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ABSTRACT

To write a code once and run the application anywhere has been the holy grail of application

developers. With the diversities in the operating contexts introduced by various hardware,

software, users and carriers, user interfaces must cater to all the present and future operating

contexts. The expense of developing a software product to tailor to new market fragmentations

is soaring. We propose a model that will aid user-interface designers working in the field

of mobile computing to build applications across operating contexts, without the hassle of

redesigning it to accommodate the unique constraints introduced by each operating context.

This research will make the following contributions: 1) propose a novel user interface model for

isolating the common features of an operating context for automatic rendering of the interface

according to the constraints of each context, 2) prove feasibility of the model by handling one

such operating context constraint namely screen size and present an efficient implementation

of the proposed model for it using Microsoft Silverlight and 3) use the above implementation

to measure the cost-benefit trade-off with a user study involving tasks of varying complexity.
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CHAPTER 1. INTRODUCTION

With the sudden surge of smartphones in the market, small interface devices are everywhere.

But these smaller screens make it more difficult to perform some of the most common tasks

such as browsing and reading [11, 3]. But mobile computing has some inherent challenges for

User Interface (UI) design and development [23]. For instance, UIs of applications must run on

multiple Operating Contexts(OC) [19] varying across desktops, gaming consoles, tablets and

smartphones, each of which have their own degrees of fragmentation [26]. Moreover each OC

has its own unique set of constraints set by different capabilities in terms of hardware, software

and user variety. With the reduced screen size on a device such as a smartphone, application

UI designers must choose to show only a limited set of features. Also, users tend to use

smartphones in environments where they have a limited attention span making manipulation

of a complex interface even more complex [27]. With this in mind, the constraints inherent in

OCs can be categorized into two main categories: device and user constraints.

To address such limitations posed by mobile OCs, several researchers have proposed adap-

tive interfaces, where the system adapts to the device and user needs [11, 2]. An important

aspect of this is that an application should be able to automatically render an interface on any

device for any user. Given the wide range of device types, form factors, interaction styles and

users, it is not feasible for each application developer to create an interface for each device and

user [14].

1.1 Device-based adaptation

Although customization based on devices would theoretically yield huge benefits, research on

adaptation has been mostly done on adaptive web content (eg., [11, 25]) instead of on adaptive
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graphical user interface control structures with the exception of SUPPLE [12] which we shall

talk about in Chapter 2. Adaptation of content poses different challenges than adaptation of

control structures. For instance the interfaces from the PEBBLES [29] project make rough

assumptions about the screen size and iCrafter [22] relies heavily on hand-crafted templates for

its metadata and XIML(eXtensible Interface Markup Language), a language for user interfaces

[21] relies on the designer specifying which widgets have to be used. Tools like Damask [21]

greatly simplify the process of designing user interfaces for cross platforms and can be used as

a good starting point. The bulk of adaptive graphical user interface (GUI) control structures

have been performed on desktop-sized displays, where evaluations have been inconclusive [12].

The primary focus of this research will be on GUI control based adaptation. Also, in this

research since there will be variance in the GUI itself, stability and predictability are considered

important measures in the user study.

1.2 User-based adaptation

Research as early as Greenberg and Witten [7] showed that an adaptive interface with

fewer steps in its navigation path was easier and faster for a user than a static structure. On

the other hand, Mitchell and Shneiderman [18] showed that static menus were preferred since

adaptive menus reordered based on frequency and confused the user. But since introduced, split

menus [24] have reversed this opinion. Gajos et al. showed a strong preference for split menu

based adaptive interfaces which are featured in Microsoft Office [13]. Some research has shown

that adaptive menus or toolbars are preferred over their static counterparts [13, 7], whereas

other research has shown the opposite [4, 16, 18] due to factors such as accuracy, awareness,

predictability and stability. There are multiple options when it comes to interfaces, such as:

the split interface that copies important function to another toolbar, the moving interface

that moves the important functions to another toolbar and the visual pop-out interface that

highlights the frequent functions as explored in [13]. The choice of interface type should be

decided based on factors such as consistency and awareness [5]. Other than that, adaptation

algorithms fall into recency-based algorithm, where the ’n’ most recently used commands are

promoted by the adaptive interface or the frequency-based algorithm where the most frequently
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used commands are captured over a short window of interactions [13]. Another novel approach

that has been previously researched is error-based adaptation by Miller [17, 1]. This approach

[17] uses vision and motor errors as feedback for generating the adaptive interface. It is highly

useful in field applications due to the vulnerability of poor external conditions, such as bad

weather. In the other research [1] done by Miller et al. they have explored design issues

associated with web applications for the elderly and have proposed an error detection based

approach. The study revealed that error-based profiling of the users performed statistically as

well as observation-based profiling. In our research the model takes user input using user traces

that keeps track of the user traces to provide the information to the model as metadata which

is later used for generating the interface (explained in Chapter 3).

1.3 Terminology Review

An OPERATING CONTEXT for an application is the external environment that influences

its operation. For a mobile application, the OC is defined as the hardware and software

environment in the device, the target user, and other constraints imposed by the carriers.

USER INTERFACE is the space where interaction between humans and machines occurs,

the goal of which is effective operation and control of the machine and feedback from the

machine to the operator to aid in operational-decisions.

APPLICATION is the computer software designed to help the user perform specific tasks.

Mobile applications are those that are built for smaller, low-powered devices such as smart-

phones.

AWARENESS quantifies the degree to which the user is aware of the full feature set of an

application [5].

PREDICTABILITY is when the most recently selected item always appears in the adaptive

top.

Elements of the MVVM pattern include: MODEL: model refers to the object model that

represents the real state content. VIEW: the view refers to all elements displayed in the GUI

such as windows, graphics and controls. VIEWMODEL: serves to databind the view and the

model. It changes the Model information into View information and passes commands from
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the View into the Model. CONTROLLER: Some references of MVVM include the Controller

layer as well, but is irrelevant to our current focus here.

XAML is a declarative XML-based language for initializing structured values and objects

in the .NET Framework technologies, particularly, Windows Presentation Foundation (WPF)

and Silverlight.

DEPENDENCY INJECTION (DI) is a design pattern that is responsible for decoupling

the software components. With DI the object does not need to know how other parts of the

system functions. Instead the developer injects the relevant system component in advance with

a contract that describes behavior. With DI there is no need to hardcode the dependencies.

Instead a component just lists the necessary services and the DI framework supplies these to

offer a standard interface.

FUNCTIONALITY is the intended task exposed by the application to the user, the combi-

nation of which will be a service. Content-based changes to the UI are not part of the problem

being addressed.
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CHAPTER 2. REVIEW OF LITERATURE

Adaptation techniques have been usually classified into spatial, graphical or temporal [5].

Spatial approaches rearrange items in the interface to fit the target interface; graphical ap-

proaches add to the visualization by highlighting the colors or methods and temporal is the

hybrid of the above two with the effects lasting only for a short time. Work on adaptive inter-

faces has been largely performed on spatial techniques, with very little work done in temporal

or graphical techniques.

ICrafter deals with the application as a set of services and proposes a framework for inter-

action between the services and interfaces using a variety of modalities and input devices with

on-the-fly aggregation of the services [22]. This pattern has associated with it the fully-blown

cost of a Service Oriented Architecture (SOA) and it relies heavily on hand-crafted templates.

On the other hand, SUPPLE did a good job of defining the interface rendition problem [12].

It defines the Interface generation as an optimization problem that takes user and device con-

straints together. Upon solving the optimization problem we get the optimum interface to

be rendered. Although theoretically this approach should prove solid, it is still untested on

the new devices and the experiments that were performed on the small devices proved to be

slow [12]. Fogarty and Hudson [10] have also worked on optimization based approaches to

generating interfaces. They have presented GADGET, an experimental toolkit that supports

optimization for interfaces to enable programmers to create multiple views for the interface and

later get the optimization using a lazy evaluation framework [10]. Although interesting, this

approach has high costs when dealing with a large number of constraints, especially when the

mutual exclusiveness of the constraints is unknown resulting in a problem which is NP hard to

evaluate.

The Model-View-ViewModel (MVVM) is an architectural pattern which originated in Mi-
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crosoft as a specialization of the presentation model design pattern introduced by Martin Fowler

[6]. The view-model, a value converter on steroids as it is popularly known [6], exposes the

data objects from the model in a way that is easily manageable and consumable. One of the

key things to note about MVVM is how it leverages the advantages of XAML (eXtensible Ap-

plication Markup Language) using data binding and its ability to completely isolate any coding

whatsoever from the view layer. MVVM is used as the starting point to build our model on.

The metadata from device and user constraints will be injected into the model for generating

a view at runtime which will be further explained in Chapters 3 and 4.

Adaptive interfaces have appeared in mainstream commercial applications as well for ex-

ample the Windows Start Menu and Microsoft Office that features Smart Menus. Although

there have been a lot of models to support content-based adaptation for user constraints, very

less research has been performed on a model that adapts to both device and user constraints

based on interface control adaptation.
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CHAPTER 3. USER INTERFACE MODEL

The design of a highly adaptive, multi-platform user-interface cannot be developed using a

traditional architectural pattern, which is the reason why we propose that this novel architec-

ture model be based on the Model-View-ViewModel (MVVM) pattern. MVVM was designed

to utilize specific functionalities exposed by Windows Presentation Foundation (WPF) and

Silverlight. It can be used to separate the development of the view from the rest of the layers

so that the interface designers do not have to write view code for each OC that comes into

the market. They can just use the markup language XAML to bind the UI controls to the

viewmodel objects, created and managed by the application developers.

In the remaining subsections, we shall describe model-based techniques that will facilitate

the development of UIs that can adapt to multiple OCs. The user interface model that is

proposed here will be a formal and declarative description of the UI. The markup language

used here has to be declarative to hold information about the OC constraints in such a way

that they can be interpreted by a software system easily. XAML exposed by Silverlight meets

these criteria and hence shall be used for UI modeling.

The following are the specific layers we shall consider for UI modeling. They are by no

means the only relevant layers to mobile computing. However the techniques we develop shall

depend only on these layers and hence described in the following subsections.

3.1 Interfacer dictionary

An interfacer is the element that transforms abstract functional elements into structured

values or objects to form the UI. Every platform has at its disposal a extensive set of interface

elements which are refered to as interfacers, ini.
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A interfacer dictionary, DI is defined as

DI = {ini|i = 1, ..., n} (3.1)

where i maps to the interfacers available on any design language; n is the total number of

interfacers in the language.

3.1.1 Example

Here is an example of an interfacer dictionary populated with some XAML controls.

DI = {Button, Textbox, Textblock, Slider, Togglebutton,Dropdown} (3.2)

3.2 Type dictionary

Each model layer element is defined by its type. The type dictionary is defined here as

DT =< T, S > (3.3)

where S is the set of interfacer sets and T is the set of types that have to be modeled, where

any type ti is defined as

ti ≡ bt | at (3.4)

where bt is the set of base types that can be modeled and the ith basetype

bi ≡ int | float | double | string (3.5)

and at is a derived type and is defined as the set of all k basetypes from which they are

derived from. Any derived type ai is given by

ai = {bj |j = 1, ..., k} (3.6)

and for each type ti, there is a set si of interfacers from the interfacer dictionary(DI) that

can be used to represent that particular type. Say we have
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si = {ini|i = 1, ..., l} (3.7)

then the type dictionary is a one to many mapping from types, T → S , the set of sets of

interfacers.

3.2.1 Example

Here is an example of a type dictionary with mappings from some types to a set of inter-

facers. In the case of XAML, the XAML controls form the set of interfacers.

DT = {int→ {TextBox, Slider,DropDown}, password→ {Textbox, Password}} (3.8)

3.3 Rule definition

A rule in this context is defined as the constraint imparted by any Operating Context such

as a device or user that directly controls the UI and is machine readable.

A rule r, when applied on a Interfacer(Interface element) dictionary, DI shall either limit

or retain the dictionary to give the constrained dictionary, DR (explained in section 3.4), such

that

|DI | ≥ |DR| (3.9)

Each rule should be machine-readable and will be formed using a markup language which

we later call the Rule Descriptive Platform(RDP) (explained further in section 3.6).

3.3.1 Example

The constraint considered here is the display resolution. The constraint represented here

as a rule is the small − screen constraint. Here is an example that shows how a rule can be

represented using XML. QVGA also known as the Quarter Video Graphics Array represents a

display resolution of 320 ? 240 which is considered fairly small compared to resolutions such as
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SVGA - 800 ? 600, XGA -1024 ? 768 and more. Therefore the corresponding rule is represented

as follows,

< rule >< display >< size > small < /size >< /display >< /rule >

3.4 Restricting the dictionary

The interfacer dictionary is limited based on the rules from the platform and the user traces

layer. This in turn directly affects the type dictionary used by the model layer as well. In gen-

eral, if Xr is the rule set and Rejectedi is the set of interfacers that are to be avoided because

of each rule ri, then the restricted dictionary, DR is obtained as follows:

DR = DI ;

i = 0

while Xr 6= NULL do

i=i+1

DR = DR −Rejectedi
Xr = Xr - ri

end while

3.4.1 Example

Here is an example of a rule based dictionary restriction. The development platform is

assumed to be XAML coupled with Silverlight. Hence, the interfacer dictionary is already

populated with interfacer elements which are XAML controls.

Consider a interfacer dictionary with some example elements given by,

DI = {Button, Textbox,Radiobutton, Togglebutton,Dropdown} (3.10)

Consider a rule set with one of the rules described as shown in section 3.3. The constraint

considered here is display resolution and constraint is that it is small. The rule for such a

constraint is represented as follows,

r = < rule >< display >< size > small < /size >< /display >< /rule >
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Such a constraint is represented as a rule in order to capture the effect of it on the dictionary.

For a rule defining that it has a small−screen constraint, the rule action in the system will be

a dictionary of elements that are to be avoided, which shall be named the avoidable dictionary,

DA.

small→ DA = {Radiobutton,Dropdown} (3.11)

This can be done so by using these rules to restrict the dictionary accordingly. Upon

restricting the dictionary to avoid elements that have the most manipulation cost in terms of

the display rule, we get the restricted dictionary as follows:

DR = {Button, Textbox, Togglebutton} (3.12)

3.5 Platform

A platform is the piece of software linked to a specific technological device. More specifically

it describes the software systems that may run a UI. Our model will include the specific device

constraints placed on user interfaces by each device on the UI. The integral use of observing

a platform constraint in our case is in capturing the effect it has on a particular device that

is being observed, which is done so by representing these constraints as rules. The platform

layer contains an element for each individual device and the annotations carrying the features

and constraints of each device that are presented in the device model. The device layer can be

exploited at design time to be used as a static entity. This way the information can be used to

develop a user interface for each device. But with the huge number of devices in the market

and with the possible inclusions of more devices to the market, it would be more sensible to

exploit this dynamically. For example, if there is a change in the keyboard from Qwerty to

touch, platform layer registers a change in the input mode and the UI should only include

controls that can be manipulated easily with a finger.

A platform, P is defined here as
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P =< DI , RP , CMP > (3.13)

where DI is the interfacer dictionary; RP is the rule set for that platform as shown in the

above section; CMP is the cost set of manipulating each interfacer from the model layer on that

platform. This defines the experimental cost that is associated with the use of each interfacer.

This can be hardcoded into the system for initial setup and later updated based on the user

traces.

3.6 User trace

Some of the best UI renderings that take device constraints into account may still be non-

usable if they do not address the user constraints. Given that the primary research objective is

to model an adaptive interface that can adapt to both users and devices, we include user traces

holding annotations about the user as another layer. One of the most important constituents of

a user trace are paths, where the term path refers to the logical sequence of elements influenced

by the user. The logical sequence of elements are captured in the model during transitions as a

three-tuple sequence explained below. A transition in a path occurs if the user navigates from

one interface group to another. A closure of a path is one where the navigation is closed or

reset.

Each user trace, uti is defined as

uti = {pathi|i = 1, ..., l} (3.14)

where pathi refers to a single path in the trace; l is the number of paths accumulated for

each user and it increases with use.

The key thing about this approach is that if the navigation leads away it can only mean that

the transition has been performed by the user. And hence the sequence of paths can be directly

used to capture the user behavior. The path information can be captured as a set of tuples

tui, with each tui carrying the exiting interfacer group (exi), the entering interfacer group (eni)

and if they have a common parent interface group (cpi). The tuples of the navigation path will
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contain (exi, eni, cpi) which can be grouped together to form the overall path or to calculate

the navigation cost (explained further in section 3.8).

Each path pathi is defined as

pathi =< exi, eni, cpi > (3.15)

where exi is the exiting interfacer group; eni is the entering interfacer group; cpi is 0 if exi

and eni are the same and 1 otherwise.

Also,

path0 =< root, root, 0 > (3.16)

where root is the root interfacer group for the application.

The rendering based on the trace is done as a simple prediction mechanism where the user

trace is used to judge the flow of rendering of the interface groups. For example if the trace

contains path pj after path pi we use the same format of the trace to make changes to the UI.

At the same time is important to note that frequent changes to the UI will cause disorientation

to the user. The format of the trace is not related to the device and can be used to create a

custom rendering when the user accesses the same application from a different OC. For example

with the new OC, if the screen size is increased we choose to alter the trace to include a more

sophisticated interface group that plays out better on that OC with the help of the platform

metadata. To implement this exhaustively, we can build a common Rule Descriptive Platform

(RDP) that can support the description of all forms of rules obtained from OCs so that the

SVM can read these rules dynamically and adjust the view layer accordingly. However the

goal is not to build such a system, but to concentrate on the validation of the model to solve

the OC constraint problem provided we use such a rule descriptive platform. This is done by

specifying the constraints to alter the traces in a straightforward manner by forming a limited

rule repository. The UI has to be rendered even before there is any navigation information

available. For this purpose, we ignore user traces completely for the initial rendering and use

the same once a decent set of transition tuples have been gathered. Also, it is possible to provide

typical user navigation as the default rendering scheme. As the trace information accrues, it
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can be used for rendering the UI according to the user choice.

Hence the user trace, U is modeled as the set of all path information obtained, named as

PATH.

U =< PATH > (3.17)

where the cost weight is taken from the common parent attribute directly.

3.6.1 Example

Here is an example of a type dictionary with mappings from some types to a set of XAML

controls. Initially, the user trace information, U = DEFAULT which means that there are no

user traces accrued and the hardcoded set of user trace information are used.

Consider the root element to be

path0 =< root, root, 0 > (3.18)

where root is the interfacer group g0 =

< StackPanel >

<Button Content = ”Play” Click=”PlayClick”/>

<Button Content = ”Options” Click=”OptionsClick”/>

<Button Content = ”Exit” Click=”ExitClick”/>

< /StackPanel >

Each of the button click actions in the group g0 take us to different grids each with it’s own

functionality, g1 and g2 and g3.

The following are the two user scenarios performed in this environment.

1. The user clicks the Play button on g0 to go to g1. There the user clicks on the Additional

instructions button.

2. The user clicks the Play button on g0 to go to g1. There the user clicks the phone’s back

to go back to g1.
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When the user hits play the control will transfer to the following grid.

< Grid >

< TextBlockText = ”V olume”/ >

< SliderWidth = ”100”Height = ”30”V alue = ”0”Orientation = ”V ertical”/ >

< TextBlockText = ”Instructions : Jump to take doodle to the top.”/ >

< ButtonText = ”Additional Instructions”/ >

< /Grid >

3.6.1.1 Scenario 1

In this scenario, say the user navigates from the interfacer group, g0 to g1 and manipulates

the interfacers inside the group, g1 itself.

So the path information accrued will be

path1 =< g0, g1, 1 > (3.19)

path2 =< g1, g1, 0 > (3.20)

Therefore the user trace information accrued now shows

U = {< root, root, 0 >,< g0, g1, 1 >,< g1, g1, 0 >} (3.21)

3.6.1.2 Scenario 2

In this scenario, the user navigates from the interfacer group, g0 to g1 and chooses to come

back to g0.

So the path information accrued will be

path1 =< g0, g1, 1 > (3.22)

path2 =< g1, g0, 1 > (3.23)
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Therefore the user trace information accrued now shows

U = {< root, root, 0 >,< g0, g1, 1 >,< g1, g0, 1 >} (3.24)

3.7 Model

The model layer shall describe the object model or the data access layer depending on

whether it is the object-oriented approach or the data-centric approach. In addition to the

functionality and hierarchy information that will be described in the object model, we shall

model information to check if the corresponding task/subtask is optional, repetitive and if

it has other sub tasks inside it or linked to it. The dependency information between the

AUCs in the SVM (explained further in 3.8) will be driven by the model behavior through the

viewmodel layer. Other information passed on from the model includes the state information,

type information, label information and grouping information. The model layer provides the

type dictionary, DT , the metadata information to the SVM, their corresponding costs to the

platform.

M =< E,DT , CMP > (3.25)

where E includes the variables and objects of the model; DT is the type dictionary; CMP is

the manipulation cost of using each possible interfacer from the type dictionary for each type

on a particular platform(This is directly used for calculating the final navigational cost).

3.8 SmartViewModel(SVM)

The view model layer performs the same function as in the MVVM pattern where it serves

as an abstraction layer between the view and model layers. It acts as a data binder/converter

that changes model information to view information and passes commands from the view to

the model. The XAML user controls shall be of two types in this model namely Abstract

User Controls (AUCs) and Concrete User Controls (CUCs). AUCs are elements on the XAML

page that are not tailored to fit on the UI of a specific OC. They form the starting point of

the modeling on the SVM. Using the various AUCs, we can generate a view for each possible
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object in the Platform Layer. Multiple AUCs will be mapped surjectively to one CUC and the

AUC that is most sensible for that OC shall be considered by the SVM as the CUC as shown

in Figure 3.1 (This includes the changes in adaptation due to the User Trace layer). More

practically, a list of AUCs will be picked from the available user controls in XAML and later

optimized from the information obtained from the platform layer.

The SVM has an inbuilt interface generator that makes use of the information from the

model layer, OC constraint information from the platform, user information from the user trace

layer to form a set of AUCs. Note: The information obtained from the model layer will vary

according to the OC constraint type being addressed. For example, for screen size, information

such as the state variables, label information, grouping information and type information will

be obtained. The dependency is only on the type of OC constraint (screen size, memory,

CPU) and not on the constraint itself making this model generic and adaptable for all OC

constraints. The interface generator that consumes this information to produce the CUC will

form the major part of our research.

3.8.1 User trace analysis

User trace analysis shall form the first and foremost step in the interface generation. This

involved checking for usage patterns to realign the cost dictionaries that will be used by the

interface generator. For the very first time the UI has to be rendered, the user trace, U that is

analyzed will be the default user trace that is hardcoded into the system.

3.8.1.1 Pattern checker

The primary use of the user traces are to analyze the traces to obtain usage patterns and

render the UI in such a way that is conducive for the most frequently occuring usage pattern.

This is done using a automatic pattern checker that sits at the application level and works as

follows,
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uTrace = U ; PatternDictionary < Pattern, int > = null;

while uTrace 6= NULL do

path = uTrace.First;

uTrace= uTrace - path;

tempPattern = tempPattern + path;

if tempPattern.complete() then

if PatternDictionary[tempPattern].Exists() then

PatternDictionary[tempPattern] + +;

else

PatternDictionary[tempPattern] = 1;

end if

tempPattern.clear();

end if

end while

3.8.1.2 Cost realignment

Once the pattern checker checks to see if the navigational cost (explained in Section 3.10)

is big enough to affect the cost dictionaries, it realigns the cost dictionaries accordingly. The

realignment is taken into account in the very next rendering by the SVM, which is the reason

why this is considered a pre-processing step after which the SVM continues with the interface

generator algorithm.

3.8.2 Interface generator algorithm

The SVM uses the preprocessed cost dictionaries from the user trace analysis in the following

algorithm to give an optimized rendering for the application.

• Perform user trace analysis to realign the cost dictionaries that is used by the following

steps

• Pre-form a interfacer dictionary DI and a type dictionary DT that maps all the types of

model variables to a list of possible interfacers (Note there will be custom variable types

which will be serializable and hence can be broken down to be treated as inbuilt types)

• Gather the possible types of grouping information to form XAML panels

• Define the type dictionary, DT as the Initial AUC Set (IAS)
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• Add the model layer metadata to the IAS to output a dictionary called the Controlled

AUC set (CAS)

• Use the OC metadata (platform and user metadata) to form selection rules

• Use the selection rules to restrict the CAS further to form the Selected AUC set(SAS)

• Select the most optimized mapping in the SAS using the dependency information. (Ex-

plained further in 3.10)

• Define this optimum SAS mapping with the dependency information as the Concrete

User controls (CUC) for that particular device and application and pass it to the view

layer

Figure 3.1 Interface Generation

3.9 View

The view layer describes the visual appearance of the user interface and includes information

that shows the windows and user controls as a hierarchical model. The entire XAML code is

dynamically created using code behind based on the CUC information passed on to the View
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layer from the SVM. The chosen set of XAML elements and panels from the dictionary for

each interfacer are used to render the UI with groupings performed from panel information

passed onto the View layer. The internals of the layers modeled above play a significant role

in the design of the UI. Further emphasis is on how each layer interacts with each other which

is controlled by the viewmodel. These mappings play a significant role in the UI behavior and

this is outlined in Figure 3.2.

Figure 3.2 User Interface Model

3.10 Optimized rendering

The objective is to render each interface using the most optimized XAML element for that

particular device. As used above the one to many mapping, M: Interfacer→ n XAML Elements

is the mapping that has been filtered across all the rules. Even after the generation of the SAS,

there may be multiple possible XAML elements for an interface and we have to obtain the most

optimum in terms of the user effort. Hence the user trace layer and SVM are closely bound

together in evaluating the SVM rendering. The cost function used to evaluate the model should

be simple and fast to use. Using the tuple information in the traces, namely (exi, eni, pi), we

have the entering interfacer group, exiting interfacer group and the parent group, which if

different will denote a transition. Associated with each tuple is a weight for each transition,

with a higher weight allocated whenever there is a change in the parent group. Given the SAS,

the total cost of navigation is the sum of the weighted times of the tuples found in the user

trace and the cost of manipulating those interfacers maintained in the platform. (Upon initial
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start of the application when there is no user trace we use a default user trace hardcoded into

the application for calculation of the navigation cost). Using this navigational cost we can

decide the final mapping in M to form the CUC tree.

Given the SAS, we have a dictionary with a many to one mapping, M : Model object types

→ Set of List of interfacers for each object. We also have the dependancy information based

on which similar objects can be combined to form panels. Say, PI is the total number of one

to one mappings that can be obtained from M, then the interfacer sets is given by

SAS = {sasi|i = 1, ..., P I} (3.26)

Also from the grouping information, we can group the interfacers into panels as various

possible permutations, then the groups, G is given by,

G = {gi|i = 1, ..., PG} (3.27)

Considering the view information as well, we get a further refined rendering with the view

set, V given by,

V = {vi|i = 1, ..., PV } (3.28)

Using SAS, G and V we can form a matrix with each element of the matrix represented by

the navigation cost, δijk that corresponds to using interfacer set, sasi in group gj in view vk

thereby cross-referencing it with the type of view for each chosen set and grouping.

g1 . . gPG

sas1 δ111 δ1PG1

. . . . .

. . . . .

sasPI δPI11 . .. δPIPG1
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g1 . . gPG

sas1 δ112 δ1PG2

. . . . .

. . . . .

sasPI δPI12 . .. δPIPG2

.

.

.

g1 . . gPG

sas1 δ11PV δ1PGPV

. . . . .

. . . . .

sasPI δPI1PV . .. δPIPGPV

The navigational cost, δ is dependant on both the grouping and interfacer information and

is used to determine the final Concrete User Control(CUC) that will be rendered on the UI,

given by

δ =
∑
views

∑
user−traces

 ∑
interfacers

(CMP ) +
∑
paths

wk ∗ cpi

 (3.29)

where wk is constant weight determined from experimental results to be multiplied with

the common parent factor obtained from the path information.

3.10.1 Example

Consider a To-Do application with a list of all tasks and another screen for adding new

tasks. The following is an example that shows the type of renderings the model will arrive at

for the application for screen constraint that can take up two abstract values, namely small and

big. The example assumes the development environment to be XAML coupled with Silverlight

showing the interfacers to be XAML controls.



23

After restricting the dictionary with the rules as shown in Section 3.4, the interfacers avail-

able for rendering namely the SAS are as follows

I = {{TextBox, TextBlock, CheckBox,RadioButton, ToggleButton} (3.30)

The groupings available are based on the dependency information and the following is a

simple set of groupings that directly map to XAML controls

G = {StackPanel, ListP icker, ListBox,Grid, ItemsControl} (3.31)

The views available for rendering are again listed in V and used to the calculation of δ

V = {Pivot, Panorama, ScrollV iewer} (3.32)

Figure 3.3 a) Screen for smartphone (small screen) b) Screens for tablet (large screen)

Based on these above data the model can produce any of the renderings shown in Figure 3.3.

The figure shows the renderings the model displays for two different abstract screen sizes, small

and big. The rendering will be checked for consistency everytime the application is initiated to

make sure that it is the most efficient UI for the current cost dictionaries. The cost dictionaries

will get updated based on the user traces if the navigational cost is higher than the preset cut-

off, leading to a different rendering as shown in Figure 5.2. The figure shows a new rendering

when the details page of the small screen is accessed frequently.
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Figure 3.4 a)Initial rendering for small screen b)New rendering for small screen for frequent

details page access

3.11 View layer integration

Based on the gathered data in the SVM, the cost matrix is constructed and the cost is

calculated by plugging it into Equation 3.29 Assuming that the constraint taken into picture

is small screen size. In which case the most optimum view will be Figure 3.3 c) the tabbed

view. The optimum rendering is verified with manually optimized renderings. Upon selecting

the optimized rendering the chosen output is given as the CUC tree by the SVM to the view

layer, where the UI is rendered from code behind using the information from the SVM. Since

the model is straightforward, the time taken for rendering is fairly less and the user experience

is smooth. The view layer can be easily constructed using a development environment such

as Silverlight or WPF, which exposes easy two-way binding between the view and the model

layer. Considering that the binding happens through the SVM in our model, any input data

from the user can be controlled to re-configure the UI in a way that best fits the particular OC.
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3.12 Feasibility check - Addressing the screen size constraint

In Chapter 4 we shall show the feasibility of the model by implementing the same for one

particular OC constraint namely, screen size. The variations in screen size among devices has

been one of the main focus of research in the area of defragmentation in recent times.

3.12.1 Terms and concepts

The following are certain terms specific to the screen size constraint to be looked at before

we proceed

3.12.1.1 Screen size

Screen size is the actual physical size of the screen, which is measured as the screen’s

diagonal and can be categorized as small, normal, large and extra large based for simplicity

3.12.1.2 Screen density

Screen density is the amount of pixels in an observed area of the screen. This is typically

captured as dpi (dots per inch) and can again be categorized as low, medium, high and extra

high for simplicity.

3.12.2 Density independence and size dependence

As long as the application preserves the physical size of user interface elements, density

independence is achieved automatically. This is important to maintain before addressing the

actual constraint, the screen size. Without density independence, an interfacer may appear

large on a low density screen or the vice-versa causing usability issues. That is the reason why

most of the styling options in XAML support percentages, where each interfacer size can be

defined as a percentage of the total available size.

The actual constraint to be addressed is the screen size, where hard-coding different layouts

for each UI screen for each device is tedious and time-consuming and worst of all error-prone.

Using this model we can automatically create various renderings based on the different screen



26

sizes and measure the cost associated with each rendering before displaying them. In the

following chapter, we shall look at how the screen size constraint is handled in detail and

thereby demonstrate the feasibility of the model.
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CHAPTER 4. IMPLEMENTATION

One of the most obvious constraints imposed by the diverse number of devices is the variable

screen sizes, which vary from a flat screen desktop to a smartphone. We have chosen to apply

the proposed model to the screen size constraint and analyze the results with a user study. The

reason for choosing to deal with the problem of variable screen sizes is because of its closeness

to various aspects of the UI. For example it directly influences the choice of having to split

the page into various sub-pages to fit the screen size or to choose the precise set of interface

components that fit the screen. Other device constraints such as limited input capabilities

or memory size can be handled internally using simple selection of the settings, whereas the

display problem is a much more sensitive issue that requires a more comprehensive solution.

We have built a To-Do application using the proposed model in the context of screen size

using Silverlight for the user study of the model. The application has been deployed on two

target devices, namely a smartphone and a tablet which represents two different abstract screen

sizes of small and big respectively. The application has been built to include actions of varying

complexities for the user study, namely to view the list of tasks and their details and to add a

specific task with custom details. The application includes the following features:

• The application on startup displays the list of all To-Do tasks, if any, which was added by

the user and includes the option to mark it as complete or to delete the item altogether

• The list of To-Do tasks displayed may or may not show the details of the task on the same

page depending on the size of the target device. The rendering depends on the interface

generator algorithm and the user trace accumulation

• Add task page for the user to add tasks with details such as name, type of task (course,

office and social), start time of the task, end time of the task and additional notes.
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Information gathering here, as it is in any domain, is the most time consuming yet most

important step before the actual implementation because it gets directly added to the IAS to

form the Controlled AUC Sets(CAS) in the SVM. Apart from the screen information from the

platform layer which forms the selection rules, we need more information from the model layer

as well as explained below in Section 4.2. The set of information will vary with the type of

OC constraint and this is specific to screen size constraint alone. The description should have

enough information to generate a good user interface and no information about the look or feel

which in turn should be decided by the interface generator.

4.1 Rule implementation

The following code snippet the generic rule type used to store selection rules from the

platform layer. The rule datatype will be used in Section 4.3.

namespace Notepad

{

public class Rule

{

// con t ex t f o r which the ru l e i s d e f ined f o r . Eg : Disp lay

public St r ing Context { get ; s e t ; }

//Type o f the con t ex t . Eg : S i z e

public St r ing ContextType { get ; s e t ; }

//Actual r u l e in format ion Eg : Small

public string In format ion { get ; s e t ; }

public Rule ( S t r ing context , S t r ing contextType , string i n fo rmat ion )

{

Context = context ;

ContextType = contextType ;

In format ion = in format ion ;

}

}

}
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4.2 Model layer implementation

4.2.1 State variables and commands

Interface designers must know what can be manipulated on an appliance in order to build

an interface for it. Associated with each state variable is the type that informs the interface

generator how the UI can be manipulated. For example, consider a category selector control on

the add task page of the To-Do application (refer to implementation section below), which can

be represented with a list type with range constraints. The interface generator has information

on how to handle a list type with constraints and hence it helps to specify information of the

type of the state variables. In situations where an application cannot provide feedback about

state changes from the model layer back to the viewmodel layer, commands can be useful.

4.2.2 Type information

Each state variable as mentioned above shall be specified with the type information. Apart

from the generic types such as boolean, integer, fixed point, floating point, enumerable datatypes

and string we have custom datatypes that are modeled to resemble real world objects. These

are represented using serializable objects so that they can be further separated into generic

types that are guaranteed to be understandable by the interface generators.

4.2.3 Label information

Apart from the above information, the interface generator must also have information about

labeling the individual components that represent the state variables and commands. Label

information is highly interface dependant and is sometimes cumbersome to predict for future

device additions. Hence generic label information shall be used to avoid limiting the model to

existing devices alone.

4.2.4 Grouping information

Grouping of the interface components into similar components is highly common and intu-

itive in Silverlight or WPF. Also, it makes the interface more readable and stable to the user.
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Hence grouping information will go a long way in how similar components can be grouped to

make it fit to the screen better.

4.2.5 Dependency information

With the two-way binding we can get the interface to respond when a particular component

is disabled. Also, information on the other variables that will be affected has to be specified

for better structuring of the graphical interface.

4.2.6 Data context of actual model

This includes typical information that the model layer provides to any ViewModel which can

be in the form of a relational database or flatfiles. In the To-Do application here we implement

an L2S (Linq to Sql - Refer to [14]) and a data context for adding and removing To-Do tasks

from the database. The data context will include the custom datatypes that stores the To-Do

tasks and the user trace database table.

4.2.7 Sample model implementation

4.2.7.1 Metadata structure

Sample structure for storing the metadata information that includes all the information

mentioned above.

public Metadata (bool s ta te , string type , string l abe l , string groupId , bool

custom )

{

State = s t a t e ;

Type = type ;

Label = l a b e l ;

GroupId = groupId ;

Custom = custom ;

}
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4.2.7.2 Dictionary structures

The list of all interfacers available for each type, their corresponding metadata, the group-

ings available for interfacers and the views available for the groupings are shown in this code

snippet

//Type d i c t i ona r y − Mapping from model o b j e c t to I n t e r f a c e r d i c t i ona r y t ha t form

ac tua l c on t r o l s

public stat ic Dict ionary<object , L i s t<I n t e r f a c e r>> TypeDictionary ;

//Metadata d i c t i ona r y f o r each model o b j e c t

public stat ic List<Metadata> MetadataList ;

//Group d i c t i ona r y − //Type d i c t i ona r y − Mapping from model o b j e c t to I n t e r f a c e r

d i c t i ona r y t ha t forms groups

public stat ic Dict ionary<object , L i s t<I n t e r f a c e r>> GroupDictionary ;

//View d i c t i ona r y − //Type d i c t i ona r y − Mapping from model o b j e c t to I n t e r f a c e r

d i c t i ona r y t ha t forms views

public stat ic Dict ionary<object , L i s t<I n t e r f a c e r>> ViewDictionary ;

These datatypes are populated initially during application start by the model layer using

the controls available from XAML. The metadata list includes information about both inbuilt

and custom datatypes.

4.2.7.3 Tables and data context

This code snippet shows the data context for accessing the SQL tables using the LINQ

framework

public class ToDoDataContext : DataContext

{

// Pass the connect ion s t r i n g to the base c l a s s .

public ToDoDataContext ( string connec t i onSt r ing )

: base ( connec t i onSt r ing ) { }

// Spec i f y a t a b l e f o r the to−do i tems .

public Table<ToDoItem> Items ;

// Spec i f y a t a b l e f o r the c a t e g o r i e s .
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public Table<ToDoCategory> Categor i e s ;

// Spec i f y a t a b l e f o r the user s e t t i n g s .

public Table<UserPath> Paths ;

}

Here is an example table showing how the user trace data context is defined in the database:

[ Table ]

public class UserPath : INotifyPropertyChanged , INoti fyPropertyChanging

{

// Define ID : p r i v a t e f i e l d , p u b l i c property , and database column .

private int i d ;

[ Column(DbType = ”INT NOT NULL IDENTITY” , IsDbGenerated = true ,

IsPrimaryKey = true ) ]

public int Id . . .

// Define e x i t i n g i n t e r f a c e r group : p r i v a t e f i e l d , p u b l i c property , and

database column .

private string ex i t ingGroup ;

[ Column ]

public string ExitingGroup . . .

// Define en t e r ing i n t e r f a c e r group : p r i v a t e f i e l d , p u b l i c property , and

database column .

private string enter ingGroup ;

[ Column ]

public string EnteringGroup . . .

// Define parent i n t e r f a c e r group : p r i v a t e f i e l d , p u b l i c property , and

database column .

private string parentGroup ;

[ Column ]

public string ParentGroup . . .

INoti fyPropertyChanged Members . . .
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INot i fyPropertyChanging Members . . .

}

4.3 Platform implementation

The platform layer of the application includes the default cost dictionaries that are used

by the interface generator for optimized rendering, display size abstractor that outputs the

abstract sizes for which the cost dictionaries have to be formed, the rules populator from the

platform layer that directly correspond to selection rules in the SVM.

4.3.1 Sample platform implementation

4.3.1.1 Cost Dictionaries

Default cost dictionaries used for initial rendering which is updated with user trace accu-

mulation

//Abs t rac t co s t t ype s f o r measuring the co s t o f us ing an i n t e r f a c e r s in a

p a r t i c u l a r OC

public enum co s t { None = 0 , T r i v i a l = 1 , Cons iderab le = 4 } ;

//Mapping from the screen s i z e con t ex t to the d i c t i ona r y o f i n t e r f a c e r s

//Eg : For two d i f f e r e n t screen s i z e s sma l l and b i g t h e r e are two d e f a u l t c o s t

d i c t i o n a r i e s corresponding to both

public stat ic Dict ionary<ScreenSizeContext , Dict ionary<I n t e r f a c e r , cost>>

ScreenCostDict ionary ;

4.3.1.2 Display area abstractor

namespace Notepad . Platform

{

//Get g en e r a l i z e d screen s i z e s to work wi th from ac tua l screen s i z e

public stat ic class DisplayArea
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{

private stat ic string s c r e e nS i z e ;

public stat ic string ScreenS i z e . . .

stat ic DisplayArea ( )

{

double p i x e l S i z e = System .Windows . App l i cat ion . Current . Host . Content .

ActualWidth ∗ System .Windows . App l i ca t ion . Current . Host . Content .

ActualHeight ;

//The f o l l ow i n g a b s t r a c t s on ly two d i f f e r e n t screen s i z e s f o r the

purpose o f b e t t e r s i z e d e l i n e a t i o n

i f ( p i x e l S i z e <= 800∗480)

Sc reenS i z e = ” smal l ” ;

i f ( p i x e l S i z e > 800∗480)

Sc reenS i z e = ” big ” ;

}

}

}

4.3.1.3 Selection rules

stat ic PlatformRulesPopulator ( )

{

Se l e c t i onRu l e s = new List<Rule>() ;

//New ru l e t ha t records the d i s p l a y s i z e o f the curren t dev i c e

Rule area = new Rule ( ”Display ” , ” S i z e ” , DisplayArea . Sc r eenS i z e ) ;

S e l e c t i onRu l e s .Add( area ) ;

}
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4.4 User trace implementation

The user trace layer saves the set of all user navigational paths as a three tuple sequence

on the database for the SVM analysis. The traces are stored as a observable collection of user

paths that uses a data context to access the user trace table stored using the L2S.

4.4.1 User trace implementation

//User t race t a b l e f o r sav ing the path data

[ Table ]

public class UserPath : INotifyPropertyChanged , INoti fyPropertyChanging

{

// Define ID : p r i v a t e f i e l d , p u b l i c property , and database column .

private int i d ;

[ Column(DbType = ”INT NOT NULL IDENTITY” , IsDbGenerated = true , IsPrimaryKey

= true ) ]

public int Id . . .

// Define e x i t i n g i n t e r f a c e r group : p r i v a t e f i e l d , p u b l i c property , and

database column .

private string ex i t ingGroup ;

[ Column ]

public string ExitingGroup . . .

// Define en t e r ing i n t e r f a c e r group : p r i v a t e f i e l d , p u b l i c property , and

database column .

private string enter ingGroup ;

[ Column ]

public string EnteringGroup . . .

// Define parent i n t e r f a c e r group : p r i v a t e f i e l d , p u b l i c property , and

database column .

private string parentGroup ;

[ Column ]

public string ParentGroup . . .



36

INoti fyPropertyChanged Members . . .

INot i fyPropertyChanging Members . . .

}

public class UserModel : INoti fyPropertyChanged

{

// L i s t o f a l l pa ths from the data con t ex t

private Observab leCo l l ec t ion<UserPath> t r a c e s ;

//L2S data con t e x t

private ToDoDataContext toDoDB ;

// Class cons t ruc tor , c r ea t e the data con t ex t o b j e c t .

public UserModel ( string toDoDBConnectionString )

{

toDoDB = new ToDoDataContext ( toDoDBConnectionString ) ;

}

//A c o l l e c t i o n o f a l l user paths

public Observab leCo l l ec t ion<UserPath> Traces . . .

// Write changes in the data con t ex t to the database .

public void SaveChangesToDB ( )

{

toDoDB . SubmitChanges ( ) ;

}

//Query database and load the userpath c o l l e c t i o n u s e d by the p i v o t pages

public void LoadUserSettingsFromDatabase ( )

{

// Spe f i c y the query f o r g e t t i n g back the user t r a c e s from the database .

var userSett ingsInDB = from UserPath path in toDoDB . Paths s e l e c t path ;

//Query the database and load the t race in format ion
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Traces = new Observab leCo l l ec t ion<UserPath>(userSett ingsInDB ) ;

}

//Add a user path to the database and c o l l e c t i o n

public void AddUserPath ( UserPath newUserPath )

{

//Add a user path item to the data con t e x t

toDoDB . Paths . InsertOnSubmit ( newUserPath ) ;

//Save changes to the database

toDoDB . SubmitChanges ( ) ;

//Add a user path to the user t r a c e s

Traces .Add( newUserPath ) ;

}

INoti fyPropertyChanged Members . . .

}

4.4.2 User trace accruement

The user traces are accrued whenever the user navigates away from one interface group

onto another. The three tuple format is used for capturing the transition in the user focus.

The following is the code snippet that is introduced into the navigate away event handler for

a particular interfacer group.

private void navigateToDetai lPage ( object sender , System .Windows . Input .

MouseButtonEventArgs e )

{

. . .

//Creat ion o f the user path to be sen t us ing the nav i ga t i on s e r v i c e

UserPath newUserPath = new UserPath

{

ExitingGroup = ”main” ,

EnteringGroup = ” d e t a i l s ” ,



38

ParentGroup = ”main”

} ;

//Add the userpath to the usermodel

App . uModel . AddUserPath ( newUserPath ) ;

//Navigate away from i n t e r f a c e r group to another group

. . .

Nav igat i onServ i c e . Navigate (new Uri ( urlWithData , UriKind . Re l a t i v e ) ) ;

}

4.5 SVM implementation

The SVM is the main focus of our implementation which involves the user trace analysis

followed by the interface generation algorithm the output of which is the CUC for the device.

4.5.1 User trace analysis

The primary step in the implementation is the user trace analysis which directly affects the

cost dictionaries. The application has a default user trace for the application that is used for

initial analysis. As the user trace accrues the analysis is more specific to the user. The analysis

is performed in two steps:

• The pattern checker iterates through the user traces using the algorithm explained in

3.8.1.1 and forms the pattern dictionary.

• The cost realignment adjusts the cost dictionaries, CMP if the pattern checker confirms

a particular pattern’s navigational cost to be higher than the rest of the patterns

4.5.2 Sample user trace analysis implementation

4.5.2.1 Pattern checker

//Runs through the user t race to f i nd pa t t e rn s and t h e i r number o f occurences

private stat ic Dict ionary<Pattern , int> checkPattern ( )
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{

Dict ionary<Pattern , int> pa t t e rn s = new Dict ionary<Pattern , int>() ;

Pattern tempPattern = new Pattern ( ) ;

S t r i n gL i s t p1 , p2 ;

IEnumerator<UserPath> e = uModel . Traces . GetEnumerator ( ) ;

e . MoveNext ( ) ;

e . MoveNext ( ) ;

p1 = new S t r i n gL i s t ( ) ;

p1 .Add( e . Current . ExitingGroup ) ;

p1 .Add( e . Current . EnteringGroup ) ;

p1 .Add( e . Current . ParentGroup ) ;

do

{

p2 = new S t r i n gL i s t ( ) ;

p2 .Add( e . Current . ExitingGroup ) ;

p2 .Add( e . Current . EnteringGroup ) ;

p2 .Add( e . Current . ParentGroup ) ;

tempPattern . AddLast ( p2 ) ;

i f ( checkForVal idPattern (p1 , p2 ) )

{

i f ( pa t t e rn s . ContainsKey ( tempPattern ) )

pa t t e rn s [ tempPattern ]++;

else

pa t t e rn s .Add( tempPattern , 1) ;

tempPattern = new Pattern ( ) ;

i f ( e . MoveNext ( ) )

{

p1 = new S t r i n gL i s t ( ) ;

p1 .Add( e . Current . ExitingGroup ) ;

p1 .Add( e . Current . EnteringGroup ) ;
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p1 .Add( e . Current . ParentGroup ) ;

tempPattern . AddLast ( p1 ) ;

}

}

} while ( e . MoveNext ( ) ) ;

return pa t t e rn s ;

}

//Check to see i f c o s t d i c t i o n a r i e s are to be a f f e c t e d

public stat ic bool checkFactorChanged ( )

{

//Pattern d i c t i ona r y

Dict ionary<Pattern , int> pat t e rns = checkPattern ( ) ;

int count = 0 ;

int x = getMaxFactor ( pat t e rns ) ;

foreach ( Pattern p in pat t e rns . Keys )

{

i f ( pa t t e rns [ p ] ∗ exper imenta l we ight < x )

{

count++;

}

}

i f ( count == pat te rns . Count−1)

return true ;

return fa lse ;

}

4.5.2.2 Cost realignment

// c r ea t e the user model o b j e c t to load the user s e t t i n g i f any

user = new UserModel ( DBConnectionString ) ;
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user . LoadUserSettingsFromDatabase ( ) ;

//Sample check to see i f nav i ga t i on co s t changed to r e ad j u s t the c o s t s

i f ( checkFactorChanged ( ) )

{

foreach ( Rule r in Platform . PlatformRules . S e l e c t i onRu l e s )

{

// I n t e r f a c e r x i s the cu r r en t l y user i n t e r f a c e r t ha t c on t r i b u t e s the

maximum cos t

( Co s tD i c t i ona r i e s . ScreenCostDict ionary [ r . Context + r . ContextType + r .

In format ion ] ) [ I n t e r f a c e r x ] = Cos tD i c t i ona r i e s . c o s t . T r i v i a l ;

// I n t e r f a c e r y i s the newly sugge s t ed i n t e r f a c e r to r ep l a c e I n t e r f a c e r x

( Co s tD i c t i ona r i e s . ScreenCostDict ionary [ r . Context + r . ContextType + r .

In format ion ] ) [ I n t e r f a c e r y ] = Cos tD i c t i ona r i e s . c o s t . None ;

}

}

4.5.3 Interface generation

The choice of the individual interface components, i.e., the interfacers that form the AUC

sets can be done in two ways in the interface generator: i) Based on the rules, shrink/expand

the interfacer according to the display size provided by the device. Note that we have to

operate within the usability constraints in this case. For instance, we cannot shrink a textblock

below the minimum readable pixel size or expand beyond the resolution making it blurry and

unreadable. For those interfacers which cannot be shrunk or expanded, we have method 2

which is ii) replace the interfacer with a more optimum interfacer from the XAML library for

that particular device dynamically. For example a RadioButtonList would take more space

whereas a DropBox or a tabbed view would take less space than a complete view and would

be more intuitive than a pop-up based view.The interface generation algorithm for both the

small and big screens works on the second approach as explained in Section 3.8.2 where the

cost of the current interfacer is increased and the new interfacer with a lower cost for interface
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generation at the end of user trace analysis. The algorithm from the model is used to obtain

the Selected AUC sets (SAS) (shown in Figure 4.1).

Figure 4.1 SVM interaction with AUC sets using the rules

4.5.4 Sample SVM implementation

4.5.4.1 User trace analysis

Refer to Section 4.5.1

4.5.4.2 Dictionary and rule formation

Refer to Section 4.2 and 4.3

4.5.4.3 CUC Formation

This uses the IAS and the rules to restrict the model information to form the Selected

Abstract Sets (SAS). The below implementation shows how the CUC is formed by checking if

the SAS components is chosen to be of the abstract value of cost.None.

public stat ic class RuleBasedInterpre te r

{
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// Re s t i c t the D i c t i ona r i e s based on the r u l e s and t h e i r corresponding co s t

data

public stat ic Dict ionary<string , string> Re s t r i c t e r ( )

{

Dict ionary<string , string> SAS = new Dict ionary<string , string>() ;

// Since we handle one con s t r a i n t d i s p l a y we know the d i c t i o n a r i e s t h a t

are to be accessed . I f not we cros s r e f e r ence i t wi th the p la t form

ru l e s

foreach ( Rule r in Platform . PlatformRules . S e l e c t i onRu l e s )

{

Dict ionary<string , Co s tD i c t i ona r i e s . cost> ScreenCostDict ionary =

Cos tD i c t i ona r i e s . ScreenCostDict ionary [ r . Context + r . ContextType +

r . In format ion ] ;

// Re s t r i c t Views

foreach ( string s in Model . DictionaryMetadataFormer . ViewDict ionary .

Keys )

{

List<string> temp = new List<string>() ;

temp = Model . DictionaryMetadataFormer . ViewDictionary [ s ] ;

// i t e r a t e through the l i s t o f p o s s i b l e i n t e r f a c e r s to g e t the one

wi th minimum cos t

foreach ( string i n t e r f a c e r in temp)

{

i f ( ScreenCostDict ionary [ i n t e r f a c e r ] == Cos tD i c t i ona r i e s . c o s t

. None )

SAS .Add( s , i n t e r f a c e r ) ;

}

}

// Re s t r i c t Groups

foreach ( string s in Model . DictionaryMetadataFormer . GroupDictionary .
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Keys )

{

List<string> temp = new List<string>() ;

temp = Model . DictionaryMetadataFormer . GroupDictionary [ s ] ;

// i t e r a t e through the l i s t o f p o s s i b l e i n t e r f a c e r s to g e t the one

wi th minimum cos t

foreach ( string i n t e r f a c e r in temp)

{

i f ( ScreenCostDict ionary [ i n t e r f a c e r ] == Cos tD i c t i ona r i e s . c o s t

. None )

SAS .Add( s , i n t e r f a c e r ) ;

}

}

// Re s t r i c t Views

foreach ( string s in Model . DictionaryMetadataFormer . TypeDictionary .

Keys )

{

List<string> temp = new List<string>() ;

temp = Model . DictionaryMetadataFormer . TypeDictionary [ s ] ;

// i t e r a t e through the l i s t o f p o s s i b l e i n t e r f a c e r s to g e t the one

wi th minimum cos t

foreach ( string i n t e r f a c e r in temp)

{

i f ( ScreenCostDict ionary [ i n t e r f a c e r ] == Cos tD i c t i ona r i e s . c o s t

. None )

SAS .Add( s , i n t e r f a c e r ) ;

}

}

}

return SAS ;

}

}
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4.6 Optimized rendering and View layer implementation

The optimum rendering of the CUC tree to the view layer includes the cost calculation in

two steps, the user analysis and the CUC formation as explained in Section 4.5.4. The CUC

tree is again accessed in the view layer for custom rendering. The view layer can be formed by

extracting the CUC tree and the metadata to generate the view in XAML code behind. The

view layer generation for small screen devices is explained in the code snippet below:

The CUC tree is parsed to check the View, Group and individual control interfacer values,

based on which the following code snippet is executed. The snippet corresponds to the following

CUC tree path chosen by the SVM.

• App.ViewModel.SAS[”View”] = ”Pivot”

• App.ViewModel.SAS[”CustomGroup1”] = ”ListBox”

• App.ViewModel.SAS[”String”] = ”TextBlock”

• App.ViewModel.SAS[”Boolean”] = ”CheckBox”

// With the ob ta ined CUC t r e e genera te the corresponding c on t r o l s in code behind

Pivot p ivo tCt r l = new Pivot ( ) ;

p i vo tCt r l . Margin = new Thickness (0 , −36, 0 , 0) ;

var pivotItem1 = new PivotItem ( ) ;

p ivotItem1 . Header = ”summary” ;

var pivotItem2 = new PivotItem ( ) ;

p ivotItem2 . Header = ” course ” ;

var pivotItem3 = new PivotItem ( ) ;

p ivotItem3 . Header = ” o f f i c e ” ;

var pivotItem4 = new PivotItem ( ) ;

p ivotItem4 . Header = ” s o c i a l ” ;

var l i s tBox1 = new ListBox ( ) ;

l i s tBox1 .Name = ”summaryToDoItemsListBox” ;

l i s tBox1 . Margin = new Thickness (12 , 0 , 12 , 0) ;
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l i s tBox1 .Width = 440 ;

l i s tBox1 . ItemsSource = App . ViewModel . SummaryToDoItems ;

var l i s tBox2 = new ListBox ( ) ;

l i s tBox2 .Name = ”coursesToDoItemsListBox” ;

l i s tBox2 . Margin = new Thickness (12 , 0 , 12 , 0) ;

l i s tBox2 .Width = 440 ;

l i s tBox2 . ItemsSource = App . ViewModel . CoursesToDoItems ;

var l i s tBox3 = new ListBox ( ) ;

l i s tBox3 .Name = ”of f iceToDoItemsListBox ” ;

l i s tBox3 . Margin = new Thickness (12 , 0 , 12 , 0) ;

l i s tBox3 .Width = 440 ;

l i s tBox3 . ItemsSource = App . ViewModel . OfficeToDoItems ;

var l i s tBox4 = new ListBox ( ) ;

l i s tBox4 .Name = ” socia lToDoItemsListBox ” ;

l i s tBox4 . Margin = new Thickness (12 , 0 , 12 , 0) ;

l i s tBox4 .Width = 440 ;

l i s tBox4 . ItemsSource = App . ViewModel . SocialToDoItems ;

l i s tBox1 . ItemTemplate = (DataTemplate ) Resources [ ”ToDoListBoxItemTemplate1” ] ;

l i s tBox2 . ItemTemplate = (DataTemplate ) Resources [ ”ToDoListBoxItemTemplate1” ] ;

l i s tBox3 . ItemTemplate = (DataTemplate ) Resources [ ”ToDoListBoxItemTemplate1” ] ;

l i s tBox4 . ItemTemplate = (DataTemplate ) Resources [ ”ToDoListBoxItemTemplate1” ] ;

p ivotItem1 . Content = l i s tBox1 ;

p i vo tCt r l . Items .Add( pivotItem1 ) ;

pivotItem2 . Content = l i s tBox2 ;

p i vo tCt r l . Items .Add( pivotItem2 ) ;

pivotItem3 . Content = l i s tBox3 ;

p i vo tCt r l . Items .Add( pivotItem3 ) ;

pivotItem4 . Content = l i s tBox4 ;

p i vo tCt r l . Items .Add( pivotItem4 ) ;

//Add the view to the content pane l

ContentPanel . Chi ldren .Add( p ivo tCt r l ) ;

// App l i ca t i on bar
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Appl icat ionBar = new Appl icat ionBar ( ) ;

Appl icat ionBar .Mode = ApplicationBarMode . Defau l t ;

Appl icat ionBar . Opacity = 1 . 0 ;

Appl icat ionBar . I sV i s i b l e = true ;

Appl icat ionBar . IsMenuEnabled = true ;

Appl icat ionBarIconButton newTaskAppBarButton = new Appl icat ionBarIconButton ( ) ;

newTaskAppBarButton . IconUri = new Uri ( ”/ Images/appbar . add . r e s t . png” , UriKind .

Re la t i v e ) ;

newTaskAppBarButton . Text = ”add” ;

newTaskAppBarButton . Cl i ck += newTaskAppBarButton Click ;

Appl icat ionBar . Buttons .Add(newTaskAppBarButton ) ;

A similar path is followed for large screen devices and the SVM produces a CUC path of

• App.ViewModel.SAS[”View”] = ”ScrollViewer”

• App.ViewModel.SAS[”CustomGroup1”] = ”Grid”

• App.ViewModel.SAS[”String”] = ”TextBlock”

• App.ViewModel.SAS[”Boolean”] = ”CheckBox”
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CHAPTER 5. EVALUATION

The main focus of the user study is to evaluate the model’s cost-benefit ratio. It gave us

a good understanding of the advantages of using adaptive interfaces implementing this model

over the static solution. In order to choose a participant group that will resemble the end-

user market for a smartphone device such as Windows Phone, the participants were chosen

from both genders and different age-groups. We also selected users who are both skilled and

non-skilled in the mobile computing field for this study.

5.1 Conditions

The main goal of the user study is to test the model’s adaptability to different screen sizes.

This was done using a tablet simulator running Windows Phone and a smartphone running

Windows Phone which have two completely different screen sizes. The task list page of the

To-Do application is rendered on a tablet sized display and the smartphone. The secondary

goal of the user study was to make sure the adaptation is usable and satisfactory to the users,

having minimal costs. This was done by providing the users with the To-Do application and

asking them to add tasks of varying details using the add new task page. Both these tasks

inherently form the high and low complexity tasks respectively. This shows that the model

is independent of the application’s functionality which is vital in making sure this model is

generic enough to be used by all kinds of designers. The third and final goal will be to evaluate

the model’s ability to adapt to user manipulations. This was done by evaluating the model’s

ability to re-render the UI based on the user traces accumulated.
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5.2 Task

The users were asked to perform three different tasks based on which a survey questionnaire

was provided him to evaluate the model

• Start the application and observe the list of all To-Do tasks, if any, which was added

by the user on both large and small screens(It includes the option to mark the task as

complete or to delete the task altogether)

• Add a new task using the add task page with details such as name, type of task (course,

office and social), start time of the task, end time of the task and additional notes on

both large and small screens

• Navigate to the details page from the main page repetitively to accrue more usage pat-

terns. Exit the application and reboot application to observe change in rendering based

on usage.

5.3 Measures

Finally, these tasks performed by the participants were measured upon the following set of

parameters chosen based on previous user research performed in the area

• Awareness - it is the degree to which users are conscious of the full features of the

application including those that are not used during the test tasks

• Stability - it is the ability of the application to render the same UI every time it runs on

that particular screen. (other constraints such as the user are not taken into account for

rendering since only screen size is handled)

• Predictability - guarantee that the application renders the controls that makes the most

sense for that particular screen (subjective and hence will be based on the opinion of the

participants)

• Timeliness - the time taken to generate and render the interface
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Using these parameters, we measure the usability of the model across various operating con-

texts and also the correlation between the different renderings inspite of the different renderings

so that a user transitioning from one operating context to the other does not feel disoriented.

5.4 Results

We have used two different operating contexts, a smartphone and a tablet emulator to

test the model’s adaptability. The model will be checked for adaptability based on the target

OC, followed by the usability based on the measures mentioned in Section 5.3 and finally al-

though the renderings are different, we show that the transition between two different operating

contexts is smooth and natural.

5.4.1 Adaptability analysis

The UI generated by the SVM is customized for the target device to make the manipulation

easier and more intuitive. The CUC chosen by the SVM varies between the two screens for

both the main page where the list of all tasks is displayed and the add task page where a new

task can be added.

5.4.1.1 OC based rendering

The UI for large and small screen devices are shown in Figure 5.1 and Figure 5.2 respectively.

In contrast to the large screen, on the small screen the SVM uses three pages for the application

where the details of the task is displayed on a seperate details page hyperlinked to the main

page tasks. On a small screen, the cost of rendering the details page is considered lower than

the cost of displaying the details on the same pivot page and making the user zoom in to read

the text. Also, in the Add New Item page of the small screen the categories is displayed using

a dropdown in contrast to a radio button list control used on the large screen.

5.4.1.2 User trace based rendering

The renderings shown in Figure 5.2 and Figure 5.1 are the default renderings provided

by the SVM with the default cost dictionaries. But upon user trace accruement, the cost
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Figure 5.1 To-Do application on a large screen(tablet) a)Main page with task details b)Add

task page

dictionaries may get affected thereby paving way for an alternate rendering which is more

optimized. Figure 5.1 shows the rendering on the small screen devices for the following scenario.

Consider that the user frequents the detail page more than the add task page. Then the

user trace accrued spots patterns where the pattern corresponding to the details page is very

frequent. In this case the default cost allocated to the choice of displaying the details on a

seperate page is affected. Thereby the interfacer cost corresponding to a ListBox is reduced

as explained in Section 4.5.2.2. This produces a rendering for the small screen as shown in

Figure 5.3 where the details are displayed on the main page itself. This rendering will again be
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Figure 5.2 To-Do application on a small screen(smartphone) a)Main page b)Add task page

c)Task details page

changed based on the user trace accrued thereby making the interface adaptive to user changes

as well.

5.4.2 Usability analysis

We have used 12 users * 2 operating contexts * 2 different adaptations (based on OC,

based on OC and usage) * 16 questions in the questionnaire to measure awareness, stability,

predictability and timeliness using lengthwise and breadthwise analysis of mean and standard

deviation on both the target devices. We found that users were slightly more comfortable

with UI rendered on the smartphone over the tablet. Figure 5.3 shows the mean and standard

deviation analysis for both the the devices. Both the device renderings scored 98 percent on

awareness since users were able to recognize all the controls on both the devices although the

renderings were completely different. Upon performing post-hoc tests, we found that the users

found the smartphone rendering slightly more stable than the tablet giving a stability score

of 83 percent (tablet) and 93 percent (on the smartphone). This can also be associated with
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Figure 5.3 To-Do application main page on a smartphone with frequent user visits to the

details page

most of the users being smartphone users and not tablet users. This is also due to the change

in rendering due to usage, which becomes more stable when reasonably large enough usage

characteristics get accrued. Inspite of the changing UI between the devices and usage, there

were very high predictability scores of above 96 percent on both the devices, which shows that

the model’s ability to choose the controls for the device was intuitive. Timeliness scores were

high on the smartphone unlike the tablet. The lag in the tablet can also be negated if the

emulator can be replaced with an actual device.

5.4.3 Smooth transitioning between renderings

In order to show there are high-benefits at very low costs by using adaptive interfaces that

automatically adapt to OC constraints, we also need to show that an user transitioning from

one operating context to the other on the same application has a smooth experience. Although

the UI may look different between the tablet and the smartphone, in order to create a model
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Figure 5.4 Usability measures vs Mean and SD in percentages for both tablet and smartphone

with smooth transitioning capabilities, we show that the correlation between the renderings in

terms of awareness, stability, predictability and timeliness is still intact using a t-test.

Table 5.1 t-test between tablet (OC1) and smartphone (OC2)

Awareness Stability Predictability Timeliness

OC1 OC2 OC1 OC2 OC1 OC2 OC1 OC2

Mean 0.9725 0.9725 0.8333 0.9375 0.9583 1 0.89 0.9725

Variance 0.0091 0.0091 0.0379 0.0241 0.0208 0 0.0264 0.0091

Observations 12 12 12 12 12 12 12 12

Hypothesized

Mean difference 0 0 0 0

df 22 21 11 18

P(T≤t) two-tail 1 0.1621 0.3388 0.1465

Table 5.1 shows the t-test results between the smartphone and the tablet with an alpha

value of, α = 0.05. From the obtained probabilities, P it is clear that the renderings on the

smartphone and tablet are correlated in terms of the usabality measures. This ensures that the

UI created by the model helps the user to transition between a laptop, tablet or a smartphone

easily.
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5.4.4 Other user comments

When the participants were debriefed of the experiment, they agreed that the model was

adaptable and at the same time useful. They commented on the usefulness of the model to

adjust based on usage and liked the fact that the model customized the UI rendering to fit a

user more appropriately. Some participants requested for additional custom interfacers in that

were more intuitive and those that could make the manipulation easier.
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CHAPTER 6. DISCUSSION AND FUTURE WORKS

The results of these experiments was a clear indication of the market need for an adaptive

model that can eliminate the need for an application developer to create multiple applications

based on operating contexts. It also shows that the adaptation was highly usable and with time

a user likes the ability of the model to adapt to usage. Since screen size is one of the biggest and

most sensitive operating context issues, we have handled that in our implementation hoping

that the research continues and expands to handle other areas of OCs as well.

With increased focus on other forms of changes in operating context apart from the screen

size the model can be provided for application developers as a Silverlight or WPF plugin making

it very useful. Once the model has been implemented to handle all forms of operating contexts,

the model documentation will form a custom architecture pattern that can be used to develop

an application once and use forever in all present and future operating contexts that enter the

market. We can also test the model by expanding our array to users of android and iphone.

The idea of handling user preferences as a part of the model closely binds the application

developer’s development environment closely with the target users making this model highly

useful for both mobile and immobile devices.
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APPENDIX A. USER STUDY

This section will pose questions to the user that will measure the application and in turn

the model. This set of questionnaire is provided to the user after the set of tasks performed as

mentioned in Chapter 5.

Questionnaire

Personal Information

1. Sex:

2. Department:

3. Age: years

4. PI Level: Graduate/Non− graduate

5. Current phone model:

Generic

1. How often do you download an application to your smartphone?

(a) Daily

(b) Weekly

(c) Monthly

(d) Rarely

2. What do you use your smartphone the most for?
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(a) Play games

(b) Listen to music

(c) Browsing the web

(d) Watch videos

(e) Chat or email

(f) Doing research

3. How much time daily do you spend on your smartphone? (Hours)

4. What smartphone do you use the most?

(a) Android

(b) Iphone

(c) Blackberry

(d) Windows Phone

(e) Other (Please mention)

5. Which is your favorite smartphone application?

6. How many phones do you own?

(a) 1

(b) 2

(c) 3

(d) >3

7. Which is your favorite smartphone platform?

(a) Android

(b) Iphone

(c) Blackberry
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(d) Windows Phone

(e) Other (Please mention)

8. Other comments:

Software Usage

1. On what device was the application easy to use?

(a) Only on the Smartphone

(b) Only on the Tablet

(c) Both

(d) Neither

2. Were you able to perform the tasks on both devices?

(a) Yes

(b) No

3. Did you find there were options to check off or delete a task on both the devices?

(a) Only on the smartphone

(b) Only on the tablet

(c) Both

(d) Neither

4. Were you able to add a new item on the main page of both the tablet and Smartphone?

(a) Yes

(b) No

(c) Only on the phone

(d) Only on the tablet
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5. List the items you recognized on the Smartphone’s ’Add new item’ page?

6. List the items you recognized on the Tablet’s ’Add new item’ page?

7. Did you find the transition between the Tablet and the Smartphone smooth?

(a) Yes

(b) No

8. Did you find the choice of the elements of the UI natural on both the Smartphone and

the Tablet?

(a) Yes

(b) No

9. If no, would you have liked to seen exactly the same User Interface (UI) on the Tablet

and the Smartphone as well and preferred to zoom in and out?

(a) No

(b) Yes (If so why? )

10. Did it take you too much time to recognize a button or perform a task on any of the two

devices?

(a) No

(b) Yes. Which one?

11. Did you find the adaptation in the rendering based on the size of the screen useful?

(a) Yes

(b) No

12. Did you find the adaptation in the rendering based on the usage useful?
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(a) Yes

(b) No

13. Were any of the renderings confusing or unintuitive?

(a) Yes

(b) No

14. Did you find any of the devices slow or inhibited than a usual Smartphone application?

(a) No

(b) Yes. Which one?

15. What, if any part of the UI was an issue?

(a) None

(b)

16. Other comments:
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