
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2014

An XML-based system for management and query
of video databases with user identifiable and
annotated scenes
Zheng Li
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Li, Zheng, "An XML-based system for management and query of video databases with user identifiable and annotated scenes" (2014).
Graduate Theses and Dissertations. 14231.
https://lib.dr.iastate.edu/etd/14231

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14231?utm_source=lib.dr.iastate.edu%2Fetd%2F14231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

An XML-based system for management and query of video databases with user

identifiable and annotated scenes

by

Zheng Li

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

 MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Shashi K. Gadia, Major Professor
Leslie Miller

Manimaran Govindarasu

Iowa State University

Ames, Iowa

2014

Copyright © Zheng Li, 2014. All rights reserved.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES ... iii

ABSTRACT ... iv

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. DESIGN OF STORAGE MODEL .. 7
2.1 Movie Type ...8
2.2 Person Type ... 10
2.3 Award .. 11
2.4 Query ... 11
2.5 Generate Testing Video Database... 12

CHAPTER 3. USER INTERFACE DESIGN AND IMPLEMENTATION 15
3.1 Movie Information Display .. 15
3.2 Query the Database .. 21

3.2.1 Query Examples .. 23
3.3 Movie and Scene Playback... 25
3.4 Schema Diagram .. 28

CHAPTER 4. PRIOR AND RELATED WORK .. 30

CHAPTER 5. CONCLUSION AND FUTURE WORK ... 32
5.1 Conclusion ... 32
5.2 Future Work... 33

ACKNOWLEDGEMENTS ... 35

REFERENCES .. 36

iii

LIST OF FIGURES

Page

Figure 1. Different situations of scene annotation (P represents “playing”, E represents
“eating”, and S represents “Singing”). ...6

Figure 2. Overall data structure for XML-based video database7

Figure 3. Data structure of complex type Movies ...8

Figure 4. Date structure for Actor ..9

Figure 5. The hierarchy of scene structure.. 10

Figure 6. XML Schemas .. 12

Figure 7. List of features and corresponding values.. 14

Figure 8. Overview of Movie Database Manager user interface 16

Figure 9. Scene tab in Movie Information ... 17

Figure 10. Add new scene dialog ... 18

Figure 11. A popup windows indicating the end of scene materialization. 20

Figure 12. Persist unsaved changes. ... 21

Figure 13. User query interface .. 22

Figure 14. Video playback interface... 27

Figure 15. Schema diagram of Movie Database Manager ... 28

iv

ABSTRACT

 Video is one type of document. However, unlike traditional documents and

databases that are searchable, video is not. At the same time, video is typically lengthy

and contains large amount of useful and/or useless information. Therefore, it is desired to

make the video manageable and searchable.

Metadata and scene annotation are two keys to resolve this challenge. In this

thesis we designed and implemented an XML-based Movie Database Manager (MDM)

as a proof of concept. The video information is well organized in its natural way and

stored in one single XML file. Videos are divided into user defined scenes with

annotations for quick and exact query with build-in query engine. Users can also create,

edit, and delete scenes annotations without physically split them in the video files. MDM

integrates the query builder to help users run pre-defined queries or create and maintain

their own ones. These queries can be stored in the same XML file. A full functional video

player is also implemented to help user play their query results, create / edit / delete scene

annotations.

1

CHAPTER 1. INTRODUCTION

Videos are wildly used to record information nowadays. Videos can be considered as

documents, but with great difference that unlike most of the documents which are

searchable, video contents are not. Videos are long as well. This intrinsic feature of video

raises the challenge: how can one keep track of personal or public collection of videos?

Videos are also complicated. Two distinct but essential concepts are containers and

codecs. Container describes the structure of the video, basically means where the various

pieces are stored, how they are interleaved, and which codecs are used by which pieces.

The container can also include synchronization information such as audio track, subtitles,

and metadata [1]. The container is normally reflected by its file extension of the video file

such as .asf, .avi, .mp4, etc. Codec is a way of encoding audio or video into a stream of

bytes. This process is usually lossy [2]. Optimized method can compress the video and

audio to a relatively small size while at the same time maintain the quality. However,

more resources are required to decode and playback the video. Based on various purposes,

codecs can be classified as:

 Video capture, which includes H.264/MPEG-4 AVC, MJPEG, and DV/HDV etc.

 Disc-based delivery, which includes MPEG-2, Microsoft VC-1 etc.

 Streaming for Web, which includes WMV, H.264/MPEG-4 etc.

Scene is another important aspect of video. Commercial movies, public speeches, and

homemade recordings are all composed of scenes. Scene is part of video and generally is

considered as some actions occurred in a continuous time in some specific location [3].

However, different definitions might be applied so that a scene might not be limited in

single location or continuous time but on specific subject. One video or movie might

2

contain hundreds to thousands scenes based on different scenarios or features. Therefore

another question arises: how can people find the scenes that satisfy their interests without

go through the whole video?

There are a number of commercial video management programs available in the

market such as Movie Collector, Movie Label, and My Movies etc. All these

management programs have similar functionalities and mainly focus on the commercial

movies. As the web-streaming and homemade digital videos increase rapidly, a

methodical way to find the desired information in video becomes important. However,

none of these products provide the ability to looking for specific scene in the whole

movie and hence make them less capable to solve the challenge.

Another type of software is scene splitter. This type of software tends to split the big

video files into smaller pieces. There are a couple of different algorithms to achieve this

goal by sudden optical change, by date of shooting, or by black frame between scenes.

None of these algorithms works perfect and split results are barely consistent. In addition,

these programs break the video file integrity and create hundreds to thousands small files

for each video and hence make video management even more difficult.

A user-friendly video management system should enable users to identify and refer to

any scenes they wanted or interested. To address the challenges, scene identification and

their annotation with metadata are the key. The question is how to store the information.

Relational database requires the information to be dismantled and atomized. This breaks

the natural structure of the information and scatters the information into pieces [4]. The

information about videos might be incomplete, missing. For example, the video might not

3

have any audios, and hence the metadata won’t contain this part of information. In

addition, video scenes can contain sub-scenes, which are of interest on their own right,

giving rise to a nested scene hierarchy. All these make the relational database

inappropriate for this circumstance.

Here we report an XML-based video management system Movie Database Manager

(MDM), which gives user ability to review video information, manage scenes, query the

video information, and movie/scene playback. Although video is normally considered as

a broader definition, we use video and movie interchangeable from now on. The

functionalities of this system are implemented with DOM (Document Object Model),

XPath (XML Path Language), and XQuery. DOM is used as standard accessing and

manipulating tools for the XML file [5]. XPath provides the ability to navigate the XML

file and select nodes by different criteria [6]. XQuery is a query language similar to SQL

but for xml documents. It is used to query and transform a collection of data, which can

be structured or unstructured, to fulfill more complicated query tasks [7].

Currently the system is still a proof of conception, so several assumptions have been

made. Frist of all, we assume that the video database is comprehensive, which means it

contains different type of videos, different file format, etc. However, current

implementation use 250 movie trailers as video source and all files are in .mp4 format.

Secondly, we assume that the scene annotation is accurate while current setting randomly

generates scenes from video files and random annotations have been generated for the

scene. Annotating of video scenes is a very time consuming and tedious process and not

possible within the human resource limits that we have at hand. However, it is to be

noted that it is perhaps a fraction of the time it takes to produce actual videos. It is hoped

4

that some industry practices would evolve to address this issue. This would also help

users to customize their own user-defined scenes.

The rest of the document is organized as follows. In Section 2, the data storage model

has been described. How we structure the xml file to store different types of information

has been discussed. Section 3 is focus on the program implementation and user interface

introduction. Various functions of MDM are discussed. Section 4 briefly investigates the

previous and similar work, and Section 5 concludes the project description and discusses

some future thoughts.

Unlike relational database, XML does not have to comply with the data uniformity.

Simple object such as atomic values or very complex objects such as nested or hierarchy

structure can be saved in the same XML instance [4]. Most importantly, the data structure

in the XML file can offer natural ways of storing object. We end this section with an

informal example.

When creating scene annotations, user could encounter different situations. The

scenes could be continuous, scattered, overlapping, or nested. In order to give an example,

we hypothesize that a database {M} consisting of a single video M with the title “Fun” is

given. Figure 1 shows a scenario consisting of multiple steps where these situations occur.

In each step the user interaction is shown on the left and the resulting internal

representation is shown on the right. The user has a context ranging from the whole video

to a scene that has been previously insolated. In the given context the user identifies

scenes and associates the desired annotations with them. The result is a hierarchical

partitioning of the video. Sometimes in some part of the hierarchy the level is

5

incremented by one. Logically, a scene identified with particular annotations will consist

of a sequence of finitely many disjoint clips. In this document the term clip stands for an

arbitrary sequence of frames without a break. In the example, annotations “eating”,

“playing”, and “singing” denoted in short as “E”, “P”, and “S” are used by the user.

Whereas a clip is analogous to an interval on real line, a scene is analogous to a finite

union of intervals introduced in [8,9].

Continuous or scattered scene annotations are kept as they are, as shown in Figure

1(a). While for every two overlapped scene annotations, they will be split into three new

scene annotations. Non-overlapped parts will kept their original annotations, but their

start or end position will be adjusted to the edge of overlapping. A new scene will be

created for overlapped part and it inherits both scenes’ annotation. For example, in Figure

1(b), the new scene has annotation of both “E” and “P”. A sub-scene must have its start

and end between its parent scene. When a sub-scene has been created, its parent

physically keeps its original annotations but should have all annotations from its sub-

scenes.

The main goal of this thesis is to make the database of videos queriable. Although the

context of a query consists of a database containing multiple videos here we offer some

examples assuming that our database {M} consists of a single movie M. The video level

metadata (e.g. movie title and directory) and user defined annotations form the main

ingredients for queries. Queries will be expressed in XQuery language enabling a user to

ask sophisticated queries with the objective of narrowing the scenes as mush as possible,

here we confine to simple examples with simple informal syntax.

6

Figure 1. Different situations of scene annotation (P represents “playing”, E represents
“eating”, and S represents “Singing”).

Query {“Fun”} will result in the whole video. The query {“Misery”} will return

nothing. The query {“S”} will return a scene consisting of a single clip from level 2.

Query {“L”} will return nothing, but if there were other videos in the database where

annotation “L” appears all corresponding clips from all videos will be displayed. Query

{“E”} will return all clips where annotation “E” appears. The query {“E”, “P”} will

return all clips where “E”, or “P”, or both appear. Note that {“E”} will absorbs {“S”}

completely. In the current state of the database the results of queries {“E”} and {“E”, “S”}

are indistinguishable.

7

CHAPTER 2. DESIGN OF STORAGE MODEL

The structure of the XML file has been described in corresponding schema file which

was developed with commercial software XMLSpy. The contents of the whole XML file

have been categorized into four major parts:

 Video Information

 Person Information

 Reward Information

 Query Information

Each part of the information is a complex type so that we can treat them as a whole.

The overall document structure is shown in Figure. 2.

VideoDB

Movies

Persons

Awards

Queries

Figure 2. Overall data structure for XML-based video database

Solid line indicates that it is a required component, thus the root element VideoDB is

required. Elements shown in dotted line are optional. We expect the video database to be

a comprehensive one, but we cannot rule out the possibilities that in specific videos only

part of the information is available. This approach leads to the great flexibility of using

XML as information storage.

8

As clearly indicated by their names, these four types, realized as complex types

following XML terminology, are used to separate information based on their nature and

also to normalize the data to avoid unnecessary duplications. Although the order of these

parts is not essentially important, we add the constraint on the order of these four

elements to make the structure more organized.

2.1 Movie Type

This is the most complicated type as most of the information resides in this element.

As shown in Figure. 3, inside the Movie type, the information has been divided again into

three types based on its nature.

Figure 3. Data structure of complex type Movies

Each movie has a unique movie id as attribute, which is the primary key to

distinguish the movie. This has been designed as a required attribute. Industrial

information about the video such as title, release date, budget, rating, overview, actors etc.

9

is considered as movie info. We try to include as much information as possible so that

there will be enough information for user to narrow down their searches based upon their

interests. It is useful to note that most of the data inside MovieInfo are atomic, some of

them are not. For example, Actors element has an attribute PersonID which points to

Person element so that users can find the actor’s personal information. In addition, the

actor has a Character element as this is part of the movie information instead of personal

information, as indicated in Figure. 4.

Figure 4. Date structure for Actor

MetaData is the video’s technical information such as FileName, BitRate, Codec,

Resolution, AudioTrack etc. Again, most of these elements are atomic values except for

the AudioTrack. A video can have multiple audio tracks with different purpose or

languages. In addition, audio track can has its own technical information including

sample rate, language etc. Therefore, the AudioTrack is considered as another complex

type.

The last but the most important child of MovieType is the Scene element. A scene is

normally considered as an action in a single location and continuously. While there could

exist other classifications. For example, a video might be split by topic of interest. Here,

we do not limit how the scene is split. Users can split the video in any way they want

10

based on their own interests. To better mimic the real world example, we designed the

scene structure as a hierarchy structure, as indicated in Figure 5.

Scene

0 . .

SceneID

EndFrame

Scene

0 . .

StartFrame

Features

Actors

Figure 5. The hierarchy of scene structure

Three elements are defined as required, which are SceneID, StartFrame, and

EndFrame. SceneID is the identifier of scene, but is only unique within a movie. The root

scene of a video is considered as the whole video and has an id of “1”. While the second

layer of scenes have ids like “1.x”, and so on. User can define as many as layer they want.

The StartFrame and EndFrame define the boundary of a scene in the video. The rest of

the elements are optional, as shown in Figure. 5. In order to remove information

duplications, the Actor and Feature elements are only physically appear in leaf scene.

Non-leaf scene does not have these two element filled, but shows a collect of actors and

features from all its descendant scenes in the user interface.

2.2 Person Type

Person is a relatively simple complex type. It is used to store personal information for

actors, directors, speakers etc. Similar as Movie element, a PersonID attribute is used as

11

unique identifier for Person element and it is an IDREF type so that Movie element can

get personal information by PersonID. Child elements include Name, DateOfBirth,

Biography etc.

One important element is Award element in Person, as indicated in following schema.

This element contains the information about the awards the person received. It also has a

MovieID attribute to point to the movie or video the person was rewarded for.

2.3 Award

The third element of VideoDB is Award. This is also a pretty simple complex type,

which record details of all types of awards. A unique AwardID attribute is used as

identifier. Award name, country and description are the only elements.

2.4 Query

A comprehensive video management system should have the capability to run user

define queries as pre-defined categories might not be sufficient to narrow down the video

searching. And users might want to provide their own criteria for video screening. The

MDM integrates the XQuery so that users can write their own queries and also save the

queries for later use or future development in the Query element.

Query element has a unique attribute QueryID just like MovieID, PersonID, and

AwardID. The Title element stores a short name for the query and Description element

describes the details of the query. The String element stores the query itself.

12

<xs:element name="Award" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="AwardID" type="xs:IDREF"/>
 <xs:attribute name="Year"/>
 <xs:attribute name="Role"/>
 <xs:attribute name="MovieID" type="xs:IDREF"/>
 </xs:complexType>
</xs:element>

(a) XML schema for Award Element in Person Element

<xs:complexType name="AwardType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Country" type="xs:string"/>
 <xs:element name="Description" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="AwardID" type="xs:ID" use="required"/>
</xs:complexType>

(b) XML schema for complex type AwardType

<xs:complexType name="QueryType">
 <xs:sequence>
 <xs:element name="Title" type="xs:string"/>
 <xs:element name="Description" type="xs:string"/>
 <xs:element name="String" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="QueryID" type="xs:ID" use="required"/>
</xs:complexType>

(c) XML schema for complex type QueryType

Figure 6. XML Schemas

2.5 Generate Testing Video Database

As mentioned in our assumptions, the work presented here is a proof of concept. Thus

we create a sample XML video database to test our implementation. Considering the

large amount of information, it is not realistic to manually input all the information. Thus

the database was created step by step as described below.

The movie list is obtained from IMDB (Internet Movie Database), the most

authoritative source for movies, tvs. It is not possible to include all movie information, so

we choose the Top 250 movies as our movie list. An open source java project

13

themoviedbapi is then used to fetch MovieInfo and Person from another popular movie

information source TMDB (The Movie Database) by movie titles. The information is

inserted into the video database at right position with duplicated information removed.

The MovieID and PersonID are generated and mapped automatically during this process.

The movie trailers are used as our video file sources. Xuggler, a third-party java

package handling multimedia, is used to extract the metadata from the video files. The

metadata information is then appended as MetaData element right after the MovieInfo

element for each movie.

Scene annotations are generated randomly. Although the Scene element has been

designed as a hierarchy structure, we only create two levels in the beginning: a root scene

and random number of child scenes. For each movie, the number of scenes is randomly

generated between 1 and 10. After the number of scenes has been determined, the

percentage of scene length over movie length is randomized for each scene and their total

is normalized to 100% and then followed by calculating the start frame and end frame.

For meta data associated with the scene, actors are also randomly picked from the actors

in MovieInfo element.

Scene feature is critical as it is one of the keys for users to find scene precisely using

some logical (or physical) criteria. Again, randomization is used to populate scene

features. We defined four types of features (denoted as FeatureName in the XML file)

and various feature value (denoted as FeatureValue in the XML file), as indicated in

Figure 7. Other types of scene feature can be added into the database through the user

interface and will be discussed in next chapter. This makes searches highly customizable.

14

Moods Locations Times Actions

Happy Mountain Morning Eating

Sad Sea Noon Sleeping

Angry River Evening Talking

Anxious Sky Night Playing

Bored OutSpace Dawn Singing

Cheerful House Driving

Disappointed School Fighting

Frustrated Park Running

Lonely Supermarket

Peaceful Street

Figure 7. List of features and corresponding values

Award information was populated manually from IMDB as no suitable API available

to retrieve the award information. Only part of the movies and persons have their award

information filled.

The Query part is intentionally left empty at the beginning as it is programmatically

added when users enter their own queries.

15

CHAPTER 3. USER INTERFACE DESIGN AND IMPLEMENTATION

A Java Swing based interface has been developed for user interaction with the XML-

based video database. The overall interface is shown in Figure. 8. There are four tabs on

top of the main screen providing four main functionalities which are described in details

in following sections.

In addition to the standard Java SDK, a couple of third-party packages have been

used to facilitate the implementation including:

 Saxon: used as our XQuery engine

 Vlcj: used for video playback

 Xuggler: used for video metadata extraction and scene materialization

 Themoviedbapi: used for commercial movie information retrieval from
themoviedb.org

3.1 Movie Information Display

Movie Information tab is used to display video information. This panel has been

divided into three sub-panels. Data have been read from XML file and re-organized for

better information demonstration. Thus, the information layout on the screen is not

necessarily identical to its physical structure in the XML file.

This is the default screen showing when program starts. The video list table displays

all videos in the XML file and right bottom panel shows information of first video in the

video list table by default.

Left panel is a tree structure that lists some basic categories that users can narrow

down the video display. Currently Country, Genre, Language, Release Year, and Studio

have been added into the list and potentially more criteria could be added. Each time

16

when user click on the root node (Movies), the movie list table on top right will be

updated and show all movies in the file. Clicking on non-leaf node won’t do anything.

When a user clicks on any leaf-node under each category, videos fall into selected

category will be listed in video list table. At the same time, right bottom panel changes to

current first video in the video list table. For example, if user click the node “The United

States” under Country node (not shown in Figure. 8), then all videos produced in the

United States are listed. The details of the first movie in the table will be display in right

bottom panel.

Figure 8. Overview of Movie Database Manager user interface

Right panel is split into two sub-panels. Top one is used to display filtered video

results. As we indicated earlier, Movie element contains most of the information. A single

17

table won’t be able to display them all in a manageable way, so only a couple of fields

are included in the table such as id, title, etc. The information gives user a good overview

of the video. Right click on the selected movie will pop up a Play Movie menu so that

users can play the movie in Movie Player tab, as indicated in Figure. 8.

Details of the video are shown in right bottom panel. This tabbed panel has four panes

including Movie Details, Casts and Crews, Movie Metadata, and Movie Scenes. The

panel titles are self-explained. Movie Details displays industrial information of the video

and Casts and Crews display all persons related to video such as actors, directors, writers,

etc. These two tabs map to the MovieInfo element in the XML file. The third tab is

metadata of the video including file name, file location, codec, audios, etc. As clearly

indicated, it maps to the MetaData element in the XML file. The final part maps the

Scene element in the XML file, as indicated in Figure. 9. However, unlike the other three

tabs, it is not just displaying the scene information, but also is editable.

Figure 9. Scene tab in Movie Information

The Scene tab is split again into different zones. Left panel list all scenes in the

selected video with their frame range, start time, and duration. As an example, Figure. 9

18

shows all scenes in movie “The Shawshank Redemption”. When users click on any

scene, the corresponding actors and features are shown in the right panel. As we

mentioned in Chapter 2, a non-leaf scene shows all actors and features from its sub-

scenes. Thus XML is very conducive to such organization.

A number of actions can be performed by users regarding scenes. User can add sub-

scenes to the existing scene. When user clicks Add Scene button, a new dialog pops up, as

shown in Figure. 10.

Figure 10. Add new scene dialog

When this dialog shows up, it automatically applies the start frame and end frame of

current scene to limit the range of sub-scene. The Start Frame and End Frame are

required fields as we discussed in our storage model chapter. Scene id will be

19

automatically assigned. If we adding a scene inside scene 1.6 (scene 1.6 has no sub-scene

right now), then a scene id 1.6.1 will be assigned to the new scene. Users can also add

optional element actors and features for the new scene. When adding actors into sub

scene, we would like to limit the actors to be a subset of actors in parent scene. Thus

when users click Add Actor button, an Add Actor dialog shows up as indicated in Figure.

10. The drop-down list lists all actors have played a role in parent scene. Each time when

an actor is selected, the corresponding person id and character is shown in the text fields.

Add feature dialog is similar to add actor. However, we don’t limit the features. User can

add whatever features they believe can describe the scene well they are adding. This is at

the core of the ability of MDM to customization by users. A player is used to help user to

better annotate the scenes. This player is similar to the player in Movie Player tab, but

with much simpler controls.

There are a number of different situations when adding new scenes. If adding a scene

to a leaf scene, the scene will be directly listed under the parent scene. The original actors

and features of the parent scene are cleared as it is not a leaf scene any more. (As we

indicated in our storage model design, non-leaf scenes do not maintain their own actors

and features.) If adding a scene to a non-leaf scene, any child scenes falls in the range of

new scene will be deleted. Any child scenes that intersect with new scene will adjust their

start frame and end frame to give space to the new scene. If the new scene falls into the

range of a child scene, the child scene will be split to accommodate the new scene.

Besides the add scene function, users can also edit selected scene. The Edit Scene

dialog is similar as Add Scene dialog except that the actor table and feature table have

been prefilled. We will not discuss it in detail here.

20

Delete scene will remove current scene from the hierarchy structure. It also has a

number of different scenarios. If user deletes a leaf scene, it will be directly deleted. If a

non-leaf scene being deleted, all its sub-scenes are also deleted at the same time. If users

try to delete a root scene, then all non-root scenes are deleted. At the same time, the root

scene obtain full actor list from MovieInfo element with an empty feature list.

Single scene can also be watched in the Movie Player tab by click the Play Scene

button. Difference between play movie and play scene is user does not have to watch the

video from the beginning to end. Player plays scene from their start frame. In such

manner, users can quickly jump to the part they are interested.

It is beneficial that user can save or share scenes they are interested in. Therefore, we

implemented another important feature so that user can materialize the selected scene to a

real video file. A message windows pops up when the materialization finished, as

indicated in Figure. 11.

Figure 11. A popup windows indicating the end of scene materialization.

All changes occur in the memory until users press the Save Change button to persist

the changes. If the user forgets to save changes and tries to terminate the program, a

popup window will remind user to save the changes, as shown in Figure 12. In such way,

user won’t lost their work by inadvertently closing the program.

21

Figure 12. Persist unsaved changes.

3.2 Query the Database

The categories in the Movie Information panel are quite broad and only work on the

video level. To obtain more specific contents, users have to run pre-defined queries or

build their own queries. Thus, MDM provides a query panel to fulfill this requirement.

The query interface has several main fields. On the left side is a query list. All queries

stored in the XML file are shown here. As the query description could be long, it is

separated from the table and displayed in the textbox below the table. In the middle of the

query panel is the query builder and right side is the query result. To assist users in

building the queries, a console is added to display error and success messages.

Query id is an ineditable field and is generated automatically. When users click on a

query in the table, the query id, query name, description, and actual query show in their

own textbox, as indicated in Figure. 13. When running the query, the query is parsed by

the integrated Saxon XQuery engine. If it is a valid query, a success message will shown

in the console and results outputs to the result windows. The program then parses the

query output again. If it contains both MovieID and SceneID, the Play button is enabled.

Thus, if users click the Play button, the list of scenes extracted from the query results

will be sent to the Movie Player panel, which will be discussed in next section. The query

result can also be export as text file, html file, or xml file.

22

Figure 13. User query interface

Users can either create a query from scratch or modify an exist query to meet their

requirement. When a new query is created by clicking the New button, a query id is

assigned automatically. Users can then enter the query name, query description and start

to build query in query builder. After its creation, the query can be added into the query

list. If working on an existing query, adding it to the list will overwrite the original one.

Again, all these actions are still recorded in the memory until users click on the Save

button to persist them. Therefore, users can work on several queries at the same time and

save them as a batch. Here too, if user forgets to save query changes and tries to close the

program, the “Save Changes” windows pops up to remind user that there are unsaved

chnages.

23

3.2.1 Query Examples

The query does not tie to the scene search. Any information in the database could be

queried. For example, following is an simle query to generate a list of movies that have

rating at least 8. This query only returns movie information.

<Movies>{
 for $movie in doc("VideoDB.xml")//Movie
 where $movie/MovieInfo/Rating >= 8
 order by $movie/MovieInfo/Rating descending
 return <MovieID>{
 $movie/@MovieID, $movie/MovieInfo/Title, $movie/MovieInfo/Rating
 }</MovieID>
}</Movies>

Another example that looks for actor information is shown below

List the actor names and their characters played in movie “The Godfather”

<Actors> {
for $e in doc("VideoDB.xml")//Movie
for $a in $e/MovieInfo/Actors/Actor
for $p in doc("VideoDB.xml")//Person
where $e/MovieInfo/Title = 'The Godfather'
and $a/@PersonID = $p/@PersonID
return <Actor> {
 <Name>{$p/Name/text()}</Name>,
 <Character>{$a/Character/text()}</Character>
 }</Actor>
} </Actors>

Part of the results are shown below. The result does not contain any movie or scene

information, thus the Play button will not be activated.

<Actors>
 <Actor>
 <Name>Marlon Brando</Name>
 <Character>Don Vito Corleone</Character>
 </Actor>
 <Actor>
 <Name>Al Pacino</Name>
 <Character>Michael Corleone</Character>
 </Actor>
 ...
 <Actor>
 <Name>Gabriele Torrei</Name>
 <Character>Enzo, the baker</Character>
 </Actor>
</Actors>

24

Below are more queries that are not scene related by are also very helpful to retrieve

information from the database:

 Extract scenes with famous dialogs

 List actors who have acted in 25 or more movies.

 List all queries currently in the database

Besides for general information query, the most valuable and also the core of this

application is to query the scene information. Careful designed query can return user very

accurate results.

Extract non-root scenes that are at least 60 seconds long and the corresponding movie has revenue greater than
$2,000,000. The result is ordered by MovieID first and then by the length of the scenes.

<Playlist>{
 for $movie in doc("VideoDB.xml")//Movie
 where $movie//Revenue > 20000000
 return <Movie MovieID = "{$movie/@MovieID}">{
 for $scene in $movie//Scene
 let $sceneLength := $scene/EndFrame - $scene/StartFrame
 where $sceneLength div $movie/MetaData/FrameRate > 60
 and $scene/SceneID != "1"
 order by $movie/@MovieID, $sceneLength descending
 return <Scene>{$scene/SceneID, <Length>{$sceneLength}</Length>}</Scene>
 }</Movie>
}</Playlist>

The result lists the information satisfies above query and since both movie

information and scene information are included, the Play button will be activated and

user can send the result to player to review.

<Playlist>
 <Movie MovieID="m0000001"/>
 <Movie MovieID="m0000002"/>
 <Movie MovieID="m0000003"/>
 <Movie MovieID="m0000004"/>
 <Movie MovieID="m0000005"/>
 <Movie MovieID="m0000007"/>
 <Movie MovieID="m0000009">
 <Scene>
 <SceneID xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">1.2</SceneID>
 <Length>1981</Length>
 </Scene>
 </Movie>
 ...
 <Movie MovieID="m0000212">

25

 <Scene>
 <SceneID xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">1.7</SceneID>
 <Length>1967</Length>
 </Scene>
 </Movie>
 <Movie MovieID="m0000215"/>
 <Movie MovieID="m0000216"/>
 ...
</Playlist>

As user can ask any questions to obtain the movies or scenes they are interested, this

integrated query capability provides a very good opportunity for searching the database.

Some examples are listed below

 Find the scenes with famous dialogs. This assumes that annotations for famous
dialogs have been used.

 Show stunt scenes from James Bond and Jackie Chan movies.

 Extract action scenes involving chase from movies involving while collar crime
where both Tom Cruise and Gene Hackman have acted.

 Extract the climax scenes from movies with happy ending where the prosecutor
wins the case. Here, we envision that scene level annotations have been used to
identify scenes with climax and where prosecutor wins and movie level
annotations indicating have happy ending and court case.

 List the scenes in show “Colombo” where he talks about his wife. (In this serial it
was amusing that the detective Colombo would randomly mention his wife who
remained unseen for several seasons. Here it is assumed that such scenes have
been so annoted.

 Obtain scenes with theme music of movies that won Oscars for the best music.

 Show scenes where the actor Dev Anand is shown as singing sad songs.

 Show my favorite scenes from my favorite movies.

 Show the whole scene surrounding Dandi March from the Gandhi movie.

 Show suspense scenes from our family favorite movies.

3.3 Movie and Scene Playback

The third important function of Movie Database Manager is the integrated video

playback. When searching or querying the database, users will be interested in watching

the selected videos or scenes without leaving MDM. This is also helpful for making

26

scene annotations as it is very difficult to add or edit a scene without visual assistance. As

indicated in Sections 3.1 and 3.2, video and scene can be sent to this panel for playback.

That requires the player can handle both full video and part of the video.

The Movie Player panel has a table holding the playlist. To play a scene, it requires

both MovieID and SceneID to be present at the same time since a scene can’t be located

by SceneID alone. Therefore, both MovieID and SceneID are listed in the table. In

addition, video title is also present as reference. Figure. 14 shows the list of scenes

extracted from query result in Section 3.2. The playlist table accepts multiple selection

and generate a playlist for continuous play. Just like the scene materilization in scene

information section, user can materilization multiple scenes from the playlist.

A full functional player similar to the commercial player has been integrated, as

shown in Figure. 14. Bottom figure is the full control panel designed for the player. The

implementation utilizes an open source framework vlcj and allows an instance of a native

vlc media player to be embedded in the window. To make the embedded player work, vlc

player needs to be installed in the operation system.

The player has the basic functions such as play, stop, pause etc. It also has the

exclusive scene navigation functions. The leftmost button use to jump to previous scene

when playing a list of scenes. Similarily, the right button near the volumn adjustor jumps

to next scene in the playlist. These two functions help user to quickly go through or skip

the scene without waiting.

27

Figure 14. Video playback interface

Information about the playing scene are displayed in several places. On top of the

player, it always shows the video title of current playing scene. While in the console

28

window, more detailed infromation is displayed including SceneID, video title , start and

end. Sub-scenes are also listed in the console window if it is not a leaf scene.

Scene annotation is greatly enhanced here. When playing a scene, if a new scene is

desired, user can either enter the frame number or by click the Start Frame and End

Frame buttons to capture the start frame and end frame. Add Scene and Edit Scene Info

buttons invoke the same Add Scene and Edit Scene dialogs described in Section 2.1 and

will not be discussed here.

3.4 Schema Diagram

Figure 15. Schema diagram of Movie Database Manager

The schema diagram is mainly used to illustrate the structure of XML file. Left panel

is a tree structure demonstrating the main elements. Each node corresponds to the

29

complex type in the schema. Clicking on tree node will display schema information for

the node including diagram, properties, etc. in the right panel. This part of information is

used to assist query development.

30

CHAPTER 4. PRIOR AND RELATED WORK

The idea of using XML to store video and scene information for easy managing,

browsing, and searching was first initiated in an ISU course COM S 661 as a course

project.

Yu Liu and Sourajit Ghosh Dastidar developed a simple storage model of the VMS

(Video Management System) as a plugin to the Cyclone Database Implementation

Workbench (CyDIW) . [8] The system uses two separate XML files to store video

information and clip information separately. They also implemented a simple media

player based on Java Media Framework (JMF).

The work done by Liu et. al have proved the feasibility of using XML as storage for

video management. Although the integration with CyDIW gives it lot flexibilities,

however, it also has limitations such as interface, project management, etc. Thus the

Video Management System was separated from CyDIW and turned into a stand-alone

program with its own user interface.

The storage model has been greatly improved to fit our needs. First of all, we

combined the two separate XML files into one single XML file for easier management.

The original model for video only contains video id, video name, source, start time, and

end time and the model for video clip contains clip id, video id, start time, end time, and

features. To turn the idea into a real workable program, the model structure has been

expanded tremendously. Industrial information, video metadata, refined scene

information, person information, award information, query information have been added

into the storage model and make the XML file richer.

31

The query engine has been integrated to remove the dependency from CyDIW. The

video playback has also been greatly enhanced. JMF is an old java framework and has

stopped developing for a long time. We integrated the VLC player into our program to

get better control and user experience.

32

CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

It is an information explosion era. How to manage information becomes a great

concern. Video is one of the important information sources and become part of people’s

life nowadays. How to find useful information efficiently has become a critical task.

Traditional documents such as books, newspapers are normally searchable when digitized,

while videos are not. In addition, most the videos are lengthy and might contain useless

information that may be difficult to bypass. There is strong desire to make video

searchable so that users can easily find what they are interested.

In this thesis, we have designed and implemented an XML-based video database

management system meets the requirements. All video information except the video and

image files is stored in one XML file. Natural structure of the information has been

retained. Based on the nature of information, there are four complex types representing

four types of information: Movie, Person, Award, and Query. Among these four types,

Movie is the most complicated one and contains the most information. Inside Movie,

three sub-elements, MovieInfo, MetaData, and Scene, are created to better organize the

information.

Scene is part of the video and normally happen in one place or has one single topic.

Several scenes might be combined to form another topic. Theoretically it is not a scene

anymore since it can’t be split into smaller pieces; however, in this thesis, we override the

meaning of scene and consider this big chunk as a scene too. Thus, the scene forms a

33

hierarchy structure with unlimited levels. Annotation normally occurs at leaf level. Non-

leaf scenes obtain the annotation from their descendants.

A user interface has been implemented to help user visually working on the XML file.

The interface displays the information in a different but more user friendly way from its

storage in XML file. Users can browse the database on almost everything such as

movie/scene information, metadata, and scene information etc. The interface also

integrated a query engine so that user can refine their searching. The output is parsed

again to generate the scene playlist if exists.

A full functional video playback has also been integrated into the interface. Thus

users can watch the videos, scenes, or the playlist created by the query directly.

Integrated with the scene creating, editing, and annotating function, the interface can

make scene annotation easier.

5.2 Future Work

Although the Movie Database Manager is fully functional on video managing,

querying, and playing, there are still some directions that could further improve or

expand its functionalities.

The user interface still can be improved. As we indicated in Section 2.5, an open

source project themoviedbapi is used to collect commercial movie information from The

Movie Database (http://www.themoviedb.org). This function can be integrated into the

user interface so that users can make their own contributes. This function might introduce

adverse effects, but it gives the user more controls. A statistical module could be very

useful to obtain an overview of the whole database. It could be pure text or visualized.

Improvement could also be made by giving the user ability to operate their playlist.

34

Similar as queries, another PlayList element can be created to host the playlists. User then

can maintain the playlist without run query each time. Also results returned from

different queries could be integrated into one play list. The management of the playlist

needs to thoughts as the scenes may go through changes.

So far the Movie Database Manager is still a stand-alone program that can only be

access by one user. It is desired to turn it into a multi-user program. Lot of concerns need

to be covered such as security, threads, etc. Also how to store user information would

also be challenge. Swing based interface could also be turn into web-based, thus user

does not need to worry about environment setup, software installation etc.

35

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Shashi K. Gadia, for the many insights and

ideas he has given me. His expertise in databases and XML improved my knowledge and

skills and prepared me for future challenges. Without his supervision and help, this thesis

would not have been possible. The amount of time he spent helping me was invaluable

and deeply appreciated.

I gratefully acknowledge and thank my committee member, Dr. Leslie Miller and

Dr. Manimaran Govindarasu for their concerns, suggestions, and comments during this

process.

I also would like to thank Dr. Wallapak Tavanapong for her inspiring talk on image

and video processing techniques.

Finally, during my time at Iowa State University, I have received a great deal of

support and understanding from my family especially my wife, Xiaohong Deng and my

son, Kaden M. Li. I would very much like to thank them for everything they’ve done for

me.

36

REFERENCES

[1] Video file format, http://en.wikipedia.org/wiki/Video_file_format

[2] Video codec, http://en.wikipedia.org/wiki/Video_codec

[3] Scene (film), http://en.wikipedia.org/wiki/Scene_%28film%29

[4] An XML-based framework for management of a course catalog system with zero
information loss, Xiaofeng Wang, Iowa State University Thesis

[5] Document Object Model, http://en.wikipedia.org/wiki/Document_Object_Model

[6] XPath, http://en.wikipedia.org/wiki/XPath

[7] 661 Project report: Video Management System, Yu Liu and Sourajit Ghosh Dastidar,
Iowa State University Course COM S 661 project.

[8] Shashi K. Gadia and Jay H. Vaishnav. A Query Language for a Homogeneous
Temporal Database. Proc. Fourth Annual ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, 1985, pp 51-56.

[9] Shashi K. Gadia. A Homogeneous Relational Model and Query Languages for
Temporal Databases. ACM Transactions on Database Systems, Vol. 14, 1988, pp
418-448.

	2014
	An XML-based system for management and query of video databases with user identifiable and annotated scenes
	Zheng Li
	Recommended Citation

	tmp.1446758664.pdf.VVWC1

