices from Ti and will not contain vertices from any other tree Th where

i 6= h.

Consider any minimal triangulation H of G(P) whose width is at most k. Let (T,B) be a

clique tree of the minimal triangulation. By way of contradiction, assume that the triangulation

H is illegal. Then, there is a vertex x in T where B(x) contains two tree edges. If B(x) contains

a vertex from every input tree then the size of B(x) would be at least k + 2. That would

contradict the assumption that treewidth of G(P) is at most k. Thus, B(x) cannot contain a

vertex from every tree. Consider a neighbor y of x. The intersection of B(x) and B(y) is a

minimal separator U of G(P). If U contains two vertices from different trees, U would contain

vertices from every input tree and the size of B(x) would be greater than or equal to k+ 2. So,

U can only contain vertices from some tree Ti and has at least 3 vertices from tree Ti. Note

that B(y) will also contain vertices of U and thus cannot contain a vertex each from every tree.

Repeatedly applying the same argument, we can conclude that there is no vertex z ∈ V (T )

where B(z) contains a vertex each from every tree. But, this is not possible, since, for every

label ` ∈ L(P) there is a clique in G(P) with a vertex each from every tree and thus, there

should be a vertex z in T where B(z) contains a vertex each from every tree.

Theorem 7. Two phylogenetic trees are compatible if and only if their modified display graph

has treewidth at most 2.

Proof. The “only if” part follows from Lemma 17. To prove the “if” part, assume by contra-

diction that T1 and T2 are incompatible. Then, from Lemma 12, G(P) contains a K4 with two

tree edges as a modified minor. Any modified minor of G(P) is also a minor of G(P). Thus,

G(P) contains a K4 as a minor and tw(G(P)) > 2. Hence, if treewidth of G(P) is at most 2,
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Figure 3.4: (i), (ii), and (iii) are three incompatible input trees. (iv) Modified display graph of

input trees (i), (ii) and (iii); the graph has treewidth three.

T1 and T2 are compatible.

The above theorem cannot be generalized for any number of trees. An example of three

trees which are incompatible but whose display graph has treewidth 3 is given in Figure 3.4.

3.5 Edge Contraction and Tree Removal Problems

Given a profile P of unrooted trees, the edge contraction problem asks, if P can be made

compatible by contraction of at most p internal edges from the input trees. Similarly, given

a profile P of phylogenetic trees, the tree removal problem asks if P can be made compatible

by removal of at most p trees from P. By setting p = 0, there is a reduction from the quartet

compatibility problem [Steel (1992)] to the edge contraction and tree removal problems. Hence,

the edge contraction and tree removal problems are NP-Hard.

The above two problems are similar to the character removal problem. Given a collection

C of characters, the character removal problem asks if C can be made compatible by removal

of at most p characters. A characterization for finding the minimum number of characters to

be removed to make C compatible was given by Bordewich et al. (2005). A character is broken
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with respect to a specific triangulation of Int(C) if there is fill-in edge between the states of

the same character. Bordewich’s characterization requires finding the triangulation of Int(C)

with minimum number of broken characters.

Bordewich’s characterization can be used to solve the edge contraction and tree removal

problems as follows. Profile P is compatible if and only if collection CP is compatible. Consider

any triangulationH of Int(CP). Deleting a broken character from CP corresponds to contracting

the internal edge which induced it. Profile P can be made compatible by contraction of at most

p edges if and only if there exists a triangulation of Int(CP) with at most p broken characters. A

similar characterization can be used to solve the tree removal problem. We provide a different

characterization of edge contraction and tree removal problems using the modified display

graphs. The size of G(P), in terms of number of vertices and edges, is smaller than the size

of the Int(CP). Also, the characterization we give in terms of triangulation of the modified

display graphs for the edge contraction problem, allows us to bound the size of the treewidth

of the modified display graphs.

Let P = {T1, T2, . . . , Tk} be a profile of unrooted trees. A triangulation H of G(P) is

coherent, if for every clique C in H, and for every T ∈ P, V (T ) ∩ V (C) induces a subtree in

T . Note that, every legal triangulation is coherent. Consider any coherent triangulation H of

G(P). Let Q ⊆ Ê(G(P)) be a set of tree edges where, for every C ∈ MC(H), E(C) \ Q has

at most one tree edge. We call the edges in Q, blocking edges of H. We denote the profile

{T1/(Q ∩ E(T1)), . . . , Tk/(Q ∩ E(Tk))} by P/Q.

Consider the set P ⊆ P of trees where T ∈ P if and only if for every clique C ∈ MC(H)

there is at most one edge of T in C. Let Y1 ⊆ P be a set a trees where, for every clique

C ∈ MC(H), there is at most one tree which is not in Y1 and has exactly one tree edge in C.

Consider the set Y2 ⊆ P where, T ∈ Y2 if and only if there exists a clique in MC(H) with more

than one edge from T . Let Y = Y1 ∪ Y2. We call the trees in Y , the blocking trees of H.

We then have the following theorems.

Theorem 8. A profile P of unrooted trees can be made compatible by contraction of at most

p internal edges, if and only if there exists a coherent triangulation of G(P) with at most p

blocking edges.
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Corollary 3. If a profile P of unrooted trees can be made compatible by contraction of at most

p internal edges, then tw(G(P)) ≤ k + p.

Theorem 9. A profile P of unrooted trees can be made compatible by removal of at most p

input trees, if and only if there exists a coherent triangulation of G(P), with at most p blocking

trees.

From Theorem 8, the answer to the edge contraction problem is ”yes” if and only if there

exists a coherent triangulation of G(P) with at most p blocking edges. Similarly, by Theo-

rem 9, the answer to the tree removal problem is ”yes” if and only if there exists a coherent

triangulation of G(P) with at most p blocking trees.

For rest of the section we give the proofs of Theorems 8 and 9. Proof of Theorem 8 follows

from Lemmas 18 and 19. Similarly, proof of Theorem 9 follows from Lemmas 20 and 21. We

first give few definitions.

Let G = (V,E) be a graph and let F be a subset of edges in G. Let V ′ =
⋃
e∈F e. Let

h1, h2, . . . , hz represent the connected components of the graph H = (V ′, F ). Then, for every

i ∈ [z] there exists a vertex vi in V (G/F ) \ V (G) satisfying the following condition. There

exists an edge {vi, v} ∈ E(G/F ) if and only if,

(1) v ∈ {NG(V (hi)) \ V ′} or

(2) v = vj for some j ∈ [z] where i 6= j and there exists a v′ ∈ {V ′∩NG(V (hi))} with v′ ∈ V (hj)

We define a surjective function σ from V (G) to V (G/F ) as follows:

1. For every v ∈ {V (G) \ V ′}, σ(v) = v

2. For every v ∈ V ′ where v ∈ V (hi) for some i ∈ [z], σ(v) = vi

We call σ the vertex mapping function.

Lemma 18. Let H be a coherent triangulation of G(P) and let Q be the blocking edges of H.

Profile P/Q is compatible.
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Proof. For every i ∈ [k], let T ′i = Ti/(E(Ti) ∩ Q) and let σi represent the vertex mapping

function from Ti to T ′i . Consider a clique tree (T,B) of H. We do the following transformation

on (T,B) for every input tree Ti where i ∈ [k]. For every x ∈ V (T ) and v ∈ B(x) where

v ∈ V (Ti), replace v in B(x) with σi(v). Let (T,B′) represent the resulting pair.

We now show that (T,B′) is a valid tree decomposition of G(P/Q). For every vertex v ∈

I(T ′i ), consider any vertex v′ ∈ σ−1i (v). There should exist an x ∈ V (T ) where v′ ∈ B(x) and

so, B′(x) will contain v. Thus (T,B′) satisfies the vertex coverage property. Consider any edge

{u, v} ∈ Ê(G(P/Q)) where {u, v} ⊆ V (T ′i ) for some i ∈ [k]. There exists, a vertex u′ ∈ σ−1i (u)

and a vertex v′ ∈ σ−1i (v) where, {u′, v′} ∈ E(Ti). There must exist a vertex x ∈ V (T ) where

{u′, v′} ⊆ B(x) and so, {u, v} ⊆ B′(x). Consider any added edge {u, v} ∈ E(G(P/Q)) where,

u ∈ V (T ′i ) and v ∈ V (T ′j), 1 ≤ i 6= j ≤ k. There exists, a vertex u′ ∈ σ−1i (u) and a vertex

v′ ∈ σ−1j (v) where, {u′, v′} ∈ E(G(P)). There exists an x ∈ V (T ) where {u′, v′} ⊆ B(x)

and so, {u, v} ⊆ B′(x). Thus, (T,B′) satisfies the edge coverage property. Consider any

vertex v ∈ {V (G(P)) ∩ V (G(P/Q))}. Since the vertex set {x : v ∈ B(x)} induces a subtree

in T , the vertex set {x : v ∈ B′(x)} also induces a subtree in T . Now, consider any vertex

v ∈ {V (G(P/Q)) \ V (G(P))}. Let v ∈ V (T ′i ) for some i ∈ [k] and let h be the subtree induced

by vertices of σ−1i (v) in Ti. The vertex set {x : {V (h) ∩ B(x)} 6= ∅} induces a subtree in

T . Thus, the vertex set {x : v ∈ B′(x)} also induces a subtree in T satisfying the coherence

property. The pair (T,B′) is hence a valid tree decomposition of G(P/Q).

We now prove that the triangulation H ′ of G(P/Q) corresponding to (T,B′) is legal. By

way of contradiction, assume that there exists a clique in H ′ which contains two tree edges,

{p, q} ∈ Ê(T ′i ) and {r, s} ∈ Ê(T ′j) for some i ∈ [k] and j ∈ [k]. Then, there exists an x ∈ V (T )

where, {p, q, r, s} ⊆ B′(x). There will exist, p′ ∈ σ−1i (p), q′ ∈ σ−1i (q), r′ ∈ σ−1j (r), s′ ∈ σ−1j (s)

where {p′, q′} ∈ E(Ti), {r′, s′} ∈ E(Tj) and a clique C in H which contains {p′, q′, r′, s′} . The

set E(C)\Q will then have at least two tree edges which is a contradiction. Thus, H ′ is a legal

triangulation of G(P/Q) and the profile P/Q is compatible.

Lemma 19. If P/Q is compatible for some Q ⊆ Ê(G(P)), then there exists a coherent trian-

gulation H of G(P) where, the edges of Q are the blocking edges of H.
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Proof. For every i ∈ [k], let T ′i = Ti/Q and let σi represent the vertex mapping function from

V (Ti) to V (T ′i ). Let H ′ be a legal triangulation of G(P/Q). Consider a clique tree (T,B) of

H ′. We do the following transformation on (T,B) for every i ∈ [k]. For every x ∈ V (T ) and

v ∈ B(x) where v ∈ V (Ti), replace v in B(x) with σ−1i (v). Let (T,B′) be the resulting pair.

We now show that (T,B′) is a tree decomposition of G(P).

For every, v ∈ Ti and i ∈ [k], there exists a vertex x ∈ V (T ) such that σi(v) ∈ B(x) and thus,

v ∈ B′(x). Hence, the pair (T,B′) satisfies the vertex coverage property. Consider any tree

edge {u, v} ∈ E(Ti) of G(P). There exists a vertex x ∈ V (T ) where {σi(u), σi(v)} ⊆ B(x) and

thus, {u, v} ⊆ B′(x). Consider any added edge {u, v} ∈ E(G(P)) where u ∈ V (Ti), v ∈ V (Tj)

for some 1 ≤ i 6= j ≤ k. There exists a vertex x ∈ V (T ) where {σi(u), σj(v)} ⊆ B(x). Thus,

{u, v} ⊆ B′(x) satisfying the edge coverage property. Consider any vertex v ∈ V (Ti) for some

i ∈ [k]. The set {x : σi(v) ∈ B(x)} induces a subtree in T . Thus the set {x : σ−1i (σi(v)) ⊆

B′(x)} also induces a subtree in T , satisfying the coherence property. The pair (T,B′) is

thus a tree decomposition of G(P). Let H be the triangulation of G(P) corresponding to tree

decomposition (T,B′).

We will now prove that H is a coherent triangulation. By way of contradiction, assume

that there exists a maximal clique C in H and i ∈ [k] where the the vertices of Ti in C

induce two non-adjacent subtrees h and h′ in Ti such that V (h) ∩ V (h′) = ∅. Consider any

two vertices u ∈ V (h) and v ∈ V (h′). There exists a vertex x ∈ V (T ) where {u, v} ⊆ B′(x).

Since, V (h) ∩ V (h′) = ∅, vertices σi(u), σi(v) are different and non adjacent in T ′i . The clique

induced by vertices of B(x) in H ′ contains two non-adjacent vertices from tree T ′i and hence

the triangulation H ′ is illegal, which is a contradiction. Thus, H is a coherent triangulation of

G(P).

We now prove that the edges in Q are the blocking edges of H. By way of contradiction,

assume that there exists a clique C in H where E(C) \Q has more than one tree edge. Let e,

e′ be the tree edges in E(C) \Q. We have the following two cases.

1. Edges e and e′ share an endpoint. Let e = {p, q} and e′ = {q, r}. Since e and e′ share an

endpoint and are tree edges, both the edges belong to same tree Tj for some j ∈ [k]. There
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exists a vertex x ∈ V (T ) where {p, q, r} ⊆ B′(x) and thus, {σj(p), σj(q), σj(r)} ⊆ B(x).

Since, {e, e′} 6⊆ Q, σj(p) 6= σj(q) 6= σj(r). The clique induced by the vertices of B(x)

in H ′ contains the tree edges {σj(p), σj(q)}, {σj(q), σj(r)}. The triangulation H ′ is thus

illegal which is a contradiction.

2. Edges e and e′ do not share an endpoint. Let e = {p, q}, e′ = {r, s} where e ∈ Ê(Ti)

and e′ ∈ Ê(Tj) for some i ∈ [k] and j ∈ [k]. There exists a vertex x ∈ V (T ) where

{p, q, r, s} ⊆ B′(x) and thus, {σx(p), σx(q), σy(r), σy(s)} ⊆ B(x). Since {e, e′} 6⊆ Q,

σi(p) 6= σi(q) 6= σj(r) 6= σj(s). The clique induced by vertices of B(x) in H ′ contains

tree edges {σi(p), σi(q)}, {σj(r), σj(s)}. The triangulation H ′ is thus illegal which is a

contradiction.

Lemma 20. Let Y be the blocking trees of a coherent triangulation H of G(P). The profile

P \ Y is compatible.

Proof. Delete the vertices of trees in Y from H. Let H ′ be the resulting graph. Any induced

subgraph of a triangulated graph is also triangulated. So, H ′ is triangulated. Every edge

present in G(P \Y ) is also present in H ′. Hence, H ′ is a triangulation of G(P \Y ). To see that

H ′ is a legal triangulation of G(P \ Y ), by way of contradiction, assume that there is a clique

C in H ′ which contains two tree edges e and e′. Since, H ′ is an induced subgraph of H, there

exists a clique C ′ in H which contains both e and e′. Edges e and e′ cannot be from the same

tree, since any tree which contains more than one edge in a clique is contained in Y . Since

e and e′ are from different trees, the clique C ′ in H contains at least an edge each from two

different trees, both of which are not in Y , a contradiction. Thus, H ′ is a legal triangulation

of G(P \ Y ).

Lemma 21. Let Y ⊆ P be a set of unrooted trees where, the profile P \Y is compatible. Then,

there exists a coherent triangulation H of G(P) where, the trees of Y are the blocking trees of

H.
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Proof. Let H ′ be a legal triangulation of G(P \Y ). Let V ′ = {v : v ∈ Ê(T ), T ∈ Y }. Add V ′ to

graph H ′ and make V ′ a clique. For every clique C ∈MC(H ′), make V ′ ∪ V (C) a clique. Let

H be the resulting graph. Since, H ′ is a legal triangulation of G(P \ Y ), graph H is a coherent

triangulation of G(P). There exists a clique C ∈ MC(H) if and only if C \ V ′ is a clique in

MC(H ′). It can be seen easily that the trees in Y are the blocking trees of triangulation H.

3.6 Concluding Remarks

We characterized the unrooted tree compatibility problem in terms of triangulations of the

display graph. We then modified the display graphs to derive a concise characterization for the

unrooted tree compatibility problem. Every modified display graph defines an equivalence class

of profiles of phylogenetic trees. Profiles of phylogenetic trees which have the same modified

display graph belong to the same class. We identified a special case of unrooted phylogenetic

tree problem which can be solved in polynomial time. We also proved that any modified display

graph which contains a K4 with two non adjacent tree edges as a modified minor will not have

a legal triangulation. The K4 with non adjacent tree edges is thus an obstruction for unrooted

tree compatibility. It needs to be investigated, if the number of such obstructions is finite, and

polynomial in size for profiles with fixed number of unrooted phylogenetic trees. We defined

the edge contraction and tree removal problems and provided characterizations in terms of the

modified display graph for the same. We provided an upper bound on the treewidth of the

modified display graph for the edge contraction problem. This leaves open the question if the

edge contraction problem is fixed parameter tractable.
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CHAPTER 4. CHARACTERIZING COMPATIBILITY AND

AGREEMENT OF UNROOTED TREES WITH CUTS

Sudheer Vakati, David Fernández-Baca

Deciding whether a collection of unrooted trees is compatible is a fundamental problem

in phylogenetics. Two different graph-theoretic characterizations of tree compatibility have

recently been proposed. In one of these, tree compatibility is characterized in terms of the

existence of a specific kind of triangulation in a structure known as the display graph. An

alternative characterization expresses the tree compatibility problem as a chordal graph sand-

wich problem in a structure known as the edge label intersection graph. Here, we show that

the characterization using edge label intersection graphs yields to a characterization in terms

of minimal cuts of the display graph. We show how these two characterizations are related to

compatibility of splits. We also derive characterizations for the agreement supertree problem

in terms of minimal cuts and minimal separators of display and edge label intersection graphs

respectively.

4.1 Introduction

Vakati and Fernández-Baca characterized the tree compatibility problem in terms of finding

a legal triangulation [Vakati and Fernández-Baca (2011)] of the display graph of a profile,

a graph introduced by Bryant and Lagergren [Bryant and Lagergren (2006)]. Gysel et al.

introduced the edge label intersection graph for a profile of phylogenetic trees and used this

graph to characterize tree compatibility as a chordal sandwich problem [Gysel et al. (2012)].

In this paper we explore the connection between separators in the edge label intersection

graph of a profile and cuts in the display graph of the profile (Section 4.2). We show that
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this leads to a new, and very natural, characterization of compatibility in terms of minimal

cuts in the display graph (Section 4.3). We then show how such cuts are closely related

to the splits of the compatible supertree (Section 4.4). We give a characterization of the

agreement supertree problem in terms of minimal cuts of the display graph (Section 4.5).

This characterization also translates to a characterization in terms of minimal separators of

the edge label intersection graph. To the best of our knowledge, there is no other known

characterization of the agreement supertree problem for unrooted trees. Lastly, we give a

transformation from the cuts characterization of the display graph to the characterization in

terms of legal triangulation (Section 4.6).

4.2 Display Graphs and Edge Label Intersection Graphs

Let P be a profile. In what follows, we assume that G(P) is connected. If it is not, the

connected components of G(P) induce a partition of P into sub-profiles such that for each

sub-profile P ′, G(P ′) is a connected component of G(P). It is easy to see that P is compatible

if and only if each sub-profile is compatible.

The line graph of a graph G, denoted by LG(G), is a graph whose vertex set is E(G) and

two vertices of LG(G) are adjacent if the corresponding edges in G share an endpoint. For

rest of the paper we denote the line graph LG(G(P)) of G(P) by LG(P). Graph LG(P) is

the modified edge label intersection graph defined in Gysel et al. (2012). Note that if G(P) is

connected, then so is LG(P). Indeed the following useful fact is easy to prove.

Observation 1. Let I be a set of edges of G(P) and let {v1, v2, · · · , vm} ⊆ V (G(P)) where

m ≥ 2. Then, there exists a path v1, v2, · · · , vm in G(P) − I if and only if there exists a path

{v1, v2}, · · · , {vm−1, vm} in LG(P)− I.

Thus, in what follows, we assume that LG(P) is connected.

For an unrooted tree T , we use LG(T ) to denote LG({T}). A fill-in edge of LG(P) is

valid if both its endpoints are not in LG(T ) for every T ∈ P. A triangulation H of LG(P) is

restricted if every fill-in edge of H is valid.
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Theorem 10. [Gysel et al. (2012)] A profile P of unrooted phylogenetic trees is compatible if

and only if there exists a restricted triangulation of LG(P).

A minimal separator F of LG(P) is legal if for every T ∈ P, all the edges of T in F share

a common endpoint; i.e., F ∩ E(T ) is a clique in LG(T ). The following theorem was first

mentioned in Gysel et al. (2012). For future reference, we formally state it and prove it here.

Theorem 11. A profile P is compatible if and only if there exists a maximal set F of pairwise

parallel minimal separators in LG(P) where every separator in F is legal.

Proof. We use the same technique in Gusfield (2009) to derive a characterization of the perfect

phylogeny problem in terms of minimal separators of the partition intersection graph.

Assume that P is compatible. From Theorem 10, there exists a restricted triangulation

H of LG(P). We can assume that H is minimal triangulation, since if it is not, a restricted

minimal triangulation of LG(P) can be obtained by repeatedly deleting fill-in edges from H

until it is a minimal triangulation. Let F = 4H . From Theorem 1, F is a maximal set of

pairwise parallel minimal separators of LG(P) and LG(P)F = H. Assume that F contains a

separator F that is not legal. Let {e, e′} ⊆ F where {e, e′} ⊆ E(T ) for some input tree T and

e ∩ e′ = ∅. The vertices of F form a clique in H. Thus, H contains the edge {e, e′}. Since

{e, e′} is not a valid edge, H is not a restricted triangulation, which is a contradiction. Hence,

every separator in F is legal.

Let F be a maximal set of pairwise parallel minimal separators of LG(P) where every

separator in F is legal. From Theorem 1, LG(P)F is a minimal triangulation of LG(F). If

{e, e′} ∈ E(LG(P)F ) is a fill-in edge, then e ∩ e′ = ∅ and there exists a minimal separator

F ∈ F where {e, e′} ⊆ F . Since separator F is legal, if {e, e′} ⊆ E(T ) for some input tree T

then e ∩ e′ 6= ∅. Thus, both e and e′ are not from LG(T ) for any input tree T . Hence, every

fill-in edge in LG(P)F is valid, and LG(P)F is a restricted triangulation.

Let u of be a vertex of some input tree, Then, Inc(u) denotes the set of all vertices e of

LG(P) such that u ∈ e. Equivalently, Inc(u) is the set of all edges of G(P) incident on u.

Lemma 22. Let F be any minimal separator of LG(P) and u be any vertex of any input tree.

Then, Inc(u) 6⊆ F .
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Proof. Suppose F is a minimal a-b separator of LG(P) and u is a vertex of some input tree

such that Inc(u) ⊆ F . Consider any vertex e ∈ Inc(u). Then, there exists a path π from a to

b in LG(P) where e is the only vertex of F in π. If such a path π did not exist, then F − e

would still be a a-b separator, and F would not be minimal, a contradiction. Let e1 and e2 be

the neighbors of e in π and let e = {u, v}. Since Inc(u) ⊆ F , π does not contain any other

vertex e′ where u ∈ e′. Thus, e ∩ e1 = {v} and e ∩ e2 = {v}. Let π = a, · · · , e1, e, e2, · · · , b.

Then π′ = a, · · · , e1, e2, · · · , b is also a path from a to b. But π′ does not contain any vertex

of F thus contradicting the assumption that F is a separator of LG(P). Hence, neither such a

minimal separator F nor such a vertex u can exist.

Lemma 23. If F is a minimal separator of LG(P), then LG(P)−F has exactly two connected

components.

Proof. Assume that LG(P) − F has more than two connected components. From Lemma 1,

LG(P) − F has at least two full components. Let H1 and H2 be two full components of

LG(P)−F . Let H3 be a connected component of LG(P)−F different from H1 and H2. Then,

there exists an edge {e, e3} in LG(P) where e ∈ F and e3 ∈ V (H3).

Since H1 and H2 are full components, there exist edges {e, e1}, {e, e2} in LG(P) where,

e1 ∈ V (H1) and e2 ∈ V (H2). Let e = {u, v}. Without loss of generality, let u ∈ e ∩ e3. Then,

there will not exist a vertex f ∈ V (H1) where u ∈ e ∩ f . Thus, v ∈ e ∩ e1. Similarly, H1,

H2, H3 are different connected components of LG(P) − F , and hence, there will not exist a

f ∈ V (H2) where, u ∈ f ∩ e or v ∈ f ∩ e. Since H2 does not contain a vertex adjacent to e, H2

is not a full component which is a contradiction.

Corollary 4. If F is a minimal separator of LG(P), then LG(P) − F ′ is connected for any

F ′ ⊂ F .

Lemma 24. Let F be a subset of E(G(P)). Then, F is a legal minimal separator of LG(P) if

and only if F is a legal minimal cut of G(P).

Proof. We will prove that if F is a legal minimal separator of LG(P) then F is a legal minimal

cut of G(P). The proof for the other direction is similar and is omitted.
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First, we show that F is a cut of G(P). Assume the contrary. Let {u, v} and {p, q} be

vertices in different components of LG(P) − F . Since G(P) − F is connected, there exists a

path between vertices u and q. Also, {u, v} /∈ F and {p, q} /∈ F . Thus, by Observation 1 there

also exists a path between vertices {u, v} and {p, q} of LG(P) − F . This implies that {u, v},

{p, q} are in the same connected component of LG(P) − F , a contradiction. Thus F is a cut

of G(P).

Next we show that separator F of LG(P) is a legal cut of G(P). For every T ∈ P all the

vertices of LG(T ) in F form a clique in LG(T ). Thus, all the edges of T in F are incident on a

common vertex. Assume that G(P)−F has a connected component with no edge and let u be

the vertex in one such component. Then, Inc(u) ⊆ F . But, F is a minimal separator of LG(P)

and by Lemma 22, Inc(u) 6⊆ F which is a contradiction. Thus, F is a legal cut of G(P).

Lastly, we show that F is a minimal cut of G(P). Assume the contrary. Then, there exists

F ′ ⊂ F where G(P) − F ′ is disconnected. Since F ′ ⊂ F and every connected component of

G(P)−F has at least one edge, every connected component of G(P)−F ′ also has at least one

edge. Let {u, v} and {p, q} be the edges in different components of G(P)− F ′. By corollary 4,

LG(P)−F ′ is connected and thus, there exists an path between {u, v} and {p, q} in LG(P)−F ′.

Then, by Observation 1 there also exists a path between vertices u and p in G(P)−F ′. Hence,

edges {u, v} and {p, q} are in the same connected component of G−F ′ which is a contradiction.

Thus, F is also a minimal cut of G(P).

Lemma 25. Two legal minimal separators F and F ′ of LG(P) are parallel if and only if the

legal minimal cuts F and F ′ are parallel in G(P).

Proof. Assume that legal minimal separators F and F ′ of LG(P) are parallel, but legal minimal

cuts F and F ′ of G(P) are not. Then, there exists {{u, v}, {p, q}} ⊆ F ′ where {u, v} and {p, q}

are present in different components of G(P) − F . Since F and F ′ are parallel separators in

LG(P), and F does not contain {u, v} and {p, q}, there exists a path between vertices {u, v}

and {p, q} in LG(P) − F . Then, by Observation 1 there also exists a path between vertices

u and q in G(P) − F . Thus, edges {u, v} and {p, q} are in the same connected component of

G(P)− F which is a contradiction.
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The other direction can be proved similarly using Observation 1.

The next lemma follows from the definition of restricted triangulation and is from Gysel

et al. (2012).

Lemma 26. Let H be a restricted triangulation of LG(P) and let (T,B) be a clique tree of

H. Let e = {u, v} be any vertex in LG(P). Then, there does not exist a node x ∈ V (T ) where

B(x) contains vertices from both Inc(u) \ e and Inc(v) \ e.

Lemma 27. Let T be a tree in P and suppose F is a minimal cut of G(P) that contains

precisely one edge e of T . Then, the edges of the two subtrees of T −e are in different connected

components of G(P)− F .

Proof. Since F is a minimal cut of G(P), endpoints of e are in different connected components

of G(P)− F . Let e = {u, v}. For every x ∈ e, let Tx represent the subtree containing vertex x

in T − e. Edge e is the only edge of T in F . Thus, for every x ∈ e all the edges of Tx are in the

same connected component of G(P)− F as vertex x. Since the endpoints of e are in different

connected components of G(P) − F , the edges of Tu and Tv are also in different connected

components of G(P)− F .

4.3 Characterizing Tree Compatibility via Cuts

A cut F of the display graph G(P) of a profile P = {T1, T2, · · · , Tk} is legal if it satisfies

the following:

(LC1) For every tree T ∈ P, the edges of T in F are incident on a common vertex.

(LC2) There is at least one edge in each of the connected components of G(P)− F .

A set F of pairwise parallel legal minimal cuts of G(P) is complete, if for every input tree

T ∈ P and for every internal edge e of T , there exists a cut F ∈ F where e is the only edge of

T in F .

Example 1. For the display graph G(P) of Fig. 2.1, let F = {F1, F2, F3, F4}, where F1 =

{{1, 2}, {5, 6}}, F2 = {{2, 3}, {6, 7}, {5, 6}}, F3 = {{4, 5}, {1, 2}, {1, c}} and F4 = {{6, 7}, {2, f}}.

Then, F is a complete set of pairwise parallel legal minimal cuts.
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We characterize the compatibility of profile P in terms of minimal cuts of G(P) as follows.

Theorem 12. A profile P of unrooted phylogenetic trees is compatible if and only if there exists

a complete set of pairwise parallel legal minimal cuts for G(P).

Theorem 12 and Lemmas 24 and 25 imply the following analogous result for LG(P). A set

F of legal minimal separators of LG(P) is complete, if for every internal edge e of an input tree

T , there exists a separator F ∈ F where e is the only vertex of LG(T ) in F .

Theorem 13. A profile P of unrooted phylogenetic trees is compatible if and only if there exists

a complete set of pairwise parallel legal minimal separators for LG(P).

Theorem 12 follows from Theorem 11 and the following lemma.

Lemma 28. The following two statements are equivalent.

(i) There exists a maximal set F of pairwise parallel minimal separators of LG(P) where

every separator in F is legal.

(ii) There exists a complete set of pairwise parallel minimal cuts for G(P).

Proof. (i) ⇒ (ii): We will show that for every internal edge e = {u, v} of an input tree T there

exists a minimal separator in F that contains only vertex e from LG(T ). Then from Theorem 24

and Lemma 25 it follows that F is a complete set of pairwise parallel legal minimal cuts for

display graph G(P).

As shown in the proof of Theorem 11, LG(P)F is a restricted minimal triangulation of

LG(P). Let (S,B) be a clique tree of LG(P)F . By definition, the vertices in each of the sets

Inc(u) and Inc(v) form a clique in LG(P). Consider any vertex p of S where Inc(u) ⊆ B(p)

and any vertex q of S where Inc(v) ⊆ B(q). Since (S,B) is a clique tree of LG(P)F , there will

always exist such vertices p and q. Also, by Lemma 26, p 6= q, B(p) ∩ (Inc(v) \ {e}) = ∅ and

B(q) ∩ (Inc(u) \ {e}) = ∅.

Let π = p, x1, x2, · · · , xm, q be the path from p to q in S where m ≥ 0. Let x0 =

p and xm+1 = q. Let xi be the vertex nearest to p in path π where i ∈ [m + 1] and

B(xi) ∩ (Inc(u) \ {e}) = ∅. Let F = B(xi−1) ∩ B(xi). Then by Theorem 1, F ∈ F . Since
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Inc(u)∩ Inc(v) = {e}, by the coherence property of the clique tree, e ∈ B(xj) for every j ∈ [m].

Thus, e ∈ F . By Lemma 26, B(xi−1) ∩ (Inc(v) \ {e}) = ∅. Since B(xi) ∩ (Inc(u) \ {e}) = ∅,

F ∩ Inc(u) = {e} and F ∩ Inc(v) = {e}. Thus, for every vertex e′ ∈ LG(T ) where e 6= e′ and

e ∩ e′ 6= ∅, e′ /∈ F . Also, since every separator in F is legal, for every vertex f ∈ LG(T ) where

f ∩ e = ∅, f /∈ F . Thus, e is the only vertex of LG(T ) in F .

(i) ⇐ (ii): Consider any complete set of pairwise parallel legal minimal cuts F ′ of G(P). By

Theorem 24 and Lemma 25, F ′ is a set of pairwise parallel legal minimal separators of LG(P).

There exists a maximal set F of pairwise parallel minimal separators where F ′ ⊆ F . Assume

that there exists a minimal separator F in F \ F ′ which is not legal.

Since, by assumption, minimal separator F of LG(P) is not legal, there exists a tree T ∈ P

where at least two nonincident edges of T are in F . Let e1 = {x, y} and e2 = {x′, y′} be

those nonincident edges. Consider any internal edge e3 in T where e1 and e2 are in different

components of T − e3. Such an edge exists because e1 and e2 are nonincident. Set F ′ is

a complete set of pairwise parallel legal minimal cuts of G. Thus, there exists minimal cut

F ′ ∈ F ′ where e3 is the only edge of T in F ′. Since, minimal separators F and F ′ are in F ,

they are parallel to each other and vertices e1 and e2 are in the same connected component of

LG(P)−F ′. Thus, by Observation 1, there exists a path between vertices x and x′ in G(P)−F ′

and edges e1 and e2 are also in the same connected component of G(P)−F ′. But by Lemma 27

that is impossible.

Thus, every separator of F \F ′ is legal and the set F is a maximal set of pairwise minimal

separators of LG(P) where every separator in F is legal.

4.4 Splits and Cuts

Theorem 12 is closely related to the characterization of the compatibility of splits. The

following lemma shows that for every legal minimal cut of G(P) we can derive a split of L(P).

Lemma 29. Let F be a legal minimal cut of G(P) and let G1 and G2 be the two connected

components of G(P)− F . Then, L(G1)|L(G2) is a split of L(P).
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Proof. Consider Gi for any i ∈ {1, 2}. We will show that L(Gi) is non-empty. Since F is a

legal minimal cut, Gi contains at least one edge e of G(P). If e is a non internal edge, then

L(Gi) is non-empty. Assume that e = {u, v} is an internal edge of some input tree T . If F

does not contain an edge of T , then L(T ) ⊆ L(Gi) and thus L(Gi) is non-empty. Assume

that F contains one or more edges of T . Let Tu, Tv be the two subtrees of T − e. Since F

is a legal minimal cut, F contains edges from either Tu or Tv but not both. Without loss of

generality assume that F does not contain edges from Tu. Then, every edge of Tu will be in the

same component as e. Since Tu contains at least one leaf vertex, L(Gi) is non-empty. Thus,

L(G1)|L(G2) is a split of L(P).

For any legal minimal cut F of G(P), we denote by σ(F ) the split of L(P) induced by F .

If F is a set of legal minimal cuts of G(P), we denote the set of all the non-trivial splits in⋃
F∈F σ(F ) by Σ(F). The relationship between splits compatibility and complete set of legal

minimal cuts is given by the following lemma.

Theorem 14. Suppose of G(P) has a complete set of pairwise parallel legal minimal cuts F .

The following statements hold true.

(i) Σ(F) is compatible.

(ii) If S is a compatible tree for Σ(F), then S is a compatible tree for P.

(iii) There exists a compatible tree S of P where Σ(S) = Σ(F).

Example 2. For the cuts of the display graph in Fig. 2.1 given in Example 1, we have σ(F1) =

abc|defg, σ(F2) = abcfg|de, σ(F3) = ab|cdefg, and σ(F4) = abcde|fg. Note that these splits

are pairwise compatible.

The proof of Theorem 14 uses the following lemma.

Lemma 30. Let F1 and F2 be two parallel legal minimal cuts of G(P). Then, σ(F1) and σ(F2)

are compatible.

Proof. Let σ(F1) = U1|U2 and σ(F2) = V1|V2. Assume that σ(F1) and σ(F2) are incompatible.

Thus, the intersection of Ui and Vj for every i ∈ {1, 2} and j ∈ {1, 2} is non-empty. Let
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a ∈ U1 ∩ V1, b ∈ U1 ∩ V2, c ∈ U2 ∩ V1 and d ∈ U2 ∩ V2. Since {a, b} ⊆ U1, there exists a path

π1 between leaf vertices a and b in G(P) − F1. But a and b are in different components of

G(P)−F2. Thus, an edge e1 of path π1 is in the cut F2. Similarly, {c, d} ⊆ U2 and there exists

a path π2 between labels c and d in G(P) − F1. Since c and d are in different components

of G(P) − F2, cut F2 contains an edge e2 of path π2. But paths π1 and π2 are in different

components of G(P)−F1. So, edges e1 and e2 are in different components of G(P)−F1. Since

{e1, e2} ⊆ F2, the cuts F1 and F2 are not parallel, which is a contradiction.

Proof of Theorem 14. (i) The statement follows from Lemma 30 and the splits equivalence

theorem.

(ii) Let T be an input tree of P and let S′ = S|L(T ). We will show that S′ displays σ(e)

for every internal edge e of T . Let σ(e) = A|B. There exists a cut F ∈ F where e is the only

edge of T in F . Since F is a minimal cut, by Lemma 27, leaves of sets A and B are in different

components of G(P)− F . Thus, if σ(F ) = A′|B′ then up to relabeling of sets we have A ⊆ A′

and B ⊆ B′. Because S displays σ(F ), S′ also displays σ(e). Since S′ displays all the splits of

T , T can be obtained from S′ by contraction of zero or more edges [Semple and Steel (2003)].

Thus, S displays T . Since S displays every tree in P, S is a compatible tree of P.

(iii) This is a consequence of the well-known fact (see, e.g., [Semple and Steel (2003)]) that

if X is a set of compatible non-trivial splits, there exists a tree T where Σ(T ) = X.

4.5 Characterizing Agreement via Cuts

We now characterize the agreement supertree problem in terms of minimal cuts in the

display graph. This characterization is similar to the one for tree compatibility given by The-

orem 12, except for an additional restriction on the minimal cuts.

Theorem 15. A profile P has an agreement supertree if and only if G(P) has a complete set

F of pairwise parallel legal minimal cuts where, for every cut F ∈ F and for every T ∈ P there

is at most one edge of T in F .

Example 3. One can verify that the display graph of Fig. 2.1 does not meet the conditions of

Theorem 15 and, thus, the associated profile does not have an AST. On the other hand, for the
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Figure 4.1: (i) First input tree. (ii) Second input tree, which agrees with the first. (iii) Display

graph of the input trees. (iv) Edge label intersection graph of the input trees. For every vertex,

uv represents label {u, v}.

display graph of Fig. 4.1, let F = {F1, F2, F3}, where F1 = {{1, 2}, {4, 5}}, F2 = {{1, 2}, {5, 6}}

and F3 = {{2, 3}, {6, c}}. For any given input tree T , every cut in F has at most one edge of

T . Also, F is a complete set of pairwise parallel legal minimal cuts. Thus, by Theorem 15, the

input trees of Figure 4.1 have an AST.

The analogue of Theorem 15 for LG(P) is as follows.

Theorem 16. A profile P has an agreement supertree if and only if LG(P) has a complete set

F of pairwise parallel legal minimal separators where, for every F ∈ F and for every T ∈ P

there is at most one vertex of LG(T ) in F .

Theorem 16 follows from Theorem 15 and Lemmas 24 and 25. Thus, the section is devoted

to the proof of Theorem 15.

Let S be an AST of P and let e = {u, v} be an edge of S. For each x ∈ e, Lx denotes the

set of leaves of the subtree in S− e that contains vertex x. Thus, σe(S) = Lu|Lv. Assume that

there exists an input tree T where L(T ) ∩ Lx 6= ∅ for every x ∈ e. Then there exists an edge

f ∈ E(T ) where, if σf (T ) = A1|A2 then A1 ⊆ Lu and A2 ⊆ Lv. Otherwise S|L(T ) will contain

a split which is not in T and is thus not isomorphic to T . We call e an agreement edge of S

corresponding to edge f of T . Note that there does not exist any other edge f ′ of T where e is
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also an agreement edge of S with respect to edge f ′ of T .

Given an AST S of P, we define a function Ψ from E(S) to subsets of edges of G(P) as

follows. For every e ∈ E(S), an edge f of an input tree T is in Ψ(e) if and only if e is an

agreement edge of S corresponding to edge f of T . Observe that Ψ is uniquely defined. We

call Ψ the cut function of S. Given an edge e ∈ E(S), we define a set Vx for every x ∈ e as

follows. For every T ∈ P, Vx contains all the vertices of the minimal subtree of T connecting

the labels in L(T ) ∩ Lx. Note that if e = {u, v} then {Vu, Vv} is a partition of V (G(P)).

Observation 2. Let S be an AST of P and let Ψ be the cut function of S. If {e1, e2} ⊆ E(S),

then Ψ(e1) 6= Ψ(e2).

Lemma 31. Let S be an AST of P and let Ψ be the cut function of S. The following statements

hold true.

(i) For every edge e ∈ E(S), Ψ(e) is a cut of G(P).

(ii) For any edge e ∈ E(S), Ψ(e) is a minimal cut of G(P) if and only if G(P) − Ψ(e) has

exactly two connected components.

Proof. (i) Let e = {u, v}. We will show that G(P) − Ψ(e) does not contain an edge whose

endpoints are in distinct sets of {Vu, Vv}. Assume the contrary. Let f = {x, y} be an edge of

G(P)−Ψ(e) where x ∈ Vu and y ∈ Vv. Since f ∈ G(P)−Ψ(e), f /∈ Ψ(e). Let f be an edge of

input tree T . There are two cases.

Case 1: There does not exist an edge of T in Ψ(e). Then, there exists an endpoint p of e where

L(T ) ⊆ Lp. Without loss of generality, let u = p. Then, V (T ) ⊆ Vu and thus y ∈ Vu,

a contradiction.

Case 2: There exists an edge f ′ 6= f of T in Ψ(e). Let f ′ = {r, s} and let Lr ⊆ Lu and Ls ⊆ Lv.

Let x,r be the vertices of f and f ′ where Lx ⊂ Lr. Since T is a phylogenetic tree, such

vertices x and r exist. Since Lr ⊆ Lu, both the endpoints of f are in Vu which is a

contradiction.

Thus, G(P)−Ψ(e) does not contain an edge whose endpoints are in different sets of {Vu, Vv}.

Since Vu and Vv are non-empty, it follows that Ψ(e) is a cut of G(P).
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(ii) The only if part follows from the definition of a minimal cut. We will prove the if part.

Let e = {u, v}. Assume that G(P)−Ψ(e) has exactly two connected components. From proof

of (i), Vu and Vv are the vertex sets of those two connected components. Consider any edge

f ∈ Ψ(e). Endpoints of f are in different sets of {Vu, Vv} and thus are in different connected

components of G(P) − Ψ(e). This implies that G(P) − (Ψ(e) \ {f}) is connected. Thus, if

G(P)−Ψ(e) has exactly two connected components, Ψ(e) is a minimal cut of G(P).

Let S be an AST of P and let e = {u, v} be an edge of S. We define a splitting operation

on edge e at u as follows. Let {L1, · · · , Lm} be the partition of Lv where for every i ∈ [m],

L(C) ∩ Lv = Li for some connected component C in G(P) − Ψ(e). Let R be the rooted tree

derived from the subtree containing v in S − e by distinguishing vertex v as the root. For any

L ⊆ Lv, let RL be the minimal subtree of R connecting the labels in L. We denote by R|L,

the tree derived from RL by distinguishing the vertex closest to the root of R as the root and

suppressing every other vertex which has degree two. Delete vertices of R from S. For every

i ∈ [m], add an edge from u to the root of R|Li.

Let S′ be the derived tree. If m = 1, then S and S′ are isomorphic and we say the split

operation is invalid. Otherwise, we say the split operation is valid. Let Su be the subtree of

S − e containing vertex u. Note that, edges of E(Su) are present in both S and S′. We denote

the edges in E(S) \ E(Su) and E(S′) \ E(Su) by E(S) \ E(S′) and E(S′) \ E(S) respectively.

We first make the following the following two observations.

Observation 3. For any input tree T where L(T ) ∩ Lv 6= ∅, all the labels of L(T ) ∩ Lv are in

the same connected component of G(P)−Ψ(e).

Observation 4. Consider any connected component C of G(P)−Ψ(e) where L(C) ∩ Lv 6= ∅.

Then, for every X ⊆ (L(C) ∩ Lv), S|X and S′|X are isomorphic.

The next observation follows from the definition of agreement supertrees and we make use

of it in the next lemma.

Observation 5. Let S and T be two phylogenetic trees where L(T ) ⊆ L(S) and T is an induced

subtree of S. For every U ⊆ L(S) where L(T ) ⊆ U , T is an induced subtree of S|U .
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Lemma 32. Let S be an AST of P and let e = {u, v} be an edge of S. Let S′ be the tree

derived by splitting edge e at u. Tree S′ is an AST of P.

Proof. From construction, it can be seen that S′ is a phylogenetic tree over L(P). Let

{L1, · · · , Lm} be the partition of Lv where for every i ∈ [m], L(C)∩Lv = Li for some connected

component C in G(P)−Ψ(e). Consider any input tree T of profile P. We will prove that T is

an induced subtree of S′. There are three cases.

Case 1: L(T ) ⊆ Lu. Since L(T ) ⊆ Lu, by Observation 5, T is an induced subtree of S|Lu. By

construction of the split operation, trees S|Lu and S′|Lu are isomorphic. Thus, T is

an induced subtree of S′.

Case 2: L(T ) ⊆ Lv. By Observation 3, L(T ) ⊆ Li for some i ∈ [m]. Since T is an induced

subtree of S and L(T ) ⊆ Li, by Observation 5, T is an induced subtree of S|Li. By

construction, trees S|Li and S′|Li are isomorphic. Thus, T is an induced subtree of

S′.

Case 3: (L(T )∩Lu 6= ∅)∧(L(T )∩Lv 6= ∅). By Observation 3, L(T )∩Lv ⊆ Li for some i ∈ [m].

Since T is an induced subtree of S and L(T ) ⊆ (Lu ∪ Li), by Observation 5, T is also

an induced subtree of S|(Lu ∪Li). By construction, trees S|(Lu ∪Li) and S′|(Lu ∪Li)

are isomorphic. Thus, T is an induced subtree of S′|(Lu ∪ Li). It follows that T is an

induced subtree of S′.

Thus, S′ is an AST of P.

Lemma 33. Let S be an AST of P and let e = {u, v} be an edge of S. Let S′ be the tree derived

by splitting edge e at u. Let Ψ, Ψ′ be the cut functions of S and S′ respectively. Consider

any edge f ∈ E(S′) \ E(S). There exists an edge e′ ∈ E(S) \ E(S′) where Ψ′(f) ⊆ Ψ(e′).

Furthermore, if Ψ(e′) is a minimal cut of G(P) then Ψ′(f) = Ψ(e′) and Ψ′(f) is a minimal cut

of G(P).

Proof. Let f = {x, y} and let x be the vertex of f where Lx ⊆ Lv. Let Sp be the minimal

subtree of S connecting the labels in Lx. Let p be the vertex of Sp closest to u in S. Let q be



52

the vertex adjacent to p in the path from p to u. Let e′ = {p, q}. Note that, Lx ⊆ Lp. Since

Lx ⊆ Lv, e′ is an edge of E(S)\E(S′). Consider any tree T which has an edge f1 in Ψ′(f). We

will show that L(T )∩Lx = L(T )∩Lp. It then follows that f1 ∈ Ψ(e′) and thus, Ψ′(f) ⊆ Ψ(e′).

Since Lx ⊆ Lp, (Lx∩L(T )) ⊆ (L(T )∩Lp). By Observation 3, all the labels in L(T )∩Lv are

in the same connected component of G(P)−Ψ(e). Thus, all the labels in Lx∪(Lp∩L(T )) are in

the same connected of G(P)−Ψ(e). If (Lp∩L(T )) 6⊆ (Lx∩L(T )), then S|(Lx∪(Lp∩L(T )) and

S′|(Lx∪ (Lp∩L(T )) are not isomorphic, a contradiction of Observation 4. Thus, (Lp∩L(T )) ⊆

(Lx ∩ L(T )).

Assume that Ψ(e′) is a minimal cut of G(P). Then, all the labels in Lp are in the same

connected component of G(P)−Ψ(e′). By Observation 4, it follows that Lp = Lx. Thus, Ψ′(f)

is also a minimal cut of G(P).

Let S be an AST of P and let Ψ be the cut function of S. Let e be an edge of S where

Ψ(e) is not a minimal cut of G(P) and |Ψ(e)| is the maximum of all such edges. Then, there

exists a vertex u ∈ e where the split of edge e at u is valid. Split e at u. Let S′ be the derived

tree and let Ψ′ be the cut function of S′. Let P be the set of all edges in S such that for every

x ∈ P , Ψ(x) is not a minimal cut and |Ψ(x)| = |Ψ(e)|. Similarly let P ′ be the set of all edges

in S′ such that for every x ∈ P ′, Ψ′(x) is not a minimal cut and |Ψ′(x)| = |Ψ(e)|. We have the

following two lemmas.

Lemma 34. For every edge f ∈ E(S′), if |Ψ′(f)| > |Ψ(e)| then Ψ′(f) is a minimal cut of

G(P).

Proof. Consider any edge f ∈ E(S′) where |Ψ′(f)| > |Ψ(e)|. If f ∈ E(S) ∩ E(S′), then

Ψ(f) = Ψ′(f). Since |Ψ(f)| > |Ψ(e)|, by assumption Ψ(f) is a minimal cut of G(P). Thus,

Ψ′(f) is also a minimal cut of G(P). Assume that f ∈ E(S′) \ E(S). By Lemma 33, there

exists an edge e′ ∈ E(S) where Ψ′(f) ⊆ Ψ(e′). Since |Ψ′(f)| > |Ψ(e)|, |Ψ(e′)| > |Ψ(e)|. Thus,

by assumption Ψ(e′) is a minimal cut of G(P). From Lemma 33, it follows that Ψ(e′) = Ψ′(f)

and Ψ′(f) is a minimal cut of G(P).

Lemma 35. |P ′| < |P |.
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Proof. Let Q = P ∩ (E(S) \ E(S′)) and Q′ = P ′ ∩ (E(S′) \ E(S)). It suffices to show that

|Q′| < |Q|. Consider any edge f ∈ Q′. By Lemma 33, there exists an edge e′ ∈ E(S) \ E(S′)

where Ψ′(f) ⊆ Ψ(e′). Thus, |Ψ(e′)| ≥ |Ψ′(f)|. If |Ψ(e′)| > |Ψ′(f)|, then by assumption Ψ(e′) is

a minimal cut and thus by Lemma 33 |Ψ(e′)| = |Ψ′(f)|, a contradiction. Thus, Ψ(e′) = Ψ′(f).

Also, since Ψ′(f) is not a minimal cut, by Lemma 33, Ψ(e′) is not a minimal cut. If e′ = e, it

would imply that all vertices of Vv are in the same connected component of G(P)−Ψ(e) and

thus contradicts the assumption that the split of e at u is valid. Thus, e′ 6= e. Hence, we can

conclude that for every edge f ∈ Q′, there exists an edge e′ ∈ (Q \ {e}), where Ψ′(f) = Ψ(e′).

Let f1 and f2 be any two distinct edges in Q′. Let e1 and e2 be the edges of Q \ {e} where

Ψ′(f1) = Ψ(e1) and Ψ′(f2) = Ψ(e2). If e1 = e2, then Ψ′(f1) = Ψ′(f2), which is a contradiction

of Observation 2. Thus, e1 6= e2. Since e ∈ Q and e /∈ Q′, it then follows that |Q′| ≤ |Q| − 1

and thus, |Q′| < |Q|.

Lemma 36. If P has an AST, then there exists an AST S of P satisfying the following. Let

Ψ be the cut function of S. For every edge e ∈ S, Ψ(e) is a minimal cut of G(P).

Proof. Let S be an AST of P and let Ψ be the cut function of S. Assume that there exists an

edge f of S where Ψ(f) is not a minimal cut of G(P). We do the following repeatedly till Ψ(f)

is a minimal cut for every edge f of S. Let e be an edge of S where, Ψ(e) is not a minimal cut

of G(P) and |Ψ(e)| is the maximum of all such edges. Then, there exists a vertex x ∈ e where

the split of edge e at x is valid. Split e at x. Let S′ be the derived tree and let Ψ′ be the cut

function of S′. Set S to S′ and Ψ to Ψ′.

Let s be the total number of iterations. By Lemma 32, in each iteration the derived tree

S′ is an AST of P. We only need to prove that s is finite. Number of vertices in an AST of

P is at most 2|L(P)|. Also, the minimum size of Ψ(e) for an edge e of S is 1. It thus follows

from Lemmas 34 and 35 that s is finite.

Proof of Theorem 15. (←) Assume that P has an AST. By Lemma 36, there exists an AST S

of P satisfying the following. Let Ψ be the cut function of S. For every edge e ∈ E(S), Ψ(e) is

a minimal cut of G(P). Let F be the set of all minimal cuts of G(P) where if e is an internal

edge of S then Ψ(e) ∈ F . For every F ∈ F and for every T ∈ P, by definition of Ψ, at most
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one edge of T is in F . We will now prove that F is a complete set of pairwise parallel legal

minimal cuts of G(P).

We first prove that every cut in F is legal. Consider any F ∈ F . Let e = {u, v} be the

internal edge of S where Ψ(e) = F . Let T be an input tree which has an internal edge f in

Ψ(e). Since e is an internal edge at least one such input tree exists. Otherwise Ψ(e) is not a

minimal cut. By definition of a cut function, f is the only edge of T in Ψ(e). Thus, each of

the two connected components of G(P)−Ψ(e) have at least one non-internal edge of T . So, F

is a legal minimal cut of G(P).

To prove that cuts in F are pairwise parallel, we will prove that for any two distinct internal

edges e1 and e2 of S, Ψ(e1) and Ψ(e2) are parallel. There exist vertices x ∈ e1 and y ∈ e2

where Lx ⊆ Ly. We will show that for every f ∈ Ψ(e1), f ∈ Ψ(e2) or f ⊆ Vy. It then follows

that Ψ(e1) and Ψ(e2) are parallel. Let f be an edge of input tree T in Ψ(e1). Then there exists

z ∈ f where Lz ⊆ Lx. Thus, Lz ⊆ Ly and z ∈ Vy. By Lemma 31, all the vertices of Vy are in

the same connected component of G(P)−Ψ(e2). Thus, f ∈ Ψ(e2) or f ⊆ Vy.

Lastly, we will show that F is complete. Consider any internal edge f = {p, q} of some

input tree T . Since S is an AST of P, there exists an edge e = {u, v} where up to relabeling

of sets Lp ⊆ Lu and Lq ⊆ Lv. Thus, e is an agreement edge of S corresponding to f and so,

f ∈ Ψ(e). Since f is an internal edge, e will also be an internal edge of S and thus Ψ(e) ∈ F .

Hence, for every internal edge f of an input tree there exists a cut F ∈ F where f ∈ F . So, S

is a complete set of pairwise parallel legal minimal cuts of G(P).

(→) Assume that there exists a complete set F of pairwise parallel legal minimal cuts of

G(P) where for every F ∈ F and for every T ∈ P, there is at most one edge of T in F . By

Theorem 14, there exists an unrooted tree S where Σ(F) = Σ(S). We will prove that S is an

AST of P by showing that Σ(S|L(T )) = Σ(T ) for every input tree T ∈ P.

Consider an input tree T of P. Let X1|X2 be a non-trivial split of T corresponding to edge

f ∈ E(T ). Since F is complete, there exists a cut F ∈ F where f ∈ F . If σ(F ) = Y1|Y2, by

Lemma 27, up to relabeling of sets Xi ⊆ Yi for every i ∈ {1, 2}. Since σ(F ) is a split of S, it

implies that Σ(T ) ⊆ Σ(S|L(T )).

Consider any non-trivial split P1|P2 of Σ(S) where Pi ∩ L(T ) 6= ∅ for every i ∈ {1, 2}. Let
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Qi = Pi ∩ L(T ) for every i ∈ {1, 2}. Since Σ(S) = Σ(F), there exists a cut F ∈ F where

σ(F ) = P1|P2. Since P1 and P2 are in different connected components of G(P)−F , Q1 and Q2

are also in different connected components of G(P)−F . Thus, there exists an edge f ′ of T in F .

Since F does not contain any other edge of T , σ(f ′) = Q1|Q2 and thus Σ(S|L(T )) ⊆ Σ(T )

4.6 Relationship to Legal Triangulation

Let P be a profile of phylogenetic trees. Theorems 4 and 12 together imply that if G(P) has

a complete set F of pairwise parallel legal minimal cuts, there also exists a legal triangulation

of G(P). As shown in Vakati and Fernández-Baca (2011), a legal triangulation of G(P) can be

derived from a compatible tree of P. In this section, we show how to derive a legal triangulation

of G(P) directly from F without building a compatible tree. This shows the relationship

between complete sets of pairwise parallel legal minimal cuts and legal triangulations of display

graphs. By Theorem 11 and Lemma 25, this also shows the relationship between restricted

triangulations of edge LG(P) and legal triangulations of G(P).

A complete set F of pairwise parallel legal minimal cuts of G(P) is minimal if no proper

subset of F is also complete. Let F be a minimal complete set of pairwise parallel legal minimal

cuts of G(P).

At a high level, we construct a legal triangulation of G(P) from F as follows. Consider any

cut F ∈ F . We build a pair DF = (X,Y ) where X and Y are subsets of E(F ) and are vertex

separators of G(P). Let A and B be the connected components of G(P)− F . Also, let A′, B′

be the subgraphs induced in G(P) by the vertex sets V (A) ∪ {X ∩ Y } and V (B) ∪ {X ∩ Y }

respectively. To legally triangulate G(P) we first triangulate the subgraph of G(P) induced by

the vertex set X ∪ Y and then triangulate the subgraphs A′ and B′. To triangulate either of

those subgraphs, we again use vertex separators built from endpoints of a different cut. We

make sure that, for every set DI for some I ∈ F built after DF , both the sets of DI are subsets

of either V (A′) or V (B′) but not both.

We now give the details of our construction. We consider the elements of F in some

arbitrary, but fixed order, and use a set W to record all such cuts F ∈ F for which DF has

already been constructed. Initially W is empty. For each successive cut F in F , we do the
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following. Let F ′ ⊆ F be the set of all internal edges e ∈ F such that e is the only edge of the

tree containing e that is in F . Let A and B be the two connected components of G(P) − F .

Let X = V (A) ∩ V (F ′) and Y = V (B) ∩ V (F ′). For every edge e of F ′ whose endpoints are

in different sets of some set DI where I ∈ W , we do the following. Let Q be the connected

component of G(P) − I where E(Q) ∩ F 6= ∅. Note that Q is the only such component of

G(P)− I. Let v be the vertex of e in Q. Replace the endpoints of e in sets X and Y by v. For

every non internal edge f ∈ F where f is the only edge of the tree containing f that is in F ,

add the internal vertex of f to both sets X and Y . If there exists a tree T where more than

one edge of T is in F , add the common endpoint of all the edges of T in F to both sets X and

Y . Set DF to (X,Y ). Add F to W .

For every F ∈ F , let OF be the set defined as follows. Let DF = (X,Y ) and let X =

{x1, · · · , xm, z1, · · · , zp} and Y = {y1, · · · , ym, z1, · · · , zp}, where m > 0, p ≥ 0 and for every i ∈

[m], {xi, yi} is an internal edge ofG(P). Then, OF consists of sets {x1, · · · , xj , yj , · · · , ym, z1, · · · , zp}

for every j ∈ [m].

Let G′ be the graph derived from G(P) as follows. For every cut F ∈ F where DF = (X,Y ),

add edges to make each of the sets X and Y a clique. For every cut F ∈ F and for every Y ∈ OF ,

add edges to make Y a clique. For every leaf `, make the vertices of NG(P)(`) a clique.

Theorem 17. G′ is a legal triangulation of G(P).

To prove Theorem 17 we first prove few useful lemmas. For every cut F ∈ F where

DF = (X,Y ), we denote the sets X ∪ Y , X ∩ Y by F∪ and F∩ respectively. For any internal

edge e, we call the cut F ∈ F a differentiating cut of e if e’s endpoints are in different sets

of DF . Note that, since F is minimal, every cut in F is a differentiating cut of some internal

edge. A clique of G′ is illegal if it contains a fill-in edge with a leaf vertex as an endpoint

or if it contains an internal edge along with any another edge of G(P). Graph G′ is a legal

triangulation if and only if G′ does not contain an illegal clique.

Lemma 37. Let F and I be two distinct cuts of F . Let x be a vertex where x ∈ F∪ and x is

in the connected component of G(P)− I which does not contain edges of F . Then, x ∈ I∩.
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Proof. Let EF be the set of all edges of F that have x as an endpoint and let EI be the set of

all edges of I that have x as an endpoint. Since x is in F∪ and in the component of G(P)− I

which does not contain edges of F , EF ⊆ EI ⊆ I. If |EI | > 1, then x ∈ I∩. Assume that

|EI | = 1 and let e = {x, y} be the edge with endpoint x in I. Since EF ⊆ EI and EF ≥ 1,

e ∈ F and |EF | = 1.

If y is a leaf vertex, then x ∈ I∩, so assume that y is not a leaf vertex. Let Ey represent

the set of edges of I with y as an endpoint. If |Ey| > 1, then x /∈ F∪ since Ey ⊆ F . Thus,

|Ey| = 1. Let J be the cut that differentiates edge e. If F = J then by construction, x ∈ I∩.

Thus, assume that F 6= J . If J is in the same connected component of G(P) − F as I, then

by construction x /∈ F∪, which is a contradiction. Thus, J is in the connected component of

G(P)− F which does not contain I and by construction, x ∈ I∩.

Lemma 38. Let DF = (X,Y ) for some F ∈ F . Let A and B be the connected components of

G(P)− F where {X \ F∩} ⊆ V (A) and {Y \ F∩} ⊆ V (B). There does not exist an edge {u, v}

in G′ where

1. u ∈ V (A) \ F∩ and v ∈ V (B) \ Y , or

2. u ∈ V (B) \ F∩ and v ∈ V (A) \X

Proof. Assume that there exists an edge e = {u, v} in G′ which satisfies one of the two condi-

tions. Without loss of generality, assume that u ∈ V (A)\F∩ and v ∈ V (B)\Y . If e ∈ E(G(P)),

then e ∈ F and hence, by construction, at least one of u and v should be in F∪. But v /∈ Y

and so, u ∈ F∩ which is a contradiction. Thus, e is a fill-in edge. Note that e 6⊆ F∪. So, by

construction there exists a cut I ∈ F where I 6= F and e ⊆ I∪.

If E(A) ∩ I 6= ∅, then by Lemma 37, v ∈ F∩, which is a contradiction. Thus, assume that

E(B) ∩ I 6= ∅. Then, by Lemma 37, u ∈ F∩ which is a contradiction. Thus, such an edge e

cannot exist.

Lemma 39. Let F be a cut of F and let H represent the subgraph of G′ induced by vertices of

F∪. Then, we have the following.

1. H is triangulated.
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2. The is no illegal clique in H.

Proof. Let DF = (X,Y ) and let A, B be the connected components of G(P) − F . Let X =

{x1, · · · , xm, z1, · · · , zp} and Y = {y1, · · · , ym, z1, · · · , zp} where for every i ∈ [m], xi ∈ V (A),

yi ∈ V (B) and {xi, yi} is an internal edge of G(P).

We will first prove that for any i ∈ [m], j ∈ [m] where i > j, there does not exist an

edge e = {xi, yj} in H. Assume that e ∈ E(H). Edges e1 = {xi, yi} and e2 = {xj , yj} are

differentiated by F . Thus, e is not in E(G(P)) and is a fill-in edge. Since there does not exist

a set in OF which contains both xi and yj , there exists a cut I ∈ F where e ⊆ I∪. Since

F and I are parallel, edges of I are either in component A or B but not both. Assume that

I∩E(A) 6= ∅. Then by Lemma 37, yj ∈ F∩, which is a contradiction. Similarly, if I∩E(B) 6= ∅,

then by Lemma 37, xi ∈ F∩ which is a contradiction. Thus, there cannot be such a fill-in edge

e.

Let C be a chordless cycle of length at least four in H. Sets X and Y are cliques in G′.

Thus, if C contains more than two vertices from one of X or Y , C must contain a chord.

Hence, C has exactly four vertices and contains exactly two vertices each from X and Y . Note

that C cannot contain vertex zi for any i ∈ [p]. Let xi,xj be the vertices of X in C where

1 ≤ i < j ≤ m. Similarly, let yi′ ,yj′ be the vertices of Y in C where 1 ≤ i′ < j′ ≤ m. We have

the following cases. If i ≤ i′, then {x1, · · · , xi, yi, · · · , ym, z1, · · · , zp} ∈ OF and thus vertices

xi, yi′ , yj′ form a clique. Hence, C is not chordless which is a contradiction. If i > i′, then

from the above argument neither of the edges {xi, yi′} and {xj , yi′} can exist. Thus, vertex yi′

cannot be in C which is a contradiction.

Assume that H contains an illegal clique H ′. Thus, H ′ contains two internal edges e and e′.

By construction, F∪ cannot contain a leaf vertex. By legality of cuts and from the construction

of F∪, edges e and e′ are from different input trees and both are differentiated by F . Let

e = {xi, yi} for some i ∈ [m] and let e′ = {xj , yj} for some j ∈ [m]. Without loss of generality,

assume that i < j. As proved above, there cannot exist an edge between vertices xj and yi in

H and thus H ′ is not a clique which is a contradiction. Thus, H does not contain an illegal

clique.
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Lemma 40. G’ is chordal.

Proof. Assume the contrary. Let C be a chordless cycle of length at least 4 in G′. By construc-

tion, C cannot contain a leaf vertex. We have the following cases.

Suppose that there exist vertices {u, v} ⊂ V (C) and a cut F ∈ F where if DF = (X,Y ),

then u ∈ X \ F∩ and v ∈ Y \ F∩. Let A, B be the connected components of G(P)− F where

u ∈ V (A) and v ∈ V (B). We have two cases.

Case 1: C contains a vertex x ∈ F∩. Then, there exists a path u, x, v in C. Because C is a

cycle, there must exist an edge between a vertex u′ ∈ V (A) \ x and v′ ∈ V (B) \ x.

Since C is chordless, u′ /∈ F∩ and v′ /∈ F∩. Thus, u′ ∈ V (A) \ F∩ and v′ ∈ V (B) \ F∩.

By Lemma 38, if u′ ∈ V (A) \ X then there cannot exist an edge between u′ and v′.

Thus, u′ ∈ X \ F∩. Similarly, v′ ∈ Y \ F∩. If u 6= u′ or v 6= v′, C cannot be chordless.

Thus, u = u′ and v = v′ and C is a chordless cycle of length 3 which is a contradiction.

Case 2: C does not contain a vertex of F∩. Since u ∈ V (A) \ F∩, v ∈ V (B) \ F∩ and F

is a cut, there must exist two edges e1 = {x1, y1} and e2 = {x2, y2} in C where

{x1, x2} ⊆ V (A) \ F∩ and {y1, y2} ⊆ V (B) \ F∩. If x1 ∈ V (A) \X, then by Lemma 38

there cannot exist an edge between x1 and y1. Thus, x1 ∈ X \ F∩. Similarly, x2 ∈

X \ F∩ and {y1, y2} ⊆ Y \ F∩. Since vertex sets of X and Y are cliques in G′, there

exist edges {x1, x2} and {y1, y2}. Thus, there cannot exist any other vertex in C and

hence V (C) ⊆ F∪. But, by Lemma 39 subgraph of G′ induced by vertices of F∪ is

triangulated. Thus, C is not chordless which is a contradiction.

Now assume that for every cut F ∈ F , where DF = (X,Y ), there do not exist two vertices

u, v ∈ V (C) where u ∈ X \ F∩ and v ∈ Y \ F∩. This also implies that, for every cut F ∈ F at

most two vertices of V (C) are in F∪. Let x1, x2, x3, x4 be a path of length four in C. Also, for

every i ∈ {1, 2, 3}, let F (i) ∈ F be the cut where {xi, xi+1} ⊆ F
(i)
∪ . Note that such cuts must

exist and must be distinct. For every i ∈ {1, 2, 3}, let Ai and Bi be the connected components

of G(P)−F (i). Without loss of generality, assume that E(A1)∩F (2) 6= ∅ and E(B2)∩F (1) 6= ∅.

We have the following cases.
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Case 1: F (3) ∩ E(A2) 6= ∅. If x1 ∈ A2, then by Lemma 37, x1 ∈ F (2)
∩ and C is not chordless,

which is a contradiction. Thus, x1 ∈ B2. Similarly, if x4 ∈ B2, by Lemma 37, x4 ∈ F (2)
∩

and C is not chordless, which is a contradiction. Thus, x4 ∈ A2. Since C is a cycle,

F (2) is a minimal cut and {F (2)
∪ \ {x2, x3}} ∩ V (C) = ∅, there exists an edge {v1, v2}

in C where v1 ∈ V (A2) \F (2)
∪ and v2 ∈ V (B2) \F (2)

∪ . But, by Lemma 38, such an edge

cannot exist.

Case 2: F (3) ∩ E(A1) 6= ∅ and F (3) ∩ E(B2) 6= ∅. Without loss of generality let A3, B3 be the

connected components of G(P)−F (3) that contain F (2) and F (1) respectively. Assume

that x2 ∈ A3. Since x2 ∈ F (1)
∪ , by Lemma 37, x2 ∈ F (3)

∩ . Then, there exists an edge

{x2, x4} and C is not chordless, which is a contradiction. Thus, x2 ∈ B3. But x2 ∈ F (2)
∪

and thus, by Lemma 37, x2 ∈ F (3)
∩ . Hence, there exists a chord {x2, x4} and C is not

chordless, which again is a contradiction.

Case 3: F (3) ∩ E(B1) 6= ∅. Renaming vertices x1, x2, x3 and x4 as, x4, x3, x2 and x1, respec-

tively, brings us back to case 2.

Thus, G′ does not contain a chordless cycle of length 4 or greater and hence G′ is chordal.

Proof of Theorem 17. From Lemma 40, G′ is triangulated. We now prove that triangulation

G′ is legal.

By construction, we do not add any fill-in edge with a leaf vertex as an endpoint. Thus,

condition (LT2) is true for G′. Assume that there exists a clique H with two internal edges

e = {x1, y1} and e′ = {x2, y2}. Let F be the cut which differentiates e. Let A and B be the

connected components of G(P)−F where x1 ∈ V (A) and y1 ∈ V (B). By Lemma 39, both the

endpoints of e′ cannot be in F∪. Without loss of generality, assume that x2 /∈ F∪ and x2 ∈ A.

Since x2 /∈ F∪ and y1 /∈ F∩, by Lemma 38, there cannot exist an edge between x2 and y1 in G′.

Thus, H is not a clique of G′ which is a contradiction.
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4.7 Conclusion

We have shown that the characterization of tree compatibility in terms of restricted tri-

angulations of the edge label intersection graph transforms into a characterization in terms

of minimal cuts in the display graph. These two characterizations are closely related to the

legal triangulation characterization of Vakati and Fernández-Baca (2011). Given a complete set

of pairwise parallel legal minimal cuts of a display graph, a legal triangulation of the display

graph can derived without building the compatible tree. We also derived characterizations

of the agreement supertree problem in terms of minimal cuts and minimal separators of the

display and edge label intersection graphs respectively.

It is not known if the agreement supertree problem is fixed parameter tractable when

parametrized by the number of input trees. It remains to be seen whether any of these char-

acterizations can be exploited to derive an explicit fixed parameter algorithm for the tree

compatibility and agreement supertree problems when parametrized by the number of trees.
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CHAPTER 5. FIXED-PARAMETER ALGORITHMS FOR

AGREEMENT SUPERTREES

David Fernández-Baca, Sylvain Guillemot, Brad Shutters, Sudheer Vakati

Modified from a paper submitted to the journal SIAM. J. Comput.

Abstract

We study the agreement supertree approach for combining rooted phylogenetic trees when

the input trees do not fully agree on the relative positions of the taxa. Two approaches to

dealing with such conflicting input trees are considered. The first is to contract a set of edges

in the input trees so that the resulting trees have an agreement supertree. We show that this

problem is NP-complete and give an FPT algorithm for the problem parameterized by the

number of input trees and the number of edges contracted. The second approach is to remove

a set of taxa from the input trees so that the resulting trees have an agreement supertree. An

FPT algorithm for this problem when the input trees are all binary was given by Guillemot

and Berry (2010). We give an FPT algorithm for the more general case when the input trees

have arbitrary degree.

5.1 Introduction

A phylogeny, or evolutionary tree, is a tree representing the evolutionary history of a set

of species. The leaves of the tree represent the current species (taxa), and the internal nodes

of the tree represent the hypothetical ancestors. A fundamental problem in phylogenetics is to

construct a supertree from smaller input trees with overlapping taxa in such a way that the

inferred supertree complies as closely as possible with the topological information of the input
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trees. This problem is motivated by the biological and computational constraints on construct-

ing large scale phylogenies. The supertree problem was introduced in Gordon (1986), and a

variety of supertree construction methods have been proposed. See [Bininda-Emonds (2004);

Scornavacca (2009); Aho et al. (1981); Steel (1992); Bryant (2001)] for more on supertrees.

In this paper we use the agreement supertree approach for combining rooted phylogenetic

trees. The goal of this approach is to search for a supertree such that each of the input trees is

a restriction of the supertree to a subset of its taxa. Formally, we have the following decision

problem.

Agreement Supertree (AST)

Input: A collection T of k rooted phylogenetic trees on a set of n taxa.

Question: Does there exist an agreement supertree for T ?

The answer to an instance of AST is “yes” if and only if the input trees fully agree on

the relative positions of the taxa, in which case the input trees are said to agree. There is a

polynomial time algorithm for the AST problem, which returns an agreement supertree if one

exists [Ng and Wormald (1996)].

The input trees may fail to have an agreement supertree because of conflicts with respect to

the relative positions of some taxa. Such conflicts arise due to errors in the inference process,

or due to biological processes, e.g., lateral gene transfer, gene duplication, and others [Maddi-

son (1997); Linder and Rieseberg (2004)]. Here we consider two approaches for dealing with

conflicting input trees. The first addresses the case where conflict is due to unnecessary edges

in the input trees. The goal is to find a subset of the edges of the input trees to contract so that

the resulting collection of trees agree. Formally, we focus on the following decision problem.

Agreement Supertree Edge Contraction (AST-EC)

Input: A collection T of k rooted phylogenetic trees on a set of n taxa, and an integer p.

Question: Can we contract at most p internal edges of T so that the trees in T agree?
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The AST-EC problem does not seem to have been considered before. We prove that

problem is NP-complete, and show that it is fixed-parameter tractable for parameters k and p.

The second approach we study addresses the case where disagreement is due to misplaced

taxa. The goal is to find a subset of the taxa to remove from the input trees so that the

resulting collection of trees agree. Formally, we focus on the following decision problem.

Agreement Supertree Taxon Removal (AST-TR)

Input: A collection T of k rooted phylogenetic trees on a set of n taxa, and an integer p.

Question: Can we remove at most p taxa so that the input trees agree?

The AST-TR problem is NP-complete [Jansson et al. (2005); Berry and Nicolas (2007)],

but was shown to be fixed-parameter tractable in k and p when restricted to the case when the

input trees are all binary [Guillemot and Berry (2010)]. Our contribution is to show that the

more general AST-TR problem, where the input trees are allowed to have arbitrary degree,

is fixed-parameter tractable in k and p. It was also shown in Berry and Nicolas (2007) that

if AST-TR is parameterized by only k or p, then the problem is fixed-parameter intractable.

We also note that the optimization version of AST-TR, i.e., finding a minimum set of taxa to

remove, is the dual of the Maximum Agreement Supertree (Smast) problem [Berry and

Nicolas (2007); Jansson et al. (2005); Kao (2007)]. Exact algorithms for Smast on binary trees

are known that run in time O(6knk) [Guillemot and Berry (2010); Hoang and Sung (2011)]

and, when the maximum degree of the input trees is d, Hoang and Sung (2011) gives an

O((kd)kd+32knk) time algorithm for Smast.

The rest of this paper proceeds as follows. In Section 5.2, we give basic definitions needed

for the remainder of the paper. In Section 5.3, we develop a characterization of when a set

of input trees agree. We then use this characterization to develop an algorithm for testing

agreement that solves the AST problem. We remark here that this algorithm could be easily

modified to produce an agreement supertree when the set of input trees agree. If the algorithm

answers in the negative, it returns a subset of the internal nodes of the trees in T encapsulating

the taxa on which the trees in T disagree. In Section 5.4 we use these internal nodes to develop
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O((2k)pkn2) time algorithms to solve the AST-EC and AST-TR problems. We also prove the

NP-completeness of the AST-EC problem by giving a reduction from Multicut to AST-EC.

Section 5.5 contains proofs of some results from Sections 5.3 and 5.4, that were deferred for

readability. We conclude in Section 5.6 with some ideas for future research.

5.2 Definitions

Let T = {T1, . . . , Tk} be a collection of rooted phylogenetic trees, and let T be some

arbitrary tree in T . We use V (T ), E(T ), I(T ), Ê(T ), and r(T ) to denote the vertices, edges,

internal vertices, internal edges, and root vertex of T respectively. We use L(T ) and L(T ) to

denote the leaves of T and the set of labels mapped to the leaves of T respectively. We write

L(T ) for
⋃
i∈[k] L(Ti) and Ê(T ) =

⋃
i∈[k] Ê(Ti), where [k] stands for {1, . . . , k}. We represent

that a vertex v is an ancestor of u in T by u ≤T v. For two vertices u and v such that u <T v,

we write childT (v, u) to denote the child of v along the path from v to u in T . For each

u ∈ V (T ), we use parent(u), Ch(u), T (u), and L(u) to denote the parent of u, the children of

u, the subtree of T rooted at u, and the set of labels mapped to the leaves of T (u), respectively.

For a label set L, the restriction of T to L, denoted by T |L, is the minimal homeomorphic

subtree of T connecting leaves with labels in L. For a set L ⊆ L(T ), we write T |L for the

collection {T1|L, . . . , Tk|L} of trees in T restricted to L. For a set F ⊆ Ê(T ) we use T/F to

denote the tree obtained from T by contracting the edges of F . For a set F ⊆ Ê(T ), we denote

the set {T1/F, ..., Tk/F} by T /F . Given two trees S and T where L(T ) ⊆ L(S), T is an induced

subtree of S if and only if S|L(T ) = T . Note that all degree two vertices in S|L(T ) other than

the root are assumed to be suppressed. An agreement supertree for T is a tree S such that

L(S) = L(T ), and each Ti is an induced subtree of S. We say that the trees in T agree if and

only if there is an agreement supertree for T .

5.3 Solving the Agreement Supertree Problem

The main result of this section, presented in Section 5.3.3, is an O(kn2) time algorithm,

called TestAgreement, that determines whether or not a collection T of phylogenetic trees
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has an agreement supertree. The algorithm relies on a recursive characterization of agreement,

based on an intersection graph that we define in Section 5.3.1. In Section 5.3.2, we use this

graph to develop an algorithm GetSuccessors that decomposes an agreement problem into

smaller subproblems, or reports that no such decomposition is possible. In the latter case,

GetSuccessors returns a small set of internal nodes from the input collection T that, in a

sense, obstruct agreement. GetSuccessors is thus at the core of TestAgreement, and the

information it produces is essential for our algorithms for the AST-EC and AST-TR problems.

5.3.1 An auxiliary graph

A position π in T is a tuple (v1, v2, . . . , vk) where each vi is either a vertex from the tree

Ti or the symbol ⊥. A reduced position is a position where each component is an internal

node or ⊥. The reduction of a position π, denoted by π↓, is derived by substituting every leaf

vertex in π by ⊥. We use π>, respectively π⊥, to denote the initial, respectively final, positions

where vi = r(Ti), respectively vi = ⊥, for each i ∈ [k]. We write L(π) for
⋃
i∈[k] L(π[i]).

By an agreement supertree for π, we mean an agreement supertree for the collection of trees

{T1(π[1]), . . . , Tk(π[k])}.

We now introduce an auxiliary graph G(T , π), defined in Guillemot and Berry (2010), which

is useful for identifying an agreement supertree for the position π. We will look for a specific

partition of this graph, called a nice partition, that allows us to break the problem into smaller

subproblems, or to conclude that there is no solution. The vertex set of G(T , π) consists of the

children of all the vertices in π, and there is an edge between two vertices u and v if and only

if L(u) ∩ L(v) 6= ∅. Note that the graph G(T , π) is only defined when π is a reduced position.

In the rest of this paper, G(T , π) is denoted by G = (V,E) and Vi = Ch(π[i]) for each i ∈ [k].

A subset U ⊆ V is nice if, for each i ∈ [k], U contains either zero, one, or all of the elements

of Vi. A partition P of V is a nice partition of G if every set of P is nice, and, for every

{C,C ′} ⊆ P , C and C ′ are disconnected in G. The successor of π w.r.t. a nice set U , denoted
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by πU , is defined as:

πU [i] =



⊥ if Vi ∩ U = ∅

p if Vi ∩ U = {p}

π[i] if |Vi ∩ U | ≥ 2

for each i ∈ [k]. We write L(U) for
⋃
v∈U L(v). We have the following relationship between

L(U) and L(πU ) which follows from the definition of a successor position.

Lemma 41. Let U ⊆ V be a nice set, then L(U) = L(πU ).

In the following, we will focus on a specific nice partition of G that is minimal in a certain

sense. For partitions P and Q of V , we say P is finer than Q, denoted P v Q, if and only if,

for every C ∈ P , there exists a D ∈ Q such that C ⊆ D. Let P represent the set of all nice

partitions of G, and let (P,v) represent the poset formed by partitions of P ordered under v.

Lemma 42. (P,v) has a unique minimal element.

Proof. Assume, towards a contradiction, that P and Q are distinct minimal elements of (P,v).

Consider the set P uQ defined as:

P uQ = {C ∩D : C ∈ P,D ∈ Q} \ {∅}. (5.1)

It is known that P uQ is also a partition of V , s.t. P uQ < P . We show that P uQ is also in

P, which will contradict the minimality of P,Q.

Consider any X ∈ P u Q, and let us show that X is a nice set. We have X = C ∩ D for

some C ∈ P,D ∈ Q. Fix i ∈ [k], and assume that |X ∩ Vi| ≥ 2. Since C and D are nice sets,

Vi ⊆ C and Vi ⊆ D, and thus, Vi ⊆ X. As this holds for any i ∈ [k], we conclude that X is a

nice set.

Consider two distinct classes X,X ′ ∈ P uQ, and let us show that they are disconnected in

G. We have X = C ∩D for some C ∈ P,D ∈ Q, and X ′ = C ′ ∩D′ for some C ′ ∈ P,D′ ∈ Q.

As X 6= X ′, we have either C 6= C ′ or D 6= D′. In the first case, C,C ′ are disconnected, and in

the second case D,D′ are. We conclude that X,X ′ are disconnected. Hence, P u Q is a nice

partition of V .
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We call the unique minimal element of (P,v) the minimum nice partition of G. Suppose

that the minimum nice partition P of G is a singleton. Let K = {i ∈ [k] : π[i] 6= ⊥}. We say

that a set I ⊆ V is interesting for a reduced position π of T if both |I ∩ Vi| = 2 for each i ∈ K,

and there is a set F ⊆ E such that all of the following conditions hold: (i) |F | ≤ 2|K| − 1;

(ii) for each v ∈ I, there exists an e ∈ F such that v ∈ e; and (iii) the subgraph of G induced

by F has a minimum nice partition that is a singleton. Intuitively, a set of interesting vertices

certifies that the minimum nice partition of G has a unique class. As we will see in Section

5.3.3, this condition will guarantee that there is no agreement supertree for π. In this case, we

say that π is an obstructing position for T .

5.3.2 Finding successor positions and interesting vertices

We now present algorithm GetSuccessors, which takes as input a position π in a collection

T of rooted phylogenetic trees, and finds the set Π of successor positions for each class in the

minimum nice partition of G (see Algorithm 1). When the minimum nice partition of G is a

singleton, the algorithm returns a set I of interesting vertices for π.

The central idea behind the GetSuccessors algorithm is that, for a given ` ∈ L(π), all of

the vertices in the set S` = {v ∈ V : ` ∈ L(v)} are connected, and hence, must be in the same

class of the minimum nice partition. The algorithm builds the successor positions by iterating

over each label ` and building a position for ` which is denoted by π`, by examining each vertex

v ∈ S`. If v is already covered by a position π′, then π′ will need to be merged with π`. Once

this merge is completed, the position π′ is no longer needed. For implementation efficiency,

instead of deleting positions, we keep a flag active(π`) for each position π`. If active(π`) is set

to true, then π` is one of the successor positions of the graph G restricted to only those labels

which have already been processed by the algorithm. If active(π`) is set to false, then it is no

longer used by the algorithm. If v is not already covered by some position, then we simply add

v to π`.

After merging a position π′ with π`, it may be the case that π` contains multiple vertices

from some input tree T . In such a case, the algorithm needs to merge with π` all of the positions

covering any of the vertices from T . Furthermore, since each ` ∈ L(π) can be in the subtree of
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Input: A position π in a collection T trees.

Output: A tuple (Π, I) where Π is the set of successor positions of each class in the

minimum nice partition of G, and when Π is a singleton, I is a set of

interesting vertices for the unique π ∈ Π.

1 foreach ` ∈ L(π) do S` ← ∅
2 foreach i ∈ [k] do

3 position(π[i])← ∅
4 foreach v ∈ Vi do

5 position(v)← ∅
6 foreach ` ∈ L(v) do S` ← S` ∪ {v}
7 Π← ∅ ; I ← ∅
8 foreach ` ∈ L(π) do

9 π` ← π⊥ ; Z ← ∅
10 foreach v ∈ S` do

11 if position(π[tree(v)]) 6= ∅ then Z ← Z ∪ position(π[tree(v)])

12 else if position(v) 6= ∅ then Z ← Z ∪ position(v)

13 else π`[tree(v)]← v ; position(v)← {π`}
14 while there is a πp ∈ Z with active(πp) = true do

15 active(πp)← false

16 foreach i ∈ [k] such that π`[i] 6= π[i] and πp[i] 6= ⊥ do

17 if π`[i] = ⊥ then π`[i]← πp[i] ; position(πp[i])← {π`}
18 else

19 I ← I ∪ {π`[i], πp[i]} ; π`[i]← π[i]

20 position(π[i])← {π`}
21 foreach w ∈ Vi do Z ← Z ∪ position(w)

22 active(π`)← true

23 Π← Π ∪ {π`}
24 return ({π` ∈ Π : active(π`) = true}, I)

Algorithm 1: GetSuccessors(T , π)

at most one v per Vi, it follows that the first time two vertices from the same input tree end up

in the same partition, those two vertices are unique and we add them to the set I of interesting

vertices.

If GetSuccessors determines that the minimum nice partition of G is a singleton, then

the set Π returned has π as its only element. In this case, the set I of vertices returned by the

algorithm is a set of interesting vertices for π.

For each vertex v that is either an element of position π or the child of a vertex in π,

the algorithm keeps a reference position(v) that points to a set containing the active position

containing v. This is determined in the following manner:
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• if v is an element of the position π, then position(v) points to an active position that

contains all of the children of v; and

• if v is a child of a vertex in π, then position(v) points to an active position that contains

v.

Also, note that the set position(v) is pointing to is always either the empty set or a singleton.

The purpose for using sets for position(v) is to simplify the code of lines 11, 12 and 21.

In the initialization phase of the algorithm (lines 1-6), for each label ` ∈ L(T ) we construct

a set S` that contains all of the vertices v ∈ V (T ) such that both of the following conditions

hold:

(i) v ∈ Vi for some i ∈ [k], i.e., v is a child of some vertex in position π; and

(ii) ` ∈ L(v), i.e., ` is a label of the subtree rooted at v.

Also, since at the initialization phase, there are no active positions, the position references are

all set to ∅.

The algorithm then turns to the construction phase (lines 7-23), where the positions π` are

constructed. Note that for each vertex v ∈ V (T ), the algorithm also uses a function tree(v)

that returns the unique index i such that v ∈ V (Ti). The algorithm maintains two sets. Set

Π will hold all of the successor positions created, and set I will hold the interesting vertices.

The position π` is built in two phases. Naturally, each position π` is going to hold all those

vertices of G that contain ` in their subtree, and these are precisely the vertices in the set S`.

Thus, in the first phase (the loop in lines 10-13) the algorithm iterates over the elements of S`

to ensure that they are included in the position. While doing so, the algorithm may discover

new positions that need to be merged with π` and it stores these positions in a buffer Z. Now,

for each v ∈ S` it performs the following tests in the specified order:

1. If position(π[tree(v)]) is non-empty, then it points to some position π′ that contains all of

the elements of Vi. Since v ∈ Vi, π′ also contains v. Hence π′ needs to be merged into π`,

and so π′ is added to Z.
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2. If position(π[tree(v)]) is empty, but position(v) is non-empty, then position(v) points to

some other position π′ containing v, and hence π′ needs to be merged into π`. Thus, π′

is added to Z.

3. If both position(π[tree(v)]) and position(π[tree(v)]) are empty, then no position currently

contains v, so we add v to π`.

Note that if tests 1 or 2 succeed, we do not immediately add v to position π`. That is, we add

some position π′ to Z, and so eventually π′ will be merged with π`. After this happens, π` will

contain v.

After processing the set S`, it may be the case that there are active components in Z. These

components need to be merged with π`. This is done in the merge phase of the algorithm (lines

14-21). Let πp be the position being merged with π`. Since πp is being merged with π`, πp will

no longer represent a successor position, so the algorithm first sets active(πp) to false. We now

compare positions π` and πp index by index. If π`[i] = π[i], then π` already contains all of the

children of Vi, so no work needs to be done for index i. If πp[i] = ⊥, then no new vertices need

to be added to π` for index i. Otherwise, either π`[i] = ⊥ or π`[i] 6= ⊥

Case 1. If π`[i] = ⊥, then either πp[i] is a single element of Vi, or πp[i] = π[i]. In either

case, to merge the two positions, we only need to copy the value of πp[i] to π`[i]. Then, we

need to update the position(πp[i]) to now refer to π` instead of πp.

Case 2. If π`[i] 6= ⊥, then it must be the case that both π`[i] and πp[i] each contain an

element of Vi and that these vertices are different. Thus, π`[i] now contains two elements of Vi

and hence must contain all elements of Vi, so we set position(π[i]) to π`, add the two vertices

in π`[i] and πp[i] to the set of interesting vertices, and add any positions containing a child of

Vi to Z, as they now also need to be merged with π`.

Lines 22 and 23 complete the process of constructing π`. This is done by first setting

active(π`) to true since it represents a successor position of G restricted to the labels processed

by the algorithm so far. It then adds π` to the set Π containing all positions constructed so

far.

The algorithm finishes in line 24, after all labels have been processed, by returning the set
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of positions that remain active. We later formally prove (Theorem 18) that these are indeed

the successor positions of G. The algorithm also returns the set I of vertices collected during

the execution of the algorithm. If there is more than one active position in Π, then the set I of

vertices has no meaningful value to us. However, as we show later (Theorem 19), if there is only

one active position in Π, I is indeed a set of interesting vertices for π. The next two theorems

summarize the essential properties of algorithm GetSuccessors. For technical reasons, their

proofs are deferred to Section 5.5.1

Theorem 18. GetSuccessors can be implemented to run in O(kn) time, and in the tuple

(Π, I) returned, Π is exactly the successor positions of each class of the minimum nice partition

P of G.

Theorem 19. If the set Π returned by GetSuccessors is a singleton with Π = {π}, then I

is a set of interesting vertices for π.

5.3.3 Testing for an agreement supertree

We now present algorithm TestAgreement, which takes a position π in a collection T

of phylogenetic trees, and decides if there is an agreement supertree for π (see Algorithm 2).

If there is no agreement supertree for π, the algorithm returns an obstructing position π′ and

a set of interesting vertices for π′. To test for the existence of an agreement supertree for T ,

it suffices to call TestAgreement on the initial position π>. The set of interesting vertices

returned by TestAgreement will be used in the remainder of the algorithms discussed in this

paper.

The algorithm TestAgreement proceeds in a recursive top-down fashion. If the position

π is not reduced, it considers instead the reduced position π ↓, as justified by Lemma 43 below.

Then, it calls GetSuccessors to compute the set Π of successor positions corresponding to

the minimum nice partition of G(T , π). If Π has a single class, the algorithm concludes that

there is no agreement supertree for π. Otherwise, it recursively checks for agreement on the

successor positions π′ ∈ Π. The correctness of this step follows from Lemma 45 below.

Lemma 43. The following statements hold:
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Input: A position π in a collection T of trees.

Output: A tuple (B, π′, I) where B is a boolean indicating whether there is an

agreement supertree for π, and, when B is no, π′ is an obstructing position

and I is a set of interesting vertices for π′.

1 π ← π ↓
2 if π = π⊥ then return (yes, ∅, ∅)
3 (Π, I)← GetSuccessors(T , π)

4 if |Π| = 1 then return (no, π, I)

5 foreach π′ ∈ Π do

6 (B, π′′, I)← TestAgreement(T , π′)
7 if B = no then return (no, π′′, I)

8 return (yes, ∅, ∅)
Algorithm 2: TestAgreement(T , π)

1. There is an agreement supertree for T if and only if there is an agreement supertree for

every position π of T .

2. There is an agreement supertree for a position π of T if and only if there is an agreement

supertree for π ↓.

Proof. Statement 1 holds because (⇒) for any agreement supertree S of T and any position π

of T , S|L(π) is an agreement supertree for π; and (⇐) any agreement supertree for π> is an

agreement supertree for T . Statement 2 holds since (⇒) L(π ↓) ⊆ L(π), so for any supertree

S for π, S|L(π ↓) is a supertree for π ↓; and (⇐) for each i ∈ [k] for which π ↓ [i] 6= π[i], we

have that π[i] is a leaf whose label can be added to a supertree for π ↓ (that is, we simply add

each such leaf as child of the root, to get a supertree for π).

We will need the following characterization of induced subtrees in terms of embeddings.

This lemma follows from the definitions and is stated without proof.

Lemma 44. Let S and T be two phylogenetic trees where L(T ) ⊆ L(S). The following state-

ments are equivalent

1. T is an induced subtree of S.

2. There exists an injective function φ : V (T )→ V (S) with the following properties.

(a) For every p ∈ L(T ), φ(p) is a leaf of S with the same label.
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(b) For every p ∈ I(T ), if q ∈ Ch(p), then φ(q) <S φ(p). Also, for every {u, v} ⊆ Ch(p),

childS(φ(p), φ(u)) 6= childS(φ(p), φ(v)).

We call φ an embedding of T into S.

The following lemma is the central result on which our recursive algorithm is based. Note

that we only have to consider a reduced position π, according to Lemma 43.

Lemma 45. Let π be a reduced position such that π 6= π⊥. The following statements are

equivalent.

1. There is an agreement supertree for π.

2. There exists a nice partition P of G where P has at least two classes, and, for every

X ∈ P , πX has an agreement supertree.

Proof. (=⇒) Suppose that π has an agreement supertree S with L(S) = L(π). By Lemma

44, for every i ∈ [k] there exists an embedding φi of Ti(π[i]) into S. Let r = r(S). As π is a

reduced position different from π⊥, we have |L(S)| = |L(π)| ≥ 2, and thus Ch(r) is not empty.

Let Ch(r) = {u1, . . . , um}. We build a partition P = {C1, . . . , Cm} of V as follows. For every

v ∈ Vi and i ∈ [k], if φi(v) ≤S ui′ for some i′ ∈ [m], then add v to Ci′ . Note that there will

always exist one such ui′ . We now show that P is a nice partition with at least two classes,

and that for every X ∈ P , πX has an agreement supertree.

As S is a phylogenetic tree, we have m ≥ 2 and thus |P | ≥ 2. Let us now show that P

is a nice partition of G. Fix i ∈ [k], and let ri = π[i]. If φi(ri) = r, then by definition of

an embedding the nodes φi(u) (u ∈ Vi) belong to distinct classes of P . On the other hand, if

φi(ri) ≤S uj , then the nodes φi(u) (u ∈ Vi) all belong to Cj . Thus, every class of P is nice.

Consider any u ∈ Ci and v ∈ Cj where i 6= j, with u ∈ Va and v ∈ Vb. Since L(ui)∩L(uj) = ∅,

φa(u) ≤S ui and φb(v) ≤S uj , then L(u) ∩ L(v) = ∅. Thus, vertices of Ci and Cj will be

disconnected in G and P is a nice partition of G.

Lastly, for any i ∈ [m], we show that S(ui) is an agreement supertree for πCi . Observe

that L(S(ui)) = L(Ci), which is equal to L(πCi) by Lemma 41. For any j ∈ [k], we define an

embedding φ′j from Tj(πCi [j]) to S(ui) as follows. For every v ∈ V (Tj(πCi [j])), set φ′j(v) =
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φj(v). Since Ci is a nice set and φj is an embedding, φ′j also satisfies all the properties of an

embedding. Thus, Tj(πCi [j]) is an induced subtree of S(ui).

(⇐=) Let P = {C1, . . . , Cm} and let Si represent the agreement supertree for πCi for every

i ∈ [m], such that L(Si) = L(πCi). We build an agreement supertree S for π as follows. Add an

edge from a vertex r to r(Si) for every i ∈ [m]. Set r to be the root of S. For any 1 ≤ i 6= j ≤ m,

the sets Ci and Cj are disconnected in G. Thus, L(Ci)∩L(Cj) = ∅, and by Lemma 41 it follows

that L(Si) ∩ L(Sj) = ∅. Furthermore, since P is a partition of V , we have
⋃
i L(Ci) = L(V ).

By Lemma 41, we deduce that
⋃
i L(Si) = L(π). Thus, S is a phylogenetic tree with label set

L(π). We will prove that S is an agreement supertree for π by showing that for any i ∈ [k],

Ti(π[i]) is an induced subtree of S. We have the following two cases for vertex π[i].

Case 1: π[i] = πCj [i] for some j ∈ [m]. As Sj is an agreement supertree for πCj , it follows

that the tree Ti(π[i]) is an induced subtree of Sj . Since Sj is an induced subtree of S, Ti(π[i])

is also an induced subtree of S.

Case 2: π[i] 6= πCj [i] for every j ∈ [m]. We build an embedding φi of Ti(π[i]) into S as

follows. By Lemma 44, there exists an embedding φp,q from Tp(πCq [p]) to Sq for every p ∈ [k]

and q ∈ [m]. For every v ∈ V (Ti(π[i])), set φi(v) = φi,j(v) if v ≤Ti πCj [i]. Now, set φi(π[i]) = r.

Let us show that φi is an embedding of Ti(π[i]) into S. First, observe that φi satisfies Conditions

(a)-(b) of Lemma 44 for any v <Ti π[i]. Indeed, for such a v we have v ≤Ti πCj [i] for some

j ∈ [m], and Conditions (a)-(b) hold for φi,j as it is an embedding of Ti(πCj [i]) into Sj . It

remains to verify Condition (b) of Lemma 44 for v = π[i]. For every u child of v, we have

φi(u) = r(Sj) for some j ∈ [m], and thus φi(u) <S φi(v). Moreover, given two children u, u′ of

v, as they belong to different classes of P , childS(φi(v), φi(u)) 6= childS(φi(v), φi(u
′)). Thus, φi

is an embedding of Ti(π[i]) into S and hence, Ti(π[i]) is an induced subtree of S.

Theorem 20 states the runtime and correctness of the TestAgreement algorithm (Algo-

rithm 2).

Theorem 20. TestAgreement can be implemented to run in O(kn2) time and correctly

decides if there is an agreement supertree for a position π in T . If there is no agreement

supertree for π, it returns an obstructing position π′ and a set I of interesting vertices for π′.
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Proof. We first justify the running time of the algorithm. Since at each execution of a recursive

call, the label sets in each position returned by GetSuccessors are disjoint, it follows that the

recursion tree has O(n) leaves. So there are O(n) recursive calls to TestAgreement. Since

each execution of the loop in line 5 results in a recursive call, and the body of the loop takes

O(1) time outside of the recursive call, it follows that the algorithm spends, over all recursive

calls, a total of O(n) time executing lines 5-7. Thus, it suffices to show that each recursive call

spends at most O(kn) time outside of lines 5-7. Clearly, lines 1 and 2 can be done in O(k)

time. The call to GetSuccessors takes O(kn) time by Theorem 18. Line 4 and 8 can clearly

be done in O(1) time.

We now argue for the correctness of the algorithm. We show by induction on the height

of the recursion tree, that TestAgreement(T , π) correctly decides if π has an agreement

supertree, and, in case there is no agreement supertree for π, the position π′′ and set I returned

on line 7 are an obstructing position for T and a set of interesting vertices for π′′. Let P be

the minimum nice partition of G.

There are two base cases: (i) when π = π⊥; and (ii) when P has a single class. In case (i)

there is an agreement supertree for π and the algorithm returns “yes” on line 2. In case (ii), by

Lemma 45, there is no agreement supertree for π. By Theorem 18, the set Π returned in line

3 will be a singleton and π is an obstructing position. By Theorem 19, I is a set of interesting

vertices for π. Line 4 returns π along with the set of interesting vertices returned by the call

to GetSuccessors.

Now suppose that P has more than one class and Π is the set of successor positions re-

turned by GetSuccessors. Then by induction hypothesis, for each π′ ∈ Π, TestAgreement

correctly decides whether there is an agreement supertree for π′. If there is an agreement su-

pertree for each position in Π, then by Lemma 45, there is an agreement supertree for π and

the algorithm returns “yes” on line 8. If there is no agreement supertree for some position

π′ ∈ Π, then by the inductive hypothesis, TestAgreement(T , π′) will answer in the negative,

and also return an obstructing position π′′ and a set of interesting vertices for π′′. By Lemma

43, π′′ is an obstructing position for T , so the algorithm returns π′′ along with the set I of

interesting vertices returned by GetSuccessors.
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5.4 Solving the AST-EC and AST-TR Problems

In this section we show that both the AST-EC and AST-TR problems are fixed-parameter

tractable for parameters k and p. Our two algorithms build upon the results of Section 5.3,

in the sense that we use the interesting vertices found by TestAgreeement to identify small

obstructions. These obstructions allow us to solve the problems by a bounded search tree ap-

proach, giving rise to FPT algorithms with running time O((2k)pkn2). This section is organized

as follows. Section 5.4.1 presents an auxiliary algorithm, called Merge, on which we will rely

to construct and prove the correctness of the obstructions for both problems. In Section 5.4.2,

we prove that AST-EC is NP-complete and we give an FPT algorithm for the problem. In

Section 5.4.3, we give an FPT algorithm for AST-TR.

5.4.1 An auxiliary algorithm

We define the closure of a set C ⊆ V as the set 〈C〉G ⊆ V such that: (i) if C ∩ Vi = ∅

then 〈C〉G ∩ Vi = ∅; (ii) if C ∩ Vi = {v}, then 〈C〉G ∩ Vi = {v}; and (iii) if |C ∩ Vi| ≥ 2 then

〈C〉G ∩ Vi = Vi. Our auxiliary algorithm, called Algorithm Merge, takes as input G and a set

I ⊆ V , and proceeds as follows. We maintain a partition P of I. Initially P contains a class {v}

for each v ∈ I. At a given step, suppose that P = {C1, . . . , Cp}. An edge of G is a transverse

edge if it connects two nodes in the closures of two different sets in P . If G contains a transverse

edge joining 〈Ci〉G to 〈Cj〉G for some i, j, then we replace P by P\{Ci, Cj} ∪ {Ci ∪ Cj}, and

we continue.

Lemma 46. Let Q be the minimum nice partition of G. At a given step of Algorithm Merge,

it holds that: for each C ∈ P , there is a K ∈ Q such that 〈C〉G ⊆ K.

Proof. By induction on the number of steps executed by the algorithm. This is clear initially.

Suppose that this holds at the beginning of the pth step, and let us show that this holds at

the end of the pth step. Suppose that this step replaces P by P ′ = P\{Ci, Cj} ∪ {Ci ∪ Cj}.

By induction hypothesis, there exist A,B ∈ Q such that 〈Ci〉G ⊆ A and 〈Cj〉G ⊆ B. By

assumption, G contains a transverse edge between 〈Ci〉G and 〈Cj〉G. As two classes of Q are
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disconnected in G, it follows that A = B, and thus Ci ∪ Cj ⊆ A. As A is a nice set, we obtain

that 〈Ci ∪ Cj〉G ⊆ A.

The crucial property of Algorithm Merge is that, by starting with the interesting vertices,

it will end with P consisting of a single class. This property is stated in the following Lemma,

whose proof is given in Section 5.5.2. The proof relies on an alternative formulation of the

GetSuccessors algorithm, and on the notion of merge forest representing the sequence of

merges performed by the algorithm.

Lemma 47. Suppose that TestAgreement(T , π>) has returned (no, π, I). Then Algorithm

Merge run on G, I ends with the partition {I}.

Note that this fact certifies that the minimum nice partition Q of G is a singleton: by

Lemma 46, it follows that 〈I〉G = V is included in a same class of Q. To check that Q has

a unique class, we can thus use I as the certificate, and Merge as the verification algorithm.

We will repeatedly use this fact in the following sections. Additionally, for settings where we

actually want to use Merge for verification purposes, we will give a O(kn) implementation in

Section 5.4.3 under the name FindObstruction.

5.4.2 Solving the AST-EC problem

The computational complexity of AST-EC does not seem to have been studied before. To

motivate the development of a fixed-parameter algorithm to solve the problem, we first prove

the problem is NP-complete.

We use a recursive parenthesized notation for trees: if ` is a label, ` represents a tree with

a single leaf labelled `; if T1, . . . , Tk are trees, then (T1, . . . , Tk) represents the tree whose root

is unlabelled and has T1, . . . , Tk as child subtrees.

Theorem 21. AST-EC is NP-complete.

Proof. Membership in NP is clear. The NP-hardness is shown by a reduction from the Mul-

ticut problem, which is defined as follows. Given a graph G = (V,E), a set of requests

R ⊆ V × V , and an integer p, the Multicut problem asks if there exists a set S of at most p

edges in E, where, for every uv ∈ R, u and v are in different components of G\S.
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Given an instance I = (G,R, p) of Multicut, we construct an instance I ′ = (T , p) of

AST-EC as follows. The collection T is defined over L := V ∪{x} and consists of: (i) for each

edge e = uv ∈ E, a tree te = ((u, v), x); (ii) for each pair p = uv ∈ R, a tree fp = (u, v, x).

For each e ∈ E, we let γ(e) denote the internal edge of te, we let α(e) denote the parent of u, v

in te, and we let β(e) denote the parent of α(e), x in te. The notation γ(e) induces a bijection

γ : E → Ê(T ); we will use the notation γ(S) and γ−1(S) to denote, respectively, the image

and the inverse image of a set S under γ.

The reduction is clearly doable in polynomial time. To prove its correctness, we show that:

I is a positive instance of Multicut iff I ′ is a positive instance of AST-EC.

Suppose that (G,R) has a minimum multicut S ⊆ E with |S| ≤ p. Let S′ = γ(S), we show

that T /S′ has an agreement supertree. Let C1, . . . , Cm denote the connected components of

G\S. By minimality of S, each edge of S is between two distinct components of G. For every

1 ≤ i ≤ m, let Ti denote a star-tree with leaves labeled by Ci, and let T = (T1, . . . , Tm, x).

We show that T is an agreement supertree of T /S′. First, for each e = uv ∈ E\S, we have

u, v in a same connected component of G\S, and thus te/S
′ = ((u, v), x) is a subtree of T .

Second, for each e = uv ∈ S, we have u, v in different connected components of G\S, and

thus te/S
′ = (u, v, x) is a subtree of T . Third, for each p = uv ∈ R, we have u, v in different

connected components of G\S, and thus fe/S
′ = (u, v, x) is a subtree of T . We conclude that

T is an agreement supertree of T /S′.

Conversely, suppose that there exists S ⊆ Ê(T ) such that |S| ≤ p and T /S has an agree-

ment supertree T . Let S′ = γ−1(S), we show that S′ is a multicut of (G,R). Suppose by

contradiction that G\S′ contains a path P between two endpoints of a request uv ∈ R. Then

P = u0e1u1 . . . ur−1erur with u = u0, v = ur. It follows from Lemma 44 that for every 1 ≤ i ≤ r,

there is an embedding φi of tei into T ; let ai = φi(α(ei)) and bi = φi(β(ei)). Since φi is an

embedding, the nodes childT (bi, ai) and childT (bi, x) are distinct; let us denote them by pi, qi.

As ui occurs in tei and tei+1 , it follows that bi+1 = bi, pi+1 = pi, qi+1 = qi. Denote these nodes

by b, p, q. We then have u0 <T p, ur <T p and x ≤T q, which implies that ((u0, ur), x) is a

subtree of T . But by definition of T , it contains fuv = (u, v, x) as a subtree, contradiction. We

conclude that there is no such path P , and thus S′ is a multicut of (G,R).
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In the remainder of this subsection, we show that AST-EC is fixed-parameter tractable

in parameters k and p. Lemma 48 shows that if a call to TestAgreement(T , π>) answers

negatively, we must contract at least one edge joining an interesting vertex to its parent.

Lemma 48. Suppose that TestAgreement(T , π>) has returned a tuple (no, π, I). In order to

obtain a collection having an agreement supertree, we need to contract one edge {v, parent(v)}

with v ∈ I.

Proof. Assume that we have a set S ⊆ Ê(T ) which contains none of the edges {v, parent(v)}

with v ∈ I; we show that T /S has no agreement supertree. We use the following convention:

when contracting an edge {u, v} with v = parent(u), the resulting vertex is identified with v.

Then, by definition of S, each element of I is still a node of T /S. Define the position π′ in

T /S as follows. If π[i] =⊥, then π′[i] =⊥. If π[i] = u is the parent of two vertices v, w ∈ I,

then π′[i] is the common parent of v, w in Ti/S. Let G′ = G(T /S, π′) = (V ′, E′).

Let us consider an execution E of Algorithm Merge on G and I. We build an execution

E ′ of Algorithm Merge on G′ and I that ends with {I} by mirroring each step of E . Let

PE , PE ′ denote the values of P during E , E ′ respectively. We define E ′ by induction such that

PE = PE ′ holds at each step. Clearly, this holds at the beginning of E , E ′. Suppose that

this holds at the beginning of step s. Then E picks a transverse edge induced by some label

` ∈ L(〈Ci〉G) ∩ L(〈Cj〉G). The important observation is that given C ⊆ I, we have L(〈C〉G) ⊆

L(〈C〉G′) (as L(π[i]) ⊆ L(π′[i]) for every i ∈ [k]). Hence, ` ∈ L(〈Ci〉G′) ∩ L(〈Cj〉G′), and thus

E ′ can pick a transverse edge joining 〈Ci〉G′ and 〈Cj〉G′ . This leads to the merge of Ci and Cj ,

and thus PE = PE ′ at the end of step s.

Applying the induction hypothesis at the last step of E , and using that E ends with the

partition {I} (Lemma 47), we obtain that E ′ ends with the partition {I}. By Lemma 46, if Q

is the minimum nice partition of G′, we have 〈I〉G′ = V ′ in a same component of Q, and thus

T /S has no agreement supertree by Lemmas 43 and 45.

Since TestAgreement returns a set of at most 2k interesting vertices, Lemma 48 leads

to an FPT algorithm for AST-EC using a bounded search tree technique.

Theorem 22. AST-EC can be solved in O((2k)pkn2) time.
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Proof. We use a recursive algorithm SolveAST-EC(T , p). The algorithm answers “no” if p <

0. Otherwise, it runs TestAgreement(T , π>) to decide in O(kn2) if T has an agreement su-

pertree. It answers “yes” in case in positive answer. In case of negative answer, it obtains a set I

of nodes of T ; for each non-leaf vertex v ∈ I, it recursively calls SolveAST-EC(T /{v, parent(v)}, p−

1). The algorithm then answers “yes” iff one of the recursive calls does. The correctness of the

algorithm follows from Lemma 48, and the running time is O((2k)pkn2).

5.4.3 Solving the AST-TR problem

We will say that a set C ⊆ L(T ) is a conflict among T if T |C has no agreement supertree.

Lemma 49 shows that if TestAgreement(T , π>) answers negatively, we can obtain a conflict

among T from the set of interesting vertices.

Lemma 49. Suppose that TestAgreement(T , π>) has returned a tuple (no, π, I). We can

then obtain a set C ⊆ L of size at most 2k − 1 such that T |C has no agreement supertree.

Proof. Consider an execution E of Algorithm Merge on G and I. For each transverse edge

e = uv found by E , pick a label `e ∈ L(u) ∩ L(v), and let C be the resulting set of labels.

Clearly |C| ≤ 2k− 1. Consider a vertex v ∈ I ∩ Vi. Then, during E consider the first time that

{v} is merged with another component. This merge corresponds to some label `v ∈ L(v) ∩ C.

It follows that π[i] is still a node of Ti|C, let v′ denote the child of π[i] in Ti|C that contains

`v. Let I ′ = {v′ : v ∈ I}, and let G′ = G(T |C, π) = (V ′, E′).

We claim that (as in the proof of Lemma 48) the execution E can be simulated by an

execution E ′ of Algorithm Merge on G′ and I ′. Let PE , PE ′ denote the values of P during

E , E ′ respectively. We define E ′ by induction such that the following holds at each step: if

PE = {C1, . . . , Cp}, then PE ′ = {C ′1, . . . , C ′p} with C ′i={v′ : v ∈ Ci}. Clearly, this holds at the

beginning of E , E ′. Suppose that this holds at the beginning of step s. Then E picks a transverse

edge e = uv with u ∈ 〈Ci〉G, v ∈ 〈Cj〉G. Suppose that u ∈ V (Tp) and v ∈ V (Tq). In Tp|C

(resp. Tq|C), there is a child u′ of π[p] (resp. a child v′ of π[q]) that contains `e. The induction

hypothesis implies that u′∈〈C ′i〉G′ and v′∈〈C ′j〉G′ , thus E ′ can pick the transverse edge e′=u′v′

induced by label `e. This leads to merge C ′i and C ′j and thus the induction hypothesis holds at
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the end of step s.

Applying the induction hypothesis at the last step of E , and since E ends with the partition

{I} (Lemma 47), we conclude that E ′ ends with the partition {I ′}. By Lemma 46, if Q is the

minimum nice partition of G′, we have 〈I ′〉G′ = V ′ in a same component of Q, and thus T |C

has no agreement supertree by Lemmas 43 and 45.

We outline an algorithm FindObstruction that takes as input a set of interesting vertices

and returns a conflict among T of size at most 2k − 1. Suppose that I = {v1, . . . , vr}. We

initialize components C1, . . . , Cr with Ci = {vi}, and we let J = {1, . . . , r}. We use a main loop

which performs the r−1 steps of Algorithm Merge. At each step, we have J ⊆ {1, . . . , r}, and

the current partition is represented by the components Ci (i ∈ J), which are called the active

components. We maintain for each ` ∈ L a variable J(`) = {i∈ J : `∈L(〈Ci〉G)}. At a given

step, we have to find a label inducing a transverse edge which joins the closure of two active

components. This amounts to looking for an ` such that |J(`)| ≥ 2. Once such an ` has been

found, we pick two indices i, j ∈J(`), and we merge the components Ci, Cj , letting Ci be the

newly created component, and updating the variables J(`) accordingly. An implementation of

FindObstruction is given in the listing of Algorithm 3.

Lemma 50. Suppose that TestAgreement(T , π>) returns (no, π, I). Then Algorithm FindObstruction(T , π, I)

returns in O(kn) time a conflict among T of size at most 2k − 1.

Proof. We first argue for the correctness. If 2k ≥ n, then the set L returned by the algorithm

is a conflict, as by assumption T has no agreement supertree. Suppose now that 2k < n. By

Lemma 49, it suffices to show that an execution E of Algorithm 3 simulates an execution E ′ of

Algorithm Merge. More precisely, we show the following holds after each step s.

1. There is an execution E ′ of s steps of Algorithm Merge which produces the set of

components Ci (i ∈ J) and, the set of labels R is exactly the set of labels corresponding

to the transverse edges which induced all the s merges in E ′.

2. For each ` ∈ L, J(`) = {i ∈ J : ` ∈ L(〈Ci〉G)}.
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Input: A collection T = {T1, . . . , Tk} of rooted trees, an obstructing position π in T , a

set I = {v1, . . . , vr} of interesting vertices for π.

Output: A conflict among T .

1 if 2k ≥ n then return L

2 R← ∅ ; J ← {1, . . . , r}
3 for i from 1 to r do

4 Ci ← {vi}
5 foreach ` ∈ L(vi) do J(`)← J(`) ∪ {i}
6 for s from 1 to r − 1 do

7 Pick ` ∈ L such that |J(`)| ≥ 2, and choose i, j ∈ J(`)

8 R← R ∪ {`}
9 for ` ∈ L do

10 if j ∈ J(`) then J(`)← J(`)\{j} ∪ {i}
11 for p from 1 to k do

12 if Ci ∩ Vp 6= ∅ and Cj ∩ Vp 6= ∅ then

13 foreach ` ∈ L(π[p]) do J(`)← J(`) ∪ {i}
14 Ci ← Ci ∪ Cj , J ← J\{j}
15 return R

Algorithm 3: FindObstruction(T , π, I)

This is shown by induction on s. The initialization of the variables Ci and J(`) in Lines 3-5

ensure that this is true initially. Suppose that this holds at the beginning of step s. The choice

of ` and i, j in Line 7 ensures that ` ∈ L(〈Ci〉G)∩L(〈Cj〉G), and thus there exists a transverse

edge e between 〈Ci〉G and 〈Cj〉G, induced by the label `. The update of Ci ← Ci ∪ Cj and

J ← J\{j} reflect the merge of Ci and Cj , and thus we can simulate step s of Algorithm

Merge which would choose transverse edge e and merge Ci and Cj . This establishes Point 1,

and the update of J(`) in Lines 9-13 ensures that Point 2 is preserved.

We now justify the running time. Let us assume that 2k < n, as otherwise the algorithm

takes O(1) time. We implement the sets J(`) by bit arrays, allowing in constant time the

following operations: (i) insertion or deletion of an element, (ii) obtaining the size of the set. It

follows that Lines 3-5 take O(rn) = O(kn) time. Let us now analyze the time taken by the s-th

iteration of the loop in Lines 6-14. Let Ks denote the set of indices p for which the condition

of Line 12 holds. Then Lines 7-10 take O(n) time, Lines 11-13 take O(k + |Ks|n) time, and

Line 14 takes O(k) time. Overall, Lines 7-14 take O(n + |Ks|n) time as k = O(n). Observe

that the sets Ks are disjoint for s = 1, . . . , r − 1, and thus
∑

s |Ks| = O(k). It follows that the
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loop of Lines 6-14 take O(rn + kn) = O(kn) time, and we conclude that the whole algorithm

runs in O(kn) time.

Theorem 23. AST-TR can be solved in O((2k)pkn2) time.

Proof. We use a recursive algorithm SolveAST-TR(T , p). The algorithm answers “no” if

p < 0. Otherwise, it runs TestAgreement(T , π>) to decide in O(kn2) if T has an agreement

supertree. It answers “yes” in case of positive answer. In case of negative answer, it obtains

a position π and a set I of interesting nodes for π. It calls FindObstruction(T , π, I) to

obtain in O(kn) time a conflict C among T of size at most 2k − 1. Then, for each ` ∈ C, it

recursively calls SolveAST-TR(T |(L(T ) \ {`}), p− 1), and it answers “yes” if and only if one

of the recursive calls does. The correctness follows from Lemma 50, and the running time is

O((2k)pkn2).

5.5 Deferred Proofs

5.5.1 Proofs of Section 5.3.2

The proof of Theorem 18 relies on three lemmas. Lemma 51 justifies the running time of

the algorithm, while Lemmas 52 and 53 prove its correctness.

Lemma 51. The implementation of GetSuccessors given in Algorithm 1 runs in O(kn)

time.

Proof. Clearly, line 1 takes O(n) time. Each iteration of the outer loop in lines 2-6 takes a

total of O(n) time, since each label can be in the subtree of at most one child of π[i], and there

are k iterations, for a total of O(kn) time spent on lines 2-6. Line 7 takes O(1) time.

We now argue that the algorithm spends a total of O(kn) time on lines 8-24. The loop in

line 8 executes O(n) times. Since any given label can be in a given tree at most once, we have

that each |S`| ≤ k for each ` ∈ L(π). Hence the loop in line 10 executes O(k) times for each

execution of the outer loop in line 8, and takes constant time per iteration. Since lines 9, 22,

and 23 take constant time, we have that the algorithm spends a total of O(kn) time on lines

8-13, and lines 22-23.
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We consider lines 14-21 separately. Since we create a total of n positions, and once a

position’s active flag is set to false it is never again set to true, we have that the while loop of

line 14 executes a total of at most n times during the execution of the entire algorithm. The

loop in line 16 executes k times and takes O(1) time if the test in line 17 is true, and O(n) time

if the test in line 17 is false. However, the test in line 17 can be false at most k times during

the entire execution of the algorithm. Hence the algorithm spends a total of O(kn) executing

lines 14-17 and O(kn) time executing lines 18-21.

Since there are at most n positions created, line 24 takes O(n) time. This completes the

analysis of the runtime of GetSuccessors, showing that it takes O(kn) time.

Consider an execution of GetSuccessors(T , π), and let G = G(T , π) as before. Observe

that Lines 1-6 ensure that for each ` ∈ L, S` = {v ∈ V : ` ∈ L(v)}. Suppose that Loop 8-21

examines the labels in the order `1, . . . , `n. Given 0 ≤ i ≤ n, let Li = {`1, . . . , `i}. Let Gi

denote the graph with vertex set V , and which contains an edge uv iff L(u) ∩ L(v) intersects

Li. Let Qi denote the minimum nice partition of Gi, and let Pi denote the set of nice partitions

of Gi. In the following, we let ` = `i+1.

Lemma 52. Qi is finer than Qi+1. Furthermore, let S denote the set of classes C ∈ Qi which

contain a vertex in S`. Then the classes of S are included in a same class K` of Qi+1, and

Qi+1 = Qi\Q′ ∪ {K`}, where Q′ is the set of classes of Qi included in K`.

Proof. We first show that Qi is finer than Qi+1. Observe that a nice partition of Gi+1 is also

a nice partition of Gi, as E(Gi) ⊆ E(Gi+1). It follows that Qi = uP∈PiP v uP∈Pi+1P = Qi+1,

where the inclusion holds as Pi+1 ⊆ Pi. We deduce that each class of Qi is included in a class of

Qi+1. Now, the classes of S must be included in a same class K` of Qi+1, as two classes of Qi+1

are disconnected. Let Q′ be the set of classes of Qi included in K`. Then, Qi+1 is obtained

from Qi by merging together the classes of Q′, and possibly some other classes. Suppose by

contradiction that Qi+1 6= Qi\Q′ ∪ {K`}, then there is a class K ′ of Qi+1 distinct of K` and

which is not a class of Qi. Let C1, . . . , Cm be the classes of Qi included in K ′, with m ≥ 2.

Let R = Qi+1\{K ′} ∪ {C1, . . . , Cm}. Then Qi is finer than R and thus R is a nice partition

of Gi. On the other hand, R is not a nice partition of Gi+1 by minimality of Qi+1. It follows
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that Gi+1 contains an edge joining two classes Cp, Cq; as R is a nice partition of Gi, this edge

must be induced by `. But K` is the only class of Qi+1 which intersects S`, contradiction. We

conclude that Qi+1 = Qi\Q′ ∪ {K`}.

A successor of π is a position π′ such that for every i ∈ [k], either π′[i] =⊥, or π′[i] ∈ Vi,

or π′[i] = π[i]. Given π′ successor of π, we define the corresponding component Cπ ⊆ V , such

that: if π′[i] =⊥ then Cπ ∩ Vi = ∅; if π′[i] = v ∈ Vi then Cπ ∩ Vi = {v}; if π′[i] = π[i] then

Cπ ∩ Vi = Vi. Let Πi denote the set of active positions of Π at the end of step i of Loop 8-21.

The construction of each position π` in Lines 14-21 ensures that Πi is a set of successors of

π. Let Pi denote the family containing (i) the sets Cπ′ for π′ ∈ Πi, (ii) the singletons {v} for

v ∈ V such that there is no π′ ∈ Πi with v ∈ Cπ′ .

Lemma 53. For every i (0 ≤ i ≤ n), it holds that Pi = Qi at the end of step i of the loop in

lines 8-21.

Proof. Let us show that this holds initially. We have Π0 = ∅, V0 = ∅, and thus P0 consists of

the singletons {v} for v ∈ V . This is clearly equal to Q0 as G0 is the empty graph. Let us

now assume that this holds at the end of step i, let us consider step i + 1 and let ` = `i+1.

By the induction hypothesis, we have Pi = Qi. By Lemma 52, we have Qi+1 = Qi\Q′ ∪ {K`},

where Q′ is the set of classes of Qi included in K`. Let S denote the set of components of Qi

corresponding (i) to positions added to Z in Lines 11-12, (ii) to singleton components {v} for v

examined at Line 13. Consider step j of Loop 14-21. At a given step, let πj` denote the current

value of π`, let Cj` denote the corresponding component, let Zj be the set of elements of Z, and

let Zjf be the set of elements π ∈ Z with active(π) = false. Let Dj
` denote the set of vertices

v ∈ Cj` such that there is no π′ ∈ Πi with v ∈ Cπ′ .

Claim 1. At step j of Loop 14-21, we have:

(a) Dj
` ∪

⋃
π′∈Zj

f
Cπ′ is included in Cj` ;

(b) Cj` is included in Dj
` ∪

⋃
π′∈Zj Cπ′ and in K`;

(c) for each π′ ∈ Zj , Cπ′ ⊆ K`.
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Proof. Let us verify that this holds for j = 0. Observe that C0
` = D0

` , as each vertex v

added to C0
` is obtained in Line 13 and has position(v) = ∅. Point (a) is an equality. Points

(b) and (c) follow from the fact that the components of S are included in K`, according to the

definition of K` in Lemma 52.

Let us now verify it for j + 1, assuming that it holds for j. Suppose that step j + 1

examines position π′ ∈ Zj . Let Z ′ be the set of positions added at Line 21 during this step.

Lines 16-21 compute πj+1
` such that Cj+1

` = 〈Cj` ∪ Cπ′〉Gi+1 . By the induction hypothesis,

Dj
`∪

⋃
π′∈Zj

f
Cπ′ ⊆ Cj` ⊆ C

j+1
` ; by definition, Dj+1

` ⊆ Cj+1
` and Cπ′ ⊆ Cj+1

` ; as Zj+1
f = Zjf∪{π

′},

we deduce that Point (a) holds. Let us show Point (b). As Cj` ⊆ K` and Cπ′ ⊆ K` by the

induction hypothesis, it follows that Cj` ∪ Cπ′ ⊆ K`, and thus Cj+1
` ⊆ K` as K` is a nice

set. Now, observe that for every v ∈ Cj+1
` \Cj` we have either v ∈ Dj+1

` (if position(v) = ∅

at Line 21) or v ∈ Cπ′ for some π′ ∈ Z ′ (if position(v) = {π′} at Line 21). It follows that

Cj+1
` ⊆ Cj` ∪D

j+1
` ∪

⋃
π′∈Z′ Cπ′ ⊆ D

j+1
` ∪

⋃
π′∈Zj Cπ′ (using the induction hypothesis), and thus

Point (b) holds. Let us show Point (c). Observe that for each π′ ∈ Z ′, Cπ′ intersects Cj+1
` . As

Cj+1
` ⊆ K` and as Cπ′ is a class of Qi, it follows that Cπ′ ⊆ K`. 3

Suppose that we have reached Line 23. Let Π′ be the set of positions in Z at this step,

then Πi+1 = Πi\Π′ ∪ {π`}. Thus, we have Pi+1 = Pi\P ′ ∪ {C`}, where C` is the component

corresponding to π`. Recall that Qi+1 = Qi\Q′ ∪ {K`} and that Pi = Qi. To show that

Pi+1 = Qi+1, we will prove that (i) C` ⊆ K`, (ii) Pi+1 is a nice partition of Gi+1.

(i) C` ⊆ K`. Indeed, by applying Claim 1 at the last step of Loop 14-21, we obtain that

C` ⊆ K` by Point (b).

(ii) Pi+1 is a nice partition of Gi+1. We first show that Pi+1 is a partition of V . Let

D` denote the value of Dj
` at the last step of Loop 14-21. Note that Pi+1 = Pi\P ′ ∪ {C`},

where P ′ contains (i) the singleton components {v} for v ∈ D`, (ii) the set of components

corresponding to the positions in Z. Let X denote the union of the components in P ′, observe

that X = D` ∪
⋃
π∈Z Cπ. By Points (a) and (b) of Claim 1, we have X = C`. As Pi is a

partition of V , we obtain that Pi+1 is a partition of V .

We now show that Pi+1 is nice. Each class of Pi+1 is nice, as it is either a class of Pi

(which is a nice partition of Gi), or the set C` (which is nice). Suppose that Pi+1 contains
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two classes C,C ′ that are connected. As Pi is a nice partition of Gi finer than Pi+1, it holds

that Pi+1 is a nice partition of Gi. Thus, C and C ′ are disconnected in Gi, and they must be

connected in Gi+1 by an edge induced by `. But C` is the only class of Pi+1 which intersects

S`, a contradiction.

The proof of Theorem 18 follows directly from Lemmas 51, 52, and 53.

We conclude this section with a proof of Theorem 19. Recall that when the set of successor

positions returned by GetSuccessors is a singleton, the algorithm returns a set of vertices

I along with the obstructing position π. Theorem 19 states that, in this case, the vertices in

I are interesting for π. We have delayed the proof of this theorem until now for expository

reasons: It is not until Section 5.4 that we developed the machinery required for the proof.

of Theorem 19. The following properties of Algorithm Merge demonstrate that the set I sat-

isfies the definition of interesting vertices:

• Each vertex in I starts in its own class.

• At each step of the algorithm a transverse edge is found and two of the classes are merged.

Let K = {i ∈ [k] : π[i] 6=⊥}. By Lemma 47, Algorithm Merge run on G and I returns {I}.

Since there are |I| = 2|K| initial classes, it follows that 2|K| − 1 transverse edges are needed

to merge them into a single class. Furthermore, since each interesting vertex is initially the

unique element in its class, it must be an endpoint of the transverse edge found that merged

that class with the final class. Thus, the set of transverse edges used by Algorithm Merge

prove that I is indeed a set of interesting vertices.

5.5.2 Proof of Lemma 47

For convenience, we introduce an abstract version of GetSuccessors called Algorithm A.

The algorithm takes as input T and the position π, and it returns a partition P of V , and a set I

of interesting vertices. For each ` ∈ L, the algorithm constructs the set S` = {v ∈ V : ` ∈ L(v)}.

Initially, P consists of the singletons {v} for v ∈ V , and I = ∅. Then, the algorithm successively
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examines each label ` ∈ L. When examining `, it constructs a set Z ⊆ P and K ⊆ V in two

steps. It starts with Z = ∅ and K = ∅, and it does the following.

• Phase A: for each C ∈ P intersecting S`, add C to Z.

• Phase B: while Z contains an unprocessed class C, extract C from Z and do the following.

For every i ∈ [k], if K and C respectively contain a vertex x and a vertex y where x, y ∈ Vi,

then add x, y to I, and for every v ∈ Vi\{x, y} add to Z the class C ′ ∈ P that contains

v. Then let K ← 〈K ∪ C〉G.

• At the end of Phase B, let P ′ be the set of classes of P which have been added to Z. Let

P ← P\P ′ ∪ {K}.

It is not difficult to see that Algorithm A is equivalent to Algorithm GetSuccessors, so

for every execution of GetSuccessors producing the set of vertices I, there is a corresponding

execution of Algorithm A which produces I. An execution of Algorithm A can be represented

by a merge forest. This is an ordered rooted forestM, where each node u ofM is associated to

a component Ku produced by the algorithm, such that at each step of Algorithm A the roots of

M correspond to the classes of P . M is constructed as follows. At the beginning of Algorithm

A, M consists of one isolated node for each class of P . When Algorithm A examines label `,

let P ′ be the set produced at the end of Phase B and let K be the class added to P , thenM is

updated by adding a vertex u with Ku = K, and by adding an arc (u, v) for each root v of M

corresponding to a class Kv ∈ P ′. Then, the new children of u correspond to the classes added

to Z, and they are ordered according to the first time when they were added to Z.

We state below some simple properties of the merge forest. The following lemma can be

proved by a similar argument as in the proof of Lemma 53.

Lemma 54. Let u be an internal node of M with children u1, . . . , up. Then {Ku1 , . . . ,Kup}

is a partition of Ku.

Let i ∈ [k], and let u be a node of M. We say that u merges Vi if Vi ⊆ Ku but there is no

child v of u with Vi ⊆ Kv. Suppose that u merges Vi. Given x ∈ Vi, we let Cx(u) denote the

child v of u such that x ∈ Kv. We let Ch(u) denote the ordered list of children of u in M.
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Lemma 55. Suppose that u merges Vi. Then I contains two vertices x, y ∈ Vi, and for every

z ∈ Vi\I, Cx(u), Cy(u) precede Cz(u) in Ch(u).

We are now in position to prove Lemma 47.

of Lemma 47. By definition of π and I, it holds that GetSuccessors(T , π) has returned

({π}, I). It follows that there is a corresponding execution of Algorithm A on T , π which

returns ({V }, I). Let M be the merge forest corresponding to this execution, then M has a

single root r with Kr = V . Consider an execution of Algorithm Merge on G, I. We show that

as long as P contains at least two classes, the algorithm finds a transverse edge. Suppose that

P = {C1, . . . , Cp} with p ≥ 2, we thus need to find a transverse edge joining 〈Ci〉G and 〈Cj〉G

for some i, j.

We will need the following definitions. Let v be a node of M. Given x ∈ Kv, we color x

with color 1 ≤ i ≤ p if x ∈ 〈Ci〉G. We say that v is split if Kv contains two colored vertices

of different colors. We say that v is full if for each i ∈ [k], if Kv ∩ Vi = {x} then x is colored.

For every i ∈ [k] such that Vi ⊆ Kv, the vertices of Vi\I are called secondary vertices of Kv.

Given v′ child of v in M, we say that v′ is a secondary child of v if there exists i ∈ [k] such

that Kv′ ∩Vi = {x} with x secondary vertex of Kv; otherwise, we say that v′ is a primary child

of v.

Let S be the set of nodes of M that are split and full. Observe that the root r of M is in

S. Indeed, r is split as Kr contains all interesting nodes and as p ≥ 2; r is full as there is no

i ∈ [k] such that |Kr ∩ Vi| = 1. Let u be a deepest node of S, and let u1, . . . , um be its ordered

list of children. We say that a node v of M is monochromatic (with color c) iff all vertices of

Kv have the same color c.

Claim 1. If v is a primary child of u, then v is added during Phase A of Algorithm A.

Furthermore, v is full and monochromatic.

Proof. For the first point, observe that if v is added during Phase B of Algorithm A then

Kv contains a secondary vertex of Ku and thus v is a secondary child of u. Let us now show the

second point. Suppose by contradiction that v is not full. Then there is some i ∈ [k] such that

Kv ∩Vi = {x} with x uncolored. As u is full, we cannot have Ku ∩Vi = {x} and thus Vi ⊆ Ku.
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As x is uncolored, we have x ∈ Vi\I, and thus x is a secondary vertex of Ku. We conclude that

v is a secondary child of u, contradiction. It follows that v is full, and by choice of u it cannot

be split. Thus, all colored vertices of Kv have the same color c. Now, if Kv ∩ Vi = {x} then x

has color c (as Kv is full), and if Vi ⊆ Kv then the two vertices of Vi ∩ I have color c, which

implies that all vertices of Vi have color c. It follows that v is monochromatic with color c. 3

By Claim 1, each primary child ui of u is monochromatic with color ci.

Claim 2. There exist two primary children ui, uj of u such that ci 6= cj .

Proof. By way of contradiction, assume that all primary children have the same color c.

We show by induction on 1 ≤ j ≤ m that uj is monochromatic with color c. This holds if uj

is a primary child of u, so let us assume that uj is a secondary child of u. Let J ⊆ Kuj be the

set of vertices x ∈ Kuj such that Kuj ∩ Vi = {x} for some i ∈ [k], and let J ′ ⊆ J be the set of

vertices of J that are secondary vertices of Ku. Then J ′ 6= ∅ as uj is a secondary child of u.

Consider z ∈ J ′ and suppose that Kuj ∩ Vi = {z}. As z is a secondary vertex of Ku, we then

have Vi ⊆ Ku. Then u merges Vi, and by Lemma 55 it follows that I contains two elements

x, y ∈ Vi. Let up, uq be the children of u such that x ∈ Kup , y ∈ Kuq . We have p, q < j by

Lemma 55. We can thus apply the induction hypothesis to obtain that x, y have color c, which

implies that z has color c. We obtain that all vertices of J ′ have color c. On the other hand, all

vertices of J\J ′ are colored, as u is full. We conclude that uj is full, with some vertex having

color c. By choice of u, its child uj cannot be split. A similar reasoning as in the proof of

Claim 1 shows that uj is monochromatic with color c. This concludes the induction, and we

obtain that all children of u are monochromatic with color c. By Lemma 54, we obtain that u

is monochromatic with color c, contradicting the assumption that u is split. 3

Claim 2 yields two primary children ui, uj of different colors c, c′. By Claim 1, they are

added during Phase A of Algorithm A, and thus the label that is examined in the iteration of

Algorithm A when Ku is built induces an edge between Kui and Kuj . We have thus shown the

existence of a transverse edge between 〈Cc〉G and 〈Cc′〉G, which concludes the proof.
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5.6 Concluding Remarks

We have given O((2k)pkn2) time algorithms for both the AST-EC and AST-TR problems,

thus showing they are fixed-parameter tractable for parameters k and p. We remark here that

the bound of 2k − 1 given for the obstruction set of AST-TR (Lemmas 49 and 50) is tight.

Our proof that AST-EC is NP-hard relies on a reduction from the parameterized Multi-

cut problem to the AST-EC problem parameterized by p. As Multicut is fixed-parameter

tractable [Bousquet et al. (2011); Marx and Razgon (2011)], this leaves open the question of

whether AST-EC could be fixed-parameter tractable in p only. It is known that AST-TR is

fixed-parameter intractable for parameter p [Berry and Nicolas (2007)].

Our focus here was on agreement supertrees. A compatible supertree is one that contains

a refinement of each of the input trees. There are natural analogs of AST-EC and AST-TR

for compatible supertrees. For binary input trees, compatibility is equivalent to agreement,

so the results of Guillemot and Berry (2010) imply fixed-parameter tractability. However, for

input trees of arbitrary degree, we have established that any upper bound on the cardinality

of an obstruction set is at least c2k. Hence, the techniques given here are unlikely to imply

efficient fixed-parameter tractability for the analogs of AST-TR and AST-EC to compatible

supertrees.

There are also analogs of both AST-EC and AST-TR to unrooted trees. Although Maxi-

mum Agreement Supertree (Smast) has been studied for unrooted trees [Berry and Nicolas

(2007); Hoang and Sung (2011)], the AST-EC and AST-TR problems for unrooted trees do

not seem to have been studied before.
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CHAPTER 6. INCOMPATIBLE SETS OF QUARTETS, TRIPLETS,

AND CHARACTERS

Brad Shutters, Sudheer Vakati, David Fernández-Baca

Modified from a paper submitted to the journal Algorithm. Mol. Biol.

Abstract

We study a long standing conjecture on the necessary and sufficient conditions for the

compatibility of full multi-state characters: There exists a function f(r) such that, for any set

C of r-state characters, C is compatible if and only if every subset of f(r) characters of C is

compatible. We show that for every r ≥ 2, there exists an incompatible set C of Ω(r2) r-state

characters such that every proper subset of C is compatible. This improves the previous lower

bound of f(r) ≥ r given by Meacham (1983), and f(4) ≥ 5 given by Habib and To (2011). For

the case when r = 3, Lam, Gusfield and Sridhar (2011) recently showed that f(3) = 3. We give

an independent proof of this result and completely characterize the sets of pairwise compatible

3-state characters by a single forbidden intersection pattern.

Our lower bound on f(r) is proven via a result on quartet compatibility that may be of

independent interest: For every n ≥ 4, there exists an incompatible set Q of Ω(n2) quartets

over n labels such that every proper subset of Q is compatible. We show that such a set of

quartets can have size at most 3 when n = 5, and at most O(n3) for arbitrary n. We contrast

our results on quartets with the case of rooted triplets: For every n ≥ 3, if R is an incompatible

set of more than n− 1 triplets over n labels, then some proper subset of R is incompatible. We

show this bound is tight by exhibiting, for every n ≥ 3, a set of n− 1 triplets over n taxa such

that R is incompatible, but every proper subset of R is compatible.
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6.1 Introduction

The multi-state character compatibility (or perfect phylogeny) problem is a basic question

in computational phylogenetics [Semple and Steel (2003)]. Given a set C of full characters,

we are asked whether there exists a phylogenetic tree that displays every character in C; if

so, C is said to be compatible, and incompatible otherwise. The problem is known to be NP-

complete [Bodlaender et al. (1992); Steel (1992)], but certain special cases are known to be

polynomially-solvable [Agarwala and Fernández-Baca (1994); Dress and Steel (1992); Gusfield

(1991); Kannan and Warnow (1994, 1997); Lam et al. (2011); Shutters and Fernández-Baca

(2012)]. See Fernández-Baca (2001) for more on the perfect phylogeny problem.

In this paper we study a long standing conjecture on the necessary and sufficient condi-

tions for the compatibility of full multi-state characters. For rest of this chapter when we say

character we are only referring to full characters.

Conjecture 1. There exists a function f(r) such that, for any set C of r-state characters, C

is compatible if and only if every subset of f(r) characters of C is compatible.

If Conjecture 1 is true, it would follow that we can determine if any set C of r-state

characters is compatible by testing the compatibility of each subset of f(r) characters of C, and,

in case of incompatibility, output a subset of at most f(r) characters of C that is incompatible.

This would allow us to reduce the character removal problem (i.e., finding a subset of characters

to remove from C so that the remaining characters are compatible) to f(r)-hitting set which

is fixed-parameter tractable [Niedermeier and Rossmanith (2003)].

A classic result on binary character compatibility shows that f(2) = 2; see [Buneman

(1971); Estabrook et al. (1976); Gusfield (1991); Meacham (1983); Semple and Steel (2003)].

In 1975, Fitch [Fitch (1975, 1977)] gave an example of a set C of three 3-state characters such

that C is incompatible, but every pair of characters in C is compatible; showing that f(3) ≥ 3.

In 1983, Meacham [Meacham (1983)] generalized this example to r-state characters for every

r ≥ 3 demonstrating a lower bound of f(r) ≥ r for all r; see also [Lam et al. (2011)]. For the

case of r = 3, Lam, Gusfield, and Sridhar [Lam et al. (2011)] recently established that f(3) = 3.

While the previous results could lead one to conjecture that f(r) = r for all r, Habib and
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To [Habib and To (2011)] recently disproved this possibility by exhibiting a set C of five 4-

state characters such that C is incompatible, but every proper subset of the characters in C

are compatible, showing that f(4) ≥ 5. They conjectured that f(r) ≥ r + 1 for every r ≥ 4.

The main result of this paper is to prove the conjecture stated in Habib and To (2011) by

giving a quadratic lower bound on f(r). Formally, we show that for every r ≥ 2, there exists a

set C of r-state characters such that all of the following conditions hold.

1. C is incompatible.

2. Every proper subset of C is compatible.

3. |C| = b r2c · d
r
2e+ 1.

Therefore, f(r) ≥ b r2c · d
r
2e+ 1 for every r ≥ 2.

Our proof relies on a new result on quartet compatibility we believe is of independent

interest. We show that for every n ≥ 4, there exists a set Q of quartets over a set of n labels

such that all of the following conditions hold.

1. Q is incompatible.

2. Every proper subset of Q is compatible.

3. |Q| = bn−22 c · d
n−2
2 e+ 1.

This is an improvement over the previous lower bound on the maximum cardinality of such an

incompatible set of quartets of n− 2 given in Steel (1992). We show that such a set of quartets

can have size at most 3 when n = 5, and at most O(n3) for arbitrary n. We note here that the

construction given in Habib and To (2011) showing that f(4) ≥ 5 can be viewed as a special

case of the construction given here when n = 6.

We study the compatibility of three-state characters further. The work of Lam et al. (2011)

completely characterized the sets of pairwise compatible 3-state characters by the existence of

one of four forbidden intersection patterns. An alternative characterization of this result was

given in Shutters and Fernández-Baca (2012) and was partially derived using the results of Lam

et al. (2011). In this paper, we give a proof that f(3) = 3 that is independent of the results
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Figure 6.1: (a) shows a tree T witnessing that the quartets q1 = ab|ce, q2 = cd|bf , and q3 =

ad|ef are compatible; T is also a witness that the characters χq1 = ab|ce|d|f , χq2 = cd|bf |a|e,
and χq3 = ad|ef |b|c are compatible; (b) shows T |{a, b, c, d, e}.

in Lam et al. (2011), and we completely characterize the sets of pairwise compatible 3-state

characters by a single forbidden intersection pattern.

We contrast our result on quartet compatibility with a result on the compatibility of rooted

triplets: For every n ≥ 3, if R is an incompatible set of triplets over n labels, and |R| > n− 1,

then some proper subset of R is incompatible. We show this bound is tight by exhibiting, for

every n ≥ 3, a set of n− 1 triplets over n labels such that R is incompatible, but every proper

subset of R is compatible.

6.2 Preliminaries

6.2.1 Quartet Rules

We now introduce quartet (closure) rules which were originally used in the contexts of

psychology [Colonius and Schulze (1981)] and linguistics [Dekker, M. C. H. (1986)]. The idea

is that for a collection Q of quartets, any tree that displays Q may also necessarily display

another quartet q 6∈ Q, and if so we write Q ` q.

Example 4. Let Q = {ab|ce, ae|cd}. Then the tree of Figure 6.1(b) displays Q, and further-

more, it is easy to see that it is the only tree that displays Q. Hence, Q ` ab|de, Q ` ab|cd,

and Q ` be|cd.
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We use the following quartet rules in this paper:

{ab|cd, ab|ce} ` ab|de (R1)

{ab|cd, ac|de} ` ab|ce (R2)

For the purposes of this paper, we define the closure of an arbitrary collection Q of quartets,

denoted Q∗, as the minimal set of quartets that contains Q, and has the property that if for

some q1, q2 ∈ Q∗, {q1, q2} ` q3 using either (R1) or (R2), then q3 ∈ Q∗. Clearly, any tree that

displays Q must also display Q∗. We will use the following lemma which follows by repeated

application of (R1) and is formally proven in Dietrich et al. (2012).

Lemma 56. Let Q be an arbitrary set of quartets with {x, y, z1, . . . , zk} ⊆ L(Q). If

k−1⋃
i=1

{xy|zizi+1} ⊆ Q∗ ,

then xy|z1zk ∈ Q∗.

We refer the reader to [Semple and Steel (2003)] and [Grünewald and Huber (2007)] for

more on quartet rules.

6.3 Incompatible Quartets

For every s, t ≥ 2, we fix a set of labels Ls,t = {a1, a2, . . . , as, b1, b2, . . . , bt} and define the

set

Qs,t = {a1b1|asbt} ∪
s−1⋃
i=1

t−1⋃
j=1

{aiai+1|bjbj+1}

of quartets with L(Qs,t) = Ls,t. We denote the quartet a1b1|asbt by q0, and a quartet of the

form aiai+1|bjbj+1 by qi,j .

Observation 6. For all s, t ≥ 2, |Qs,t| = (s− 1)(t− 1) + 1.

Lemma 57. For all s, t ≥ 2, Qs,t is incompatible.

Proof. For each i ∈ [s− 1],

t−1⋃
j=1

{aiai+1|bjbj+1} ⊆ Qs,t ⊆ Q∗s,t.
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Then, by Lemma 56, it follows that for each i ∈ [s− 1], aiai+1|b1bt ∈ Q∗s,t. So,

s−1⋃
i=1

{b1bt|aiai+1} ⊆ Q∗s,t.

Then, again by Lemma 56, it follows that b1bt|a1as ∈ Q∗s,t. But then {a1b1|asbt, b1bt|a1as} ⊆

Q∗s,t. It follows that any tree that displays Qs,t must display both a1b1|asbt and b1bt|a1as.

However, no such tree exists. Hence, Qs,t is incompatible.

Lemma 58. For all s, t ≥ 2, every proper subset of Qs,t is compatible.

Proof. Since every subset of a compatible set of quartets is compatible, it suffices to show that

for every q ∈ Qs,t, Qs,t \ {q} is compatible. Let q ∈ Qs,t. Either q = q0 or q = qx,y for some

1 ≤ x < s and 1 ≤ y < t. In either case, we exhibit a tree witnessing that Qs,t \ {q} is

compatible.

Case 1. Suppose q = q0. We build the tree T as follows: There is a node ` for each label

` ∈ Ls,t and two additional nodes a and b along with the edge ab. There is an edge axa for

every ax ∈ Ls,t, and an edge bxb for every bx ∈ Ls,t. There are no other nodes or edges in

T . See Figure 6.2(a) for an illustration. Now consider any quartet q ∈ Qs,t \ {q0}. Then

q = aiai+1|bjbj+1 for some 1 ≤ i < s and 1 ≤ j < t. Then, the minimal subgraph of T

connecting leaves with labels in {ai, ai+1, bj , bj+1} is the quartet q. Hence T displays q.

Case 2. Suppose q = qx,y for some 1 ≤ x < s and 1 ≤ y < t. We build the tree T as

follows: There is a node ` for each label ` ∈ Ls,t and six additional nodes a`, b`, `, h, ah,

a b
a1a2

as

b1b2

bt

(a) Case 1: a tree that displays Qs,t \
{q0} .

` h
a` ah

b` bh

a1a2

ax
b1b2

by

ax+1ax+2

as
by+1by+2

bt

(b) Case 2: a tree that displays Qs,t \ {qx,y} .

Figure 6.2: Illustrating the proof of Lemma 58.
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and bh. There are edges a``, b``, `h, hah, and hbh. For every ai ∈ Ls,t, there is an edge

aia` if i ≤ x, and an edge aiah if i > x. For every bj ∈ Ls,t there is an edge bjb` if j ≤ x,

and an edge bjbh if j > y. There are no other nodes or edges in T . See Figure 6.2(b).

Now consider any quartet q ∈ Qs,t \{qx,y}. Either q = q0 or q = qi,j where i 6= x or j 6= y.

If q = q0, then the minimal subgraph of T connecting leaves with labels in {a1, b1, as, bt}

is the subtree of T induced by the nodes in {a1, a`, `, b`, b1, as, ah, h, bh, bt}. Suppressing

all degree two vertices results in a tree that is the same as q0. So T displays q. So assume

that q = aiai+1|bjbj+1 where i 6= x or j 6= y. We define the following subset of the nodes

in T :

V =



{ai, ai+1, a`, `, b`, bj , bj+1} if i < x and j < y,

{ai, ai+1, a`, `, by, b`, h, bh, by+1} if i < x and j = y,

{ai, ai+1, a`, `, h, bh, bj , bj+1} if i < x and j > y,

{ax, a`, `, h, ah, ax+1, b`, bj , bj+1} if i = x and j < y,

{ax, a`, `, h, ah, ax+1, bh, bj , bj+1} if i = x and j > y,

{aj , aj+1, ah, h, `, b`, bj , bj+1} if i > x and j < y,

{aj , aj+1, ah, h, by, b`, `, bh, by+1} if i > x and j = y,

{aj , aj+1, ah, h, bh, bj , bj+1} if i > x and j > y.

Now, the subgraph of T induced by the nodes in V is the minimal subgraph of T connect-

ing leaves with labels in q. Suppressing all degree two vertices gives q. Hence, T displays

q.

With s = bn2 c and t = dn2 e, Observation 6 and Lemmas 57 and 58 imply the following

theorem.

Theorem 24. For every integer n ≥ 4, there exists a set Q of quartets over n taxa such that

all of the following conditions hold.

1. Q is incompatible.

2. Every proper subset of Q is compatible.
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3. |Q| = bn−22 c · d
n−2
2 e+ 1.

6.3.1 Incompatible Quartets on Five Taxa

When Q is a set of quartets over five taxa, we show that the set of quartets given by Theorem

24 is as large as possible. We hope that the technique used in the proof of the following theorem

might be useful in proving tight bounds for n > 5.

Theorem 25. If Q is an incompatible set of quartets over five taxa such that every proper

subset of Q is compatible, then |Q| ≤ 3.

Proof. Let Q be an incompatible set of quartets with L(Q) = {a, b, c, d, e} and q0 = ab|cd ∈ Q.

We will show that Q contains an incompatible subset of at most three quartets. If Q contains

two different quartets on the same four taxa, then Q must contain an incompatible pair of

quartets. So, we may assume that each quartet is on a unique subset of four of the five taxa.

Hence, every pair of quartets in Q shares three taxa in common. We have the following two

cases.

Case 1: Q contains at least one of the quartets ac|be, ac|de, ad|be, ad|ce, ae|bc, ae|bd,

bc|de, or bd|ce. W.l.o.g. we may assume that Q contains q1 = ac|de, as all other cases are

symmetric. By (R2), {q0, q1} ` ab|ce. Then, by (R1), {q0, q1, ab|ce} ` ab|de. Then, again

by (R1), {q0, q1, ab|ce, ab|de} ` bc|de. Now let Q′ = {q0, q1, ab|ce, ab|de, bc|de}. Now, any

quartet in Q must be either in Q′ or be pairwise incompatible with a quartet in Q′. Since

Q′ is compatible, but by assumption, Q is incompatible, Q must contain a quartet q2 that

is pairwise incompatible with some quartet in Q′. Hence, {q0, q1, q2} is an incompatible

subset of Q.

Case 2: Q contains none of the quartets ac|be, ac|de, ad|be, ad|ce, ae|bc, ae|bd, bc|de, or

bd|ce. Then every quartet in Q is either of the form ab|xy where {x, y} 6= {c, d}, or cd|xy

where {x, y} 6= {a, b}. But then Q is compatible, contradicting our assumption that Q is

incompatible.

In either case, the theorem holds.
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6.3.2 Incompatible Quartets on Arbitrarily Many Taxa

We say a set Q of compatible quartets is redundant if for some q ∈ Q, Q\{q} ` q; otherwise,

we say that Q is irredundant. The following lemma establishes a connection between sets of

irredundant quartets and minimal sets of incompatible quartets.

Lemma 59. If Q is incompatible, but every proper subset of Q is compatible, then every proper

subset of Q is irredundant.

Proof. Suppose that Q is incompatible and every proper subset of Q is compatible. Further-

more, suppose that some proper subset Q′ of Q is redundant. Since every compatible superset

of a redundant set of quartets is also redundant, we may assume w.l.o.g., that there is a unique

quartet q ∈ Q \Q′ (i.e., |Q| = |Q′|+ 1). Since Q′ is redundant, there exists a q′ ∈ Q′ such that

Q′ \{q′} ` q′. But then (Q′ \{q′})∪{q} is incompatible, contradicting that every proper subset

of Q is compatible.

It follows from Lemma 59 that any upper bound on the maximum cardinality of an irre-

dundant set of quartets can be used to place an upper bound on the maximum cardinality of

a set of quartets satisfying the first two conditions of Theorem 24. The theorem follows from

Dietrich et al. (2012).

Theorem 26. Let Q be a set of quartets over a set of n taxa. If Q is irredundant, then Q has

cardinality at most (n− 3)(n− 2)2/3.

Lemma 59 together with Theorem 26 gives the following upper bound on the maximum

cardinality of a set Q of quartets over n > 5 taxa that satisfies the first two conditions of

Theorem 24.

Theorem 27. Let Q be a set of incompatible quartets over a set of n taxa such that every

proper subset of Q is compatible. Then |Q| ≤ (n− 3)(n− 2)2/3 + 1.

6.4 Incompatible Characters

There is a natural correspondence between quartet compatibility and character compati-

bility that we now describe. Let Q be a set of quartets, n = |L(Q)|, and r = n − 2. For each
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q = ab|cd ∈ Q, we define the r-state character corresponding to q, denoted χq, as the character

where a and b have state 0 for χq; c and d have state 1 for χq; and, for each ` ∈ L(Q)\{a, b, c, d},

there is a state s of χq such that ` is the only label with state s for character χq (see Example

5). We define the set of r-state characters corresponding to Q by CQ =
⋃
q∈Q{χq}.

Example 5. Consider the quartets and characters given in Figure 6.1(a): χq1 is the char-

acter corresponding to q1, χq2 is the character corresponding to q2, and χq3 is the character

corresponding to q3.

The following lemma relating quartet compatibility to character compatibility is well known [Steel

(2012)], and its proof is omitted here.

Lemma 60. A set Q of quartets is compatible if and only if CQ is compatible.

The next theorem allows us to use our result on quartet compatibility to establish a lower

bound on f(r).

Theorem 28. Let Q be a set of incompatible quartets over n labels such that every proper

subset of Q is compatible, and let r = n−2. Then, there exists a set C of |Q| r-state characters

such that C is incompatible, but every proper subset of C is compatible.

Proof. We claim that CQ is such a set of incompatible r-state characters. Since for two quartets

q1, q2 ∈ Q, χq1 6= χq2 , it follows that |CQ| = |Q|. Since Q is incompatible, it follows by Lemma

60 that CQ is incompatible. Let C ′ be any proper subset of C. Then, there is a proper subset

Q′ of Q such that C ′ = CQ′ . Then, since Q′ is compatible, it follows by Lemma 60 that C ′ is

compatible.

Theorem 24 together with Theorem 28 gives the main theorem of this paper.

Theorem 29. For every integer r ≥ 2, there exists a set C of r-state characters such that all

of the following hold.

1. C is incompatible.

2. Every proper subset of C is compatible.
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3. |C| = b r2c · d
r
2e+ 1.

Proof. By Theorem 24 and Observation 6, there exists a set Q of b r2c·d
r
2e+1 quartets over r+2

labels that that are incompatible, but every proper subset is compatible, namely Qb r+2
2
c,d r+2

2
e.

The theorem follows from Theorem 28.

The quadratic lower bound on f(r) follows from Theorem 29.

Corollary 5. f(r) ≥ b r2c · d
r
2e+ 1.

6.4.1 Three-State Characters

In the remainder of this section we focus on the case when r = 3, and thus, fix C to be

an arbitrary set of 3-state characters over a set S of taxa. Lam, Gusfield, and Sridhar [Lam

et al. (2011)] recently established that f(3) = 3, and they completely characterized the sets

of pairwise compatible 3-state characters by the existence of one of four forbidden intersection

patterns. We give an independent proof that f(3) = 3. We then completely characterize the

sets of pairwise compatible 3-state characters by a single forbidden intersection pattern. Our

proof uses several structural results from the algorithm for the three-state perfect phylogeny

problem given by Kannan and Warnow [Kannan and Warnow (1994)].

6.4.1.1 The Algorithm of Kannan and Warnow

The algorithm of Kannan and Warnow (1994) takes a divide and conquer approach to

determining the compatibility of a set of three-state characters. An instance is reduced to

subproblems by finding a partition S1, S2 of the taxon set S of C with both of the following

properties:

1. 2 ≤ |Si| ≤ n− 2, i = 1, 2.

2. Whenever C is compatible S there is a perfect phylogeny P that contains an edge e whose

removal breaks P into subtrees P1 and P2 with L(Pi) = Si, i = 1, 2.
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A partition of S satisfying both of these properties is a legal partition, and the following

theorem shows that finding such a partition for a given set of characters is the crux of the

algorithm.

Theorem 30. [Kannan and Warnow (1994)] Given a set C of three state characters, we

can in O(nk) time either find a legal partition of S of determine that the set of characters is

incompatible.

6.4.1.2 Finding a Legal Partition

We now discuss the manner in which such a legal partition is found for a set of three-state

characters C. Let T be a tree witnessing that C is compatible. The canonical labeling of T is

the labeling where, for each internal node v of T , and each character α ∈ C, if there are leaves

x and y in different components of T −{v} such that α(x) = α(y), then α(v) = α(x); otherwise

α(v) = ∗ where ∗ denotes a dummy state for C. Note that such a labeling of T always exists

and is unique. We will assume that every compatible tree for C is canonically labeled.

The tree-structure for a character α in T is formed by repeatedly contracting edges of T

connecting nodes that have the same state (other than ∗) for α. Note that this tree does not

depend on the sequence of edge-contractions and is thus well defined. Furthermore, there is

exactly one node for each state (other than the dummy state) of α, and each node labeled by ∗

has degree at least three. A tree-structure for α that is formed from some compatible tree for

C is called a realizable tree-structure for α. There are four possible realizable tree-structures

for a three-state character α which are shown in Figure 6.3.

αj αi αk

(a) A path Pi for each i ∈ {1, 2, 3}.

α1

∗
α2 α3

(b) A star S∗.

Figure 6.3: The four possible realizable tree-structures for a three-state character α.

To find a realizable tree structure for a character α, the algorithm examines the pairwise

intersection patterns of α with every other character β ∈ C, and applies the following rules to



105

rule out possible tree structures for α.

Rule 1 Let α and β be two characters of C. If, under some relabeling of the states of α and β,

we have that α1 ⊆ β1, α2 ∩ β2 6= ∅, and α3 ∩ β2 6= ∅, then P 1 is not a realizable tree-structure

for α. If this is the case, we say that α and β match Rule 1 with respect to α1.

Rule 21 Let α and β be two characters of C. If, under some relabeling of the states of α and

β, we have that α1 ∩ β1 6= ∅, α2 ∩ β1 6= ∅, α2 ∩ β2 6= ∅, and α3 ∩ β2 6= ∅, then P 2 is the only

possible realizable tree-structure for α. If this is the case, we say that α and β match Rule 2

with respect to α2.

The set QCα of candidate tree-structures for α are all of those possible tree-structures for α

that are not ruled out after comparing the intersection pattern of α with every other character

in C and applying Rules 1 and 2.

The following theorem which follows from Kannan and Warnow (1994) shows that a legal

partition is found by choosing an arbitrary α ∈ C for which QCα 6= ∅. Furthermore, if there is

an α ∈ C for which QCα = ∅, then C is incompatible.

Theorem 31. [Kannan and Warnow (1994)] If QCα 6= ∅, then we can find a legal partition of

S.

Corollary 6. A set C of 3-state characters is compatible if and only if QCα 6= ∅ for every

α ∈ C.

6.4.1.3 Tight Bounds on Three-State Character Compatibility

We use Corollary 6 to give upper bounds on the maximum cardinality of a minimal set of

incompatible three-state characters.

Theorem 32. Let C be a set of three-state characters on species set S. Then C is incompatible

if and only if there exists a character α ∈ C, and two distinct states αi and αj of α, such that

both of the following hold:

1Rule 2 was state incorrectly in Kannan and Warnow (1994)
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1. There is a β ∈ C where the intersection pattern of α and β matches Rule 2 with respect

to αi.

2. There is a γ ∈ C where the intersection pattern of α and γ matches Rule 2 with respect

to αj.

Proof. (⇒) If C is pairwise incompatible, then by Corollary 1, there is a pair α, β ∈ C whose

intersection graph contains a cycle. Since the intersection graph is bipartite, this cycle must

have length at least four and contain at least two states of each character. Let αi and αj be the

two states of α on this cycle. Then, the intersection pattern of α and β matches Rule 2 with

respect to both αi and αj , and so the theorem holds. So we may assume that C is incompatible

but pairwise compatible.

It follows from Corollary 6 that there exists an α ∈ C such that QCα = ∅. Then there

must exist a character β ∈ C such that the intersection pattern of α and β matches Rule 2

with respect to some state αi of α; otherwise S∗ ∈ QCα . Hence, QCα ⊆ {P i}. Then, since

QCα = ∅, there must be a character γ ∈ C such that the intersection pattern of α and γ places

a constraint on QCα that prevents QCα from containing P i. There are two possibilities.

Case 1: There is a state αj of α where j 6= i and the intersection pattern of α and γ matches

Rule 2 with respect to αj . In this case the theorem holds.

Case 2: The intersection pattern of α and γ matches Rule 1 with respect to αi. W.l.o.g.,

we fix i = 1, and relabel the states of α, β, and γ so that α1 ∩β1 6= ∅, α1 ∩β2 6= ∅, α2 ∩β1 6= ∅,

α3∩β2 6= ∅, α1 ⊆ γ1, α2∩γ2 6= ∅, and α3∩γ2 6= ∅. Such a labeling exists since, by assumption,

α and β matches Rule 2 with respect to α1, and α and γ matches Rule 1 with respect to α1.

β1

β2

β3

α1

α2

α3

γ1

γ2

γ3

β1

β2

β3

γ1

γ2

γ3

Figure 6.4: Illustrating the proof of Theorem 32.
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If α2 ∩ γ1 6= ∅, then the intersection pattern of α and γ matches Rule 2 with respect to

α2, in which case the theorem holds. If α3 ∩ γ1 6= ∅, then the intersection pattern of α and γ

matches Rule 2 with respect to α3, in which case the theorem holds. So we may assume hat

α1 = γ1. Now, since α1 ∩ β1 6= ∅, α1 ∩ β2 6= ∅, and α1 = γ1, we have that both β1 ∩ γ1 6= ∅ and

β2 ∩ γ2 6= ∅.

γ3 must have a nonempty intersection with at least one state of α, and since α1 = γ1, we

have that α1 ∩ γ3 = ∅. So γ3 has a nonempty intersection with either α2 or α3. Due to the

symmetry of the intersection graph of α and β, we may assume, w.l.o.g., that α3 ∩ γ3 6= ∅.

By assumption, α2 ∩ γ1 = ∅, and if α2 ∩ γ3 6= ∅, then the intersection graph of α and

β contains a cycle, contradicting our assumption that C is pairwise compatible. So we may

assume that α2 ⊂ γ2. Then, since β1 ∩ α2 6= ∅, we have that β1 ∩ γ2 6= ∅.

Let s ∈ α3 ∩ β2. Since, by assumption, α3 ∩ γ1 = ∅, we have that either s ∈ γ2 or s ∈ γ3.

However, if s ∈ γ2, then β2 ∩ γ2 6= ∅ and intersection graph of β and γ contains a cycle,

contradicting our assumption that C is pairwise compatible. Hence s ∈ γ3 and β2 ∩ γ3 6= ∅.

We have now established all of the edges of the intersection graph of α, β, and γ represented

by the solid edges in Figure 6.4. Now, let s5 ∈ α3 ∩ γ2. Now s5 must be in some state of

β. If s5 ∈ β1, then s5 ∈ β1 ∩ α3 and the intersection graph of β and α contains a cycle,

contradicting our assumption that C is pairwise compatible. If s5 ∈ β2, then s5 ∈ β2 ∩ γ2, and

the intersection graph of β and γ contains a cycle, again contradicting our assumption that C

is pairwise compatible. Hence s5 ∈ β3. Then, we have that s5 ∈ β3 ∩ α3 and s5 ∈ β3 ∩ γ2,

witnessing the dotted edges in Figure 6.4. So we have that the intersection pattern of β and

α matches Rule 2 with β2 as witness, and the intersection pattern of β and γ matches Rule 2

with β1 as witness. Hence the theorem holds.

Note that in the statement of Theorem 32, the characters β and γ are not necessarily

distinct. In cases where they are not distinct, C contains an incompatible pair.

Corollary 7. A set C of 3-state characters is compatible if and only if every subset of at most

three characters of C is compatible.

In Lam et al. (2011), it was also shown that we can determine the compatibility of a
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pairwise compatible set C of three-state characters by testing the intersection patterns of C

for the existence of one of a set of four forbidden patterns. As a corollary to Theorem 32, we

have that a single forbidden pattern suffices to determine the compatibility of C.

Corollary 8. A pairwise compatible set C of 3-state characters is compatible if and only if the

partition intersection graph of C does not contain, up to relabeling of characters and states, the

subgraph of Figure 6.5.

a3 c1

a1

b1a2

c2

b2

Figure 6.5: The forbidden subgraph for 3-state character compatibility.

Note that each edge of the graph of Figure 6.5 has one endpoint which is a state in α. It

follows that we can find such a subgraph in the partition intersection graph of C by testing

the intersection pattern of each pair of characters in C [Shutters and Fernández-Baca (2012)].

Furthermore, all p occurrences of the forbidden subgraph in the intersection graph of m char-

acters on n taxa can be found in O(m2n+p) time. Whereas the forbidden subgraph given here

is witnessed by eight taxa (or edges), each of the four forbidden subgraphs of Lam et al. (2011)

are witnessed by five taxa, making them better suited for taxon removal problems.

6.5 Incompatible Triplets

The following theorems follow from the connection between collections of unrooted trees

with at least one common label across all the trees, and collections of rooted trees [Steel (1992)].

Theorem 33. Let Q be a collection of quartets where every quartet in Q shares a common

label `. Let R be the set of triplets such that there exists a triplet ab|c in R if and only if there

exists a quartet ab|c` in Q. Then, Q is compatible if and only if R is compatible.

Let R be a collection of triplets. For a subset S ⊆ L(R), we define the graph [R,S] as the

graph having a vertex for each label in S, and an edge {a, b} if and only if ab|c ∈ R for some
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c ∈ S. The following theorem is from page 439 of Bryant and Steel (1995).

Theorem 34. A collection R of rooted triplets is compatible if and only if [R,S] is not connected

for every S ⊆ L(R) with |S| ≥ 3.

Corollary 9. Let R be a set of rooted triplets such that R is incompatible but every proper

subset of R is compatible. Then, [R,L(R)] is connected.

We now contrast our result on quartet compatibility with a result on triplets.

Theorem 35. For every n ≥ 3, if R is an incompatible set of triplets over n labels, and

|R| > n− 1, then some proper subset of R is incompatible.

Proof. For sake of contradiction, let R be a set of triplets such that R is incompatible, every

proper subset of R is compatible, |L(R)| = n, and |R| > n − 1. The graph [R,L(R)] will

contain n vertices and at least n edges. Since each triplet in R is distinct, there will be a cycle

C of length at least three in [R,L(R)]. Since R is incompatible but every proper subset of R

is compatible, by Corollary 9, [R,L(R)] is connected.

Consider any edge e in the cycle C. Let t be the triplet that contributed edge e in [R,L(R)].

Let R′ = R \ t. Since the graph [R,L(R)] − e is connected, [R′,L(R′)] is connected. By

Theorem 34, R′ is incompatible. But R′ ⊂ R, contradicting that every proper subset of R is

compatible.

To show the bound is tight, we first prove a more restricted form of Theorem 24.

Theorem 36. For every n ≥ 4, there exists a set of quartets Q with |L(Q)| = n, and a label

` ∈ L(Q), such that all of the following hold.

1. Every q ∈ Q contains a leaf labeled by `.

2. Q is incompatible.

3. Every proper subset of Q is compatible.

4. |Q| = n− 2.
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Proof. Consider the set of quartets Q2,n−2. From Lemmas 57 and 58, Q2,n−2 is incompatible

but every proper subset of Q2,n−2 is compatible. The set Q2,n−2 contains exactly n−2 quartets.

From the construction, there are two labels in L2,n−2 which are present in all the quartets in

Q2,n−2. Set one of them to be `.

The following is a consequence of Theorems 36 and 33.

Corollary 10. For every n ≥ 3, there exists a set R of triplets with |L(R)| = n such that all

of the following hold.

1. R is incompatible.

2. Every proper subset of R is compatible.

3. |R| = n− 1.

The generalization of the Fitch-Meacham examples given in Lam et al. (2011) can also be

expressed in terms of triplets. For any r ≥ 2, let L = {a, b1, b2, · · · , br}. Let

Rr = abr|b1 ∪
r−1⋃
i=1

abi|bi+1

Let Q = {ab|c` : ab|c ∈ Rr} for some label ` /∈ L. The set CQ of r-state characters

corresponding to the quartet set Q is exactly the set of characters built for r in Lam et al.

(2011). In the partition intersection graph of CQ, (following the terminology in Lam et al.

(2011)) labels ` and a correspond to the end cliques and the rest of the r labels {b1, b2, · · · , br}

correspond to the r tower cliques. From Lemma 60 and Theorem 33, Rr is compatible if and

only of Q is compatible.

6.6 Conclusion

We have shown that for every r ≥ 2, f(r) ≥ b r2c · d
r
2e+ 1, by showing that for every n ≥ 4,

there exists an incompatible set Q of bn−22 c · d
n−2
2 e + 1 quartets over a set of n labels such

that every proper subset of Q is compatible. Previous results [Buneman (1971); Estabrook

et al. (1976); Gusfield (1991); Lam et al. (2011); Meacham (1983); Semple and Steel (2003)],
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along with our discussion in Section 6.4, show that our lower bound on f(r) is tight for r = 2

and r = 3. For quartets, our discussion in Section 6.3 gives an upper bound on the maximum

cardinality of a minimal set of incompatible quartets. However, this argument does not extend

to multi-state characters. Indeed, an upper bound on the maximum cardinality of a minimal

set of incompatible r-state characters remains a central open question. We give the following

conjecture.

Conjecture 2. f(r) ∈ Θ(r2).

A less ambitious goal would be to narrow the gap between the upper bound of O(n3) and

lower bound of Ω(n2) on the maximum cardinality of a minimal incompatible set of quartets

over n taxa given in Section 6.3. Note that, due to Theorem 28, a proof of Conjecture 2 would

also show that the number of incompatible quartets given in the statement of Theorem 24 is

also as large as possible.
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CHAPTER 7. FURTHER RESEARCH

7.1 Tree Compatibility and Agreement Supertrees

We characterized the tree compatibility problem in terms of triangulations of the display

graph. We introduced the modified display graph and studied it’s properties. We gave the ob-

struction for legal triangulation of modified display graphs of two trees. We then characterized

both compatible and agreement supertree problems in terms of cuts of the display graph. We

gave FPT algorithms for the AST-EC and AST-TR problems. The following problems remain

open.

1. A linear time fixed parameter tractable algorithm for tree compatibility and agreement

supertree problems using any of the derived characterizations.

2. Enumeration of all possible tree compatibility obstructions in display graphs for three

trees.

3. For any given profile P with a finite number of input trees, does G(P) have finite number

of obstructions for tree compatibility ?

4. The following is closely related to the previous question. Let P = {T1, T2, · · · , Tk} be

a profile of incompatible trees. Does there exist a function g(k) such that for some

U ⊆ L(P) and |U | ≤ g(k), {T1|U, T2|U, · · · , Tk|U} is incompatible.

5. Analogs of AST-EC and AST-TR problems for unrooted trees. Similarly, analogs of

AST-EC and AST-TR problems for tree compatibility.
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7.2 Perfect Phylogeny Conjecture

We showed the relationship of triplet and quartet compatibility to perfect phylogeny prob-

lem. A collection Q of quartets is a quartet obstruction, if Q is incompatible but every subset

of Q is compatible. We have shown that the lower bound of a quartet obstruction with n labels

is Ω(n2). We used the constructed obstruction to show that f(r) ≥ r2. The following problems

remain open.

1. f(r) ∈ θ(r2) ?

2. f(4) = 5 ?

3. Is the derived bound on quartet obstructions tight ?
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