
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2014

Semi Automated User Acceptance Testing using
Natural Language Techniques
Arvind Madhavan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Madhavan, Arvind, "Semi Automated User Acceptance Testing using Natural Language Techniques" (2014). Graduate Theses and
Dissertations. 13937.
https://lib.dr.iastate.edu/etd/13937

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13937&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13937&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13937&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13937&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13937&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13937&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F13937&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13937?utm_source=lib.dr.iastate.edu%2Fetd%2F13937&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Semi Automated User Acceptance Testing using Natural Language Techniques

by

Arvind Madhavan

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Simanta Mitra, Co-major Professor
Carl K. Chang, Co-major Professor

Jin Tian

Iowa State University

Ames, Iowa

2014

Copyright © Arvind Madhavan, 2014. All rights reserved.

ii

TABLE OF CONTENTS

 LIST OF TABLES .. v

LIST OF FIGURES .. vi

NOMENCLATURE .. vii

ABSTRACT ... ix

CHAPTER 1 INTRODUCTION .. 1

1.1 Background and Motivation ... 1

1.2 Problem and Approach ... 2

1.3 Requirements of the Test Framework ... 3

CHAPTER 2 LITERATURE REVIEW ... 5

2.1 Need for UI test frameworks. ... 5

2.2 Review of UI Automation techniques .. 6

2.2.1 Record and Playback .. 6

2.2.2 Data Driven and Keyword Driven UI Frameworks ... 7

2.2.3 Natural language based Test frameworks .. 9

2.3 Natural language Techniques for Acceptance Testing ... 11

CHAPTER 3 APPROACH AND DESIGN .. 13

3.1 Overview of our approach .. 13

3.2 System Architecture .. 14

3.3 Phase 1 - Creation of test cases corpus ... 17

iii

3.3.1 Modifications of NLTK ... 18

3.3.2 Training .. 20

3.3.3 Pre-requisites for corpus creation .. 21

3.3.4 Testing the Tagged ‘Test-Case’ corpus (Testing phase) 22

3.4 Phase 2: Creation of Keywords map dictionary ... 23

3.5 Phase 3: Generation of Test Automation code. .. 25

3.5.1 Input format ... 26

3.5.2 Mapping objects ... 27

3.5.3 Generation of Test Automation code ... 28

3.6 Design Issues .. 31

3.6.1 Corpus preparation and storage ... 31

3.6.2 POS tagging techniques that could have been improvised 31

3.6.3 Issues with the Implementation ... 32

CHAPTER 4 EVALUATION AND DISCUSSION .. 33

4.1 Evaluation of our approach .. 33

4.1.1 Evaluation against our requirements ... 33

4.1.2 Test Case Execution .. 33

4.1.3 Usability for non programmers .. 33

4.1.4 Reusability ... 34

4.1.5 Maintainability ... 34

4.1.6 Modularity and easy to use .. 35

4.1.7 Comparison of existing tools with our approach ... 35

iv

4.2 Evaluation of the corpus creation phase .. 36

4.2.1 Evaluation with respect to corpus quality .. 37

4.2.2 Evaluation with respect to corpus size ... 37

4.2.3 Threats to validity in corpus creation .. 38

4.3 Evaluation of Phase 2-POS Tagger models ... 40

4.3.1 POS Tagger model used in our research .. 40

4.3.2 Unknown words usage ... 41

4.3.3 Improper breaking of sentences ... 41

4.4 Evaluation of the Implementation phase .. 43

4.4.1 Evaluation of Spreadsheet Inputs .. 43

4.4.2 Evaluation of Keyword Mapper Module ... 43

4.4.3 Evaluation of Selenium framework as our base framework: 44

CHAPTER 5 CONCLUSION AND FUTURE WORK ... 46

5.1 Summary of the research .. 46

5.2 Future Work ... 47

REFERENCES .. 49

APPENDIX A1 : DETALED SFOTWARE REQUREMENTS 56

APPENDIX A2 : VOCABULARY .. 58

v

LIST OF TABLES

Table 1:Modified Upenn Tag Set for our research ... 17

Table 2:Sample Selenium Code for Keyword Actions ... 25

Table 3:Sample Input spreadsheet format ... 27

Table 4: Input spreadsheet 2 with Object Id added by user ... 28

Table 5:Sample generated Webdriver automation test class file .. 30

Table 6:Comparison of Autotestbot with other tools .. 36

vi

LIST OF FIGURES

Figure 1:System Architecture diagram of Autotestbot ... 16

Figure 2:Architecture for Tagged Corpus Creation .. 21

vii

NOMENCLATURE

UAT: User Acceptance Test

NLP: Natural Language Processing

GUI: Graphical User Interface

R &PB : Record and Play Back

RTF: Robot Test Framework

SUT: System Under Test

POS : Parts of Speech

SQL: Structured Query Language

XML: Extended Markup Language

BDD : Behavioral Driven Development.

API: Application Package Interface.

CSS : Cascading Style Sheet

viii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr.Simanta Mitra

for the continuous support of my study and research, for his patience, motivation,

enthusiasm, and immense knowledge. I could not have imagined having a better advisor and

mentor for my Masters.

I would also like to extend my appreciation to my co-major professor Dr. Carl K. Chang

and my committee member Dr. Jin Tian for their help and support. I also thank the

department faculty, and department staff who have guided us for

A very special thanks to Ramiya Venkatachalam and my brother Raghunathan

Kothandaraman for the constant encouragement and support, which helped me to stay

motivated .In addition I would like to thank my Iowa State friends–Arunachalam, Deepan,

Gowri Shankar, Guru Prasad, Sunil Kishore and my best buddy Naveen for making this

journey not only possible, but a memorable one.

Last but not the least; I would like to extend my gratitude to my parents, Mr. Madhavan

Srinivasan and Mrs. Rama Madhavan for their unbounded support and love without whom

this journey could have been not possible.

ix

ABSTRACT

User Acceptance Testing is typically the final phase in a software development process in

which the software is given to the intended audience or domain experts. These domain

experts know the functional requirements of the application and write user acceptance tests

(UAT) in their natural language. A normal UAT test case in English typically follows an

imperative sentence structure, i.e. a sentence that gives advice or instructions, or that

expresses a request or command.

We propose a methodology to write UAT test automation code using natural language

processing techniques on test scripts written in free form English text by using the

assumption that test cases are written in an imperative style. We have also built a proof of

concept tool, the Autotestbot, to demonstrate the feasibility of our idea. In addition, with the

help of Autotestbot, we also demonstrate the feasibility of our proposed approach to semi-

automate the time consuming and cumbersome manual UAT test code generation process.

The scope of this thesis is restricted to automating Web applications.

1

CHAPTER 1 INTRODUCTION

1.1 Background and Motivation

Software Testing is a systematic procedure for checking a program or application with

the intent of finding bugs [31][51]. User Acceptance Testing (UAT) is typically the last

phase of the Software Testing process where the end product is assessed for its correct

business usage. It is a crucial part of the overall testing process of an application.

The first step in the UAT development life cycle is designing test cases or user scenarios

for the real-world usage. Typically, business users write these in a simple language (mainly

English). It is natural to ask why natural language test cases are used. The answer is that

system test cases are most commonly created by non-developers i.e., business or domain

experts, who may not possess the technical skills required for coding test cases in a

programming language, but can represent their thoughts in natural language fashion. Natural

language incurs no training overhead [49]. The objective of this research is to help these

business users or domain experts to generate automated user acceptance test code from

natural language test cases.

Research has shown that UAT test automation can be achieved through "Keyword" based

User Interface (UI) test framework [24] where Keywords can be used as links to programs

that automate test cases. The basic idea behind the Keyword based UI framework is to

separate test case design and test code generation [22]. Separating the test automation makes

it readable for non-technical personnel or domain experts. The Robot-Selenium framework

[40] is an example of such a framework.

2

 However, current tools, such as Cucumber [7] or Robot Test Framework [24], are

constrained in that the user is forced to use the keywords pre-specified in their framework to

create higher-level keywords. Our approach is to reduce this overhead by not creating

excessive higher-level keywords and instead allowing free form test cases. To achieve this,

natural language processing techniques have been exploited.

1.2 Problem and Approach

Automated testing is more effective than manual testing with respect to accuracy in

regression tests [21]. It minimizes the margin for errors. Current Test Automation Experts

manually convert written UAT test cases into functional test code using test automation tools.

These tools require an extensive knowledge of the scripting language to create functional

tests. Unnecessary time is expended in learning the details of the scripting language, writing

the scripts, and then debugging the scripts.

 The main objective of our research is to automate this time-consuming and

cumbersome manual testing process by abstracting functional instructions in Natural

Language and mapping them to corresponding test automation code. As a result, no

executable code needs to be developed by the business user. A secondary objective of the

research is to develop a comprehensive test corpus so that test scenarios across the same

domain functionality can be reused.

Our goal is to generate a test automation class file from the English UAT test cases. For

this we used POS tagged test cases as our knowledge base. About hundred sample test cases

were collected from Internet from Quality Assurance (QA) forums and blogs and were

preprocessed manually to remove ambiguous data. We then manually tagged these test cases

3

to build our test cases corpus. We also built a test language model specific to UAT testing

and use that as reference to process untagged test cases. The user is to write test cases in a

specified spreadsheet format. Our proof of concept tool analyses these test cases by

appropriately tagging them and generates keyword tuples for every test case. The generated

keyword tuples are eventually converted into Selenium automation class file that are run on

the Firefox browser.

The scope of our project is restricted to browser based applications and cannot be

extended to non-web applications .Our keyword repository is a subset of Robot Selenium

Framework [24][40]. Hence any keywords or actions that do not reside in this keyword

repository would fail. The scope is also restricted to the Object recognition capabilities of the

Selenium Web driver [55]. This means to test automate an application with third party

plugins (like Microsoft Silverlight), it requires additional code to be written. Our research

covers basic Web, JavaScript, and AJAX applications. Also the browser has been restricted

to Firefox at the moment for proof of concept purposes.

1.3 Requirements of the Test Framework

The objective of the thesis is to present a methodology to develop a UI test framework

where natural language scripting can be used for test automation [41]. Fewster and Graham's

paper on Software testing Frameworks helps us to identify the basic goals in developing a

test automation framework [21][24]. To achieve these goals we first define a set of

requirements as specified to be satisfied by the framework.

I. User should be able to write test cases in free form natural language (English).

II. The framework should generate the automation code for the test user

4

III. The generated test automation code can be executed in a browser.

IV. The code should be available to the user to easily understand. It should satisfy

object-oriented principles.

V. Maintainability of the code.

VI. The code can be reused later for addition or deletion of tests. This should not

affect the existing code.

The rest of the thesis is organized as follows. Chapter 2 provides a literature review of the

UI Test frameworks commonly used. Natural Language based Test Automation techniques

have been discussed. Chapter 3 is the crux of the thesis. It documents the System architecture

for meeting the requirements specified above (for detailed requirements refer appendix A1).

It also presents our approach, which includes the development of POS tagged custom Test

Case Corpus, preprocessing of inputs, training, testing, and automated generation of test

codes for a particular web application. Chapter 4 evaluates the feasibility of our approach.

Finally, we present our conclusions and discussions on future work in Chapter 5.

5

CHAPTER 2 LITERATURE REVIEW

This chapter is divided into three major sections. The first section provides a brief

discussion on the need for UI test frameworks. The second section reviews the different UI

automation techniques with examples of frameworks that support natural language test

scripts. Finally, the third section gives an introduction to POS tagging.

2.1 Need for UI test frameworks.

User acceptance Testing (UAT) helps end users to validate and verify the behavior of the

final state of the product. UAT level testing happens by running end to end scenarios on the

User Interface (UI) of the product .A product that is heavy GUI based has to be UI tested

repeatedly to elude bugs due to regression i.e. so that changes in the software does not

introduce new faults. Hence, manual testing is not efficient in repeatable UI test execution

[38]. Therefore, these manual UAT tests are converted to automated tests for which some

kind of a UI test framework is required.

The real need of building a UI framework is about maintainability of the UI tests. Writing

a suite of such tests in an automated fashion that are maintainable is virtually impossible and

expensive without using a UI test framework [57]. A UI test framework aids the tester to

analyze test outcomes and report the results in an effective manner [7]. A UI framework

helps the tester to design, add, delete acceptance tests, and monitor test results easily [41].

Other important benefits include adhering to a standard list of specifications (or test plan) for

the product.

6

2.2 Review of UI Automation techniques

In this section we shall give an overview of UI automation techniques used for UAT test

automation and discuss prior works in Natural language based UI automation.

2.2.1 Record and Playback

 The first step towards basic automation in any GUI based test tool is record and play

back option. We decided to include this in our literature review, as most non-programmers

tend to use Record & Play Back tools (R &PB). R & PB tools are definitely attractive at the

first instance for the reason test case execution happens on a single click of the record button.

The user has to initially set the tool in a record mode that records the list of actions, which

are then replayed back. R&PB tools come in handy when the user does not have

programming skills to write automation scripts [29]. Some examples of Web testing tools

that can enable testers to record tests and playback are Selenium IDE, Microsoft Visual

Studio Coded UI [17], and Test complete [27].

The use of these record and play tools has lot of disadvantages such as lack of code

reusability, maintainability, consistency in test execution. One of the biggest drawbacks in

using Record and Playback is the scalability. When a test is automated using recording, script

lines are generated. John Kent paper on record and play back tools [21] give us the following

relation:

 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑑𝑒 ∝ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 𝑡𝑜 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒.

7

The more tests you record, the more automation code you have to maintain until you

reach a point where the maintainability is nearly impossible [21]. Also the recorded script

can only work under exactly the same conditions as when it was recorded at the first time,

which makes it less reliable.

 Considering the drawbacks of Record and Play Back Tools, a more matured approach

evolved which was separating the test data from the automation script. This is called the Data

Driven Approach [2].

2.2.2 Data Driven and Keyword Driven UI Frameworks

In this approach the test data is held in separate files or data tables and the automation

script works on the test data. For a UI based Data Driven approach the UI script is tested

against a user interface that requires validation for variant data A sample scenario would be

to validate login credentials for different users. When the tested system changes it is easier to

change the test code as it is separated from the test data [39].

An example of Data Driven based UI framework is the Microsoft Coded UI Test [17]

where data is stored in XML, Excel Worksheets, or SQL, and the framework runs UI scripts

as unit tests. Other examples of Data Driven UI frameworks are Fitnesse[12], HP-Quick Test

Professional and Test NG [27].

 The biggest drawback of Data Driven Frameworks is that the overall functionality of

the application can never be tested thoroughly [2]. Only variants of test data helped in

testing specific functionalities rigorously. Also writing the test part requires knowledge of

programming which makes it difficult for business users.

8

This gave growth to a better approach where the test input data sheet included directives

for the test in form of keywords. This mean the same spreadsheet input of test data included

executable test cases with the addition of keyword column. This was called the Keyword

Driven approach. Keyword-driven testing has all the same benefits as data-driven

testing[35]. The main objective of Keyword based approach is to allow non-programmers to

write tests as well with the help of keywords. Keywords are basically English words, which

performs an action. ‘Click’,’Enter’,‘Type’ are all examples of Keywords. With the help of

the Keywords and the test data, a complete UI test framework can be built that is

maintainable and scalable.

Keyword Driven UI frameworks can be built using existing tools that provides us with

the keyword API or library. Quick Test professional (QTP) is a VBScript based tool that

supports keyword driven testing. Open2TestFramework is a framework that was built on top

of HP Quick Test Professional (QTP).

Selenium consists of a suite of tools that can be used for Keyword based browser

automation. The latest version of Selenium, Selenium Web driver [56] provides the user with

set of API’s or libraries to build Keyword based UI Frameworks. Examples of frameworks

built on top of Selenium are Xebium [55], Robot-Selenium [41] and Cucumber –Selenium

[7].

Watir [49] is a ruby based tool that automates Web applications. Robot Framework is a

keyword-driven framework for User Acceptance tests. Watir-Robot [54] is a Keyword based

framework, which uses Robot Keywords for functional web testing. With the introduction to

9

Keyword based UI Test frameworks the next section reviews the literature on frameworks

that enables natural language test automation.

2.2.3 Natural language based Test frameworks

In this section we review some of the most commonly used UI test frameworks using

which natural language tests can be used to write UAT test automation.

Cucumber [7] is an extremely powerful integration-testing framework for Acceptance

Test Driven development. The idea is that you write your “user stories” in a language called

Gherkin. Gherkin [59] is a business specific language that lets you describe software’s

behavior in English but specific to cucumber. The user then maps it to a custom based Ruby

code that executes the "user stories." The ultimate goal of Cucumber is to communicate the

behavior of your system to everyone involved in a project, making it possible to write

specifications in English, or other natural languages .In this way, the specs are executable,

but they are also readable by non-programmers, making it easier to discuss at meetings, or in

documents. However, to use cucumber we need to know its business readable, domain

specific English language.

The Framework for Integrated Test (FIT) is an open source framework implementation

for a table-based acceptance testing approach. FitNesse is an HTML front end to Fit [12].

FitNesse lets customers and analysts write “executable” acceptance tests using simple HTML

tables. Developers write “fixtures” to link the test cases with the system under test (SUT).

"Fixtures" are usually java classes [32] and is an interface between the Fit framework, test

cases, and the SUT. The fixtures act as the test engine, which drives all the logic behind

execution. Xebium [55] is a FitNesse framework written on top of Selenium for User

10

acceptance testing. Xebium combines FitNesse’s powerful features with the browser testing

ability of Selenium.

In [48] the author provides a proof of concept model to generate code from test scenarios

written in English. Natural language techniques have been used to understand these test

cases. A given test scenario is analyzed from its step definition using POS tagging

methodologies. The code skeleton is then derived from the POS tags. The approach uses

WorldNet dictionary to extract POS tags and the user interacts with the system to generate

the code. The commonality with our approach is that we use POS tagging for information

retrieval. The difference is that we do not use commonly used English corpuses. We

construct our own test cases corpus to extract POS tags instead of using the WorldNet

dictionary.

In the open source community, Robot Test Framework [24] is a generic test automation

framework for acceptance testing and acceptance test-driven development (ATDD). The

biggest inspiration for our research has been the Robot Test Framework (RTF). RTF is a

Python-based keyword-driven test automation framework for acceptance level testing. With

RTF, the user has the ability to create test cases in an easy to use tabular syntax[7]. Users can

create new keywords from existing ones using the same simple syntax that is used for

creating test cases. Test results are presented in an easily understandable HTML format. This

project was developed at Nokia Siemens’ and is used extensively within their network. The

project was made open source later and has many users outside the company. It is

continuously developed and its base of keywords is growing.

The NLP approach in UAT test automation highlights the fact that users are allowed to

11

write test cases in their own natural language format. Robot test framework, and other

keyword driven Natural language based Test frameworks force the user to build keywords on

top of their inbuilt keywords. In our approach, we have a keyword-based framework as

similar to the other tools except that we map these keywords intelligently rather than forcing

users to use only the existing keywords.

2.3 Natural language Techniques for Acceptance Testing

English grammar categorizes a word's importance according to their role in sentences.

However, many words take multiple meanings based on the context and its grammar. For

instance "Like" can be a verb or a proposition. Similarly "book" can be a noun or a "verb".

Part-of-speech tags give us significant amount of information about the word and its

neighbor’s [43] and are really useful in understanding the context.

Let us define the definition of POS tagging in mathematical terms.

 Given a sequence of words W=w1 ... wn, in a sentence {S} we want to find the

corresponding sequence of tags T=t1 ... tn, drawn from a set of tags {T}, which satisfies the

below equation .

 Equation 1:

S = max
 !!…!"

𝑃(𝑡1. . . 𝑡𝑛 | 𝑤1. . .𝑤𝑛) = max
!!..!"

𝑃(𝑇|𝑊)

We need to find T that maximizes the Equation 1.

By Bayes rule and chain rule of probability [45] POS tagging can be approximately deduced

as below.

 𝑃(𝑇|𝑊) = 𝑃(𝑊|𝑇) 𝑃 (𝑇) / 𝑃(𝑊) ≈ 𝑃(𝑊|𝑇) 𝑃(𝑇)

12

𝑃(𝑇) 𝑃(𝑊|𝑇) ≈ 𝑃(𝑡1) 𝑃(𝑡2|𝑡1) … 𝑃(𝑡𝑛|𝑡𝑛 − 1) 𝑃(𝑤1|𝑡1) 𝑃(𝑤2|𝑡2) … 𝑃(𝑤𝑛|𝑡𝑛)

𝑊ℎ𝑒𝑟𝑒 𝑃 𝑡! 𝑡! − 1) = 𝑐 (𝑡! − 1, 𝑡!) /𝑐(𝑡! − 1)

𝑃(𝑤𝑖│𝑡𝑖) = 𝑐(𝑤𝑖, 𝑡𝑖)/𝑐(𝑡𝑖)

 Where , c(ti)- frequency of the tag ti in the corpus

 c(wi, ti)- frequency of wi with tag ti in the corpus.

 c(ti-1, ti) = frequency of a tag ti-1 with an after tag ti in the corpus.

Parts of speech tagging can be achieved by developing POS tagger models. The

development of a reasonably good accuracy POS tagger can be categorized broadly in two

ways: rule based and learning based.

Rule based Method: This consists of writing an exhaustive set of rules based on lexical

and other linguistic knowledge [5]. It is very costly and time consuming to develop a rule

based tagger [36].

Learning Based Method: This consists of training on human annotated corpora and

using machine-learning techniques as Hidden Markov Model, Trigram Tagger, and other

statistical taggers [4]. Learning based approach is considered effective [36] considering the

amount of human expertise and effort involved.

We chose the Learning based method to tag our test cases. However, there were no

annotated corpora readily available for developing our tagger. Hence we developed our own

"test cases corpus" and trained our POS taggers on this corpus.

In the next chapter, we present our overall approach and also the design of our proof of

concept tool, the Autotestbot.

13

CHAPTER 3 APPROACH AND DESIGN

In this chapter, we describe our overall approach and the design details of our proof-of-

concept test generation tool Autotestbot. This tool automatically takes as input user

acceptance test cases written in natural language (English) and generates as output test code

using a keyword driven test framework built on the top of Selenium Web driver framework.

First, we give an overview of our overall approach. Next, we describe the system architecture

for Autotestbot. After that, we describe each of the three phases of our approach in separate

sections.

3.1 Overview of our approach

Our main idea is that there are abstract linguistic rules that implicitly govern written

business user acceptance tests and these linguistic rules can be derived using NLP

techniques. Once these rules have been derived, new tests can be processed by application of

these rules and automatically converted to executable test codes.

Our approach consists of three phases. The first two phases consist of semi-automated

steps that need to be done only once for a specific domain. These are used to setup the test

framework and get it ready for use. The third phase consists of several automated steps that

take in input UAT tests written in natural language and generates test code that runs on

Selenium Web driver.

In the first of the two setup phases, we build a tagged repository of user acceptance test

cases. We do this by first collecting test case samples from similar applications and

manually getting them ready for processing. Then these samples are processed using NLP

14

techniques and the different parts of speech (POS) are tagged for each test case sample. This

tagged repository of test cases is the knowledge base for our tool and becomes the "test cases

corpus". Details of phase one are presented in Section 3.3.

In the second setup phase, we create a dictionary of mappings from actions (i.e. verbs) in

sample test cases to keywords borrowed from Selenium Web Driver framework, and also add

a linkage to generated python code for the specific keyword. This is our "keyword map"

dictionary. During the conversion phase (the third phase), this dictionary is used by the

application to select the appropriate python code to call when it recognizes a verb in the user

written test case. Details of phase two are presented in section 3.4. After the test cases corpus

and the keyword map dictionary are created, the system is ready to process new UAT tests in

an automated fashion.

In the last phase, the conversion phase, the Autotestbot Test system first takes as input the

UAT tests written by business users and uses the trained "test cases corpus" to POS tag the

input tests. Next, it applies the keyword map dictionary on these POS tagged inputs to

convert the test cases to keywords. Finally, the system uses these keywords to create test

code fragments, appropriate test setup and teardown methods, and a test driver that can be

executed by users. Details of phase three are presented in section 3.5.

3.2 System Architecture

The overall architecture used in our proof-of-concept tool is similar to any other NLP

based learning application where there is an NLP based language model, a Corpus (or data

15

set) to train the model, a test data set which is usually a portion of the training data set, and

code modules that are built using existing Natural Language Tool kit libraries.

We use the NLTK tool kit available from the University of Pennsylvania for text

preprocessing which includes sentence tokenization, word tokenization, tagging of words,

and extraction of words as (word, tag) tuples. We chose Python for our development work

because the NLTK kit is written in Python. Our automation keywords are built for the

Selenium Web driver framework that automates testing in the Firefox browser environment.

The system architecture diagram for Autotestbot is shown in Figure 1. There are two

repositories, the test cases corpus and the keyword map. Also, there are four main code

blocks:

1. Preprocessor Module :This module reads the input spreadsheet of test cases and

extracts tokens from each test case.

2. POS tagger Module: This module reads tokenized test cases and uses the test

cases corpus repository to assign appropriate parts of speech tags to these

tokenized test cases.

3. Keyword Mapper Module: This module takes tags and uses the keyword map

dictionary to retrieve the appropriate Selenium Action method to be used during

generation of test code.

4. Code Generator Module: This module generates the test code in Python. A

python class is generated for every test suite. Every test case is a call to a

Selenium web driver method with an assertion added to check actual results

against an expected output.

16

The input to the system is a spreadsheet of test cases written in natural language and the

output is a test suite (a Python based class file that runs in a Firefox browser.)

Figure 1:System Architecture diagram of Autotestbot

Input spread sheet test
cases (in free from) .

User

KEYWORD
REPOSITORY

TEST CASES
CORPUS

Training data Input1_json

``

AUTOMATION CODE
GENERATOR

JSON FILE 1 JSON FILE 2

`

Input1 Input 2

.

META DATA LAYER

POS TAGGER
MODULE.

User adds the object ids

PRE PROCESSOR
MODULE

Input2_json

Outputs a class file that can run in browser.

Firefox

KEYWORD MAPPER
MODULE

Sent back to user to
add object ids

SELENIUM CODE LIBRARY

17

3.3 Phase 1 - Creation of test cases corpus

The goal of this phase is to analyze existing business user acceptance tests by using NLP

techniques so as to derive abstract linguistic rules that govern these written tests and then to

store these rules in our test cases corpus.

Data available on the Internet has been successfully used as training data for corpus

development for many NLP applications (See [16][34]) because most of the documents are

written in a machine-readable format. We too use the Internet as a resource to obtain training

data. To develop a proof-of-concept prototype, we narrowed down the subject of our research

to testing the login functionality of an email application. We searched for test cases (written

in English) to test this functionality and retrieved about a hundred test cases from the

Internet, manually corrected errors, and clustered them in an organized format. Test cases

were collected from various [19] forums such as Quality Assurance forums, Blogs, Test

Tutorial Sites, and Open source contributors.

Table 1:Modified Upenn Tag Set for our research

POS tag Abbreviation Example word

CD cardinal number 1

CC coordinating conjunction and

NN noun, singular or mass input ,button

NNS noun plural doors

NNP proper noun, singular Username, password

RB adverb however, usually

VB verb, base form Clicks

VBG verb, gerund/present participle pressing

18

POS tag Abbreviation Example word

VBN verb, past participle expired

VBP verb, sing. present, non-3d, 3rd person sing. present try

VBZ verb enters

MD modal could, will

JJ adjective wrong

JJR adjective, comparative bigger

IN preposition/subordinating conjunction in, of, like

DT Determiner the

We used part of the gathered test cases to train the Natural Language Tool Kit (NLTK)

and used the remaining part for testing purposes. In the following subsections, we first

describe our modifications to the NLTK kit available from the University of Pennsylvania

and then describe the training phase.

3.3.1 Modifications of NLTK

Two types of modifications were made to the Natural Language processing Toolkit

(NLTK) obtained from the University of Pennsylvania. The first was customization of the

language model used to process parts of speech of the test cases. The second was

modification of some of the rules for tagging.

Language model

Any POS tagging task involves a language model (the terms and the vocabulary for the

domain) as a base. The tags assigned to a sentence for a particular language depends on the

language model for that language. We have defined our own custom tags for our purposes to

19

form our Test Language Model. The author has designed this language model after wading

through several test cases for different scenarios from our sample data. The first stage of

tagging our test cases is done by the default NLTK ‘s -Penn Set Language model. The Penn

Tree bank proposes a standard set of 36 tags to identify parts of speech for English [28]. We

have modified these tags to suit our purposes.

Consider the example sentence "User enters Password and press tab key". The POS

tagged by the defaults NLTK is "User/NN enters/VBZ Password/NN and/CC press/NN

tab/NP key/NN ". The POS tagged after our modification is "User/NN enters/VBZ

Password/NP and/CC press/VB tab/NP key/NN ". In the example, Password is tagged as NN

in general usage, but it is an object in our context, a proper noun, and hence marked as NP.

Similarly, press is tagged as NN, but it is an action verb (VB) in our context (VB). The tags

that have been most used in our research are shown in Table 2.

Tagging Rules

By plotting the frequency distribution of tags for the test case samples we find that NN,

VBZ, NP, and VB are the most frequently used tags. There are four tagging rules

corresponding to each of these tags.

Rule 1. Identification of common nouns NN. Generic objects in the system, for

example, input fields, radio buttons, and text areas, will be identified as Common nouns i.e.

‘NN’.

Rule 2. Identification of Proper Nouns NP. This is used to tag a noun that refers to a

unique identity, i.e., for identifying objects uniquely in the Application. For example, a

"Login" button field would be identified as NP tag. However, there are certain cases where

20

the "Login" button should be treated as Login Action (VB) instead of NP. These rules have

to be taken care of during the training phase only.

Rule 3: Identification of VB or VBZ. Most test cases are of imperative or instructional

type. The action verbs in the singular or plural form are the actions that drive our Automation

script on the proper nouns and our main focus is to identify only ‘Action Verbs’ Forms. For

example, navigate to, go to, type, press, enter, click, and clicks.

Rule 4: Identification of Adjectives JJ. Adjectives play an important role in

understanding the negative or the positive connotation of the test case. The role of the JJ tag

is to describe the type of proper noun or the noun. For example, consider the sentences

"Enter the wrong password" and "Enter the correct password". The significance of JJ is

evident as it alters the meaning of the test case in the two examples.

3.3.2 Training

The architectural diagram in Figure 1 helps us in understanding the steps involved in

creation of a tagged test case corpus. A general representation of the POS tagging process is

depicted in Figure 2. It’s a three Step Process. The steps are highlighted with a dotted

boundary in the figure. The inputs to the process are raw samples collected from the Internet.

The output of the process is the tagged "Test Cases corpus" that consists of two files –Test

Steps and Expected Output.

21

Figure 2:Architecture for Tagged Corpus Creation

3.3.3 Pre-requisites for corpus creation

Step 1:Text cleaning

‘Text Cleaning’ is the term used in Natural language processing [2] to describe the

overall process of converting raw data found on the web into a form useable by NLP

algorithms. Following Text cleaning or Preprocessing steps have been done manually to

avoid ambiguous test cases in the training data: a) All the text has been converted to

lowercase with the help of NLTK toolkit, b) Sentence boundaries were marked with a full

stop, c) Wrong misspelt words have been fixed manually, d) Uncommon Abbreviations were

expanded, and e) Hyphenated words were split into two words.

Collection of sample Test

cases from internet

seperated into Test

Steps and Expected

output files

 Test Steps

Samples from the Internet

Expected

Output

Automatic

POS

tagging

using NLTK

kit

`

CORRECTLY POS

TAGGED CORPUS

LANGUAGE

MODEL

SPECIFIC TO

TESTING>

SEMI AUTOMATED POS

TAGGING

`

Test

Steps_tagged.txt

Expected

Output_tagged.txt

File Split+

Text Cleaning

+

PRE

PROCESSING

Step1 :Text is Cleaned and

then preprocessed to split

into two separate files which

are untagged.

Step 2: Pos tagging

using default NTLK

tagger

Step 3 : Manually

fixing wrongly tagged

words.

22

Step 2 : Text Clustering

Once the text has been cleaned they were clustered into two categories -Test steps

and the Expected Output. This is because the category of words used in writing test steps is

different from the words used in expected output and hence the separation. They are

segregated as two separate text files and all the test steps are clustered into one file –Test

step.txt and their expected output into another-Expected Output.txt (See Figure 2).

Step 3: Semi automatic POS tagging

This component estimates the set of possible tags {T}, for every word in a sentence. We

shall call this as Automatic POS tagger module. This module uses NLTK kit to assign parts

of speech tags for English words formed in a normal grammatical context initially. The Tag

set used for NLTK uses the default Upenn-Tagset [31]. The output of the module would be a

tuple set in the (word/tag) format as illustrated below.

 Input : User enters Username and press tab key.

Output: User/NN enters/VBZ Password/NN and/CC press/NN tab/NP key/NN ./.

3.3.4 Testing the Tagged ‘Test-Case’ corpus (Testing phase)

In the previous sections, we showed how we created the tagged corpus for test cases,

which will be used as the training data set for tagging new test cases. Twenty percent of the

initial untagged samples collected from the Internet forms our test set. We reserve the rest to

validate our tool's processing of new test cases and to verify if it can tag them accurately.

For this purpose we have used the Tagged Corpus Reader (as shown below) in NLTK tool

23

kit. The Tagged Corpus Reader trains itself with the already cleaned, POS Tagged Test Cases

and the Expected Output Files.

Reader=TaggedCorpusReader (corpus_root,'Tagged.txt')

With these training sentences, the tagger generates an internal model that has information

on how to tag a new word [24].

Back off tagging This is a feature of the NLTK kit that has been used for tagging our entire

test input. Back off tagging allows you to chain POS Taggers together so that if one tagger

doesn't know how to tag a word, it can pass the word on to the next back off tagger. If that

fails it can pass the word on to the next backoff tagger, and so on until there are no backoff

taggers left to check.

 We tag our sentences at three levels in a chained fashion. A sample code snippet is

provided below.

Level1: tagger = TNT Tagger(train_sents)
Level 2: tagger2 = UnigramTagger (train_sents, back off=tagger1)
Level 3:If Level 1 and Level 2 fail, we use the default NLTK tagger

 The three level tagging ensures that none of the words are left untagged.

3.4 Phase 2: Creation of Keywords map dictionary

In this phase, we manually create a dictionary of mappings from actions (i.e. verbs) in

sample test cases to Selenium keywords, i.e., the "keyword map" dictionary. We also create

python code that makes a call to the specific Selenium method and link that code to the map

information. Later, during automated conversion process, the application can select the

appropriate python code when it recognizes a verb in the user written test case.

Thus, this phase is a two-step process:

24

1. Create mappings from verbs to keywords.

2. Generate code for keywords and then create mappings from each keyword to the

appropriate code.

Step 1: Creating mappings from verbs to keywords

After POS tagging, each sentence in a user test case can be processed and represented by the

tuple (action, object), where actions are verbs and objects are subjects in the sentence. The

actions are manually compared to the list of available Selenium Actions and a file is created

with this mapping. File entries have the format {Selenium keyword: list of user actions that

map to the keyword}. Here is an example of contents of such a file.

{ 'click': 'click' },
{‘doubleClick’: 'dblclick','doubleclick','double click' ,'click twice' }
{ ' navigate': 'goto','go','get ','get to','navigate'}
{ 'input' : 'sendkeys' ,'enter','type','enter','key in','input'}

In cases where we don’t have an obvious map for a particular user action to a Selenium

keyword, we use the NLTK kit to find the syntactic distance between those actions to the list

of all selenium actions available and return the closest match. This way we are always

guaranteed to have a Selenium action (We then manually verify that this match will indeed

work as expected). Thus, in the event when the user has used an action 'put' instead of

'Input', the syntactic distance between put and all the Selenium actions ('click', 'doubleclick',

'navigate', 'input') will be calculated and the closest match returned.

25

Step2: Generating code for keywords and creating mappings from keywords to code

 In this step, we create python code that makes a call to specific Selenium methods and

map each keyword to the appropriate code. Table 4 below shows how our python class calls

Selenium test methods Click and Double Click actions. The class takes actions, objects, and

parameters in the constructor of the class and then has methods where keywords are mapped

to the appropriate Selenium methods.

Table 2:Sample Selenium Code for Keyword Actions

Sample code for keywords –Click, Double Click
class SeleniumAction():
 def __init__(self,*args):
 self.action=args[0]
 self.object=args[1]
 self.parameters=args[2]
// Sample methods below
 def click(self):
 return self.object+".click()"
 def doubleClick(self):
 return self.object+".double_click()"

The main class -Selenium Action class has a
constructor that takes three parameters .<Action,
Object, Parameters> as arguments.
<Click, Text Box,""> will be used to call the click
method and the following Selenium Webdriver code
generated will be
"Textbox. Click()"
<DoubleClick, WebElement,""> will generate String
"WebElement.double_click()"

3.5 Phase 3: Generation of Test Automation code.

In this phase, the Autotestbot system first takes as input the UAT tests written by business

users and uses the trained "test cases corpus" to POS tag the input tests. An intermediate step

that is necessary is to map objects in test cases to physical assets in the code unit under test.

This mapping needs to be done only once for a particular user code under test. Next, it

applies the keyword map dictionary on these POS tagged inputs to convert the test cases to

keywords. Finally, the system uses these keywords to create test code fragments, appropriate

test setup and teardown methods, and a test driver that can be executed by users.

26

In this section, we first describe details of the acceptable input format for test cases, the

intermediate step of mapping objects in test cases to physical assets, and generation of driver

code.

3.5.1 Input format

 The input to the system is basically a spreadsheet of test cases written in natural

language in a specific format as shown in the table below. In the table, the columns are as

follows:

1. Test Steps: These are the sequence of actions that the user will take to test the

application under test. To work properly, the system needs a complete set of steps in

order for each test case.

2. Expected Output: This is the expected result from the step.

3. Parameters: Some actions require parameters. For example, the "Login" action would

require a user login id as a parameter. Some actions do not need any parameters. The

current proof of concept tool does not support multiple parameters.

4. Prior Action: This is like a pre-condition for the test case. For example, before we

logout, we must have logged in.

27

Table 3:Sample Input spreadsheet format

Test Name Test Steps Expected Output Prior
Execution

Parameters

Test Login. Go to the login screen.
https://mail.google.com/"

 Enter in user id . username@gmail.com

 Enter wrong password Gets Message as
"Signed In".

 password

 Try to click on OK
button.

Test Logout. Click on Sign Out. Gets Message as
"Signed out".

Test Login.

3.5.2 Mapping objects

The actual physical assets (for example the objects in the DOM structure of an web

application) would be different for each application. After parsing a user test case input

spreadsheet and then POS-tagging them, the system generates a new spreadsheet with the

tagging information as shown in table 3. Here, the test steps are broken into actions and

objects. However, the user must manually map the information for corresponding object links

(or Object ids). These are usually Xpath selectors or CSS selectors that uniquely identify the

objects in the DOM structure of the Web application. Incorrect object ids will result in failure

during execution of test cases as the actions will be invoked on wrong physical objects.

28

Table 4: Input spreadsheet 2 with Object Id added by user

Test
Name

Test
Steps

 Expected
Output

Prior
Execution

 Actions Objects Object Id Parameters

Test
Login.

go login
screen

 USER
ENTERS
ID

https://mail.google.com/"},

 enter user id USER
ENTERS
ID

username@gmail.com

 enter password USER
ENTERS
ID

password

 click ok USER
ENTERS
ID

 Verify “signed
in”

Test
Logout

click signout USER
ENTERS

 Verify "signed
out"

Test Login

3.5.3 Generation of Test Automation code

The system will read in the revised spreadsheet (i.e. the one with the objects mapped

properly) and then use the keyword mapper module to map each test step to appropriate

python code from our code library. A python test file will be created using the format as

shown in table 5 that includes necessary import statements, calls to test methods, test setup

and teardown etc. Each numbered entry in the table is described here.

1. These are the header files used by the entire Python Selenium Code, which is

common for every class. Includes all the header files /import statements that are

necessary for execution of the Python unit test class (Pyunit).

2. This shall be the test suite name that extends the Pyunit class.

29

3. This is test setup for every class that includes initial setup.

4. This is the web driver for Firefox. Our automation can run only on Mozilla Firefox.

Running on other browsers can be however a stretch goal in future.

5. This is the web url of the application.

6. These are test methods that are generated for every test case. The number of test

methods is directly proportional to the number of test steps.

7. A try-catch is added for every object in case the web driver does not recognize the

object.

8. Here, the physical element is found using the Object ids specified by the User.

9. This is just an assertion to check the results of the test case.

10. This is teardown method that is called at the end of every test. It closes the browser

for every test case so that a new instance of web driver is launched next time.

11. These are steps for the logout method and are similar to the steps for the login

method.

A test case consists of input data that is fed into the application under test, and the

expected output for that particular input. The expected output for a user interface test case

can be as diverse as a text on the Screen, completion of loading of a page, appearance of a

valid element on the page, and opening of a dialog message, to name just a few. However,

for simplicity purposes, we have considered only one final expected output per test case.

30

Table 5:Sample generated Webdriver automation test class file

Generated Test Automation File
from selenium.webdriver.common.keys import Keys
import selenium.webdriver.support.ui as ui
import unittest, time, re
from selenium.common.exceptions importNoSuchElementException---------------------------[1]

class SamplePythonOutput(unittest.TestCase): --[2]
 def setUp(self): --[3]
 self.browser = webdriver.Firefox()--[4]
 self.browser.implicitly_wait(30)
 self.base_url = https://accounts.google.com/ ------------------------------[5]
 self.verificationErrors = []
 self.accept_next_alert = True

 def Test_Login(self):---[6]
 browser=self.Browser
 wait = ui.WebDriverWait(driver,10)

 try:---[7]
 User_Name=wait.until(lambda driver:browser.find_element_by_xpath('//div(id=’username') -----
[8]
 except NoSuchElementException:
 User_Name.send_keys(“username@gmail.com”)
 assert 0,can't find User_Name

 try:
 Password=wait.until(lambda driver:browser.find_element_by_xpath('//div(id=’passwd’')
 except NoSuchElementException:
 Password.send_keys(“password”);
 assert 0,can't find Password
 //Expected Output for an assertion for a text element.
 try:
 ExpectedText=wait.until(lambda driver:browser.findtext('Signed In')
 AssertifTextsPresent(ExpectedText) :---------------------------------------[9]
 except NoSuchElementException:
 assert 0,”Cant find the text specified-Test Fail”

 def Test_Logout(self):
 { //code generated similar to Test_Login}---[11]

 def tearDown(self):
 self.browser.quit()--[10]

if __name__ == "__main__":
unittest.main()

31

A test case is passed only if the expected output is met and until all the test steps have

been executed in the test case. A test case that does not meet the expected conditions after

step-by-step execution is an expected test failure. Test failures because of objects being failed

to be recognized in the DOM structure or dynamically changing DOM are unexpected test

failures. Handling these "unexpected test failures" is a typical challenge in UI testing and this

is discussed further in detail in our Results chapter.

3.6 Design Issues

3.6.1 Corpus preparation and storage

The foremost design issue is in collecting quality sample test cases. Since this was a

proof of concept, our research was not particular about getting clean data. Instead we

preprocessed it manually to remove ambiguous sentences or words. This can be a flaw in

design as in the time involved in cleaning data manually would be a costly operation and

cannot happen in a professional environment with stringent deadlines. One suggested

solution to the problem would be is to pass it through auto spell checker/grammar or use

syntactic parsing where ambiguous /misspelt words shall be automatically changed to the

right ones. This can however not guarantee in effectively correcting all the words.

3.6.2 POS tagging techniques that could have been improvised

The next important design issue is with regards to tagging our test cases. For new

unknown words our research tags generically with the basic NLTK grammar kit which can

lead to wrong interpretation of the test cases. The use of other methodologies as typed

32

dependency parsing could have been a better option for tagging new words.

3.6.3 Issues with the Implementation

The biggest challenge during our implementation was finding a suitable web-testing tool.

After evaluating few alternatives Selenium was selected as it is the most widely used and has

more open source contributors. The fact that we decided to use python for implementation

was because NLTK is written in python. With the introduction of Selenium Web driver –

python based UI testing is still in development stage and is not popularly used. The

improvisation to this design would be is to use text parsers written in java and convert the

whole concept to a java based with a compromise on NLTK .

To summarize our approach, we first do some initial setup by building a test cases corpus

and a keyword map dictionary. For the particular code under test, we also map objects to

physical assets in the code. After these steps, our tool is ready to be used to automatically

convert user acceptance tests written in natural language to test code that can be run on the

firebox browser.

33

CHAPTER 4 EVALUATION AND DISCUSSION

In this Chapter we evaluate the usefulness and effectiveness of our approach presented in

Chapter 3. We also evaluate against the requirements set in chapter 1 and compare our

approach with other relevant tools. Finally, we evaluate the different steps in our process: test

case corpus creation, the POS tagging methodologies, and automation code generation.

4.1 Evaluation of our approach

4.1.1 Evaluation against our requirements

The output of our approach is a Selenium Web Driver class file that runs in the browser.

Let us try to understand if the code generation actually satisfies the requirements specified in

chapter 1.

4.1.2 Test Case Execution

The primary objective of the research was to automate the manually written UAT test

case and execute them in the browser. The generated Python class file satisfies this objective.

This Python class file runs in the browser with the help of Selenium Web Driver and outputs

the result for every test method as a pass or a fail.

4.1.3 Usability for non programmers

 Instead of going through the established test case steps manually, the designer is

provided with the test source code (the automated test class file that is generated). Natural

34

language is simple to use and hence a business user can easily write the basic automation

with our proof of concept tool.

4.1.4 Reusability

The output file has been generated using our keyword test framework, which was built on

the top of selenium Web driver framework. The biggest advantage of generating a source

class file in this fashion is that rather than just automating the task in the browser is that - the

user can tweak the generated Selenium class file and reuse it to a different set of

requirements in future. If the generated test automation does not do the action then

modification of the test suite itself is our next step. This can be supported only if the code for

the test automation is readily available for the user. This is not available in other frameworks

and is one of the strongholds of our research.

4.1.5 Maintainability

Modifying the code is at very minimal level as our tool has already generated the base

code. Modification of code can be one or more of the tasks like injecting waits, modifying

the object ids, adding try, catch exceptions or even breaking the tests into sub tests. This

saves us enormous amount of time in writing code from the scratch .The end user does not

need to know every single API of the Selenium Framework and hence profound knowledge

in debugging is not required.

35

4.1.6 Modularity and easy to use

The generated source code a Python class file it satisfies most of the object oriented

programming principles. Modularity is maintained in terms of Python Class –Object Method

Structure. The entire Excel sheet is put in a test class and every test case becomes a py-unit

test method .The test setup is the first method to be called and is executed prior every unit

test in the class. Assertions are made for the expected output specified in the expected

column of spreadsheet. Every test case simulates the UI action by a user and can be seen

executed on the browser. Any test case can be removed or added without affecting other test

methods, which makes our approach modularized.

4.1.7 Comparison of existing tools with our approach

 Based on the feature requirements discussed above table 6 below evaluates

our tool against other relevant tools. The tool is relatively easy to use compared to RTF and

Cucumber for the reason free form English test cases are allowed. We realize that the

consistency of test case execution seems to be medium compared to other tools. The

consistency would definitely improve over time when the corpus size increases. Thus based

on the following comparisons we can understand that concept can be extrapolated to have

most features required for using it as a framework for writing UAT tests.

36

Table 6:Comparison of Autotestbot with other tools

Tool Maintainability Free
form
test

cases

Reusability Modularity
easy to use.

Consistency
test case

execution

Complexity for
non

programmers

Record and
Playback

 Low Easy to use

Cucumber ! ! ! High Complex

Robot Test
Framework

(RTF)

! ! ! High Medium

Autotestbot ! ! ! ! High Easy to use

4.2 Evaluation of the corpus creation phase

A corpus is made for the study of a particular language. The objective of our Setup Phase

was to study the language used by a software tester. Our research did not use human groups

or professional testers for writing test cases and therefore the test cases were sampled from

the Internet. For research purposes we chose to test a very common scenario that was the

login functionality of an email.

In the next two sections we have assessed the corpus creation phase (Phase 1) on the

basis of its quality and size. Also we have discussed some factors that could threaten the

validity of our training corpus.

37

4.2.1 Evaluation with respect to corpus quality

With our research we were able to observe that language sentence patterns for a Business

User seems to be consistent. Our claim is that a Business user or domain expert can use the

same vocabulary [58], used previously in writing test cases. Hence collecting test cases from

one particular Business User or a user group can jeopardize the validity of our corpus. It can

result in building a biased corpus.

 This biased corpus of tagged test cases will not be useful to identify new test cases or

tests from a different test user group. Therefore a random sampling from different testers

who are unaware of each other’s language was adopted in building our corpus. This ensured

that new test cases could be tagged.

4.2.2 Evaluation with respect to corpus size

Corpus size influences the quality of research. In “Corpus Linguistics and Technology”

[9] the author discusses the different aspects of creating a high quality corpus with emphasis

on corpus size. The analogy was with respect to size of Brown Corpus .

 In the early years of electronic corpus generation, the Brown Corpus, which contains

one million words, was considered to be a standard one. In the Brown Corpus one million

words were divided as 7 genres with 500 samples of text and each sample consist of 2000

words. Considering English to be the most common language 1 million words is not a very

big corpus but Brown corpus was useful in Information extraction. We can apply a similar

approach in building our test corpus from a smaller scale.

38

Lets us understand how our research in collecting test cases samples can become a

powerful knowledge base over time. In a product based organization test cases are written for

every software release. Every software release has an addition of features or enhancement of

features. The release doesn’t go to production until acceptance testing is done. Since User

acceptance tests are written for every release, every feature and hence test cases keep

growing over time. This serves as a strong source in developing test cases corpus specific to

the team.

The usage of words relevant to the product features, usage of product specific actions,

action verbs in a UAT test case helps us in building the Knowledge base (KB) for the team.

Thus over time if we can build a robust test cases corpus we shall be able to categorize test

cases much more effectively. This however can occur over time when the test cases corpus

grow in size and the taggers can tag the test cases accurately.

4.2.3 Threats to validity in corpus creation

In this section we shall list the types of issues that can influence the validity of our Test

cases corpus.

Conclusion validity

 The size of the corpus was one of the main threats in accurately tagging our test cases.

The scenario for our research was testing the login functionality of an email application. Our

small corpus size was sufficient enough to test this small feature. In order to test the whole

email application we need test cases for every feature for the application. On addition of a

second feature to be tested, test cases related to that feature have to be added and so on. The

39

minimum size of the corpus to test an application can be roughly deduced with an equation as

follows:

 Minimum Corpus size = minimum no Test cases for a feature of the application *

no of features

From the above relation, we understand that to collect test cases for all the features of an

application can help in complete testing. Creating this kind of an all feature corpus would be

one of the biggest challenges in our research.

 External validity

There were no threats to validating our research because of external influence. The users

on Internet have no dependency or influence with our research. The test cases were randomly

collected from the web, which validates that no external factors have influenced our test

corpus design.

Construct validity

The following are the factors that affect the construct validity.

• One of the most import threats for using free form test cases was that the samples

might actually not be constructed the way we desired for. Let us try to understand this

with an example: "Signing in " or "Log in" can vary between applications. For

instance the steps involved in "signing in" operation for a Gmail account is not

essentially the same in a "Outlook" email application.

40

• Wrong grammar serves as a potential threat in a wrong understanding of tagged test

cases and has to be rectified.

• Short forms /abbreviations have to be looked out for and cleaned.

• Test cases from Non-native speakers of English might have different sentence pattern

types as compared to native speaker types. This has to be carefully selected out.

4.3 Evaluation of Phase 2-POS Tagger models

In this section we will evaluate the POS tagging methodologies used in our research. We

would try to understand the effect of wrongly POS tagged sentences and how it affects the

code generation phase with examples.

4.3.1 POS Tagger model used in our research

The whole process of tagging our test cases was serialized in our research. The TNT

taggers does the tagging and pushes to the Unigram Tagger and finally reaches the NLTK

default Tagger if the tagging fails at the first and second stage.

 TNT taggers – >Unigram Tagger – > NLTK. Default tagger

 Trigrams 'n' Tags (TnT) are an efficient statistical part-of-speech tagger. [4] A recent

comparison has shown that TnT performs significantly better for the tested corpora. Our

training set has been manually tagged and TNT taggers work better since the training set is

manually fixed [4]. Our observations say that TNT taggers have been able to identify known

test cases better and fail relatively with unknown ones. The following examples will help us

illustrate the failure in POS tagger models.

41

4.3.2 Unknown words usage

In the below example a user writes the test case in natural language as

 Enter Username as your hot mail address.

The word “hot” never had a three-word context [36] in our repository and hence Trigram

taggers (TNT) fail to identify the test cases .The onus of tagging falls on the next tagger –the

unigram tagger. Since the unigram tagger also trained with the same corpus the word ‘hot’

had no single match. Therefore the unigram tagger relies on the last but least –the default

NLTK tagger. NLTK tagger successfully tags the word ‘hot’ based on its general usage.

The NLTK default tagger as tags the words below:

 Enter/VB Username/NNP as/IN your/PRP hot/JJ mail/NN address/NN.

We can see in the above-tagged sentence, ‘hot’ was tagged as an adjective (JJ) and ‘mail

‘was tagged as a common noun (NN), which actually is incorrect. We observe that the above

example “hot” and “mail” were considered two words instead of “hot mail “ as a Noun

word. So in the above case our taggers have actually failed to identify the unknown words

and hence we would be unable to break our sentences in the accurate <Action, Object,

parameters> tuple format. This would lead to incorrect keyword-automation code mapping

and hence our test cases fail.

4.3.3 Improper breaking of sentences

For instance the user writes the test case as

42

 “double click to select the application app”

Things that can be inferred at the higher level:

a.)‘double click’ and ‘select’ are actions.

b.)'application app' is the object.

The test case can be tagged as

Case 1. double click /VB to/TO select/VB the/DT application/NNP app/NNP

Case 2. double/JJ click /VB to/TO select/VB the/DT application/NNP app/NNP

Our proof of concept tool should do a double click operation on the application app and

not a select action (In this case select action can be selecting an area). Also, ‘double click’

action cannot be pursued for a click action.

The above scenario brings us the fact that our tool should not pursue a wrong mapping of

an action and hence an incorrect automation code should not be produced. Incorrect

mapping of an action happens because of the improper break up of the sentence. Improper

breakup of the sentence is because of wrong tags assigned to the words in the sentence. This

results in semantic misinterpretation of the test case actions.

Two similar words with a different context is a problem in our research at the moment.

Semantic misinterpretation of test case actions can be prevented at an initial stage by better

proof reading. Section 5 gives us some higher-level overview of preventing error prone

natural language test cases.

43

4.4 Evaluation of the Implementation phase

The success of our proof of concept is the quality and accuracy of automation code

generated. The approach undertaken right from taking inputs to the user, using the keyword

mapper module, the Object recognition capabilities of our Selenium base code and the

automation code generator, all determines the quality of our generated class file.

4.4.1 Evaluation of Spreadsheet Inputs

How effective is our design for taking the inputs from the user? The User has to write

step definitions for test cases and every row in the test case column corresponds to an

executable action. Combination of actions can lead to a much more in depth parsing of text.

Hence the spreadsheet format with one action helps us in reducing the parsing overhead.

Once the user gives the inputs we parse it, separate the objects ,get the secondary inputs and

then maps the object ids. The significance of the secondary input sheet is to ensure every

action has only one corresponding web object involved. Every row in the object id column

corresponds to only one object, which is an automatically extracted .Our observation claim

that the extraction of objects saved a lot of time in identifying Web Objects.

4.4.2 Evaluation of Keyword Mapper Module

As discussed in chapter 3, one motive of our research is to expose the source test class

file to the user for reusability purposes. For this purpose every corresponding <action, object

> tuple extracted from the natural language text has been generated as python code as a

‘String Buffer” and appended to an executable Python test class file. This has been really the

44

‘most’ unique aspect of our keyword based automation framework and the question that

arises is about the effectiveness of the keywords to automate the application. These keywords

are comprehensive enough to automate the email feature of the application. However at a

bigger picture, more keywords have to be added to the Selenium Keyword class file (Refer

Table 4) so that keywords not frequently used can be mapped as well.

4.4.3 Evaluation of Selenium framework as our base framework:

There are complex UI scenarios where our concept can fail to automate even if there has

been an accurate mapping of keywords. Some of them are discussed below:

Page loading issues

One of the tricky aspects of Selenium based testing is about understanding the loading of

a page and when elements appear on pages. All our tests were structured with a pattern to

find elements using the find element method of the web driver under a try-catch. However

if web driver cannot find the element on the page ,it waits till the time out page period and

then throws the “Not found exception”. Missing pages with wrong URL parameter also lead

to failure of tests.

Visibility of web elements

One of the reasons for the failure of our automation code is because of the visibility of

web elements. This happens mostly because the object is in hidden state or the object cannot

be identified using the right Path/CSS selectors. Hence our tests have to be tweaked

sometimes to get the appropriate results.

45

Cross browser automation issues

Scripts generated as part of research can work only in Firefox web driver. One of the

issues with our Selenium automation can be is X paths used in FF may not work for Internet

Explorer or Safari. However, usage of unique selectors can resolve cross browser problems.

Ajax calls

A common problem we faced during automation with selenium web driver was to handle

Ajax based pages. Since it is harder to estimate Ajax call completions, Ajax pages

automation failed due to timeout issues.

46

CHAPTER 5 CONCLUSION AND FUTURE WORK

 Our objective was to automate applications using natural language scripts. We applied

natural language techniques to tag manually written English test cases and map them to

automation code. We had to start with creating tagged resources from test cases samples. For

this purpose we have built our own test language model to tag test cases and used that later as

reference to tag untagged test cases.

 The biggest drawback in our research was the corpus size and we tried to achieve

the goal with a smaller corpus. So we have worked with methods, so that small amount of

tagged resources can be used to effectively carry on the parts of speech tagging task. We

extract the actions using NLP techniques and map these keyword actions to the

corresponding selenium web driver actions. Though our concept can never guarantee a

perfectly automated test suite but it can definitely aid the user in creating one.

5.1 Summary of the research

 User acceptance testing depicts the end user satisfaction and hence there is the real need

for automating UAT. A lot of researchers have worked in this area since 2005. Our work is

most closely related to the Cucumber or Robot Test Framework approaches. However, our

research is unique in the following ways:

a. The user is allowed to write test cases in a free form language. Other

frameworks force the user to build the test cases using their existing

keywords.

47

b. The tool uses Selenium web driver for its base code generation. This shall

be considered as one of the biggest positives of our research as UI

automation is popular amongst open source Selenium contributors. Record

and play back tools as Selenium IDE gives us the base code but the

generated code is never guaranteed to run again after first instance and is

difficult to maintain them.

c. The amount of time spent in creating UI automation scripts from scratch is

enormous and requires a lot of expertise. Our research gives the user the

ability to work on a readily available base code to tune it, as it is nothing

other than Selenium Web drive code. Code reuse is the biggest objective of

our research. Other frameworks automate using their tool.

5.2 Future Work

During the implementation phase we had come up with several ideas that can further

enhance the capabilities of the tool:

1. Make the tool open source similar to Robot Test Framework. More the

number of users result in more test cases. When the number of test cases

gets added the corpus size increases. As a result, a better categorization of

test cases can be achieved if the corpus coverage increases.

2. Develop a mechanism to automatically preprocess input test cases so that

clean data is fed to our model.

48

3. Use a different version of the tool, which uses only the keywords map

/automation code library as open source, in situations such as a professional

test environment where test cases cannot be shared to outside users.

4. Make the entire concept work on a cloud server like sauce labs [34] where

the user does not need to worry about the platform or the type of browsers.

5. Make the concept more abstract by generating automation code as

Selenium Page objects [49].

49

REFERENCES

[1] “All About - User Acceptance Testing (UAT).” Guru99. Accessed June 6, 2014.

http://www.guru99.com/user-acceptance-testing.html.

[2] Bajpai, Neha. “A Keyword Driven Framework for Testing Web Applications.”

International Journal of Advanced Computer Science & Applications 3, no. 3 (2012).

[3] Bc. Dávid Chmurˇciak. “Automation of Regression Testing of Web Applications,”

2013.

[4] Brants, Thorsten. “TnT: A Statistical Part-of-Speech Tagger.” In Proceedings of the

Sixth Conference on Applied Natural Language Processing, 224–31. ANLC ’00.

Stroudsburg, PA, USA: Association for Computational Linguistics, 2000.

doi:10.3115/974147.974178.

[5] Brill, Eric. “A Simple Rule-Based Part of Speech Tagger.” In Proceedings of the

Workshop on Speech and Natural Language, 112–16. Association for Computational

Linguistics, 1992. http://dl.acm.org/citation.cfm?id=1075553.

[6] Burnstein, Ilene. Practical Software Testing: A Process-Oriented Approach. Springer,

2003.

[7] “Cucumber/cucumber.” GitHub. Accessed June 7, 2014.

https://github.com/cucumber/cucumber.

[8] Corpus Linguistics: An Introduction. Pearson Longman, 2008.

[9] Dash, Niladri Sekhar. Corpus Linguistics and Language Technology: With Reference

to Indian Languages. Mittal Publications, 2005.

50

[10] Diane Mueller. “Survey Says: Selenium by a Nose for Most Popular Test

Framework.” Accessed June 8, 2014.

http://www.activestate.com/blog/2010/07/survey-says-selenium-nose-most-popular-

test-framework.

[11] “Examples for Test Cases in Software Testing?” Answers.com. Accessed June 6,

2014. http://wiki.answers.com/Q/Examples_for_test_cases_in_software_testing.

[12] “FitNesse.UserGuide.FitFramework.” Accessed June 8, 2014.

http://fitnesse.org/FitNesse.UserGuide.FitFramework.

[13] Hanna, Milad, Nahla El-Haggar, and Mostafa Sami. “A Review of Scripting

Techniques Used in Automated Software Testing.” International Journal of Advanced

Computer Science and Applications 5, no. 1 (2014). doi:

10.14569/IJACSA.2014.050128.

[14] “Reducing Testing Effort Using Automation.” International Journal of Computer

Applications 81, no. 8 (November 15, 2013): 16–21. doi: 10.5120/14032-1837.

[15] Hartmann, Jean. “30 Years of Regression Testing: Past, Present and Future.”

Accessed June 6, 2014. http://www.uploads.pnsqc.org/2012/papers/t-

67_Hartmann_paper.pdf.

[16] Hetzel, William C. The Complete Guide to Software Testing. 2nd ed. Wellesley,

Mass: QED Information Sciences, 1988.

[17] “How to: Create a Data-Driven Coded UI Test.” Accessed June 8, 2014.

http://msdn.microsoft.com/en-us/library/ee624082.aspx.

51

[18] “http://docs.seleniumhq.org/docs/01_introducing_selenium.jsp#test-Automation-for-

Web-Applications,” 2014.

[19] “http://wiki.answers.com/Q/Examples_for_test_cases_in_software_testing],

[http://www.testingken.com/forum/showthread.php?t=3076],[vietnamese Board for

Testing],” 2010.

[20] Kasurinen, Jussi, Ossi Taipale, and Kari Smolander. “Software Test Automation in

Practice: Empirical Observations.” Advances in Software Engineering 2010

(February 4, 2010): e620836. doi:10.1155/2010/620836.

[21] Kent,John ,2007, Test Automation From Record/Playback to Frameworks,Paper

given at EuroSTAR 2007, Stockholm

[22] “Keyword-Driven Test Automation Framework | Ranorex Blog.” Accessed June 8,

2014. http://www.ranorex.com/blog/keyword-driven-test-automation-framework.

[23] Kit, Edward. “‘Integrated, Effective Test Desi Gn and Automation.’ Software

Development (February),” 1999.

[24] Laukkanen, Pekka. “Data-Driven and Keyword-Driven Test Automation

Frameworks.” HELSINKI UNIVERSITY OF TECHNOLOGY, 2006.

http://eliga.fi/Thesis-Pekka-Laukkanen.pdf.

[25] Li, Eldon Y. “Software Testing in a System Development Process: A Life Cycle

Perspective.” JOURNAL OF SYSTEMS MANAGEMENT, 1990, 23–31.

[26] Lingham, Vinny. “The Growth in Web Appplication Usage in the US.” Vinny

Lingham’s Blog. Accessed June 6, 2014. http://www.vinnylingham.com/the-growth-

in-web-appplication-usage-in-the-us.html.

52

[27] “List of Web Testing Tools.” Wikipedia, the Free Encyclopedia, June 6, 2014.

http://en.wikipedia.org/w/index.php?title=List_of_web_testing_tools&oldid=6104009

05.

[28] Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini. “Building a

Large Annotated Corpus of English: The Penn Treebank.” Compute. Linguist. 19, no.

2 (June 1993): 313–30.

[29] Messer’s, Gerard. “Agile Regression Testing Using Record & Playback.” In

Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, 353–60. OOPSLA ’03. New

York, NY, USA: ACM, 2003. doi:10.1145/949344.949442.

[30] Modjeska, Natalia N., Katja Markert, and Malvina Nissim. “Using the Web in

Machine Learning for Other-Anaphora Resolution.” In Proceedings of the 2003

Conference on Empirical Methods in Natural Language Processing, 176–83. EMNLP

’03. Stroudsburg, PA, USA: Association for Computational Linguistics, 2003.

doi:10.3115/1119355.1119378.

[31] Myers, Glenford J. The Art of Software Testing. Business Data Processing, a Wiley

Series. New York: Wiley, 1979.

[32] Narayanan Jayaratchagan. “Fit for Analysts and Developers.” JavaWorld, June 12,

2006. http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-

and-developers.html.

[33] “Natural Language Toolkit.” GitHub. Accessed June 6, 2014.

https://github.com/nltk.

53

[34] Pan, Jiantao. 18-849b Dependable Embedded Systems, n.d.

[35] “Paper2 A_Keyword_Driven_Framework_for_Testing_Web_Applications.pdf.”

Accessed June 8, 2014. http://thesai.org/Downloads/Volume3No3/Paper2-

[36] “Part-of-Speech-Tagging.ppt - Part-of-Speech-Tagging.pdf.” Accessed June 8, 2014.

http://www.cs.umd.edu/~nau/cmsc421/part-of-speech-tagging.pdf.

[37] Perkins, Jacob. Python Text Processing with NLTK 2.0 Cookbook. Birmingham,

U.K: Packt Publishing, 2010.

[38] “Pros and Cons of Keyword Driven Testing.”

Http://blog.bughuntress.com/automated-Testing/the-Pros-and-Cons-of-Keyword-

Driven-Testing, May 3, 2013.

[39] R. Strang. “Data Driven Testing for Client/server Applications.” In Software Quality

Engineering, n.d.

[40] Rao, Ananth. HP QuickTest Professional WorkShop Series: Level 1 HP Quicktest.

Outskirts Press, 2011.

[41] “Robotframework-Seleniumlibrary - A Web Testing Library for Robot Framework -

Google Project Hosting.” Accessed June 9, 2014.

https://code.google.com/p/robotframework-seleniumlibrary/.

[42] Sandipan Dandapat. “Master’s Thesis on ‘Parts of Speech Tagging for Bengali,’”

2009.

[43] “Sauce Labs: Supported Device, OS, and Browser Platforms.” Accessed June 8,

2014. https://saucelabs.com/platforms.

54

[44] “Semperos/watir-Robot.” GitHub. Accessed June 8, 2014.

https://github.com/semperos/watir-robot.

[45] Simon Stewart. “The Architecture of Open Source Applications: Selenium

WebDriver.” Accessed June 8, 2014. http://aosabook.org/en/selenium.html.

[46] Singh, Jyoti, Nisheeth Joshi, and Iti Mathur. “Part of Speech Tagging of Marathi

Text Using Trigram Method.” International Journal of Advanced Information

Technology 3, no. 2 (April 30, 2013): 35–41. doi:10.5121/ijait.2013.3203.

[47] Soeken, Mathias, Robert Wille, and Rolf Drechsler. “Assisted Behavior Driven

Development Using Natural Language Processing.” In Proceedings of the 50th

International Conference on Objects, Models, Components, Patterns, 269–87.

TOOLS’12. Berlin, Heidelberg: Springer-Verlag, 2012. doi:10.1007/978-3-642-

30561-0_19.

[48] [49] “Step-by-Step Selenium Tests with Page Objects, Dsl and Fun!” Perdido Is Lost!

Accessed June 7, 2014. http://luizfar.wordpress.com/2010/09/29/page-objects/.

[49] Thummalapenta, Suresh, Saurabh Sinha, Nimit Singhania, and Satish Chandra.

“Automating Test Automation.” In Proceedings of the 34th International Conference

on Software Engineering, 881–91. ICSE ’12. Piscataway, NJ, USA: IEEE Press,

2012. http://dl.acm.org/citation.cfm?id=2337223.2337327.

[50] “Untitled - Uat-Test-Process.pdf.” Accessed June 8, 2014.

http://www.bced.gov.bc.ca/imb/downloads/uat-test-process.pdf.

[51] Vinci Liu and James R. Curran. “Web Text Corpus for Natural Language

Processing,” NSW 2006sydney.edu.au/engineering/it/~james/pubs/ps/eacl06web.ps.

55

[52] “Xchmurc_thesis.pdf.” Accessed June 7, 2014.

http://is.muni.cz/th/143240/fi_m/xchmurc_thesis.pdf.

[53] “xebia/Xebium.” GitHub. Accessed June 7, 2014. https://github.com/xebia/Xebium.

[54] “Webdriver Introduction — Selenium Documentation.” Accessed June 12, 2014.

http://docs.seleniumhq.org/docs/01_introducing_selenium.jsp#test-automation-for-

web-applications.

[55] Fewster and Graham, 1999; Kit, 1999; Pettichord, 1999; Nagle, 2000; Zallar, 2001;

Rice, 2003

[56] E. Dustin, J. Rashka, and J. Paul. Automated Software Testing. Addison-

Wesley,1999.

[57] “Workshop on Controlled Natural Language”, Fuchs, Norbert E. Controlled Natural

Language: CNL 2009, Marettimo Island, Italy, June 8-10, 2009, Revised Papers.

Springer, 2010.

56

APPENDIX A1 : DETAILED SOFTWARE REQUIREMENTS

Continued Software Detailed requirements from section 1.3

1. Creation of a POS tagged Custom Test Corpus:

1.1 To collect reasonable amount of Test Samples for a particular functionality to

test.(In this case email login functionality)

1.2 Preprocessing of test cases has to be done to correct spell errors.

1.3 Parts of Speech tagging to be done for every test case step and expected output

separately.

1.4 Any mismatch of tags to be rectified to create the ‘Test-Cases’ corpus.

 2. Training of the POS tagger:

2.1 To identify and come up with custom tags specific to our ‘test cases’ corpus.

2.2 Identification of a suitable POS tagger and to train the tagger on the ‘test cases

corpus”

3. Input test cases from the User.

3.1 Get the input from the user in form of test cases and parse them for Test Steps and

Test Output.

 3.2 Mapping of Objects and Object IDs from the test cases .

 4. Understanding the Semantics of the Input test cases:

4.1 Natural language processing for understanding the Semantics of the test case

4.2 Sentence Boundary detection techniques to break combination of test cases.

57

4.3 Input Test cases to be deduced to <Action, Object, parameter> form,

 5. Natural Language to Automation script conversion.

5.1 Choice of right automation tool as Selenium, which can run UI, tests in a browser.

 5.2 Every deduced <Action, Object, Parameter > should have a corresponding

automation script mapped that runs in browser.

6. Assertions for every Test case as fail or pass.

6.1 Every test case in the input given spreadsheet has to be converted to a test

method.

6.2 The whole spreadsheet of test cases should be converted to test class.

58

APPENDIX A2 : VOCABULARY

Black-Box Testing: A type of testing where the internal workings of the system are

unknown or ignored. Testing to see if the system does what it is supposed to do.

Capture and Replay : A scripting approach where a test tool records test input as it is sent to

the software under test. The input cases stored can then be used to reproduce the test at a later

time. Often also called record and playback.

Functional Testing: Testing to verify and validate the specified functional requirements

Non-Functional Testing: Testing of those requirements other than functional requirements.

Stress, performance, compatibility and usability are some examples.

Regression Testing : Retesting previously tested features to ensure that a change or a defect

fix has not affected the previous versions.

NLP- (Natural language processing) :Natural language processing (NLP) is a field of

computer science, artificial intelligence, and linguistics concerned with the interactions

between computers and human (natural) languages.

POS tagging::Part of speech tagging is the most likely sequence of syntactic categories for

set of words in a sentence.

Test Automation: The use of software to control the execution of tests, the comparison of

actual outcomes to predicted outcomes

SUT : System Under Test : Web application under Test.

Test Corpus : a large and structured set of test cases in the form of text files.

 NLTK: Natural Language Tool Kit is a set of Python Modules for NLP.

Imperative pattern: English sentence pattern that gives advice or instructions.

59

Web applications: Applications that can run only in an Internet Browser.

IR: Information Retrieval: Technique to retrieve meaningful information or semantics from

a structured text .

Lexical Unit: A single or group of words that form the basic elements of language.

Test Execution: The activity that occurs between developing test scripts and reporting and

analyzing test results

	2014
	Semi Automated User Acceptance Testing using Natural Language Techniques
	Arvind Madhavan
	Recommended Citation

	Microsoft Word - ArvindThesisFinal_Pdf.docx

