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ABSTRACT

This thesis studies two different approaches to extracting information from collections of

phylogenetic trees: supertrees and reduced consensus. Supertree methods combine the phy-

logenetic information from multiple partially-overlapping trees into a larger phylogenetic tree

called a supertree. Several supertree construction methods have been proposed to date, but

most of these are not designed with any specific properties in mind. Recently, Cotton and

Wilkinson proposed extensions of the majority-rule consensus tree method to the supertree

setting that inherit many of the appealing properties of the former.

We study a variant of one of Cotton and Wilkinson’s methods, called majority-rule (+)

supertrees. After proving that a key underlying problem for constructing majority-rule (+)

supertrees is NP-hard, we develop a polynomial-size exact integer linear programming for-

mulation of the problem. We then present a data reduction heuristic that identifies smaller

subproblems that can be solved independently. While this technique is not guaranteed to pro-

duce optimal solutions, it can achieve substantial problem-size reduction. Finally, we report

on a computational study of our approach on various real data sets, including the 121-taxon,

7-tree Seabirds data set of Kennedy and Page. The results indicate that our exact method

is computationally feasible for moderately large inputs. For larger inputs, our data reduction

heuristic makes it feasible to tackle problems that are well beyond the range of the basic integer

programming approach. Comparisons between the results obtained by our heuristic and exact

solutions indicate that the heuristic produces good answers. Our results also suggest that the

majority-rule (+) approach, in both its basic form and with data reduction, yields biologically

meaningful phylogenies.

Generalizations of the strict and loose consensus methods to the supertree setting, recently

introduced by McMorris and Wilkinson, are studied. The supertrees these methods produce

are conservative in the sense that they only preserve information (in the form of splits) that is



xi

supported by at least one the input trees and that is not contradicted by any of the input trees.

Alternative, equivalent, formulations of these supertrees are developed. These are used to prove

the NP-completeness of the underlying optimization problems and to give exact integer linear

programming solutions. For larger data sets, a divide and conquer approach is adopted, based

on the structural properties of these supertrees. Experiments show that it is feasible to solve

problems with several hundred taxa and several hundred trees in a reasonable amount of time.

A rogue taxon in a collection of phylogenetic trees is one whose position varies drastically

from tree to tree. The presence of such taxa can greatly reduce the resolution of the consen-

sus tree (e.g., the majority-rule or strict consensus) for a collection. The reduced consensus

approach aims to identify rogue taxa and to produce more informative consensus trees. Given

a collection of phylogenetic trees over the same leaf set, the goal is to find a set of taxa whose

removal maximizes the number of internal edges in the consensus tree of the collection. This

problem is proven to be NP-hard for strict and majority-rule consensus. We describe exact

integer linear programming formulations for computing reduced strict, majority and loose con-

sensus trees. In experimental tests, our exact solutions show significant improvement over

heuristic methods on several problem instances.
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CHAPTER 1. INTRODUCTION

A supertree method begins with a profile of phylogenetic trees with possibly different leaf

(taxon) sets, and assembles them into a larger phylogenetic tree, a supertree, whose taxon set

is the union of the taxon sets of the input trees. Interest in supertrees was sparked by Gordon’s

paper [Gordon (1986)]. Since then, particularly during the past decade, there has been a flurry

of activity with many supertree methods proposed and studied from the algorithmic, theoretical,

and biological points of view. The appeal of supertree synthesis is that it can combine disparate

data to provide a high-level perspective that is harder to attain from individual trees. A recent

example of the use of this approach is the species-level phylogeny of nearly all extant Mammalia

constructed by Bininda-Emonds et al. (2007) from over 2,500 partial estimates. Several of the

known supertree methods are reviewed in the book edited by Bininda-Emonds (2004) — more

recent publications with good bibliographies include [Wilkinson et al. (2007); Ranwez et al.

(2007); Scornavacca (2009)]. There is still much debate about what specific properties should

(can), or should not (cannot), be satisfied by supertree methods. Indeed, it is often a challenging

problem to rigorously determine the properties of a supertree method that gives seemingly good

results on data, but is heuristic.

We cannot discuss supertree construction without referring to matrix representation with

parsimony (MRP) [Baum and Ragan (2004); Baum (1992); Ragan (1992)], by far the most

commonly used method. MRP first encodes the input trees as incomplete binary characters,

and then builds a maximum-parsimony tree for this data. The popularity of MRP is perhaps

due to the widespread acceptance of the philosophy underlying parsimony approaches and the

availability of excellent parsimony software. While MRP often performs well [Bininda-Emonds

and Sanderson (2001)], it is essentially an ad hoc adaptation of parsimony to the supertree

setting. This is reflected in the fact that MRP supertrees may display relationships that are
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not supported by any of the input trees [Pisani and Wilkinson (2002); Goloboff (2005)].

Here we consider methods based on splits, where a split is the bipartition of the taxon

set induced the removal of an edge from a tree. Following Wilkinson et al. (2004), we say

that a supertree method is liberal if it allows the inclusion of splits that are contradicted by

some subset of the input trees, provided a certain optimization criterion is met. Conservative

methods produce supertrees that only display splits that are not contradicted by any input tree.

Previous work [Cotton and Wilkinson (2007); Dong and Fernández-Baca (2009); Dong et al.

(2010a,b)] has characterized the mathematical and computational properties of majority-rule

supertrees, a liberal approach.

The well-studied consensus tree problem can be viewed as the special case of the supertree

problem where the input trees have identical leaf sets. Consensus methods in systematics date

back to Adams III (1972); since then, many consensus methods have been designed. Good sur-

veys of these methods, their properties, and their interrelationships are given by Bryant (2003)

and Scornavacca (2009), while the axiomatic approach and the motivation from the social sci-

ences is found in Day and McMorris’ book [Day and McMorris (2003)]. One of the most widely

used methods is the majority-rule consensus tree [Barthélemy and McMorris (1986); Margush

and McMorris (1981)], which is the tree that contains the splits displayed by the majority of

the input trees. Not only does this tree always exist, but it is also unique, can be efficiently

constructed [Amenta et al. (2003a)], and has the property of being a median tree relative to the

symmetric-difference distance (also known as the Robinson-Foulds distance [Pattengale et al.

(2007); Robinson and Foulds (1981)]). That is, the majority-rule consensus tree is a tree whose

total Robinson-Foulds distance to the input trees is minimum.

The appealing qualities of the majority-rule consensus method have made it attractive to try

to extend the method to the supertree setting, while retaining as many of its good characteristics

as possible. Cotton and Wilkinson (2007) were able to define two such extensions (despite some

doubts about whether such an extension was possible [Goloboff and Pol (2005)]) and at least two

additional ones have been studied since Dong and Fernández-Baca (2009). Here we study one

of the latter variants, called graft-refine majority-rule (+) supertrees in Dong and Fernández-

Baca (2009), and here simply referred to as majority-rule (+) supertrees. These supertrees
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satisfy certain desirable properties with respect to what information from the input trees, in

the form of splits, is displayed by them (see the Preliminaries). The key idea in this method is

to expand the input trees by grafting leaves onto them to produce trees over the same leaf set.

The expansion is done so as to minimize the distance from the expanded trees to their median

relative to the Robinson-Foulds distance. The supertree returned is the strict consensus of the

median trees with minimum distance to the expanded input trees; these median trees are called

optimal candidate supertrees.

After showing that computing an optimal candidate supertree is NP-hard, we develop a

characterization of these supertrees that allows us to formulate the problem as a polynomial-

size integer linear program (ILP). We then describe an implementation that enables us to

solve moderately large problems exactly. We show that, in practice, the majority-rule (+)

supertree can be constructed quickly once an optimal candidate supertree has been identified.

Furthermore, we observe that the supertrees produced are similar to biologically reasonable

trees, adding further justification to the majority-rule (+) approach.

In addition to the exact ILP formulation, we also introduce a data reduction heuristic that

identifies “reducible” sets of taxa. Informally, these are taxa that are clustered in the same way

by all the input trees. By restricting the original profile to the taxa in any such set, we get a

“satellite profile” that can be much smaller than the original one. At the same time, the original

profile can be reduced by representing all the taxa in the set by a single supertaxon. A supertree

for the original profile is obtained by solving each of these supertree problems independently

and combining the answers. This approach allows us to tackle supertree problems that are

well beyond the limits of the basic ILP method. Thus, whereas the latter allowed us to solve

instances at most 40 taxa, the former enabled us to handle the Seabirds data set of Kennedy

and Page (2002), which as 121 taxa. While the data reduction technique is not guaranteed to

produce the same answers as the exact method, we present empirical evidence that it produces

good results. Moreover, reducible sets often correspond to meaningful biological classification

units that likely should be respected by any supertree.

There has been previous work on ILP in phylogenetics, much of it dealing with parsimony

or its relative, compatibility [Brown and Harrower (2006); Gusfield (2003, 2009); Gusfield et al.
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(2007); Sridhar et al. (2008)]. Our work uses some of these ideas (especially those of Gusfield

et al. (2007)), but the context and the objective function are quite different. In particular, the

need to handle all possible expansions of the input trees necessitates the introduction of new

techniques.

Recently, McMorris and Wilkinson (2011) introduced two conservative methods, strict and

loose supertrees, which generalize strict and loose consensus trees.

In a loose supertree, each split is compatible with every input tree and is supported by

at least one input tree. Each split in a strict supertree must meet the same requirements as

in a loose supertree, plus one additional property: Every input tree either supports the split

or it has no say on it, because its leaf set does not have sufficient overlap with both sides of

the split (i.e., the split is trivial in the input tree. The formal definitions of strict and loose

supertrees are more complex than this, since one must be careful in expressing the notions of

support and conflict in the context of partial overlap among trees. One appealing property of

strict and loose supertrees is that, in a well-defined sense, they express the least that we could

expect from any split-based supertree method. Thus, they offer a baseline against which other

methods can be compared. Furthermore, while the requirements imposed by their formulation

might seem stringent, conservative supertrees can be quite well-resolved.

We provide alternative and equivalent definitions of loose and strict supertrees, based on

Robinson-Foulds distance, along the lines of those proposed for majority-rule supertrees [Cotton

and Wilkinson (2007); Dong et al. (2010a)]. They rely on the idea of filling in the input

trees with the taxa missing in them in such a way as to maximize the amount of agreement.

There may be multiple ways to achieve this; the supertree returned is the strict consensus

of all optimal solutions. Based on our formulations, we show that obtaining strict and loose

conservative supertrees is NP-complete. The new definition also enables us to express supertree

construction as an optimization problem based on Robinson-Foulds distance, which we can solve

exactly using integer linear programming (ILP). This method can handle problems of moderate

size, with at most 40 taxa and 10 trees. For larger data sets, we turn to heuristics.

The idea behind our heuristics is simple: If we were somehow able to guess any of the splits

in the strict or loose supertree, we could break down the original problem into two subproblems,
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one for each side of the split. Since we do not know the splits in advance, we adopt a greedy

approach and seek a split that at each step optimizes a function based on Robinson-Foulds

distance. The computational experience reported here shows that the downsizing effect of

divide and conquer can drastically reduce the running time, allowing us to solve problems with

hundreds of taxa and trees.

While the above divide-and-conquer technique performs extremely well, it is still only a

heuristic. To increase our confidence in the solution, we verify each of its edges, checking

to see if there is a better tree that does not include it. We also attempt multiple runs with

different decompositions. Even with all these safeguards, our supertrees may not be precisely

the strict or loose supertrees originally defined by McMorris and Wilkinson. Nevertheless, the

constraints we impose guarantee that our heuristically-built supertrees are conservative. That

is, every loose supertree that we generate has the property that each of its splits is supported by

some tree and contradicted by none. Also, every strict supertree we generate has the property

that for each input tree, each of the splits of the supertree is either trivial in the tree or is

supported by the tree.

Consensus trees can be greatly affected by rogue taxa (sometimes called wandering taxa);

that is taxa whose positions can vary dramatically without having a strong effect on a tree’s

overall score. The presence of just a few such taxa can lead to poorly-resolved consensus trees,

even when there is substantial agreement relative to the remaining taxa [Redelings (2009);

Wilkinson (1994); Thomson and Shaffer (2010); Sullivan and Swofford (1997); Nadler et al.

(2007)]. Here we consider the problem of finding a set of leaves (i.e., possible rogue taxa) to be

removed, so as to maximize the number of internal edges in the consensus tree on the reduced

leaf set. Our main results are the following.

• Proofs that the underlying decision problem is NP-complete for three trees in the strict

consensus case and for four trees in the case of majority rule trees.

• A polynomial-time algorithm for reduced strict consensus when the maximum degree of

the strict consensus tree of the original profile of trees is fixed.

• An integer linear programming (ILP) formulation for obtaining exact solutions for reduced
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strict, majority and loose consensus.

• An experimental comparison with the heuristic proposed in Pattengale et al. (2011),

showing that in several cases our reduced consensus formulations allow us to uncover

increased common phylogenetic information without discarding many more leaves.

My contribution is mainly on the last two items. It is part of a paper accepted by ISBRA

2012 [Deepak et al. (2012)].
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CHAPTER 2. PRELIMINARIES

Our terminology largely follows [Semple and Steel (2003)]. A phylogenetic tree is an un-

rooted leaf-labeled tree where every internal node has degree at least three. We will use “tree”

and “phylogenetic tree” interchangeably. The leaf set of a tree T is denoted by L(T ). Each

leaf is called a taxon (plural, taxa).

A profile is a tuple of trees P = (t1, . . . , tk). Each ti in P is called an input tree. Let L(P ) =⋃
i∈K L(ti), where K denotes the set {1, . . . , k}. An input tree ti is plenary if L(ti) = L(P ).

Tree T is a supertree for profile P if L(T ) = L(P ).

A split is a bipartition of a set. The split whose parts are A and B is denoted A|B. The

order here does not matter, so A|B is the same as B|A. Split A|B is nontrivial if each of A

and B has at least two elements; otherwise it is trivial. Split A|B extends another split C|D if

A ⊇ C and B ⊇ D, or A ⊇ D and B ⊇ C.

Tree T displays split A|B if there is an edge in T whose removal gives trees T1 and T2 such

that A ⊆ L(T1) and B ⊆ L(T2). A split A|B is full with respect to a tree T if A ∪B = L(T ).

A|B is partial with respect to T if A∪B ⊂ L(T ). Split A|B is plenary with respect to a profile

P if A ∪B = L(P ).

The set of all nontrivial full splits displayed by T is denoted Spl(T ). It is well known that

the full splits of T uniquely identify T [Semple and Steel (2003)]. Thus, we will often view trees

as sets of splits and write “A|B ∈ T” if tree T displays split A|B. A tree T with Spl(T ) = ∅ is

called a fan.

Let S ⊆ L(T ). The restriction of T to S, denoted T |S, is the phylogenetic tree with leaf

set S such that

Spl(T |S) = {A ∩ S|B ∩ S : A|B ∈ Spl(T ) and |A ∩ S|, |B ∩ S| > 1}.
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Let T ′ be a phylogenetic tree such that S = L(T ′) ⊆ L(T ). Then, T displays T ′ if Spl(T ′) ⊆

Spl(T |S). Trees T1 and T2 are compatible if there exists a tree T such that T displays T1 and

T2.

A set of splits is compatible if there is a tree T that displays them all. Tree T is compatible

with a set of splits X if there is a tree T ′ that displays T and X .

Let t be an input tree in a profile P , T be a supertree for P , and A|B ∈ T . Let A′ = A∩L(t)

and B′ = B ∩ L(t). We say that t supports A|B if A′|B′ ∈ t; t is in conflict with A|B if A′|B′

is incompatible with t. If t neither supports nor is in conflict with A|B, t is irrelevant to A|B.

Let T1 and T2 be two phylogenetic trees over the same leaf set. The symmetric-difference

distance, also known as Robinson-Foulds distance [Robinson and Foulds (1981)], between T1

and T2, denoted d(T1, T2), is defined as

d(T1, T2) = |(Spl(T1) \ Spl(T2)) ∪ (Spl(T2) \ Spl(T1))| . (2.1)

The asymmetric difference from T1 to T2, denoted AD(T1, T2), is defined as

AD(T1, T2) = |(Spl(T1) \ Spl(T2))| (2.2)

The majority splits in a profile P = (t1, . . . , tk) are the splits displayed by more than k
2

of the input trees. A majority plenary split is a plenary split that is also a majority split.

Similarly, a majority partial split is a partial split that is also a majority split.

Rooted phylogenetic trees can be viewed as a special case of unrooted trees. That is, we

can view a profile of rooted trees as unrooted trees, all of which have a common taxon called

the root. Thus, in a split in a rooted tree, one of the two parts must contain the root; the

part that does not contain it is called a cluster (or clade, or monophyletic group). All of the

above concepts (e,g., compatibility and distance), as well as those introduced in the rest of this

paper, directly apply to rooted trees.

The consensus problem is the special case of the supertree problem where the profile P =

(T1, . . . , Tk) consists of trees that have the same leaf set. The strict consensus of P , denoted

Str(P ) is the tree that displays exactly the full splits that are in every tree in the profile. The

loose consensus of P , denoted Loose(P ), is the tree that displays exactly the full splits that are
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in some tree of P and compatible with every tree in P . The majority-rule consensus tree of P ,

denoted Maj(P ), is the tree that displays every full split that is in the majority of the trees in

P [Margush and McMorris (1981)].

For any phylogeny T with L(T ) = L(P ), define the distance from T to P as dist(T, P ) =∑k
i=1 d(T, Ti), where d denotes the symmetric-difference distance. Any T with leaf set L(P )

that minimizes dist(T, P ) is called a median tree for P . It is known that Maj(P ) is a median

tree for P ; indeed, it follows from [Barthélemy and McMorris (1986)] that Maj(P ) is the

strict consensus of the median trees for P . The (median) score of P is defined as score(P ) =

minT :L(T )=L(P ) dist(T, P ). Thus, s(P ) = dist(Maj(P ), P ).

For the supertree problem, we introduce two different notions of the span of a tree. Let t

be a tree in a profile P . The graft-only span of t is the set of trees

〈t〉g = {T : T |L(t) = t and L(T ) = L(P )}.

The graft/refine span of t is the set of trees

〈t〉gr = {T : T displays t and L(T ) = L(P )}.

Observe that 〈t〉g ⊆ 〈t〉gr, since, as their names suggest, the graft-refine span allows refinement,

whereas the graft-only span does not. In particular, in the consensus setting (where L(t) =

L(P )), 〈t〉g = {t}, while 〈t〉gr includes all the refinements of t. The graft-only span of a profile

P is 〈P 〉g = (T1, . . . , Tk) where Ti ∈ 〈t〉g for every i. The graft/refine span of a profile P is

〈P 〉gr = (T1, . . . , Tk) where Ti ∈ 〈t〉gr for every i.

A node is internal if it is not a leaf node. An edge is internal if it does not connect to a

leaf. If a phylogeny T is rooted, we require that each internal node have at least two children;

if T is unrooted, every internal node is required to have degree at least three. Here, we limit

our discussion to collections of trees over the same set of taxa. Without loss of generality, we

can view such trees as rooted, since, when the trees are unrooted, we can arbitrarily pick any

taxon as an out-group, which is equivalent to fixing a common root [Semple and Steel (2003);

Amenta et al. (2003b)].

Let C denote some consensus method. Given a collection of trees P , the reduced C consensus

problem is to find a set X ⊆ LP that maximizes the number of internal edges of C(P |X)).



10

CHAPTER 3. REVIEW OF THE LITERATURE

More than a quarter of century ago, Gordon (1986) introduced the concept of supertrees.

Since then, a variety of supertree construction methods have been proposed; these have been

surveyed by Eulenstein (2005), Bininda-Emonds (2004) and Scornavacca (2009).

When reviewing supertree methods, we discuss the following categories since they are either

representative of widely used methods or related to the new methods that are developed in this

dissertation.

1. Supertree methods related to BUILD algorithm

2. Matrix representation-based methods

3. Median supertrees

4. Supertrees with conservative properties

But before jumping into supertree methods, we need to mention some of the famous consensus

methods, which are special cases of supertree methods when all the input trees have the same

leaf sets.

3.1 Consensus Trees

When all the trees in a profile have identical leaves, the supertree problem becomes a con-

sensus problem. Familiar examples of consensus methods are the Adams consensus [Adams III

(1972)], strict consensus [Sokal and Rohlf (1981)], majority-rule consensus [Margush and Mc-

Morris (1981)], and loose consensus [Meacham (1982); Barthélemy et al. (1992); Bryant (2003)]

(also known as combinable component [Bremer (1990)] or semi-strict consensus [Swofford
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(1991)]). Supertrees extending from their respective consensus methods are attractive because

we might be able to extend the nice properties of the methods in the supertree setting.

Consensus methods based on splits (majority-rule, strict, and loose consensus) can often

be reformulated as problems of finding the strict consensus of all trees of a certain kind that

minimize a score function based on the Robinson-Foulds distance to the input trees. For

example, Barthélemy and McMorris (1986) showed that majority rule consensus trees are the

strict consensus of all trees at minimum total distance from the input trees.

3.2 Supertree Methods Related to the BUILD Algorithm

These supertree methods encode triplets in the source trees in a graph known as the Aho

graph. They are only for rooted trees and are efficient algorithms based on greedy handling of

conflicts.

3.2.1 The BUILD Algorithm

The BUILD algorithm is proposed by Aho et al. (1981). It is an algorithm for constructing

a tree to satisfy a set of lineage constraints on common ancestors. In a rooted trees, the lowest

common ancestor of two taxa nodes x and y is denoted as (x, y). A set of constraints are of

the form (i, j) < (k, l) where i 6= j and k 6= l, meaning that the lowest common ancestor of

i and j is a proper descendant of the lowest common ancestor of k and l. The central idea is

to determine for a potential tree T the sets of leaves that are descendants of each child of the

root of T . Name these sets S1, . . . , Sr. There are two conditions that these sets must satisfy

for each constraint (i, j) < (k, l).

(1) i and j must be in the same set. Otherwise (i, j) is the root of T , and the root cannot be

a proper descendant of (k, l).

(2) Either k and l are in different sets, or i, j, k and l are all together in one set. Otherwise

(i, j) cannot be a proper descendent of (k, l).

These conditions are also sufficient. Thus, if we can partition the nodes into two or more sets

satisfying them, and if we can recursively build trees from each set, then a tree exists; otherwise,
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no trees exist. Given a set of constraints C, we define a partition πc on the leaves 1, 2, . . . , n

using the following rules:

(1) If (i, j) < (k, l) is a constraint, then i and j are placed in one block of πc.

(2) If (i, j) < (k, l) is a constraint, and k and l are in one block, then i,j,k and l are placed in

the same block.

(3) No two leaves are in the same block of πc unless it follows from (1) and (2).

When the BUILD algorithm runs, it first computes πc = S1, . . . , Sr based on C. If there is

only one S1 in πc, BUILD is a null tree. If not, in a loop from 1 to r, it creates Cm = {(i, j) <

(k, l) in C and i, j, k, l are in Sm}, so that it recursively applies BUILD on Sm and Cm. It is

this Cm that greatly reduces the number of constraints involved.

Other than its extremely simplicity, it is a fast algorithm. Its running time is highly

dependent on the method used to partition the set of constraints. By imposing the restriction

that all constraints be of the form (i, j) < (i, k), the running time is O(n2). When all constraints

are of the form (i, j) < (i, k), rule (2) of the needs never be applied explicitly. Accordingly it

suffices to implement rule (1) alone.

If we take each leaf appearing in one or more constraints to be a node, and each constraint

(i, j) < (i, k) to represent an edge between i and j, then we shall have a multigraph whose

connected components represent the blocks of the partition that we are looking for. This is the

famous Aho graph.

Since every triplet ab|c is equivalent to (a, b) < (a, c). Aho graph can be used to represent

the relationships between a set of triplets.

BUILD provides an elegant base for all these methods originating from it. It is a yes-or-no

algorithm that tells whether a collection of triplets R on a leaf set L is compatible or not.

However, in face of incompatible triplets, it provides a null tree, which is unsatisfactory. Also

it works strictly with triplets, while some input tree could have fans for three taxa in it.
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3.2.2 The SUPERB, OneTree, AllTrees, and AllMinTrees Algorithms

The trees returned by BUILD are not necessarily binary. Constantinescu and Sankoff

(1995) developed an efficient algorithm SUPERB based on BUILD to generate a set of rooted

binary trees. Given k rooted binary trees (t1, . . . , tk), a unique system of lineage constraints on

common ancestors is generated. Then SUPERB constructs the set of all rooted binary trees

that are compatible with all of (t1, . . . , tk). The running time to obtain one such supertree

is O(k2n2), where n is the number of distinct leaves in all of the trees. Similar to BUILD,

SUPERB could also provide a null tree.

The OneTree algorithm, proposed by Ng and Wormald (1996), is based on the BUILD

algorithm, but it includes both triplets and fans. They combine all the triples and fans to build

output trees that are compatible with them. Moreover, they produce all trees compatible with

a given input with an AllTrees algorithm. The running times of their algorithms are polynomial

in the size of the input for OneTree, and polynomial in the size of the output for AllTrees. The

output size of AllTrees may be exponential in the size of the input.

The OneTree algorithm is simplified by Bryant (1997) when he removes the fans. For a

profile P it runs in O(mn) time where n is the number of taxa in P and m is the number

of rooted triples in R, the triplet set of P . Some faster implementations were developed

by Henzinger et al. (1996) and Berry and Semple (2006).

There could be more than one tree displaying a compatible triplet set R. Moreover, the

number of qualifying trees may be exponential in the size of R. Hence it is important to find

minimal trees with this property. A tree T being minimal means that no internal edge of T

can be contracted so that the resulting tree displays R. Semple (2003) presents the method

AllMinTrees that returns all trees that display R and are minimal.

The methods so far cannot handle the incompatible triplets. Thus how to handle incompat-

ibility yields different methods. Among them, the most famous one is the MinCut supertrees.
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3.2.3 MinCut (MC) Supertrees

The MinCut supertree algorithm [Semple and Steel (2000)] modifies OneTree so that it

always returns a tree. Their method essentially is to cut connected components in a greedy

way to enable the continuation of the BUILD algorithm. However, more arrangements are made

in order to preserve some nice properties. The key is that when the Aho graph is a connected

weighted graph, first, a second weighted “collapsed” Aho graph is created to preserve the edges

whose triplets are in every trees, then, we find a minimum-weight cut set to disconnect the

“collapsed” graph. At the subtree level, we recursively apply the cuts when necessary. The

weight on each edge (a, b) is defined as the sum of weights of the trees such that the tree has

at least one triplet ab|c. Obviously this is a greedy approach.

The MC supertree has some nice properties. First of all, if the profile P is compatible, it

is the same as the OneTree and thus displays all the triplets in P . Moreover, it returns a tree

displaying all nestings and triplets shared by all input trees in P . If all trees display a common

induced subtree, then MC supertree displays it too. Also it is quick to compute.

However, it can be sensitive to the size of the input trees, favoring the resolutions contained

in the biggest trees. Moreover, it can fail to include information that is not contradicted in the

set of input trees. It is this last point that prompts Page to provide his own modified version.

3.2.4 Modified-MinCut (MMC) Supertrees

Page (2002) pointed out that the MC supertree neither maximizes the uncontradicted infor-

mation nor minimizes the information that contradicts the source trees. To avoid those draw-

backs, he proposed a modification, called the Modified-MinCut (MMC) supertree method. The

MMC supertree method is a heuristic to avoid as much as possible contradicted information,

having as consequence to permit to insert more uncontradicted information in the supertree

than the MC method, while still returning a tree that has all the properties of the MC supertree.

Page distinguishes edges in his special graph into three different types: unanimous, uncon-

tradicted and contradicted. The aim was to modify the “collapsed” graph used in MC such

as to minimize the number of uncontradicted edges that are cut in the MC method. Thus,
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Page extended Semple and Steel’s approach of merging nodes linked by unanimous edges to

include nodes linked by uncontradicted edges. Then he removes all contradicted edges. If this

way we disconnect the “collapsed” graph, all uncontradicted edges are preserved at this step.

Otherwise, at least one uncontradicted edge must be cut to disconnect the graph. Hence, he

builds the set all edges in adjacent to a contradicted edge and remove them. If the graph is

disconnected, he can proceed.

Consequently, MMC supertree contains much more uncontradicted triplets than MC tree

one. However, both MC and MMC supertrees can contain clusters not present in any source

tree.

Page’s inclusion of uncontradicted information far exceeds its original application on MC.

Indeed it evolves into a common practice nowadays that emphasizes the enrichment of the

backbone trees with uncontradicted information so that the final tree agrees with the input

trees and keeps as much information as possible. It is this “filler” part that makes trees usable

to biologists.

3.2.5 BUILD-WITH-DISTANCES

Most supertree methods make use only of the tree topology. Yet many methods of building

phylogenetic trees create trees in which each edge has a numerical branch length. Typically

the branch length estimates the rate of DNA mutation along the edge. A rooted tree in which

each edge has a branch length is an additive tree.

These distances carry a great deal of information about phylogeny. When only topology

information exists, there are typically many different topologies compatible with the data. In

contrast, when the branch lengths are used, the number of topologies is often more highly

constrained.

Willson (2004) proposed a polynomial-time method BUILD-WITH-DISTANCES which uses

input distance information to construct a supertree when an additive supertree exists. This

algorithm generalizes the BUILD algorithm. When an additive supertree exists, BUILD-WITH-

DISTANCES finds a supertree (although not necessarily an additive supertree), here called the

“null threshold tree”. Moreover, when the algorithm outputs a tree, the null threshold tree
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will be a supertree. It is proved in this situation that the null threshold tree contains at least

as much resolution as the supertree obtained by BUILD. When the algorithm fails to produce

a supertree, a polynomial time modification is also proposed which outputs a tree called the

“minimal threshold tree” with interesting properties.

The idea of using branch lengths to greatly limit the search space is applicable well be-

yond BUILD-WITH-DISTANCES. As in any physical science and engineering fields, the use

of physical meaning and engineering intuition is very important not only in making educated

guesses on the forms of solutions, but also in discarding meaningless answers that result from

pure mathematical operations.

Given the current topology-only formulations, the phylogenetic problems are mostly hard.

The search space for tree is simply too large. The fundamental limitations of the current exact

solutions and heuristics cannot be resolved in the near future. Nevertheless, biologists want

quick answer to their specific problems, and they can provide some domain knowledge. Maybe

in order to break the stalemate, we need to add more domain knowledge into the phylogenetic

problem formulation to limit the search space and to seek specific solutions that are realistic

and fast to obtain. To that direction, BUILD-WITH-DISTANCES is a true trailblazer.

3.3 Matrix Representation-based Methods

These supertree methods convert input trees into matrices of binary sequences or distances,

and the matrices are subsequently analyzed using a standard phylogenetic tree reconstruction

method.

3.3.1 Matrix Representation with Parsimony (MRP)

We cannot discuss supertree construction without referring to matrix representation with

parsimony (MRP) [Baum and Ragan (2004)], by far the most commonly used method, but also

one of the most criticized. It is essentially an ad hoc adaptation of parsimony to the supertree

setting. It has been independently developed by Baum (1992) and Ragan (1992).

Given a profile P , the MRP method first encodes it into a binary matrix. Row for species

and column for splits of input trees. Then, a parsimony analysis is performed on the matrix.
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The details are as follows. First, Baum (1992) suggested each tree of the input forest is rooted

by using a taxon common to all input trees. If a tree is already rooted, re-root it. Ragan

(1992) suggested to root them by an all-zero output. Then, all the splits of each tree, except

for those trivial splits that have one taxon in one of its blocks, are put into the matrix. The

block without the root is encoded with 1 while the block with the root is encoded with ‘0’. All

taxa that do not belong to the tree are encoded by a ?. The matrix then is analyzed by the

parsimony criterion. Finally the strict consensus of the most parsimonious trees is returned.

Foulds and Graham (1982) showed that finding the most parsimonious trees given a char-

acter matrix is an NP-complete problem, and heuristics have been proposed.

MRP is a widely used but also highly controversial method. Among the arguments there

are

• It lacks of an underlying model.

• It can propose clusters not supported by any combination of input trees, when source

trees conflict.

• Clusters contradicted by every input tree can be present. It even happens in a consensus

setting.

• It can also fail to display some triplets common to every input tree, even in the consensus

setting.

• It is biased and some tree topologies can unduly affect the MRP supertree. It may also

favor source trees that are more unbalanced.

• The reason of its bias could be due to the different sizes of input trees, or due to different

sizes of the trees in the region of conflict. It could also be that the information given by

the matrix columns is not independent.

Given so many shortcomings, it is obvious that MRP is a method of convenience with many

side effects. It should be used with caution. On one hand, maybe the widespread acceptance of

the philosophy underlying parsimony and the availability of excellent parsimony software brings
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its popularity. On the other hand, the lack of better competitors that are sound in principle

and efficient in execution seems another reason. More importantly, new and better methods

should be developed that incorporate the properties that we believe are nice and important, if

theoretically possible.

3.3.2 Matrix Representation with Flipping (MRF)

The Matrix Representation with Flipping (MRF) method was developed by our group [Chen

et al. (2003); Eulenstein et al. (2004)]. The idea is that input trees conflict because of errors.

Some clusters have incorrect taxa, some need correct taxa. Such errors correspond to flips from

0 to 1 or 1 to 0. The flip problem is to find the minimum number of flips needed to resolve all

incompatibilities, where each flip moves a taxon into or out of a cluster. The resulting clusters

forms a flip supertree. If more than one such supertree exists, their loose consensus is the MRF

supertree.

It is shown that the decision version of the minimum-flip is NP-complete. The MRF su-

pertrees preserve strict, but not Adams or majority-rule consensus. In fact MRF consensus

trees preserves loose consensus. However, preserving loose consensus for supertrees is not as

important as preserving strict consensus. The authors showed simulation studies for which the

MRF supertrees are at least as accurate as supertrees built with MRP. Unfortunately, as MRP,

Goloboff (2005) showed that this method can propose new clusters contradicted by every input

trees.

3.3.3 Matrix Representation with Compatibility (MRC)

The Matrix Representation using Compatibility (MRC) supertree is developed by Rodrigo

(1996) and Ross and Rodrigo (2004). It is based on sound principle. However, since its inci-

dence, MRC has received scant attention while MRP has become a popular technique. MRC

identifies the largest set of mutually compatible splits (maximum clique) in the MR matrix.

The supertree can be determined directly from this clique, without recourse to arguments in-

volving parsimony. Identifying a maximum clique is NP-hard. Note that in the consensus case,

pairwise compatibility is equivalent to compatibility. However, in a supertree setting, pairwise
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compatibility does not guarantee compatibility. When computing the pairwise compatibility

of two matrix columns, rows involving one or two missing entries are ignored. Experiments

were conducted to compare the powers of MRC and MRP to construct a supertree reliably by

simulating sets of consistent and inconsistent sample trees derived from an original model tree.

Under stringent definitions of success, MRP and MRC were successful . Overall MRP is a little

better in recovering the original tree.

Goloboff (2005) showed that MRC can also propose new clusters contradicted by each of

the input trees.

3.4 Median Supertrees

The median supertree minimizes the sum of distances to the source trees. Using a median

tree, like an average value, is a way to summarize the profile. Depending on how distances are

defined, there are different formulations.

3.4.1 Majority-rule Supertrees

Cotton and Wilkinson (2007) extended the majority-rule consensus method to the supertree

setting. They defined the majority-rule (-) supertree and the majority-rule (+) supertree. A

median (-) supertree for a profile P of trees is the supertree T that minimizes
∑

i dist(T |Li, Ti)

over all supertrees for P , where the distance dist is the Robinson-Foulds or symmetric difference

distance. The Maj− supertree is the strict consensus of all median (-) supertrees. The defini-

tion is very simple. However, finding a median (-) supertree is an NP-hard problem, proven

by Bryant (1997).

Define the binary supertree span of an input tree t, denoted by 〈t〉, to be the set of binary

trees on L(P ) that display t. A representative selection for a profile P = (t1, . . . , tk) is a k-

tuple R = (T1, . . . , Tk), where Ti ∈ 〈ti〉. The median score of R, denoted by s(R), is defined

as: s(R) = minT
∑

Ti∈R dist(Ti, T ), where T is a supertree with leaf set L(P ). The candidate

supertree ofR, denoted by TR, is the majority-rule consensus tree forR. Note that TR minimizes

s(R) as the majority-rule consensus tree is a median tree. An optimal candidate supertree is

the candidate supertree TR of any representative selection R = (T1, . . . , Tk) for P that has the
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smallest possible median score s(R). The Maj+ supertree is the strict consensus of all optimal

candidate trees. The main drawback is that it requires the enumeration of an exponential

number of representative selections R, given a profile P .

A split is full with respect to a tree T if its leaf set is L(T ), otherwise it is partial. A split

is said to be plenary with respect to a profile P if its leaf set is L(P ). A split is a majority

split if it is displayed by a majority of the input trees. A split A|B extends another split C|D

if A ⊇ C and B ⊇ D, or A ⊇ D and B ⊇ C. Cotton and Wilkinson (2007) conjectured that,

for each profile P , majority-rule supertrees T had the following desirable properties:

CW1 All majority plenary splits in P are in T .

CW2 T is compatible with each majority partial split in P .

CW3 All splits in T are compatible with a majority of the trees in P .

CW4 Every plenary split in T extends at least one input tree full split.

3.4.2 Followups of Majority-rule Supertrees

Dong and Fernández-Baca (2009) showed that Maj− satisfies CW1 and CW4 while Maj+

supertrees satisfy CW1, CW2 and CW3. Moreover, Maj−, in the consensus setting, is the

majority-rule consensus, while Maj+ is not. Two variants of the Maj+ supertree method, i.e.,

the majority-rule (+)s tree (or (+)gr in later chapters) and the majority-rule (+)g tree, are

proposed. Both of them satisfy all conjectured properties. The majority-rule (+)g supertree

method is equivalent to majority-rule consensus in the consensus setting, while the majority-

rule (+)gr supertree is not.

Several followup work of majority-rule supertrees are done. First, Dong et al. (2010b)

studies the characteristics of (+)gr consensus trees. Among the results, we will completely

determine the internal cluster properties of consensus trees constructed by this method and

give an analog to the characterization of median trees in majority-rule consensus trees. The

relationship between this method and other consensus methods are revealed. Second, axioms

that characterize a new majority-rule (+) consensus function are developed by Dong et al.
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(2011). In addition, two other related consensus functions are characterized. Third, Dong

et al. (2010a) studied a variant of one of Cotton and Wilkinsons methods, called majority-rule

(+) supertrees. After proving that a key underlying problem for constructing majority-rule

(+) supertrees is NP-hard, we develop a polynomial-size exact integer linear programming

formulation of the problem. We then present a data reduction heuristic that identifies smaller

subproblems that can be solved independently. While this technique is not guaranteed to

produce optimal solutions, it can achieve substantial problem-size reduction. Finally, we report

on a computational study of our approach on various real data sets, including the 121-taxon,

7-tree Seabirds data set of Kennedy and Page (2002). It indicates that our exact method

is computationally feasible for moderately large inputs. For larger inputs, our data reduction

heuristic makes it feasible to tackle problems that are well beyond the range of the basic integer

programming approach. Comparisons between the results obtained by our heuristic and exact

solutions indicate that the heuristic produces good answers. Our results also suggest that the

majority-rule (+) approach, in both its basic form and with data reduction, yields biologically

meaningful phylogenies.

3.4.3 Robinson-Foulds Supertrees

Bansal et al. (2010) introduced efficient, local search based, hill-climbing heuristics for the

intrinsically hard binary median tree problem on rooted trees. The Robinson-Foulds distance is

the same distance used to in Maj− supertrees. The only difference is that RF supertrees must

be binary median tree while the median trees in Maj− can be non-binary. These heuristics use

novel non-trivial algorithms for the SPR and TBR local search problems which improve on the

time complexity of the best known solutions by a factor of Θ(n) and Θ(n2) respectively, where n

is the number of taxa of the profile. Experiment comparison with MRP and the triplet supertree

method using four supertree data sets showed fast estimates and more retained information in

all data sets.

Chaudhary et al. (2011) developed the unrooted version of the Robinson-Foulds supertree.

Indeed, for technical reasons, both the Robinson-Foulds supertrees are required to be fully

resolved, which guarantees many unsupported splits.
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3.5 Supertrees with Conservative Properties

Up to now, the most closely related conservative supertree methods are the PhySIC method

developed by Ranwez et al. (2007),PhySIC IST by Scornavacca et al. (2008), and the conser-

vative supertrees developed by McMorris and Wilkinson (2011).

3.5.1 PI and PC

Scornavacca (2009) explained in detail the underlying conservative criteria used in PhySIC

and PhySIC IST as well as the optimization objectives and the algorithms. Any rooted tree

T can be equivalently described by the set of triplets, denoted by R(T ). Given a collection P

of rooted phylogenetic trees, R(P ) denotes the set of triplets present in at least one tree of P .

Given a triplet t, t̄ denotes any of the two other triplets on the same set of leaves. Given a

compatible set R of triplets, R induces a triplet t, denoted by R ` t, if and only if R∪{t̄} is not

compatible, or equivalently if any tree T that displays R contains t. In case of an incompatible

set of triplets R, we say that a set R of triplets induces a triplet t when there is a compatible

subset R′ of R that induces t. Given a collection P of input trees and a candidate supertree

T , R(T, P ) denotes the set of triplets of P for which T proposes a resolution. More formally,

R(T, P ) = .{ab|c ∈ R(P ) such that {ab|c, ac|b, bc|a}∩R(T ) 6= ∅}. The set R(T, P ) corresponds

to all topological information present in P that is related to the information present in supertree

T . We can express the induction property PI and the non-contradiction property PC as follows:

• T satisfies PI for P if and only if for all t ∈ R(T ), it holds that R(T, P ) ` t. In other

words, PI requires that each and every triplet of T is induced by R(T, P ).

• T satisfies PC for P if and only if for all t ∈ R(T ) and all t̄, it holds that R(T, P ) 0 t̄,

i.e., for each and every triplet of T , R(T, P ) induces no alternative resolution.

3.5.2 PhySIC

PhySIC stands for Phylogenetic Signal with Induction and non-Contradiction. It tries

to infer supertrees that satisfy PI and PC and resolve as many triplets as possible. The

optimization problem is as follows: Given a profile P of rooted trees, find output a supertree
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T such that T satisfies PI and PC for P and |R(T, P )| is maximum among the trees satisfying

PI and PC. The problem is conjectured to be hard.

PhySIC takes two steps. Given a profile of rooted trees P , a supertree TPC satisfying PC for

P is first computed by PhySICPC . Then some branches of TPC are collapsed by PhySICPI

until the modified TPC satisfies PI. PhySIC runs in O(kn3 + n4) time where n is the number

of taxa and k is the number of trees.

3.5.3 PhySIC IST

To get a more refined supertree, one way is to reduce the number of (rogue) taxa studied

in the profile. Thus, PhySIC IST (PHYlogenetic Signal with Induction and non-Contradiction

Inserting a Subset of Taxa) is proposed to infer non-plenary supertrees, i.e. supertrees without

rogue taxa. PhySIC IST aims at inferring supertrees that satisfy the same appealing theoretical

properties as with PhySIC, while being as informative as possible under this constraint.

The information in a supertree is estimated using a variation of the Cladistic Information

Content (CIC) criterion, that includes the effects of the number of multifurcations as well as

the number of missing taxa. The input is a collection P of rooted trees. Its output a supertree

T (plenary or not) such that T satisfies PI and PC for P and CIC is maximum among the trees

satisfying PI and PC. So it is a change of the optimization objective as well as algorithm. This

problem is conjectured to be hard, too.

PhySIC IST is a polynomial-time heuristics. It is heuristics only on finding maximum CIC,

since it always outputs a supertree satisfying PI and PC. The algorithm operates successive

insertions of taxa on a backbone topology. Since it is a greedy algorithm, the order of the

insertions is chosen carefully. Once a taxon is inserted, its presence in the supertree is questioned

any more. It is therefore preferable to first insert the taxa with a strong and unambiguous signal.

The first taxa inserted are thus those present in as many source trees as possible and involved

in as few contradictions as possible. Indeed a priority order is established for insertion.

Additionally, a statistical preprocessing step called STC (Source Trees Correction) is pro-

posed to correct the source trees prior to the supertree inference. STC is a liberal step that

removes the parts of each source tree that significantly conflict with other source trees. Combin-
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ing STC with a veto method allows an explicit trade-off between veto and liberal approaches,

tuned by a single parameter.

Large-scale simulations show that the combination of STC and PhySIC IST infers much

more informative supertrees than PhySIC, while preserving low type I error compared to the

well-known MRP method. Two biological case studies on animals confirm that the STC pre-

process successfully detects anomalies in the source trees while the combination of STC and

PhySIC IST provides well-resolved supertrees agreeing with current knowledge in systematics.

3.5.4 Conservative Supertrees

Recently, McMorris and Wilkinson (2011) introduced two conservative methods, strict and

loose supertrees, which generalize strict and loose consensus trees. The detailed formulation of

conservative supertrees are left in later chapters. The exact relationship between PhySIC and

conservative supertree is still an open question. My recent study shows that PC in triplets is

likely to be equivalent to compatibility of splits.

3.6 Rogue Taxa

There is a sizable literature on identifying rogue taxa [Cranston and Rannala (2007); Pat-

tengale et al. (2011); Thomson and Shaffer (2010); Wilkinson (1996, 1995, 1994)]. Agreement

and frequent subtree approaches — where one seeks induced subtree common to all or some

fraction of the input trees — have been suggested by some. For example, Cranston and Rannala

use it to summarize the posterior distribution of a collection of trees resulting from Bayesian

analysis [Cranston and Rannala (2007)]. The idea is, of course, that since the placement of

rogue taxa varies widely from tree to tree, they will therefore be excluded from the agreement

subtrees. There are several papers on computing agreement subtrees (e.g., [Finden and Gor-

don (1985); Amir and Keselman (1994); Farach et al. (1995); Lee et al. (2005); Swenson et al.

(2011)]) and frequent subtrees (e.g., [Chi et al. (2004); Xiao and Yao (2003); Zaki (2005); Zhang

and Wang (2008)]); however, agreement-based approaches can tend to be more conservative

than consensus trees. Further, the underlying optimization problems are NP-hard [Amir and

Keselman (1994); Pattengale et al. (2011)].
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Wilkinson appears to have been the first to propose the use of reduced majority rule and

strict consensus as a means to identify rogue taxa [Wilkinson (1994, 1995, 1996)]. While the

underlying principle behind all proposed reduced consensus methods is to gain internal edges

at the expense of dropping leaves [Redelings (2009)], the precise cost measure can vary. The

criterion use here is to maximize the resolution of the consensus tree, without taking into

account how many leaves are eliminated. In contrast, Pattengale et al. (2011) propose using

an objective function that is a weighted sum of the total number of leaves retained and the

number of clusters (actually, bipartitions) obtained. This problem is shown NP-hard for strict

and majority-rule consensus, when the weight assigned to the leaves is zero. To our knowledge,

the complexity of the problem in the general case has not been determined and is conjectured

hard. Indeed, Pattengale et al. only offer a heuristic for it.

Compared with various supertree methods, the rogue taxa problem seems much simpler.

The input trees are known and on the same leaf set. The difficult part is which taxa to

remove to achieve various optimization goals. Since for n taxa there are 2n brutal force choices,

these problems are NP complete. Except for very small number of taxa, exhaustive search or

exact solution have not been tried before our work based on integer linear programming. The

solutions available are all based on heuristics.

The use of integer linear programming in phylogenetics appears to be relatively new [Gus-

field et al. (2007); Sridhar et al. (2008)]. The formulations presented here are related to the au-

thor’s previous work on constructing majority-rule supertrees and conservative supertrees [Dong

et al. (2010a); Dong and Fernández-Baca (2011)]. Nevertheless, there are some important dif-

ferences with that work. The main difference is that for the rogue taxa problem, the key

variables are the selection variables for taxa, while for the supertree problems, especially for

the (+) route, the key variables are the filling variables. While our ILP formulations can only

be used for relatively small data sets, they offer a valuable benchmark against which to compare

heuristics. They have also allowed us to identify certain interesting characteristics and limita-

tions of the various consensus methods. In particular, our experiments suggest that assigning

equal weight to the number clusters and the number of taxa in the consensus tree might be too

conservative an approach.
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CHAPTER 4. MAJORITY-RULE (+) SUPERTREES

In this chapter, we describe a variant (suggested by William H. E. Day) of the majority-rule

(+) supertree.

4.1 Definition

The span of an input tree t, denoted by 〈t〉gr, is the set of all trees on L(P ) that display t.

The span of a profile P = (t1, . . . , tk), denoted 〈P 〉gr, is the set of all k-tuples R = (T1, . . . , Tk),

where Ti ∈ 〈ti〉gr for each i ∈ K where K denotes the set {1, . . . , k}. Each R ∈ 〈P 〉gr is

called a representative selection for P and Maj(R) is called a candidate supertree. An optimal

representative selection is a representative selection R with minimum score s(R) over all R ∈

〈P 〉gr. We refer to Maj(R) as the optimal candidate supertree associated with R. The majority-

rule (+) supertree of profile P , denoted by Maj+(P ), is the strict consensus of all the optimal

candidate supertrees.

Dong and Fernández-Baca (2009) have shown that Maj+(P ) satisfies the following appealing

properties (originally conjectured by Cotton and Wilkinson).

(CW1) Maj+(P ) displays all of the majority plenary splits in P .

(CW2) Maj+(P ) is compatible with each majority partial split in P .

(CW3) Each split in Maj+(P ) is compatible with a majority of the trees in P .

(CW4) Every plenary split in Maj+(P ) extends at least one input tree full split.

The majority-rule (+) supertrees, as defined above, do not generalize majority-rule con-

sensus. That is, when used in the consensus setting, Maj+(P ) is not, in general, the same as
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Maj(P ). Nevertheless, majority-rule (+) consensus trees have a simple characterization that

yields an efficient algorithm for computing them (see Theorem 1).

The majority-rule (+) supertrees we study differ from other variants in the way the span

of an input tree is defined. Cotton and Wilkinson (2007) originally defined the span of a tree t

as the set of all plenary binary trees that display t. Dong and Fernández-Baca (2009) showed

that this version does not generalize majority-rule consensus and does not satisfy (CW4). In

a more recent version, suggested by Wilkinson (personal communication), the span of t is the

set of all plenary trees T such that T |L(t) = t. We name this span as 〈t〉g. This definition of

span prohibits refinement of any original polytomies in t. Dong and Fernández-Baca (2009)

showed that the supertree method that results from using this definition generalizes majority-

rule consensus, and that it satisfies properties (CW1)–(CW4). Nonetheless, we have preferred

Day’s variant for two reasons. First, we have found it computationally easier to deal with than

the others. More importantly, it can be argued that a strict generalization of majority-rule

consensus might not be the ideal approach for supertree construction: In practice, one often

encounters profiles where different trees “specialize” in different groups of taxa, leaving other

groups largely unresolved or unrepresented. In a combined analysis, each input tree should

contribute its own specialized information so that, jointly, the trees lead to a well-resolved

supertree. A strict generalization of majority rule would disallow this, since the method discards

minority information. In contrast, the majority-rule (+) supertrees presented here preserve this

fine-grained information, unless it were substantially contradicted by the remaining trees (the

sense in which this is true can be gleaned from Theorem 1).

4.2 Constructing Optimal Candidate Supertrees

We first consider the consensus version of the problem. Let P = (T1, . . . , Tk) be a profile

of trees over the same leaf set. K denotes the set {1, . . . , k}. Given a plenary split X = A|B,

define

KX(P ) = {i ∈ K : X is displayed by Ti}
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and

KX(P ) = {i ∈ K : X is not compatible with Ti}.

The theorem below, proved elsewhere by Dong et al. (2010b), characterizes the majority-rule

(+) consensus tree of a profile and implies that this tree can be computed in polynomial time.

Theorem 1. For any profile P , Maj+(P ) is precisely the tree that displays every split X such

that |KX(P )| > |KX(P )|. Furthermore, Maj+(P ) is an optimal candidate tree for P , as well

as the strict consensus of all optimal candidate trees for P .

On the other hand, the next result suggests that finding the majority-rule (+) supertree

for a profile of trees with partially overlapping leaf sets may be hard.

Theorem 2. There is no polynomial-time algorithm to construct an optimal candidate supertree

unless P = NP.

Proof. We show that if there is a polynomial time algorithm to compute an optimal candidate

supertree, then there exists a polynomial-time algorithm for the quartet compatibility problem,

which is known to be NP-complete by Steel (1992). The quartet compatibility problem asks

whether, given a collection Q of trees on four leaves, there exists a single tree that displays

them all. If the answer is “yes”, we say that Q is compatible.

Let Q be an instance of quartet compatibility. Construct a profile P that simply consists of

the trees in Q in some arbitrary order. We claim that Q is compatible if and only if P has an

optimal candidate supertree with a score of zero. Suppose first that Q is compatible and that

T is any tree that displays each element of Q. Then, for each tree t in P , T ∈ 〈t〉gr, because all

the splits in T must be compatible with t, so any split in T that is not in t can be added to t.

Hence, T is a candidate tree for P with a score of zero, and thus T is also an optimal candidate

supertree. Conversely, if P has an optimal candidate supertree with zero score, it can be seen

that T displays all the quartets in Q; i.e., Q is compatible.

In the next sections, we show that despite the above result, moderately large majority-

rule (+) supertree problems can be solved using integer linear programming. For this, we

need to address a potential complication: Since the definition of 〈t〉gr allows refinement of
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multifurcations in t, a tree T ∈ 〈t〉gr can contain many more nontrivial splits than t; indeed,

we cannot predetermine the number of nontrivial splits T will contain. We circumvent this

potential problem by defining a restricted version of the span.

Given an input tree t in a profile P , the restricted span of t, denoted 〈t〉r is the set of all

plenary trees T such that every nontrivial split in T extends a distinct nontrivial split in t.

Thus, |Spl(T )| = |Spl(t)|. Note that T is obtained from t by filling in each of t’s splits, by

adding zero or more taxa to each part, to make them plenary splits in such a way that the

resulting splits are compatible. Note also that 〈t〉r ⊆ 〈t〉gr. The restricted span of a profile

P = (t1, . . . , tk), denoted 〈P 〉r is the set of all R = (T1, . . . , Tk) for P such that Ti ∈ 〈ti〉r

for each i ∈ K. Each R ∈ 〈P 〉r is called a restricted representative selection for P . Since

〈P 〉r ⊆ 〈P 〉gr, the restricted span represents an intermediate level between the input profile

and the original definition of span. The restricted span is more manageable than the original

span because it does not allow any refinement of input trees. In the rest of this section, we will

show how to obtain majority-rule (+) supertrees directly from the restricted span.

Before presenting the first of the two main results of this section, we need to introduce some

new concepts. An optimal candidate supertree T for a profile P is minimal if contracting any

edge in T yields a tree that is not an optimal candidate supertree. Let R = (T1, . . . , Tk) and

R′ = (T ′1, . . . , T
′
k) be two representative selections for a profile P . We say that R displays R′

if Ti displays T ′i for every i ∈ K. Theorem 1 motivates the next definition. The completion

of a representative selection R = (T1, . . . , Tk) for a profile P is the representative selection

R̂ = (T̂1, . . . , T̂k) obtained as follows: For every i ∈ K, T̂i is the tree constructed by inserting

into Ti each plenary split X = A|B compatible with Ti such that |KX(R)| > |KX(R)|.

Theorem 3. Let T be a minimal optimal candidate supertree for a profile P and let R ∈ 〈P 〉gr

be such that T = Maj(R). Consider any G ∈ 〈P 〉r such that G is displayed by R. Then, R is

the completion of G and T = Maj+(G) .

Proof. We begin by proving that T is an optimal candidate supertree for G. Assume the

contrary. Then, there exists another candidate tree T ′ for G such that (i) T ′ = Maj(R′) for

some R′ ∈ 〈G〉gr and (ii) s(R′) < s(R). But then, since 〈G〉gr ⊆ 〈P 〉gr, we have R′ ∈ 〈P 〉gr,
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and thus (ii) contradicts the optimality of T for P .

Next, we argue that T is a minimal optimal candidate supertree for profile G. Suppose

this is not true. Then, T displays an optimal candidate supertree T ′ for G such that T 6= T ′.

Consider any R′ ∈ 〈G〉gr such that T ′ = Maj(R′). Since T and T ′ are both optimal for

G, s(R) = s(R′). Since R′ displays P , we have R′ ∈ 〈P 〉gr. Hence, T ′ is also an optimal

candidate supertree for P . This, however, contradicts the assumption that T is a minimal

optimal candidate tree for P .

By Theorem 1, Maj+(G) is an optimal candidate supertree for G, as well as the strict

consensus of all optimal candidate supertrees for G. Therefore, Maj+(G) is the only minimal

optimal candidate supertree for G. Hence T = Maj+(G).

Suppose R = (T1, . . . , Tk) and let R̂ = (T̂1, . . . , T̂k) be the completion of G. We claim that

R̂ = R. Assume, on the contrary, that there is some i ∈ K such that T̂i 6= Ti. That is, X∪Y 6= ∅,

where X = Spl(T̂i) \ Spl(Ti) and Y = Spl(Ti) \ Spl(T̂i). Set X consists of splits X such that

|KX(G)| > |KX(G)| and Y consists of splits Y such that |KY (G)| ≤ |KY (G)|. By Theorem 1,

T = Maj+(G) displays all splits X such that |KX(G)| > |KX(G)|. Thus, d(T, T̂i) < d(T, Ti). As

we are assuming that there is at least one such i ∈ K, we have
∑

i∈K d(T, T̂i) <
∑

i∈K d(T, Ti),

contradicting the fact that T is a minimal optimal candidate supertree for G.

Motivated by Theorem 3, we define the adjusted score of a representative selection R for a

profile P , denoted ŝ(R), to be the score of the completion R̂ of R; i.e., ŝ(R) = s(R̂). Recall

that s(R̂) = dist(Maj(R̂), R̂).

Theorem 4. Let P be a profile. Define G = {G ∈ 〈P 〉r : ŝ(G) is minimum} and S = {T =

Maj+(G) : G ∈ G}. Then, Maj+(P ) is the strict consensus of S.

Proof. Let O be the set of all optimal candidate supertrees for P and let M be the set of

all minimal optimal candidate supertrees of P . In what follows, we show that M ⊆ S ⊆ O.

This immediately implies the theorem, because not only is (by definition) Maj+(P ) the strict

consensus of O, but it must also be the strict consensus of M.

Suppose T ∈M. We claim that T ∈ S and, therefore, thatM⊆ S. Let R be a representa-

tive selection for P such that T = Maj(R). Let G be any restricted representative selection for



31

P displayed by R. By Theorem 3, T = Maj+(G) and R is the completion of G. We claim that

G ∈ G; i.e., ŝ(G) is minimum. Assume, by way of contradiction, that there is another G′ ∈ 〈P 〉r

such that ŝ(G′) < ŝ(G). Let R′ be the completion of G′. Then, s(R′) = ŝ(G′) < ŝ(G) = s(R),

which contradicts the assumption that T is optimal. Therefore, ŝ(G) is minimum and T ∈ S.

Suppose T ∈ S. We claim that T ∈ O and, therefore, that S ⊆ O. Let G ∈ 〈P 〉r be such

that T = Maj+(G) and the adjusted score ŝ(G) is minimum. Let R be the completion of G.

Assume, by way of contradiction, that T 6∈ O. Then there is a T ′ ∈ M such that, if R′ is a

representative selection for P where T ′ = Maj(R′), then s(R′) < s(R). By Theorem 3, there is

a G′ ∈ 〈P 〉r such that T ′ = Maj+(G′) and ŝ(G′) = s(R′). Then ŝ(G′) = s(R′) < s(R) = ŝ(G).

This contradicts the assumption that ŝ(G) is minimum.

4.3 ILP Formulation

In this section we first describe an ILP formulation of the optimal candidate supertree

problem based on Theorem 4. The optimum solution to this ILP is a G ∈ 〈P 〉r with minimum

adjusted score. For ease of exposition, we divide the variables of our ILP into three categories:

fill-in variables, which represent the way taxa are added to the input trees to create G; objective

function variables, which are used to express ŝ(G); and auxiliary variables, which are used to

establish a connection between the fill-in and objective function variables. All variables are

binary. After presenting our ILP model, we discuss how to use it to generate Maj+(P ).

4.3.1 Fill-in Variables

At the core of our ILP formulation is a matrix representation of the input trees similar

to that used in MRP [Baum (1992); Ragan (1992)]. Let P = (t1, . . . , tk) be a profile where

|L(P )| = n. Assume input tree tj has mj nontrivial splits, which are assumed to be ordered in

some fixed but arbitrary way. A matrix representation of tj is a n ×mj matrix M(tj) whose

columns are in one to one correspondence with the nontrivial splits of tj . Suppose column i

of M(tj) corresponds to split A|B in tj and let x be a taxon in L(P ). Then, Mx,i(tj) = 1 if

x ∈ A, Mx,i(tj) = 0 if x ∈ B, and Mx,i(tj) =? otherwise. We note that for unrooted trees the
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assignment of 1 to the A side of the split and of 0 to the B side is arbitrary. For rooted trees,

all taxa in the side of a split that contains the root are assigned a 1.

Let m =
∑

j∈K mj . A matrix representation of P , denoted M(P ), is a n×m matrix M(P )

obtained by concatenating matrices M(t1),M(t2), . . . ,M(tk).

A fill-in of matrix M(P ) is a matrix representation for a restricted representative selection

G for P . Note that M(G) has no question marks and that, for every taxon x and split i such

that Mxi(P ) ∈ {0, 1}, we have Mxi(G) = Mxi(P ). To represent fill-ins of M(P ), the ILP

associates a fill-in variable Fxi with each x and i. If Mxi(P ) ∈ {0, 1}, then Fxi = Mxi(P ); i.e.,

Fxi is fixed. If Mxi(P ) =?, Fxi will be assigned a value of 0 or 1, representing an assignment

of taxon x to one of the two sides of split i. Our ILP has constraints (described below) to

ensure that each value assignment to the F -variables corresponds to a restricted representative

selection for P . That is, there must exist a G ∈ 〈P 〉r such that Mxi(G) = Fxi for every x and

i.

4.3.2 Objective Function Variables

The objective is to minimize ŝ(G) over all G ∈ 〈P 〉r, where each G is represented by a fill-in

of M(P ). By definition, ŝ(G) = dist(Maj+(G), R), where R = (T̂1, . . . , T̂k) is the completion

of G = (T1, . . . , Tk). We do not, however, construct Maj+(G) and R explicitly. Instead, we

proceed indirectly, using the fact that, by Theorems 1 and 3, all splits in Maj+(G) and R are

already in G. Indeed, those theorems imply that

dist(Maj+(G), R) =
∑
j∈K
|Spl(T̂j) \ Spl(Maj+(G))|+

∑
j∈K
|Spl(Maj+(G)) \ Spl(T̂j)|. (4.1)

The next result, which follows Theorems 1 and 3, allows us to count directly from G the

contribution of each split X ∈ Spl(Maj+(G)) ∪ Spl(T̂j) to d(Maj+(G), T̂j).

Lemma 1. Let P be a profile and suppose G ∈ 〈P 〉r. Then, for each j ∈ K,

(i) X ∈ Spl(T̂j) \ Spl(Maj+(G)) if and only if |KX(G)| ≤ |KX(G)| and j ∈ KX(G).

(ii) X ∈ Spl(Maj+(G)) \ Spl(T̂j) if and only if |KX(G)| > |KX(G)| and j ∈ KX(G).
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Suppose we have a fill-in for M(P ) that corresponds to some G = (T1, . . . , Tk) ∈ 〈P 〉r.

Our ILP has two kinds of objective function variables. The first group of variables are denoted

w1, . . . , wm, where wi corresponds to the ith column of M(G). Suppose this column corresponds

to split X in tree Tj ; thus, j ∈ KX(G). Our ILP has constraints such that wi = 1 if and only

if |KX(G)| > |KX(G)|, that is, the ith column is in Maj+(G). Thus, wi = 0 means that

|KX(G)| ≤ |KX(G)|, that is, the ith column is not in Maj+(G). It, together with Lemma 1 (i),

implies that
∑m

i=1 (1− wi) =
∑

j∈K |Spl(T̂i) \ Spl(Maj+(G))|.

The second group of variables are denoted zij , 1 ≤ i ≤ m, 1 ≤ j ≤ k. Suppose column i of

M(P ) corresponds to split X. Our ILP has constraints such that zij = 1 if and only if wi = 1

(i.e., |KX(G)| > |KX(G)|), j ∈ KX(G), and i = min{` : ` ∈ KX(G)}. Thus, by Lemma 1 (ii),∑m
i=1

∑k
j=1 zij =

∑
j∈K |Spl(Maj+(G)) \ Spl(T̂j)|.

The objective function can now be expressed as

minimize
m∑
i=1

k∑
j=1

zij +
m∑
i=1

(1− wi).

4.3.3 Auxiliary Variables and Constraints

As mentioned earlier, all variables, including the auxiliary ones, are Boolean. We take

advantage of this, expressing the constraints relating the variables as Boolean expressions in

terms of the “and’, “or,” “exclusive or,” and “if and only if” operators (denoted by the usual

symbols, ∧, ∨, ⊕, and ⇔, respectively). We then convert these expressions into equivalent

linear inequalities on zero-one variables.

We first describe the variables and constraints that are used to ensure that the settings of

the fill-in variables (the F variables) correspond to a restricted representative selection. That

is, the assignments to the F variables must be such that, for each input tree tj , the resulting

plenary splits associated with the tree are pairwise compatible, so that they yield a plenary

tree Tj ∈ 〈tj〉r. For this purpose, we define variables Cpq, 1 ≤ p, q ≤ m and add constraints

linking these variables and the F variables such that Cpq = 1 if and only if columns p and q are

compatible under the fill-in represented by the F variables. To guarantee that the assignment

to the F variables corresponds to a restricted representative selection, we require that Cpq = 1
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for every two column indices p, q that correspond to splits in the same input tree. We note that

the constraints relating the fill-in variables F and the C-variables closely resemble the ones

used by Gusfield et al. (2007). One difference is that for our problem we need “if and only if”

relationships, whereas Gusfield et al. require only one direction of the implication.

The constraints on the C-variables use the fact that splits p and q are incompatible if and

only if 00, 01, 10, and 11 all appear in some rows of columns p and q (the “four gametes

condition”). The presence or absence of these patterns for columns p and q is indicated by

the settings of variables B(ab)
pq , a, b ∈ {0, 1}, where B(ab)

pq = 1 if and only if there is a taxon

r such that Frp = a and Frq = b. The B(ab)
pq s are determined from the settings of variables

Γ(ab)
rpq , where r ranges over the taxa (i.e., the rows of M(P )). The Γ variables satisfy Γ(ab)

rpq ⇔

((Frp = a) ∧ (Frq = b)). This condition is expressed by the following constraints.

(−1)aFrp + (−1)bFrq + Γ(ab)
rpq ≥ 1− a− b,

(−1)aFrp + (−1)bFrq + 2Γ(ab)
rpq ≤ 2− a− b.

(4.2)

We have that B(ab)
pq ⇔

∨
r Γ(ab)

rpq , which is expressed by the inequalities below.

−
∑
r

Γ(ab)
rpq +B(ab)

pq ≤ 0,

∑
r

Γ(ab)
rpq − nB(ab)

pq ≤ 0
(4.3)

Observe that ¬Cpq ⇔ B
(00)
pq ∧ B(01)

pq ∧ B(10)
pq ∧ B(11)

pq . Equivalently we have the constraints

below.

B(00)
pq +B(01)

pq +B(10)
pq +B(11)

pq + 4Cpq ≥ 4,

B(00)
pq +B(01)

pq +B(10)
pq +B(11)

pq + Cpq ≤ 4.
(4.4)

We now consider the variables and constraints that enable us to express the objective

function variables. There are three main sets of variables:

• For 1 ≤ p ≤ m, Dp equals 1 if and only if column p represents the same split as some

column with smaller index.

• For 1 ≤ i ≤ m, 1 ≤ j ≤ k, S(1)
ij , equals 1 if and only if split i is in tree j.
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• For 1 ≤ i ≤ m, 1 ≤ j ≤ k, S(2)
ij equals 1 if and only if split i is compatible with tree j.

As we shall see, the values of the w and the z variables in the objective function are determined,

respectively from the S(1) and S(2) variables, and from the w, S(2), and D variables.

The D and S(1) variables depend on variables Epq, 1 ≤ p, q ≤ m, where Epq = 1 if and only

if columns p and q of the filled-in matrix represent the same split. Here we have to make a

distinction between rooted and unrooted trees. In the rooted case, there exists a root taxon r

such that Mri(P ) = 1 for every column i. The same is not true for unrooted trees.

The value of Epq depends on the patterns that appear in columns p and q, which can be

deduced from the values of B(ab)
pq for different choices of a and b as follows.

• For rooted trees, Epq ⇔ ¬B(01)
pq ∧ ¬B(10)

pq . This is expressed as follows.

B(01)
pq +B(10)

pq + 2Epq ≤ 2,

B(01)
pq +B(10)

pq + Epq ≥ 1.
(4.5)

• For unrooted trees, we introduce two auxiliary variables δ(1)
pq and δ

(2)
pq such that

δ(1)
pq ⇔ ¬B(01)

pq ∧ ¬B(10)
pq and δ(2)

pq ⇔ ¬B(00)
pq ∧ ¬B(11)

pq .

Then,

Epq ⇔ δ(1)
pq ⊕ δ(2)

pq .

These logical constraints are expressed by the following inequalities.

B(01)
pq +B(10)

pq + 2δ(1)
pq ≤ 2,

B(01)
pq +B(10)

pq + δ(1)
pq ≥ 1,

B(00)
pq +B(11)

pq + 2δ(2)
pq ≤ 2,

B(00)
pq +B(11)

pq + δ(2)
pq ≥ 1,

Epq − δ(1)
pq − δ(2)

pq = 0.

(4.6)

We are now ready to give the constraints for the D, S(1) and S(2) variables. Observe that
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D1 = 0 and that, for 1 < p ≤ m, Dp ⇔
∨p−1
i=1 Eip. Equivalently we have

Dp −
p−1∑
i=1

Eip ≤ 0,

p−1∑
i=1

Eip − p ·Dp ≤ 0.

(4.7)

In describing the constraints for the S(1) and S(2) variables, we adopt the convention that the

splits of the jth tree correspond to columns j1, . . . , jd of M(P ). Then, S(1)
ij ⇔ Eij1 ⊕· · ·⊕Eijd .

This translates into the equality constraint

S
(1)
ij −

d∑
r=1

Eijr = 0. (4.8)

On the other hand, S(2)
ij ⇔ Cij1 ∧ · · · ∧ Cijd . This is equivalent to the two constraints below.

d · S(2)
ij −

d∑
r=1

Cijr ≤ 0,

1− d− S(2)
ij +

d∑
r=1

Cijr ≤ 0.

(4.9)

Finally, we describe how the objective function variables relate to the auxiliary variables.

For each i, wi = 1 if and only if
∑k

j=1 S
(1)
ij > k−

∑k
j=1 S

(2)
ij . This is expressed by the following

two constraints.

k · wi + 1−
k∑
j=1

S
(1)
ij −

k∑
j=1

S
(2)
ij ≤ 0,

k∑
j=1

S
(1)
ij +

k∑
j=1

S
(2)
ij − k − k · wi ≤ 0.

(4.10)

It follows from the definition of the z variables that, for every i, j, zij ⇔ wi ∧ ¬S(2)
ij ∧ ¬Di.

Equivalently we have the following.

−2− wi + S
(2)
ij +Di + 3 · zij ≤ 0,

wi − S(2)
ij −Di − zij ≤ 0.

(4.11)

There are a total of O(nm2) variables and constraints of the ILP formulation. It should

be noted that O(nm2) assumes that all the variables listed are indeed variables. In reality,

the values of many of the F variables are fixed because they correspond to non-question-mark
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entries in M(P ). This in turn fixes the values for several Γ variables, as well as those of other

variables. As a consequence, the number of true variables in the ILP formulation is typically

much smaller than the worst case estimates. In general, the larger the number of question

marks in matrix M(P ), the closer the problem size will be to the worst case estimates.

4.3.4 Building Majority-rule (+) Supertree

The ILP model just outlined allows us to find a G ∈ 〈P 〉r corresponding to some optimal

candidate supertree T ∗. To build Maj+(P ) we need, in principle, the set of all such G. While

there are ways to enumerate this set [Danna et al. (2007)], we have found that an alternative

approach works much better in practice. The key observation is that, since Maj+(P ) is the

strict consensus of all optimal candidate supertrees, each split in Maj+(P ) must also be in

T ∗. Thus, once we have T ∗, we simply need to verify which splits in T ∗ are in Maj+(P )

and which are not. To do this, for each split A|B in T ∗, we put additional constraints on

the original ILP requiring that the optimal tree achieve an objective value equal or smaller

than that of T ∗ and not display split A|B. The resulting ILP has only O(mn) more variables

and constraints than the original one. If the new ILP is feasible, then A|B /∈ Spl(Maj+(P ));

otherwise, A|B ∈ Spl(Maj+(P )). We have found that detecting infeasibility is generally much

faster than finding an optimal solution.

4.4 A Data Reduction Heuristic

The ILP formulation described in the previous section allows us to solve supertree problems

of moderate size. Here we describe a data reduction heuristic that allows us to extend the range

of our method significantly in practice, by exploiting the structure that is present in certain

supertree problems. Our data reduction heuristic applies when the input profile P = (t1, . . . , tk)

contains a subset of taxa S that can be treated as a single super-taxon. Roughly stated, we

are looking for a set S such that every tree in P respects the split implied by S. We now define

this concept more precisely.

Let Spl0(T ) denote the set of all full splits displayed by T . That is, Spl0(T ) includes the

non-trivial and the trivial splits displayed by T ; in particular, L(T )|∅ ∈ Spl0(T ). We say
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that S ⊆ L(P ) with 1 < |S| < |L(P )| − 1 is a reducible set if, for each j ∈ K, there is a

split A|B ∈ Spl0(tj) such that A ∩ S = A and B ∩ S = ∅. Ideally, a reducible set should

correspond to a widely-acknowledged biological classification unit. For example, a subset of

the trees in a collection of phylogenies may contain subtrees corresponding to different (possibly

empty) subsets of the primates. While these subsets may not be identical and may even disagree

somewhat in their topologies, the trees are likely to separate primates from other organisms. In

settings like this, it makes intuitive sense to restrict our attention to supertrees where reducible

sets appear as clusters.

Given a reducible set S for P , we can define two smaller subproblems.

• The reduced profile associated with a reducible set S is the profile PRed = (tRed
1 , . . . , tRed

k )

where, for each j ∈ K, tRed
j is the tree obtained from tj by contracting the minimal

subtree of tj containing S∩L(tj) to a single leaf node βS . If S∩L(tj) = ∅, then tRed
j = tj .

We refer to βS as the supertaxon associated with S.

• The satellite profile associated with S is the profile P Sat = (tSat
1 , . . . , tSat

k ) where tSat
j is

obtained from tj by contracting the minimal subtree of tj containing (L(P ) \ S) ∩ L(tj)

to a single leaf node ρS . Note that some of the trees in the satellite profile associated with

S may contain only ρS . The compressed satellite profile associated with S is the satellite

profile associated with S with all of the latter trees removed.

An S-restricted representative selection for P is a selection R = (T1, . . . , Tk) ∈ 〈P 〉 such

that S|(L(P ) \ S) ∈ Spl(Ti) for all i ∈ K. An optimal S-restricted candidate representative

selection is an S-restricted representative selection R with minimum score, and Maj(R) an

optimal S-restricted candidate supertree. The S-restricted majority-rule (+) supertree is the

strict consensus of all the optimal S-restricted candidate supertrees.

It should be noted that, given an arbitrary reducible set S, it is not true in general that an

optimal S-restricted candidate supertree will be an optimal candidate supertree, nor that an

S-restricted majority-rule (+) supertree will also be a majority-rule (+) supertree.

On the other hand, a reducible set may represent useful biological knowledge that should be

incorporated into a supertree analysis. There are also computational benefits. With the right
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choice of S (one where |S| is far from the extreme values of 2 and |L(P )| − 2), the reduced and

satellite profiles can be considerably smaller than the original profile, and the corresponding

integer programs will have fewer unknown variables. As the following theorem indicates, an

optimal S-restricted candidate supertree can be found by solving the associated subproblems

separately and combining their answers.

Theorem 5. Let P be a profile and S be a reducible set in P . Let TRed and T Sat be optimal

candidate trees for the reduced profile associated with S and the compressed satellite profile

associated with S. Let T be the tree obtained by identifying the node βS in TRed and node ρS in

T Sat and then suppressing the resulting degree-two vertex. Then, T is an optimal S-restricted

candidate supertree for P . Further, if R, is the optimal S-restricted representative selection

corresponding to T and RRed and RSat are the optimal representative selections corresponding

to TRed and T Sat, respectively, then s(R) = s(RRed) + s(RSat).

The straightforward proof of this result is omitted. A direct consequence is that the S-

restricted majority-rule (+) supertree can be obtained by piecing together the majority-rule

(+) supertrees for the reduced and satellite profiles. Observe that if multiple pairwise disjoint

reducible sets are known, then each of the corresponding compressed satellite profiles can be

solved independently, and the original profile can be reduced by replacing each reducible set to

a distinct super taxon. In fact, the idea can be used recursively, so that a satellite profile can

itself be decomposed to a reduced profile and (sub) satellites. As we shall see later, this can

result in dramatic problem size reductions.
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CHAPTER 5. EXPERIMENTAL STUDY FOR MAJORITY-RULE (+)

SUPERTREES

We report on computational tests with the exact ILP method and the data reduction

heuristic. All our experiments were conducted on real data sets, rather than simulated data.

We did this because we were interested in seeing if the groupings of taxa generated by majority-

rule (+) supertrees would coincide with those commonly accepted by biologists. Another goal

of our experiments was to compare the performance of the ILP formulation without data

reduction, which we refer to as the basic method, against that of ILP plus data reduction. All

trees considered in our tests were rooted.

To conduct our tests of the basic method, we wrote a program to generate the ILPs from the

input profiles. For our tests of the data reduction heuristic, we used different methods to find

reducible sets in a profile; these are outlined later. Given the reducible sets, the corresponding

reduced and satellite profiles, as well as the associated ILPs, were generated automatically. All

ILPs were then solved using CPLEX (CPLEX is a trademark of IBM) on an Intel Core 2 64

bit quad-core processor (2.83GHz) with 8 GB of main memory and a 12 MB L2 cache per

processor.

5.1 Experiments with the Basic ILP Formulation

We tested the basic ILP formulation on five published data sets. The Drosophila A data

set is the example studied in Cotton and Wilkinson (2007), which was extracted from a larger

Drosophila data set considered by Cotton and Page (2004). Primates is the smaller of the data

sets from Ranwez et al. (2007). Drosophila B is a larger subset of the data studied in Cotton

and Page (2004) than that considered in Cotton and Wilkinson (2007). Chordata A and B are
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two extracts from a data set used in a widely-cited study by Delsuc et al. (2006). Chordata A

consists of the first 6 trees with at least 35 taxa (out of 38). Chordata B consists of the first

12 trees with at least 37 taxa (out of 38).

The results are summarized in Table 5.1. Here n, m, and k are the number of taxa, total

number of splits, and number of trees, respectively. N is the size of the CPLEX-generated

reduced ILP. It shows the time to solve the ILP and produce an optimal candidate supertree

T ∗ and the time to verify all the splits of T ∗ to produce Maj+(P ).

Table 5.1 Summary of Experimental Results with the Basic ILP Method

Data set n m k N Sol. (sec) Verif. (sec)

Drosphila A 9 17 5 9.8 e5 0.83 1.6
Primates 33 48 3 7.8 e7 15.83 2.86
Drosophila B 40 55 4 1.25 e9 362 19
Chordata A 38 290 6 1.40 e8 120 258
Chordata B 38 411 12 1.05 e8 986 1784

Our results using the basic ILP formulation compare well with the published ones. For

Drosophila A we obtained exactly the same tree reported in Cotton and Wilkinson (2007).

For Primates, the output is exactly the same as Ranwez et al. (2007), which was produced

by PhySIC method. The coincidence with PhySIC is noteworthy, since this supertree is less

controversial than the MRP, Mincut, and PhySICPC supertrees reported in Ranwez et al.

(2007). The reason for the coincidence may lie in the fact that, while heuristic, PhySIC requires

that all topological information contained in the supertree be present in an input tree or

collectively implied by the input trees, which bears some similarity with properties (CW1)–

(CW4) of majority (+) supertrees.

For Drosphila B, Cotton and Page (2004) show four supertrees: strict consensus of gene

tree parsimony (GTP), Adams consensus of GTP, strict consensus of MRP, Adams consensus

of MRP. Among the 10 clusters found by our ILP, two are in all four of these supertrees, three

are found in the Adams consensus of GTP and Adams consensus of MRP, one is in the strict

and Adams consensus of GTP, and one is found in the strict and Adams consensus of MRP.

Thus, with only four input trees we were able to generate a tree that is quite similar to the
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published results. For Chordata A, the 12 splits found matched published results [Delsuc et al.

(2006)] exactly. For Chordata B, the 14 splits found matched Delsuc et al. (2006).

We have not mapped out the precise boundary within which it is feasible to use the basic

ILP method. However, it appears that it may not extend much beyond the dimensions of the

problems listed in Table 5.1. For example, Drosophila B contains four out of 6 of the trees

studied in Cotton and Page (2004). Adding a fifth tree to the data set yields a problem that

could not be solved by the basic ILP method. A major factor here is that the size of our ILP

grows as the square of the total number of splits in all trees, and the solution time is exponential

in the worst case. Incorporating a new tree to Drosophila B could easily add enough splits to

the problem to put it well beyond the reach of our technique. We should add that model size

does not appear to be the sole factor that makes instances hard — sparsity also seems to play

a role.

5.2 Experiments with the Data Reduction Heuristic

As a preliminary test, we compared the results obtained via the reduction heuristic with

the exact solutions, obtained using the basic ILP method, for two of the data sets listed in

Table 5.1. For simplicity, only clusters from the input trees were used as reducible sets. (Note

that unions of input clusters could have also been used as reducible sets.) We wrote a program

that chooses clusters greedily. At every step, it selects the largest non-trivial cluster present in

some input tree that does not overlap with any of the previously chosen clusters.

For the Primates data set, the optimal objective value (i.e., the score of an optimal candidate

supertree) for the original profile is 9. We found six pairwise disjoint reducible sets, and built

the corresponding reduced and satellite profiles. The optimal objective values of the reduced

profile, first, second and third satellite profiles are 0, 4, 3, and 2, respectively. The other

satellite profiles have an optimal objective value of 0. Thus, the total score of the reduced and

satellite profiles matches the optimal score for the original profile, and the supertree obtained

using the heuristic is also optimal. The reduction method also gives a correct optimal candidate

supertree for Drosophila B. Here the original profile has an objective value of 8. We found nine

pairwise disjoint reducible sets, and built the corresponding reduced and satellite profiles. The
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reduced profile has an optimal objective value of 8 and all satellite profiles have an optimal

objective value of 0.

It should be pointed out that the reducible sets used for Primates and Drosophila B do

not necessarily correspond to clusters in the majority-rule (+) supertree, although they are

displayed by some optimal candidate trees. Thus, one will not obtain a majority-rule (+)

supertree by simply composing the solutions to the reduced problems and the satellites. This

indicates the importance of choosing relatively few large and well-supported reducible sets.

Biological knowledge can serve as a good guide. For example using the clade Haplorrhini as a

reducible set for Primates data set, solving the corresponding reduced and satellite profiles and

combining the respective majority-rule (+) supertrees one gets exactly the same supertree as

through the basic (and exact) method. Similarly, using the subgenus Sophophora as a reducible

set for Drosophila B, we, obtained precisely the majority-rule (+) supertree for the data set.

Next, we considered some data sets that are well beyond the reach of our basic ILP method.

The Drosphila C data set is the full 6-tree Drosophila data set of Cotton and Page (2004) from

which the Drosophila A and B data sets were extracted. The Seabirds data set consists of the

7 trees in the seabirds study by Kennedy and Page (2002); which encompasses 122 taxa (note

that one of these taxa is an outgroup, so we do not count it in our study). We also examined

the full Chordata set of Delsuc et al. (2006), which has 38 taxa and 146 trees.

We looked for reducible sets in the full Chordata data set by considering increasingly larger

subprofiles, starting with one input tree and then including one more input tree at every step.

For each subprofile, we conducted an exhaustive search for reducible sets. The number of

reducible sets increased at first, then fluctuated, and finally declined. After the 20th tree, there

were no reducible sets. Thus, the data reduction heuristic proved to be ineffective for this data

set.

We identified seven reducible sets for Drosophila C. Six of these were found by the greedy

approach; the seventh corresponded to the subgenus Sophophora (the latter was selected man-

ually, after some of the subproblems identified by our program proved impossible to solve).

Four of the associated satellites were trivially solvable, since each contained only two taxa. We

then solved ILPs for the reduced and the nontrivial satellites. The running time statistics are
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summarized in Table 5.2, which shows the same kind of data shown in Table 5.1, except that

this time it reports these statistics for the original, reduced and satellite problems. Notably,

even though the original ILP was too large to be solved, the reduced profile was solved in less

than 10 minutes and the satellite profiles were solved almost instantly. Not listed in the table

are four other trivially solvable two-taxon satellite profiles.

Table 5.2 Results of Drosophila C Analysis Using Data Reduction

Data set n m N Sol. (sec) Verif. (sec)

Original 46 70 9.4e9 N/A N/A
Reduced 17 33 1.7e7 543.16 50.4
Satellite 1 17 17 2.3e6 0.23 0.28
Satellite 2 6 4 0 0.00 0.00
Satellite 3 5 3 0 0.00 0.02

The majority-rule (+) supertree for Drosphila C constructed by our method (available upon

request) has 15 nontrivial clusters, while the MRP strict consensus tree of Cotton and Page

(2004) has 11. Of these only three appear in both trees. This rather surprising result motivated

us to try to assess how well the input trees are represented by the supertree. To this end, we

relied on the notions of support and conflict, along the lines proposed by Wilkinson et al.

(2005).

Let t be an input tree for a profile P , T be a supertree for P , and S be a non-trivial cluster

in T (i.e., S does not contain the root of T and S|(L(P ) \S) ∈ Spl(T )). Let S′ = S ∩L(t). We

say that tree t supports S if S′ is a non-trivial cluster in t. Tree t is in conflict with S if S′ is

incompatible with t; i.e., there is no tree t′ with L(t′) = L(t) such that Spl(t)∪{S′|(L(t)\S′)} ⊆

Spl0(t′). If t neither supports nor is in conflict with S, we say that t is irrelevant to S.

It hints that each cluster S in the majority-rule (+) supertree should have more input trees

supporting it than contradicting it, even when most trees are irrelevant to S. This indeed

holds for the Drosophila C majority-rule (+) supertree: Every one of its non-trivial clusters is

supported by at least one input tree and does not conflict with any input tree. In contrast, of

the five clusters in the MRP strict consensus supertree for which support outweighs conflict,

only three have no conflict with any input tree. Of the remaining clusters, three have the same
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amount of conflict as support, and for three others the amount of support is outweighed by

the amount of conflict. In fact, among the latter, there is a cluster that is in conflict with five

out of six of the input trees; the remaining tree is irrelevant to that cluster. We refrain from

claiming the superiority of one supertree over the other, since the biological relevance of both

trees needs to be studied in more detail.

To handle the Seabirds data set, we identified three reducible sets, which yielded a reduced

profile and three satellite profiles, numbered 1, 2, and 3. Satellite profile 3 was too big to be

solved by the basic ILP method, so it was further reduced by identifying three reducible sets

within it, which resulted in three (sub-) satellite profiles, numbered 3.1, 3.2, and 3.3. The

various reducible sets correspond to biologically meaningful classification units, as we explain

next. In what follows, we refer to the 7 input trees of Kennedy and Page’s seabirds data set

by the same letters A–G that those authors used in Kennedy and Page (2002).

Satellite 1 comprises the family Spheniscidae (Penguins, 10 taxa), which agrees with widely-

accepted classifications for seabirds [Brooke (2002)]. Members of this family appear in input

trees E, F, and G of Kennedy and Page (2002), and clearly form clusters of their own. Satellites

2 and 3 correspond to Diomedeinae (Albatrosses, 22 taxa), and Procellariinae (gadfly petrels,

shearwaters, fulmars and diving petrels, 73 taxa). This agrees with the Sibley-Ahlquist classi-

fication [Sibley and Ahlquist (1990)] (represented by tree G). The resulting reduced profile has

19 taxa (16 original taxa and three supertaxa).

Satellite 3 (Procellariinae) has three subsatellites. Satellite profile 3.1 comprises the genus

Pterodroma (30 taxa). Satellite 3.2 is for genus Pelecanoides (four taxa). Satellite 3.2 is a

combination of Puffinus and Calonectris (10 taxa), which is supported by Nunn and Stanley

(1998) (tree E). With these three sub-satellites, the reduced Procellariinae profile has 23 taxa

(20 original taxa and three supertaxa).

Table 5.3 summarizes the results on the Seabirds data set. The majority-rule (+) supertree

is shown in Figure 5.1, along with the MRP strict consensus tree of Kennedy and Page (2002).

While the original problem was too big for CPLEX to solve on our machine, the reduced model

was solved in 6.5 seconds. Most subproblems were solved and verified in a negligible amount

of time. A notable exception was the reduced version of satellite 3, which required almost a
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minute to solve and nearly one hour and 45 minutes to verify.

Table 5.3 Results of Seabirds Analysis Using Data Reduction

Data set n m N Sol. (sec) Verif. (sec)

Original 121 188 2.63e12 N/A N/A
Reduced 19 24 7.1e6 6.51 156.2
Sat. 1 10 8 1.1e5 0.05 0.07
Sat. 2 22 29 1.2e6 0.09 1.06
Satellite 3 (reduced) 23 39 5.1e7 52.3 6110
Subsatellite 3.1 30 42 6.8e5 0.06 0.04
Subsatellite 3.2 4 2 0 0.00 0.00
Subsatellite 3.3 19 20 9.5e5 0.17 0.06

Figure 5.1 compares the majority-rule (+) supertree for the seabirds data set, constructed

using the data reduction heuristic, with the MRP strict consensus supertree that Kennedy

and Page presented for the same data set [Kennedy and Page (2002)]. The latter is the strict

consensus of 10,000 equally parsimonious trees obtained using MRP. There are 66 nontrivial

clusters in the majority-rule (+) supertree, compared with 75 nontrivial clusters in the MRP

strict consensus tree (ignoring the outgroup). Among these clusters, 63 are present in both

trees (95% of 66 and 84% of 75). The reducible sets used to construct the majority-rule (+)

supertree are indicated by heavy lines. Note that these sets are also clusters in the MRP

supertree.

Three clusters, numbered 1–3 in Figure 5.1, are in the majority-rule (+) supertree but not

in the MRP tree; 12 clusters, numbered 4–15 in Figure 5.1, appear in the MRP tree but not

in the majority-rule (+) tree. For each of the seven input trees (labeled A–G in Kennedy and

Page (2002)) and each of these 15 clusters, Table 5.4 indicates whether the tree supports (s),

is in conflict with (c), or is irrelevant to (i) the cluster. The numbering of the clusters follows

Figure 5.1. As we expected, each of clusters 1–3 (from the majority-rule (+) tree) has more

input trees supporting it than in conflict with it. Of the 12 clusters (4–15) that are present

only in the MRP strict consensus tree, seven have as many trees in support as in conflict. The

others have more support than conflict.

In general, it appears that MRP may have a bias toward preserving clusters that are present
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Table 5.4 Support and Conflict for the Seabirds Data Set

Cluster A B C D E F G

1 i s i i i i i
2 s s s i s s s
3 s s s i c s s
4 s s s i s c c
5 i s s i s i c
6 i s s i s c c
7 i i i s c i i
8 i i i s c i i
9 i i i s c i i
10 i i i s c i i
11 i i i c s i i
12 i i i s c i i
13 i i i i s i c
14 i i s i s i c
15 i i s i s i c

in trees that contain many members of the families represented in those clusters. This is

noticeable for Pterodroma, where the disagreement between trees D and E is resolved in favor

of the former five times to one, in clusters 7, 8, 9, 10, and 12 versus cluster 11. This may be

related to the “size bias” that previous researchers have observed in MRP [Purvis (1995)]: Here,

even though E is the larger tree (90 taxa versus 30), D has more taxa in the Pterodroma genus

(30 versus 16). Majority-rule (+) trees seem not to have such a bias, because the expansion

process used to construct representative selections tends to put all input trees, regardless of

their size, on equal footing. These are, of course, only preliminary observations; this issue

clearly deserves further analysis.
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Figure 5.1 Comparing the Seabirds MRP Strict Consensus with the Majority-rule (+) Su-
pertree
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CHAPTER 6. CONSERVATIVE SUPERTREES

6.1 Original Formulations

McMorris and Wilkinson (2011) defined strict and loose supertrees using asymmetric dis-

tance as follows. Let P = (t1, . . . , tk) be a profile and S be a supertree for P . Define

AD−(S, ti) = AD(S|Li, ti) andAD−(ti, S) = AD(ti, S|Li). ThenAD−(S, P ) =
∑k

i=1AD
−(S, ti)

and AD−(P, S) =
∑k

i=1AD
−(ti, S). Define AD+

g (S, ti) = min{AD(S, Ti) : Ti ∈ 〈ti〉g} and

AD+
g (ti, S) = min{AD(Ti, S) : T ∈ 〈ti〉g}. ThenAD+

g (S, P ) =
∑k

i=1AD
+
g (S, ti) andAD+

g (P, S) =∑k
i=1AD

+
g (ti, S). It is pointed out that AD+

g (ti, S) = AD−(ti, S) and AD+
g (S, ti) = 0 if and

only if AD−(S, ti) = 0. Therefore, the strict supertree of P , denoted Strs(P ), is the strict

consensus tree of candidate supertrees in the set σ+ = {S : AD+
g (S, P ) = 0} for which the sum

AD+
g (P, S) is minimum over σ+.

Define the following two sets of candidate supertrees. σ− = {S : AD−(S, P ) = 0 and

L(S) = L(P )}, σ+ = {S : AD+
g (S, P ) = 0}. Obviously σ+ = σ−. λ = {S : S ⊗ P and

L(S) = L(P )}. The symbol ⊗ means “to be compatible with”. The strict supertree for P ,

denoted Strs(P ), is the strict consensus of the supertrees in the set σ∗ = {S ∈ σ−(= σ+) :

AD−(P, S)(= AP+
g (P, S) is minimum}. The loose supertree of P , denoted Looses(P ), is the

strict consensus of all trees in the set λ∗ = {S ∈ λ : AD−(P, S)(= AP+
g (P, S)) is minimum}.

6.2 Alternative Formulation of Strict Supertrees

We propose an alternative definition. Let P = (t1, . . . , tk) be a profile. Let R = (T1, . . . , Tk)

be a representative selection of P where Ti ∈ 〈ti〉g, S = Str(R) (the strict consensus of R), and

dist(S,R) be the symmetric difference distance between S and R. If dist(S,R) is minimum, S

is an optimal candidate tree. Strs(P ) is the strict consensus of all optimal candidate trees.
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Define ADIFFg(P ) = minS′∈σ+ minR′∈〈P 〉g{AD(R′, S′)}. Note that an optimal candidate

tree S to generate Strs requires that S ∈ σ+ and AD+
g (P, S) ≤ AD+

g (P, S′) where S′ ∈ σ+.

Obviously such S satisfies that AD+
g (P, S) = ADIFFg(P ).

The following lemma establishes that for any S ∈ σ+, there is a “bridge” representative

selection R such that AD(S,R) = AD+
g (S, P ) = 0 and AD(R,S) = AD+

g (P, S). Moreover, if

S∗ ∈ σ+, R∗ is its bridge representative selection, and AD(R∗, S∗) = AD+
g (P, S∗) ≤ AD+

g (P, S)

for any S ∈ σ+, then S∗ = Str(R∗) and ADIFF (P ) = AD+
g (P, S∗).

Lemma 2. Given a profile P = (t1, . . . , tk), and any S ∈ σ+, there is a representative selection

R = (T1, . . . , Tk) where Ti ∈ 〈ti〉g such that

(i) Ti \ S has a bijection with the splits in ti that cannot be reduced from S.

(ii) AD+
g (P, S) = AD(R,S).

(iii) S ⊆ Str(R).

For S∗ ∈ σ+ and R∗ ∈ 〈P 〉g satisfying (i)-(iii) and AD(R∗, S∗) = AD+
g (P, S∗) ≤ AD+

g (P, S)

for any S ∈ σ+, S∗ = Str(R∗) and ADIFFg(P ) = AD+
g (P, S∗).

Proof. (i) Since S ∈ σ+, AD+
g (S, P ) = 0. There is a representative selection R = (T1, . . . , Tk)

such that Ti ∈ 〈ti〉g, AD(S,R) = 0 (that is, S ⊆ Ti ∈ R) and Ti \ S has a bijection to edges in

ti that cannot be reduced from S. If two or more edges in Ti \ S correspond to one edge in ti

that cannot be reduced from S, then leave one edge and contract the rest.

(ii) We claim that AD(R,S) = AD+
g (P, S). For any A|B ∈ ti that S cannot reduce to,

Ti \ S displays A|B. |Ti \ S| equals the number of such splits. This is the minimum number

any |AD(T, S)| can achieve where T ∈ 〈ti〉g. Thus, AD(R,S) = AD+
g (P, S).

(iii) Obviously S ⊆ Ti and S ⊆ Str(R).

We claim that S∗ = Str(R∗). Assume to the contrary, if S∗ ⊂ S′ = Str(R∗), then S′ ∈ σ+,

AD(R∗, S′) < AD(R∗, S∗) = AD+
g (P, S∗) ≤ AD+

g (P, S′). A contradiction. Hence, S∗ =

Str(R∗).

ADIFFg(P ) = minS′∈σ+ minR′∈〈P 〉g{AD(R′, S′)} = minS′∈σ+ AD+
g (P, S′) = AD+

g (P, S∗).
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Therefore, instead of having two R1 and R2 such that AD(S,R1) = AD+
g (S, P ) = 0 and

AD(R2, S) = AD+
g (P, S), respectively, we have AD(S,R) = AD+

g (S, P ) = 0 and AD(R,S) =

AD+
g (P, S). R is a “bridge” that links both AD+

g (S, P ) and AD+
g (P, S). Moreover, dist(S,R) =

AD(S,R) + AD(R,S) = AD(R,S). R joins the symmetric difference distance with the asym-

metric difference. R∗ relates to strict consensus since dist(S∗, R∗) = dist(Str(R∗), R∗).

This leads to the next theorem to establish the equivalence of two definitions of strict

supertrees.

Theorem 6. Given any profile P = (t1, . . . , tk), Strs defined via symmetric difference distance

and asymmetric difference are identical.

Proof. We show that an optimal candidate tree S defined via symmetric difference distance

satisfies the definition via asymmetric difference, and vice versa.

Suppose that S is an optimal candidate tree defined via symmetric difference distance.

There is a R ∈ 〈P 〉g such that S = Str(R), and dist(R,S) ≤ dist(R′,Str(R′)) where R′ ∈ 〈P 〉g.

Since S ⊆ Ti ∈ R for every i, AD(S, Ti) = 0. Therefore, AD+
g (S, ti) = 0, AD+

g (S, P ) = 0, and

S ∈ σ+.

We show that S is an optimal candidate tree via asymmetric difference by showingAD(R,S) =

ADIFFg(P ). Assume to the contrary, there are S′′ ∈ σ+ and its “bridge” R′′ ∈ 〈P 〉g as defined

in Lemma 2 and ADIFFg(P ) = AD(R′′, S′′) < AD(R,S).

Since S′′ = Str(R′′), ADIFFg(P ) = AD(R′′, S′′) = dist(R′′, S′′) and we have dist(R′′, S′′) <

AD(R,S) = dist(R,S), violating the fact that dist(R,S) is minimum. Therefore, S must be

also an optimal candidate tree via asymmetric difference.

Conversely, suppose that S is an optimal candidate tree defined via asymmetric difference.

Then S ∈ σ+ and AD+
g (P, S) = ADIFFg(P ). By Lemma 2 there is a “bridge” R such that

AD(R,S) = AD+
g (P, S). Moreover, S = Str(R) and AD(R,S) = dist(R,S).

We show that dist(R,Str(R)) ≤ dist(R′,Str(R′)) for any R′ ∈ 〈P 〉g. Assume to the

contrary, there is a R′′ ∈ 〈P 〉g such that dist(R′′,Str(R′′)) < dist(R,Str(R)). Note that

dist(R′′,Str(R′′)) = AD(R′′, S′′) where S′′ = Str(R′′) and S′′ ∈ σ+. Thus AD(R′′, S′′) <

AD(R,S) = ADIFFg(P ). Contradiction.
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Therefore, S is an optimal candidate tree defined via symmetric distance.

6.3 Alternative Formulation of Loose Supertrees

We show that AD+
gr(T, S) = AD−(T, S) similar to what McMorris and Wilkinson have done

with AD+
g (T, S) = AD−(T, S). To obtain the smallest value of AD(R,S) for R ∈ 〈T 〉gr, we

need to graft leaves onto T in such a way that minimizes the number of clusters in R that are

not in S. Since R|LT displays T , we can achieve this minimum by adding missing leaves directly

to clusters in T that are not in S|LT . This minimum is precisely AD(T, S|LT ) and therefore

AD+
gr(T, S) = AD−(T, S) from which it follows that AD+

gr(P, S) = AD−(P, S). Therefore, we

have AD+
g (T, S) = AD+

gr(T, S) = AD−(T, S).

Since AD+
g (P, S) = AD+

gr(P, S) = AD−(P, S), Looses can be defined via AD+
gr(P, S). Given

a profile P = (t1, . . . , tk), let λ = {S : S ⊗ P and LS = LP }. Let λ′s be the set of candidate

supertrees S in λ for which AD+
gr(P, S) is minimum over λ. The loose supertree Looses is the

strict consensus of all trees in λ′.

We provide our alternative definition. Let P = (t1, . . . , tk) be a profile. A representative

selection R = (T1, . . . , Tk) where Ti ∈ 〈ti〉gr. Let S = Str(R) and dist(S,R) be symmetric

difference distance. When dist(S,R) is minimum, S is an optimal candidate tree. The loose

supertree Looses is the strict consensus of all optimal candidate trees.

Define ADIFFgr(P ) = minS′⊗P minR′∈〈P 〉gr
{AD(R′, S′)}. Note that an optimal candidate

tree S to generate Looses requires that S ⊗ P and AD+
gr(P, S) ≤ AD+

gr(P, S
′) where S′ ⊗ P .

Obviously AD+
gr(P, S) = ADIFFgr(P ).

The following lemma establishes that for any S ⊗ P , there is a “bridge” representative

selection R such that Ti ∈ R displays S and ti, and AD(R,S) = AD+
gr(P, S). That is, instead of

two different representative selections R1 and R2 to achieve S⊗P , that is, S and ti are displayed

by Ti ∈ R1 where R1 ∈ 〈P 〉gr, and AD(R2, S) = AD+
gr(P, S), respectively, one R is enough, or

R = R1 = R2. Moreover, if S∗ ∈ λ, R∗ is its bridge representative selection, and AD(R∗, S∗) =

AD+
gr(P, S

∗) ≤ AD+
gr(P, S) for any S ∈ σ+, then S∗ = Str(R∗) and ADIFF (P ) = AD+

gr(P, S
∗).
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Lemma 3. Given a profile P = (t1, . . . , tk), and S ⊗ P , there is a representative selection

R = (T1, . . . , Tk) where Ti ∈ 〈ti〉gr such that

(i) Ti \ S has one-to-one correspondence to the splits in ti that cannot be reduced by S.

(ii) AD+
gr(P, S) = AD(R,S).

(iii) S ⊆ Str(R).

Moreover, for S∗ ∈ λ and R∗〈P 〉gr satisfying (i)-(iii) and AD(R∗, S∗) = AD+
gr(P, S

∗) ≤

AD+
gr(P, S) for any S ∈ λ. S∗ = Str(R∗) and ADIFFgr(P ) = AD+

gr(P, S
∗).

Proof. (i) Since S ∈ λ, S is compatible with every tree in P . There is a representative selection

R = (T1, . . . , Tk) where S ⊆ Ti ∈ 〈ti〉gr and Ti \ S has one-to-one correspondence to the splits

in ti that cannot be reduced by S.

(ii) We claim that AD(R,S) = AD+
gr(P, S). For any A|B ∈ ti that S cannot display,

Ti \ S ⇒ A|B. |Ti \ S| equals the number of such splits. This is the minimum number any

AD(T, S) can achieve where T ∈ 〈ti〉gr. Thus, AD(R,S) = AD+
gr(P, S).

(iii) Obviously S ⊆ Ti and S ⊆ Str(R).

We claim that S∗ = Str(R∗). Assume to the contrary, if S∗ ⊂ S′ = Str(R∗), then S′ ∈ λ,

AD(R∗, S′) < AD(R∗, S∗) = AD+
gr(P, S

∗) ≤ AD+
gr(P, S

′). A contradiction. Hence, S∗ =

Str(R∗).

From definition, ADIFFgr(P ) = minS′∈λ minR′∈〈P 〉gr
{AD(R′, S′)} = minS′∈λAD+

gr(P, S
′) =

AD+
gr(P, S

∗).

This leads to the following theorem to establish the equivalence of two definitions of su-

pertree.

Theorem 7. Given any profile P = (t1, . . . , tk), Looses defined via symmetric difference dis-

tance and asymmetric difference are identical.

Proof. We show that an optimal candidate tree S defined via symmetric difference distance

satisfies the definition via asymmetric difference, and vice versa.
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Suppose that S is an optimal candidate tree via symmetric difference distance. There is a

representative selection R such that S = Str(R), and dist(R,Str(R)) ≤ dist(R′,Str(R′)) where

R′ ∈ 〈P 〉gr. Note that S ⊗ P as S ⊆ Ti ∈ R.

We show that S is an optimal candidate tree via asymmetric difference by showingAD(R,S) =

ADIFFgr(P ). Assume to the contrary, there is S′′⊗P with its “bridge” representative selection

R′′ ∈ 〈P 〉gr as defined by Lemma 3, and ADIFFgr(P ) = AD(R′′, S′′) < AD(R,S).

Since S′′ = Str(R′′), ADIFFgr(P ) = AD(R′′, S′′) = dist(R′′, S′′) and we have dist(R′′, S′′) <

AD(R,S) = dist(R,S), violating the fact that dist(R,S) is minimum. Therefore, S must be

also an optimal candidate tree via asymmetric difference.

Conversely, suppose that S is an optimal candidate tree defined via asymmetric difference.

Then S ⊗ P and by Lemma 3 there is a “bridge” R such that AD(R,S) = AD+
gr(P, S) =

ADIFFgr(P ). Moreover, S = Str(R) and AD(R,S) = dist(R,S).

We show that dist(R,S) ≤ dist(R′,Str(R′)) for any R′ ∈ 〈P 〉gr. Assume to the contrary,

there is a R′′ ∈ 〈P 〉gr such that dist(R′′,Str(R′′)) < dist(R,S). Note that dist(R′′,Str(R′′)) =

AD(R′′, S′′) where S′′ ⊗ P . Thus AD(R′′, S′′) < AD(R,S) = ADIFFgr(P ). Contradiction.

Therefore, S is an optimal candidate tree defined via symmetric distance.

There is another way to prove the results for the loose supertrees. Note that S ∈ λ if and

only if AD+
gr(S, ti) = 0. If S ∈ λ, S is compatible with every tree in P . There is a representative

selection R′ = (T ′1, . . . , T
′
k) where S ⊆ T ′i ∈ 〈ti〉gr. Hence AD+

gr(S, ti) = min{AD(S, Ti) : Ti ∈

〈ti〉gr} = AD(S, T ′i ) = 0.

The other direction follows similarly. If AD+
gr(S, ti) = 0, then there is a representative

selection R′ = (T ′1, . . . , T
′
k) such that AD+

gr(S, ti) = min{AD(S, Ti) : Ti ∈ 〈ti〉gr} = AD(S, T ′i ) =

0. Then S ⊆ T ′i which displays both ti and S. Hence S is compatible with ti and S ∈ λ.

Therefore, S ∈ λ can be replaced by AD+
gr(S, ti) = 0 in the definition of loose supertrees.

This is similar to use AD+
g (S, ti) = 0 in the definition of strict supertree. Thus the proof for

loose supertrees can be done similarly with g changed to gr.

Theorem 6 gives an alternative perspective on strict and loose supertrees. The use of the

graft-refine span in loose supertrees implies that Looses(P ) can contain a split that is not
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supported by all the input trees, as long as it is supported by one tree and compatible with

all the trees. On the other hand, the use of the graft-only span in strict supertrees implies

that a split can appear in Strs(P ) only if, for each input tree, the split is either supported by

that tree or it becomes trivial when reduced to the leaf set of that tree. These facts give an

alternative justification to the observation that strict and loose supertrees generalize strict and

loose consensus trees [McMorris and Wilkinson (2011)]. Formally:

Theorem 8. For any profile P where the input trees have identical leaf sets, Strs(P ) = Str(P )

and Looses(P ) = Loose(P ).

Thus, we henceforth drop the subscript “s” from the notation for strict and loose supertrees

and simply write “Str(P )” and “Loose(P )”.
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CHAPTER 7. PROPERTY OF CONSERVATIVE SUPERTREES

We study the properties of conservative supertrees and compare them with two other su-

pertrees, namely the majority-rule supertree and the majority-rule (+) supertree, of which we

include the definitions here.

Given any profile P = (t1, . . . , tk), let R = (T1, . . . , Tk) be a representative selection of

P where Ti ∈ 〈P 〉g. Let S = Maj(R). If dist(S,R) ≤ dist(Maj(R′), R′) for any other legal

R′ ∈ 〈P 〉g, S is an optimal candidate supertree. Maj(P ), the majority-rule supertree, is the

strict consensus of all optimal S. If we change 〈P 〉g into 〈P 〉gr, the definition becomes that of

majority-rule (+) supertree.

We use Majc and Majs to denote majority-rule consensus tree/supertree and Maj+c and

Maj+s to denote their majority-rule (+) counterparts.

Note that there is a unified perspective for strict, loose, majority, and majority-rule (+)

supertrees. It depends on which span and consensus function to use, i.e., 〈ti〉g or 〈ti〉gr, strict

consensus or majority-rule consensus. They can be viewed as one family of supertrees.

7.1 Compatibility, Support and No conflict

Strs and Looses enjoy many desirable properties. First, any optimal candidate tree S is in

every Ti ∈ R, Therefore, Strs and Looses, as strict consensus of optimal candidate trees, are

compatible with every input tree.

Second, every nontrivial split in Strs (Looses) entails at least one input tree nontrivial full

split. Assume to the contrary a nontrivial split A|B ∈ Strs (Looses) does not. As A|B ∈ S for

any optimal candidate tree S, A|B Ti ∈ R for every i where R = (T1, . . . , Tk) and Ti ∈ 〈ti〉g

(〈ti〉gr) . Construct T ′i = Ti \ (A|B) and R′ = (T ′1, . . . , T
′
k). Note that the leaf set of T ′i is
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LP and thus T ′i entails all trivial splits in ti. Since A|B does not entail any nontrivial input

tree full split, T ′i ∈ 〈ti〉g (〈ti〉gr) and R′ is legal. Let S′ = Str(R′). Obviously S′ = S \ (A|B).

Note that dist(S,R) = dist(S′, R′). Therefore, S′ is also optimal and A|B /∈ Strs (Looses), a

contradiction.

This coincides with the support/conflict from Dong et al. (2010a), that is, any split in Strs

or Looses is supported by at least one input tree and conflicted by no input trees.

7.2 Comparisons among Strict, Loose, Majority-rule and Majority-rule

(+) Supertrees

Thee consensus tree is characterized by a special set of splits.

• Strc = {All splits in every input tree}.

• Loosec = {All splits in at least one input tree, and compatible with the others}.

• Majc = {All splits in more than half of the input trees}.

• Maj+c = {All splits in more input trees than contradicting input trees}.

Bryant (2003) and Dong et al. (2010b) show that in the consensus setting, Strc ⊆ Loosec ⊆

Maj+c , and Strc ⊆ Majc ⊆ Maj+c . Profiles exist where inclusions become proper. The latter

trees are more refined than the former trees.

However, examples show that none of the subset relationship holds in the supertree cases.

In example 1, P = (t1, t2, t3) where t1 = {ab|rcd, abc|rd}, t2 = {ae|rcd, cd|rae}, and t3 =

{cd|rae, acd|re}. Strs = Looses = {ab|rcde} while Majs = Maj+s = {cd|rabe}. Here Strs =

Looses * Maj+s .

In example 2, P = (t1, t2, t3) where t1 = {bc|rad}, t2 = {de|rbc} and t3 = {bc|rde, de|rbc}.

Strs = {de|rabc}, and Majs = {bc|rade, de|rabc}. Ls = Maj+s = {bc|rade}. Thus Strs * Ls,

Strs * Maj+s , and Majs * Maj+s .

In example 3, P = (t1, t2, t3) where t1 = {ad|rbe, abd|re}, t2 = {ad|rbc, abd|rc} and t3 =

{bc|rad}. Strs = {abcd|re} and Ls = {ad|rbce, abcd|re}. Majs = {ad|rbce}. Maj+s = {ad|rbce}.

Hence Strs * Majs, Strs * Maj+s , Looses * Majs, and Looses * Maj+s .
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7.3 NP-hardness Results

Theorem 9. There is no polynomial-time algorithm to construct an optimal candidate supertree

for Strs, Looses and Majs unless P = NP .

Proof. We show that if there is a polynomial time algorithm to compute an optimal candidate

tree, then there exists a polynomial-time algorithm for the quartet compatibility problem, which

is known to be NP-complete [Steel (1992)]. The quartet compatibility problem asks whether,

given a collection Q of trees on four leaves, there exists a single tree that displays them all. If

the answer is “yes”, we say that Q is compatible.

Let Q be an instance of quartet compatibility. Construct a profile P that consists of the

trees in Q in some arbitrary order. We claim that Q is compatible if and only if P has an

optimal candidate tree with a score of zero. Suppose first that Q is compatible and that

T is any tree displaying each tree in P . Since a quartet is fully resolved, T reduces to it.

Then, for every t ∈ P , T ∈ 〈t〉g ⊆ 〈t〉gr. Let R be a representative selection with k copies of

T , dist(T,R) = dist(Str(R), R) = dist(Maj(R), R) = 0. Thus T is an optimal candidate tree.

Conversely, if R has a candidate tree with zero score, it can be seen that T displays and reduces

into all the quartets in Q; i.e., Q is compatible.

7.4 Reducible Set and Pull-out Set

The basic Integer Linear Programming (ILP) formulations described in a later chapter allow

us to solve supertree problems of moderate size. Here we explore two properties of the strict

and loose OCT respectively that allow us to extend the range of our method significantly in

practice.

Every edge e in a conservative OCT T is in every Ti ∈ R, the representative selection. it

is either an edge in ti or a pulled out edge (refinement) extended from an internal node in ti.

Either way, e cuts the ti into two subtrees, P into two profiles – a satellite profile Psat and a

planet profile Ppla, T into two trees Tsat and Tpla. Obviously dist(T,R) = dist(Tsat, Rsat) +

dist(Tpla, Rpla) = dist(Str(Rsat), Rsat) + dist(Str(Rpla), Rpla). Note that T is OCT if and only
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if the two subtrees are be OCT over the two sub-profiles. Therefore, we can divide the original

optimization problem into two optimization subproblems.

The reducible set defined previously is applicable to the strict OCT since any reduced

cluster from the strict OCT has to be a cluster of the input tree that it reduces to. For loose

OCT, its counterpart is a pull-out set. We say that S ⊆ L(P ) with 1 < |S| < |L(P )| − 1 is a

pull-out set if, for each j ∈ K, S is compatible with tj .

Note that S ∩Lj is compatible with tj if and only if S is compatible with tj . tj |(S ∩Lj) is

the subtree in tj that is “pulled out”. Figure 7.1 shows a typical pull-out set which refines the

multiplication at an internal node in an input tree to create an additional cluster. A pull-out

set can be a reducible set.

Pull-out edge

Subtree whose
taxa covered by a
pull-out set

Pull-out subtree

Figure 7.1 Pull-out Set

The series of concepts for substructure analysis using reducible sets can be used for pull-out

sets as well. The generation of planet profile using these two sets is exactly the same. That is,

if a taxon is part of the reducible or pull-out set, then it is replaced by the super taxon. When
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duplicates are removed, the profile becomes the planet profile.

However, the generation of satellite profile differs. In the reducible set case, each input tree

has a subtree that is cut off by the reducible set. On the contrary, in the pull-out set case, if a

pull-out set cuts out several subtrees of a polytomy internal node while leaving other subtrees

intact, what is cut out is not a tree! Therefore, we need to add an envelope cluster which is

the union of the cut out taxa from the input tree to make a pulled-out subtree. This envelope

cluster corresponds to the pull-out edge that connects the pulled-out subtree with the original

internal node.

7.5 Invariant Under Remeshing

There are two meanings for invariant under remeshing. First, if a supertree is indeed the

strict/loose OCT, then using its splits to divide it in different ways into substructures and

solve again will yield the same or a different strict/loose OCT with the same objective value.

Second, if a supertree is indeed the strict/loose supertree, then using its splits to divide it in

different ways into substructures and solve again yields the same strict/loose supertree.

However, if a supertree is not a strict/loose OCT, and if the selected split to divide the

profile is not in any of the OCT, the tree found is not optimal, that is, its objective value is

higher. Hence we know what we have found is not optimum.

7.6 Lack of Population Invariance

In the consensus settings, strict and loose trees are population invariant. If one tree objects

to certain cluster, no matter how many other trees support it, it cannot be in the consensus

tree. Increasing the number of supporting trees have no effect on the consensus.

However, it is no longer true in the supertree settings. Consider the following counterex-

ample. Let P1 = (t1, . . . , t17) where t1 = · · · = t9 = {be|rcd, cd|rbe}, t10 = · · · = t12 = {ac|rde},

and t13 = · · · = t17 = {ab|rde, abe|rd}. The strict and loose supertree are {ab|rcde}. Let

P2 = (t1, . . . , t16) where t1 = · · · = t10 = {be|rcd, cd|rbe}, t11 = · · · = t13 = {ac|rde}, and

t14 = · · · = t16 = {ab|rde, abe|rd}. The strict and loose supertrees are fans.
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Were strict and loose supertrees population invariant, P1 and P2 would have the same

conservative supertrees, since they include the same three types of trees.
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CHAPTER 8. ILP FORMULATION FOR CONSERVATIVE

SUPERTREES, THE (+) WAY

8.1 Restricted Spans and Spans of Restricted Supertree

Despite the NP-completeness result, moderately large conservative supertree problems can

be solved with integer linear programming, similar to what we have done in Dong et al. (2010a)

for the majority-rule (+) supertree.

For T ∈ 〈t〉gr (or 〈t〉g), |Spl(T )| ≥ |Spl(t)|. Since |Spl(T )| is not predetermined, the compu-

tation on 〈t〉gr or 〈t〉g are transformed to that on the restricted span as defined below.

Given t ∈ P , the restricted span of a tree t, denoted 〈t〉r, is the set of all plenary trees T such

that every nontrivial split in T extends a distinct nontrivial split in t, i.e., |Spl(T )| = |Spl(t)|.

Note also that 〈t〉r ⊆ 〈t〉g ⊆ 〈t〉gr. Any T ∈ 〈t〉r is a restricted supertree of t.

The restricted span of a profile P = (t1, . . . , tk), denoted 〈P 〉r is the set of all R =

(T1, . . . , Tk) for P such that Ti ∈ 〈ti〉r for i = 1, . . . , k. Any R ∈ 〈P 〉r is a restricted rep-

resentative selection for P .

The restricted trees have their own spans. Let T ∈ 〈t〉r. The elaborated span of a restricted

tree T , denoted 〈T 〉e, is the set of supertrees that display T . Here only refinement is involved

since T and 〈T 〉e have the same set of taxa.

The t-reducible span of the restricted tree T , denoted 〈T 〉t, is the set of supertrees that

display T and reduce to t. Obviously, 〈T 〉t ⊆ 〈T 〉e. Note that 〈T 〉e ⊆ 〈t〉gr and 〈T 〉t ⊆ 〈t〉g.

Similarly, for a profile P and a restricted representative selection R ∈ 〈P 〉r, 〈R〉e is the set

of representative selections that display R. 〈R〉P is the set of representative selections that

display R and reduce to P .
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8.2 Characterization of Various Consensus Trees

Given a profile P = (t1, . . . , tk), and a restrictive representative selection R = (T1, . . . , Tk) ∈

〈P 〉r. We define two consensus trees via the distance optimality route. Let R̂ = (T̂1, . . . , T̂k) be

any representative selection such that R̂ ∈ 〈R〉P (〈R〉e). If dist(Str(R̂), R̂) ≤ dist(Str(R̂′), R̂′)

for any R̂′ ∈ 〈R′〉P (〈R′〉e), S is an optimal candidate tree. The reducibly-loose consensus tree

RL(R) (the loose consensus tree, Loosec(R)), is the strict consensus of all optimal S. Denote

OCT (R) as the set of all optimal S.

Correspondingly we define two completions of R. The L-completion of R ∈ 〈P 〉r is R̂ =

(T̂1, . . . , T̂k) where T̂i = Ti ∪ Loosec(R). The RL-completion of R is R̂ = (T̂1, . . . , T̂k) where

T̂i = Ti ∪ RL(R).

We characterize the reducibly-loose consensus and loose consensus tree similar to that of

the majority-rule (+) consensus tree [Dong et al. (2010b)]. The notation in Dong et al. (2010b)

are modified to reflect the reducibility requirement.

If a split X ∈ Ti, X is compatible with Ti and reducible into ti. For notation purposes, let

K = {1, . . . , k}. Define

KX(R) = {i ∈ K : X is displayed by Ti},

KX(R) = {i ∈ K : X is incompatible with Ti},

and

KX(R) = {i ∈ K : X is incompatible with Ti or X is not reducible to ti}.

Lemma 4. For any profile P , {X : |KX(P )| > |KX(P )|} is compatible.

Proof. Assume by way of contradiction that there exists a profile P and A,B ∈ P with

|KA(P )| > |KA(P )| and |KB(P )| > |KB(P )|, such that A and B are not compatible. Thus,

KA(P ) ⊆ KB(P ) and KB(P ) ⊆ KA(P ). So

|KA(P )| > |KA(P )| ≥ |KB(P )| > |KB(P )| ≥ |KA(P )|

an impossibility.
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The following is our key characterization theorem, which significantly simplifies the con-

struction of RL(R) and Loosec(R).

Theorem 10. Given profile P = (t1, . . . , tk) and G = (T1, . . . , Tk) ∈ 〈P 〉r,

(i) RL(G) is the set S of plenary loose splits X in G that reduce into every tree in P , i.e.,

|KX(G)| > 0 and |KX(G)| = 0.

(ii) Loosec(G) is the set S of plenary loose splits X in G, i.e., |KX(G)| > 0 and |KX(G)| = 0.

(iii) RL(G)(Loosec(G)) is an optimal candidate supertree for RL(G) (Loosec(G)).

(iv) There is a unique representative selection R, which is the RL-completion (L-completion)

of G, when dist(RL(G), R) (dist(Loosec(G), R)) reaches minimum.

Proof. We show (i)-(ii) simultaneously by enumerating through RL(G) and Loosec(G). We first

show that

1. RL(G) ⊆ {X : |KX(G)| > 0 and |KX(G)| = 0},

2. Loosec(G) ⊆ {X : |KX(G)| > 0 and |KX(G)| = 0}

respectively for any restricted representative selection G = (g1, . . . , gk) generated from any

profile P = (t1, . . . , tk). Let R = (T1, . . . , Tk) where R ∈ 〈G〉P (〈G〉e),T = Str(R) and dist(T,R)

is minimum. That is, T is an optimal tree for G. Assume that there exists A ∈ T such

that |KA(G)| = 0 or |KA(G)| > 0 (|KA(G)| > 0). We simplify the assumption such that

|KA(G)| = 0 and |KA(G)| = 0 (|KA(G)| = 0) since if |KA(G)| > 0 (|KA(G)| > 0), A cannot be

in every tree in R, thus A /∈ T = Str(R). Construct R′ = (T ′1, . . . , T
′
k), where T ′i = Ti \ {A} if

A ∈ (Ti \ gi), and T ′i = Ti otherwise. Note that KA(R′) = KA(G), and clearly |KA(R′)| = 0 so

that A /∈ Str(R′), In fact, Str(R′) = Str(R) \ {A}. Let T ′ = Str(R′) so T ′ = T \ {A}.

If A /∈ Ti, then Ti = T ′i and

d(T, Ti) = d(T ′, T ′i ) + 1.

If A ∈ T ′i , then Ti = T ′i and

d(T, Ti) = d(T ′, T ′i )− 1.
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If A ∈ Ti with A /∈ T ′i , then

d(T, Ti) = d(T ′, T ′i ).

Thus we have

k∑
i=1

d(T, Ti)− (k − |KA(R)|) =
k∑
i=1

d(T ′, T ′i )− |KA(R′)| =
k∑
i=1

d(T ′, T ′i )− |KA(G)|.

Since R ∈ 〈G〉P (〈G〉e), we have

1. |KA(R)| ≤ k − |KA(G)|,

2. |KA(R)| ≤ k − |KA(G)|

respectively so that

1. |KA(G)| ≤ k − |KA(R)|,

2. |KA(G)| ≤ k − |KA(R)|,

respectively.

From the above we then have

1.
∑k

i=1 d(T, Ti) ≥
∑k

i=1 d(T ′, T ′i )− |KA(G)|+ |KA(G)| ≥
∑k

i=1 d(T ′, T ′i ),

2.
∑k

i=1 d(T, Ti) ≥
∑k

i=1 d(T ′, T ′i )− |KA(G)|+ |KA(G)| ≥
∑k

i=1 d(T ′, T ′i ),

respectively.

Therefore, R′ ∈ 〈G〉P (〈G〉e), T ′ = Str(R′) and dist(T ′, R′) is minimum, so that T ′ is an

optimal tree of G, too. Since RL(G)(Loosec(G)) ⊆ T ′, and A /∈ T ′, A /∈ RL(G)(Loosec(G)).

Thus we have shown

1. RL(G) ⊆ {X : |KX(G)| > 1 and |KX(G)| = 0},

2. Loosec(G) ⊆ {X : |KX(G)| > 1 and |KX(G)| = 0},

respectively.

We prove an additional result here. For all optimal candidate tree T of G for the two

supertrees,
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1. T ⊆ {X : |KX(G)| ≥ 0 and |KX(G)| = 0},and

2. T ⊆ {X : |KX(G)| ≥ 0 and |KX(G)| = 0},

respectively. Assume to the contrary that there is A ∈ T such that |KA(G)| > 0(|KA(G)| > 0).

Then A cannot be in every tree in any representative selections. Hence A /∈ T , contradiction.

For the reverse set inclusion, we first claim that if R = (T1, . . . , Tk), R ∈ 〈G〉P (〈G〉e),

T = Str(R), and dist(T,R) is minimum, then (Ti \ ti) ⊆ T for all i ∈ K. To see this, suppose

there exists j and Y such that Y ∈ (Tj \ tj) with Y /∈ T . Let R′ = (T ′1, . . . , T
′
k) be defined

where T ′j = Tj \ {Y } and T ′i = Ti for all i 6= j. Thus R′ ∈ 〈G〉P (〈G〉e), Str(R′) = T , and

k∑
i=1

d(T, T ′i ) =
k∑
i=1

d(T, Ti)− 1

which contradicts the assumption that dist(T,R) is minimum.

Now assume that there exists an X such that |KX(G)| > 1 and

1. |KX(G)| = 0, X /∈ RL(G), and

2. |KX(G)| = 0, X /∈ Loosec(G),

respectively. From the definition of RL(G) (Loosec(G)), there exists R = (T1, . . . , Tk) such that

R ∈ 〈G〉P (〈G〉e), T = Str(R), dist(T,R) is minimum, and X /∈ Str(R). Since T = Str(R)

and T is an optimal candidate tree, then |KY (G)| ≥ 0 and |KY (G)| = 0(|KY (G)| = 0) for all

Y ∈ T . If there exists Y ∈ T such that X is not compatible with Y , then

1. KX(G) ⊆ KY (G) = ∅, and KY (G) ⊆ KX(G) = ∅,

2. KX(G) ⊆ KY (G) = ∅, and KY (G) ⊆ KX(G) = ∅

respectively, Therefore |KX(G)| = 0, which is a contradiction. Thus T and X are compatible.

From the claim proved above, (Ti \ ti) ⊆ T for all i so that Ti \ ti and X are compatible for all

i ∈ K.

Define R′ = (T ′1, . . . , T
′
k) as follows: T ′i = Ti ∪ {X} if Ti and X are compatible and T ′i = Ti

otherwise. Observe that |KX(R′)| = k, so that X ∈ Str(R′) = T ′ and, noting that X /∈ T while
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X ∈ T ′,
∑k

i=1 d(T, Ti) =
∑k

i=1 d(T ′, T ′i ) + |KX(G)| >
∑k

i=1 d(T ′, T ′i ), which contradicts T is an

optimal tree.

Now we prove (iii). Choose any R = (T1, . . . , Tk) such that R ∈ 〈G〉P (〈G〉e), dist(Str(R), R)

is minimum, and let T = Str(R). If RL(G) = T (Loosec(G) = T ), we are done, so suppose

RL(G) ⊂ T (Loosec(G) ⊂ T ). Then any cluster A ∈ (T \ RL(G))(A ∈ (T \ Loosec(G))), must

have |KA(G)| = 0 and |KA(G)| = 0 (|KA(G)| = 0). Note that if |KA(G)| > 0 (|KA(G)| > 0),

A /∈ T , since it is not in every tree of any representative selection. Since A /∈ Str(G) and A ∈

Str(R), there is an i ∈ K such that A ∈ (Ti \ ti). Construct T ′ = T \ {A} and R′ = (T ′1, . . . , T
′
k)

where T ′i = Ti \ {A} if A ∈ (Ti \ ti) and T ′i = Ti otherwise. We have that R′ ∈ 〈G〉P (〈G〉e),

T ′ = Str(R′), and A /∈ T ′. Since |KA(R′)| = 0, dist(T ′, R′) ≤ dist(T,R). Thus T ′ is an optimal

tree of G. Applying this construction for every cluster in T \ RL(G)(Loosec(G)), we conclude

that RL(G)(Loosec(G)) is an optimal candidate tree of G, respectively.

Now we prove (iv). Here we prove a more general statement. That is, for every optimal

candidate tree T , there is a unique optimal representative selection R such that R ∈ 〈G〉P (〈G〉e),

T = Str(R), and dist(T,R) is minimum.

Let P = (t1, . . . , tk). The existence of a R = (T1, . . . , Tk) such that R ∈ 〈G〉P (〈G〉e),

T = Str(R), and dist(T,R) is minimum follows from the definition of optimal candidate tree

and the optimal representative selections. Recall again in the proof of (i)-(ii) we showed that

since T is optimal, (Ti \ ti) ⊆ T for all i ∈ K. We prove that R is unique by showing that

X /∈ T implies KX(R) = KX(G) whereas X ∈ T implies KX(R) = K.

Suppose X /∈ T . Then X /∈ (Ti \ ti) ⊆ T for all i ∈ K. Since R ∈ 〈G〉P (〈G〉e), it follows

that X ∈ Ti whenever X ∈ ti and hence KX(R) = KX(G).

Now let X ∈ T and note that KX(R) = K since T = Str(R).

8.3 Strict and Loose Supertrees via Restricted Spans

We show below how to obtain conservative supertrees directly from the restricted span. An

optimal candidate supertree S for a profile P is minimal if contracting any edge in S yields a

tree that is not an optimal candidate supertree.



68

Theorem 11. Let S be a minimal optimal candidate supertree for a profile P for strict (loose)

supertree. Let R ∈ 〈P 〉g(〈P 〉e), and S = Str(R). Consider any G ∈ 〈P 〉r such that R ∈

〈G〉P (〈G〉e). Then, R is the RL-completion (L-completion) of G and S = RL(G)(Loosec(G)),

Proof. We first show that S is an optimal candidate supertree for G in the two supertrees.

Assume the contrary. Then, there exists another candidate tree S′ for G such that (i)

S′ = Str(R′) for some R′ ∈ 〈G〉P (〈G〉e) and (ii) s(R′) < s(R) where s(R) = dist(Str(R), R).

But then, since 〈G〉P ⊆ 〈P 〉g(〈G〉e ⊆ 〈P 〉gr), we have R′ ∈ 〈P 〉g(〈P 〉gr), and thus (ii) contradicts

the optimality of S for P .

Next, we argue that S is a minimal optimal candidate supertree for profile G. Suppose

this is not true. Then, S displays an optimal candidate supertree S′ for G such that S 6= S′.

Consider any R′ ∈ 〈G〉P (〈G〉e) such that S′ = Str(R′). Since S and S′ are both optimal for

G, s(R) = s(R′). Since R′ displays P , we have R′ ∈ 〈P 〉g(〈P 〉gr). Hence, S′ is also an optimal

candidate supertree for P . This, however, contradicts the assumption that S is a minimal

optimal candidate tree for P .

By theorems of last section, RL(G) (Loosec(G)) is an optimal candidate supertree for

G, as well as the strict consensus of all optimal candidate supertrees for G. Therefore,

RL(G) (Loosec(G)) is the only minimal optimal candidate supertree for G. Hence T =

RL(G)(Loosec(G)).

Due to the uniqueness of R when dist(RL(G), R) (dist(Loosec(G), R)) is optimum, R is the

RL-completion (L-completion) of G.

Motivated by Theorem 11, we define the adjusted score of a representative selection R for

a profile P , denoted ŝ(R), to be the score of the RL-completion (L-completion) R̂ of R; i.e.,

ŝ(R) = s(R̂).

Theorem 12. Let P be a profile. Let R̂ be

1. RL-completion of R, or

2. L-completion of R,
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respectively. Let ŝ(R) = s(R̂) = dist(Str(R̂, R̂)), Define G = {G ∈ 〈P 〉r : ŝ(G) is minimum}

and S = {T = RL(G)(Loosec(G)) : G ∈ G}. Then, Strs(P )(Looses(P )) is the strict consensus

of S.

Proof. Let O be the set of all optimal candidate supertrees for P and let M be the set of all

minimal optimal candidate supertrees of P . In what follows, we show that M⊆ S ⊆ O. This

immediately implies the theorem, because not only is (by definition) Strs(P )(Looses(P )) the

strict consensus of O, but it must also be the strict consensus of M.

Suppose T ∈ M. We claim that T ∈ S and, therefore, that M ⊆ S. Let R be a rep-

resentative selection for P such that T = Str(R). Let G ∈ 〈P 〉r, and R ∈ 〈G〉P (〈G〉e). By

Theorem 11, T = RL(G)(Loosec(G)) and R is the RL-completion (L-completion) of G. We

claim that G ∈ G; i.e., ŝ(G) is minimum. Assume, by way of contradiction, that there is another

G′ ∈ 〈P 〉r such that ŝ(G′) < ŝ(G). Let R′ be the RL-completion (L-completion) of G′. Then,

s(R′) = ŝ(G′) < ŝ(G) = s(R), which contradicts the assumption that T is optimal. Therefore,

ŝ(G) is minimum and T ∈ S.

Suppose T ∈ S. We claim that T ∈ O and, therefore, that S ⊆ O. Let G ∈ 〈P 〉r be

such that T = RL(G)(Loosec(G)) and the adjusted score ŝ(G) is minimum. Let R be the

RL/L-completion of G. Assume, by way of contradiction, that T 6∈ O. Then there is a T ′ ∈M

such that, if R′ is a representative selection for P where T ′ = Str(R′), then s(R′) < s(R). By

Theorem 11, there is a G′ ∈ 〈P 〉r such that T ′ = RL(G′)(Loosec(G′)) and ŝ(G′) = s(R′). Then

ŝ(G′) = s(R′) < s(R) = ŝ(G). This contradicts the assumption that ŝ(G) is minimum.

8.4 ILP Formulations

8.4.1 Normal Profiles

The ILP formulation is similar to that in Dong et al. (2010a). Based on Theorem 12, we

seek a G ∈ 〈P 〉r with minimum adjusted score.

Let P = (t1, . . . , tk) be a profile where |L(P )| = n. Assume tj has mj nontrivial splits. A

matrix representation of tj is a n×mj matrix M(tj) whose columns correspond to the nontrivial

splits of tj . Suppose column i of M(tj) corresponds to split A|B in tj and let x be a taxon in
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L(P ). Then, Mx,i(tj) = 1 if x ∈ A, Mx,i(tj) = 0 if x ∈ B, and Mx,i(tj) =? otherwise. A rooted

tree is converted to an unrooted one by adding a special root r. All taxa in the same block as

r are assigned 1. Let m =
∑

j∈K mj . A matrix representation of P , denoted M(P ), is a n×m

matrix M(P ) obtained by concatenating matrices M(t1),M(t2), . . . ,M(tk).

A fill-in of M(P ) is a matrix representation for G. A binary fill-in variable Fxi is created

if Mxi(P ) =?. The ILP ensures a legal G by ensuring compatibility within each restricted

supertree, and in the case of strict and majority-rule supertrees, also reducibility to underlying

P .

For compatibility, we define variables Cpq, 1 ≤ p, q ≤ m such that Cpq = 1 precisely if

columns p and q are compatible. We require that Cpq = 1 for every p, q that correspond to

splits in the same input tree. The splits p and q are incompatible precisely if 00, 01, 10, and

11 all appear in some rows of columns p and q (the “four gametes condition”). The presence

or absence of these patterns for columns p and q is indicated by the settings of variables B(ab)
pq ,

a, b ∈ {0, 1}, where B(ab)
pq = 1 if and only if there is a taxon r such that Frp = a and Frq = b.

The B(ab)
pq s are determined from the settings of variables Γ(ab)

rpq , where r ranges over the taxa

(i.e., the rows of M(P )). The Γ variables satisfy Γ(ab)
rpq ⇔ ((Frp = a) ∧ (Frq = b)), or

(−1)aFrp + (−1)bFrq + Γ(ab)
rpq ≥ 1− a− b,

(−1)aFrp + (−1)bFrq + 2Γ(ab)
rpq ≤ 2− a− b.

(8.1)

We have that B(ab)
pq ⇔

∨
r Γ(ab)

rpq , or

−
∑
r

Γ(ab)
rpq +B(ab)

pq ≤ 0,

∑
r

Γ(ab)
rpq − nB(ab)

pq ≤ 0
(8.2)

Observe that ¬Cpq ⇔ B
(00)
pq ∧B(01)

pq ∧B(10)
pq ∧B(11)

pq , or

B(00)
pq +B(01)

pq +B(10)
pq +B(11)

pq + 4Cpq ≥ 4,

B(00)
pq +B(01)

pq +B(10)
pq +B(11)

pq + Cpq ≤ 4.
(8.3)

We define binary variables Epq, 1 ≤ p, q ≤ m, where Epq = 1 if and only if columns p and

q of the filled-in matrix represent the same split. Here we have to make a distinction between
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rooted and unrooted trees. In the rooted case, being equivalent translates to being identical

since there exists a root taxon r such that Mri(P ) = 1 for every column i. In the unrooted tree

case, there are two ways to represent the same split.

For the rooted case, Epq ⇔ ¬B(01)
pq ∧ ¬B(10)

pq , or

B(01)
pq +B(10)

pq + 2Epq ≤ 2,

B(01)
pq +B(10)

pq + Epq ≥ 1.
(8.4)

In describing the constraints for the S(1) and S(2) variables, we adopt the convention that the

splits of the jth tree correspond to columns j1, . . . , jd of M(P ). Then, S(1)
ij ⇔ Eij1 ⊕· · ·⊕Eijd ,

or

S
(1)
ij −

d∑
r=1

Eijr = 0. (8.5)

On the other hand, S(2)
ij ⇔ Cij1 ∧ · · · ∧ Cijd , or

d · S(2)
ij −

d∑
r=1

Cijr ≤ 0,

1− d− S(2)
ij +

d∑
r=1

Cijr ≤ 0.

(8.6)

For reducibility requirements of strict OCT, define mk split-tree reducibility binary variables

S(3) such that S(3)
ij = 1 precisely if split i is reducible into tree j as follows.

1. Split i becomes equivalent to a nontrivial split jp in tree j, represented by Rijp = 1.

2. Split i becomes a trivial split in tree j, in two forms discussed below and represented by

Trivial
(1)
ij and Trivial

(2)
ij , respectively.

We have S(3)
ij ⇔ Rij1 ⊕· · ·⊕Rijd ⊕Trivial

(1)
ij ⊕Trivial

(2)
ij where j1 and jd are the first and last

nontrivial splits in the jth tree respectively. Equivalently we have

−S(3)
ij +Rij1 + · · ·+Rijd + Trivial

(1)
ij + Trivial

(2)
ij = 0 (8.7)

R represents m2 split-split reducibility binary variables. Rij = 1 precisely if the reduced ith

split and the jth split are equivalent.

For rooted trees, Rij = 1 if and only if for all rows r thatM(r, j) is known, M(r, i) = M(r, j).

If in any row r, M(r, i) and M(r, j) are known but M(r, j) 6= M(r, i), then Rij = 0. Assume
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that there are p rows where M(r, i) =? and M(r, j) = 1, and there are q − p rows where

M(r, i) =? and M(r, j) = 0. If the p rows range from r1 to rp and the q − p rows range from

rp+1 to rq, we have Rij ⇔ Fr1i ∧ · · · ∧ Frpi ∧ (1− Frp+1i) ∧ · · · ∧ (1− Frqi), or

q ·Rij −
p∑
`=1

Fr`i +
q∑

`=p+1

Fr`i ≤ q − p,

Rij −
p∑
`=1

Fr`i +
q∑

`=p+1

Fr`i ≥ 1− p.
(8.8)

For the rooted trees, define mk Type I split-tree trivially-reducibility variables Trivial(1)

such that Trivial(1)
ij = 1 precisely if split i reduces trivially into tree j in the forms of ∅|r(Lj)

or x|r(Lj \ x) where Lj is the leaf set (excluding root) of tree j and x is a single taxa. Let

q = |Lj |. Trivial(1)
ij ⇔ at least q − 1 out of q Frpi is 1, where p = 1, . . . , q. In other words, we

have Trivial(1)
ij ⇔

∑q
p=1 F (rp, i) ≥ q − 1, or

(q − 1)Trivial(1)
ij −

q∑
p=1

Frpi ≤ 0,

2 · Trivail(1)
ij −

q∑
p=1

Frpi ≥ 2− q.
(8.9)

Define mk Type II split-tree trivially-reducibility variables Trivial(2). Trivial
(2)
ij = 1 pre-

cisely if split i reduces trivially into tree j in the forms of Lj |r, where r is the special taxon for

the root of tree j. Let q = |Lj |. Trivial(2)
ij ⇔ ¬Fr1i ∧ · · · ∧ ¬Frqi. Equivalently we have

q · Trivial(2)
ij +

q∑
p=1

Frpi ≤ q,

T rivail
(2)
ij +

q∑
p=1

Frpi ≥ 1.

(8.10)

With the above variables and constraints, we already ensure that the filling is legal. Next,

we need another set of variables and constraints to ensure its optimality. The objective is to

minimize ŝ(G) over all G ∈ 〈P 〉r. By definition, ŝ(G) = dist(RL(G), R)(dist(Loosec(G), R)),

where R = (T̂1, . . . , T̂k) is the RL-completion (L-completion) of G = (T1, . . . , Tk). We do not,

however, construct the consensus trees and R explicitly. Instead we just count the related splits

since all splits in the consensus trees and R are already in G.

dist(RL(G), R) =
∑
j∈K
|Spl(T̂j) \ Spl(RL(G))| =

m∑
i=1

(1− wi)
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dist(Loosec(G), R) =
∑
j∈K
|Spl(T̂j) \ Spl(Loosec(G))| =

m∑
i=1

(1− wi)

where wi = 1 precisely if the ith split is the same as a split in the consensus tree.

In the RL(G) case, wi = 1 if and only if
∑k

j=1 S
(2)
ij +

∑k
j=1 S

(3)
ij = 2k, or equivalently.

2k · wi −
k∑
j=1

S
(2)
ij −

k∑
j=1

S
(3)
ij ≤ 0,

k∑
j=1

S
(2)
ij +

k∑
j=1

S
(3)
ij − wi ≤ 2k − 1.

(8.11)

In the Loosec(G) case, wi = 1 if and only if
∑k

j=1 S
(2)
ij = k. This is expressed by the

following two constraints.

k · wi −
k∑
j=1

S
(2)
ij ≤ 0,

k∑
j=1

S
(2)
ij + 1− k − wi ≤ 0.

(8.12)

The ILP model just outlined allows us to find a G ∈ 〈P 〉r corresponding to some optimal

candidate supertree S. Since Strs(P ) (Looses(P )) is the strict consensus of all optimal candidate

supertrees, each split in Strs(P ) (Looses(P )) must also be in S. Thus, once we have S, we

simply need to verify which splits in S are in Strs(P ) (Looses(P )) and which are not. To

do this, for each split A|B in S, we put additional constraints on the original ILP requiring

that the optimal tree achieve an objective value equal or smaller than that of S and not

display split A|B. The resulting ILP has only O(mn) more variables and constraints than the

original one. If the new ILP is feasible, then A|B /∈ Spl(Strs(P ))(Spl(Looses(P ))); otherwise,

A|B ∈ Spl(Strs(P ))(Spl(Looses(P ))). We have found that detecting infeasibility is generally

much faster than finding an optimal solution.

The following is the detail for additional variables and constraints, as well as the objective

function. First we consider rooted trees where there exists a root taxon r such that M(r, j) = 1

for every column j. The split to be verified is named as A. It can be viewed as an additional

column of M .

Define n binary variable EjA. EjA = 1 if and only if an original column j (j = 1, . . . ,m)

and A are identical. If in row r where M(r, j) is known M(r, j) 6= A(r), EjA = 0. Assume that
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there are p rows where M(r, j) =? and A(r) = 1, and there are q − p rows where M(r, j) =?

and A(r) = 0. If the p rows range from r1 to rp and the q − p rows range from rp+1 to rq, we

have EjA ⇔ Fr1j ∧ · · · ∧ Frpj ∧ (1− Frp+1j) ∧ · · · ∧ (1− Frqj), or

q · EjA −
p∑
`=1

Fr`j +
q∑

`=p+1

Fr`j ≤ q − p,

EjA −
p∑
`=1

Fr`j +
q∑

`=p+1

Fr`j ≥ 1− p.
(8.13)

In the new model, if a filled column is identical with column A, then it cannot be part of the

optimal candidate tree. That is, if EjA = 1, wj = 0. Equivalently we have wj + EjA − 1 ≤ 0.

Given the solved objective value s(G), the additional constraint for the objective function

is
∑m

j=1 1− wj ≤ s(G).

8.4.2 Profiles with Trivial Trees

A normal profile is made of nontrivial trees, which are biologically meaningful. The ILP

formulation so far does not consider special trees as input. However, as we will describe later,

when substructure analysis is used, the original profile is divided into a satellite profile and a

planet profile where each input tree in these sub-profiles is a subtree of the original input tree.

These new input trees can have special trees as follows. For rooted trees, they are empty trees,

singletons, cherries, and fans of at least 3 taxa excluding the root.

These trivial trees are compatible with any supertree. Thus for loose OCT we create a

reduced profile that excludes these trivial trees. However, for the strict OCT, we need to

satisfy the reducibility requirements.

In the rooted trees case, for empty trees, singletons, and cherries, any supertree split reduces

trivially to them. A 3-fan is a fan with at least three leaves excluding the root. If any supertree

split can reduce to a smaller fan inside it, and thus violating the reducibility requirement.

Additional constraints are need to prevent them.

For instance, the induced subtree for a 3-fan could contain extra clusters without additional

qualification constraints. Suppose a 3-fan contains four taxa a, b, c, d, and the induced subtree
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contains a cherry ab. Even though compatible with the 3-fan, ab is not part of it. The supertree

does not qualify a strict candidate tree.

Let the original profile be P and the reduced profile with normal trees be P ′. Suppose there

are u 3-fans in P . A special profile P ′′ is created for these 3-fans.

Introduce m by u binary variables S
(4)
ip where i = 1, . . . ,m for m columns in M and

p = 1, . . . , u for the u 3-fans in P ′′. S(4)
ip = 1 if and only if the ith split is trivially reducible to

the 3-fan tp ∈ P ′′.

Similar to Trivial(1) and Trivial(2), Tri(1) and Tri(2) are defined to handle the two types

3-fan trivial reduction conditions. Note that the p in Trivial(1)
ip denotes the pth tree in P while

the p in Tri
(1)
ip denotes the pth 3-fan in P ′′. S(4)

ip ⇔ Tri
(1)
ip ⊕ Tri

(2)
ip , or

S
(4)
ip = Tri

(1)
ip + Tri

(2)
ip

(8.14)

Tri(1)ip = 1 if and only if split i reduces trivially into tree tp ∈ P ′′ in the form ∅|r(Lp)

or x|r(Lp\x) where Lp is the leaf set (excluding the root) of tp and x is a single taxon. Let

q = |Lp|. Tri1ip = 1 precisely if at least q − 1 out of q Fr`i are 1, where ` = 1, . . . , q. In other

words, we have Tri(1)
ip ⇔

∑q
`=1 Fr`i ≥ q − 1, or

(q − 1) · Tri(1)
ip −

q∑
`=1

Fr`i ≤ 0

2 · Tri(1)
ip −

q∑
`=1

Fr`i ≥ 2− q
(8.15)

Similarly, Tri(2)
ip = 1 if and only if split i reduces trivially into tree p in the form of Lp|r,

where r is the special taxon for root of tp. Let q = |Lp|, we have Tri(2)
ip ⇔ ¬Fr1i ∧ · · · ∧ ¬Frqi.

In other words, we have Tri(2)
ip ⇔

∑q
`=1 Fr`i = 0, or

q · Tri(2)
ip +

q∑
`=1

Fr`i ≤ q

Tri
(2)
ip +

q∑
`=1

Fr`i ≥ 1

(8.16)

Define m binary variables w′ such that w′i corresponds to column i of the M matrix. w′i = 1

precisely if the ith column of M is compatible with every tree in G, the restricted span, and

is reducible to every tree in P , that is, reducible every tree in to P ′ and trivially reducible to
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every 3-fan in P ′′. wi = 1 precisely if the ith column of M is compatible with every tree in G,

and is reducible to every tree in P ′, the reduced profile.

To accommodate the 3-fans in P ′′, for the ith column in M , we have w′i ⇔ wi∧S(4)
i1 ∧· · ·∧S

(4)
iu ,

or

(u+ 1) · w′i − wi −
u∑
`=1

S
(4)
i` ≤ 0

w′i − wi −
u∑
`=1

S
(4)
i` ≥ −u

(8.17)

The objective function becomes

minimize
m∑
i=1

1− w′i (8.18)

8.4.3 Profile with Splits to Avoid

To seek optimal solutions where certain splits are not part of the solution, constraints similar

to that of verification purposes can be added to the ILP, except that we do not impose any

constraints on the objective values.

8.4.4 Size of Practically Solvable Models

We have some empirical results to gauge the practically solvable ILP model. With the

primates (large set) and seabirds experience, it seems when the product of the number of taxa

and the number of splits is not larger than 1500, the (+) model can be solved pretty quickly by

CPLEX in several seconds to several minutes. Beyond that, it could be longer than desirable.

Another possibility is to study the number of unknowns in the M matrix. It might be able

to serve as a size limit as well.
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CHAPTER 9. ILP FORMULATION FOR GOOD SPLITS, The (-) WAY

The (-) route ILP is based on the asymmetric difference definitions. If the whole OCT is

treated as unknown, our experience shows the size of problems it can handle are usually smaller

than that of the basic (+) ILP, due to the fact that it has to be assumed a binary tree and

numerous constraints are required to ensure the filling represents a tree. However, the (-) ILP

is perfect to provide just a few splits for large problems so that we can divide and conquer the

problem with the reducible and pull-out sets. If only one split is sought, constraints are much

fewer.

9.1 Binary Fill-in Vector

Let P = (t1, . . . , tk) be a profile where |L(P )| = n. We define a n binary vector M

representing a nontrivial split of the OCT. M is a single unfilled column, except that the row

for the root is filled with 1 in the rooted tree case. The ILP associates a fill-in variable Fx with

each Mx. Fx will be assigned a value of 0 or 1, representing an assignment of taxon x to one

of the two sides of a split.

As M only contains nontrivial split, it must contain at least two 0’s and two 1’s. For rooted

trees we have

n−1∑
r=1

Fr ≥ 1,

n−1∑
r=1

Fr ≤ n− 3.

(9.1)

n includes the root and Fn ≡ 1.
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9.2 Representations of Input and Induced Subtrees

Each input tree ti is represented by an n by |Spl(i)| binary matrix Mti. Mti(p, q) = 0 if

the pth taxon is in the non-root block of the qth split. Mti(p, q) = 1 if it is in the root block.

Mti(p, q) =? if the pth taxon is not in ti.

We need k induced subtrees represented by IMi. IMi is essentially M . However, only those

rows where Mti 6=? are considered in IMi.

9.3 Column Identity

To compute the distance between an input tree and its induced subtree, we need to establish

column identity between Mti and IMi with binary variables EEip where p = 1, . . . , |Spl(ti)|.

EEip = 1 precisely if a known column p in Mti is equivalent with IMi. We assume that ti has

distinct columns.

For rooted trees, there are u rows whereMti(r, p) = 1 and IMi(r) is unknown, and |Li|−1−u

rows where Mti(r, p) = 0 and IMi(r) is unknown. Li includes the root r. Note that the last

rows of Mti and IMi are filled with 1 to represent the roots. Name the u rows from r1 to ru

and the |Li|−1−u rows from r(u+1) to r(|Li|−1). We have EEip ⇔ Fr1∧· · ·∧Fru∧(1−Fr(u+1)
)∧

· · · ∧ (1− Fr(|Li|−1)
), or

(|Li| − 1) · EEip −
u∑
`=1

Fr` +
|Li|−1∑
`=u+1

Fr` ≤ |Li| − 1− u,

EEip −
u∑
`=1

Fr` +
|Li|−1∑
`=u+1

Fr` ≥ 1− u.

(9.2)

Note that p = 1, . . . , |Spl(ti)|.

9.4 Constraints for a Strict Good Split

9.4.1 Normal Profile

For a good split T in a strict candidate tree, its k induced subtrees IMi, i = 1, . . . , k, satisfy

the following condition. For rooted trees, Spl(T |Li) ⊆ Spl(ti). Hence, IMi must either have an

equivalent column in Mti or reduces to a trivial split in ti.
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1. Reduces to an equivalent column p in Mti, represented by EEip = 1.

2. Reduces to a trivial split in ti, in two forms discussed below and represented by Trivial(1)
i

and Trivial
(2)
i , respectively.

We have
⊕|Spl(ti)|

p=1 EEip ⊕ Trivial
(1)
i ⊕ Trivial

(2)
i , or

|Spl(ti)|∑
p=1

EEip + Trivial
(1)
i + Trivial

(2)
i = 1 (9.3)

For rooted trees, define binary variables Trivial(1) such that Trivial(1)
i = 1 precisely if it

reduces trivially into input tree ti in the forms of ∅|Li (all 1’s in IMi) or x|(Li \ x) (one 0 and

others 1’s in IMi). Here Li is the leaf set (including root) of tree ti and x is a single taxon

other than the root.

Note that we have Trivial(1)
i ⇔

∑|Li|−1
p=1 Frp ≥ |Li| − 2, or

(|Li| − 2)Trivial(1)
i −

|Li|−1∑
p=1

Frp ≤ 0,

2 · Trivail(1)
i −

|Li|−1∑
p=1

Frp ≥ 3− |Li|.

(9.4)

Define binary variables Trivial(2) such that Trivial(2)
i = 1 if and only if the split reduces

trivially into ti in the forms of (Lj \ r)|r, where r is the root (all 0’s in IMi except the root

row).

Note that Trivial(2)
i ⇔

∧|Li|−1
p=1 Frp = 0. Then Trivial

(2)
i ⇔

∑|Li|−1
p=1 F (rp) = 0, or

(|Li| − 1) · Trivial(2)
i +

|Li|−1∑
p=1

Frp ≤ |Li| − 1,

T rivial
(2)
i +

|Li|−1∑
p=1

Frp ≥ 1.

(9.5)

9.4.2 Profiles with Trivial Trees

Trivial trees have only trivial clusters that are not included in Mt. Indeed the Mt for a

trivial tree is an empty matrix. Special handling is arranged.
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First, a reduced profile P ′ is created to include only nontrivial trees in the original profile

P . The normal ILP applies to P ′. Second, a special profile P ′′ is created to hold the u 3-fans

in P . The following additional variables and constraints handle the special situation.

Let Li (i = 1, . . . , u) be the leaf set of the 3-fan ti ∈ P ′′. Note that the induced subtree

IMi automatically satisfies the triviality condition for empty tree, singleton, and cherry for the

rooted trees. For 3-fans, IMi should to constrained to reduce into a trivial split in ti ∈ P ′′.

Tri(1) and Tri(2) are defined to handle the two types 3-fan trivial reduction conditions.

Note that the i in Trivial(1)
i denotes the ith tree in P while the i in Tri(1)

i denotes the ith 3-fan

in P ′′. To meet the condition, we have Tri(1)
i ⊕ Tri

(2)
i . Equivalently, we have

Tri
(1)
i + Tri

(2)
i = 1 (9.6)

For rooted trees, define u binary variables Tri(1) such that Tri(1)
i = 1 if and only if the

split reduces trivially into ti in the forms of ∅|Li (all 1’s in IMi) or x|(Li \x) (one 0 and others

1’s in IMi). Here Li is the leaf set (including root) of ti and x is a single taxon other than the

root. Note that we have Tri(1)
i ⇔

∑|Li|−1
p=1 Frp ≥ |Li| − 2, or

(|Li| − 2)Tri(1)
i −

|Li|−1∑
p=1

Frp ≤ 0,

2 · Tri(1)
i −

|Li|−1∑
p=1

Frp ≥ 3− |Li|.

(9.7)

Define u binary variables Tri(2) such that Tri(2)
i = 1 if and only if the split reduces trivially

into ti in the forms of (Li \ r)|r, where r is the root (all 0’s in IMi except the root row). Note

that Tri(2)
i ⇔

∧|Li|−1
p=1 Frp = 0. In other words, we have Tri(2)

i ⇔
∑|Li|−1

p=1 Frp = 0, or

(|Li| − 1) · Tri(2)
i +

|Li|−1∑
p=1

Frp ≤ |Li| − 1,

T ri
(2)
i +

|Li|−1∑
p=1

Frp ≥ 1.

(9.8)

9.5 Constraints for a Loose Good Split

A loose candidate supertree T must be compatible with ti. The following theorem trans-

forms compatibility of T and ti to compatibility of T |Li and ti.
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Theorem 13. Let t be an input tree and T be a supertree where Lt ⊆ LT . t and T are

compatible if and only if t and T |Lt are compatible.

Proof. If t and T are compatible, there is an S that displays t and T . S also displays any

induced subtree of T . Hence S displays T |Lt. Therefore, t and T |Lt are compatible.

Conversely, if t and T |Lt are compatible, define T ′ such that Spl(T ′) = Spl(T |Lt) ∪ Spl(t).

Every edge in T |Lt can be mapped to a different edge in T ′ so that their corresponding splits

are the same. Restore every edge in T |Lt to its original path with degree-2 internal nodes in T

and restore the pruned taxa and their related edges. Let the resulting tree be S. Obviously S

displays T and t. Hence T and t are compatible.

Define BB(ab)i
p , a, b ∈ {0, 1}, where BB(ab)i

p = 1 precisely if there is a taxon r such that

Mtirp = a and Fr = b. The BB(ab)i
p s are determined from the settings of variables ΓΓ(ab)i

rp , where

r ranges over the taxa in Mti. The ΓΓ variables satisfy ΓΓ(ab)i
rp ⇔

(
(Mtirp = a) ∧ (Fr = b)

)
, or

(−1)bFr + ΓΓ(ab)i
rp ≥ 1− a− b− (−1)aMtirp,

(−1)bFr + 2ΓΓ(ab)i
rp ≤ 2− a− b− (−1)aMtirp.

(9.9)

We have that BB(ab)i
p ⇔

∨
r ΓΓ(ab)i

rp , or

−
∑
r

ΓΓ(ab)i
rp +BB(ab)i

p ≤ 0,

∑
r

ΓΓ(ab)i
rp − n ·BB(ab)i

p ≤ 0
(9.10)

To ensure compatibility, observe that ¬(BB(00)i
p ∧BB(01)i

p ∧BB(10)i
p ∧BB(11)i

p ), or

BB(00)i
p +BB(01)i

p +BB(10)i
p +BB(11)i

p ≤ 3. (9.11)

where p is the pth column in Mti.

In the loose good split case, no constraints are needed for trivial trees.

9.6 Distance Computation

For each Mti, define |Spl(ti)| binary variables δip where p = 1, . . . , |Spl(ti)|. δip records a pth

column in Mti that is not part of the IMi subtree. The constraints are ¬δip ⇔ EEip, or

δip + EEip = 1. (9.12)
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9.7 Objective Function

The objective function is

minimize
k∑
i=1

|Spl(ti)|∑
p=1

δip. (9.13)

9.8 Artificial Clusters and Constraints

The greedy iterative ILP can generate clusters nonexistent for the basic (+) ILP. One type

of the nonexistent clusters we observed is the merger of non-overlapping clusters from different

input trees. An artificial cluster is a good cluster whose reduced clusters in input trees form

at least two non-intersecting components when any reduced clusters sharing at least one taxon

are joined together.

Mathematically sound, the combination is meaningless biologically. Moreover, the following

theorems guarantee that when artificial clusters are avoided, it is possible to find a strict/loose

candidate tree with equal or less total distance.

Theorem 14. Let P = (t1, . . . , tk) be a profile and T be a strict candidate tree of P . If

an artificial cluster A ∈ T , there is another strict candidate T ′ such that A /∈ T ′ where

AD−(P, T ′) = AD−(P, T ).

Proof. Assume that A|Li = Bi where Bi is a cluster in ti (i = 1, . . . , k). B1, . . . , Bk join into

p non-overlapping sets C1, . . . , Cp where p ≥ 2. Replace the subtree T |A with new subtrees

T |C1, T |C2 to T |Cp. Shrink the edge between T |A and its parent u and connect the roots of

T |C1,T |C2 to T |Cp to u. The new tree is T ′.

Note that every Bj (j = 1, . . . , k) can now be obtained by reducing one of Ci’s (i = 1, . . . , p)

to Bj . Other C` where ` 6= i has no taxa common to Lj and vanishes during reduction. Thus

AD−(P, T ′) = AD−(P, T ).

Theorem 14 shows that we can find strict OCT without artificial clusters.

Theorem 15. Let P = (t1, . . . , tk) be a profile and T be a loose candidate tree of P . If

an artificial cluster A ∈ T , there is another loose candidate T ′ such that A /∈ T ′ where

AD−(P, T ′) ≤ AD−(P, T ).
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Proof. If A is a reducible cluster (i.e., A|Li ∈ ti where i = 1, . . . , k), the proof is the same

as that of the strict supertree case. Let A be a pull-out cluster but not a reducible cluster.

That is, there is an i such that A|Li = D1 ∪ · · · ∪Dq where Dj ∈ ti for j = 1, . . . , q but their

union D1 ∪ · · · ∪ Dq /∈ ti. D1, . . . , Dq and the projected clusters in other input trees form p

non-intersecting sets C1, . . . , Cp where p ≥ 2 and A = C1 ∪ · · · ∪ Cp. Replace the subtree T |A

with new subtrees T |C1, T |C2, . . . , T |Cp. Shrink the edge between T |A and its parent u and

connect the roots of T |C1, T |C2, . . . , T |Cp to u. The new tree is T ′.

Note that C`|Li (` = 1, . . . , p) is compatible with Dj ∈ ti for j = 1, . . . , q, because it is the

union of some of Dj . Since none of Dj (j = 1, . . . , q) is canceled by A|Li, while it is possible

that Dj = C`|Li (` = 1, . . . , p), AD−(P, T ′) ≤ AD−(P, T ).

Theorem 15 shows that if T is a loose OCT, then T ′ is also a loose OCT. Hence we can

always find a loose OCT without artificial clusters.

Avoiding artificial clusters gives us better OCT, as artificial clusters create faulty combina-

tions that prevent the formation of correct clusters down the road.

We have developed two methods to handle artificial clusters. One is by adding additional

constraints when a solved cluster is artificial. The other is to provide a set of constraints to

prevent artificial clusters from happening. The first method is suitable when there are no or

very few artificial constraints. Usually it happens when the number of trees are way more than

the number of taxa involved. It generates smaller size ILP models. The second method is

suitable when there are a lot of artificial constraints. Usually it happens when the number of

taxa is way more than the number of trees. It generates larger ILP models.

9.8.1 Constraints after Finding Artificial Clusters

For rooted trees, let A|B be an artificial split that is solved. A|B is n by 1. M has M(n) = 1

to represent the root and has n − 1 F variables. Suppose corresponding to these variables, u

rows of A|B have values 1 and n− 1− u rows of A|B have values are 0. The constraint can be
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written as ¬(Fr1 ∧ · · · ∧ Fru ∧ (1− Fr(u+1)
) ∧ · · · ∧ (1− Fr(n−1)

)), or

u∑
`=1

Fr` −
n−1∑
`=u+1

Fr` ≤ u− 1. (9.14)

9.8.2 Constraints to Suppress Artificial Clusters

The following constraints apply to rooted trees only. First, we define t binary variables dd

for all distinct clusters, dd1, . . . , ddt. ddi = 1 precisely if ddi’s corresponding cluster is a subset

of the good cluster. In other words, all of its F ’s are 0. ddp ⇔ ¬Fi1 ∧ ¬Fi2 ∧ · · · ∧ ¬Fiq , where

i1 . . . iq are its q taxa.

q · ddp +
q∑
j=1

Fij ≤ q

ddp +
q∑
j=1

Fij ≥ 1

(9.15)

Second, we define n− 1 binary variables LTLI1 . . . LTLIn−1. LTLI stands for Linked-To-

a-Larger-Index. LTLIi = 1 if and only if

1. a cluster p, ddp = 1, has a taxon whose index is i, and another taxon whose index is

larger than i; or

2. two overlapped clusters p and q, ddp = ddq = 1, i corresponds to the largest taxon index

in p, and q has a taxon whose index is larger than i.

In order to describe the second case, we introduce a set of binary variables bbpq such that

bbpq = 1 precisely if clusters p and q are overlapped, and ddp = ddq = 1. bbpq ⇔ ddp ∧ ddq, or

2 · bbpq − ddp − ddq ≤ 0

ddp + ddq − bbpq ≤ 1
(9.16)

Now we establish the constraints for LTLIi (i=1,. . . ,n-1) with dd and bb.
⋃
p′ ddp′ ∪⋃

pq bbpq ⇔ LTLIi, or

LTLIi −
t∑

j=1

ddpj −
∑
uv

bbuv ≤ 0

t∑
j=1

ddpj +
∑
uv

bbuv −G · LTLIi ≤ 0

(9.17)
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where G is the number of items of
∑t

j=1 ddpj +
∑

uv bbuv. Note that the largest taxon in the

leaf set always has LTLIn−1 = 0.

Third, the projected clusters forming a connected component is equivalent to the sum of

LTLIi being exactly one less than the number of taxa in the good cluster. In other words,

every taxon of the cutter cluster is linked to a larger index taxon except for the largest one.

If there are two non-overlapping components, there is another taxon j with LTLIj = 0 and it

cannot link to the taxa in the other component. Equivalently we have the following constraints.

n−1∑
i=1

Fi +
n−1∑
i=1

LTLIi = n− 2 (9.18)

Since when Fi = 1, LTLIi = 0; and for all Fi = 0,only the largest i can have LTLIi = 1, other

LTILj = 0 for any j 6= i.

To reduce the number of constraints, singletons can be removed without affecting the value

of LTLI, because they do not meet the first case requirement. For the second case, i is the

index for the single taxon in cluster p. Due to overlapping, cluster q must also have this taxon.

it can be simplified as to the first case of ddq = 1. Hence removal of cluster p, the singleton,

does not matter.

In implementation, we first generate unique clusters without singletons. After defining dd

variables and the dd − F constraints, we loop through i to define LTLI variables as well as

involved bb variables, dd− bb constraints, and LTLI − dd− bb constraints.

9.9 Number of Variables and Constraints

We discuss the variables and constraints for both strict and loose OCT first. There are

O(n) for F variables, O(1) for F constraints, O(m) for EE, δ variables and EE − F , δ − EE

constraints.

For strict good split pairwise distance computation. we have takes O(k) for Trivial(1),

Trivial(2), Tri(1), Tri(2) variables, and EE−Trivial(1)−Trivial(2), Trivial(1)−F , Trivial(2)−

F , Tri(1) − Tri(2), Tri(1) − F , Tri(2) − F constraints.
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For loose good split compatibility between T |Li and ti, we have O(m) for BB variables,

and BB, BB-ΓΓ constraints, O(mn) for ΓΓ and ΓΓ− F constraints.

It takes O(1) to add anti-artificial cluster F related constraints using the first method. For

the second method, we have O(m) dd variables and dd−F constraints, O(m2) bb variables and

bb−dd constraints, O(n) LTLI variables and LTLI − bb−dd constraints, and O(1) F −LTLI

constraints.

Therefore, using the first method to apply anti-artificial cluster constraints, O(m) is the

bound for the variables and constraints for the strict good split. O(mn) is the bound for

variables and constraints for the loose good split.

Using the second method to apply anti-artificial cluster constraints, O(m2) is the bound for

both strict and loose good split. Here we assume m > n.
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CHAPTER 10. ALGORITHMS

10.1 Divide and Conquer

From previous chapters we know that reducible and pull-out sets are properties of the

conservative supertrees. The iterative (-) ILP provides good splits to divide the original profile

into planet and satellite profiles. The basic (+) ILP provides exact solutions for small models.

DivideAndConquer is a program that employs the recursive routinemyDivideAndConquer

to obtains the objective value and the strict/loose optimal candidate tree. OBJ and OCT stand

for the original objective value and the optimal candidate tree found by DivideAndConquer.

Profile, Profilesat and Profilepla are the original, satellite and planet profiles. OBJsat and

OBJpla are satellite and planet OBJ ’s, while OCTsat and OCTpla are satellite and planet

OCT ’s.

Algorithm 1 [OBJ, OCT] = DivideAndConquer

1: Input data and generate Profile.
2: Avoid = ∅.
3: [OBJ,OCT ] = myDivideAndConquer(Profile, Avoid).

10.2 Verification

V erifyHelper is a program that calls the recursive V erify routine. It stops when two

consecutive runs return identical supertrees. We could make it more strict by requiring more

runs of identically returned supertrees. A category number is assigned to each edge: 0 for an

edge in OCT but not in the true supertree; 1 for an external edge (trivial cluster); 2 for other

edges. LastST is the supertree found by V erify in the last round. ST is the supertree found

by V erify in this round. V erifyHelper works as follows. LastST is initially set to OCT . All
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Algorithm 2 [OBJ, OCT] = myDivideAndConquer(Profile, Avoid)

1: if Solvable with the basic (+) ILP then
2: Solve it and return OBJ and OCT .
3: else
4: Solve for a good split A with the iterative (-) ILP.
5: if Infeasible, i.e., A cannot be found then
6: OBJ = the sum of all nontrivial splits in Profile.
7: OCT = a fan for the profile leaf set.
8: else
9: Create the satellite and planet profiles with A.

10: [OBJsat, OCTsat] = myDivideAndConquer(Profilesat, Avoidsat).
11: [OBJpla, OCTpla] = myDivideAndConquer(Profilepla, Avoidpla).
12: OBJ = OBJsat +OBJpla.
13: Combine OCTsat and OCTpla to create OCT .
14: return OBJ and OCT

the edges are set to category 2 (unclear state) except for external edges whose category number

are 1. ST is the supertree returned by V erify whose input are Profile, OBJ , OCT , and the

category numbers. With ST , the new category numbers, some determined in this round, are

also returned. If LastST and ST are different, this verification round did find some new edges

that belong to OCT but not the true supertree. Since the returned supertree might still have

some unfound edges in OCT but not in the true supertree, another round of verification is done

after LastST is updated with ST . If LastST and ST are identical, this round finds no more

edges in OCT but not in the true supertree. The program terminates.

Algorithm 3 ST = VerifyHelper(Profile,OBJ,OCT)

1: Set category value for each edge/cluster: trivial clusters 1, others 2
2: LastST = OCT

3: while 1 do
4: [ST, category] = V erify(Profile, OBJ,OCT, category).
5: if ST = LastST then
6: return ST

7: else
8: LastST = ST .;

The recursive algorithm V erify checks which edge (cluster) in OCT is in conservative

supertree. It works as follows. In a while loop, if the tree consists of only trivial splits or

splits that in an OCT but not in the true supertree, then the trivial splits are returned (a fan
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is returned). This is a base case in some final stages of substructure analysis. If the OCT

has edges (clusters) that are undetermined (category numbers = 2), pick the first one (A) for

verification by putting it into Avoid to recompute the scores. There are three outcomes.

1. If it is the same as the original OBJ , A is likely in OCT but not in the true supertree.

Therefore, we assign 0 to its category number. Also we use the newly solved OCT 1 to

intersect the old OCT so that more edges in OCT but not in the true supertree can be

determined. Then we move to the next edge in the while loop.

2. If it is lower than the original OBJ , then the OCT is not optimum in the first place.

The program stops and the OCT needs to be resolved, probably with a random restart

process that randomly cut the OCT and restart the DivideAndConquer.

3. If it is larger than the original OBJ , or it is infeasible (A is in Avoid and no other

nontrivial cutters can be found), then it is possible that A is in the true supertree, if all

the previous cuts to compute this OBJ1 are in the true supertree. But it is also possible

that some of the previous cuts to compute this OBJ1 are in the true supertree while the

others are in OCT but not in the true supertree. When some of the edges that are in

OCT but not in the true supertree must be kept and another A must be avoided, it is

possible that the OBJ1 is higher than OBJ . So we cannot guarantee that A is in the

true supertree. Hence, we still keep A’s category number as 2. Nevertheless, we use A

as a cutter to divide the Profile, Avoid, OBJ and OCT to recursively apply V erify to

subproblems. Once solved, it is assembled and returned. Note that in the returned values,

many of the category numbers are still 2. But those edges whose category numbers are 0

are cleared.

Inside V erify, Recompute calculates the new objective value and the new OCT with Avoid.

It works as follows. If Avoid is empty for the profile involved, then the original OBJ and OCT

for the profile are returned. If the verification problem is solvable by the basic (+) ILP, we

invoke basic ILP with Profile and Avoid to solve it and return the new OBJ1 and OCT 1. If

the problem is too big, then there are two cases to consider.
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Algorithm 4 [ST,OCT,category] = Verify(Profile,OBJ,OCT,category)

1: while 1 do
2: if No edges are of category 2 then
3: ST = all clusters in OCT whose category values are 1.
4: return
5: Pick the first cluster A in OCT whose category value is 2.
6: Put A into Avoid
7: [OBJ1, OCT 1] = Recompute(Profile, Avoid,OBJ,OCT, category)
8: if OBJ1 >= 0, OBJ >= 0 and OBJ1 == OBJ then
9: category(A) = 0, since A ∈ OCT \ ST

10: Compare OCT 1 and OCT to determine more category values for other edges
11: else if OBJ1 >= 0 and OBJ1 < OBJ then
12: OBJ and OCT are not optimum, stop
13: else if OBJ >= 0 and OBJ1 > OBJ , or infeasible (OBJ1 = −1) then
14: Use A to generate Profilepla, Avoidpla, OBJpla, OCTpla, and categorypla.
15: [STpla, OCTpla, categorypla] = V erify(Profilepla, OBJpla, OCTpla, categorypla).
16: Use A to generate Profilesat,Avoidsat, OBJsat, OCTsat,categorysat.
17: [STsat, OCTsat, categorysat] = V erify(Profilesat, OBJsat, OCTsat, categorysat).
18: Assemble ST , OCT , and category from substructure analysis.
19: return

1. If there is only one nontrivial split left, it is in Avoid and unsolvable by the basic (+)

ILP, we call myDivideAndConquer to solve it. It either finds another way to divide and

solve it, or it shows that there are no other nontrivial splits. The result is returned as

the new OBJ1 and OCT 1.

2. If there are more than one nontrivial split left, we randomly pick a category 2 cluster

B that is not in Avoid to use it as the cutter to divide the Profile, Avoid, OBJ and

OCT , and recursively call Recompute to calculate new OBJ1 and OCT 1 for the sub-

profiles. If any one is infeasible, Recompute passes the infeasibility information to its

caller. Otherwise, it combines the results from two sub-profiles and return the new OBJ1

and OCT 1.

V erifyHelper is fast since in Recompute, the initial OCT edges are used as cuts to divide

the profiles recursively. Previously these cuts were found by running myDivideAndConquer re-

peatedly. Now most of the computation is the basic (+) ILP. Occasionally a call toDivideAndConquer

is used when the problem is too big and cannot be cut further.
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Algorithm 5 [OBJ1,OCT1] = Recompute(Profile,Avoid,OBJ,OCT,category)
1: if Avoid = ∅ then

2: OBJ1 = OBJ , OCT 1 = OCT

3: return

4: if Solvable by the basic (+) ILP then

5: Invoke basic (+) ILP with Profile and Avoid.

6: else

7: if Only one nontrivial split left, in Avoid, and unsolvable by the basic (+) ILP then

8: [OBJ1, OCT 1] = myDivideConquer(Profile, Avoid).

9: return

10: Randomly pick a category 2 cluster B that is not in Avoid.

11: Use B to generate Profilepla,Avoidpla, OBJpla, OCTpla, categorypla.

12: [OBJ1
pla, OCT

1
pla] = Recompute(Profilepla, Avoidpla, OBJpla, OCTpla, categorypla)

13: if OBJ1
pla = −1, i.e., infeasible then

14: OBJ1 = −1, OCT 1 = ∅

15: return

16: Use B to generate Profilesat, Avoidsat, OBJsat, OCTsat and categorysat

17: [OBJ1
sat, OCT

1
sat] = Recompute(Profilesat, Avoidsat, Objsat, OCTsat, categorysat);

18: if OBJ1
sat = −1, i.e., infeasible then

19: OBJ1 = −1; OCT 1 = ∅

20: return

21: Get OBJ1 and OCT 1 by combining their substructure counterparts

The shortcoming of this verification algorithm is that, given an edge to verify, it is possible

that during a series of cuts in Recompute, some cutting edges may be in OCT but not in the

true supertree. Thus a high recomputed objective value does not ensure the edge to verify is in

the supertree. However, if the recomputed objective value is the same, it guarantees the edge

to verify is NOT in the true supertree and ST , assuming the OCT is a true optimal candidate

tree.
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When we use divide and conquer, it is always possible that the cutters computed by

myDivideAndConquer is OCT but not in the true supertree, even if we do not use Recompute

but just use myDivideAndConquer all the way through. Then using the current algorithm

saves enormous time. During experiment we have seen myDivideAndConquer found edges in

the original OCT repeatedly. So a lot of time is wasted to compute them repeatedly.

To mitigate the impact, we randomize the picking of cutters during Recompute and try

multiple sequential runs until the supertrees from consecutive runs converge. We can run many

times to make sure all supertrees returned in these runs are exactly the same. Ideally in each

run, some edges in OCT but not in the true supertree are found and marked. In the next run

they cannot serve as cutters. With a higher percentage of edges in ST , it is more likely to

identify edges that are in OCT but not in the true supertree since more cutters will be in the

supertree.

This verification algorithm is imperfect. The supertree it finds is still possible to contain

some edges in the OCT but not in the true supertree. However, in our experiments most of

them converge in very few runs.



93

CHAPTER 11. EXPERIMENTAL RESULTS

We developed a prototype implementation of the techniques described in the previous sec-

tions, and used it to conduct a series of computational tests. Our system is based on a collection

of MATLAB scripts to automatically generate the appropriate ILPs directly from the input pro-

files. These scripts invoke CPLEX to solve the ILPs exactly or to apply the divide-and-conquer

heuristics.

Our first tests were aimed at finding the limits of the applicability of the exact ILP formu-

lation. As expected, this approach only allowed us to solve rather small problems. The critical

parameter is the product of n, the number of taxa, and m, the total number of nontrivial splits

in all the input trees. Generally speaking, problems with nm ≥ 2000 are difficult to solve,

while problems with nm ≤ 1000 are quickly solvable. Thus, we chose nm = 1000 as a threshold

to use divide and conquer. Note that this is just a rule of thumb, as there are problems with

nm > 1000 that are solvable, such as the smaller of the primates datasets in Ranwez et al.

(2007), which has n = 33, m = 48, and nm = 1584.

We analyzed five large data sets using the divide-and-conquer heuristic: the larger of the

two primate data sets in Ranwez et al. (2007), seabirds [Kennedy and Page (2002)], placental

mammals [Beck et al. (2006)], legumes [Wojciechowski et al. (2000)] and marsupials [Cardillo

et al. (2004)]. The current version of our software assumes a common outgroup among the

input trees (i.e., that the trees are rooted). Table 11.1 summarizes the results of our analysis.

All experiments were run on an Intel Core 2 64 bit quad-core processor (2.83GHz). Times

are given in seconds or hours. Solution and verification times are listed separately. When the

solution was a fan, no verification was needed.

The supertrees obtained appear quite reasonable. Interested readers can contact the author

for the PDF file that includes these supertrees.
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For instance, all 26 of the clusters in the strict marsupial supertree are in the published

paper [Cardillo et al. (2004)]. The loose marsupial supertree contains all clusters in the strict

supertree along with 38 additional clusters, most of which are in the published supertree. Out

of the 64 clusters in this loose supertree, 61 are in the published paper.

We note that many data sets encountered in practice — in particular, the above-mentioned

marsupial and placental mammal data sets — include a “scaffold” tree (also called a “back-

bone” or “seed” tree); i.e., a tree that covers a broad span of taxa, without necessarily being

comprehensive. For instance, the marsupial dataset in Cardillo et al. (2004) includes the tree

implied by the marsupial classification of Wilson and Reeder (1993) “because it is currently

widely accepted as a taxonomic reference for mammals, and because its low resolution means

it can easily be overruled by more resolved phylogenies, minimizing its influence on the final

supertree.” However, a low-resolution scaffold has different effects on strict and loose trees. By

the definition of strict supertrees, if a set of taxa appears as a fan in any of the input trees, it

must remain as a fan in the strict supertree, no matter what the other trees say. Thus, a low-

resolution scaffold can lead to a low-resolution strict supertree. On the other hand, again by

definition, scaffolds do not prevent loose supertrees from being well-resolved. Our experimental

results — e.g., on the marsupial data set — confirm this observation.

Figure 11.1 shows that the strict and loose supertrees for the primates small data set. This

is obtained via the basic ILP.

Figure 11.2 shows that the strict and loose supertrees for the primates small data set. This

is obtained via the divide and conquer approach.

Figure 11.3 show that the strict consensus of MRP, majority-rule (+), strict and loose

supertrees for the Seabirds data set. The strict and loose supertrees are obtained via the divide

and conquer approach.
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Figure 11.1 Strict and Loose Supertrees for Primates Small Data Set
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Figure 11.2 Strict and Loose Supertrees for Primates Large Data Set
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Figure 11.3 Strict Consensus of MRP, Majority-rule (+), Strict and Loose Supertrees for
Seabirds Data Set
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CHAPTER 12. ILP FOR REDUCED STRICT CONSENSUS TREES

In the next three chapters, the ILP formulations for reduced consensus trees will be de-

veloped. We define the problem before describing the controlling matrices, variables and con-

straints, followed by the objective values and the sizes of ILP. Some definitions are common for

three or two reduced consensus trees, while others are unique to the specified reduced consensus

tree. We will follow the sequence of reduced strict, loose and majority-rule consensus trees.

Let P = (t1, . . . , tk) be a profile of rooted trees with identical leaves and L(P ) be its leaf

set. Let X ⊂ L(P ). An induced sub-profile P ′ = (t′1, . . . , t
′
k) is a profile of induced subtrees

such that t′i = ti|X for i = 1, . . . , k. A candidate reduced strict consensus tree T is the strict

consensus tree of P ′. An optimal reduced strict consensus tree T ∗ is a candidate strict consensus

tree whose number of nontrivial clusters is maximum among all choices of X.

12.1 Binary Matrices for Profile and Split-Tree Relationship

Let P = (t1, . . . , tk) be a profile where L(P ) = n. n includes a special root taxon. tj is

represented by matrix M(tj) whose mj columns correspond to the unique nontrivial splits of

tj that have not appeared in trees before tj . Let m =
∑k

j=1mj . Suppose the column i of M(tj)

corresponds to the split A|B in tj and let x be a taxon in L(P ). Then, Mxi(tj) = 1 if x ∈ A,

Mxi(tj) = 0 if x ∈ B. All taxa in the same block as the root are assigned 1. M(P ) is a matrix

obtained by concatenating matrices M(t1), . . . ,M(tk).

The first tree is special for reduced strict consensus tree because all reduced splits or clusters

can be found in the first reduced tree. This is not true for loose or majority-rule reduced

consensus trees because the reduced split/cluster might come from another tree.

Define an m by k binary matrix Intree. Intree(i, j) = 1 if and only if the ith reduced split
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is in the jth reduced tree. If the ith original split is in the jth original tree, so are their reduced

forms. Hence, Intree(i, j) = 1 for those original splits found in original trees. However, even

if the ith original split is not in the original jth tree, when reduced, the reduced ith split could

still be in the reduced jth tree because the reduced ith split might be trivial, or it becomes

identical with a reduced split (either trivial or nontrivial) in the reduced jth tree. Therefore, if

Intree(i, j) 6= 1 for original split/original tree, we put a question mark to Intree(i, j). We will

use the unknown Intree(i, j) to define Uij variables later.

12.2 Variables and Constraints

For the induced subtree, we provide n − 1 S binary variables to select which taxa are

included. Sr = 1 if and only if the rth row (taxon) is in the induced subtree.

For the taxa in the selected rows, the patterns of induced splits i and j are 00, 01, 10, and

11. The pattern 11 always appears since every split has the root filling as 1. The presence or

absence of these patterns for columns i and j is indicated by the settings of variables B(ab)
ij ,

where a, b ∈ {0, 1}, i = 1, . . . ,m1, j = 1, . . . ,m, and i < j.

B
(ab)
ij = 1 if and only if there is selected a taxon r such that Sr = 1 and Mri = a and Mrj = b.

M being known, B(ab)
ij s are determined by the related Srs. We have that B(ab)

ij ⇔
⋃p
q=1 Srq , or

−Sr1 − Sr2 − · · · − Srp +B
(ab)
ij ≤ 0

Sr1 + Sr2 + · · ·+ Srp − n ·B
(ab)
ij ≤ 0

(12.1)

when ab are 01 and 10, as Eij required later.

Note that some B(ab)
ij ≡ 0 if the pattern ab does not exist in all the rows of splits i and j.

Thus in implementation we do not define them and their related constraints.

We define O(m1 · m) binary variables Eij where i = 1, . . . ,m1, j = 1, . . . ,m and i < j

to represent identity across all distinct splits when they are reduced. Observe that Eij ⇔

¬B(01)
ij ∧ ¬B(10)

ij , or

B
(01)
ij +B

(10)
ij + 2 · Eij ≤ 2,

B
(01)
ij +B

(10)
ij + Eij ≥ 1.

(12.2)
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Define m1 δ
0 and m1 δ

1 binary variables to represent nontrivial clusters in the reduced

strict consensus tree. Note that a reduced nontrivial cluster must have at least two 0s and two

1s. Hence, for split j, the sum of Sr corresponding to M(r, j) = 0 must be at least 2, and the

sum of Sr corresponding to M(r, j) = 1 must be at least 1, excluding the root, which is another

1. For 1 ≤ j ≤ m1, we have δ0j ⇔
∑p

q=1 Srq ≥ 2, or

2 · δ0j −
p∑
q=1

Srq ≤ 0

p∑
q=1

Srq − n · δ0j ≤ 1

(12.3)

Similarly we have δ1j ⇔
∑p

q=1 Srq ≥ 1, where 1 ≤ rq ≤ n− 1, or

δ1j −
p∑
q=1

Srq ≤ 0

p∑
q=1

Srq − n · δ1j ≤ 0

(12.4)

Based on the unknown elements of Intree, define at most m1 · (k − 1) binary variables

Uij where i = 1, . . . ,m1 and j = 2, . . . , k. Uij = 1 if and only if the ith split is in the

jth tree. For those undetermined Uij , we have the following for ith split and the jth tree,

Uij ⇔
⋃
`∈M(tj)

Ei` ∪ ¬δ0i ∪ ¬δ1i , or

Uij + δ0i + δ1i − Ei`1 − · · · − Ei`mj
≤ 2

Ei`1 + · · ·+ Ei`mj
− δ0i − δ1i − (mj + 2) · Uij ≤ −2

(12.5)

Note that Ui1 ≡ 1 and are constants.

Define m1 binary variables W where Wi = 1 precisely if the ith split is in every other trees.

That is, Wi ⇔
∑k

j=2 Uij = k − 1, or

(k − 1) ·Wi −
k∑
j=2

Uij ≤ 0,

k∑
j=2

Uij −Wi ≤ k − 2.

(12.6)
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Define m1 − 1 D binary variables to represent duplicated clusters. Observe that D1 ≡ 0

and that, for 1 < p ≤ m1, Dp ⇔
⋃p−1
i=1 Eip, or

Dp −
p∑
i=1

Eip ≤ 0

p∑
i=1

Eip − p ·Dp ≤ 0

(12.7)

Define m1 V binary variables to represent unique clusters in the reduced strict consensus

tree. For 1 ≤ p ≤ m1, we have

Vp ⇔Wp ∧ ¬Dp ∧ δ0p ∧ δ1p (12.8)

Equivalently we have

4 · Vp −Wp +Dp − δ0p − δ1p ≤ 1

Wp −Dp + δ0p + δ1p − Vp ≤ 2
(12.9)

12.3 Objective Function

The objective value is the number of unique reduced strict splits (clusters). Define objective

variable obj.

obj −
m1∑
p=1

Vp = 0 (12.10)

The objective function is

maximize obj (12.11)

12.4 Number of Variables and Constraints

The size of variables and constraints are determined by n, m1, m and k. For variables, we

have

1. S: O(n)

2. B,E: O(m1m)

3. U : O(m1k)
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4. δ0, δ1, W ,D,V : O(m1)

5. obj: O(1)

Therefore, the ILP variables is max(O(m1k), O(m1m)).

For constraints, we have

1. B − S, E −B: O(m1m)

2. U − E − δ0 − δ1: O(m1k)

3. δ0 − S, δ1 − S,W − U , D − E, V −D −W − δ0 − δ1: O(m1)

Therefore, the ILP constraints is max(O(m1k), O(m1m)).

Note that m1 = O(n). The key here is m. When the clusters within P are highly heteroge-

neous, m approaches k ·n. When the clusters within P are highly homogeneous, m approaches

n. Rogue taxa could be a reason to affect whether it is homogeneous or heterogeneous. Hence

for both ILP variables and constraints, the upper bound is O(k · n2). But depends on its

heterogeneity, the running varies wildly.
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CHAPTER 13. ILP FOR REDUCED LOOSE CONSENSUS TREES

Let P = (t1, . . . , tk) be a profile of rooted trees with identical leaves and L(P ) be its leaf

set. Let X ⊂ L(P ). An induced sub-profile P ′ = (t′1, . . . , t
′
k) is a profile of induced subtrees

such that t′i = ti|X for i = 1, . . . , k. A candidate reduced loose consensus tree T is the loose

consensus tree of P ′. An optimal reduced loose consensus tree T ∗ is a candidate loose consensus

tree whose number of nontrivial clusters is maximum among all choices of X.

13.1 Binary Matrix for Profile

Let P = (t1, . . . , tk) be a profile where L(P ) = n. n includes a special root taxon. P

is represented by matrix M(P ) whose m columns correspond to unique nontrivial splits of

P . M(P ) starts with M(t1), and more distinct nontrivial splits from subsequent M(ti)s are

concatenated to form M(P ). Suppose the column i of M(P ) corresponds to the split A|B in

tj and let x be a taxon in L(P ). Then, Mxi(tj) = 1 if x ∈ A, Mxi(tj) = 0 if x ∈ B. All taxa in

the same block as the root are assigned 1.

The reduced loose consensus tree clusters must be in one tree and be compatible with every

other clusters. In real problems, it is expected input trees share a large percentage of common

clusters. The succinct arrangement reduces the size of ILP model.

13.2 Variables and Constraints

For the induced subtree, we provide n − 1 S binary variables to select which taxa are

included. Sr = 1 if and only if the rth row (taxon) is in the induced subtree.

For the taxa in the selected rows, the patterns of induced splits i and j are 00, 01, 10, and

11. The pattern 11 always appears since every split has the root filling as 1. The presence or
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absence of these patterns for columns i and j is indicated by the settings of variables B(ab)
ij ,

where a, b ∈ {0, 1}, i, j = 1, . . . ,m, number of unique clusters in all trees and i < j. Note

that the clusters within the first tree (i, j = 1, . . . ,m1) are compatible with each other. Their

induced clusters are also mutually compatible.

B
(ab)
ij = 1 if and only if there is selected a taxon r such that Sr = 1 and Mri = a and

Mrj = b. Because M is known, B(ab)
ij s are determined by the related Srs. We have that

B
(ab)
ij ⇔

⋃p
q=1 Srq , or

−Sr1 − Sr2 − · · · − Srp +B
(ab)
ij ≤ 0

Sr1 + Sr2 + · · ·+ Srp − n ·B
(ab)
ij ≤ 0

(13.1)

when ab are 00, 01 and 10. Note that B(00)
ij where 1 ≤ i, j ≤ m1 are not needed, as well as its

corresponding B − S constraints.

Note that some B(ab)
ij variables can be predetermined to be 0 if pattern ab does not exist in

all the rows of splits i and j. Thus in implementation we do not define them and their related

constraints.

We define binary variables Eij where i, j = 1, . . . ,m and i < j to represent identity across

all tree splits. Observe that Eij ⇔ ¬B(01)
ij ∧ ¬B(10)

ij . We have

B
(01)
ij +B

(10)
ij + 2 · Eij ≤ 2,

B
(01)
ij +B

(10)
ij + Eij ≥ 1.

(13.2)

We define binary variables Cij where i = 1, . . . ,m, j = m1+1, . . . ,m, and i < j to represent

compatibility across all tree splits and the rest tree splits. The compatibility of first tree splits

are self evident. Observe that ¬Cij ⇔ B
(00)
ij ∧B(01)

ij ∧B(10)
ij ∧B(11)

ij . Since B(11)
ij = 1 for rooted

trees, we have

B
(00)
ij +B

(01)
ij +B

(10)
ij + 4Cij ≥ 3,

B
(00)
ij +B

(01)
ij +B

(10)
ij + Cij ≤ 3.

(13.3)

where 1 ≤ i ≤ m and m1 + 1 ≤ j ≤ m.

If two original clusters, cluster i and cluster j are compatible, their induced clusters on the

same set of taxa are compatible. Hence Cij ≡ 1. The variable Cij and the constraints 13.3
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are not needed. However, if cluster i and cluster j are incompatible, their induced clusters

could be incompatible or compatible, depending on what taxa are selected. Hence Cij and the

constraints 13.3 cannot be omitted.

Define m binary variables W where Wi = 1 precisely if the ith cluster is compatible with

every other cluster. That is, Wi ⇔
∑m

j=1,j 6=iCij = m− 1, or

(m− 1) ·Wi −
m∑

j=1,j 6=i
Cij ≤ 0,

m∑
j=1,j 6=i

Cij −Wi ≤ m− 2.

(13.4)

When 1 ≤ i, j ≤ m1, Cij ≡ 1. In other ranges where j < i, Cij ≡ Cji, which was defined earlier

and will be used.

Define m− 1 D binary variables to represent duplicated clusters. Observe that D1 ≡ 0 and

is a constant. For 1 < p ≤ m, Dp ⇔
⋃p−1
i=1 Eip, or

Dp −
p∑
i=1

Eip ≤ 0

p∑
i=1

Eip − p ·Dp ≤ 0

(13.5)

Define m δ0 and m δ1 binary variables to represent nontrivial clusters in the reduced loose

consensus tree. Note that a reduced nontrivial cluster must have at least two 0s and two 1s.

Hence, for split j, the sum of Sr corresponding to M(r, j) = 0 must be at least 2, and the sum

of Sr corresponding to M(r, j) = 1 must be at least 1, excluding the root, which is another 1.

For 1 ≤ j ≤ m1, we have δ0j ⇔
∑p

q=1 Srq ≥ 2, or

2 · δ0j −
p∑
q=1

Srq ≤ 0

p∑
q=1

Srq − n · δ0j ≤ 1

(13.6)

Similarly we have δ1j ⇔
∑p

q=1 Srq ≥ 1 where 1 ≤ rq ≤ n− 1, or

δ1j −
p∑
q=1

Srq ≤ 0

p∑
q=1

Srq − n · δ1j ≤ 0

(13.7)
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Define m V binary variables to represent unique clusters in the reduced loose consensus

tree. For 1 ≤ p ≤ m, we have Vp ⇔Wp ∧ ¬Dp ∧ δ0p ∧ δ1p, or

4 · Vp −Wp +Dp − δ0p − δ1p ≤ 1

Wp −Dp + δ0p + δ1p − Vp ≤ 2
(13.8)

13.3 Objective Function

The objective value is the number of unique reduced loose clusters. Define objective variable

obj.

obj −
m∑
i=1

Vi = 0 (13.9)

The objective function is

maximize obj (13.10)

13.4 Number of Variables and Constraints

The size of variables and constraints are determined by n and m. For variables, we have

1. S: O(n)

2. B,E, C: O(m2)

3. W ,D,δ0, δ1,V : O(m)

4. obj: O(1)

Therefore, the ILP variables is O(m2).

For constraints, we have

1. B − S, E −B, C −B: O(m2)

2. W − C, D − E, δ0 − S, δ1 − S, V −D −W − δ0 − δ1: O(m)

Therefore, the ILP constraints is O(m2).

When the clusters within P are highly heterogeneous, m approaches kn. When the clusters

within P are highly homogeneous, m approaches n. Rogue taxa could be a reason to affect
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whether it is homogeneous or heterogeneous. Hence for both ILP variables and constraints, the

upper bound is O(k2n2).
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CHAPTER 14. ILP FOR REDUCED MAJORITY-RULE CONSENSUS

TREES

Let P = (t1, . . . , tk) be a profile of rooted trees with identical leaves and L(P ) be its leaf

set. Let X ⊂ L(P ). An induced sub-profile P ′ = (t′1, . . . , t
′
k) is a profile of induced subtrees

such that t′i = ti|X for i = 1, . . . , k. A candidate reduced majority-rule consensus tree T is the

majority-rule consensus tree of P ′. An optimal reduced majority-rule consensus tree T ∗ is a

candidate majority-rule consensus tree whose number of nontrivial clusters is maximum among

all choices of X.

14.1 Binary Matrices for Profile and Split-Tree Relationship

Let P = (t1, . . . , tk) be a profile where L(P ) = n. n includes a special root taxon. tj is

represented by matrix M(tj) whose mj columns correspond to the unique nontrivial splits of

tj that have not appeared in trees before tj . Let m =
∑k

j=1mj . Suppose the column i of M(tj)

corresponds to the split A|B in tj and let x be a taxon in L(P ). Then, Mxi(tj) = 1 if x ∈ A,

Mxi(tj) = 0 if x ∈ B. All taxa in the same block as the root are assigned 1. M(P ) is a matrix

obtained by concatenating matrices M(t1), . . . ,M(tk).

Define an m by k binary matrix Intree. Intree(i, j) = 1 if and only if the ith reduced split

is in the jth reduced tree. If the ith original split is in the jth original tree, so will their reduced

forms be. Hence, Intree(i, j) = 1 for those original splits found in original trees. However,

even the ith original split is not in the original jth tree, when reduced, the reduced ith split

could be in the reduced jth tree because the reduced ith split might be trivial, or it becomes

identical with a reduced split (either trivial or nontrivial) in the reduced jth tree. Therefore, if

Intree(i, j) 6= 1 for original split/original tree, we put a question mark to Intree(i, j). We will
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use the unknown Intree(i, j) to define Uij variables later.

For the induced subtree, we provide n − 1 S binary variables to designate which taxa to

include. Sr = 1 precisely if the rth row (taxon) is in the induced subtree.

For the taxa in the selected rows, the patterns of induced columns i and j are 00, 01, 10, and

11. The pattern 11 always appears since every cluster has the root filling as 1. The presence

or absence of these patterns for columns i and j is indicated by the settings of variables B(ab)
ij ,

where a, b ∈ {0, 1}, i, j = 1, . . . ,m, and i < j.

B
(ab)
ij = 1 if and only if there is selected a taxon r such that Sr = 1 and Mri = a and Mrj = b.

M being known, B(ab)
ij can be determined by the related Sr. We have that B(ab)

ij ⇔
⋃p
q=1 Srq ,

or

−Sr1 − Sr2 − · · · − Srp +B
(ab)
ij ≤ 0

Sr1 + Sr2 + · · ·+ Srp − n ·B
(ab)
ij ≤ 0

(14.1)

when ab are 01 and 10, as needed in Eij later.

Note that some B(ab)
ij ≡ 0 if the pattern ab does not exist in all the rows of splits i and j.

Thus in implementation we do not need to define them and their related constraints.

We define m(m−1)
2 binary variables Eij where i, j = 1, . . . ,m, i < j to represent identity

across all reduced clusters. Observe that Eij ⇔ ¬B(01)
ij ∧ ¬B(10)

ij , or

B
(01)
ij +B

(10)
ij + 2 · Eij ≤ 2,

B
(01)
ij +B

(10)
ij + Eij ≥ 1.

(14.2)

Define m δ0 and m δ1 binary variables to represent nontrivial clusters in the reduced strict

consensus tree. Note that a reduced nontrivial cluster must have at least two 0s and two 1s.

Hence, for split j, the sum of Sr corresponding to M(r, j) = 0 must be at least 2, and the sum

of Sr corresponding to M(r, j) = 1 must be at least 1, excluding the root, which is another 1.

For 1 ≤ j ≤ m, we have δ0j ⇔
∑p

q=1 Srq ≥ 2, or

2 · δ0j −
p∑
q=1

Srq ≤ 0

p∑
q=1

Srq − n · δ0j ≤ 1

(14.3)
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Similarly we have δ1j ⇔
∑p

q=1 Srq ≥ 1 where 1 ≤ rq ≤ n− 1, or

δ1j −
p∑
q=1

Srq ≤ 0

p∑
q=1

Srq − n · δ1j ≤ 0

(14.4)

Based on the unknown elements of Intree, define at most m · (k − 1) binary variables Uij

where i = 1, . . . ,m and j = 1, . . . , k. Uij = 1 if and only if the ith cluster is in the jth tree.

That is, Uij ⇔
⋃
`∈M(tj)

Ei` ∪ ¬δ0i ∪ ¬δ1i , or

Uij + δ0i + δ1i − Ei`1 − · · · − Ei`mj
≤ 2

Ei`1 + · · ·+ Ei`mj
− δ0i − δ1i − (mj + 2) · Uij ≤ −2

(14.5)

Note that the ith cluster is always in its own tree. Uip ≡ 1 if the ith cluster is originally in tp.

If i ≥ `, E`i can be replaced by Ei`, which was defined earlier.

Define m binary variables W where Wi = 1 precisely if the ith cluster is in more than half

of the trees. That is, Wi ⇔
∑k

j=1 Uij >
k
2 . When k is odd, it becomes Wi ⇔

∑k
j=1 Uij ≥

k+1
2 .

When k is even, it becomes Wi ⇔
∑k

j=1 Uij ≥
k
2 + 1. When k is odd, it is expressed as

k∑
j=1

Uij −
k − 1

2
·Wi ≥ 1,

k∑
j=1

Uij −
k + 1

2
·Wi ≤

k − 1
2

.

(14.6)

When k is even, it is expressed as
k∑
j=1

Uij −
k

2
·Wi ≥ 1,

k∑
j=1

Uij −
k

2
·Wi ≤

k

2
.

(14.7)

Define m − 1 D binary variables to represent duplicated clusters in the reduced profile.

Duplicated clusters can be in the same tree or different trees. Observe that D1 ≡ 0 and is a

constant. For 1 < p ≤ m, we have Dp ⇔
⋃p−1
i=1 Eip, or

Dp −
p∑
i=1

Eip ≤ 0

p∑
i=1

Eip − (p− 1) ·Dp ≤ 0

(14.8)
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Define m V binary variables to represent unique clusters in the reduced majority-rule con-

sensus tree. For 1 ≤ p ≤ m, we have Vp ⇔Wp ∧ ¬Dp ∧ δ0p ∧ δ1p, or

4 · Vp −Wp +Dp − δ0p − δ1p ≤ 1

Wp −Dp + δ0p + δ1p − Vp ≤ 2
(14.9)

14.2 Objective Function

The objective value is the number of unique reduced majority clusters. Define objective

variable obj.

obj −
m∑
i=1

Vi = 0 (14.10)

The objective function is

maximize obj (14.11)

14.3 Number of Variables and Constraints

The size of variables and constraints are determined by n, m1, m and k. For variables, we

have

1. S: O(n)

2. B,E: O(m2)

3. U : O(mk)

4. δ0, δ1,W,D, V : O(m)

5. obj: O(1)

Therefore, the ILP variables is max(O(mk), O(m2)).

For constraints, we have

1. B − S,E −B: O(m2)

2. U − E − δ0 − δ1: O(mk)

3. δ0 − S, δ1 − S,W − U ,D − E,V −D −W − δ0 − δ1: O(m)



113

Therefore, the ILP constraints is max(O(mk), O(m2)).

When the clusters within P are highly heterogeneous, m approaches kn. When the clusters

within P are highly homogeneous, m approaches n. Rogue taxa could be a reason to affect

whether it is homogeneous or heterogeneous. Hence for both ILP variables and constraints, it

is O(k2n2).
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CHAPTER 15. EXPERIMENTAL RESULTS FOR REDUCED

CONSENSUS TREES

Our data sets were derived from those used in a previous study by Pattengale et al. (2011).

There are 16 sets of bootstrapped trees constructed from single-gene and multi-gene DNA

sequences, with 125-2,554 taxa. We refer to the sets by the number of sequences present in

them. For each set of trees, we extracted a set of 50 trees on 20 leaves. For this, we randomly

selected the required number of trees and restricted them on a random set of leaves of the

required size.

We compared our ILP formulation with the rogue taxon solution proposed by Pattengale

et al. (2011). The latter tries to uncover new internal edges by merging bipartitions that are

sufficiently similar that the merged bipartition becomes frequent enough to be included in the

consensus tree on the reduced leafset. Though quite fast, the heuristic cannot guarantee an

optimal solution.

We computed the strict and majority reduced consensus trees with 16 20-taxon-50-tree

input files. All experiments were run on an Intel Core 2 64 bit quad-core processor (2.83GHz).

The ILPs were solved using CPLEX (CPLEX is a trademark of IBM). We used MATLAB to

generate the input files for CPLEX and to post-process the output files. Table 15.1 and Table

15.2 show the cases where the ILP approach improved over the heuristic method. The columns

gives the serial number, total running time, original internal edges (OIE), new internal edges

after rogue taxon removal (NIE), and total leaf loss (LL) for our solution. Also included are

the heuristic NIE and LL results (HNIE) and (HLL).

We can make some preliminary observations, based on our experimental results. First, the

local search heuristics does not seem as effective when the removed rogue taxa account for a

high percentage of the total number of taxa. On the other hand, in most cases, the improvement
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Table 15.1 ILP and Heuristic Results for Strict Reduced Consensus Trees

Dataset Time(sec) OIE NIE HNIE LL HLL
150 334 4 7 4 10 0
218 78 5 8 7 6 3
500 243 5 8 6 8 3
1288 79 7 9 8 7 1
1512 1897 6 7 6 3 0
2000 20 7 10 9 5 2
2554 22 8 9 8 2 0
628 9 9 9 9 0 0
1908 163 8 8 8 1 0

Table 15.2 ILP and Heuristic Results for Majority-rule Reduced Consensus Trees

Dataset Time(sec) OIE NIE HNIE LL HLL
150 1366 15 15 15 0 0
218 1762 15 16 15 1 0
500 62 18 18 18 0 0
1288 6929 14 16 16 1 1
1512 7659 15 16 15 1 0
2000 1417 15 16 15 2 0
2554 28 18 18 18 0 0
628 46 15 16 15 1 0
1908 30550 14 15 14 1 0

achieved by the exact algorithm over the heuristic method is at most one, showing that the

heuristic method is quite accurate.

Second, the ILP maximizes NIE only and does not minimize the leaf loss. Thus our ILP

seems to lose more leaves than the heuristic method, which attempts to minimize the leaf loss

as well as maximize NIE. It is straightforward to use an ILP solver to find all optimal solutions

and choose the one with minimum leaf loss. Alternatively, it is easy to modify the objective

function of the ILPs described in the previous section so that it becomes a weighted sum of the

number of leaves and the number of internal edges. No new variables need to be introduced,

since the sum of the Si’s gives us the size of the selected set X. An interesting phenomenon

occurs when the number of leaves and the number of internal edges have the same weight,

which is effectively what is done in Pattengale et al. (2011). Here, we find that the ILP is

reluctant to remove taxa to make gain on internal edges. Indeed, it would appear that the
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method is too conservative in this case.

Third, we found that reduced majority consensus trees tend to lose many fewer leaves

than the reduced strict consensus trees; sometimes no leaves are lost at all. This might be

explained as follows. In the strict reduced consensus case, if there is a rogue taxon that is

placed incorrectly in just one tree but correctly in others, it has to be removed in order for all

of the trees to have common clusters so that they are included in the strict consensus. If it is

not removed, it could lead to a highly unresolved strict consensus tree. Removing it might lead

to loss of internal edges, but the gain is large enough to justify the removal. On the contrary,

for reduced majority-rule consensus, as long as the taxon is correctly placed in more than half

of the trees, the answer is correct. If removing it leads to loss of internal edges, the resolution

actually decreases.

Fourth, the reduced consensus problems for strict and majority-rule consensus are indepen-

dent. That is one might be able to improve resolution by one method, but not by the other.

For instance, there are instances where the resolution of the majority-rule consensus tree can

be improved by rogue taxon removal but the strict cannot. This happens because two clusters

that were non-majority previously, after the removal of rogue taxon become the same and hence

the combined frequency crosses the threshold value. However, the combined frequency is still

not high enough (i.e., 100%) for the cluster to appear in reduced strict consensus. In passing,

we should note that in general the majority-rule reduced consensus ILP takes longer to solve

than the strict reduced consensus ILP.

Finally, the ILP is much slower than the heuristic method. The latter typically ran within

a fraction of a seconds in most of the cases we studied. In contrast, as the numbers of taxa

and trees increase, the exact algorithm quickly becomes impractical. Despite their drawbacks,

however, our exact solutions give a good benchmark against which to evaluate and explore the

limitations of heuristic methods.
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CHAPTER 16. CONCLUSIONS

Our results indicate that the majority-rule (+) method produces biologically reasonable

phylogenies (i.e., phylogenies with no unsupported groups), and that the method is practical

for medium-scale problems. Unfortunately, while polynomial, the size of our ILP is quadratic

in the total number of splits in the input trees. This, together with the fact that solving

the ILP takes exponential time in the worst case limits the range of applicability of the basic

ILP formulation. It also explains in part why the addition of a single tree to a data set

can convert a tractable problem into an intractable one. More extensive tests are needed to

assess the limitations of the basic ILP approach accurately. In any event, our computational

experience shows that the technique does handle some real, biologically significant, problems

nicely. Moreover, our results suggest that the ILP approach, in combination with our data

reduction heuristic is a promising way to tackle larger problems.

Loose and strict supertrees provide a rigorous approach for combining phylogenetic infor-

mation. We have shown that it is possible to construct such supertrees for datasets on the

scale of those encountered in practice. From a mathematical standpoint, it would be inter-

esting to elucidate the relationship between our approach and the triplet based approach of

PhySIC [Ranwez et al. (2007)], as well as possible quartet-based versions of the latter. From

a practical standpoint, a more detailed performance analysis of loose and strict supertrees is

needed to truly evaluate their scalability. To conduct such a study, we first need to improve the

efficiency of our prototype implementation. There are a number of ways to do this. Something

as simple as using a compiled version of the software should increase the speed notably in small

problems.

The exact algorithms for the reduced consensus trees serve as a benchmark for evaluating

various approximation algorithms. They also enable us to study more properties which could
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form the basis of more efficient approach. For instance, detailed analysis of the exact solutions

when we gradually increase the number of lost leaves reveals two trends. One is to achieve

optimality by expanding the same subset of discarded leaves. The other is to shift the subset

of leaves at certain point. Another example is that in the strict reduced consensus trees, we

observed a leaf loss number beyond which the reduced trees from various input trees are the

same (convergence point) followed by a stage in which the number of internal edges decreases

by 1 whenever leaf loss increases by 1. Close examination reveals that the reduced trees at

and beyond convergence point are binary. Thus removing one more taxon creates one more

degree-2 node and reduces one more internal edge. Without exact solution, we are not able to

do this type of study.

In general, this dissertation is about exact solutions, in majority-rule (+) supertrees, con-

servative supertrees, and rogue taxa problems. Its methodology is quite different from popular

approximation methods in computational biology. It is an interesting research direction on how

to utilize our technique to help improve the approximating algorithms. By providing deeper

understanding and better heuristics, similar to the pioneering work in the Traveling Salesman

Problem [Applegate et al. (2006)], we could make more contribution in tackling these large and

hard biology problems.
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