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ABSTRACT

As cloud-based storage becomes more popular, an increasing amount of data has been

outsourced to cloud storage. For many businesses, individuals, or even governments, data

privacy has become an important concern. The confidentiality of data can be protected by

encryption, but this alone may not suffice for ensuring data privacy. Data access patterns

can leak a considerable amount of information about the data as well. Even though existing

Oblivious RAM (ORAM) constructions are provable solutions to this issue, their performance

in practice has been impeded by the high communication and storage overheads incurred. In

this thesis, we implemented a Segmentation-based ORAM (S-ORAM) to reduce communication

and storage overhead. Experiments have shown that S-ORAM can effectively protect user’s

privacy as well as achieve low communication and storage overhead.
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CHAPTER 1. INTRODUCTION

Cloud storage, such as Dropbox [Dropbox (2007)] and Amazon S3 [Amazon (2006)], are

widely used nowadays. It is a model of networked enterprise storage that data is stored in

virtual pools of storage, which are generally hosted by third parties. Compared to traditional

private storage, cloud storage has two main advantages. First, the price is much cheaper. Users

(individuals, institutions, companies or government agencies) only need to pay for the storage

they actually use, typically an average of consumption during a month. Second, it is much

easier to maintain. Users now can write software or scripts to configure hundreds of storage

servers automatically instead of configuring them one by one.

More and more companies and even government agencies choose public cloud for storing

data. However, as cloud providers have complete control of users’ outsourced data, the security

and privacy problems arise and are becoming a big concern.

Encrypting data has been a common practice for data protection. But the sequence of

storage locations accessed by the client (i.e., access pattern) could still leak a significant amount

of sensitive information, if statistical inference is applied. For example, Islam et al. [Islam

et al. (2012)] demonstrated that an adversary can infer as much as 80% of the search queries

by observing accesses to an encrypted email repository.

To address this issue, the Oblivious RAM (ORAM) algorithm, first proposed by Goldreich

and Ostrovsky [Goldreich and Ostrovsky (1996)], has attracted a lot of attention. The algo-

rithm conceals a client’s access pattern to the remote storage by continuously shuffling and

re-encrypting data as they are accessed. Even though an adversary can observe the physical

storage locations that a client has accessed, the ORAM algorithm ensures that the adversary

has negligibly-small probability to learn anything about the client’s true access pattern.

Since its proposal, the research community has developed and implemented many ORAM
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schemes. Among them, hash-based ORAMs and index-based ORAMs are two main branches.

Hash-based ORAMs [Goldreich and Ostrovsky (1996); Goodrich and Mitzenmacher (2010);

Goodrich et al. (2012); Goodrich and Mitzenmacher (2011); Goodrich et al. (2011); Kushilevitz

et al. (2012); Pinkas and Reinman (2010); Williams and Sion (2008)] utilize hash functions

(including ordinary hash functions, cuckoo hash functions, bloom filters, etc.) to determine a

data block’s storage location when the block is stored or shuffled, and to look up intended data

blocks. In comparison, index-based ORAMs [Shi et al. (2011); Stefanov et al. (2013); Stefanov

and Shi (2013); Stefanov et al. (2011)] maintain index tables to keep the mapping from data

blocks to their storage locations and update them after each query.

ORAM can effectively protect user’s privacy in theory. However, most existing ORAM

constructions are not practical because of the high communication and/or storage overheads

that they may incur. Particularly, hash-based ORAMs require a large extra storage space at the

server side in order to deal with hash collisions. Also access pattern privacy usually has to be

preserved through frequent data retrievals and complicated data shuffling. Index-based ORAMs

are also impractical. Even though they rely on index tables to avoid the above problems in

hash-based ORAMs, it is hard to find a way to store the index table in a space-efficient way

and to search and update it in a time-efficient way. This limitation has also impeded their

applications in practice.

Recently, Zhang et. al. [Jingsheng Zhang (2014)] proposed a novel ORAM scheme, called

segmentation-based oblivious RAM (S-ORAM), aiming to bring theoretical ORAM construc-

tions more practical. The design was motivated by the observation that a large-scale storage

system usually stores data in blocks and such a block typically has a large size [Stefanov et al.

(2011)], but most existing ORAM constructions treat data blocks as atomic units for query

and shuffling, and do not factor block size into their designs. In order to make a better use of

the large block size, two segment-based techniques have been introduced, namely, piece-wise

shuffling and segment-based query, which can efficiently improve the efficiency in query and

data shuffling. Data can be perturbed across a larger range of blocks in a limited user-side

storage with piece-wise shuffling. In this way, the shuffling efficiency can be improved, and

the improvement gets more significant as the block size increases. With segment-based query,
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S-ORAM organizes the data storage at the server side as a hierarchy of single-segment and

multi-segment layers, and each layer are with an encrypted index block. With these two tech-

niques at the core, together with a few supplementary algorithms for distributing blocks to

segments, S-ORAM can accomplish efficient query with only O(log N) communication over-

head and a constant user-side storage, while existing ORAM constructions have to use a larger

user-side storage to achieve the same level of communication efficiency in query.

The Balanced ORAM (B-ORAM) [Kushilevitz et al. (2012)] and the Path ORAM (P-

ORAM) [Stefanov et al. (2013)] are the state-of-the-art hash and index based ORAMs respec-

tively, in terms of both practical and theoretical standards. In terms of communication and

storage overheads, S-ORAM outperforms both of them. When they have the same constant-size

user-side storage, S-ORAM’s communication overhead is 12 to 23 times less than B-ORAM,

60% to 72% less bandwidth than P-ORAM, particularly under practical settings. Meanwhile,

S-ORAM consumes 80% less server-side storage than P-ORAM.

This thesis work has implemented the S-ORAM design and delivered a prototype of dis-

tributed file system that aims to preserve access pattern for users of the file system. Experi-

ments based on the prototype have also been conducted. The results show that our implemented

system can fully protect user’s access pattern and more importantly, significantly reduce com-

munication and storage overhead compared to the other ORAM schemes. Particularly, the

difference between querying the same block and querying randomly picked block for many

times is negligible. The user-side storage remains at a small constant value and the average

communication overhead is small.

The rest of the thesis is organized as follows: Chapter 2 presents related works. Chapter 3

introduces problem statement. Chapter 4 describes design of S-ORAM. Chapter 5 details im-

plementation of S-ORAM. The evaluation results are reported in Chapter 6. Finally, Chapter 7

concludes this thesis.
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CHAPTER 2. RELATED WORK

2.1 Theoretical ORAM

Oblivious RAM was first proposed by Goldreich and Ostrovsky [Goldreich (1987); Goldreich

and Ostrovsky (1996); Ostrovsky (1990)] for the purpose of protecting software from piracy and

efficient simulation of programs on oblivious RAMs. Two solutions were elaborated. The first

solution, called Square-Root, has high complexity so only served as a preliminary step towards

the second solution, the Hierarchical solution. The Hierarchical solution makes any program

oblivious by replacing N stored items with O(NlogN) items and replacing a direct access to

an item in RAM with O(log3N) accesses to RAM.

The high-level description of Ostrovskys hierarchical solution can be stated as follows: there

is a sequence of buffers whose sizes grow at a geometric rate, and smaller buffers are reshuffled

into larger ones as they fill up. In the original work [Ostrovsky (1990)], the buffers were standard

hash-tables with sufficiently large buckets, and a technique known as oblivious shuffling was

employed for reshuffling. Then, a slightly different and somewhat simpler reshuffling method

was proposed [Goldreich and Ostrovsky (1996)].

The efficiency of Oblivious RAM is measured by three main parameters: the amount of local

(client) storage, the amount of remote (server) storage, and the (amortized) overhead of reading

or writing an element. [Goldreich (1987)] used sub-linear local storage, while [Ostrovsky (1990);

Goldreich and Ostrovsky (1996)] both used a constant amount of local storage. Ostrovskys

hierarchical solution used O(nlogn) remote storage, and offered two different ways to perform

oblivious shuffling that led to either O(log4n) access overhead with a small hidden constant, or

O(log3n) access overhead with a large hidden constant.

Subsequent works improved upon Ostrovskys hierarchical solution. They can be roughly
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classified into two categories based on the data lookup technique used: hash-based ORAMs

and index-based ORAMs.

2.2 Hash-based ORAMs

Hash-based ORAMs [Goldreich and Ostrovsky (1996); Goodrich and Mitzenmacher (2010);

Goodrich et al. (2012); Goodrich and Mitzenmacher (2011); Goodrich et al. (2011); Kushilevitz

et al. (2012); Pinkas and Reinman (2010); Williams and Sion (2008)] use hash functions for data

lookup, and facilities such as buckets and stashes are required to deal with hash collisions. To

the best of our knowledge, among these ORAMs, the Balanced ORAM (B-ORAM) [Kushilevitz

et al. (2012)] achieves the best asymptotical communication efficiency.

In B-ORAM, the server-side storage is organized as a hybrid hierarchy with a total of logN
log logN

layers, where each layer consists of logN equal-size sub-layers. For the top O(log logN) layers,

the bucket-hash structure [Goldreich and Ostrovsky (1996)] is deployed and the remaining

layers are cuckoo-hash structures with a shared stash [Goodrich and Mitzenmacher (2010)].

Since each layer is extended to multiple sub-layers, the shuffling frequency is reduced while the

query overhead is increased; a balance is struck between the query and shuffling overheads.

The randomized shell-sort [Goodrich (2010)] is selected as the underlying oblivious sorting

algorithm for the shuffling process. In theory, the amortized communication overhead of B-

ORAM is O
(

log2 N
log logN

)
blocks per query. In practice, however, the overhead is on the magnitude

of log3N due to a large constant hidden in the above big-O notation; particularly, querying

one data block may require the user to access at least 1000 data blocks, which may not be

acceptable in many practical applications.

2.3 Index-based ORAMs

Index-based ORAMs [Shi et al. (2011); Stefanov et al. (2013); Stefanov and Shi (2013);

Stefanov et al. (2011)] use an index structure for data lookup. Therefore, they requires that

the user-side storage stores the index table, which is feasible only if the number of data blocks

is not quite large. Otherwise it will greatly increase user-side storage. When the user-side
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storage cannot afford to store the index, it can outsource the index table to the server in a

way similar to storing real data blocks at the cost of increased communication overhead. And

the index outsourcing can be done recursively. The Path ORAM (P-ORAM) [Stefanov et al.

(2013)] outperforms all other schemes in this category.

In P-ORAM, the server-side storage is organized as a binary tree in which each node contains

a constant-size bucket for storing data blocks. Initially, data blocks are randomly stored at

leaf nodes, and an index structure is maintained to record the mapping between the IDs of

data blocks and the IDs of the leaf nodes storing the blocks. Based on the index, a data query

process retrieves all blocks on the path that contains the query target block and then moves

the target block to the root node. In addition, a background eviction process is performed after

each query process, to gradually evict blocks from the root node to nodes of lower-height so as

to avoid or reduce node overflowing. The index can also be outsourced to the server and stored

in a similar binary tree. Besides, to keep bucket size constant at each node, a user-side storage

whose size is a logarithmic function of the number of data blocks is needed to form a stash.

P-ORAM achieves a communication overhead of O
(

log2 N
log(Z/ logN)

)
·ω(1) blocks per query, where

Z is data block size and ω(1) is a security parameter. Though the communication overhead

is considered to be acceptable in practice [Stefanov et al. (2013)], the overhead of server-side

storage, which is about 32N blocks, may pose as a big cost to the user.
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CHAPTER 3. PROBLEM STATEMENT

3.1 System Model

We consider a system composed of a user and a remote storage server, which is similar to

existing ORAM constructions [Goldreich and Ostrovsky (1996); Goodrich and Mitzenmacher

(2010); Goodrich et al. (2012); Goodrich and Mitzenmacher (2011); Goodrich et al. (2011);

Kushilevitz et al. (2012); Pinkas and Reinman (2010); Williams and Sion (2008)]. Initially the

user exports a large amount of data to store at the server, and wishes to hide from the server

both the content of data and the pattern of his/her accesses to the data. The content of data

can be secured with encryption techniques. But new algorithms are needed to protect user’s

access pattern.

Here we assume that data is stored and accessed in the unit of blocks to simplify the

problem. This assumption is practical because file systems usually store data in blocks. We

use a unique block id to identify each block. The typical size of a block ranges from 32 KB to

256 KB [Stefanov et al. (2011)]. Let N denote the total number of data blocks user outsourced

to the server.

Each request from the user can be one of the following types:

• read a data block D of unique ID i from the storage, denoted as a 3-tuple (read, i,D); or

• write a data block D of unique ID i to the storage, denoted as a 3-tuple (write, i,D).

From the server side, a user’s access pattern can be one of the following types:

• retrieve (read) a data block D from a location l at the remote storage, denoted as a

3-tuple (read, l,D); or
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• upload (write) a data block D to a location l at the remote storage, denoted as a 3-tuple

(write, l,D).

3.2 Threat Model

In the threat model we make three assumptions. First the user is trusted. Operations

made by the user before transmitting are considered to be secure. Second network connection

between the user and the server, such as data transmission, is assumed to be secure. Techniques

such as SSL [Freier et al. (2011)] can effectively achieve this. Third the server is assumed to

behave honestly according to the user’s request but to be curious. The server may try to figure

out the user’s access pattern. And our goal is to prevent this happen.

Intuitively, an ORAM system is considered secure if the server learns nothing about the

user’s data access pattern. The definition of the security of S-ORAM is inherited from the

standard security definition of ORAMs [Goldreich and Ostrovsky (1996); Stefanov et al. (2013,

2011)]. It is defined as follows [Jingsheng Zhang (2014)]:

Definition Let ~x = 〈 (op1, i1, D1), (op2, i2, D2), · · · 〉 denote a private sequence of the user’s

intended data requests, where each op is either a read or write operation. Let A(~x) = 〈

(op′1, l1, D
′
1), (op′2, l2, D

′
2), · · · 〉 denote the sequence of the user’s accesses to the remote storage

(observed by the server), in order to accomplish the user’s intended data requests. An ORAM

system is said to be secure if (i) for any two equal-length private sequences ~x and ~y of the

intended data requests, their corresponding observable access sequences A(~x) and A(~y) are

computationally indistinguishable; and (ii) the probability that the ORAM system fails to

operate is negligibly small, i.e., O(N− logN ).
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CHAPTER 4. SYSTEM DESIGN

4.1 Overview

The main contribution of S-ORAM is that it makes better use of the large block size to

improve the efficiency. This is because a large-scale storage system usually stores data in blocks

and such a block typically has a large size. But most existing ORAM constructions treat data

blocks as atomic units for query and shuffling, and do not factor block size into their designs,

which may increase communication and storage overhead unnecessarily.

Based on the observation, S-ORAM does not treat data blocks as atomic units. Instead, it

introduces the concept of piece and segment to make better use of large-size blocks.

Piece is the unit of data shuffling in S-ORAM while most existing ORAM use block as

shuffling unit. A block is divided into pieces. The size of a piece is much smaller than a block.

With the same size of user-side storage, shuffling data in pieces is much more efficient than

shuffling in blocks.

Segment is introduced to improve query efficiency. In S-ORAM, the server-side storage is

organized in hierarchy with single-segment and multi-segment layers. Each segment contains

of an encrypted index block and several encrypted data blocks. The index block maintains the

mapping between data block IDs and their locations within the segment. Thus, for each query

in a segment, only the index block and the intended block need to be accessed. Multi-segments

layers are introduced because one single index block may not be able to store all the mapping

in that layer.
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4.2 Storage Organization

4.2.1 Data Block Format

In S-ORAM, data are stored in data blocks, which is the unit for user to query. The

difference between S-ORAM and other existing ORAMs is that, each block is divided into

pieces, as shown in Figure 4.1. The size of each piece is z = logN bits long, where N is the

total number of user outsourced data blocks. The first piece of a data block contains the ID of

it and the remaining pieces store the actual data content.

Figure 4.1 Plian-text Block Structure

4.2.2 Data Block Encryption

lain-text data blocks need to be encrypted before exporting to server. In S-ORAM data

blocks are encrypted piece by piece with a secret key k, as shown in Equation 4.1 and in

Figure 4.2 [Jingsheng Zhang (2014)]:

ci,0 = Ek(ri), where ri is a random number;

ci,1 = Ek(ri ⊕ di,1);

ci,2 = Ek(ci,1 ⊕ di,2);

· · · ,

ci,P−1 = Ek(ci,P−2 ⊕ di,P−1).

(4.1)

The encrypted data block (hereafter called data block for brevity) is one more piece larger

than plain-text data block. The details of encryption method is described in Section 5.5.
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Figure 4.2 Data Block Format in S-ORAM [Jingsheng Zhang (2014)]

4.2.3 User-side Storage

In S-ORAM user-side storage is of constant size. Particularly, it consists of two parts:

permanent storage and cache (temporary storage). Permanent storage is used to store user’s

secret information, including three parts:

• Query Counter. It keeps track of the number of queries that the user makes. And it

triggers data shuffling to achieve obliviousness.

• Secret Key. It is used for data block encryption and decryption. The secret key remains

the same during the whole procedure.

• Hash Function. The user keeps a hash function for each T2-layers. It can map a data

block to one of the segments in the layer.

Cache is used for buffering and processing queried data, including encryption, decryption,

shuffling and oblivious sorting. In S-ORAM the size of it is fixed to 2 data block size. Compared

to cache, the size of permanent storage is much smaller. So when compute user-side storage,

permanent storage can be negligible.
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4.2.4 Server-side Storage

Data blocks are stored in a hierarchy structure in server as shown in Figure 4.3. The layers

are divided into three groups as follows.
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Figure 4.3 Server-side Storage Organization [Jingsheng Zhang (2014)]

(1)Layer 1. The top layer is called layer 1, which can contain at most 4 data blocks. For

each query all blocks in this layer will be downloaded to user-side storage. And after each query

they will be uploaded back to server along with one more data block.

(2)T1 Layers: Single-Segment Layers. Layers from layer 2 to layer L1 = b2 log logNc belong

to T1. L1 is set to b2 log logNc is to let the layers in T2 starts with 2 segments. For each layer

in T1, it consists of an encrypted index block Il and 2l+1 data blocks. The index block is of

the same size of a data block, and has 2l+1 entries. Each entry corresponds to a data block in

the segment with three fields: Data ID, Location and Access Bit. Data ID and Location forms

a mapping relation from data blocks to its location in that segment. Access Bit is set to be 1

if that position has been accessed before. Otherwise it’s 0. At most half of the data blocks are

real data blocks as formatted in Figure 4.2, while the rest are dummy blocks each with ID 0
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and random content, as illustrated in Figure 4.4.
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Figure 4.4 T1-layer Structure [Jingsheng Zhang (2014)]

(3)T2 Layers: Multi-Segment Layers. Layers from layer L1 + 1 to the bottom layer L2 =

logN belong to T2. Segments are introduced in T2-layers. Specifically each layer in T2 consists

of Wl = d 2l

log2 N
e segments, each of which is of the same structure as T1-layer, except that each

segment consists of 3 log2N data blocks.

The reason that each segment in T2-layer includes 3 log2N data blocks is to make sure

that, an index with a block size can contain all the blocks information in a segment (regardless

whether at a T1-layer or T2-layer). In above storage structure, the index block of a segment

has at most 3 log2N entries. As each entry contains three fields: ID of the data block (needing

logN bits), location of the data block in the segment (needing log(3 log2N) bits), and access bit,

an index block needs at most 3 log2N [logN + log(3 log2N) + 1] bits. In the existing studies of

practical ORAM schemes, N ≤ 236 is considered large enough to accommodate most practical

applications [Stefanov et al. (2011)]. As the size of an index block is less than 32 KB, it can fit

into a typical data block.

4.2.5 Storage Initialization

Before any query or shuffle request sent to the server, storage on both server and client

should be initialized. The user initializes the S-ORAM system as follows.

(1) Randomly pick a secret key k in user-side storage.

(2) Generate a one-way hash function HL2(·) for the bottom layer.
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(3) Encrypt N plain-text data blocks into blocks Di where i = 1, · · · , N with the secret key

k in the format illustrated by Figure 4.2.

(4) 2N dummy blocks are randomly generated and encrypted in the same way.

(5) Apply L2 shuffling algorithm 4.4.2 to these 3N data blocks. Upload them to layer L2

of the server storage.

(6) Upload a dummy block D to the server and let the server know it is a dummy block.

4.3 Data Query

The data query algorithm is as described in Algorithm 1. When the user queries a data

block, two blocks are accessed subsequently for each layer, index block and a data block.

More specifically, if the user want to query a data block Dt of ID t, it consists of four phases.

In Phase I, all blocks in layer 1 are retrieved and decrypted, trying to find Dt.

In Phase II, layers in T1 are accessed. Each non-empty layer is accessed top down. For each

layer, the index block is first retrieved and decrypted. If Dt can be found in the index block,

record the location of Dt, set the corresponding access bit to 1 in index block, re-encrypt and

upload it back to server. Retrieve Dt as the user knows its position. If Dt is not found in that

layer, randomly pick a dummy block Dt′ whose access bit is 0, set its access bit to 1 upload

the index block back to server. Retrieve Dt′ and discard it. Each time when a data block is

retrieved, the server will use a dummy block to fill in that position.

In Phase III, layers in T2 are accessed. Each non-empty layer is accessed top down as

follows. If Dt has not been found before layer l, segment s = Hl(t) of layer l is picked to access.

Treat that segment as a layer in T1. Then the procedure is the same as Phase II. If Dt has

already been found at a layer prior to layer l, a segment is randomly selected from layer l. Then

treat this segment as a layer in T1 and follow the procedure in Phase II.

In Phase IV, the user need to re-encrypt and upload blocks queried from layer 1 back, along

with another a data block. If the target block is not found in layer 1, the data block is the

target data block. Otherwise the data block is a dummy block.
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4.4 Oblivious Shuffling

Data shuffling is used to perturb data block locations to prevent server learning which block

before shuffling corresponds to which block after shuffling. It may happen at all layers of the

storage hierarchy except layer 1. Data shuffling at layer l (l = 2, · · · , L2 − 1) is triggered when

total number of queries is an odd multiple of 2l. At this moment, layer l is empty and all layers

before layer l are full. During data shuffling at layer l, all data blocks in layers before layer

l are re-distributed randomly to layer l. Dummy blocks may be introduced to make layer l

full. When the total number of queries is any multiple of N , data shuffling will happen at the

bottom layer L2. It will re-distribute data blocks in the entire storage to fill the bottom layer

and clear layers above.

4.4.1 Shuffling a T1-layer l

Each T1-layer contains an index block and a certain number of data blocks, similar to a

segment. In S-ORAM shuffling at a T1-layer will call segment-shuffling algorithm. Segment-

shuffling algorithm is shown in Algorithm 2. Here the user-side cache contains three buffers

named B0, B1, and B2. Each of them may temporarily store up to 2m2 data pieces. m is a

system parameter with the value of 2 in my case.

The segment-shuffling algorithm includes two phases. In Phase I the first two pieces of all

n blocks are shuffled. First pieces can be decrypted using the secret key. And they can be

further used to decrypt second pieces. After that, IDs of the blocks are obtained and permuted

according to a newly picked permutation function, and then re-encrypted using the key and

newly-picked random numbers. After that, the encrypted new random numbers and encrypted

shuffled block IDs are uploaded.

In Phase II, the remaining pieces of all n blocks are shuffled. They are retrieved and

decrypted level by level. Then shuffle them according to the new permutation function picked

in Phase I, re-encrypt them, and upload them back to the server. For example, we can have

(p − 1)th old order pieces and (p − 1)th new order pieces at some time. In order to get pth

new order pieces, first retrieve pth old order pieces, and decrypt them with (p− 1)th old order
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pieces. Then permute them with the permutation, and re-encrypt them with (p − 1)th new

order pieces. Thus we can get pth new order pieces.

When a T1-layer l (2 ≤ l ≤ L1) need to be shuffled, before calling segment-shuffling

algorithm, the server need to make 4 copies of dummy block in order to make that layer full.

4.4.2 Shuffling a T2-layer l

Before shuffling a T2-layer l, the user need to update the hash function used for it and let

the server make 4 · 2l − w copies of the dummy blocks (w is the number of blocks above layer

l). Thus there are 4 · 2l data blocks in total to be shuffled. This is to ensure that the following

5 rounds of shuffling can be done successfully.

(1)Round I: Scanning. In this round the user retrieve all the blocks in layer l, and label

each block with two tags. For each real data block of ID i, use Hl(i) as its first-tag and 0 as

its second-tag. All dummy blocks have ∞ as their second-tag. For each first tag value j from

1 to d 2l

log2 N
e, label exactly 3 log2N dummy blocks with j as their first-tag. And label the rest

dummy blocks with ∞ as their first-tag.

(2)Round II: Oblivious Sorting.

Based on the tag-tuple labeled in Round I, sort all the blocks obliviously in the non-

descending order using the oblivious data sorting algorithm presented in Section 4.5. The

sorting will first compare first-tag. If two blocks are with the same first-tag, it will compare

the second tag. After this round, for each first-tag real data blocks are before dummy blocks.

(3)Round III: Scanning. In this round the sorted sequence of blocks is scanned and divided

into segments each containing 3 log2N blocks. For each first-tag j, count 3 log2N blocks. And

after that, change the first-tag of the rest blocks with first-tag j to ∞. Thus there will be

exactly 3 log2N data blocks for each first-tag.

(4)Round IV: Oblivious Sorting. In this round it sorts all the blocks again using oblivious

sorting. As a result, all the blocks with∞ as the first-tag will move to the end of the sequence.

Then, the redundant blocks are removed.

(5)Round V: Scanning. The first four rounds can ensure that the blocks in layer l are

distributed correctly. The last round is to rebuild an index block for each segment in layer l.
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Note that even though the bottom layer L2 belongs to T2-layers, there are two main

differences between layer L2 shuffling and T2-layer shuffling. One difference is that when

layer L2 needs to be shuffled, the entire storage shall be shuffled and all blocks from every

layer shall participate in data shuffling. Hence, the total number of blocks to be shuffled is

w′ = 4 + 22+1 + · · · + 2L1+1 + 3 · 2L1+1 + · · · + 3 · 2L2−1 + 3 · 2L2 < 6N . Second difference is

that, in the five rounds, Round I scanning and Round II oblivious sorting are performed on

w′ < 6N blocks instead of 4 · 2l blocks in T2-layer shuffling. After Round II oblivious sorting,

only the first 4N blocks participate in Rounds III, IV, and V. The rest of shuffling at layer L2

are identical to the ones in T2-layer shuffling.

4.5 Oblivious Sort

In S-ORAM, an m-way oblivious sorting scheme based on the m-way sorting algorithm

in [Lee and Batcher (1995)] is applied. It sorts data in pieces rather than blocks, which

exploits the user cache space more efficiently and thus achieves a better performance than the

existing algorithms, particularly when the block size is relatively large (which is common in

practice [Stefanov et al. (2011)]).

As shown in Algorithm 3, to sort a set D of n blocks, the m-way oblivious sorting algorithm

works recursively as follows: if n ≤ 2m2, a segment-sorting algorithm similar to the segment-

shuffling algorithm is applied to sort the n blocks at the communication cost of O(n) blocks;

otherwise, the n blocks are split into m subsets each of n
m blocks, the m-way oblivious sorting

algorithm is applied to sort each of the subsets, and finally a merging algorithm is used to merge

the sorted subsets into a sorted set of n blocks.

In Algorithm 3, two subroutines are called, which are the segment-sorting algorithm (Algo-

rithm 4) and the merging algorithm (Algorithm 5). The segment-sorting algorithm is based on

the segment-shuffling algorithm (Algorithm 2) with the difference that in segment-sorting algo-

rithm pieces are permuted based on their tags value, while segment-shuffling algorithm pieces

are randomly permuted. The merging algorithm first divides blocks into m groups recursively

until the blocks number of each group is less than 2m2, which means it can call Algorithm 3

to sort this group of blocks at one time. After all groups are sorted, merge them together.
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Algorithm 1 Query data block Dt of ID t [Jingsheng Zhang (2014)].

1: found← false

2: Retrieve & decrypt blocks in layer 1

3: if Dt is found in layer 1 then found← true

4: for each non-empty layer l ∈ {2, · · · , L1} do

5: Retrieve & decrypt Il – index block of the layer

6: if (found = false ∧ t ∈ Il) then

7: Set the access bit of Dt to 1 in Il
8: Re-encrypt & upload Il
9: Retrieve & decrypt Dt

10: found← true

11: else

12: Randomly pick a dummy Dt′ with access bit 0

13: Set the access bit of Dt′ to 1 in Il
14: Re-encrypt & upload Il
15: Retrieve & discard Dt′

16: end if

17: end for

18: for each non-empty layer l ∈ {L1 + 1, · · · , L2} do

19: if (found = false) then

20: s← Hl(t)

21: else

22: s is randomly picked from {0, · · · ,Wl − 1}
23: end if

24: Retrieve & decrypt Isl – index block of segment s

25: if (found = false ∧ t ∈ Isl ) then

26: Set the access bit of Dt to 1 in Isl
27: Re-encrypt & upload Isl
28: Retrieve & decrypt Dt

29: found← true

30: else

31: Randomly find a dummy Dt′ with access bit 0

32: Set the access bit of Dt′ to 1 in Isl
33: Re-encrypt & upload Isl
34: Retrieve & discard Dt′

35: end if

36: end for

37: if (Dt is found in layer 1) then

38: Encrypt an extra dummy D in local storage

39: else

40: Re-encrypt Dt in local storage

41: end if

42: Upload all blocks in local storage back to layer 1
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Algorithm 2 Segment-shuffling of Blocks (Di1 , · · · , Din) [Jingsheng Zhang (2014)].

/* Phase I: shuffling first two pieces of all blocks */

1: Retrieve (ci1,0, · · · , cin,0) to B0

2: Decrypt B0 to (ri1,0, · · · , rin,0) using k

3: Retrieve (ci1,1, · · · , cin,1) to B1

4: Decrypt B1 to (i1, · · · , in) using k and B0

5: Store (i1, · · · , in) in B2

6: Pick & store a random permutation in π

7: Permute B2 to (i′1, · · · , i′n) according to π

8: Generate, re-encrypt & upload entries of a new index block based on B2 and π

9: for each i′j in B2 do

10: Randomly picks r′i′j
11: Encrypt r′i′j

to c′i′j ,0
using k, and upload it

12: Encrypt i′j to c′i′j ,1
using k and c′i′j ,0

13: end for

14: Upload B2 to designated locations

/* Phase II: shuffling remaining pieces of all blocks */

15: for each v ∈ {2, · · · , P − 1} do

16: Retrieve (ci1,v, · · · , cin,v) to B0

17: for each j ∈ {1, · · · , n} do

18: Decrypt cij ,v to dij ,v using k and cij ,v−1 in B1

19: Replace cij ,v−1 in B1 by cij ,v from B0

20: Replace cij ,v by dij ,v in B0

21: end for

22: Permute B0 to (di′1,v, · · · , di′n,v) according to π

23: Encrypt (di′1,v, · · · , di′n,v) in B0 using k and B2

24: Replace B2 by B0

25: Upload B2 to designated locations

26: end for

Algorithm 3 M-way Oblivious Sorting (D: a set of data blocks) [Jingsheng Zhang (2014)]

1: if (|D| ≤ 2m2) then

2: Apply Algorithm 4 to sort D
3: else

4: Split D into m equal-size subsets of blocks D0, · · · ,Dm−1
5: for each i (0 ≤ i ≤ m− 1) do

6: Apply Algorithm 3 to sort Di

7: end for

8: Apply Algorithm 5 to merge D0, · · · ,Dm−1
9: end if
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Algorithm 4 Segment-sorting of Blocks (Di1 , · · · , Din) [Jingsheng Zhang (2014)].

1-5: the same as in Algorithm 2

6: Construct a permutation function that sorts B2 in the non-decreasing order

7: the same as in Algorithm 2

8: blank

9-14: the same as in Algorithm 2

15: for each v ∈ {2, · · · , P} do

16-26: the same as in Algorithm 2

Algorithm 5 Merging Sorted-subsets of Blocks (D0, · · · ,Dm−1) [Jingsheng Zhang (2014)]

/* Regroup blocks */

1: s = |D0|
2: for each i (0 ≤ i ≤ m− 1) do

3: for each j (0 ≤ j ≤ m− 1) do

4: Add Di[j],Di[m+ j] · · · ,Di[s−m+ j] to D′j
5: end for

6: end for

/* Recursively merge regrouped blocks */

7: for each j (0 ≤ j ≤ m− 1) do

8: if |D′j | ≤ 2m2 then

9: Apply Algorithm 4 to sort D′j
10: else

11: Apply Algorithm 5 to merge sort D′j
12: end if

13: end for

/* Merge sorted blocks */

14: for each i (0 ≤ i ≤ s
m − 2) do

15: for each j (0 ≤ j ≤ m− 1) do

16: Add D′j [im],D′j [im+ 1], · · · ,D′j [im+ 2m− 1] to D′′i
17: end for

18: end for

19: for each i (0 ≤ i ≤ s
m − 1) do

20: Apply Algorithm 4 to sort D′′i
21: end for
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CHAPTER 5. IMPLEMENTATION

5.1 FUSE

5.1.1 Introduction

Filesystem in Userspace (FUSE) is an operating system mechanism for Unix-like computer

operating systems that lets non-privileged users create their own file systems without editing

kernel code. This is achieved by running file system code in user space while the FUSE module

provides only a “bridge” to the actual kernel interfaces. Users just write code that implements

file operations like open(), read(), and write(). When the file system is mounted, programs

are able to access the data using the standard file operation system calls, which call the afore

mentioned code developed by the user.

Released under the terms of the GNU General Public License and the GNU Lesser General

Public License, FUSE is free software. This implementation of FUSE is available for Linux,

FreeBSD, NetBSD, OpenSolaris, Minix 3, Android and OS X.

FUSE is built upon VFS, same level with Ext2, Ext3 and other real file systems. FUSE

is more like a converter. So compared with these traditional file systems, it has two major

advantages:

1) Convenience. Traditional file systems are defined on OS kernel level. So in order to

apply a new file system, the OS kernel needs to be modified, which is very inefficient. But

programming with FUSE is much easier and faster, which significantly reduces workload for

writing a new file system.

2) Flexibility. There are very limited libraries and a lot of limitations available when

developing for traditional file systems in kernel space. But as FUSE runs in user space level, it

can call user level libraries, which are abundant. It can even use HTTPS and FTP protocols
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to create remote file systems.

5.1.2 Preliminary: Linux File System

As FUSE provides a library for developers to build new file systems for Linux, it’s necessary

to have a basic knowledge about Linux file system. A file system is an organization of data

and metadata on a storage device. A standard interface is needed because there are many

types of file systems and media. The Linux file system interface is implemented as a layered

architecture, separating the user interface layer from the file system implementation and the

drivers that manipulate the storage devices [Jones (2007)]. For example, let’s consider the read

function call, which allows some number of bytes to be read from a given file descriptor. The

function does not need to know file system types, or what particular storage medium upon

which the file system is mounted. Yet, when the read function is called for an opened file,

the data is returned as expected. FUSE provides an interface for developers to override file

functions such as read() and write().

FUSE works in user space level in the file system architecture. The architecture in Figure

5.1 shows the relationships between the major file system related components in both user space

and the kernel. User space contains the applications (FUSE in our implementation) and the

GNU C Library (glibc), which provide the user interface for the file system calls. The system call

interface acts as a switch, delivering system calls from user space to the appropriate endpoints

in kernel space. The Virtual File System (VFS) is the primary interface to the underlying file

systems. This component exports a set of interfaces and then abstracts them to the individual

file systems, which may behave very differently from one to another. Each individual file system

implementation, such as Ext2, JFS, and so on, exports a common set of functions that is used

by the VFS. The buffer cache buffers requests between the file systems and the block devices

that they manipulate. For example, read and write requests to the underlying device drivers

migrate through the buffer cache. This allows the requests to be cached there for faster access,

rather than going back out to the physical device. The buffer cache can be managed as a set

of least recently used (LRU) lists [Jones (2007)].

There are a common set of objects that implement file system in user space, which consists of
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Figure 5.1 Architecture of the Linux Filesystem [Jones (2007)]

superblock, inode, dentry, and file [Jones (2007)]. At the root of each file system is the superblock,

which describes and maintains state for the file system. Every object that is managed within

a file system (file or directory) is represented in Linux as an inode. The inode contains all the

metadata to manage objects in the file system, including the operations that are possible on

it. Another set of structures, called dentries, is used to translate between names and inodes,

for which a directory cache exists to keep the most-recently used around. The dentries also

maintain relationships between directories and files for traversing file systems. Finally, a VFS

file represents an open file (keeps states for the open file such as the write offset, and so on).

Among these objects, inode is most widely used in our implementation. The inode represents

an object in the file system with a unique identifier. The individual file systems provide methods

for translating a filename into a unique inode identifier and then to an inode reference. A portion

of the inode structure is shown below along with a couple of the related structures. Each of

these structures refers to the individual operations that may be performed on the inode. For

example, inode operations define those operations that operate directly on the inode.

struct inode {

unsigned long i i n o ;
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o f f t i s i z e ;

struct inode ∗ i n ex t , ∗ i p r e v ;

struct i n o d e o p e r a t i o n s ∗ i o p ;

. . .

}

5.1.3 Principle of Operation

FUSE includes three modules: user space library, kernel module and mount tools. User

space library provides developers with programming interfaces. There are two sets of interfaces,

struct fuse lowlevel ops and struct fuse operations. Developers write their own file system by

registering their own functions to these structures. In our implementation struct fuse operations

is used. A portion of its structure is shown below. Kernel module (fuse.ko) provides file system

framework to support developers’ functions, defined in user space. Mount tools are used to

mount FUSE file system.

struct f u s e o p e r a t i o n s my oper = {

. g e t a t t r = my getattr ,

. open = my open ,

. read = my read ,

. des t roy = my destroy ,

. . .

} ;

The working process of FUSE is as shown in Figure 5.2. In this figure, example/hello is

an executable program linked to FUSE library. /tmp/fuse is mounted directory that will run

this file system. The FUSE kernel module and the FUSE library communicate via a special

file descriptor which is obtained by opening /dev/fuse. This file can be opened multiple times,

and the obtained file descriptor is passed to the mount syscall, to match up the descriptor

with the mounted filesystem. When example/hello is executed, a user space file system, which

is implemented in example/hello, will be mounted to current system with the mount point
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is /tmp/fuse. When user runs ls -l /tmp/fuse, corresponding VFS functions are called, then

delivered to FUSE kernel module. And kernel module will call example/hello functions based

on a mapping.

Figure 5.2 Working Process of FUSE [Szeredi (2001)]

5.2 Overview of Our Implementation

In our system model, which is described in Chapter 3, there are user side and server side.

As shown in Figure 5.3, there are three parts in our system model: Client, FUSE Server and

Storage Server. Among them, Client and FUSE Server are running locally and are trusted,

while Storage Server which stores user’s data is not trusted. Our goal is to prevent storage

server from learning user’s access pattern, meanwhile the user can operate normally.

FUSE is already introduced in Section 5.1. The rest of this chapter will cover my implemen-

tation with FUSE interfaces, basic data structures used in the system, storage initialization,

encryption method, query and shuffling detailed implementation, communication protocol and

storage-side buffer.
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Figure 5.3 System Model

5.3 Interface with FUSE

Based on the description above,the implementation is to write customized file operation

functions and register them with FUSE library. This way users can operate on files “locally”

in appearance, but actually it is communicating with server using S-ORAM method in the

background. The major customized functions are shown as blow. Among all the interfaces

provided by FUSE, some of them may not be necessary but they would better be implemented

because otherwise once a function is called but it’s not defined, the file system will go wrong.

Each function returns 0 on success, and returns negative value otherwise. The details of each

major function:

struct f u s e o p e r a t i o n s my oper = {

. i n i t = my init ,

. g e t a t t r = my getattr ,

. r e add i r = my readdir ,

. read = my read ,

. wr i t e = my write ,

. des t roy = my destroy ,

. . .

} ;

(1) my init():

void ∗my in i t ( struct f u s e c o n n i n f o ∗conn ) { . . . }
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This function initializes file system, and is called before other file operation functions. In my

implementation it will connect to the server and establish a socket connection. Throughout

the lifetime of the file system, it will only use this socket connection with the server.

Also, a log file name is passed to it so that when it is mounted, a log file is created to

log activities. It’s done by a data structure struct fuse context. It has a field named void*

private data, a pointer to arbitrary data stored by the file system. So we can pass some data

to the file system before it is mounted, such as parameters user enters when running it. FUSE

allows developers store and access data that they defined their own by this way.

(2) my getattr():

int my getattr ( const char ∗path , struct s t a t ∗ s t a t bu f ) { . . . }

This function is to get status of a file or a directory. It passes in a file or directory’s path and

need to fill in its status to statbuf. FUSE does not provide interface to operate on inode directly,

instead it allow developers to change file status by providing struct stat, which is defined in

Linux. Below is its structure.

struct s t a t {

dev t s t dev ; /∗ ID of d e v i c e c o n t a i n i n g f i l e ∗/

i n o t s t i n o ; /∗ inode number ∗/

n l i n k t s t n l i n k ; /∗ number o f hard l i n k s ∗/

o f f t s t s i z e ; /∗ t o t a l s i z e , in b y t e s ∗/

. . .

}

In our model when the user tries to read or write some file, the file actually does not exist

in user’s local storage. So when this function is called, we cannot call system call lstat(), which

can fill in the statbuf if the file locates locally. Instead, we need to fill in it manually. As each

block size is fixed and total block number is fixed, we can do it manually corresponding to

different path. If it equals to “\”, which is root folder path, fill in total block number. If it

equals to a block id, fill in a block size. Other fields in struct stat remain default.

(3) my readdir():
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int my readdir ( const char ∗path , void ∗buf , f u s e f i l l d i r t f i l l e r ,

o f f t o f f s e t , struct f u s e f i l e i n f o ∗ f i ) { . . . }

Similar to my getattr(), given a directory path, we need to fill in buf with files information in

this directory using fuse fill dir t filler. Once user initialize storage at server, block ids and

block numbers are known to the user. So we can also fill in the information manually. As a

result, when user goes to FUSE mounted directory and run ls, all block ids are shown to the

user. This process does not need to communicate with server because once server storage is

initialized, in our system model block can neither be added deleted. struct fuse file info keeps

information of this directory, no need to change it in this case.

(4) my read():

int my read ( const char ∗path , char ∗buf , s i z e t s i z e ,

o f f t o f f s e t , struct f u s e f i l e i n f o ∗ f i ) { . . . }

Every time a user want to read the content of a file, such as use cat command, FUSE will call

my read() function. In this procedure client will need to call query() function, described in 4.3,

which communicate with the server and follows query algorithms in S-ORAM. After the target

block is retrieved to user storage, open it locally and fill the content to buf.

(5) my write():

int my write ( const char ∗path , const char ∗buf , s i z e t s i z e ,

o f f t o f f s e t , struct f u s e f i l e i n f o ∗ f i ) { . . . }

The procedure of my write() is quite similar to my read(). It also calls query() function. The

difference is that it overrides target block with changed one locally. So at the end of query()

when client need to upload local blocks back, new block is uploaded instead of the old one.

(6) my destroy():

void my destroy ( void ∗ userdata ) { . . . }

This function is called when FUSE file system is unmounted. It will close socket connection

with server and FUSE will stop working.
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5.4 Data Structure

There are five major data structures in my implementation. They are designed to fit the

whole system and are used everywhere.

(1) PIECE:

typede f s t r u c t {

char data [ 8 ] ;

}PIECE ;

A block consists of pieces. In theory the size of a piece smaller, the better. But it must be large

enough to store a block id and fit encryption method. Because in our implementation DES is

chosen as the encryption method, which requires data of at least 64 bits, we set a piece size as

64 bits.

(2) FIRST PIECE:

typedef struct {

int b l o c k i d ;

char tag1 [ 3 ] ;

char tag2 ;

}FIRST PIECE ;

The first piece of a data block stores meta data of this block while other pieces store real data.

It consists of block id and two tags. In GCC the size of int is 4 bytes. So an int variable can

represent up to 232 blocks, which is enough for our system. tag 1 will store segment number.

Given N < 232, segments number in a layer is up to 222. So three bytes, which can represent

up to 224 segments, is large enough. tag 2 is an supplement for tag 1 in shuffling. In theory

one bit is enough for tag 2 but for encryption and decryption convenience, we pad tag 2 to 1

byte to make FIRST PIECE the same size as other pieces.

(3)BLOCK:

typede f s t r u c t {

FIRST PIECE f i r s t p i e c e ;
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PIECE∗ p i e c e s ;

}BLOCK;

Each block is a file stored on the server. When a user calls query(), it should be returned with

a block of this structure. Encrypted block does not have first piece filed and has one more piece

than clear block.

(4)ENTRY:

typede f s t r u c t {

i n t b l o c k i d ;

char pos [ 3 ] ;

char a c c e s s ;

}ENTRY;

One ENTRY is one mapping relation from block id to position, along with access filed to

indicate whether this position has been visited or not. One bit is enough for access, but for

encryption and decryption convenience, it’s padded to 1 byte. Thus one entry will be 8 bytes,

same as a piece size.

(5)INDEX BLOCK:

typede f s t r u c t {

ENTRY e n t r i e s [ BLOCK SIZE/PIECE SIZE−1] ;

}INDEX BLOCK;

An index block is of the same size of a clear data block. It consists of entries. After encryption

its structure is the same as encrypted data block.

5.5 Encryption

In S-ORAM data blocks are encrypted piece by piece with a secret key k, which is mentioned

in Section 4.2.2. The encryption method Ek is Data Encryption Standard (DES). We use DES

as our encryption method as it can encrypt as low as 8 bytes data at one time, which is exactly

a piece size.
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The mode of operation we use is Cipher-block chaining (CBC). In CBC mode, each piece of

plain text is XORed with the previous cipher text block before being encrypted. This way, each

cipher text piece depends on all plain text pieces processed up to that point. To make each

block unique, an random vector must be used in the first block. Because in S-ORAM shuffling

is on pieces, this mode ensures that the client can sort blocks based on their tag values. Once

the client get the first piece of blocks in a segment, it can decrypt the rest pieces in that segment

level by level.

The DES algorithm implementation is based on OpenSSL library [Project (1998)]. It imple-

ments the basic cryptographic functions and provides various utility functions. DES encryption

and decryption can be done with three functions:

• void DES set odd parity( DES cblock *Key )

This function is to set the parity of the passed key to odd. The key is given by the user

and must be 8 bytes long.

• int DES set key checked( DES cblock *Key, DES key schedule *schedule )

It will check that the key passed is of odd parity and is not a week or semi-weak key. If

the parity is wrong, then -1 is returned. If the key is a weak key, then -2 is returned. If

an error is returned, the key schedule is not generated. The key schedule is an expanded

form of the key, used to speed the encryption process.

• void DES cfb64 encrypt( const unsigned char *in, unsigned char *out, long length,

DES key schedule *schedule, DES cblock *key, int *num, int enc )

Encryption and decryption happens in this function. It encrypts or decrypts a single 8

bytes DES cblock in CFB mode. As we only need to encrypt and decrypt data of 8 bytes,

the mode actually does not matter as long as it operates on 64 bits.

This function transforms the input data, pointed to by input, into the output data,

pointed to by the output argument. If the encrypt argument is non-zero, the input is

encrypted in to the output using the key schedule specified by the schedule argument, pre-
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viously set via DES set key. If encrypt is zero (DES DECRYPT), the input is decrypted

into the output.

5.6 Query

As mentioned in Section 5.3, query() function is the bridge between our FUSE Server and S-

ORAM design. It is also the only interface provided by S-ORAM implementation. Developers

only need to call this function and do not need to consider all the operations happening behind

it, including encryption, decryption, shuffling and communication, which makes the system

very convenient to use.

The input of query() is block id. It will be passed to Algorithm 1. In the implementation

of the algorithm there are three key functions.

(1)INDEX BLOCK getIndexBlock(int layer, int segment number, bool* empty)

When query a block, the user will retrieve an index block from each layer top down. This

function is called to retrieve the index block given its segment number and layer number. If

such index block does not exist in the server-side storage, it indicates that that layer is empty.

The function will set the boolean variable empty to true. Otherwise get the encrypted index

block from the server, decrypt and return it.

(2)ENTRY queryInThisLayer(INDEX BLOCK index block, int block id, bool found)

After get the index block of a segment, the user needs to check whether the target block

id can be found in that layer, if it has not been found yet. If yes, return its entry. Otherwise,

return an entry recording the information of a dummy block whose access bit is 0.

(3)void queryBlock(ENTRY entryToQuery, int layer, int segment, INDEX BLOCK* in-

dex block) Based on the entry returned by queryInThisLayer, this function will retrieve a data

block at the position on that layer. Then set the access bit of that position to 1 in the index

block. Re-encrypt it and upload it.
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5.7 Shuffling

The shuffling part basically follows algorithms described in Section 4.4 but in order to fit

our system model, some details need to be specific.

(1)Query Counter. The system maintains a global integer variable query counter from

the beginning to the end on the client side. Each time the client calls function query(),

query counter will increase by 1. It’s used to trigger shuffling and update hash function. The

way it triggers shuffling is explained in Section 5.7. Each T2-layer has a hash function and

when it is shuffled the hash function is updated with current query counter [See Section 5.7].

So the client need to maintain the value of query counter for each T2-layer. Each time shuffling

a T2-layer, the client need to store current value of query counter for that layer.

(2)Trigger of Shuffling. Each time when all layers before layer l is full, shuffling at layer

l should happen. This can be done by examining query counter. Based on the observation of

server-side storage organization, for any layer except layer 1, say layer l, it need to be shuffled

when the lth bit of query counter is 1 and all the bits before it are 0. The code is shown below.

int needShu f f l e ( int query counter ){

int i = 0 , x = query counter ;

while ( ( x != 0) && ( ( x&1) != 1)){

i ++;

x = x>>1;}

i f ( i >1) return i ;

return 0 ;

}

(3) Segment Shuffling. As is described in Section 4.4.1, it is used in T1-layer shuffling and

segment shuffling in T2-layer. In our model communication with server is involved. The flow

chart is shown in Figure 5.4.

During the process the server maintains an array of block pointers. Before shuffling, the

server create an array and store pointers of blocks to be shuffled in it. At first all pointers point

at the very beginning of each block. After then because pieces in a block is access sequentially,
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Figure 5.4 Flowchart of Segment Shuffling

we don’t need to control the pointers manually. When they point to the end of blocks, the

shuffling is also done.

(4)Hash Funtion Based on the design of S-ORAM, the value of the hash function in our

system need to be different if one of the three variables has changed: block id, layer number

and query counter. So these three variables are stored sequentially in a contiguous memory

space and then calculate its MD5 result as its hash value.

The MD5 algorithm operates on a 128-bit state, divided into four 32-bit words. These are

initialized to certain fixed constants. It then uses each 512-bit message block in turn to modify

the state. The processing of a message block consists of four similar stages, termed rounds; each

round is composed of 16 similar operations based on a non-linear function, modular addition,

and left rotation.
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5.8 Communication

The communication between client and server is based on TCP socket. A socket is an end

point of communication between two systems on a network. To be more precise, a socket is

a combination of IP address and port on one system. So on each system a socket exists for a

process interacting with the socket on other system over the network.

The system calls for establishing a connection are different for the client and the server, but

both involve the basic construct of a socket. A socket is one end of an interprocess communi-

cation channel. The two processes each establish their own socket.

The steps involved in establishing a socket on the client side are as follows:

• Create a socket with the socket() system call. The call to the function socket() creates

an UN-named socket inside the kernel and returns an integer known as socket descriptor.

• Connect the socket to the address of the server using the connect() system call. Informa-

tion like IP address of the remote host and its port is bundled up in a structure and a

call to function connect() is made which tries to connect this socket with the socket (IP

address and port) of the remote host.

• Send and receive data. Once the sockets are connected, the server sends the data on

client’s socket through client’s socket descriptor and client can read it through normal

read call on the its socket descriptor.

The steps involved in establishing a socket on the server side are as follows:

• Create a socket with the socket() system call.

• Bind the socket to an address using the bind() system call. This call assigns the details

specified in the structure serv addr to the socket created in the step above. The details

include, the family/domain (for Internet family of IPv4 addresses we use AF INET), the

interface to listen on(in case the system has multiple interfaces to network) and the port

on which the server will wait for the client requests to come.
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• Listen for connections with the listen() system call. After the call to listen(), this socket

becomes a fully functional listening socket.

• Accept a connection with the accept() system call. In the call to accept(), the server is

put to sleep and when for an incoming client request, the three way TCP handshake is

complete, the function accept() wakes up and returns the socket descriptor representing

the client socket.

• Send and receive data.

In our system once a socket connection is established between the client and the server, it

will be used for future communication until the client close it. Two categories of functions are

defined in this part:

(1) GET

The client call functions in this category to get data from the server. Usually one round is

enough. The client send a GET request along with a few parameters then wait at the socket.

The server receives the request and send corresponding data to client. The client will count

received data size. Once received data size reaches expected value it stops receiving. After

finishing sending data, the server will return to waiting for request on the socket.

(2) POST

This category consists of functions for client to post data to server. There are usually two

rounds in such a process. In first round The client send a POST request along with a few

parameters then wait at the socket. Once the server receives it sends READY back to the

client and wait for data. In the second round the client sends data to server. After server

finished receiving, it returns to wait for a new request.

5.9 Server-side Buffer

In server-side storage, data are stored in blocks. But segment shuffling is triggered, we need

to get and set the ith pieces of a set of blocks. So a buffer mechanism is needed to operate on

a certain level of pieces of a set of blocks. In my implementation, each time before segment
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shuffling, the server will open all the blocks in that segment and store the file pointers in an

array. Then the following two functions will be called to operate on the pieces.

char∗ getPieceArray ( int s i z e ){

PIECE∗ r e s = mal loc (PIECE SIZE∗ s i z e ) ;

int i ;

for ( i =0; i<s i z e ; i ++){

f r ead (& r e s [ i ] , PIECE SIZE , 1 , F i l e P o i n t e r s [ i ] ) ; }

return (char∗) r e s ;}

void se tPieceArray (PIECE∗ content , int s i z e ){

int i = 0 ;

for ( i =0; i<s i z e ; i ++){

f s e e k ( F i l e P o i n t e r s [ i ] , −s izeof (PIECE) , SEEK CUR) ;

f w r i t e (&content [ i ] , s izeof (PIECE) , 1 , F i l e P o i n t e r s [ i ] ) ;

}

}

getPieceArray() will read a piece-size data from each of the file pointers to form the pieces

array buffer. After processing the pieces array, setPieceArray is called to set the pieces array

back to blocks. Note that during this process piece level does not need to be given as we always

do this level by level. And file pointers will move automatically when we read or write from it.

We only need to move them a piece size back when we write it. This makes processing pieces

array more convenient.
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CHAPTER 6. EVALUATION

6.1 Settings

The evaluation is done in a MacBook Air laptop. Two virtual machines are created by

Virtual Box with the same configuration. One plays the client and the other plays the server.

The specific configurations of the MacBook Air and virtual machines are shown in Table 6.1.

In Host-only Mode, two virtual machines can be set in the same internal network so that they

can communicate with each other.

Configuration MacBook Air Virtual Machine

Operationg System OS X 10.9.2 Ubuntu 12.04 LTS

CPU 1.8 GHz Intel i5 with 2 processors 1.8 GHz Intel i5 with 1 processor

Storage Spcace 128 GB 20 GB

Memory 4 GB DDR3 1 GB DDR3

Network - Host-only Mode

FUSE Version - 2.9.2

Table 6.1 Experiment Environment

6.2 Security

To prove that our implementation can successfully protect the user’s access pattern, we

observe blocks access frequency from the server side. In the first experiment the client keeps

querying the same block. In the second experiment, the client queries blocks randomly. If

the access pattern of the two experiments are the same or very similar, the security of our

implementation can be demonstrated. Here, we set the total number of real data blocks to

N = 256 and querying times T = 100, T = 500 and T = 1000, respectively.

The results show that if we observe the frequency of each layer, there is no difference at all.
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The access patterns are exactly the same as shown in Table 6.2 and Table 6.3. So we choose

layer 3, layer 5 and layer 7 to see if we can tell any difference on certain layers. The results

when querying 1000 times are shown in Figure 6.1, Figure 6.2 and Figure 6.3. We can see that

the positions on a certain layer are access randomly. No access pattern is leaked.

Layer 1 2 3 4 5 6 7 8

Frequency when T = 100 150 48 48 48 36 36 0 100

Frequency when T = 500 750 248 248 244 244 244 244 500

Frequency when T = 1000 1500 500 496 496 488 488 488 1000

Table 6.2 Block Access Frequency when Keep Querying Same Block

Layer 1 2 3 4 5 6 7 8

Frequency when T = 100 150 48 48 48 36 36 0 100

Frequency when T = 500 750 248 248 244 244 244 244 500

Frequency when T = 1000 1500 500 496 496 488 488 488 1000

Table 6.3 Block Access Frequency when Keep Querying Random Block
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Figure 6.1 Access Pattern in Layer 3 Querying Same and Random Block

6.3 Overhead

The overhead includes user-side storage, communication overhead for query and communi-

cation overhead for shuffling. As the permanent user-side storage is much smaller than cache,

we only count cache as user-side storage. Because for every N queries the average communica-

tion overhead would be the same, we only record overhead when querying N times for different
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Figure 6.3 Access Pattern in Layer 7 Querying Same and Random Block

N .

The communication overhead results are shown in Table 6.4 and Table 6.5. The results show

that the measured communication overhead of my implementation is consistent with theoretical

results, in both query and shuffling.
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N
Max User-side Storage

(# of blocks)

Average Overhead

Measured (# of blocks)

Average Overhead

In Theory (# of blocks)

64 2 8

O(log(N))256 2 10

1024 2 12

4096 2 14

Table 6.4 Query Overhead Measured and Theoretical Results

N Total Shuffling Times
Average Overhead Measured

(# of blocks)

Average Overhead in Theory

(# of blocks)

64 16 13

O(log2(N))256 64 44

1024 256 81

4096 1024 147

Table 6.5 Shuffling Overhead Measured and Theoretical Results
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CHAPTER 7. CONCLUSION

Cloud storage has a wide range of applications and is becoming more and more popular.

This thesis implements a Segmentation-based Oblivious RAM (S-ORAM) to efficiently protect

users’ data security and privacy in cloud storage .

Data encryption alone is often not enough to protect the user’s privacy in outsourced storage

as access pattern can leak sensitive information as well. A typical approach to prevent this

from happening is using Oblivious RAM, which allows a client to conceal its access pattern by

continuously shuffling and re-encrypting data as they are accessed. However, many existing

ORAM constructions consume too much storage and communication bandwidth, which makes

them not practical.

In this thesis, we implement a new approach named S-ORAM. Two segment-based tech-

niques, piece-wise shuffling and segment-based query, are used to efficiently improve the effi-

ciency in query and data shuffling.

Evaluation have been conducted to test the security and the performance of my implemen-

tation. The results show that my implementation of S-ORAM can fully protect clients’ access

pattern. It only requires constant user-side storage and the communication overhead is on the

same complexity level as the theoretical result.
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