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ABSTRACT

The growing genomic and phylogenetic data sets represent a unique opportunity to analyt-

ically and computationally study the relationship among diversifying species. Unfortunately,

such data often result in contradictory gene phylogenies due to common yet unobserved evolu-

tionary events, e.g., gene duplication or deep coalescence. Gene tree parsimony (GTP) methods

address such issue by reconciling gene phylogenies into one consistent species evolutionary his-

tory as well as identifying the underlying events. In this study, we solve not only the GTP

problem but also propose a new method to select gene trees in order to assist biologists in

gaining insight from phylogenetic analysis.

First, we introduce exact solutions for the intrinsically complex GTP problem. Exact

solutions for NP-hard problems, like GTP, have a long and extensive history of improvements

for classic problems such as traveling salesman and knapsack. Our solutions presented here

are designed via integer linear programming (ILP) and dynamic programming (DP), which are

techniques widely used in solving problems of similar complexity. We also demonstrate the

effectiveness of our solutions through simulation analysis and empirical datasets.

To ensure input data coherence for GTP analysis, as a method to strengthen species repre-

sented in a gene tree, we introduce the quasi-biclique (QBC) approach to analyze and condense

input datasets. In order to take advantage of emerging techniques that further describe the

sequence-host and gene-taxon relations, quasi-bicliques are optimized via weighted edge connec-

tivities and distribution of missing information. Our study showed these QBC mining problems

are NP-hard. We describe an ILP formulation that is capable of finding optimal QBCs in an

effort to support GTP analysis. We also investigate the applicability of QBC to other applica-

tions such as mining genetic interaction networks to encouraging results.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Modern DNA sequencing technologies provide an unprecedented wealth of gene and ge-

nomic data from which to infer phylogenetic trees. These snapshots of evolutionary histories

are often affected by unapparent events like gene duplication and loss, deep coalescence, and

horizontal gene transfers which then incur discrepancies between gene phylogenies and a species

phylogenies. Based on these biological models, we can reconcile the differences by observing

their topological information. The objective of reconciling such differences between a gene

phylogeny and a species phylogeny is generally motivated by the parsimony principle. In this

study, we focus the driving force of these evolution events to gene duplication and loss (GD),

which can be seen as a fitness measurement of gene trees [28, 53, 30] to the species tree.

Further utilizing this reconciliation process, we can infer the unknown species phylogeny

from a collection of gene phylogenies through different criteria under the parsimony principle.

This gene tree parsimony (GTP) approach is a well-studied method [54, 13], and it serves as

an important tool in phylogeny and supertree research.

In this study, we improve the solutions to GTP problem by solving critical steps involved in

the analytical process. Before we present an overview of this study, we first briefly yet formally

describe the GD model and the GTP problem.

1.2 Gene Duplication Model

As mentioned, gene trees undergone gene duplication and loss processes may result in

a different topology from the species topology, which supposedly describes a species level of

divergence. Although intuitively, we should observe the same divergence at the level of genomic
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X

M β H β P α

β α

Mouse Human Pig

M β H β P α

reconciled tree

gene tree species tree

Figure 1.1: An example showing how the gene duplication model explains the differences be-

tween a gene tree and a species tree. While topologically different, the gene tree can be

embedded into the species tree as expressed by the reconciled tree showing in solid lines.

evolution, it is not always the case, and a reconciliation process is required to explain the

difference. Figure 1.1 depicts an example, which reconciles the inconsistencies between a gene

tree and a species tree using gene duplications and subsequent losses. A gene duplication copies

gene from the host X into the copies α and β that takes place prior to the speciation following

X in the species tree. Then each of these copies undergoes the speciation events described by

the species tree, which observe as species Mouse, Human and Pig. During this process three

losses let genes M-α, H-α and P-β become extinct. Only genes M-β, H-β and P-α survive,

which are the leaves of the gene tree. In summary, the inconsistency between the trees is

reconciled by invoking one gene duplication and three losses. This is the minimum number

of either gene duplications alone or gene duplications plus losses that are needed to reconcile

the given gene tree with the given species tree. Therefore, the reconciliation distance from the

gene tree to the species tree is one duplication (and four for considering both duplication and

loss events). Such cost from a pair of gene tree and a species tree can be calculated efficiently

based on established understandings of embedding the gene tree to the species tree [24, 8] and
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efficient algorithm [3].

We will define the computational problem to find an optimal reconciliation scenario in the

next chapter.

1.3 Gene Tree Parsimony Problem

The GTP problem seeks a species tree that implies the minimum reconciliation cost for a

given collection of gene trees. The reconciliation cost for a species tree and a given collection

of gene trees is the minimum number of evolutionary events that are invoked by the species

tree to explain the conflicts between the gene trees. Although a variety of GTP problems have

been introduced that use different types of evolutionary events (e.g., deep coalesce, horizontal

gene transfer) to define the reconciliation cost, we define the cost measure by the duplication

events. Again, we defer a formal definition of the GTP problem to the next chapter.

It has been shown that the GTP problem is NP-hard [45]. Furthermore, the GTP prob-

lem has no polynomial time solution while fixing the duplication cost as the parameter, and

unless the long standing computational complexity debate results in P = NP , there is no

approximation solutions within a logarithmic factor to the input size [1].

Previously, the GTP problem has been solved using branch-and-bound [21], local search

heuristic [21], and a fixed-parameter tractable solution parameterized by the width of input

trees [34]. In this work, we invistage the problem by finding its exact solutions.

1.4 Exact Solutions to NP-hard Problems

Exact solutions to NP-hard problems have a long and rich history that is comparable to

alternative solutions focusing on efficiencies over qualities. In recent years, driven by a combi-

nation of improved computing hardware and analytic techniques, exact solutions of well studied

classic problems (such as travelling salesman and independent set) are capable of solving inputs

of moderate sizes [65, 26].

The advantage of studying exact solutions includes providing the optimal solutions and

gaining fundamental knowledge to the solutions. We may further design alternative solutions
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with good efficiencies, or evaluate other approaches against the optimal solution as a benchmark.

Here, we present exact solutions to the computational problems involved in this study.

Particularly, we utilize integer linear programming and dynamic programming techniques which

are commonly used in solving combinatorial optimization problems [56].

1.5 Our Proposed Approach

As previously introduced, the center of this study is the GTP problem. In addition to

solving the GTP problem, it is also brought to our attention that in a typical GTP analysis,

the first critical step is to assemble a biologically meaningful input data set. Although the

number of gene phylogenies are increasing, there is inevitably missing information such that

each gene phylogeny may cover different sets of species taxa.

This gene-taxon (or sequence-taxon) relation provides an invaluable opportunity where we

investigate different approaches to properly select a dense collection of gene phylogenies that

are highly related to each other. In this study, we introduce weighted quasi-biclique (WQBC)

where missing information is allowed in an evenly distributed manner.

In the following sections, we first describe the solutions of GTP, including simulations and

emprical tests for their effectiveness. Next, we describe the QBC optimization problem and its

solution.

OSTDBs

GTP
Input Selection

via QBCs

Solutions
ILP/DP

Visual Analysis (e.g., Tanglegrams)

G1

Figure 1.2: Our main components (highlighted in blue-dash areas) in solving the GTP recon-

ciliation problem interactively.
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CHAPTER 2. NOTATIONS AND DEFINITIONS

This chapter describes commonly used notations across different chapters. Further notations

that is only relevent to a given chapter will be described in the corresponding chapter only.

Notations of graphs and trees are adopted from Cormen et al. [10], and Semple et al. [60].

2.1 Basic Notations

In order to describe a phylogenetic tree, we rely on well accepted notions to represent given

hierarchies.

A rooted tree T is a connected and acyclic graph consisting of a vertex set V (T ), an edge

set E(T ), and that has exactly one distinguished vertex called root, which is denoted by Rt(T ).

Let T be a rooted tree. Define ≤T to be the partial order on V (T ), where u ≤T v if v is a vertex

on the path between Rt(T ) and u. Moreover, we write u <>T v if neither u ≤T v nor v ≤T u

is true. The set of minima under ≤T is denoted by L(T ) and its elements are called leaves. We

call u a child of v if u ≤ v and {u, v} ∈ V (E). The set of all children of v is denoted by ChT (v).

For a vertex v ∈ V (T ) we denote by T (v) the subtree of T that consists of all vertices u ≤T v.

The least common ancestor of a non-empty subset X ⊆ V (T ), denoted as LCAT (X), is the

unique smallest upper bound of X under ≤T . Tree T is called full binary if every vertex has

either two or zero children. Throughout this work, all trees are rooted and full binary unless

stated otherwise.

Recall that the objective of the afreomentioned, although informally, GTP problem, is to

seek an optimal species phylogeny from a set of given gene phylogenies. In addition to represent

each phylogeny as a tree, we also represent the binary relation between phylogenies and their

taxa using a bipartite graph.
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A bipartite graph, denoted by (U+V,E), is a graph whose vertex set can be partitioned into

the sets U and V such that its edge set E consists only of edges {u, v} where u ∈ U and v ∈ V

(U and V are independent sets). Let G := (U + V,E) be a bipartite graph. The graph G is

called complete if for any two vertices u ∈ U and v ∈ V there is an edge {u, v} ∈ E. A biclique

in G is a pair (U ′, V ′) that induces a complete bipartite subgraph in G, where U ′ ⊆ U and

V ′ ⊆ V . Since any subgraph induced by a biclique is a complete bipartite graph, we use the two

terms interchangeably. A pair (U, V ) includes another pair (U ′, V ′) if U ′ ⊆ U and V ′ ⊆ V . In

such case, we also say that the pair (U ′, V ′) is included in (U, V ). A pair (U, V ) is non-empty

if both U and V are non-empty. A weighted bipartite graph, denoted by (U + V,E, ω), is a

complete bipartite graph (U + V,E) with a weight function ω : E → [0, 1].

2.2 Definitions

We now formally define the Gene Duplication (GD) problem.

2.2.1 Gene Duplication (GD) Problem

The terms species tree and gene tree refer to trees that represent the evolutionary history

of a gene family or species respectively. In this section, let S be a species tree and G a gene

tree.

To compare a gene tree with a species tree, a mapping from each gene in the gene tree to

the most recent species in the species tree that could have contained the gene is required. A

formal definition of such a mapping function follows.

Definition 1 (Mapping). A leaf-mapping from G to S is a function LG,S : L(G)→ L(S). The

extensionMG,S : V (G)→ V (S) of the leaf-mapping LG,S is the mapping defined byMG,S(u) :=

LCAS(LG,S(G(u)).

To simplify the exposition we shall assume that leaf-mappings are injections, and w.l.o.g.

we identify the genes with the species from which they were sampled. After describing our

ILP solution for identity leaf-mappings, we extend this formulation to cover non-injective leaf-

mappings.
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Definition 2 (Comparable). A gene tree G is comparable to S, denoted by G ` S, if LG,S

exists. A set of gene trees is comparable to S, denoted by G ` S, if G ` S for each gene tree

G ∈ G.

We shall adopt the following notation: we use S for a species tree, G for a set of gene trees

that is comparable to S, and G for an gene tree in G.

Definition 3 (Duplication). A node g ∈ V (G) is a duplication (w.r.t. S) if MG,S(g) ∈

MG,S(ChG(g)).

For consistency we follow the common practice to call what is stated above a definition,

even though it is actually a theorem [24] that follows from the gene duplication model [28].

Definition 4 (Duplication cost). We define the following duplication costs:

1. Dup(G,S) := |{g ∈ V (G) : g is a duplication}| is the duplication cost from G to S.

2. Dup(G, S) := ΣG∈G Dup(G,S) is the duplication cost from G to S.

3. Dup(G) := minG`T Dup(G, T ) is the duplication cost of G.

Problem 1 (Gene-Duplication (GD)).

Instance: A set of gene trees G.

Find: The duplication cost Dup(G), and a species tree S∗ such that Dup(G, S∗) = Dup(G).

2.2.2 Weighted Quasi-biclique Problems

Although the concept of a quasi-biclique is not new (refs), we generalize its scope to in-

coporate edge weights. Our exploration to this new territory results in a family of related

quasi-biclique optimization problems.

Definition 5 (α,β-WQBP ). Let G := (U + V,E, ω) and α, β ∈ [0, 1]. A percentage version

α, β-weighted quasi-biclique, denoted as α,β-WQBP , in G is a non-empty pair (U ′, V ′) that

is included in (U, V ) and satisfies the two properties:
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1. ∀u ∈ U ′ :
∑

v∈V ′ ω(u, v) ≥ α|V ′|, and

2. ∀v ∈ V ′ :
∑

u∈U ′ ω(u, v) ≥ β|U ′|.

Definition 6 (α,β-WQBC). Let G := (U + V,E, ω) and α, β ∈ [0,∞). A constant version

α, β-weighted quasi-biclique, denoted as α,β-WQBC , in G is a non-empty pair (U ′, V ′) that

is included in (U, V ) and satisfies the two properties:

1. ∀u ∈ U ′ :
∑

v∈V ′ ω(u, v) ≥ |V ′| − α, and

2. ∀v ∈ V ′ :
∑

u∈U ′ ω(u, v) ≥ |U ′| − β.

Definition 7 (Maximum α,β-WQBP (C)). A α,β-WQBP (C), is a maximum α,β-WQBP (C) of

a weighted bipartite graph G := (U + V,E, ω), if its weight is at least as much as the weight of

any other α,β-WQBP (C) in G for given values of α and β

Naturally, the optimization problems under different α,β-WQB criteria seeks a solution that

yields the most total edge weight.

Problem 2 (α,β-WQBP (C)).

Instance: A weighted bipartite graph G := (U + V,E, ω), and values α, β ∈ [0, 1]([0,∞)).

Find: A maximum weighted α,β-WQBP (C) in G.

To help further refine the resulting α,β-WQB to be relevent to targets of interest, we define

another level of customization in finding an optimal α,β-WQB.

Problem 3 (QueryP (C)).

Instance: A weighted bipartite graph G := (U + V,E, ω), values α, β ∈ [0, 1] ([0,∞)), and a

pair (P,Q) included in (U, V ).

Find: The α,β-WQBP (C) which includes (P,Q) and has a weight greater than or equal to the

weight of any α,β-WQBP (C) which includes (P,Q).

In the up-coming chapters, we discuss how these problems can be solved.
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CHAPTER 3. SOLVING GTP USING ILP

To solve GTP under gene duplication model, the first approach is a formulation in integer

linear programming (ILP). While solving an ILP is still computationally difficult, there are

commercial solvers (e.g., CPLEX, Gurobi 1) as well as open-source packages (e.g., GLPK,

lp solve) available that have been well optimized. The following ILP formulation and the

consequent results produced from a collaboration with Dr. J. Gordon Burleigh, Dr. David

Fernández-Baca, and Dr. Oliver Eulenstein.

3.1 An Integer Linear Programming Solution

The gene duplication problem seeks a species tree that implies the fewest gene duplication

events across a collection of input gene trees. Solving this problem makes it possible to use

large gene families with complex histories of duplication and loss in phylogenetic inference.

However, the gene duplication problem is intrinsically hard, and therefore, most analysis must

use heuristics that lack any performance guarantee. Here we introduce the first integer linear

programming (ILP) formulation to solve instances of the gene duplication problem exactly.

With simulations, we demonstrate that the ILP formulation can solve problem instances with

up to 14 taxa. Furthermore, we apply the new ILP formulation to solve the gene duplication

problem for the seed plant phylogeny based on a 12-taxon, 6,084-gene data set. The resulting

optimal species tree is depicted in Figure 3.1. The unique, optimal solution, which places

Gnetales sister to the conifers, represents a new, large-scale genomic perspective on one of the

most puzzling questions in plant systematics.

1CPLEX and Gurobi are trademarks of IBM and Gurobi Inc. respectively.
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Cryptomeria japonica 

Picea glauca 

Picea sitchensis 

Pinus pinaster 

Pinus taeda 
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Pinaceae

Seed Plants

Figure 3.1: The unique optimal seed plant phylogeny based on 12 taxa and 6084 gene trees

under the gene duplication model.

3.1.1 The Triple-Inconsistency problem and its equivalence to the GD problem

A rooted triple is a tree with three leaves. The rooted triple with leaves x, y, and z is

denoted xy|z if the path between x and y does not intersect with the path between z and the

root. A rooted triple is displayed by a tree T if LCAT (x, y) ≤T LCAT (x, z) (= LCAT (y, z)).

The set of rooted triples xy|z displayed by tree T that are rooted at vertex u ∈ V (T ), (i.e.,

u = LCAT ({x, y, z})) is denoted by TripT (v), and the set of all triples displayed by T is denoted

by Trip(T ).

Definition 8 (T(riple)-inconsistency). A rooted triple t ∈ Trip(G) is said to be inconsistent

with S if t /∈ Trip(S). A vertex v ∈ V (G) is called t(riple)-inconsistent with S if there is a

rooted triple in TripG(v) that is inconsistent with S.

Definition 9 (T-inconsistency cost). We define the following t-inconsistency costs:

1. Tin(G,S) := |{v ∈ V (G) : v is t-inconsistent with S}| is the t-inconsistency cost from G

to S.
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2. Tin(G, S) := ΣG∈G Tin(G,S) is the t-inconsistency cost from G to S.

3. Tin(G) := minG`T Tin(G, T ) is the t-inconsistency cost of G.

Problem 4 (T(riple)-Inconsistency).

Instance: A set of gene trees G.

Find: The t-inconsistency cost Tin(G), and species tree S∗ such that Tin(G, S∗) = Tin(G).

Theorem 1 (Equivalence between duplication and t-inconsistency). Let u ∈ V (G). Then u is

a duplication w.r.t. S if and only if u is t-inconsistent with S.

Proof. Let x :=MG,S(u).

Suppose u is a not a duplication. Let ab|c ∈ TripG(u). We will show that ab|c ∈ Trip(S).

By the definition of ab|c ∈ TripG(u) we know that LCAG({a, b, c}) = u, and together with our

assumption that G is fully binary it follows that u has two children v and w, where w.l.o.g.

a, b ∈ L(G(v)) and c ∈ L(G(w)). Let v′ :=MG,S(v) and w′ :=MG,S(w). From a, b ∈ L(G(v))

and c ∈ L(G(w)) follows that a, b ∈ L(S(v′)) and c ∈ L(S(w′)) respectively. Now, since u is not

a duplication we have v′ <>S w
′. Otherwise, we would have w′ ≤S v

′ or v′ ≤S w
′ from which

x = v′ or x = w′ would follow respectively; contradicting that v is not a duplication. Hence,

from v′ <>S w
′ and a, b ∈ L(S(v′)) and c ∈ L(S(w′)) follows that ab|c ∈ Trip(S).

Suppose u is a duplication, and thus we have x = MG,S(v) for a child v ∈ Ch(u). So u

is not a leaf in G, and since G is fully binary it follows that there are two distinct vertices

a, b ∈ L(G(u)) such that LCAS({a, b}) = x. Therefore, x has two children y and z such that

a ≤S y and b ≤S z. Now we distinguish different cases for the vertices a and b based on their

possible order relation to the children of u. Since G is fully binary and v is a child of u, there

exists a child w ∈ Ch(u) where w 6= v. Now, we have the following cases.

1. Case 1: a ≤G v, b ≤G v: Let c ≤G w. Then ab|c ∈ TripG(u). Further c ≤S y or c ≤S z

and with a ≤S y and b ≤S z, it follows that either ac|b ∈ TripS(x) or bc|a ∈ TripS(x).

Hence, u is t-inconsistent as desired.
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2. Case 2: a ≤G v, b ≤G w: We know that x has two children y and z and thatMG,S(v) = x.

Therefore there exist c ≤S y and d ≤S z such that LCAS(c, d) = M(v) where c, d ∈

L(G(v)). From the order relations a ≤S y, d ≤S z and d ≤G v, b ≤G w and a ≤G

v, b ≤G w, it follows that a, b and d are pairwise different. Therefore the rooted triples

ad|b ∈ TripG(u) and bd|a ∈ TripS(x) are well defined, from which follows that the vertex

u is t-inconsistent.

3. Case 3: a ≤G w, b ≤G w or b ≤G v, a ≤G w: Similarly to the previous cases it follows

that u is t-inconsistent.

From Theorem 1, the next corollary follows.

Corollary 1 (Equivalence between the GD problem and the T-Inconsistency problem). The

t-inconsistency problem is a mathematical equivalent formulation of the duplication problem

(i.e. Dup(G,S) = Tin(G,S)).

An ILP solution for the T-Inconsistency problem

Table 3.1 lists the variables used, and their meaning. To explain our ILP solution, we first

formulate all possible candidate trees in the solution space of the t-inconsistency problem. Next

we formulate the t-inconsistency objective to identify an optimal t-inconsistency cost and an

optimal candidate tree.

Let X :=
⋃

G∈G L(G) be the taxon set, n := |X|, m := |
⋃

G∈G Trip(G)|, and k := | G |. It

follows that ΣG∈G |G| = O(kn).

3.1.1.1 Formulating candidate species trees in terms of cluster hierarchies.

Here we formulate constraints that describe all species trees that are possible candidates

for solving the t-inconsistency problem, that is, all trees to which the given gene tree set G

is compatible. Based on our assumption that the leaf label function is the identity function,

these are all trees with the leaf set X. Our ILP formulation is based on an alternative way of

describing trees by specifying their clusters through a hierarchy of subsets of X.
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Notation Definition

M(i, j) Taxon-cluster representation of (the) species tree: M(i, j) = 1 iff taxon i is in the
cluster j. Additional constraints on M require the cluster set to form a binary
hierarchy (tree).

C(p, q, xy) Compatibility: C(p, q, xy) = 1 exactly if the cluster pair (p, q) has the gamete
xy ∈ {01, 10, 11}.

T (a, b, c, xyz) Rooted triple: T (a, b, c, xyz) = 1 exactly if the rooted triple with leaf set {a, b, c}
and topology xyz is displayed in M . Topologies for xyz are 011, 101, and 110 and
refer to the rooted triples bc|a, ac|b and ab|c respectively.

D(g) t-inconsistency: D(g) = 1 if the gene vertex g is t-inconsistent w.r.t. a tree repre-
sented by matrix M .

Table 3.1: Notation used in our ILP solution.

Definition 10 (Clusters). Let T be a tree. For each vertex v ∈ V (T ) we define the cluster at

v as {u ∈ L(T ) : u ≤T v}, i.e., L(T (u)). We shall denote the set of all clusters of T by H(T ).

Definition 11 ((Full) Binary hierarchy). Let F be a finite set. We call a set H of non-empty

subsets of F a (full) binary hierarchy on F if the following properties are satisfied:

1. Trivial set property: F ∈ H and {v} ∈ H for each v ∈ F

2. Compatibility property: every pair of sets A and B in H is compatible; that is A ∩ B ∈

{A,B, ∅}.

3. Cardinality property: |H | = 2|F | − 1

A hierarchy is defined as a binary hierarchy without requiring the cardinality property.

There is a well-known and fundamental equivalence between hierarchies and trees that are not

necessarily binary (e.g. [60]). The next result follows from this equivalence and the fact that a

binary tree over l leaves has exactly 2l − 1 cluster.

Theorem 2 (Equivalence between binary hierarchies and binary trees). Let H be a set of non-

empty subsets of a set F . Then there is a binary tree T such that H = H(F ) if and only if H

is a binary hierarchy on F .

Since trees and binary hierarchies are equivalent, we use these terms interchangeably from

now on. Now we formulate constraints that describe the hierarchies on X using the binary

matrix presentation.
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3.1.1.2 Binary matrix.

We describe 2n−1 subsets of a hierarchy on X using a binary matrix M with a row for each

species in X and 2n−1 columns, where each column p represents the set {a ∈ X : M(a, p) = 1}.

3.1.1.3 Excluding sets satisfying the trivial set property.

We consider only the n− 2 non-trivial sets that can be part of a binary hierarchy on X. To

do this, we add the following constraints that allow only non-trivial sets. For each column p of

M , we require

2 ≤
∑

a∈X M(a, p) ≤ (n− 1) .

3.1.1.4 Uniqueness.

To ensure that a set of subsets is uniquely represented by the columns of M , we enforce a

linear order of a binary interpretation of these columns. Suppose that X = {a1, . . . , an} are the

rows of M , then this order is achieved by adding the following (n − 3) constraints that apply

to all pairs of adjacent columns p and q in M .

∑
ai∈X 2i−1M(ai, p) ≥

∑
aj∈X 2j−1M(aj , q) + 1 .

3.1.1.5 Compatibility.

Incompatibility can be tested directly by using the three-gamete condition (e.g., [33]). An

incompatibility occurs for two columns p and q in M if and only if there exist three rows

a, b and c in M that contain the gametes (0, 1), (1, 0), and (1, 1) in p and q respectively (i.e.

(M(a, p),M(a, q)) = (0, 1), (M(b, p),M(b, q)) = (1, 0), and (M(c, p),M(c, q)) = (1, 1)). To

identify if a certain gamete (x, y) ∈ {(0, 1), (1, 0), (1, 1)} exists for p and q, we define a set of

binary variables C(p, q, xy) under the following constraints over all rows a in M .

C(p, q, 01) ≥ −M(a, p) +M(a, q) ,

C(p, q, 10) ≥M(a, p)−M(a, q) ,

C(p, q, 11) ≥M(a, p) +M(a, q)− 1 .
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These constraints capture that C(p, q, xy) = 1 as long as M(a, p) = x and M(a, q) = y is

satisfied for a gamete (x, y) in a certain row a in M . However, the reverse condition does not

necessarily hold true without adding further constraints. To guarantee that clusters p, q are

compatible, we require the following constraints

C(p, q, 01) + C(p, q, 11) + C(p, q, 10) = 2 .

3.1.2 Properties of the Formulation

3.1.2.1 Number of variables and constraints.

There are O(n2) variables for the matrix M , and O(n2) variables of the type C(p, q, xy).

O(n) constraints are needed to exclude trivial sets and to guarantee uniqueness, and O(n3) con-

straints guarantee compatibility. In summary, there are O(n2) variables and O(n3) constraints

to describe all candidates for the species tree.

3.1.2.2 Formulating the T-Inconsistency problem.

To formulate the t-inconsistency problem, we first describe variables T (a, b, c, xyz) that

detect whether a rooted triple is displayed by the tree presented by M . Then we describe

variables D(g) that detect if g is t-inconsistent by using the variables T (a, b, c, xyz). Finally,

we formulate the objective of the t-inconsistency problem based on the variables D(g).

3.1.2.3 Variables T (a, b, c, xyz).

We describe the binary variables T (a, b, c, xyz) that are 1 exactly if a rooted triple over

the leaf set {a, b, c} with topology (x, y, z) ∈ {(0, 1, 1), (1, 0, 1), (1, 1, 0)} is displayed by the tree

that is presented by M . The parameters a, b, c are rows in M , and the settings 011, 101, and

110 of (x, y, z) refer to the rooted triples bc|a, ac|b and ab|c respectively. For each column p in
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M , we introduce the following constraints.

T (a, b, c, 011) ≥ −M(a, p) +M(b, p) +M(c, p)− 1 ;

T (a, b, c, 101) ≥M(a, p)−M(b, p) +M(c, p)− 1 ;

T (a, b, c, 110) ≥M(a, p) +M(b, p)−M(c, p)− 1 ;

T (a, b, c, 011) + T (a, b, c, 101) + T (a, b, c, 110) = 1 ,

since a rooted triple is uniquely resolved in a tree.

Variables T (a, b, c, 011), T (a, b, c, 101), and T (a, b, c, 110) are constructed for every triple

{a, b, c} for which a rooted triple is displayed by a gene tree in G. Thus, there are O(m)

variables of this type. For each variable we have O(n) constraints, which results in O(nm)

constraints overall.

Variables D(g). We express the t-inconsistency of each vertex g ∈ V (G) where G ∈ G

by the binary variable D(g). The variable is 1 if g is t-inconsistent with the tree described by

matrix M , given the following constraints

D(g) ≥ 1− T (a, b, c, xyz) ,

where the rooted triple over the leaf set {a, b, c} and topology xyz is an element in TripG(g).

Variables D(g) are constructed for each internal vertex of a gene tree in G, which results in

O(kn) variables. Intuitively, a constraint is constructed for each rooted triple that is displayed

by a gene tree in G, which yields O(km) constraints. However, the following observation reduces

the number of such constraints to O(kn2).

Let u ∈ V (G) such that TripG(u) 6= ∅, {v, w} = Ch(u), a ∈ L(G(u)) and b ∈ L(G(v)). A

rooted triple xy|z is in TripG(u) if and only if all ax|b, ay|b, and bz|a are in TripG(u). Therefore,

instead of enumerating all rooted triples in TripG(u) (which sums up to O(m) in each gene tree

G), we only need to enumerate a number of O(n) rooted triples to represent TripG(u) while

detecting if u is t-inconsistent (hence O(kn2) constraints over all).
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3.1.2.4 T-Inconsistency objective.

This objective is expressed by the following expression.

min
∑

g∈V (G)D(g) .

Once the optimal objective cost is found, a unique tree corresponding to the cost can be

constructed from M . It is worth noting that an instance of unique optimal tree does not ensure

an unique optimal solution to the corresponding ILP due to relaxed constraints for variables

C. Although this can be addressed by adding additional constraints, the correctness of the

objective value and the resulting tree is not affected.

3.1.2.5 Number of variables and constraints.

In summary, there are O(n2 +m+ kn) variables, and the number of constraints is O(n3 +

mn+ kn2).

Handling non-injective leaf mappings. A leaf mapping LG,S is non-injective if and

only if there is a vertex u ∈ V (G) with distinct children v and w such that LG,S(L(G(v))) ∩

LG,S(L(G(w))) 6= ∅; and if the latter holds true, it follows that u is a duplication. Therefore, it

can be determined if u is a gene-duplication regardless of the topology of S. By pre-processing

all such determined duplication vertices, the leaf-mapping over the remaining internal vertices of

G can be made injective. Hence, the existing ILP formulation solves input gene trees with non-

injective leaf mappings. Since the input gene tree size can be arbitrary, under the non-injective

leaf mapping assumption, the ILP formulation has O(n2+m+ l) variables and O(n3+mn+ ln)

constraints where ΣG∈G |G| = l.

Generating optimal species trees. The species tree corresponding to a feasible solution

of an ILP instance can be constructed in O(n2) time [32]. Furthermore, a gene node g is

identified as a duplication if and only if D(g) = 1.
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3.2 Experiments and Results

Implementation. We implemented an ILP generator in Python that, given a set of gene

trees, outputs the ILP described in the preceding section. We tested our formulation with

both simulated and empirical gene tree data sets (described below). All analyses were on a

GNU/Linux based PC with an Intel Core2 Quad 2.4 GHz CPU. We choose Gurobi 2.0 [31] to

solve the ILP directly and CPLEX 12.1 [39] to enumerate optimal solutions when necessary.

Simulation experiments. We first evaluated the performance of our ILP solution with

simulated gene tree data sets. Our simulation protocol included the following steps: (1) a

species tree S of n taxa was randomly generated as the template of a gene tree; (2) a depth-

first-search walk starting from Rt(S) simulated at most one evolutionary event at each vertex

based on given probabilities for each event. These events could be a duplication (duplicating the

whole current subtree) or a loss (cutting the current subtree). If there is neither a duplication

nor a loss, the process proceeds to the next vertex. We used the same species tree to generate

k gene trees.

In our simulation experiments, we used a duplication rate of 0.25 duplications per gene at

each speciation vertex and a loss rate of 0.3. These events produced a similar tree size distri-

bution and optimal duplication cost to the gene trees used by Sanderson and McMahon [59].

We varied the number of taxa in the species tree from 6 to 14 and the number of input gene

trees from 10 to 1000. We performed 10 simulation replicates for each different combination

of species and gene tree number. For each simulated data set, we also compared the ILP score

to results from DupTree [64], a fast hill-climbing heuristic implementation for the problem, to

determine if the heuristic finds the optimal solution.

Seed plant analysis. Next, we tested the ability of the ILP formulation to solve the seed

plant phylogeny problem using a large-scale genomic data set. First, to build the gene trees,

amino acid alignments for gene familieswere selected from Phytome v. 2, an online comparative

genomics database based on publicly available sequence data from 136 plant species [35]. To

ensure positional homology throughout the alignments, columns and sequences of questionable
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certainty were masked using default settings of the program REAP [35, 36].We sampled se-

quences from the nine gymnosperm taxa represented in Phytome with the most data, including

cycad taxon Cycas rumphii, Gnetales taxa Gnetum gnemon and Welwitschia mirabilis, and,

from the conifers, Cryptomeria japonica from Cupressaceae, and Pseudotsuga menziesii, Picea

glauca, Picea sitchensis, Pinus pinaster, and Pinus taeda from Pinaceae. We also sampled se-

quences from two representative angiosperm taxa, Arabidopsis thaliana and Oryza sativa, and

the non-seed plant, Physcomitrella patens.

We selected all the 6, 084 masked amino acid alignments from gene families in Phytome

that had at least 4 sequences and had sequences from at least 3 of the selected taxa. All

species were found in at least 376 gene families. To build the gene trees, we performed ML

phylogenetic analyses on each of the gene alignments using RAxML-VI-HPC version 2.2.3 [62].

The ML analyses used the JTT amino acid substitution model [40] with rate variation among

sites (the “PROTMIX” model; see [62]). The trees were then rooting using mid-point rooting,

as implemented in the Phylip program retree [25]. We applied the ILP formulation to solve the

GD problem using all 6, 084 gene trees.

n = 6 n = 8 n = 10 n = 12 n = 14

k time Dup time Dup time Dup time Dup time Dup

10 0.06 34.80 0.34 49.70 22.98 60.10 200.53 68.80 12597.21 78.40
50 0.03 189.50 1.26 265.00 8.74 280.00 159.26 346.40 2953.62 393.10

100 0.06 382.80 0.63 523.30 9.64 598.50 117.38 701.60 2191.65 825.70
200 0.05 788.20 0.54 994.90 11.03 1217.30 168.85 1372.50 2709.91 1627.70
500 0.25 1910.30 0.79 2458.60 13.92 2987.00 220.17 3678.80 4270.05 4001.70

1000 0.57 3842.60 0.96 5283.10 23.54 6140.90 330.34 7026.40 5014.61 8258.80

Table 3.2: Our ILP running time and the optimal duplication cost solved in Gurobi using
simulated k gene trees of n taxa as inputs. The simulated gene trees are generated under 0.25
duplication rate and 0.3 loss rate. At each configuration, the result is the average of 10 trials.
The running time is measured in seconds.

3.3 A Casestudy in Seed Plant

The relationships among the major lineages of seed plants has long been a major question

in plant systematics, especially with regard to the position of Gnetales, a clade of three genera
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(Gnetum, Ephedra, and Welwitschia) that lack obvious morphological links to other extant seed

plants (e.g.
”

[6, 18, 48, 50, 61]). Cladistic analyses of morphological characters generally have

placed Gnetales sister to the angiosperms, or flowering plants [15, 19, 18, 20, 37, 52]; however,

early analyses of molecular characters rarely supported this placement [6, 48, 58, 61]. Most

recently, maximum likelihood (ML) and maximum parsimony (MP) analysis of 15-17 plastid

loci placed Gnetales sister to the other seed plants [57]. However, a loss of plastid ndh genes

appears to link Gnetales with Pinaceae [4]. An MP analysis of EST sequences from 43 nuclear

genes similarly linked Gnetales with the conifers [16]. Yet later MP and ML analyses of EST

sequences from over 1, 200 nuclear loci placed Gnetales sister to the other gymnosperms [17].

All of these molecular analyses of the seed plant phylogeny have been limited to putatively

orthologous genes. However, the GD problem provides a way to incorporate large gene families

into the phylogenetic inference of seed plants.

Our implementation of the ILP formulation finished running the data set in approximately

two minutes. We identified a unique optimal solution with 47, 658 duplications (Figure 3.1).In

the optimal species tree, the seed plants are split into angiosperm and gymnosperm clades

(Figure 3.1). In the gymnosperm clade, Gnetales are sister to a conifer clade. With 6, 084 genes,

this GTP analysis of seed plants includes by far the most genes ever used to infer the seed plant

phylogeny. Our GTP analysis of this large, previously underutilized, data source provides a

novel line of evidence that angiosperms and all extant gymnosperms are sister clades. Like most

ML analyses of multi-locus data sets, our results show a close affinity between Gnetales and

conifers (e.g., [6, 7, 48, 61, 66]); however, unlike many of these analyses, GTP does not place

Gnetales sister to Pinaceae. Due to the necessarily limited taxon sampling, especially among

non-Pinaceae conifers, our results regarding the placement of Gnetales are neither precise nor

definitive. Still, the placement of Gnetales sister to the conifers, is an intriguing result that is

consistent with some morphological characters, such as ovulate cone scales and resin canals,

which appear to support conifer monophyly [18]. However, in contrast to our result, the deletion

of the ndh genes in Gnetales and Pinaceae suggests that these clades are sister. Although the

GTP results are intriguing, they should be interpreted with caution. For example, the results
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do not provide any measures of confidence or suggest the degree to which alternate phylogenetic

hypotheses are suboptimal. Furthermore, the gene trees were rooted using mid-point rooting,

which may produce incorrect rootings when the sequences do not evolve at a constant rate of

evolution [38]. Also, the taxon sampling in this analysis is limited, and the seed plant phylogeny

problem can be sensitive to taxon sampling [58]. Thus, although our result provides a novel

large-scale genomic perspective on the seed plant phylogeny, it is not a definitive.

3.4 Conclusions

Our ILP formulation provides exact solutions to the largest instances of the GD problem

analyzed to date. Thus, it can provide a large-scale genomic perspective on important phy-

logenetic questions that previously could only be addressed by heuristics. Furthermore, our

simulation experiments demonstrate that these heuristic estimates can be misled with as few

as 10 taxa. Even when heuristics identify an optimal solution they cannot, unlike ILP, deter-

mine if the solution is unique. In future research the ILP implementation will be useful, not

only for solving empirical data sets, but for assessing the performance of different heuristics by

comparing their estimates to the exact ILP solution. Ultimately, it also will be useful to ex-

pand the scale of solvable instances beyond 14 taxa. While this challenge may be addressed by

improved ILP formulations, investigations into other algorithm concepts might also be effective

(e.g., [21, 63]).
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CHAPTER 4. SOLVING GTP USING DYNAMIC PROGRAMMING

The second approach is a recursive solution in dynamic programming (DP). One attractive

property of this solution is the fundamental structure discovered. The design, implementation

and analysis of this DP solution is the result of a collaboration with André Wehe, Dr. Pawe l

Górecki, and Dr. Oliver Eulenstein.

4.1 Our Contribution

We introduce dynamic programming algorithms that use bit-vector data structure and Gray

encoding to solve the GTP problems exactly. Using bit-vector and Gray encoding allows us

to efficiently utilize large registers of modern processors. As a result our algorithms have

complexities in O(3nmn/b) time and O(2n + m) space, where n is the overall number of taxa

presented in input trees, m is the number of unique rooted splits in the input gene trees, and

b is the size of the bit-vector used. To the best of our knowledge the largest species trees

that were exactly computed for non-trivial GTP instances had 8 taxa for the deep coalescence

cost function and 14 taxa for the gene duplication events. We demonstrate in a simulation

study that our algorithm can compute species trees with up to 22 taxa for each of the GTP

problems in less then 17 hours on a standard workstation. These are by far the largest exact

solutions that have been computed for GTP problems. Using our exact algorithms we showed

that species trees inferred by the GTP heuristic implemented in DupTree [64] are largely misled

when using instances with at least 16 taxa. Our empirical study with an instance consisting of

a collection of gene family trees from 16 taxa showed that DupTree reported optimal species

trees in only 8% of one thousand runs. This makes our exact algorithms a viable alternative

to DupTree for instances with smaller taxa numbers. Furthermore, our algorithms also report



23

the number of all optimal solutions, which can be beneficial in phylogenetic analyzes. As an

example, our experiments confirmed that biologists have already identified all optimal solutions

for the collection of gene trees from our empirical study.

4.2 Preliminaries

A gene tree is a rooted binary tree (DAG) whose leaves are labeled by species names. Let

T be a gene tree. By L(T ) we denote the set of all leaf labels present in T . A node n is called

internal if it has two children, which are denoted by Ch(n). A cluster of a node g is the set of

leaf labels visible from g. A species tree is a gene tree whose leaves are uniquely labeled.

Let S = 〈VS , ES〉 be a species tree. For nodes a, b ∈ VS , let a + b be the least common

ancestor of a and b in S. We also use the binary order relation a ≤ b if b is a node on the

path between a and the root of S. Two nodes a and b are called siblings if they are children of

a+ b. Let A ⊆ L(S). Let S|A be the species tree inferred from S by the following operations:

(1) remove leaves from S that are labeled by species from L(S) \A, and (2) contract all nodes

of degree 2 except for the root.

For a gene tree G and a species tree S such that L(G) ⊆ L(S), a least common ancestor

mapping, or lca-mapping, is a function from the nodes of G to the nodes of S such that M(g) = s

if g and s are leaves with the same label, or M(g) = M(a) +M(b) if g is an internal node of G

such that a and b are the children of g.

Now, we introduce several cost functions used when reconciling a gene tree G and a species

tree S. An internal node g ∈ VG is a gene duplication if M(g) = M(g′) for g′ a child of g. The

total number of gene duplications is called duplication cost and denoted by D(G,S). We define

the deep coalescence cost function as follows: DC(G,S) =
∑

a,b siblings in G |π(M(a),M(b))−1|,

where π(x, y) is the set of all nodes on the shortest path connecting x and y in S. Note,

the standard definition of the deep coalescence cost function [2] differs by 1 − |VG| from ours,

which is a constant value dependent on G. Next, we define the loss cost [68]: L(G,S) =

DC(G,S)+2×D(G,S)−|VG|+1 and the duplication-loss cost : DL(G,S) = D(G,S)+L(G,S).

For a given gene tree G and a given species tree S all costs mentioned above can be computed

in linear time and space [44].
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In this paper, we need a more general construction that will precisely assign partial costs to a

node of a species tree. Let us assume that we are given a contribution function ξ : VG×VS → R,

which for a node g ∈ VG and s ∈ VS assigns a real ξ(g, s) representing a cost contribution of a

node g to a node s when reconciling G and S. Then, the cost of reconciling a gene tree G and

a species S will be represented in a general form σ(G,S) =
∑

g∈G,s∈S ξ(g, s). Let us define the

cost contribution functions for our standard cost functions. Let 1 be the indicator function,

that is, 1[P ] = 1 if P is satisfied, and 1[P ] = 0 otherwise. Then,

ξD(g, s) = 1[∃g′ ∈ Ch(g) and M(g) = s = M(g′)], (4.1)

ξL(g, s) = 1[{g′, g′′} = Ch(g) and s ∈ In(M(g′),M(g′′))], (4.2)

ξDC(g, s) = 1[{g′, g′′} = Ch(g) and M(g) 6= s ∈ π(M(g′),M(g′′))], (4.3)

ξDL(g, s) = ξD(g, s) + ξL(g, s), (4.4)

where In(v, w) is the set of loss nodes between v and w defined as follows. If v ≤ w,

then In(v, w) = π(v, w) \ {v}. If w ≤ v, then In(v, w) = π(v, w) \ {w}. Finally, In(v, w) =

π(v, w) \ {v, w, v+w} if v and w are incomparable. In this general setting, one can prove that:

D(G,S) = σD(G,S), L(G,S) = σL(G,S) and so on [29].

We say that a species tree S is over a set of species I if L(S) = I. Let Q be a collection of

gene trees G1, G2, . . . , Gn. By L(Q) we denote the set of all species present in trees of Q. Now,

in a natural way we extend the notion of the cost function to collections of gene trees. For a

given species tree S over L(Q), by c(Q,S) we denote the total cost
∑

G∈Q c(G,S).

Finally, we can define the following problem.

Problem 5. [OST - Optimal Species Tree] Given a collection of gene trees Q and a cost

function c find a species tree Sopt that minimizes the total cost c(Q,S) in the set of all species

trees S over L(Q).

The species tree Sopt will be called optimal (for Q and c) and the optimal cost we denote

by copt(Q). We can also define a simpler variant of the previous problem.

Problem 6. [OCC - Optimal Cost Computation] Given a collection of gene trees Q and a cost

function c compute the optimal cost copt(Q).
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The optimization variant of the OCC problem under the duplication cost is NP-hard [45].

4.3 Solving GTP using Dynamic Programming

In this section we show a dynamic programming solution for the OCC problem. Next, we

provide an extension to the algorithm that solves the OST problem.

Let G be a gene tree. Any internal node g of G determines a multiset {A,B}, where A and

B are the clusters of children of g. Such a multiset will be called a rooted split and denoted by

A|B. For a collection Q of gene trees let r(Q) be the multiset of all rooted splits present in G.

4.3.1 Dynamic Programming Formula

Let Q be a collection of gene trees, c be a cost function and Z ⊆ L(Q) The dynamic

programming formula ∆c for the OCC problem is defined as follows (the superscript c is omitted

in ∆, Γ and Λ):

∆(Q,Z) =


Λ(Q, s) if Z = {s},

min
Z=X∪Y
X∩Y=∅
X,Y 6=∅

(∆(Q,X) + ∆(Q,Y ) + Γ(Q,X, Y )) otherwise,
(4.5)

where Λ(Q, s) is the total cost contribution of the nodes from Q to a leaf of some species tree

over L(G) labeled by s, and Γ(Q,X, Y ) is the total cost contribution of the nodes from Q to

an internal node v of some species tree over L(G) such that the cluster of v is X ∪ Y and v

has two children whose clusters are X and Y . Please observe, that under our standard cost

functions these definitions do not depend on the choice of the species tree.

The total cost contribution functions for our standard costs are defined as follows

Λ(Q, s) =
∑

q∈r(Q) λ(q, s)

Γ(Q,X, Y ) =
∑

q∈r(Q) γ(q,X, Y ),
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where λD(A|B, s) = 1[A ∪B = {s}], λL(A|B, s) = 0, λDL = λD, λDC(A|B, s) = 0 and

γD(A1|A2, X1, X2) = 1[A1 ∪A2 ⊆ X1 ∪X2 ∧ (∃i : ¬Ai ⊆ X1 ∧ ¬Ai ⊆ X2)] (4.6)

γL(A1|A2, X1, X2) = 1[∃i, j : Ai ⊆ Xj ∧

(Ai+1 ⊆ X1 ∪X2 ⇒ Ai+1 ∩X1 6= ∅ 6= Ai+1 ∩X2)] (4.7)

γDC(A1|A2, X1, X2) = 1[∃i, j : (¬Ai ⊆ Xj ⇒ Ai ⊆ X1 ∪X2) ∧ ¬Ai+1 ⊆ X1 ∪X2] (4.8)

γDL(q,X1, X2) = γD(q,X1, X2) + γL(q,X1, X2). (4.9)

For simplicity, in the above equations i+1 (and similarly j+1) is 1 if i = 2. The following lemma

establishes relation between a contribution function and the total cost contribution function.

Lemma 1. Let G be a gene tree, c be a cost function and S be a species tree over L(G). Then,

• for each leaf v in S labeled by a species s:

Λc({G}, s) =
∑

g∈VG
ξc(g, v).

• for each internal node v in S whose children have clusters X and Y :

Γc({G}, X, Y ) =
∑

g∈VG
ξc(g, v).

Proof. The proof follows easily for each cost function: D, L, DC and DL and the definitions of

λ and γ.

Theorem 3. Let Q be a collection of gene trees and c be a cost function. Then

∆c(Q,L(Q)) = copt(Q).

Proof. It is sufficient to prove that for each Z ⊆ L(Q),

∆c(Q,Z) = min
S∈Tr(Z)

∑
G∈Q,g∈G
v∈VS ,cv⊆Z

ξc(g, v),

where Tr(Z) is the set of all species trees over L(Q) having a node whose cluster is Z. The

proof follows by induction from Lemma 1. We omit technical details.
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Solving the OST problem is straightforward from the values of ∆: it is sufficient to track

which partitions of the cluster Z into X and Y in formula (4.5) yield the minimal value. Such

partitions determine clusters in optimal species trees and they can be used to infer one or all

optimal species trees.

Similar to solving the OST problem using ∆, our formula can be extended to count the

number of all optimal species trees. In addition to track which partition of a cluster Z yields

the minimal value, we keep track of how many partitions yield such value. Let Ω(Q,Z) denote

the count. Within one partition (X,Y ) of Z, Ω(Q,X) × Ω(Q,Y ) is the count of all optimal

trees under (X,Y ), and Ω(Q,Z) is the sum of Ω(Q,X) × Ω(Q,Y ) over all optimal partitions

under Z. Due to the recursive nature of ∆, such count equals the number of different species

trees whose set of leaves is Z.

4.3.2 Algorithm and its implementation

In this section we describe in more details the algorithm and its implementation. Let Q

be a collection of input gene trees. First, the gene trees present in Q are converted into the

multiset of rooted splits r(Q), that is, each split consists of two clusters and its multiplicity.

The algorithm that solves the OST problem is based on the formula (4.5). It can be efficiently

implemented by using bit-vector representation of sets. In other words, each cluster, that is,

a set of species from L(Q), is represented as a bit-vector of the size n, where n is the size of

L(Q). Then, each bit-vector operation (see formulas (4.6)-(4.9)) requires O(n/b) time, where b

is the word size of the platform.

Our algorithm creates the array of 2n values of ∆. To compute a single ∆(Q,Z) value, we

need to generate all splits of Z. Each split of Z can be computed in constant time by using

Gray code. Then, we have
∑

2≤k≤n
(
n
k

)
2k = O(3n) splits of the elements from the powerset of

L(Q), therefore the time complexity of the optimal cost computation is O(3nmn/b), where m

is the number of unique rooted splits in r(Q). Clearly, the space complexity is O(2n +m).

As already mentioned in the previous section, to solve the OST problem, it is sufficient

to store exactly one rooted split that yields the minimal score in 4.5. In such a case the

algorithm requires additional O(2n) units of space (that is, one optimal split per each value
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in the ∆ array). Clearly, the time complexity is the same. To obtain the total number of

optimal solutions, we need an additional counter in each element of the ∆ array. Updating the

counter can be completed in constant time when computing the minimal score in the dynamic

programming formula. Hence under the same complexity, we also find out the total number of

optimal solutions.

In practice, gene trees have less species than present in whole input collection. The standard

solution is to apply the minus method [14], where the cost is computed for the species tree

contracted to the set of species present in a given gene tree. Formally, for a given cost c, a

species tree S and a gene tree G such that L(G) ⊆ L(S), instead of computing c(S,G) we

compute c(G,S|L(G)). If c is the duplication cost, then there is no difference in the dynamic

programming algorithm. For the other costs, we need the following changes (easy proofs are

omitted):

• the data structure r(Q) is the multiset of triplets: {A|B|L(G) : G ∈ Q, A|B is a rooted

split from G}; in other words each rooted split is extended with the set of species present

in its source gene tree.

• the formula (4.7) for gene losses is replaced by:

γL(A1|A2|C,X1, X2) = 1[∃i, j : Ai ⊆ Xj ∧

(Ai+1 ⊆ X1 ∪X2 ⇒ Ai+1 ∩X1 6= ∅ 6= Ai+1 ∩X2) ∧

Xj+1 ∩ C 6= ∅],

• the formula (4.8) for deep coalescence is replaced by:

γDC(A1|A2|C,X1, X2) = 1[∃i, j : (¬Ai ⊆ Xj ⇒ Ai ⊆ X1 ∪X2) ∧

¬Ai+1 ⊆ X1 ∪X2 ∧Xj+1 ∩ C 6= ∅].

The time and space complexity remain the same, however, the size of r(Q) (the parameter m)

can increase when the minus method is applied. Therefore, the run-time is usually longer for
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the DC and DL costs than for the D cost as observed in our simulation study. See Fig. 4.1 for

comparison.

4.4 Experiments

We performed a total of 70 runs on different simulated data sets for 10, 12, 14, 16, 18, 20,

and 22 taxa (10 runs each). Each instance was generated with 100 gene trees. The run-times of

our software for gene duplications, duplications plus losses, and deep coalescence are depicted

in Fig. 4.1, While instances were generated only based on a gene duplication plus loss model,

run times deep coalescence as the cost function of GTP were included for comparison purposes.

We observed that data sets with up to 16 taxa can be computed less than 1 minute. Our

program found optimal species trees for data sets with up to 22 taxa in less than 17 hours for

the GTP problems based on gene duplication, gene duplication plus loss. Further, we analyzed

the number of optimal solutions, and found that each of these generated instances have a unique

solution.

We generated instances for the GTP problem based on deep coalescence using Mesquite [47]

as outlined in the simulation protocol from Maddison and Knowles [46]. Our effective popula-

tion size was 10,000. Similarly to the previous simulation we simulated data sets for 10, 12, 14,

16, 18, 20, and 22 taxa. The runtime results of our software spent approximitely 3 times longer

solving instances from the deep coalescence model than that of the duplication plus loss model.

We found that the number of rooted splits differ by a factor of 2.8 to 4.1 between instances

that were generated by the two different models of the same taxon size. The deep coalescence

instances were also reported to have up to 4 optimal species trees.

4.4.1 Empirical Study

We re-evaluated the data set from Guigó et al. [30] of 53 gene families from the 16 eukaryotes.

This data set has been well studied by Page and Charleston [55], who identified 12 optimal

trees for the GTP problem based on gene duplication plus loss events. Using our software, we

were able to verify, for the first time, that Page and Charleston identified all optimal trees.

Our software finished the analysis of the data set from Page and Charleston in 42 seconds.
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Figure 4.1: Summary of experiments performed on simulated data sets under standard evolu-

tionary costs. The run-time means and standard deviations are summarized on the logarithmic

scale for our standard cost functions: gene duplications (blue curve), gene duplications and

losses (red curve) and deep coalescence (green curve). Observe that the data sets with less

than 16 taxa were resolved in less than 1 minute, while the largest data sets with 22 taxa

required up to 17 hours of computations.

Furthermore, for the same data set we computed the number of optimal solutions for the GTP

problem based on gene duplications, and found that there are 29 additional optimal trees. This

computation took our software only 14 seconds to complete.

Having already computed the exact result for the Guigó et al. data set, we used this data

set to evaluated the accuracy of the heuristic DupTree [64]. This type of heuristic aims to

solve the GTP problem for gene duplications and appears to have produced several credible

results [54, 12, 49, 51]. We run the heuristic thousand times on the Guigó et al. data set.

DupTree found optimal species trees in only 8% of the runs we performed.

4.5 Conclusion

Our fast bit-vector and Gray encoding algorithms provided the by far largest GTP species

trees from non-trivial instances to date. Since the exact algorithms can compute species trees
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with up to 22 taxa in reasonable time, they can provide new perspectives on phylogenetic ques-

tions that previously could only be addressed by heuristics. This is of particular importance,

since our empirical study showed that heuristic estimates can be misled in the vast majority

of runs on the same data-set with as few as 16 taxa. In difference to heuristics our algorithms

report the number of optimal solutions, which can benefit phylogenetic analyzes. Future re-

search will focus on expanding the scale of solvable instances beyond 22 taxa, and to assess the

performance of other GTP heuristics by comparing their estimates to the exact results provided

by our algorithms.
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CHAPTER 5. DATA MINING USING QUASI-BICLIQUE

5.1 Introduction

As introduced in the earlier section, we utilize quasi-bicliques (QBC) as an input data

selection/mining technique to ensure the coherence of the input data. To improve upon previous

and related quasi-biclique work, we introduce two parameters that control the lower-bound of

missing information allowed on either side of the resulting bi-partition vertex sets.

As a newly proposed problem, our QBC study includes both complexity and a solution

in ILP. We are currently investigating improvements to our solution and other applications

of QBC besides assisting GTP analysis. Collaborators in the QBC problem include Sudheer

Vakati, Dr. Roland Krause, and Dr. Oliver Eulenstein.

5.2 Motivation and Related Work

The binary relation between the gene trees (which are generally gene families) and the

representing species taxa has been studied using biclique enumeration [22]. While extracting

a dense component in the gene-species bi-partite graph ensures the overlapping coverage of

taxa among the input gene trees, there is inevitably missing information among the inputs,

limiting the sizes of bicliques. Thus, extracting QBCs which tolerate a few missing edges is the

evolutionary step of the concept [67, 42]. In the previous studies of QBCs, it is typically assumed

that the relations between gene trees and covering taxa are only binary, i.e., either it is included

in the input or it is not. However, individual gene trees can have different weights among the

input to represent the quality [5], and the significance of taxa can vary. It is our observation

that incorporating such non-binary information can be helpful to the selection process. Our

weighted quasi-biclique is therefore the latest evolution in QBC study that includes weights of
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the gene-species relation.

5.3 Maximum QBC problem

As introduced earlier, we have different creteria to define an optimal α,β-WQB. Unfurtu-

nately, these variations are all computationally difficult as we describe here.

Lemma 2. The α,β-WQBP (C) problem is NP-hard.

We now prove that checking for the existence of a percentage α,β-WQB in a bipartite graph

is NP-complete. Note that, checking the existence of a constant version α,β-WQB in a bipartite

graph can be done in polynomial time. For rest of the section we only refer to percentage version

α,β-WQB’s.

Problem 7 (Existence).

Instance: A weighted bipartite graph G := (U + V,E, ω), values α, β ∈ [0, 1].

Find: If there exists a α,β-WQBP (U ′, V ′) in G.

To prove the hardness of existence problem we need some auxiliary definitions. A modified

weighted bipartite graph, denoted by (U + V,E,Ω), is a complete bipartite graph (U + V,E)

with a weight function Ω : E → [0, 1] where, for any two edges e and e′, |Ω(e)− Ω(e′)| ≤ 1.

Definition 12 (Modified α,β-WQB (MO-WQB)).

Let G := (U + V,E,Ω) be a modified weighted bipartite graph. A non-empty pair (U’, V’) in-

cluded in (U, V) is a MO-WQB of G, if it satisfies the three properties: (1) (U ′, V ′) includes (∅, V ),

(2) ∀u ∈ U ′ :
∑

v∈V ′ w(u, v) ≥ 0, and (3) ∀v ∈ V ′ :
∑

u∈U ′ w(u, v) ≥ 0.

Problem 8 (One sided existence).

Instance: A weighted bipartite graph G := (U + V,E, ω), values α, β ∈ [0, 1].

Find: If there exists a α,β-WQBP (U ′, V ′) in G which includes the pair (∅, V ).

Problem 9 (Modified Existence).

Instance: A modified weighted bipartite graph G := (U + V,E,Ω).

Find: If there exists a MO-WQB in G.
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The outline of the proof starts first by reducing the partition problem, which is NP-

complete [27], to the modified existence problem. The modified existence problem is then

reduced to the one sided existence problem. The one sided existence problem reduces to the

existence problem. The detail of the proofs can be found here [9].

Lemma 3. The modified existence problem is NP-complete.

Lemma 4. The one sided existence problem is NP-complete.

Lemma 5. Existence problem is NP-complete.

5.4 IP Formulations for the α,β-WQB Problem

Although greedy approaches are often used in problems of a similar structure, e.g., multi-

dimensional knapsack [41], δ-QB [43], in our experiments, both greedy and randomized ap-

proach did not identify solutions close enough to the exact solutions. In our experiments,

simple greedy and randomized solutions yielded accuracies ranging from 60% to 95% depend-

ing on various parameters without performance guarantee. Hence we consider that it is rather

important here to find exact solutions in order to demonstrate the usefulness of α,β-WQB’s.

Here we present integer programming (IP) formulations solving the α,β-WQB problem in exact

solutions.

Due to the similarity in formulating constraints between α,β-WQBC and α,β-WQBP , we

start by formulating a solution to α,β-WQBP . Our initial IP requires quadratic constraints,

which are then replaced by linear constraints such that it can be solved by various optimization

software packages. Our final formulation is further improved by adopting the implication rule

to simplify variables involved. This improved formulation requires variables and constraints

linear to the number of input edges, and thus, suits better for sparse graphs. Throughout the

section, unless stated otherwise, G := (U + V,E, ω) represents a weighted bipartite graph, and

G′ = (U ′, V ′) represents the maximum weighted α,β-WQB of G and E′ represents the edges

induced by G′ in G.
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5.4.1 Quadratic Programming

For each u ∈ U (v ∈ V ), a binary variable xu (xv) is introduced. The variable xu (xv) is

1 if and only if vertex u (v) is in U ′ (V ′). The integer program to find the solution G′ can be

formulated as follows.

Binary variables: xu, s.t. xu = 1 iff u ∈ U ′ for each u ∈ U (5.1)

xv, s.t. xv = 1 iff v ∈ V ′ for each v ∈ V (5.2)

Subject to:
∑

v∈V ω(u, v) · xvxu ≥ α
∑

v∈V xvxu for all u ∈ U (5.3)∑
u∈U ω(u, v) · xuxv ≥ β

∑
u∈U xuxv for all v ∈ V (5.4)

Maximize:
∑

(u,v)∈U×V xuxv · ω(u, v) (5.5)

The quadratic terms in the constraints are necessary because, α and β thresholds apply

only to vertices in U ′ and V ′. This formulation uses variables and constraints linear to the

size of input vertices, i.e., O(|U | + |V |). Since solving a quadratic program usually requires a

proprietary solver, we reformulate the program so that all expressions are linear.

5.4.2 Converted Linear Programming

A standard approach to convert a quadratic program to a linear one is introducing auxiliary

variables to replace the quadratic terms. Here we introduce a binary variable yuv for every edge

(u, v) in G, such that, yuv = 1 if and only if xu = xv = 1, i.e., the edge (u, v) is in G′. The

linear program to find the solution G′ is formulated as follows.

Binary variables: Same as in (5.1) and (5.2)

yuv, s.t., yuv = 1 iff xu = xv = 1 for all (u, v) ∈ E (5.6)

Subject to: yuv ≤ (xu + xv)/2 for all (u, v) ∈ E (5.7)

yuv ≥ xu + xv − 1 for all (u, v) ∈ E (5.8)∑
v∈V ω(u, v) · yuv ≥ α

∑
v∈V yuv for all u ∈ U (5.9)∑

u∈U ω(u, v) · yuv ≥ β
∑

u∈U yuv for all v ∈ V (5.10)

Maximize:
∑

(u,v)∈U×V ω(u, v) · yuv (5.11)
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Expressions (5.7) and (5.8) state the condition that yuv = 1 if and only of xu = xv = 1.

Expression (5.8) ensures that, for any edge whose end points (u, v) are chosen to be in G’, yuv

is set to 1. Due to the use of yuv variables, this formulation requires O(|U ||V |) variables and

constraints.

5.4.3 Improved Linear Programming

Observe that constraint (5.7) becomes trivial if yuv = 0. In other words, this constraint

formulates implications, e.g., for binary variables p and q, the expression p ≤ q is equivalent

to p→ q. Expanding on this idea, we eliminate the requirement of variables yuv in constraints

(5.9) and (5.10) in the next formulation while sharing the rest of the aforementioned linear

program.

Subject to:
∑

v∈V (ω(u, v)− α)xv ≥ |V |(xu − 1) for all u ∈ U (5.12)∑
u∈U (ω(u, v)− β)xu ≥ |U |(xv − 1) for all v ∈ V (5.13)

There is a variable xv for every vertex v in G. There is a variable yuv for every edge (u, v)

in G whose weight is not 0. The variable yuv is set to 1 if and only if both xu and xv are set to

1. For any vertex u ∈ U (v ∈ V ), the variable xu (xv) is set to 1 if and only if vertex u (v) is in

G′. Constraint (5.12) can also be explained as follows. If xu = 1, the constraint transforms to

the second constraint in the α,β-WQB definition. If xu = 0, constraint (5.12) becomes trivial.

Constraint (5.13) can be explained in a similar manner.

5.4.4 Generalized Formulation for α,β-WQBP and α,β-WQBC

Recall that the difference between the two problems α,β-WQBP and α,β-WQBC is in

the edge weight summation which we can combine as the following properties: (1) ∀u ∈

U ′ :
∑

v∈V ′ ω(u, v) ≥ αP |V ′| − αC , and (2) ∀v ∈ V ′ :
∑

u∈U ′ ω(u, v) ≥ βP |U ′| − βC , where

(αP , βP ) and (αC , βC) are the parameters given in α,β-WQBP and α,β-WQBC respectively.

Following the same reasoning in the previous paragraphs, linear constraints (5.12) and (5.13)
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are now updated as the following.

Subject to:
∑

v∈V (ω(u, v)− αP )xv + αC ≥ |V |(xu − 1) for all u ∈ U (5.14)∑
u∈U (ω(u, v)− βP )xu + βC ≥ |U |(xv − 1) for all v ∈ V (5.15)

As a results, the problem instance is a α,β-WQBC problem if (αP , βP ) = (1, 1), and it is a

α,β-WQBP problem if (αC , αC) = (0, 0). Note that the formulation does not require either

condition to present; it essentially defines a generalization of α,β-WQB problems when all 4

parameters are valid and non-zero.

If there are n vertices in U and m vertices in V , there will be a total of m + n + 2k

constraints and m+n+k variables where k is the number of edges whose weight is not equal to

0. The above formulations can be extended to solve the query problem by adding an additional

constraint xv = 1 to the formulation, for every vertex v ∈ P ∪ Q. Similar constraints also

help us explore sub optimal solutions, e.g., excluding known vertices in subsequent solutions,

or provide a lower-bound of required query items in the optimal solution.

5.5 Results and Discussion

Finding appropriate values for α and β is a critical part in an application. With no specific

standard set to compare to, we use simulated data sets to explore the problem. We then

use our IP model to explore α,β-WQB’s in a real world application, a recent data set of

functional groups formed in genetic interactions. The filtered data set, compared to the raw

data, served to investigate the role of non-existing edges in the input bipartite graph. While

mathematically equivalent in the modeling step, a non-edge in a experimentally generated

network represents either a true non-interaction or a false-negative. Assuming the input consists

of meaningful features, our preliminary results show that α,β-WQB’s may recover missing edges

with potentially higher weights better than δ-quasi-bicliques.

5.5.1 Simulations

As part of simulation studies, we try to retrieve a known maximum weighted quasi biclique

from a weighted bipartite graph using both versions of α,β-WQB’s. In each simulation ex-
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periment we do the following. The pair (U, V ) represents the vertices of a weighted bipartite

graph G. We randomly choose U ′ ⊆ U and V ′ ⊆ V as vertices of the known quasi biclique in

G. The sizes of both U ′ and V ′ are set the same and is picked randomly, but is limited to a

specific percentage of the total vertices on each side. Random edges between the vertices of U ′

and V ′ in G are introduced according to a pre-determined edge density d. The edges between

vertices of U\U ′ and V \V ′ of G are also generated randomly according to a pre-determined

density d′. The edge weights of the known quasi-biclique (U ′, V ′) are determined by a Gaussian

distribution with a mean mn and standard deviation dev. Weights of the edges of G not present

in the quasi-biclique are also determined by a Gaussian distribution with a lower mean mn′

and standard deviation dev′. We now retrieve maximum weighted α,β-WQBP and α,β-WQBC

from G by using specific values α and β calculated as described below.

For retrieving α,β-WQBP , the values α and β are chosen in two different ways. As part

of the simulation we evaluate the performance of both methods. The first method sets both α

and β to the mean of the weights of the edges of the quasi biclique. In the second method, α

and β are calculated as given below:

α =min {Cu′ | Cu′ = (
∑

v′∈V ′ w(u′, v′))/|V ′| for all u′ ∈ U ′}

β =min {Cv′ | Cv′ = (
∑

u′∈U ′ w(u′, v′))/|U ′| for all v′ ∈ V ′}

Similarly, for retrieving α,β-WQBC , the values α and β are calculated as given below.

α =|V | −min {Cu′ | Cu′ = (
∑

v′∈V ′ w(u′, v′)) for all u′ ∈ U ′}

β =|U | −min {Cv′ | Cv′ = (
∑

u′∈U ′ w(u′, v′)) for all v′ ∈ V ′}

The ILP models of the corresponding α,β-WQB problems are generated in Python, and

solved in Gurobi 4 [31] on a PC with an Intel Core2 Quad 2.4 GHz CPU with 8 GB memory.

For the evaluation, let (U ′′, V ′′) represent the maximum weighted α,β-WQB returned by the

ILP model. The number of vertices of U ′ in U ′′ and V ′ in V ′′ is our evaluation criterion. The

percentage of vertices of U ′ (V ′) in U ′′ (V ′′) is called the recall of U ′ (V ′). For a specific graph

sizes experiments were run by varying the values mn and mn′. The values dev and dev′ were

set 0.1. The densities d and d′ are set to 0.8 and 0.2. The experiments were run for graphs of
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size 16× 16, 32× 32 and 40× 40. Each experiment is repeated thrice and the average number

of recalled vertices is calculated. The recall of the experiments can be seen in Table 5.1. For

each graph size the first two columns represent the recall values for percentage version α,β-

WQB’s and the third column represents the recall value for constant version α,β-WQB. As

the difference between the means increases, so does the average recall. The second method of

choosing α and β for percentage version α,β-WQB yields a consistently higher recall.

mn mn′
16 × 16

Method 1 Method 2 Constant

AU AV AU AV AU AV

0.5 0.5 33 77 55 100 44 22

0.55 0.45 27 38 100 100 83 88

0.6 0.4 66 77 83 88 100 88

0.65 0.35 72 77 88 88 88 88

0.7 0.3 72 100 100 100 100 100

0.75 0.25 66 83 100 100 100 100

0.8 0.2 66 100 100 100 100 100

mn mn′
32 × 32

Method 1 Method 2 Constant

AU AV AU AV AU AV

0.5 0.5 33 30 55 6 11 40

0.55 0.45 0 0 0 0 0 0

0.6 0.4 88 56 91 80 66 70

0.65 0.35 56 66 40 66 40 66

0.7 0.3 78 83 91 91 85 91

0.75 0.25 70 69 100 100 100 100

0.8 0.2 100 78 100 91 100 91

mn mn′
40 × 40

Method 1 Method 2 Constant

AU AV AU AV AU AV

0.5 0.5 75 37 83 79 61 62

0.55 0.45 0 25 0 0 11 0

0.6 0.4 49 53 61 66 61 66

0.65 0.35 66 91 91 100 91 100

0.7 0.3 88 77 100 83 100 83

0.75 0.25 64 91 93 100 93 100

0.8 0.2 70 76 100 100 100 100

Table 5.1: Recall of vertices in the simulation. For every experiment, the value in the AU (AV )

column represents the average recall of U ′(V ′).
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5.5.2 Genetic Interaction Networks

A comprehensive set of genetic interaction and functional annotation published recently by

Costanzo et al. [11] is amongst the best single data sources for weighted biological networks.

The aim of our application is to identify the maximum weighted quasi-bicliques consisting of

genes in different functional classes in the Costanzo dataset.

Pairwise comparisons of the total 18 functional classes provide 153 sets. For every distinct

pair (A,B) of such classes, we build a weighted bipartite graph (UA + VB, E, ω) where genes

from functional class A are represented as vertices in UA and genes from functional class B are

represented as vertices in VB.

The absolute values of the interaction score ε, are used as the edge weights. Values greater

than 1 are rounded off to 1. Any gene present in both the functional classes A and B is

represented as different vertices in the partitions UA and VB and the edge between those vertices

is given a weight of 1. We build LP models of both α,β-WQB versions for the bipartite graphs

to identify the maximum weighted quasi-bicliques.

5.5.2.1 Biological Interpretation and Examples

Genes with high degree and strong links dominate the results. In several instances, the

quasi-bicliques are trivial in the sense that only one gene is present in U ′, and it is linked to

more than 20 genes in V ′. Such quasi-bicliques are maximal by definition but provide limited

insight. A minimum of m = 2 genes per subset was included as an additional constraint to the

LP model. It might be sensible to implement such restrictions in the application in general.

We observed the following with the maximum weighted α,β-WQBP ’s in the data sets. we

Given the low overall weight, the α,β-WQBP ’s generated with the parameters α = β = 0.1 were

the most revealing. A notable latent set that was obtained identified genes involved in amino

acid biosynthesis (SER2, THR4, HOM6, URE2) and was found to form a 4 × 10 maximum

weighted quasi-biclique with genes coding for proteins of the translation machinery, elongation

factors in particular (ELP2, ELP3, ELP4, ELP6 , STP1, YPL102C, DEG1, RPL35A, IKI3,

RPP1A). These connections, to our knowledge, are not described and one might speculate
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that this is a way how translation is coupled to the amino-acid biosynthesis. In some cases the

maximum weighted quasi-biclique is centered around the genes that are annotated in more than

one functional class as they provide strong weights. These genes are involved in mitochondrial

to nucleus-signaling and are examples where our approach recovers known facts. Using the

query approach, it is possible to obtain quasi-bicliques around a gene set of interest quickly

and extend the approach proteins of interest.

Maximum weighted α,β-WQBC ’s generated from the data sets with parameters α = β = 5

reveal the following. Genetic interaction networks allow to study protein-coding genes as

well as genes that might only code for RNAs. A noteworthy example was discovered in the

comparison of genes involved in nuclear transport and those with an unknown bioprocess re-

vealed proteins that are part of the nuclear pore transport (POM34, NUP60, NUP157, THP2

and POM152). They interact with a number of genes that are lined up on chromosome 15

(YML033W, YML034C (SRC1) and YML035C-A) as well as and YDR431W. Most of these

genes they interact with are annotated as “dubious” in the current version of the Yeast Genome

Database SGD [23]. SRC1 overlaps with another uncharacterized gene YML034C-A. It would

be possible that locus codes of a long RNA are involved in nuclear transport.

5.5.2.2 Recovering Missing Edges

The published data sets have edges under different thresholds removed. To sample such

missing edges, we calculate the average weight of all the edges removed in the 153 bipartite

graphs (generated above), and the calculated average weight is 0.0522.

For each of the 153 maximum weighted quasi-bicliques of either version, the missing edges

induced by the quasi-bicliques are then identified, and the average missing edge weight e of each

is calculated. The average missing edge weight e is always greater than 0.0522. In other words,

we observe that a missing edge in a maximum weighted quasi-biclique has a higher expected

weight than the weight of a randomly selected missing edge. This happens when the α and β

values are chosen to derive α,β-WQB’s which are more dense in terms of weight.

We further compare e from our approach to e from the δ-quasi-bicliques (δ-QB) described

by Liu et al. [43]. All quasi-bicliques (including exact δ-QB using our IP formulation) used to
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induce average missing edge weight e are:

(1) d05/m1: δ-QB with δ = 0.5 and minimum node size is 1, i.e., m = 1.

(2) d05/m2: δ-QB with δ = 0.5; m = 2.

(3) ab/m2: α,β-WQBP using the minimum average edge weights found from d05/m2 as α

and β; m = 2.

(4) aX/m2: α,β-WQBP where X = α = β ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}; m = 2.

(5) cX/m2: α,β-WQBC where X = α = β ∈ {1, 2, 3, 4, 5}; m = 2.

Comparing the averages of e from a005/m2 to a05/m2 (please see Table 5.2), we see a

steady increase. Since α and β can be seen as expected edge weights of the resulting QB, the

changing in e shows that QB’s identify sub-graphs of expected edge weights. However, we do

not see a similar pattern in the constant versions. Overall, in this particular experiment data

set, the removed edge weights are at most 0.16, hence e can never approach closely to the

parameter α no matter how lenient the parameters are.

WQBP d05/m1 d05/m2 ab/m2 a005/m2 a01/m2 a02/m2 a03/m2 a04/m2 a05/m2

avg(e) 0.0855 0.0844 0.0850 0.0806 0.0830 0.0867 0.0905 0.0934 0.1169

WQBC c1/m2 c2/m2 c3/m2 c4/m2 c5/m2

avg(e) 0.1008 0.0805 0.0809 0.0823 0.0825

Table 5.2: A comparison of e under various QB parameters showing improvements of recovered
edge weight expectation in α,β-WQB’s.

5.6 Conclusions and Outlook

We address noise and incompleteness in biological networks by introducing graph-theoretical

optimization problems that identify variations of novel weighted quasi-bicliques. These quasi-

biclique problems incorporate biological interaction levels in different analytical settings and

exhibit improvements over un-weighted quasi-bicliques. To meet demands of biologists we also

provide a query version of (weighted) quasi-biclique problems. We prove that our problems

are NP-hard, and describe IP formulations that can tackle moderate-sized problem instances.

Simulations and empirical data solved by our IP formulation suggest that our weighted quasi-

biclique problems are applicable to various other biological networks.
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Future work will concentrate on the design of algorithms for solving large-scale instances of

weighted quasi-biclique problems within guaranteed bounds. Greedy approaches may result in

effective heuristics that can analyze ever-growing biological networks. A practical extension to

the query problem is the development of an efficient enumeration of all maximal α,β-WQB’s.
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CHAPTER 6. SUMMARY AND OUTLOOK

6.1 Summary

In this study, we explored an ILP solution to the GTP problem under gene duplication

model, a dynamic programming solution to the same problem with better performance, and

weighted quasi-bicliques to enhance knowledge that can be extracted from a bipartite graph.

Our ILP formulation to the GTP problem under gene duplication model demonstrated that

an exact solution to a NP-Complete problem can yield practical results. From the experience

of ILP formulation, we further designed the dynamic programming (DP) solution that could

solve the GTP problem under various cost function and outperformed the ILP formulation.

While the ILP formulation leveraged on existing software packages, the dynamic programming

solution further took advantage of computer hardware advancement and data representation

to achieve its performance.

Our simulated experiments in the quasi-biclique study showed that we successfully recov-

ered known maximum weighted quasi bicliques from weight bipartite graphs. An empirical

experiment of Quasi-Biclique on a genetic interaction network discovered biological important

sub-graphs.

6.2 Outlook

As demonstrated, the weighted quasi-biclique has applications broader than gene-species

relations that the study focused on. We had also observed that weighted quasi-biclique problem

shares similar structures to knapsack problems which should provide further expansions to solve

weighted quasi-biclique problems effectively.

While both ILP and DP solutions were designed to solve the same GTP problem, the paths
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of achieving the goal are quite different. In the case of ILP formulations, since a binary tree

structure is encoded in the solution matrix, we may modify the constraints to solve minimum

flipping problem as well as RF distances.

The DP solution to the GTP problem had already shown promising flexibility by solving

the problem under different cost functions. Other improvements to the solution may include

limiting the candidate splits as well as leveraging parallel programming techniques.

From a computer science perspective, the problems and solutions presented here in this

study are practical and applicable to the scientific community interested in phylogenetic anal-

ysis, as well as future research based on the progress presented here.
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