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Abstract 
 

Epigenetic modifiers to augment the immunogenicity of chronic lymphocytic 

leukemia 

Cancer cells employ a litany of immunosuppressive and immunevasive strategies 

to avoid detection and elimination by the various arms of the innate and adaptive immune 

system.  Many hematologic and solid tumors progressively develop a specialized 

microenvironment which promotes tissue restructuring inflammation while masking the 

immune signature of the tumor cells themselves.  Chronic lymphocytic leukemia, a 

malignancy of mature B lymphocytes must constantly balance on the precipice of 

immune recognition.  A mature antigen presenting cell themselves, CLL clonal growth is 

dependent on the very interactions which, if effective, could potentially lead to their 

demise.  To circumvent this, CLL clones set up unique signatures which promote 

immune recognition yet provide diversionary signals to the remaining immune armament 

resulting in profound immune dysfunction. 

While the aforementioned immune dysfunction is widespread, the B cell and T 

cell repertoire are severely impaired during leukemic progression.  The lack of healthy B 

cells due to displacement by malignant B cells results in the obvious loss of an important 

antigen presenting cell as well as antibody-based immunity.  Additionally, deficient 

interactions with T cells result in anergy and the preponderance of improperly polarized 

T lymphocytes which are impotent to eliminate both pathogens and leukemic cells.  The 



viii 

result of such severe immune dysfunction is chronic infection and progressive disease 

which is the primary cause of death in CLL patients. 

Our research was focused on the premise that alleviating immune dysfunction and 

providing immunotherapeutic tools will significantly benefit CLL therapy.  To this end 

we developed methods to improve the cellular interaction between CLL cells and T cells 

a critical step towards improving the antigen presentation capacity of the diseased B cell 

repertoire.  We also identified a therapeutic strategy which can revert the anergic or 

improperly polarized state of T cells already in circulation allowing those cells to more 

effectively perform the effector functions necessary to fight pathogenic attack and 

malignant transformation.  Finally, we identified a number of novel targets in CLL which 

could be used in a vaccinate-induce method to license the elimination of CLL cells by the 

patient’s adaptive immune system.  To achieve our goals we utilized a relatively new 

class of drugs called epigenetic modifiers which specifically alter the chromatin structure 

resulting in novel genetic signatures which are heritable over cellular generations.  The 

unique properties of these drugs allow for the elicitation of suppressed genetic programs 

which, when properly controlled, have the potential to reassert healthy lymphocyte 

functions. 

Our studies provide a comprehensive therapeutic initiative which, by 

simultaneously alleviating the major causes of immune dysfunction in addition to 

facilitating the use of novel active immunotherapeutic strategies could potentially impact 

clinical therapy for CLL. 
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Chapter One: 
 

Introduction 
Tumor Immunology Overview 

Our view of tumor immunology underwent a dramatic change in the early 90’s 

given the surprising observations that most of the antigens expressed by tumor cells were 

not necessarily neo-antigens uniquely present in cancer cells, but rather tissue-

differentiation antigens also expressed in normal cells (Rosenberg 1995; Boon and van 

der Bruggen 1996). These unexpected findings led to the hypothesis that perhaps the 

greatest obstacles for harnessing the immune system against tumors were the complex 

mechanisms that establish T-cell tolerance against “self” tumor antigens. Experimental 

evidence supporting the above hypothesis was indeed provided by the Bogen’s and 

Levitsky’s groups who independently demonstrated that antigen-specific CD4+ T-cells 

were rendered unresponsive during tumor growth in vivo (Bogen 1996; Staveley-O' 

Carroll, Sotomayor et al. 1998). Following the initial report of this phenomenon termed 

“tumor-induced anergy”, several studies showed that this state of T-cell unresponsiveness 

also occurs during the growth of hematologic or solid tumors expressing model or true 

tumor antigens (Morgan, Kreuwel et al. 1998; Cuenca, Cheng et al. 2003; Overwijk, 

Theoret et al. 2003), during the progression of spontaneously arising tumors (Willimsky 

and Blankenstein 2005), and more importantly during the progression of human cancers 

(Lee, Yee et al. 1999; Noonan, Matsui et al. 2005).  This different view of tumor 

immunity also raised the bar for cancer immunotherapy, since the barrier imposed by 
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immune tolerance must be broken in order for the immune system to effectively 

recognize and eliminate tumors expressing mainly “self” antigens.  

More recently, several studies have provided important insights into the cellular 

and molecular mechanisms of tolerance induction and the composition and in vivo fate of 

the tolerized population(Rabinovich, Gabrilovich et al. 2007). For instance, at the cellular 

level, bone-marrow (BM) derived antigen-presenting cells (APCs) and regulatory T-cells 

(Tregs) have been implicated as playing a central role in tolerance induction. At the 

molecular level, signaling pathways involved in the regulation of pro- or anti-

inflammatory pathways in the APC have been shown to influence the ability of these 

cells to determine T-cell priming versus T-cell tolerance. Among those pathways, Stat3, 

c-kit, SOCS-1 and the zinc-finger A20 molecule have emerged as enticing molecular 

targets in APCs to overcome the remarkable barrier that tolerance to tumor antigens has 

imposed to cancer immunotherapy(Cheng, Wang et al. 2003; Wang, Cheng et al. 2005; 

Evel-Kabler, Song et al. 2006; Song, Evel-Kabler et al. 2008). 

A continued effort to identify molecular mechanism(s) regulating pro and/or anti-

inflammatory pathways in the APC would likely unveil additional targets to circumvent 

tumor-induced tolerance. Indeed, in recent years significant emphasis has been devoted to 

mechanistically understand regulation of pro-inflammatory/anti-inflammatory genes in its 

natural setting, the chromatin substrate. Although several mechanisms influence 

chromatin flexibility to allow dynamic changes in gene expression, chromatin 

modifications by acetylation/deacetylation of histone tails resulting in transcriptionally 

active or inactive chromatin play an important role in regulation of gene transcription, 

including genes involved in the inflammatory response(Foster, Hargreaves et al. 2007). 
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Similarly, DNA methylation status at the level of gene promoters also influences the 

transcriptional activity of inflammatory genes(Bruniquel and Schwartz 2003; Baguet and 

Bix 2004; Foster, Hargreaves et al. 2007).  Of note, inhibition of DNA methyltransferase 

1 (DNMT1) leading to hypomethylation of previously silenced chromatin has been 

associated not only with enhanced gene transcription but also with de-repression of 

antigens that could potentially serve as targets for cancer immunotherapy(Sigalotti, Fratta 

et al. 2004; Roman-Gomez, Jimenez-Velasco et al. 2007; Natsume, Wakabayashi et al. 

2008). The latter observations are particularly relevant for tumors arising from antigen-

presenting cells such as B-cell lymphomas and myeloid malignancies. In these cells, their 

antigen presenting capabilities could be enhanced via epigenetic manipulation with 

histone deacetylase inhibitors and/or hypomethylating agents that provide the double 

advantage of inducing de novo expression of tumor antigens such as cancer testis 

antigens (CTA), and enhance the expression of pro-inflammatory mediators resulting in 

an environment conducive to T-cell activation rather than T-cell tolerance. Importantly, 

re-activation of tumor antigens not previously seen by the immune system confers the 

additional opportunity to therapeutically target antigens that are less likely to induce T-

cell tolerance. Alternatively, the de novo expression of these tumor antigens in response 

to epigenetic modifiers might provide a temporal window to effectively harness T-cell 

immune responses with vaccination strategies before T-cell tolerance towards these 

antigens is ultimately established.  

Tumor Antigens 

Three tenants of a good antigen   
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When identifying the classical tumor vaccine antigen there are three critical 

characteristics that have the potential to dictate overall vaccine efficacy.   

I. The antigen must be of high antigenicity (Selvaraj, Yerra et al. 

2008).   

II.  The antigen should be expressed in a significant percentage of the 

patient population, and  

III.  The antigen must be expressed in tumor cells and required for tumor 

survival.   

Despite the seemingly obvious nature of these criterion, to date there have been 

few cancer vaccines that have satisfied all three.  Indeed, most of the targeted tumor 

antigens, including cancer-testis antigens, fail to satisfy one or more of these criteria.  

One of the primary reasons that these three factors are so difficult to fulfill is because 

they might be working against each other.  Take for instance, an antigen that is highly 

antigenic and is expressed on premalignant cancer cells.  In this scenario there are two 

possible outcomes for the developing tumor clone: it could either succumb to immune 

cell recognition and be eliminated, or it could actively suppress antigenicity utilizing a 

variety of escape mechanisms. Take again, the case where a particular tumor associated 

antigen (TAA) is expressed in a large percentage of tumors.  Given the vast heterogeneity 

inherent in the mammalian immune repertoire it is likely that such an antigen would 

maintain adequate central tolerance (and thus low antigenicity), otherwise the immune 

system would have already detected and eliminated cells expressing that particular 

antigen. Nevertheless, the fact that the tumor has progressed to a detectable level 

indicates the generation of significant peripheral tolerance. Finally, lets examine NY-
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ESO-1, perhaps the most clinically studied member of the CTA family (Gnjatic, 

Nishikawa et al. 2006) with more than 30 clinical trials performed in cancer patients. 

Vaccines and immunotherapies targeting NY-ESO-1 assume that the antigen might be 

expressed within 100% of the tumor cells, a lofty goal given that NY-ESO-1 is not 

considered necessary for the survival of the malignant clone(Nicholaou, Ebert et al. 

2006).  In addition, the silencing mechanism for NY-ESO-1 is known to be promoter 

hypermethylation, providing a relatively simple immune escape mechanism(Hong, Kang 

et al. 2005; Sigalotti, Coral et al. 2005). Finally, in light of recent reports of T-regulatory 

cell generation and the emergence of tolerogenic APCs, it is clear that peripheral T-cell 

tolerance generated by the tumor may be insurmountable using current modalities 

targeting NY-ESO-1(Gnjatic, Altorki et al. 2009).  Taken together, while our 

fundamental knowledge of tumor antigen expression and regulation has progressed 

significantly, our antigen choices and therapeutic modalities are moving to a much slower 

pace.  

Cancer Testis Antigens 

Cancer-testis antigens represent a large family of proteins with restricted 

expression to the germ-line and trophoblast. These antigens have been also found to be 

aberrantly expressed in certain solid and hematologic malignancies(Scanlan, Simpson et 

al. 2004).  This abnormal expression, it has been postulated, may confer the special 

function of “gametogenesis” to the developing malignancy, a theory reminiscent of the 

“trophoblastic theory of cancer” proposed by John Beard over a century ago(Gurchot 

1975).  According to this theory, CTA expression may provide a fitness advantage to 

cancer cells like independent assortment of chromosomes, limitless replicative capacity, 
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Figure 1: Shared characteristics of germ cells and cancer cells. Activation of the 
gametogenic programme (shown by brown cells) might contribute to properties of 
tumour formation and progression (shown by blue cells). Corresponding features 
between cancer cells and those in the germ cell/gamete/trophoblast differentiation 
pathways include: immortalization (involved in transformation), invasion, induction 
of meiosis (can lead to aneuploidy) and migration (contributes to metastasis). Shared 
phenotypes between germ cells and cancer cells include demethylation, angiogenesis 
induction, downregulation of the major histocompatibility complex (immune 
evasion), and expression of chorionic gonadotropin. The numbers (1–9) indicate 
gametogenesis- and tumorigenesis-related phenotypic traits and the stages at which 
these events occur. Figure and legend copied from (Simpson, Caballero et al. 2005). 
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tissue invasiveness, and increased motility (Figure 1) (Simpson, Caballero et al. 2005).  

MAGE-A1 is the founding CTA member discovered almost two decades by T. 

Boon and coworkers using a very laborious process that characterize the antigen 

specificity of tumor-infiltrating cytotoxic T-lymphocytes (TILs)(van der Bruggen, 

Traversari et al. 1991). Since then, more streamlined approaches for antigen discovery 

have been developed including the serological identification of antigens by recombinant 

expression cloning method (SEREX), differential gene expression analysis, high 

throughput immunoblot, and bioinformatics methods (Hubank and Schatz 1994; Sahin, 

Tureci et al. 1995; Scanlan, Gordon et al. 2002; Hoeppner, Dubovsky et al. 2006; 

Dubovsky, Albertini et al. 2007).  As a result of this concerted effort to identify, 

characterize, and classify CTAs, we now recognize 44 CTA families comprising over 89 

potential tumor antigens. 

Epigenetic regulation of CTAs 

CTA mRNA expression has been centrally linked to DNA methylation patterns 

within both the germ lineage and the cancer cell(Karpf and Jones 2002; Simpson, 

Caballero et al. 2005; Wischnewski, Pantel et al. 2006).  Two specific cytosine 

methylation changes occur in human malignancy, genome-wide hypomethylation and the 

eventual hypermethylation of specific promoter regions generally associated with tumor 

suppressor genes(Feinberg 1988; Feinberg, Gehrke et al. 1988; De Smet, De Backer et al. 

1996).  The former is of greater relevance to the expression of CTAs since it is believed 

that genome-wide hypomethylation is an early step in carcinogenesis and has the capacity 

to release chromatin constriction on a multitude of genetic elements(Woloszynska-Read, 

James et al. 2007).  CTAs which reside on the X chromosome (CT-X antigens) are 
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considered especially susceptible to epigenetic control in this manner, given the well 

understood processes of meiotic sex chromosome inactivation (MSCI) and meiotic 

silencing of unsynapsed chromatin (MSUC)(Scanlan, Gure et al. 2002; Turner 2007).  An 

additional class of autosomal CTAs has been linked to the expression of Brother of the 

Regulator of Imprinted Sites (BORIS).  Located on chromosome 20q13.2, a locus 

frequently amplified in cancer, and expressed predominantly in the testis, BORIS, is both 

a CTA and a possible oncogene(Klenova, Morse et al. 2002; Loukinov, Pugacheva et al. 

2002).  BORIS is considered a paralog of, and antithesis to, the CCCTC-binding factor 

(CTCF) which is primarily responsible for maintaining methylation insulator 

boundaries(Loukinov, Pugacheva et al. 2002; Woloszynska-Read, James et al. 2007).   

Immunotherapeutic interest in CTAs 

Since their discovery, the CTA genes have been primarily investigated for their 

ability to elicit anti-tumor immune responses.  The high antigenicity of CTAs is due to 

their restricted expression pattern.  The testis and trophoblast are considered 

immunologically privileged tissues.  In the case of germ cells, the lack of major 

histocompatibility complex (MHC) class I molecules effectively blinds peripheral 

tolerogenic mechanisms(Kowalik, Kurpisz et al. 1989).  In addition, the presence of the 

blood-testis barrier and the complete absence of CTA expression within the thymus serve 

to prevent CTA-specific tolerance at both the central and peripheral levels(Scanlan, 

Simpson et al. 2004).  This low basal tolerance and frequent overexpression in tumors 

makes CTA ideal candidates for anti-tumor vaccines or active immunotherapies. 

Much of the fervor surrounding CTAs comes as a result of the encouraging 

clinical trial obtained with vaccines targeting these antigens. NY-ESO-1 and the MAGE 
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family of antigens have been indeed evaluated in phase I and II clinical trials as anti-

tumor vaccines(Marchand, Weynants et al. 1995; Marchand, van Baren et al. 1999; Jager, 

Gnjatic et al. 2000; Coulie, Karanikas et al. 2002; Jager, Karbach et al. 2006).  Although 

tumor regressions have been observed in patients with metastatic melanoma, the most 

frequent result was generation of robust anti-CTA CD4 and CD8 T-cell responses 

(Marchand, Weynants et al. 1995; Marchand, van Baren et al. 1999; Jager, Gnjatic et al. 

2000; Jager, Nagata et al. 2000; Coulie, Karanikas et al. 2002; Chen, Jackson et al. 2004; 

Davis, Chen et al. 2004; Huarte, Karbach et al. 2004; Kruit, van Ojik et al. 2005; van 

Baren, Bonnet et al. 2005; Jager, Karbach et al. 2006).  A recent study conducted by 

Gnjatic et. al. brought to light the fact that, in addition to robust cytolytic T-lymphocytes, 

CTA based vaccination also induces CD4+CD25hi T-regulatory cells that potentially 

blunt clinical responses(Gnjatic, Altorki et al. 2009).  One possible workaround could be 

the use of humanized monoclonal antibody anti-CTLA4 therapy, which in clinical trials 

has been found to elicit robust NY-ESO-1 reactivity and improve the balance of 

regulatory (Treg) to activated CD4 T-cells(Liakou, Kamat et al. 2008; Fong, Kwek et al. 

2009).  Notably, recent evidence supports the spontaneous generation of CTA-specific 

CD4 T-cells with cytotoxic capabilities in patients treated with anti-CTLA4 (Huarte, 

Karbach et al. 2004).  This finding is specially promising given that a number of the 

CTAs were discovered using SEREX which provides indirect evidence of CD4 T-cell 

recognition. It is plausible therefore that an intact and functional repertoire of CD4 T-

cells specific to CTAs might exist in many cancer patients(Dubovsky, McNeel et al. 

2009). 

Immunological Effects of Epigenetic Modifiers  
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Demethylating Agents  

Demethylating agents, or DNA methyltransferase inhibitors (DNMTi), were 

initially investigated in the late 60’s and early 70’s as purine analogs with the potential to 

block DNA and/or RNA synthesis(Sorm and Vesely 1968; Vesely, Cihak et al. 1968; 

Vesely, Cihak et al. 1970).  It was not until the 1980’s that the differentiating capacity of 

these drugs was truly appreciated(Jones and Taylor 1980).  It was later found that 5-aza-

2’-deoxycytidine (5A2) and 5-aza-2’-cytidine (5AC) were non-competitive inhibitors of 

DNMT1, eliciting the development of a thioether bond at C-6 covalently linking the 

enzyme to the DNA strand and functionally inactivating it(Ferguson, Vertino et al. 1997).  

DNMT1 is considered the primary methyltransferase enzyme responsible for propagating 

the methylome to daughter cells after mitotic division(Luczak and Jagodzinski 2006). 

Thus, inhibition of DNMT1 results in the hypomethylation of previously silenced 

chromatin which is believed to directly facilitate cytotoxicity in cancer cells.  More 

specifically, critical tumor suppressor proteins such as p16 and p15INK4B are postulated 

to induce abrupt cell cycle arrest after treatment with DNMTi(Claus, Almstedt et al. 

2005).  Moreover, the ability of specific inhibitors, namely 5-azacytidine (5AZA) to 

interrupt RNA synthesis gives them anti-metabolite characteristics as well. 

While demethylation of the promoter region is the most studied phenomenon 

associated with DNMTi there are numerous proposed mechanisms by which they may 

enable the reactivation of genes.  DNMTi also effectively inhibit Methyl-CpG binding 

domain (MBD) proteins which serve as mediators of transcriptional repression(Hendrich 

and Bird 1998).  MBDs recruit transcriptional co-repressors such as histone deacetylases 

and Sin3a to the chromatin facilitating the assembly of repressive chromatin structures 
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onto the DNA(Jones, Veenstra et al. 1998; Ng, Zhang et al. 1999).  An additional 

mechanism results due to the allosteric inhibition of transcriptional repressor domains 

located within DNMT1, 3a, and 3b which normally facilitate chromatin constriction 

similar to MBDs(Fuks, Burgers et al. 2000; Robertson, Ait-Si-Ali et al. 2000; Rountree, 

Bachman et al. 2000; Bachman, Rountree et al. 2001).  More notably, the mechanisms 

attributed to DNMTi have unveiled previously unknown links between DNA 

methylation, histone acetylation, and chromatin constriction. 

Demethylating Agents and CTA Expression 

From an immunotherapeutic perspective DNMTi have received attention due to 

their ability to enhance or induce CTA expression in cancer(Weber, Salgaller et al. 1994).  

Evidence generated in multiple laboratories indicates that DNMTi-induced CTA 

expression may be cancer specific in nature(Vatolin, Abdullaev et al. 2005; Dubovsky 

and McNeel 2007).  These data has been confirmed in studies conducted by Karpf and 

collaborators using microarray analysis of normal epithelial cells and cancer cells 

exposed to 5A2(Karpf and Jones 2002; Karpf, Lasek et al. 2004).  In addition, studies 

conducted by our group indicate that, in human malignancy, expression of CTAs can 

persist for weeks to months after treatment with DNMTi(Dubovsky and McNeel 2007).  

The molecular mechanisms which underlie the cancer-specificity and longevity of CTA 

expression post treatment have yet to be fully elucidated; however the prevailing 

hypothesis involves cancer-specific induction of BORIS expression following DNMTi 

treatment.  It has been found that the BORIS promoter becomes increasingly 

hypomethylated as cancer progresses(Woloszynska-Read, James et al. 2007). A 

preexisting hypomethylated state could conceivably lead to BORIS expression in a 
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cancer-specific manner following limited treatment with DNMTi.  Since BORIS 

competes for the same 11ZF binding site as CTCF, once BORIS is expressed it may 

perpetuate the expression of CTAs post DNMTi treatment(Loukinov, Pugacheva et al. 

2002; Vatolin, Abdullaev et al. 2005).  Supporting this concept, tumor suppressor 

proteins unrelated to CTAs are re-silenced by promoter methylation following halt of 

DNMTi treatment. In contrast, CTAs themselves remain hypomethylated, implicating 

that a master regulator is induced which can specifically perpetuate CTA 

hypomethylation(Hong, Kang et al. 2005). 

Immunomodulatory activity of Demethylating Agents 

Equally valuable from an immunotherapeutic perspective is the recapitulation of 

the interferon (IFN) pathway in cancer cells treated with DNMTi.  Epigenetic 

suppression of the IFN response has been shown to be a frequent and deleterious result of 

malignancy (Lee and O'Neill 1987; Reid, Merigan et al. 1992; Karpf, Peterson et al. 

1999; Katzenellenbogen, Baylin et al. 1999; Lu, Au et al. 2000; Morris, Spangler et al. 

2000; Liang, Gonzales et al. 2002; Kulaeva, Draghici et al. 2003; Reu, Bae et al. 2006; 

Reu, Leaman et al. 2006).  In an attempt to identify expression signatures which represent 

signal transduction pathways it was discovered that the expression of IFN pathway genes 

is an indirect effect of 5A2 treatment(Karpf, Peterson et al. 1999).  Induction of the IFN 

pathway can increase tumor immunosurveillance and antigenic peptide presentation.  In 

addition, our group has shown that the costimulatory profile of certain hematologic 

malignancies can be rescued using DNMTi, corroborating data obtained by Coral et. al. 

in melanoma (Coral, Sigalotti et al. 1999; Dubovsky, McNeel et al. 2009).  Our results, 

albeit demonstrated in a B-cell malignancy, point to the possibility of induce and/or 
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augment the antigen-presenting capabilities of tumor cells leading to enhanced priming of 

antigen-specific immune responses(Dubovsky, Wang et al. 2009).  In addition, DNMTi-

induced IFN signaling and costimulatory expression may further increase the level of 

CTA peptide presentation amongst cancer cells aiding in the formation of a robust anti-

cancer immune response. 

Histone Deacetylase Inhibitors 

Histone Deacetylases (HDACs) 

Chromatin structure is determined by covalent and non-covalent modifications of 

the DNA itself (DNA methylation, destabilization of double-strand) or by changes in 

proteins associated to DNA (acetylation, methylation, and phosphorylation). One of these 

DNA-associated proteins is histones, who are targets for numerous covalent and non-

covalent modifications that ultimately affect the status of the chromatin structure. 

Acetylation of positive amino acids is one of the covalent modifications on histones. This 

enzymatic reaction mediated by histone acetyltransferases (HATs) results in 

transcriptionally active chromatin. Conversely, removal of the acetyl group mediated by 

histone deacetylases leads to histone hypoacetylation and transcriptionally inactive 

chromatin. Thus, histone acetylation patterns have a central role in modulating chromatin 

accessibility, gene expression and, as a result, cellular phenotype.   

In the progression of cancer, hypoacetylation results in the silencing of selected 

genes which would otherwise decrease the clonotypic survival advantage(Liu, Kuljaca et 

al. 2006).  HDACs comprise a family of enzymes recruited by co-repressors or by multi-

protein transcriptional complexes to gene promoters where they regulate transcription 
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Figure 2: Human histone deacetylases enzymes (HDACs).  the class I (HDAC1, 2, 
3 and 8), class IIa (HDAC4, 5, 7 and 9), class IIb (HDAC6 and 10) and class IV 
(HDAC11) HDACs with the various structural/functional domains listed. The capacity 
of structurally diverse HDACi to inhibit the activity of different HDAC classes or 
specific HDACs is also shown.  Figure and legend copied from (Bolden, Peart et al. 
2006). 
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through chromatin modification without directly binding DNA.  Approximately twenty 

HDACs have been identified, and they are divided into four principal classes (Figure 2) 

(Bolden, Peart et al. 2006).  Class I HDACs include HDAC1, 2, 3 and 8, class II HDACs 

include HDAC4, 5, 6, 7, 9 and 10, class III HDACs are members of the sirtuin family of 

HDACs, among which yeast Sir2 is the founding member, and Class IV, represented by 

HDAC11, the newest HDAC discovered (Bolden, Peart et al. 2006).   Histones are the 

main substrates for the enzymatic activity of HDACs. However, several studies have 

shown that HDACs also deacetylate non-histone proteins such as p53, E2F1, RelA, YY1, 

TFIIE, BCL6 and TFIIF. In addition each member is also capable of exerting a variety of 

other cellular functions related to their deacetylase activity, tissue expression profile, 

cellular compartment distribution, stage of cellular differentiation and/or 

pathophysiological conditions (Glozak, Sengupta et al. 2005; Minucci and Pelicci 2006). 

As an example, HDAC6 is mainly localized in the cell cytoplasm and it is uniquely 

endowed with tubulin deacetylase activity(Hubbert, Guardiola et al. 2002). This HDAC is 

a key regulator of cytoskeleton, cell migration and cell-cell interaction(Valenzuela-

Fernandez, Cabrero et al. 2008) and, in immune cells plays a role in the organization of 

the APC/T-cell immune synapse(Serrador, Cabrero et al. 2004). Similarly, HDAC11, the 

newest member of the HDAC family, is a transcriptional repressor of IL-10 gene 

expression in antigen-presenting cells(Villagra, Cheng et al. 2009) and, it has been found 

to be tissue-restricted and uniquely expressed in the brain, kidney, testis and abnormally 

over-expressed in certain types of leukemias and lymphomas(Gao, Cueto et al. 2002).    

HDAC inhibitors  
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HDACs are the target of several structurally diverse compounds known as HDAC 

inhibitors (HDACi)(Marks, Richon et al. 2000). Of note, these compounds were used as 

inhibitors long before a clear understanding of the role of specific HDACs in normal 

and/or transformed cells began to emerge. Existing HDACi can induce 

cytodifferentiation, cell cycle arrest and apoptosis of transformed cells (Marks, Richon et 

al. 2000; Bolden, Peart et al. 2006). Clinical use of HDACi have shown potent and 

specific anti-cancer activities partially due to the upregulation of cyclin-kinase inhibitor 

p21, induction of proaptotic BCL2 family proteins, repression of angiogenic factors such 

as vascular endothelial growth factor (VEGF), and inhibition of transcription factors such 

as nuclear factor kappa B (NF-κB) (Sambucetti, Fischer et al. 1999; Richon, Sandhoff et 

al. 2000; Chen, Fischle et al. 2001; Kim, Kwon et al. 2001; Ruefli, Ausserlechner et al. 

2001; Chen, Mu et al. 2002; Deroanne, Bonjean et al. 2002; Peart, Tainton et al. 2003; 

Yeung, Hoberg et al. 2004; Hoberg, Popko et al. 2006) Of note, one compound, SAHA, 

is the first HDAC inhibitor approved by the FDA for the treatment of patients with 

cutaneous T-cell lymphomas(Mann, Johnson et al. 2007; Marks and Breslow 2007). In 

spite of these important therapeutic advances, the underlying target(s) and/or 

mechanism(s) mediating the antitumor activity of HDACi in human malignancies remain 

to be fully elucidated.  

The regulatory role of particular HDACs and the therapeutic use of HDACi is not 

restricted to cancer since several studies have also shown that HDACs play a role in 

autoimmune diseases (Bhavsar, Ahmad et al. 2008), inflammatory regulation (Blanchard 

and Chipoy 2005), central nervous system disorders(Kazantsev and Thompson 2008), 

and during development (Haberland, Montgomery et al. 2009). Supporting this concept, 
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HDACi have emerged as a potential therapeutic tools for the treatment of autoimmune 

diseases (Bhavsar, Ahmad et al. 2008) (Mishra, Brown et al. 2001), cystic fibrosis 

(Rubenstein and Zeitlin 1998), muscular dystrophy (MDX) (Minetti, Colussi et al. 2006) 

and in regulation of immune tolerance (Tao and Hancock 2007).  In summary, the 

increasingly recognized participation of HDACs in regulation of several cellular 

functions, make the ever-expanding variety of HDACi amongst the most promising drugs 

currently under investigation (Glozak and Seto 2007).   

HDACi as immunomodulatory drugs 

In contrast to the rapidly increasing knowledge of the role of HDACs in cancer 

biology and the use of HDACi in cancer and other pathological conditions, little is still 

know about the role of specific HDACs in immune cells and the functional consequences 

of their inhibition by HDACi. Of note, while some studies have highlighted the ability of 

particular HDACi to augment inflammatory and antitumor responses, other studies have 

shown the opposite, ie., HDACi display anti-inflammatory properties and can ameliorate 

the severity of graft-versus-host disease (GVHD) and autoimmune disorders. Among the 

former studies, seminal work performed by T. Tomasi’s lab demonstrated that treatment 

of immune cells and some tumor cells with tricostatin A (TSA) induce the expression of 

MHC class I and II, the costimulatory molecules CD80, CD86, and CD40, the 

immunoproteosome subunits LMP2 and LMP7 and the peptide loading machinery TAP1 

and TAP2(Magner, Kazim et al. 2000; Magner and Tomasi 2000; Khan, Magner et al. 

2004; Tomasi, Magner et al. 2006; Khan, Magner et al. 2007; Khan, Gregorie et al. 2008; 

Khan and Tomasi 2008).  These results indicate that this particular HDACi can 

functionally replace the histone acetyltransferase activity of CIITA, CBP, p300, and 
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PCAF, thus allowing MHC class II activation.  In addition, our group recently 

investigated the antigen-presenting capabilities of malignant B-cells from patients with 

chronic lymphocytic leukemia (CLL) and found that LAQ824, a member of the 

hydroxamic acid analog family of HDACi,  was capable of significantly increase the 

APC function of malignant B-cells resulting in increased priming of T-cells (Dubovsky, 

Wang et al. 2009).  Furthermore, we have recently found that treatment of professional 

APCs with LBH589, SAHA, and LAQ824 (all belonging to the hydroxamic acid analog 

family) inhibit the secretion and transcription of immunosuppressive factors such as IL-

10 while simultaneously increasing the production of the pro-inflammatory cytokines IL-

12p70, IL-1α, IL-1β, IL-2, GM-CSF, TNFα, and RANTES in a dose dependent manner 

(Wang et al. Unpublished data).  Taking together, the positive immunological effect of 

these particular HDACi might play to the advantage of CTA-based immunotherapy and 

as such studies combining CTA based vaccine modalities with HDACi are currently 

ongoing in our lab.  

In contrast with the above results, evidence also exists linking some classically 

studied HDACi with immunosuppressive effects. For instance, HDACi can inhibit the 

production of inflammatory mediators such as tumor necrosis factor-α, interleukin-1, and 

interferon-γ in the setting of graft-versus host disease, an outcome with direct clinical 

benefit for the treatment of this complication in patients undergoing an allogenic bone 

marrow transplant (Reddy, Maeda et al. 2004; Li, Zhao et al. 2008).  Of note, the anti-

inflammatory properties of HDACi did not impacted upon graft-versus leukemia (GVL) 

effect, which was surprisingly found to be enhanced in these studies.  
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The seemingly contradictory effects of HDACi upon inflammatory responses 

could be a reflection of several factors, ie. the pan-HDAC inhibitory effect of the 

compounds currently in use, resulting in a myriad of cellular effects that likely would 

differ based on HDACs expression in particular immune cells, the stage of cellular 

differentiation and/or activation at the time of exposure to HDACi, and the dose and/or 

length of exposure to HDACi in vitro and or in vivo among others. Complicating this 

picture even further, there is now evidence that the role of specific HDACs in immune 

cells goes beyond their initially described effects on histones and now encompass more 

complex regulatory functions, like the propensity for certain HDACs to directly acetylate, 

and thereby regulate, key immunologically relevant transcription factors such as STAT1, 

STAT3, and NFκB (Chen, Fischle et al. 2001; Nusinzon and Horvath 2003; Yuan, Guan 

et al. 2005).  

Given the above scenario, dissection of the relevant mechanism(s)/target(s) 

involved in the divergent inflammatory effects of pan-HDACi would be challenging and 

difficult to achieve. To try to overcome this obstacle, we have recently pursued a 

different approach in which we have first identified the role of specific HDACs in the 

transcriptional regulation of a particular inflammatory/anti-inflammatory gene. Following 

this step, we have next pursued mechanistic studies leading to the evaluation of the 

immunological effects of more specific HDACi targeting particular HDACs. Under this 

approach, we recently over-expressed or knocked-down specific HDACs in antigen-

presenting cells and determined the expression of IL-10, cytokine that plays a central role 

in tolerance induction and regulation of inflammatory responses. We have found that 

among all the HDACs evaluated, HDAC11 by interacting at the chromatin level with the 
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distal region of the IL-10 promoter, down-regulates IL-10 transcription in murine and 

human APCs(Villagra, Cheng et al. 2009).  In addition, we found that over-expression of 

HDAC6 induce the opposite effect, i.e. transcriptional activation of IL-10 gene 

expression (Villagra et al. Manuscript in preparation). The significance of these findings 

lies at several levels: First, it has provided a physiological role for HDAC11, the newest 

member of the HDAC family, with previous unknown function. Secondly, HDAC11 and 

HDAC6 by inducing dynamic changes at the chromatin level regulate the expression of 

IL-10, (and perhaps other genes involved in the inflammatory response), effect that might 

explain -at least in part- the plasticity of the APC to determine T-cell activation versus T-

cell tolerance. Third, HDAC11 and HDAC6 represent novel molecular targets for more 

specific HDACi to potentially influence immune activation versus immune tolerance, a 

critical decision with significant implications not only for cancer immunotherapy but also 

for the transplantation and autoimmunity fields.  

Histone acetylation and T-lymphocyte polarization 

Of equal immunologic importance is the proper polarization of anti-cancer 

immune reactivity.  HDACi have shown divergent effects on this front as well. For 

instance, studies conducted by Edens et. al. suggest that TSA is particularly potent at 

inducing T-cell anergy (Edens, Dagtas et al. 2006).  A potential mechanism is that 

excessive expression of p21 inhibits the proliferation of responder lymphocytes (Jackson, 

DeLoose et al. 2001; Gilbert, Boger et al. 2005).  In contrast, we have recently found that 

the HDACi LAQ824 can reverse antigen-specific anergy, rendering previously tolerized 

T-cells functional (Wang et al. Manuscript in preparation). Furthermore, studies in 

malignant CLL cells have shown that disruption of histone deacetylase enzymes can shift 
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the polarization of anti-cancer CD4+ lymphocyte responses from Th2 to Th1(Dubovsky, 

Wang et al. 2009). These differential effects are likely related to differences in the 

inhibition profile of the HDACi used.   

Several groups have recently demonstrated an increased frequency and potency of 

CD4+CD25hi T-regulatory cells after treatment with HDACi(Tao and Hancock 2007; 

Reilly, Thomas et al. 2008; Samanta, Li et al. 2008; Wang, Lee et al. 2009).  Additional 

evidence suggests that HDACi can inhibit the autoimmune component of a variety of 

diseases including systemic lupus erythematosus, concanavalin A induced hepatitis, 

experimental autoimmune encephalomyelitis, rheumatoid arthritis, and colitis (Leoni, 

Zaliani et al. 2002; Chung, Lee et al. 2003; Reilly, Mishra et al. 2004; Camelo, Iglesias et 

al. 2005; Glauben, Batra et al. 2006; Leng, Gries et al. 2006).  These results are likely 

related to the inhibition of HDAC 9, which was recently shown to deacetylate key lysine 

amino acids in the forkhead domain of FOX-P3 reducing the functional capacity of T-

regulatory cells(Tao and Hancock 2007).  Reminiscent of our studies of the role of 

particular HDACs in APCs, these studies in T-cells shed light on the differential roles of 

specific HDACs and serve to direct future efforts at generating more specific HDACi 

which could directly benefit immunotherapy and minimize off-target immunosuppressive 

effects.  

Crosstalk between HDAC activity and DNA methylation 

Although the biochemical pathways which facilitate DNA acetylation are distinct 

from those which regulate DNA methylation, evidence supports a relationship between 

the two systems that plays a role in modulating gene repression programming(Cedar and 

Bergman 2009).  This recently unveiled link between DNA methylation and the histone 
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code led investigators to induce CTA expression in malignant cells using HDACi.  It has 

now been demonstrated in both solid and hematologic malignancies that CTA expression 

can be achieved using a variety of clinically relevant HDACi (Weiser, Ohnmacht et al. 

2001; Fradet, Picard et al. 2005; Wischnewski, Pantel et al. 2006; Dubovsky, Wang et al. 

2009; Oi, Natsume et al. 2009).  At the same time it became clear that combination of 

HDACi and DNMTi might served to synergistically activate CTA expression in 

cancer(Weiser, Guo et al. 2001; Dubovsky, Wang et al. 2009; Oi, Natsume et al. 2009).  

The mechanism(s) underlying this synergism was shown to be concordant DNA 

hypomethylation and histone acetylation of CTA promoter regions, namely those within 

the MAGE CTA family(Claus, Almstedt et al. 2005; Wischnewski, Pantel et al. 2006).  

Thus, the combination of HDACi and DNMTi is a promising venue for enhancing CTA-

based immunotherapeutic approaches. 

The “vaccinate-induce” model 

One critical lesson learned from vaccine against microorganisms is that successful 

vaccination requires delivery of the vaccine and the induction of long lasting 

immunological memory prior to pathogenic challenge (“preventive vaccination”) 

(O'Donnell and DeWolf 1995; Plotkin 1999).  Whereas this ideal scenario once seemed 

impossible in the setting of therapeutic cancer vaccines, the advent of epigenetic 

modifiers has brought to light a novel immunotherapeutic strategy.  A refreshed 

perspective on active immunotherapy incorporates the classical tenants of cancer-

specificity and high antigenicity with the novel concept of forced antigen expression by 

using epigenetic modifiers.  This particular immunotherapeutic modality that our group 

has termed “vaccinate-induce” is supported by recent studies by Guo et. al. who 
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demonstrated that de novo induction of the murine CTA, P1A, using the demethylating 

agent 5A2 can be combined with adoptive immunotherapy to achieve therapeutic benefit 

(Guo, Hong et al. 2006; Coral, Sigalotti et al. 2007).  This approach resulted not only in 

the expansion of P1A specific cytolytic T-cells but also in the reduction of metastatic 4T1 

mammary tumor nodules in tumor bearing mice. In parallel to the Guo’s report, a 

plethora of studies have recently identified CTAs which were inducible in particular 

malignancies, drastically expanding the list of potential vaccine antigen candidates 

(Wischnewski, Pantel et al. 2006; Dubovsky and McNeel 2007; Adair and Hogan 2009; 

Oi, Natsume et al. 2009).  Shortly thereafter, a group from Nagoya University in Japan 

published similar results in an orthotopic glioma model (Natsume, Wakabayashi et al. 

2008).  A key scientific feature of this study was the utilization of the human CTA, NY-

ESO-1, further demonstrating the relevance of such an approach to human malignancy.  

Most recently, Richard Morgan’s group, in collaboration with David Schrump and Steven 

Rosenberg demonstrated similar NY-ESO-1 based cytolytic ability in an in vitro system 

using a variety of epithelial malignancies; promising precursory evidence for future 

evaluation in the clinical setting (Wargo, Robbins et al. 2009).  The significant 

advancement of this study was the evaluation of a combination DNMTi/HDACi therapy, 

namely 5A2 and depsipeptide. The results indicated that there was a significant 

advantage, in terms of CTL IFNγ production, to 5A2/DP therapy in pancreatic, ovarian, 

and glioblastoma cancers.   

As it stands, there are no published reports supporting the hypothesis that 

vaccination, as apposed to adoptive transfer, will potentiate similar effects. However, in 

preliminary experiments we have found that the in vivo combination of HDACi with a 
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vaccination strategy resulted in tumor rejection, an effect that was not seen in animals 

treated with HDACi or vaccine alone. In addition, this approach was associated with very 

low toxicity to normal tissues reaffirming the safety of epigenetic therapy combined with 

active immunotherapy. Needless to say, studies which focus efforts on diversifying the 

immunotherapeutic approaches that can accompany epigenetic modifier treatment are 

currently underway.  On an additional note, the vast majority of studies thus far have 

focused on solid tumors, however our laboratory has recently generated data which 

supports the use of a vaccinate-induce therapy in the treatment of hematologic 

malignancies. 

The potential benefits of such vaccinate-induce therapeutic model combining 

vaccines with epigenetic modifiers are listed below: 

I. De novo induction of CTAs represents a means to avoid peripheral 

tolerogenic mechanisms induced by the tumor 

II.  Use of CTAs avoids central tolerance  

III.  Forced CTA expression inhibits the rapid generation of tumor escape 

variants 

IV.  Induction of CTA expression expands the patient population for which a 

particular vaccine strategy might be effective 

V. Intratumoral heterogeneity can be overcome via tumor-wide epigenetic 

induction, and  

VI.  Immunomodulatory effects of epigenetic modifiers (ie. increased signal one, 

increased signal 2 or co-stimulatory molecules and increased signal 3 or pro-
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inflammatory mediators) would likely enhance CTA presentation to the 

immune system. 

Chronic lymphocytic leukemia 

Chronic lymphocytic leukemia (CLL) is the most common B-cell malignancy in 

the Western world and is characterized by a progressive accretion of long-lived mature B 

lymphocytes with a low proliferation rate (Krackhardt, Witzens et al. 2002; Jemal, Siegel 

et al. 2008; Ouillette, Erba et al. 2008; Ramsay, Johnson et al. 2008).  Even with today’s 

therapies, CLL remains incurable, and patients almost invariably succumb to the disease 

(Cheson 1994; Rossmann, Lewin et al. 2002).  The classical clinical staging system 

developed by Rai and Binet has been able to predict the long-term survival of patients 

with CLL but has failed to predict the specific disease course in patients with early-stage 

CLL (Rai, Sawitsky et al. 1975; Binet, Auquier et al. 1981). Recent advances in 

cytogenetic and biomarker discovery are helping to better predict disease progression and 

survival in such heterogenic patient populations.  Cytogenetic analysis by fluorescence in 

situ hybridization (FISH) is widely used to identify the more common chromosomal 

aberrations, primarily deletions in 13q14, 11q23 (ATM), 17p13 (p53), 6q, and trisomy 

12.  Deletion of 17p13 is associated with chemotherapy resistance, rapid disease 

progression, and inferior survival (Dohner, Stilgenbauer et al. 2000).  In addition, the 

mutational statuses of the Ig heavy chain, ZAP70, and CD38 expression are important 

prognostic factors for CLL, which can be used to differentiate patients with poor 

prognosis (Dohner, Stilgenbauer et al. 2000; Zenz, Mertens et al. 2008).  First-line 

treatments with purine analogs such as fludarabine or pentostatin in combination with 

alkylating agents and or monoclonal antibodies against CD20 can result in high response 
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rates, but not a clear survival benefit (Kay, Rai et al. 2006).  Furthermore, this approach 

is not considered curative, and the inevitable relapse is typified by immune dysfunction, 

myelosupression, and outgrowth of chemotherapy-resistant CLL clones (Kater, van Oers 

et al. 2007).   

B-cell dysfunction 

In healthy individuals B-lymphocytes are proficient stimulators of antigen 

specific Th1 T-cell responses capable of eliminating virally infected or neoplastic cells 

via direct cellular cytotoxicity (Mosmann and Coffman 1989).  However, in CLL an 

increasingly immunosuppressive phenotype enables the malignant B-cell to evade 

immune detection(Krackhardt, Witzens et al. 2002; Scrivener, Goddard et al. 2003; 

Mellstedt and Choudhury 2006; Horna and Sotomayor 2007).  Mounting evidence points 

to specific defects in the antigen presenting cell (APC) functions including decreased 

self-peptide presentation, improper T-cell synapse formation, deficient costimulation, and 

diversionary cytokine signaling.   

Although the distinct molecular mechanisms which elicit CLL-induced 

immunosupression remain unclear, recent evidence supports the notion that chromatin 

constriction of critical immunostimulatory factors may be involved(Rush, Raval et al. 

2004; Chen, Raval et al. 2009).  Moreover, promoter hypermethylation and histone 

hypoacetylation are primary mechanisms for silencing highly antigenic protein products 

which promote the immune recognition of malignant cells.  Novel strategies have been 

suggested which may supplant immunosupression with effective cancer-antigen 

presentation leading to robust T-cell activation and prolonged killing(Khan, Magner et al. 

2004; Khan, Magner et al. 2007; Wierda and Kipps 2007).  The hallmarks of such 
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strategies hinge upon functionally increasing the APC capacity of CLL cells by reducing 

the levels of immunosuppressive factors, generating a robust response against a non-

tolerized cancer-specific antigen, and properly polarizing the resulting primed T-cells.  

Recent studies have demonstrated increased expression of MHC class I class II, 

immunoproteosome subunits, peptide processing machinery, pro-apoptotic molecules 

such as APO2L/TRAIL, and various costimulatory molecules after treatment with a 

histone deacetylase inhibitor (HDACi) leading to enhanced cancer-specific immune 

responses(Borden 2007; Khan, Gregorie et al. 2008; Khan and Tomasi 2008).  

Additionally, both HDACi and DNA methyltransferase inhibitors (DNMTi), such as 5-

aza-2’-deoxycytidine (5A2), have proven capable of inducing long lasting, cancer-

specific, expression of a highly antigenic class of proteins, termed cancer-testis antigens 

(CTAs)(Dubovsky, McNeel et al. 2009).  Published studies demonstrate that this effect 

alone may potentiate effective anti-cancer immune responses(Guo, Hong et al. 2006).  .  

Furthermore, a role for epigenetic modifiers in the regulation of pro-inflammatory 

cytokines has also been demonstrated(Sailhamer, Li et al. 2008; Villagra, Cheng et al. 

2009).  There currently exists a single clinical trial investigating the efficacy of 5-aza-2’-

deoxycytidine in combination with the HDACi valproic acid in previously treated CLL 

patients, the final results of this trial are still pending(Blum, Liu et al. 2010). 

T-cell dysfunction 

In healthy individuals B-lymphocytes are critically necessary for the polarization 

of effective T cell responses (Mosmann and Coffman 1989).  However, in CLL an 

increasingly defective immune synapse enables the malignant B-cell to evade immune 

detection by inducing T cell anergy as well as improper Th2 polarization (Krackhardt, 
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Witzens et al. 2002; Scrivener, Goddard et al. 2003; Mellstedt and Choudhury 2006; 

Horna and Sotomayor 2007).  The end result of this immunosupression is a high 

incidence of severe infections that in the setting of therapeutic interventions, often lead to 

patient morbidity. (Kay, Rai et al. 2006; Fulci, Chiaretti et al. 2007; Ouillette, Erba et al. 

2008; Rassenti, Jain et al. 2008). 

Original identification of the Th1 and Th2 T cell subsets established disparate 

patterns of stimulation underpinned by static and heritable epigenetic changes (Wilson, 

Rowell et al. 2009).  More recently, however, the widely observed plasticity in Th cell 

differentiation was nailed down to bivalent epigenetic marks that maintained heritability 

yet provided the flexibility to tailor activation status based upon changing external signals 

(Araki, Wang et al. 2009). Surprisingly, these bivalent marks were identified on 

transcription factors previously considered “master regulators” of Th cell differentiation, 

opening the possibility for diametrically opposed states of activation to alternately persist 

in a single clonal cell population (Lee, Turner et al. 2009; Wei, Wei et al. 2009).  

Immunomodulation in CLL 

Advances in disease pathogenesis and cytogenetics have vastly improved our 

biological understanding and therapeutic arsenal against CLL (Kay, Rai et al. 2006; 

Fulci, Chiaretti et al. 2007; Ouillette, Erba et al. 2008; Rassenti, Jain et al. 2008).  

Immunotherapeutic strategies that complement standard therapies, such as monoclonal 

antibodies, are part of current routine treatment, and next generation therapies are under 

investigation in CLL patients (Tam, O'Brien et al. 2008).  An additional advantage is that, 

since most patients are of advanced age, an immunotherapeutic approach may be more 

suitable than aggressive chemotherapeutic regimens (Ramsay, Johnson et al. 2008).  



29 

More notably, the emergence of novel immunomodulatory compounds has brought to 

light the importance of immunoregulation and stroma interactions in the management of 

CLL and has shown promising results, perhaps alleviating the tolerogenic phenotype that 

Common and immunologically relevant signaling molecules and cytokines are 
presented.  Cytokines are dived into group with either likely beneficial effects, 
probably beneficial effects, unknown effects, or likely negative effects from the 
perspective of immunotherapeutic intervention. 

Table 1: Cytokines involved in the development and progression of CLL.   
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characterizes this clinical malignancy (Chanan-Khan and Porter 2006; Kay, Rai et al. 

2006; Horna and Sotomayor 2007; Molica 2007; Rabinovich, Gabrilovich et al. 2007; 

Wierda and Kipps 2007; Ferrajoli, Lee et al. 2008).  On the forefront of these 

immunomodulatory compounds is lenalidomide, a derivative of thalidomide, which has 

been shown to repair the T-cell/CLL B-cell immunological synapse and increase natural 

killer cell and monocyte-mediated antibody-dependant cellular cytotoxicity (Ferrajoli, 

Lee et al. 2008; Ramsay, Johnson et al. 2008; Wu, Adams et al. 2008). Early clinical 

trials with lenalidomide have been shown to induce responses in refractory CLL patients 

(Chanan-Khan, Miller et al. 2006; Ferrajoli, Lee et al. 2008). 

CLL cytokine signaling 

Development of CLL is inextricably linked to the abrogation of normal cytokine 

loops in favor of signaling patterns, which promote proliferation or protection from 

apoptosis. Since the mature B cell is a known intermediary of a healthy immune 

response, CLL must manage the precarious induction of many pro-inflammatory 

cytokines through autocrine or juxtacrine mechanisms to obtain antiapoptotic signaling 

while simultaneously suppressing key cytokines that have the potential to promote anti-

tumor cytolytic responses. 

While the complex interplay between cytokines involved in CLL may be difficult 

to understand in its entirety, there are three signaling mediators that, if altered, could 

potentially drive the generation of an anti-CLL immune response: IL-2, IL-10, and IL-4.  

IL-2 is a known T-cell stimulatory cytokine that is selectively removed from the CLL 

microenvironment via upregulation of soluble and membrane bound IL-2 receptor (Table 

1) (Foa, Giovarelli et al. 1985; Fluckiger, Rossi et al. 1992; de Totero, Francia di Celle et 
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al. 1995; Mainou-Fowler, Copplestone et al. 1995).  IL-4 polarizes the T-helper 

compartment toward a Th2 response, simultaneously ensuring adequate CD4+ 

stimulation and proliferation (which feeds back in the form of CD40 stimulation) while 

maintaining an ineffective anti-CLL response (Dancescu, Rubio-Trujillo et al. 1992; 

Banchereau, Bidaud et al. 1993; Mainou-Fowler, Craig et al. 1995).  Moreover, IL-4 

serves as an antiapoptotic autocrine factor further exacerbating its effects (Howard, Farrar 

et al. 1982; Llorente, Mitjavila et al. 1990; Tangye and Raison 1997; Kay, Han et al. 

2001).  IL-10 functions to suppress immune responses and is known to stimulate T-

regulatory cell differentiation (Fiorentino, Zlotnik et al. 1991; Mosmann and Moore 

1991; Sher, Fiorentino et al. 1991; Del Prete, De Carli et al. 1993; Finke, Ternes et al. 

1993).  Although IL-10 is actively secreted by CLL cells, its effect on CLL itself is 

abrogated due to an ineffective intracellular signaling pathway, which ensures that the 

remaining healthy lymphocyte compartments are disproportionately inhibited (Levy and 

Brouet 1994; Sjoberg, Aguilar-Santelises et al. 1996; Fayad, Keating et al. 2001). 

Epigenetically regulated cancer antigens as immunotherapeutic targets for CLL 

Anti-tumor vaccines, also known as active immunotherapies, exemplify some of 

the newer targeted treatments being investigated in CLL (Dubovsky and McNeel 2007).  

Ideal antigen candidates would have applicability to a significant percent of patients, 

have expression restricted to the cancer and high immunogenicity, and would be essential 

for the survival of the CLL cell, thus restricting immune evasion (Krackhardt, Witzens et 

al. 2002).  One particular class of antigens, the cancer testis antigens (CTAs), has been 

investigated for these particular characteristics (Dubovsky, Albertini et al. 2007).  CTAs 

have expression restricted to immunologically “privileged” tissues (blood-testis barrier 
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and lacking surface expression of major histocompatability complex (MHC) molecule) 

such as germ cells but are often aberrantly expressed in tumor cells (Kowalik, Kurpisz et 

al. 1989; Scanlan, Simpson et al. 2004).  Their expression is thought to be induced by 

global genome hypomethylation, a well-known characteristic of cancer; it is this aberrant 

expression that presumably makes them available for immune recognition (De Smet, De 

Backer et al. 1996).  Indeed, recent studies have shown that hypomethylating agents such 

as 5-azacytidine and 5-aza-2’-deoxycytidine (5A2) can induce expression of CTAs, 

specifically in cancer cells, for prolonged periods of time, allowing for effective 

administration of CTA-based anti-tumor vaccines (Weber, Salgaller et al. 1994; Grunau, 

Sanchez et al. 2005; Guo, Hong et al. 2006; Coral, Sigalotti et al. 2007; Dubovsky and 

McNeel 2007).  Concordant results have shown that HDACi can have similar and 

synergistic effects, presumably due to the increased transcriptional availability of 

previously epigenetically silenced chromatin (Wischnewski, Pantel et al. 2006; Picard, 

Bergeron et al. 2007).  More importantly, however, HDACi treatment blocks a critical 

tumor immuno-evasive antigen silencing mechanism enabling the potential generation of 

a prolonged and effective T-cell response. 

 In CLL, an immunosuppressive phenotype enables the malignant B cell to evade 

immune detection (Krackhardt, Witzens et al. 2002; Scrivener, Goddard et al. 2003; 

Mellstedt and Choudhury 2006; Horna and Sotomayor 2007).  Novel strategies have been 

suggested that may supplant immunosuppression with appropriate cancer-antigen 

presentation leading to T-cell activation and killing (Khan, Magner et al. 2004; Khan, 

Magner et al. 2007; Wierda and Kipps 2007).  The hallmarks of such strategies hinge 

upon increasing the APC capacity of the CLL cell, reducing the levels of 
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immunosuppressive factors and generating a robust response against a non-tolerized 

cancer-specific antigen (Figure 3).  Recent studies have shown increased expression of 

MHC class I, class II, immunoproteosome subunits, peptide processing machinery, pro-

apoptotic molecules such as APO2L/TRAIL, and various costimulatory molecules after 

treatment with epigenetic modifiers, leading to enhanced cancer-specific immune 

responses (Borden 2007; Khan, Gregorie et al. 2008; Khan and Tomasi 2008). A role for 

epigenetic modifiers in the regulation of pro-inflammatory cytokines has also been shown 

(Sailhamer, Li et al. 2008).     

 The generation of a therapeutic and CLL-specific immune response is currently 

under active investigation.  Some of the more notable targeted proteins for vaccine 

approaches include specific idiotype immunoglobulin-derived peptides, survivin, KW-13, 

fibromodulin, MDM2, and telomerase (Harig, Witzens et al. 2001; Giannopoulos and 

Schmitt 2006; Kokhaei, Palma et al. 2007).  Other strategies have focused on the 

generation and adoptive transfer of CLL antigen-specific T lymphocytes (Foster, Brenner 

et al. 2008).  Additionally, adenoviral vector gene therapy using CD40-ligand (CD154) 

has been tested in early-phase clinical trials showing a reduction of disease burden in 

several patients (Trojan, Schultze et al. 2000; Krackhardt, Witzens et al. 2002; Schmidt, 

Schag et al. 2003; Mayr, Kofler et al. 2005; Giannopoulos and Schmitt 2006; Wierda and 

Kipps 2007).  These trials have served to reveal one unresolved consequence of CLL: the 

current antigenic repertoire has likely generated tolerance leading to a weak cytotoxic 
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Figure 3: Signaling interactions between CLL cells and T cells.  CLL cases vary 
however the most common signaling interactions are displayed in panel A.  Panel B 
shows CLL based T cell interactions which may result from an improved immunogenic 
profile, a goal of many therapeutic interventions currently under development. 

B 

A 
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response incapable of generating effective tumor cell clearance.  Experiments conducted 

by Guo et al. have shown that treatment of 4T1 tumor-bearing animals with such agents 

followed by adoptive transfer of P1A CTA-specific cytolytic lymphocytes (CTL) resulted 

in tumor-specific recognition and eradication(Guo, Hong et al. 2006).  These studies were 

very recently confirmed in a murine orthotopic glioma model using a prominent and 

highly immunogenic human CTA, NY-ESO-1 (Natsume, Wakabayashi et al. 2008). 
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Chapter Two: 
 

Treatment of chronic lymphocytic leukemia with a hypomethylating agent induces 

expression of NXF2, an immunogenic cancer testis antigen 

Abstract 

Critical to success of active immunotherapy against cancer is the identification of 

immunologically recognized cancer-specific proteins with low tolerogenic potential. 

Cancer testis antigens (CTAs) in particular, fulfill this requirement as a result of their 

aberrant expression restricted to cancer cells and lack of expression in normal tissues 

bypassing tolerogenic mechanisms against self. Although CTAs have been extensively 

studied in solid malignancies little is known regarding their expression in chronic 

lymphocytic leukemia (CLL).  Using a two-pronged approach we evaluated the 

immunogenicity of 29 CTAs in 22 patients with CLL and correlated these results to RT-

PCR data from CLL cell lines and patient cells.  We identified IgG specific antibodies for 

one antigen, NXF2 and confirmed this response by ELISA and Western blot.  We found 

that treatment of CLL with 5-aza-2’-deoxycytidine can induce expression of NXF2 that 

lasted for several weeks after treatment.  Treatment also increased levels of MHC and 

costimulatory molecules (CD80, CD86, and CD40) necessary for antigen presentation.  

In addition, we identified other promising antigens which may have potential 

immunotherapeutic application.  Our findings suggest that NXF2 could be further 

pursued as an immunotherapeutic target in CLL, and that treatment with demethylating 



37 

agents could be exploited to specifically modulate CTA expression and effective antigen 

presentation in malignant B-cells. 

Results 

An IgG response specific to NXF2, a known cancer-testis antigen, was identified in CLL.    

In order to identify CTAs which may be recognized by the T-cell repertoire in the 

context of CLL we used high-throughput phage immunoblot, a technique we have 

previously described (Dubovsky, Albertini et al. 2007; Dubovsky and McNeel 2007).  In 

brief, lambda-phage encoding 29 known CTAs (Table 2) were spotted robotically in 

duplicate onto a bacterial lawn and overlaid with nitrocellulose membranes impregnated 

Table 2: Cancer-testis antigen panel 
 

The names and GenBank identifiers for each CTA chosen for analysis 
are shown.  In addition, the 5’ and 3’ primers used for the gene-specific 
RT-PCR amplifications are shown. 
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with IPGT to induce protein expression.  These membranes were then probed with sera 

from 22 patients with CLL (Table 3). 

 

Immunoreactive plaques specific for NXF2 were identified in CLL patient 9 (Figure 4A).  

This immunoreactivity was also found in serum collected from the same patient both 

three and nine months later, corroborating our initial data (Figures 4B and 4C).  These 

experiments were repeated in triplicate and all blots were found to be consistent.  To 

further examine this IgG reactivity we conducted an NXF2 specific ELISA on all 22 

Table 3: Clinical characteristics of CLL patients 
 

Serum and cells from CLL patients was used to identify 
immunologically recognized and inducible CTAs.  Patient 
Characteristics, Rai stage, cytogenetics, and prior treatments are 
shown.  “del” indicates a deletion of the indicated chromosomal arm 
or gene. 
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patients which confirmed a robust IgG response in patient 9 at both available timepoints 

(Figure 5A).  Using subisotype specific ELISA this NXF2 reactivity was found to be 

predominantly composed of subisotype IgG1 (Figure 5B).  As further confirmation of 

reactivity a Western blot was performed using serum from a subset of patients (CLL 9, 1, 

13, 2, 22, and 10) probing NXF2 transiently transfected 293T cell lysates which 

demonstrated that the IgG response was specific for NXF2 (Figure 5C).  

Expression of CTAs is induced by demethylating agents in CLL.    

In addition to finding particularly immunogenic CTAs we also sought to identify 

methylation inhibitor inducible CTAs in CLL.  To this end we designed transcript-

specific primers specific for each of the CTAs described in Table 2 and used this primer 

panel to profile CTA expression in a variety of CLL cells with or without 1µM 5A2 

treatment using RT-PCR.  The CLL cell lines MEC1, MEC2, and WaC3 were kindly 

Figure 4: High Throughput Phage Immunoblot indicates an IgG response to 
NXF2 
Patient number 9 had a detectable response to NXF2 (panel A).  Three months later 
on a return visit for further observation the same patient displayed reactivity to NXF2 
once again, confirming the first occurrence (panel B).  Reactivity to NXF2 was also 
seen at a six month observation point for patient 9 (panel C).  Immunoreactive spots 
are determined by visually comparing them with the negative “-” and positive control 
“+” spots on each filter.  Of the 22 patients screened NXF2 was the only reactive CTA 
discovered. 
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provided to us by Dr. John Byrd at the Ohio State University Medical Center and are 

further described in (Wendel-Hansen, Sallstrom et al. 1994; Stacchini, Aragno et al. 

1999).  Using these cell lines we identified multiple genes which were either induced de 
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novo, were significantly upregulated, or were constitutively upregulated (Figure 7A).  Of 

the 29 CTAs tested expression of NY-SAR-35, XAGE-1, GAGE-2, 7, and 4, LAGE-1, 

NXF2, NY-ESO-1, and SSX2 was induced de novo after treatment with 5A2.  Expression 

Figure 5: ELISA and Western Blot results confirm IgG response to NXF2 and 
identify major subisotype 
 Sera from patients with CLL were subjected to ELISA using GST tagged NXF2 
purified protein (panel A).  The NXF2-specific antibody response is primarily of the 
IgG1 subisotype (panel B).  To eliminate the possibility of potential GST-specific 
reactivity serum from a subset of patients, including the reactive patient #9, were used 
to probe NXF2 transient transfection Lysates (positive = anti-NXF2 polyclonal 
antibody) (negative = no loaded protein) (Panel C).  Patient 9 donated serum on two 
separate occasions delineated by 9a and 9b in all ELISA data. 
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of MAGE-A1, A3, A4, and B2, SSX1, and 4, TPX-1, and FATE-1 was significantly 

upregulated by treatment with 1µM 5A2.  Additionally, we found that mRNA levels of 

LIP1, MAD-CT-1 and 2, SPA17, MAGE-B1 and E1, PAGE-5, and SPAN-XC were 

constitutively expressed. 

To confirm the relevance of our in-vitro cell culture models we examined the 

tumor CTA expression profile of three representative CLL patients 3, 9, and 13 using 

total RNA from purified CLL cells (>90% purity) (Figure 7B).  We found that CTA 

expression was extremely similar to that of the cell lines.  From these samples we found 

that NY-SAR-35 and XAGE-1 are expressed at low levels in some CLL patients.  In one 

final layer of stringency we tested the CTA expression in cell lines from other similar B-

Cell lymphoproliferative disorders (Figure 6).  In this screening the only consistently 

Figure 6: Analysis of B-Cell leukemia confirms inducibility of certain CTAs. 
As additional confirmation of inducibility the B-Cell leukemia lines RAJI, SKLY-16, 
and 697 were analyzed for CTA expression pre and post treatment with 1µM 5A2.  
CTA inducibility was found to be similar to that of CLL. 
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inducible CTA was NXF2, although other CTAs were inducible in particular cell lines. 

 

Of the three classes of leukemia CTAs (inducible de novo, upregulated, and 

constitutively expressed) currently the most attractive class from the prospective of CLL 

immunotherapy is those CTAs which are not normally expressed, but upon treatment 

with 5A2 can be strongly induced de novo.  This modulated expression may help to avoid 

many of the tolerogenic mechanisms utilized by CLL, as will be discussed further.  Thus 

far, NXF2 satisfies both characteristics of our initial investigation, demonstratable 

immunogenicity and selective inducibility. 

NXF2 is a naïve and selectively inducible CLL specific antigen.   

Figure 7: RT-PCR reveals novel constitutively expressed, inducible, and 
upregulated CTAs in CLL. 
Three cell lines, MEC1, MEC2, and WaC3 were analyzed via transcript-specific RT-
PCR for mRNA expression of CTAs pre and post treatment with 1µM 5A2 (panel A).  
To ensure that CTA expression patterns in the CLL cell lines are representative CLL 
cells from patients 3, 9, and 13 were analyzed for basal CTA expression (panel B).  
Testis cDNA was analyzed as a positive control as well as a no-RNA transcript 
negative control, confirming the identity of the amplified products. 
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While NXF2 has demonstrated expression in CLL cell lines after treatment with 

5A2, aside from its initial discovery, there is scant information as to the expression in the 

majority of human tissues(Loriot, Boon et al. 2003). Consequently, we evaluated the 

Oncomine micro-array database, which contains data from over 20,000 human 

microarray studies for mRNA expression of NXF2 in normal tissues.  In a panel of 40 

normal tissues NXF2 was only significantly upregulated in the testis, as expected (Figure 

8).  

To confirm that NXF2 has no basal mRNA expression in CLL prior to treatment 

with methylation inhibitors we examined the RNA from 10 CLL patients at various 

stages in disease progression and found no detectable transcripts (data not shown).  Since 

it is possible that the protein has a long half life after initial mRNA expression we tested 

several CLL patients by western blot and again found no expression of NXF2 (data not 

shown).  Taken together, these results indicate that the average CLL patient is likely 

naïve to the NXF2 antigen prior to treatment with demethylating agents. 

Given that primary CLL cells do not proliferate ex-vivo and thus do not 

incorporate 5A2 into their DNA it has previously been very difficult to study the 

demethylating effects of such nucleotide analogs outside of in-vivo or cell culture 

systems.  Recent research into the critical signaling networks between CLL cells and their 

stromal environment has led to the development of a CD40L expressing murine fibroblast 

feeder cell line which, in conjunction with IL-4, induces limited proliferation in some 

human CLL primary samples.  Using this system we characterized the epigenetic changes 

to the CTA expression pattern in CLL patient 9.  As shown in figure 9, we saw a marked 

increase in FATE-1, MAGE-A4, and MAGE-A8 transcription and a de-novo induction of 
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XAGE, GAGE-4, 2, and 7, SSX-1 and 2, PAGE-1, and NXF2 transcripts.  These data 

served to confirm our initial antigen identification and to demonstrate NXF2 inducibility 

in primary cells.  

Immunogenic CTA expression can be modulated for a possible immunotherapeutic 

approach.   

Since any potential CTA based immunotherapy would require antigen expression 

to extend beyond the initial treatment period we wanted to examine the stability of 

antigen expression in the three CLL cell lines after 5A2 treatment.  Cells were treated 

with 1µM 5A2 for 72 hours and then washed and cultured with serum-supplemented 

media only for up to 20 days.  Cells were harvested at various timepoints after washout 

and assessed for NXF2 mRNA by qRT-PCR.  As shown in Figure 10A, in the MEC2 cell 

Figure 8: NXF2 expression is primarily restricted to the testis among normal 
tissues. 
The Oncomine database, containing cancer gene expression profiles from over 20,000 
microarrays (Rhodes, Kalyana-Sundaram et al. 2007) (available at 
www.oncomine.org), was queried for the presence of NXF2 mRNA among different 
normal tissue sets.  Shown are the relative expression units of NXF2 among 40 normal 
tissues including testis with mean and standard error indicated (n ranges from 3 to 13). 
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line treatment induced a sharp increase in NXF2 expression (25 fold) which trailed off 

slowly, yet still not completely by day 20.  Surprisingly, the sister MEC1 cell line had 

different NXF2 expression kinetics indicating that peak expression (200 fold) came long 

after 5A2 treatment (around day 10) and tapered off, yet still not completely, by day 20.  

The WaC3 cell line upregulated NXF2 to an extremely high level (450 fold), relative to 

MEC1/2.  This high level of expression did not significantly change throughout the 

experiment, but the cell line was unable to survive beyond day 10 indicating a residual 

cytotoxicity induced by the 5A2 treatment. 

In addition to NXF2 our screening has unveiled other promising antigens which 

have proven to be immunogenic in other forms of cancer.  Among these antigens NY-

ESO-1, SSX1, SSX2, MAGE-A1, and MAGE-A4 have received attention because they 

are expressed in a variety of common tumor types.  Given that these antigens have shown 

exceptional promise we decided to further characterize their expression in CLL after 5A2 

treatment.  Using the WaC3 cell line we found that mRNA expression levels for NY-

ESO-1, MAGE-A1, and MAGE-A4 increased by 2.5 to 7.5 fold for each of these 

antigens after treatment with 5A2 (Figure 10B).  Moreover, we found that both SSX1 and 

Figure 9: NXF2 is among a variety of inducible CTAs in primary human CLL 
treated with 5-aza-2’-deoxycytidine. 
CLL cells cultured with IL-4 atop an irradiated CD40L expressing murine fibroblast 
stromal layer were analyzed via transcript-specific RT-PCR for mRNA expression of 
CTAs with and without 1µM 5A2 treatment.  Testis cDNA was analyzed as a positive 
control as well as a no-RNA transcript negative control, confirming the identity of the 
amplified products (controls displayed in previous figure). 
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SSX2 were highly upregulated in all three cell lines after 5A2 treatment (Figure 10C).  

These data indicate that in CLL there are proven antigenic CTAs expressed at high levels 

after 5A2 treatment further implying the applicability of immunotherapy. 

Demethylation restores effective antigen presentation characteristics in CLL cell line.  

Given that the majority of gene expression changes involved in the initiation of 

antigen presentation are epigenetically regulated we wanted to investigate the role of 5A2 

on the antigen presenting cell (APC) capacity of the CLL cell.  Using the representative 

CLL cell line MEC1 we analyzed the changes in MHC class I (HLA-A, B, C) MHC class 

Figure 10: NXF2 expression in CLL cell lines can be modulated by treatment 
with the DNA methylation inhibitor 5-aza-2’-deoxycytidine. 
CLL cell lines (white bars = MEC1, grey bars = MEC2, black bars = WaC3) were 
cultured for 72hr in the presence of 1µM 5A2.  Panel A: Cells were washed and then 
continued to be cultured in the absence of 5A2.  Cells were then collected on days 3, 
5, 10, and 20 (WaC3 was unable to be cultured past day 10) and RNA was subjected 
to NXF2 transcript-specific qRT-PCR.  Panel B: RNA from the WaC3 cell line was 
subjected to qRT-PCR specific for NY-ESO-1, MAGE-A4, and MAGE-A1.  Panel C: 
RNA from all CLL lines was subjected to qRT-PCR for SSX2 and SSX1 indicating 
upregulation of mRNA expression in the presence of 5A2.  The fold increase in gene 
expression, compared with untreated cells and relative to actin, was determined using 
the 2-∆∆CT method(Pfaffl 2001).  The data shown is the mean and standard deviation of 
three independent qRT-PCR experiments. 
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II (HLA-DR) CD40, CD86, and CD80 by flow cytometry.  As shown in Figure 11A we 

Figure 11: Demethylation restores effective antigen presentation characteristics 
in a CLL cells. 
The representative CLL cell line MEC1, or human primary CLL cells cultured using 
IL-4 and an irradiated CD40L transfected fibroblast feeder layer, were cultured for 
72hr in the presence of 1µM 5A2 and analyzed by flow cytometry for the surface 
expression of MHC class I molecules (HLA-A, B, C) MHC class II molecule (HLA-
DR) and the APC costimulatory molecules (CD80, CD86, and CD40) as compared to 
basal levels under an identical culture system without 5A2 (untreated) (panel A).  The 
72 hour proliferative capacity (and likewise 5A2 uptake capacity) is demonstrated in 
CFSE labeled primary human CLL cells in a separate experiment using only serum 
supplemented RPMI (untreated), the CD40L fibroblast stromal layer + IL-4, or the 
CD40L fibroblast stromal layer + IL-4 + 1µM 5A2 (panel B).  Data shows that 5A2 
treated cells (black histograms) upregulate expression of all five molecules when 
compared to basal expression (grey histograms) and that this trend is mimicked by 
primary human CLL cells despite only a small percentage of cells incorporating the 
drug in the in-vitro system. 
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found that both MHC class I and class II molecules were upregulated after treatment.  

Furthermore, the costimulatory molecules CD40, CD80, and CD86 were also 

upregulated.  These effects were mimicked by in-vitro cultured primary CLL cells, which 

were induced to proliferate in the presence of 5A2 using the CD40L expressing murine 

fibroblasts along with IL-4.  As an independent CFSE staining experiment demonstrated 

our in-vitro fibroblast culture system induced proliferation in only 1% of the cells over 

the 72 hour treatment, thus our analysis represents a mixture of treated and untreated 

primary cells (Figure 11B).  These data suggest that treatment with 5A2 may aid in 

effective cancer-testis antigen presentation by the CLL cell to both CD4 and CD8 T-cells. 

Discussion 

Our goal has been to identify potential CTA targets that may be pursued in the 

development of future immunotherapies.  In previous reports we have used similar high-

throughput antibody screening methods to identify antigens in both prostate cancer and 

melanoma (Dubovsky, Albertini et al. 2007; Dubovsky and McNeel 2007).  One critical 

difference is the two-pronged approach utilized.  Hematologic malignancies such as CLL 

provide unparalleled access to tumor specimens via a simple blood draw, something 

uncommon to most solid tumors which require access to small biopsy or post surgical 

resection specimens for mRNA or protein analysis.  Our study has taken full advantage of 

this characteristic to complement our analysis.  In previous reports we were only able to 

identify a small number of candidate antigens.  We assumed that this was due to the small 

number of sera samples evaluated and because a smaller fraction of subjects would be 

expected to have an immune response to a particular antigen, even if expressed by a 

particular tumor (Hoeppner, Dubovsky et al. 2006).  In the current report we started out 
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with an even smaller number of sera samples, making this task even more difficult.  

Moreover, recent landmark efforts in epigenetic profiling have uncovered the methylation 

status of the CLL genome revealing relatively high and heterogenic levels of global CpG 

methylation(Melki, Vincent et al. 2000; Melki and Clark 2002; Rush, Raval et al. 2004).  

In light of this evidence, it is conceivable that a variety of immunogenic proteins, 

including CTAs, are silenced and thus naïve to the immune system(Plass, Byrd et al. 

2007). 

Despite these hurdles we have managed to identify NXF2 as an immunogenic 

CTA in a CLL patient.  We have confirmed this antibody response using both ELISA and 

western blot.  Interestingly, we were unable to confirm expression in any single patient 

with CLL, including patient 9 (the CLL patient with an antibody response to NXF2).  It is 

highly likely that early progression and evolution of CLL is fashioned by immunoediting, 

the repeated evasion of immune recognition(Dunn, Bruce et al. 2002; Dhodapkar, 

Krasovsky et al. 2003; Dunn, Old et al. 2004).  Although, it is still unclear as to the exact 

antigen milieu which shapes CLL since it is difficult to study the complete progression of 

the disease (starting at the initial transforming event) in any single patient, it is likely that 

antibody responses to these antigens may still be detectable since they persist years after 

antigen stimulation.  It is postulated that these antigens already have a proven capacity to 

eliminate CLL clones, but their non obligate nature has led to their eventual silencing.  

An additional explanation would be that patient 9 has a separate undiagnosed malignant 

condition which expresses NXF2 aberrantly and this served to induce this immune 

response.  However, standard screening procedures for patients over 50 were done with 

no evidence of any other malignant condition.  Patient 9 has an indolent CLL 
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characterized by the presence of 13q14 del., ZAP70 negative, IgVH mutated, but CD38 

positive.  Interestingly, patient 9 has a polyclonal IgG increase (2.1g/dl compared to a 

1.5g/dl for the upper limit of normal).  This condition may have increased the likelihood 

of identifying a normally low-level antigen response in CLL, a disease which more 

commonly causes hypogammaglobulinemia.  Nevertheless, since a specific IgG response 

requires CD4+ T-cell help, our discovery gives us a glimpse of the functioning T-cell 

repertoire in the context of CLL. 

Additionally, our study provides the first account of an in-vitro method 

appropriate for treatment with DNA demethylating agents.  The CD40L expressing 

fibroblast stromal cell system has made it possible to isolate the epigenetic changes 

which occur in CLL upon treatment with such inhibitors(Wheeler and Gordon 1996; 

Jacob, Pound et al. 1998; Willimott, Baou et al. 2007).  Furthermore, this being the first 

murine based feeder cell system provides an obvious advantage when using PCR specific 

for a rare-expressed human gene.  In our study it facilitated confirmation of NXF2 

inducibility and the resulting immunophenotype of the 5A2 treated primary CLL cells.  

One caveat to this culture system is that it is still impossible to differentiate the 

expression and immunophenotype the specific fraction of CLL cells who have 

incorporated the drug, leading to an observed dilution of the effects of 5A2. 

NXF2 was first identified by homology to known murine spermatogonally expressed 

genes(Wang, McCarrey et al. 2001; Loriot, Boon et al. 2003).  Fortunately, Loriot et. al. 

had the foresight to attempt modulation of this gene using 5-aza-2’-deoxycytidine at the 

time of discovery, a result which has shaped our current investigation.  Although little 

attention has been paid to its antigenicity a few groups have investigated its function as 
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an mRNA exporter, interactions with cytoplasmic motor proteins, and role in male 

infertility(Takano, Miki et al. 2007).  It has been hypothesized that NXF2 may have 

multiple roles critical to the meiotic process(Wang and Pan 2007).  Conceivably, these 

roles would have wide reaching benefits to the pre-malignant B-cell including the 

independent segregation of undesired chromosomes leading to anuploidy and the 

recombination of genetic material leading to translocations and deletions(Simpson, 

Caballero et al. 2005).  Moreover, Wang and co-workers have shown that expression of 

NXF2 is strictly temporally regulated in the early spermatocyte.  This expression 

characteristic may also be true in the early development of leukemia. 

In our study we characterized the spontaneous immune response to NXF2 as 

predominantly IgG1 which is consistent with the generation of a Th2 immune response 

which does not necessitate CD8+ CTL activation.  Although the ideal antigen would 

spontaneously generate a Th1 or Th17 response, it is not entirely unexpected that a 

patient with CLL would generate such a response given that Rossmann and colleagues 

have shown an association between CLL and T-cell production of Th2 bias cytokines  

such as IL-4(Rossmann, Lewin et al. 2002).  This effect will need to be overcome in 

order for T-Cell based vaccines to be truly effective.  However, emerging evidence 

implicates a CD4+ T-Cell response in significant, rapid, and antigen specific cytotoxic 

responses in CLL and CTA (NY-ESO-1) vaccine trials(Chu, Deforce et al. 2002; Hunder, 

Wallen et al. 2008). 

We have shown here that NXF2 mRNA can be upregulated for extended periods 

of time after treatment with the methylation inhibitor 5-aza-2’-deoxycytidine.  In prior 

studies we and others have found that transient treatment with 5A2 was able to induce 
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prolonged and cancer restricted expression of CTAs and based on our results it appears as 

though this is true for CLL as well.  It has been postulated that this is due to selective 

degradation of the corrective enzyme, DNA methyltransferase I (DNMT1) combined 

with an inability to upregulate expression of this critical gene post-treatment.  However, 

in our experience mRNA expression of DNMT1 mRNA seems unchanged in both normal 

and cancer cells lending evidence to the contrary(Dubovsky and McNeel 2007).  

Nevertheless, this characteristic will likely be essential to the generation of an effective 

immune response since CTAs have not proven to be obligate antigens (required for 

continued cancer survival or proliferation) their cancer specific expression must be forced 

in order to prevent tumor escape variants from causing relapse. 

In addition to NXF2, our study identified multiple novel CLL CTAs which may 

have varied application for an immunotherapeutic treatment of CLL.  Classical antigens, 

antigens which are expressed constitutively in cancer cells, such as LIP1, MAD-CT-1 and 

2, SPA17, MAGE-B1 and E1, PAGE-5, and SPAN-XC as well as those antigens with 

lower level expression in a subset of CLL lines such as MAGE-A1, A3, A4, and B2, 

SSX1 and 4, TPX-1, and FATE-1, have the potential to generate a robust immune 

response.  In similar fashion, NY-ESO-1 and the  MAGE family of CTAs are highly 

expressed in many tumor types and have shown promising results in early phase vaccine 

trials(Jager, Gnjatic et al. 2000; Brichard and Lejeune 2008).  Our results in both cell 

lines and primary CLL indicate that these antigens may also be effective targets in CLL. 

In CLL an immunosuppressive phenotype enables the B-cell to evade immune 

detection(Krackhardt, Witzens et al. 2002; Horna and Sotomayor 2007; Wierda and 

Kipps 2007).  Wierda and Kipps recently reviewed this topic putting together multiple 
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strategies which have shown promising results.  In the current study we show that surface 

expression of necessary costimulatory molecules as well as MHC class I and II can be 

increased on CLL cells using 5A2.  Studies conducted by Coral et. al. have shown similar 

results although never in a tumor arising from a semi-professional APC(Coral, Sigalotti 

et al. 1999).  It is conceivable this effect on a cell with antigen presenting capacity can 

aid in the presentation of CLL peptides via MHC “signal 1” and the costimulation of T-

cells recognizing such peptides “signal 2”. 

One unresolved consequence of CLL is that the current antigenic repertoire has 

likely generated tolerance.  Theoretically this can be avoided by vaccinating towards an 

inducible de novo antigen which is not yet expressed followed by induction of antigen 

expression using hypomethylating agents.  Similar experiments conducted by Guo et. al. 

have shown that treatment of 4T1 tumor-bearing animals with 5-aza-2’-deoxycytidine, 

followed by adoptive transfer of P1A CTA-specific cytolytic lymphocytes (CTL), 

resulted in tumor-specific recognition and eradication(Guo, Hong et al. 2006).  

In the current study we have utilized a two-pronged approach to evaluate the 

immunogenicity of 29 CTAs in 22 patients with CLL and correlate these results to RT-

PCR data from CLL cell lines and patient cells enumerating antigens which are both 

immunogenic and specific for CLL.  We identified IgG specific for one novel CLL 

cancer-testis antigen NXF2 and confirmed this response by ELISA and western blot.  In 

addition, we confirmed that treatment of CLL with 5-aza-2’-deoxycytidine can induce 

expression of NXF2 for weeks post treatment.  Treatment also increases levels of MHC 

and costimulatory molecules necessary for antigen presentation.  In addition, RT-PCR 

results identified other promising antigens which may have potential immunotherapeutic 
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application.  Our findings suggest that NXF2 could be further pursued as an 

immunotherapeutic target in CLL, and that treatment with demethylating agents could be 

exploited to specifically modulate antigen expression in a potential vaccinate-induce 

strategy. 

Materials and methods 

Subject Populations 

Sera and peripheral blood mononuclear cells (PBMCs) were obtained from 22 

patients with CLL (16 males and 6 females, mean age 62 years, range 37-77 years).  Of 

these subjects, 10 had 13q deletions, 3 had 17p deletions, 4 had trisomy 12, and 7 had 

normal cytogenetics.  In total, 7 patients had prior definitive treatment (Table 3).  Rai 

stage for the 22 patients was: 5 patients = 0, 13 patients = I, 1 patient = II, 3 patients = IV.  

All subjects gave written institutional review board (IRB)-approved informed consent for 

their blood products to be used for immunological research.  Blood was collected at H. 

Lee Moffitt Cancer Center (Tampa, FL), and sera were stored in aliquots at -80°C until 

used. 

Phage Immunoblot Analysis 

We have previously reported the construction of a panel of lambda phage 

encoding 29 cancer-testis antigens(Dubovsky, Albertini et al. 2007).  Analysis of this 

panel was conducted similarly to what we have previously reported (Dubovsky, Albertini 

et al. 2007; Dubovsky and McNeel 2007).  In brief, XL-1 blue MRF E. coli were grown 

overnight, collected by centrifugation, resuspended in 10mM MgSO4, and poured in top 

agarose (LB broth/10mM MgSO4/0.2% maltose/0.7% agarose) over LB agar in Omniwell 

plates (Nunc, Rochester, NY).  Phage encoding individual (9,000 pfu) CTA’s were then 
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spotted in replicates onto multiple bacterial agar lawns using a liquid handling robot 

(Biomek FX, Beckman, Fullerton, CA).  Spotted plates were allowed to sit undisturbed 

for 15 minutes and then overlaid with nitrocellulose membranes impregnated with 10mM 

IPTG.  Plates were incubated overnight at 37°C.  The next day, filters were washed, 

blocked with TBS (50mM Tris pH 7.2, 100mM NaCL) + 1%BSA (bovine serum 

albumin), and then probed overnight with human serum diluted 1:100 in blocking 

solution.  Subsequently, the membranes were washed, and human IgG was detected with 

an alkaline phosphatase-conjugated anti-human IgG detection antibody (Sigma, St. Louis, 

MO).  The filters were washed again and then developed with 0.3mg/ml nitro-blue 

tetrazolium chloride (NBT) + 0.15mg/ml 5-bromo-4-chloro-3’-indolyphosphate p-

toluidine salt (BCIP).  After development, filters were washed with deionized water and 

immunoreactive plaques were recorded for each filter by visual comparison with internal 

positive (phage encoding human IgG) and negative (empty phage encoding beta-

galactosidase) control plaques. 

Enzyme-Linked Immunosorbent Assay (ELISA) 

Ninety-six-well high binding plates (Corning, Corning, NY) were coated with 

purified Glutathione-S-Transferase linked NXF2 protein (Novus Biologicals, Littleton, 

CO) at 2ug/ml or purified human IgG (Sigma) titrations starting at 2ug/ml in 50mM 

sodium carbonate buffer (pH 9.6) overnight at 4°C.  After blocking for 2 hours at room 

temperature with phosphate buffered saline (PBS)/1% bovine serum albumin (BSA) 

wells were filled with dilutions of CLL patient serum in blocking solution (1:25, 1:50, 

1:100) and were incubated overnight at 4°C.  To detect autoantibody plates were washed 

three times with PBS/0.1% Tween-20 and anti-human IgG HRP antibody (GE-
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biosciences, Piscataway, NJ) was added at 1:1000 in blocking buffer.  Alternatively, for 

the IgG subisotype ELISAs, biotinylated anti-IgG1, -IgG2, -IgG3, or -IgG4 (Sigma) were 

used followed by HRP-labeled streptavidin (GE-biosciences).  After a three-wash step 

reactivity was measured using TMB substrate (KPL, Gaithersburg, MD) according to 

manufacturer instructions. 

Western Blot 

Lysates from NXF2 transiently transfected 293T cells were mixed 1:2 with 2X 

sodium dodecyl sulfate (SDS) Laemmli’s loading buffer (0.04M Tris, pH 6.8, 12% 

glycerol, 1.25% SDS, 3% β-mercaptoethanol, 0.06% bromophenol blue) and boiled for 5 

minutes at 100°C.  Proteins were then resolved on 10% SDS-Polyacrylamide gels and 

were electrophoretically transferred to nitrocellulose membranes.  Membranes were then 

probed using standard immunoblot techniques; with CLL patient sera diluted 1:100 in 

blocking solution or NXF2-specific antibodies (Novus Biologicals).  Final detection was 

done using ECL chemiluminescent substrate (Perkin Elmer, Boston, MA) and 

autoradiography film. 

Primary Cell Culture 

CLL cells were isolated from peripheral blood by density gradient centrifugation, 

washed, and resuspended at 3X106 in RPMI 1640 medium (Invitrogen, Carlsbad, CA) 

supplemented with 10% fetal calf serum and 20ng/ml recombinant human IL-4 (RDI, 

Concord, MA).  Isolated CLL cells (>95% purity) were cultured in 25cm2 tissue culture 

flasks atop an adherent bed of irradiated (30Gy) CD40L (CD154) expressing murine 

fibroblast L-cells.  Cultures were maintained in the presence or absence of 1µM 5A2 for 

72 hours and were subsequently assayed via RT-PCR or flow cytometry. 
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Reverse Transcriptase-PCR (RT-PCR) 

Total RNA was prepared from centrifugally pelleted cell cultures (RNeasy mini 

columns and RNAse free DNAse, Qiagen, Valencia, CA) or was commercially obtained 

(BioChain, Hayward, CA).  RT-PCR reactions were conducted using the Qiagen one-step 

RT-PCR kit (Qiagen) with transcript-specific primers (Table 2) and total RNA from 

various B-Cell leukemia and CLL cell lines as templates (generous gifs from Dr. John 

Byrd at Ohio State University).  RT-PCR amplification reactions were resolved on 2% 

agarose gels and the size of the amplified transcript confirmed by comparison with DNA 

size markers (GelPilot 1Kb Plus Ladder, Qiagen). 

Quantitative Reverse Transcriptase-PCR (qRT-PCR) 

Cell lines were cultured in the presence or absence of 5-aza-2’deoxycytidine 

(5A2) at 1µM.  After 72 hours of culture, cells were washed multiple times with PBS and 

re-cultured in medium without 5A2 for up to 20 days.  Total RNA obtained from these 

cultured cell lines (RNeasy mini columns, Qiagen) was analyzed for β-actin and NXF2 

RNA by qRT-PCR using a manufacturer’s standard protocol (iScript RT-PCR with 

SYBR green, BioRad, Hercules, CA) and NXF2, MAGE-A3, MAGE-A4, SSX1, SSX-2, 

or β-actin-specific gene primers (Table 2, and β-actin-5’ 

TCATGAAGTGTGACGTTGACATCCGT, β-actin-3’ 

CTTAGAAGCATTTGCGGTGCACGATG).  Fluorescent amplicon signatures and cycle 

of transmittance values (CT) were obtained using a BioRad MyCycler and its associated 

software, MyIQ v1.0 (BioRad).  Fold changes in NXF2 expression relative to actin were 

calculated according to the 2-∆∆CT method previously described(Pfaffl 2001).  The 
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reported fold change in gene expression was determined from two independent qRT-PCR 

measurements performed at different times. 

Flow Cytometry 

Flow cytometric analysis of CLL cell lines was performed using fluorochrome-

labeled monoclonal antibodies (mAbs; anti-HLA-A,B,C, -HLA-DR, -CD40, -CD80, -

CD86, -CD19, and –CD20, Becton Dickinson, San Jose, CA and eBiosciences, San 

Diego, CA)  and the vitality die 4',6-diamidino-2-phenylindole (DAPI, Sigma).  For 

CFDA-SE (CFSE) staining cells were resuspended in 0.5µM CFSE (Invitrogen) in RPMI 

medium for 15 minutes at 37°C followed by a wash and an additional 30 minute 

incubation in serum supplemented medium prior to resuspension in culture medium.  

Data was acquired on an LSRII cytometer (Beckman Coulter), and analyzed with FlowJo 

software (Tree Star, Ashland, OR). 
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Chapter Three: 

Restoring the Functional Immunogenicity of Chronic Lymphocytic 

Leukemia Using Epigenetic Modifiers 

Abstract 

Chronic lymphocytic leukemia (CLL) is a malignancy arising from immune cells 

(B-lymphocytes) endowed with intrinsic antigen-presenting capabilities.  Such a function 

however is lost during malignant transformation and CLL cells are well known for their 

inability to process and present antigens to the T-cell arm of the immune system.  Instead, 

malignant CLL cells elicit a vast array of immune regulatory mechanisms conducive to 

T-cell dysfunction and immunosupression.  Previously, we have shown that treatment of 

CLL cells with the demethylating agent 5-aza-2’-deoxycytidine unleashed target antigen 

expression.  Here we show for the first time that combining two epigenetic modifiers, 5-

aza-2’-deoxycytidine and the histone deacetylase inhibitor LAQ824 effectively restores 

the immunogenicity of CLL cell lines as well as primary cells obtained from CLL 

patients.  Indeed, such a combination induces the expression of novel and highly 

antigenic cancer testis antigens (CTAs) and co-stimulatory molecules.  These changes 

facilitate the formation of robust supramolecular activation complexes (SMAC) between 

CLL cells and responder T-cells leading to intracellular signaling, lytic granule 

mobilization, and polarization of functional and relevant T-cell responses.  This cascade 

of T-cell activating events triggered by CLL cells with restored APC function, points to 
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combined epigenetic modifier treatment as a potential immunotherapeutic strategy for 

CLL patients. 

Results 

Epigenetic modifiers synergistically induce CTA expression in CLL cells. 

Our prior studies in CLL indicate that 5A2 treatment alone is capable of inducing 

the expression of highly antigenic CTAs(Dubovsky, McNeel et al. 2009).  Given this 

prior knowledge we wanted to examine the combined effect of 5A2 and histone 

deacetylase inhibitors in this regard.  

Prior to initiating experimentation, we first wanted to confirm that our epigenetic 

modifiers were capable of altering chromatin structure in a CLL cell line.  Previous 

studies have documented acetylation changes at conserved interferon gamma distal 

regulatory elements (Shnyreva, Weaver et al. 2004; Schoenborn and Wilson 2007).  To 

Figure 12: 5A2 and LAQ treatment of a CLL cell line induces histone acetylation 
changes at the chromatin level.  Chromatin immunoprecipitation experiments using 
acetylated Histone–H4 specific antibody carried out with MEC1 CLL cells untreated, 
treated with 1uM 5A2, 25nM LAQ, or both 1uM 5A2 and 25nM LAQ were quantified 
via Q-PCR and normalized to input controls.  Primers specific for a known distal 
regulatory region of the IFN-γ gene were used as a marker for effective rearrangement 
of chromatin acetylation patterns. Reactions were repeated in triplicate, error bars 
display standard deviation and significance (p<0.05) above the untreated condition is 
indicated by an asterisk. 
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confirm the activity of 5A2, LAQ, and 5A2/LAQ in MEC1 cells, we profiled the 

acetylation changes occurring at the regulatory CNS+18 locus of the IFNG gene.  As 

expected, our results demonstrated increased H4 acetylation in treated MEC1 cells 

indicating that both drugs were capable altering chromatin structure in a CLL cell line 

(Figure 12). 

We therefore compared the mRNA expression pattern of 29 known CTAs 

between our CLL cell lines WaC3, MEC1, and MEC2 and primary CLL samples by RT-

PCR.  As shown in Figure 13A there is diverse low-level expression of multiple CTAs 

including SPANXC, MAD-CT-1 and -2, LIP1, SPA-17, and many members of the 

MAGE CTA family.  Additionally, mRNA expression of SSX-1, -2, and -4, NY-SAR-35, 

GAGE-2, -4, and -7, XAGE-1, NXF2, LAGE-1, NY-ESO-1, TPX-1, FATE-1, ADAM-2, 

and TSP50 was extremely low or nonexistent in the majority of CLL samples and the 

CLL cell lines.  The observed CTA expression profile indicated that interpatient 

expression patterns are somewhat variable.  Nevertheless, our CLL cell lines accurately 

mirror the CTA expression trends seen in ten random patients with primary CLL making 

them valuable tools for in-vitro studies. 

We next sought to improve upon basal expression patterns by treating our CLL 

cell lines with 5A2, LAQ, or a combination treatment of both 5A2 and LAQ (Figure 

13B).  mRNA expression data from these studies indicated that while both 5A2 and LAQ 

were capable of inducing the expression of varied CTAs only the combination treatment 

was capable of eliciting robust expression amongst virtually all of the CTAs tested 

including SSX-1, -2, and -4, NY-SAR-35, GAGE-2, and -7, XAGE-1, NXF2, LAGE-1, 

NY-ESO-1, TPX-1, FATE-1, ADAM-2, and TSP50, antigens which were nonexistent 
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prior to treatment.  While these results indicate a cooperative nature between the two 

Figure 13: Cancer-testis antigen expression is significantly increased in CLL 
after treatment with combined epigenetic modifiers.  RT-PCR results using 
transcript-specific primers for each of 29 known CTAs shows that our CLL cell lines 
mimic basal expression when compared to primary CLL (Panel A). Normal Human 
testis cDNA serves as a positive control and a mixture of PBMC RNA from 10 
healthy blood donors serves as the negative control.  A progressive increase in CTA 
expression can be seen in all cell lines after treatment with either 1uM 5-aza-
2’deoxycytidine (5A2) or 25nM LAQ824 (LAQ) with the greatest levels achieved 
after combined treatment with both inhibitors (Panel B).  Similar results were 
achieved utilizing primary CLL samples cultured on CD40L expressing murine 
fibroblasts and treated with the same concentrations of 5A2 and LAQ (Panel C).  
Experiments conducted on cell lines were repeated three times and experiments 
conducted on patient samples were repeated at least two times with similar results. 
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drugs we also observed synergistic activity with respect to certain CTAs, namely NY-

ESO-1, FATE-1, TPX-1, PAGE-1, and TSP-50. 

Given that primary CLL cells do not proliferate ex-vivo and thus do not 

incorporate 5A2 into their DNA it has previously been challenging to study the 

demethylating effects of nucleoside analogs outside of in-vivo or cell culture systems. To 

circumvent this challenge we utilize a CD40L expressing murine fibroblast feeder cell 

line which, in conjunction with IL-4, induces limited proliferation in some human CLL 

primary cells in-vitro. Using this system we characterized the epigenetic changes to the 

CTA expression pattern in primary CLL cells. As shown in Figure 13C, we saw a marked 

increase in CTA transcription with 5A2 or LAQ alone, although maximal effects were 

only observed with the combination treatment. These data confirm our initial hypothesis 

by demonstrating robust CTA inducibility in primary cells using epigenetic modifiers. 

Epigenetic modifiers modulate the costimulatory profile and cytokine signaling of B-CLL.   

Prior studies indicate that treatment of specific solid tumors with HDACi can 

improve the costimulatory phenotype and can increase tumor immunogenicity(Khan, 

Magner et al. 2004; Tomasi, Magner et al. 2006; Khan, Magner et al. 2007; Khan, 

Gregorie et al. 2008; Khan and Tomasi 2008).  These data along with our prior studies 

using 5A2 on CLL led us to investigate the possibility that 5A2 and LAQ may potentiate 

an improved costimulatory phenotype in CLL.  Our flow cytometry profiling experiments 

revealed modest increases in the CLL cell line surface expression of CD86, CD80, HLA-

DR, CD40, and MHC class I (HLA-A,B,C) after treatment  with 1µM 5A2 and 25nM 

LAQ (Figure 14A).  In two additional repeat experiments this modest upregulation was 

consistent.  Given that CLL cells are inherently derived from APCs, it is possible that 
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even slight increases in the costimulatory phenotype may tilt the balance towards the 

formation of an anti-CLL immune response. 

Figure 14: Immunophenotype can be enhanced and secretion of IL-10, an 
immunosuppressive cytokine, abrogated by treating CLL cells with 5A2 and 
LAQ.  FACS analysis of three CLL cell lines (MEC1, MEC2, and WaC3) after 
treatment with 1uM 5A2 and 25nM LAQ reveals a moderate increase in costimulatory 
molecule surface expression when compared to untreated controls (grey histograms) 
(Panel A) mean fluorescent intensity (MFI) shifts are depicted for each histogram.  
Cytokine analysis by CBA showed significantly lower levels of IL-10 secretion in all 
CLL cell lines after 5A2+LAQ treatment (Panel B).  These data suggest that there 
may be changes to the functional immunogenicity of CLL cells after treatment with 
epigenetic modifiers. 
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Along with costimulatory molecules B-cells also provide critical 

immunostimulatory and immunosuppressive cytokine signals.  B-CLL cells in particular, 

secrete high levels of immunosuppressive factors which inhibit the generation of anti-

CLL T-cell responses.  One such potent immunosuppressive factor is IL-10(Sjoberg, 

Aguilar-Santelises et al. 1996).  In light of this we decided to investigate the IL-10 

secretion by CLL cell lines after treatment with 5A2 and LAQ.  Results from our 

cytokine analysis indicated that 5A2 and LAQ had the potential to independently inhibit 

IL-10 secretion in particular cell lines, however the combination of both inhibitors was 

essential to obtain significant inhibition in all cell lines, indicating that combination 

5A2+LAQ therapy may release CLL-induced T-cell suppression (Figure 14B).   

DNA demethylation and histone acetylation cooperate to increase the potency of the CLL 

cell – T-cell interaction.   

Our results thus far point to improved antigen expression, costimulatory 

phenotype, and cytokine signaling which have been postulated to directly correlate with 

the formation of a healthy immunological synapse, or SMAC.  To further investigate the 

changes in the resulting immune synapse we utilized superantigen (sAg) stimulation via 

staphylococcal enterotoxins A and B to induce a TCR mediated response in healthy 

allogenic donor CD8 or CD4 purified T-cells.  As APCs we utilized 5A2 and LAQ 

treated CLL cell lines or alternatively healthy allogenic B-cells as a control.  Our 

confocal imaging data suggested that the untreated CLL cells rarely formed robust 

interaction complexes with either CD8 or CD4 T-cells.  In sharp contrast, after treatment 

with 5A2, LAQ, or both, SMAC complexes were readily abundant, robust, symmetrical, 

and concave, indicative of more effective and prolonged APC signaling (Figure 15A and 
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Figure 15: Demethylation and histone acetylation improves the quality of the 
immune-synapse between T-cells and CLL cells.  Purified healthy donor CD8 T-
cells (Panel A) or CD4 T-cells (Panel B) were allowed to conjugate with sAg pulsed 
CLL cell lines which were treated with 1uM 5A2, 25nM LAQ, both or neither drug 
(or allogenic B-cells) (blue stained) and were stained for actin polymerization (red) 
using phalloidin rhodamine.  Representative confocal images are presented of T-
cell/APC interactions for each of the three CLL cell lines under each of the treatment 
conditions.  Quantification of the conjugation events was conducted by scoring 
polymerization as either 0 = dysfunctional, unorganized, and unpolarized synapse, 0.5 
= somewhat organized, somewhat polarized, or 1.0 = fully formed, concave, and 
polarized synapse; data is presented with standard error of 100 individual events 
(Panel C).  Data indicated both an increased quantity and increased quality of immune 
synapses occurring between the allogenic T-cells and the CLL cells after treatment 
with epigenetic modifiers imparting some functional significance to the observed 
expression differences. 
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15B).  To quantify these data we manually counted and scored 100 synaptic events for 

each experiment (Figure 15C) according to the methodology developed by Ramsay et. al. 

and demonstrated in Figure 16(Ramsay, Johnson et al. 2008).  Data showed a significant 

shift towards increasingly numerous and robust interaction zones after treatment, with 

optimal actin polarization observed with combination 5A2+LAQ treatment. 

To further confirm our microscopy data, we conducted flow cytometric sAg-

induced conjugation assays between healthy allogenic CD8 or CD4 T-cells and our CLL 

cell lines.  As depicted in an example flow plot (Figure 17A) the percentage of TCR 

specific conjugated cells was determined by subtracting the conjugates forming in an 

unstimulated sample from those forming in the sAg stimulated sample.  Data obtained in 

this manner indicated that robust TCR mediated conjugation occurred with greater 

frequency in both CD8 and CD4 conjugates after treatment with 5A2 or LAQ.  In all 

cases maximal conjugation was observable after combined therapy (Figure 17B).  

Figure 16: Microscopic identification and of immune synapse between CLL cell 
lines and allogenic T cells.  Purified healthy donor CD8 T-cells were allowed to 
conjugate with sAg pulsed CLL cell lines which were treated with 1uM 5A2, 25nM 
LAQ, both or neither drug (blue stained) and were stained for actin polymerization 
(red) using phalloidin rhodamine.  White arrows indicate actin polarized T cells.  
Scoring of synapse events involves counting only T cells which directly interact with 
adjacent blue-stained APCs and have not been sheared from their interacting partner 
by the process of plating.  Interactions are scored with either a “0” indicating little to 
no actin polymerization, “0.5” indicating slight polarization, and”1.0” indicating 
strong polarization.  Interactions are counted until 100 events are recorded. 
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Epigenetic alteration can restore T-cell signaling capacity and lytic granule mobilization 

in the context of CLL.  

To this point our data has shown that epigenetic modifiers such as 5A2 and LAQ 

could enhance CLL cell – T-cell SMAC formation.  However, we also sought to 

demonstrate that intracellular signaling, a key component of a functional APC – T-cell 

interaction, was improved.  It has been well demonstrated that mitochondrial localization 

at the synaptic interface is directly associated with CRAC mediated calcium entry, an 

essential downstream signal required for T-cell activation(Oakes 2007; Quintana, 

Schwindling et al. 2007).  To determine if mitochondria were localizing along the SMAC 

complex in our experiments we performed immunofluorescent confocal microscopy of 

CLL cell – allogenic T-cell conjugates after treatment with our epigenetic modifiers 

(Figure 18A and 18B).  Our observations led us to conclude that mitochondrial 

localization was deficient in untreated CLL cell conjugates, but was qualitatively restored 

by treatment with 5A2 plus LAQ in both CD4 and CD8 T-cell conjugations. 

Primed CD8 T-cells utilize TCR mediated signaling to mobilize and eventually 

release lytic granules containing perforin, granzyme-B, and interferon gamma.  By 

immunofluorescent staining of perforin we found that appropriate SMAC F-actin 

polarization, mitochondrial localization, and lytic granule mobilization was improved in 

the CD8 T-cell conjugates after CLL cells had been treated with both epigenetic 

modifiers (Figure 18A).  These data serve to confirm our prior results and indicate a 

definitive signaling enhancement. 
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Epigenetically altered CLL APC signaling results in T-cells with Th1 polarization, 

increased proliferative capacity, and lytic activity. 

The functional significance of an improved CLL APC is, in part, determined by 

the polarization of the responding T-cells.  To characterize this polarization we sorted 

conjugates formed between CD4+ T-cells and CLL cells and restimulated them with 

PHA following a 48 hour rest period.  The cytokine profile was then measured using 

cytokine bead array.  Our data suggest that, the balance between Th1 and Th2 signaling 

([Th1]:[Th2]) was improved (increasingly Th1) after treatment with both inhibitors 

Figure 17: Epigenetic modification of CLL cells improves TCR-induced 
conjugation with both CD4 and CD8 T-cells.  FACS based conjugation assays were 
conducted between healthy allogenic T-cells and sAg stimulated CLL cell lines (or 
healthy allogenic B-cells) after treatment with 5A2, LAQ, both or neither.  TCR-
specific conjugation was ascertained by subtracting the sAg induced conjugation level 
from the basal allogenic conjugation level (example depicted in Panel A) data was 
then normalized to the untreated condition.  Treatment revealed reproducible and 
significant increases in TCR-specific conjugation levels between CLL cells after 
treatment with both inhibitors (Panel B).  These data supplement prior analyses and 
confirm the amplification of TCR-specific synapses between CLL cells and both CD4 
and CD8 T-cells. 
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Figure 18: Epigenetic modifiers improve the functionality of the immune-synapse 
between T-cells and CLL cells as indicated by recruitment of mitochondrion and 
perforin to the immune synapse.  Purified CD8 T-cells (Panel A) or CD4 T-cells 
(Panel B) were allowed to conjugate for 30 minutes with sAg stimulated CLL cell 
lines which were treated with 1uM 5A2, 25nM LAQ, both or neither drug (or 
allogenic B-cells) (blue stained) and were stained for F-actin polymerization (red) 
using phalloidin rhodamine, mitochondrion (green), and perforin (cyan) (CD8 only).  
Representative confocal images are presented of T-cell/APC interactions for each of 
the three CLL cell lines under each of the treatment conditions.  Data indicated 
increased functionality of immune synapses occurring between the allogenic T-cells 
and the CLL cell lines after treatment with epigenetic modifiers. 
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Figure 19: CLL cells treated with 5A2 and LAQ recover the functional capacity 
to induce Th1 cytokine responses, proliferation, and TCR-specific cytotoxicity in 
responder lymphocytes.  Cytokine analysis of sorted 5A2 or LAQ treated CLL cell – 
T-cell conjugates indicated polarization towards a Th1 type cytokine profile as 
depicted by the [Th1]:[Th2] ratio and the relative change to IL-10, IL-6, and IL-4 
concentration versus IL-2, TNF, and IFNγ concentrations (Panel A).  In a MLR 
lymphocytes of both the CD4 and CD8 lineage were induced to proliferate only after 
CLL target cells had been treated with 5A2 and LAQ, while healthy allogenic B-cells 
were capable of inducing proliferation regardless of treatment (Panel B).  
Additionally, we found increased TCR-specific cytotoxicity by FACS based analysis 
of T-cell/dead-CLL conjugates after treating the CLL cells with epigenetic modifiers 
and stimulating with sAg (Effector:Target = 10:1), as control non-sAg based 
conjugation between T-cells and dead-CLL cells was subtracted from the percentage 
displayed (Panel C).  . Cytotoxicity assays using untreated, 1µM 5A2 treated, 25nM 
LAQ treated, or 5A2+LAQ treated primary CLL cells with healthy allogenic CD8 T-
cells show higher cytolytic function, approaching that of a healthy allogenic reaction 
(Panel D). 
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 (Figure 19A).  For the MEC1 cell line, treatment completely restored cytokine signaling, 

while for the WaC3 cell line treatment constricted Th2 signaling predominantly 

decreasing IL-10, IL-4, IL-6 and IFNγ.  These data serve to highlight clinically observed 

differences in cytokine signaling amongst CLL patients as well as a potential 

methodology to restore therapeutic T-cell polarization. 

Proliferative self-renewal of antigen specific T-cells is a requirement in the 

context of sustaining any potential anti-tumor effect.  To determine the effects of 5A2 

and LAQ have on the proliferation of T-cells stimulated with drug-treated MEC1 CLL 

cells we CFSE stained healthy donor allogenic CD8 and CD4 T-cells and subjected them 

to mixed lymphocyte reactions.  As shown in Figure 19B a normal allogenic response 

between healthy B-lymphocytes and healthy allogenic T-lymphocytes (both CD8 and 

CD4) induces approximately 30% proliferation.  On the other hand, only CLL cells 

which had been treated with a combination of 5A2 and LAQ were capable of stimulating 

appreciable proliferation (22.7% for CD8 and 21.1% for CD4). This proliferation data 

served as evidence that the combined 5A2+LAQ treatment could potentiate significant 

functional improvements when compared to either drug alone. 

As a final indicator of proper APC function of CLL cells we wanted to examine 

the TCR mediated lytic ability of CD8 cytotoxic T-cells. To investigate this we utilized 

sAg mediated killing and analyzed the results by flow cytometry, quantifying the 

percentage of T-cells specifically conjugating with dead CLL cells in a sAg specific (or 

TCR specific) manner(Vitale, Zamai et al. 1991; Morgan, Labno et al. 2001).  Results 

from this analysis showed improved lytic function of allogenic CD8 T-cells after being 

stimulated with 5A2+LAQ treated CLL cells (Figure 19C).  Significance (P<0.01) was 
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achieved in the WaC3 and MEC1 cell lines, correlating with and corroborating prior 

evidence of APC functionality. 

5-aza-2’-deoxycytidine and LAQ824 enhance allogenic CD8 cytotoxicity against early 

stage primary CLL cells. 

It is well established that CLL cells are deficient in their ability to stimulate T-cell 

responses, even in allogenic MLR (Figure 19B).  It has also been established that the 

level of dysfunction is directly correlated to increased RAI staging(Ramsay, Johnson et 

al. 2008).  To ensure that our in-vitro results hold true in primary CLL, we conducted 

cytotoxicity assays using allogenic CD8 T-cells and 5A2 or LAQ treated primary CLL 

cells.  We found that when primary purified CLL cells were treated with 5A2 and LAQ, 

there was a significant increase in allogenic cytotoxic potential above that seen in either 

drug treatment alone (Figure 19D).  These results indicate that combined 5A2+LAQ 

therapy may increase the APC potential of primary CLL. 

Discussion 

Our studies unveil a previously unknown effect of 5A2 and LAQ on the 

immunobiology of B-CLL.  As anticipated, our results show a therapeutic improvement 

in antigenic protein expression, costimulatory potential, cytokine signaling, SMAC 

synapse formation, and T-cell stimulation.  These changes reinforce the three signals of 

APC function: antigenic peptide (signal 1), costimulation (signal 2), and cytokine 

stimulation (signal 3), resulting in functional changes which may benefit current 

immunotherapeutic approaches for CLL.   

One caveat to our studies is that the majority of mechanistic experimentation has 

been carried out in CLL cell lines.  In our experience, the treatment of primary CLL cells 
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in-vitro with proliferation-dependent epigenetic modifiers such as 5A2 can be quite 

tedious, requiring the addition of external cytokines, growth factors, and feeder cells, 

making primary cells inappropriate for large scale reproducible molecular assays.  To 

avoid such pitfalls, our approach focused on validating the CLL cell lines as appropriate 

epigenetic surrogates of primary CLL cells and utilizing them for the short term in-vitro 

treatments necessary to foster an enhanced understanding of the mechanisms behind CLL 

cell epigenetic dysfunction.  Subsequently we confirm increased immunogenicity and 

epigenetic upregulation of potential target antigens using primary CLL cells to ensure the 

accuracy of our final conclusions.  In addition to our independent validation, other 

investigators have found these cell lines ideal for studying CLL epigenetics(Plass, Byrd 

et al. 2007; Chen, Raval et al. 2009). 

We postulate that the B-CLL cells are capable of directly presenting cancer 

antigens to the immune system, however it is likely that cross-presentation of CLL 

antigens via dendritic cells (DCs) is also occurring.  In our experience, treatment of DCs 

with epigenetic modifiers consistently inhibited the production of IL-10.  Such an effect 

was accompanied by an increased expression of co-stimulatory molecules and enhanced 

production of pro-inflammatory mediators.  In addition, HDACi-treated APCs were 

capable of effectively priming naïve antigen-specific CD4 T-cells and restoring the 

responsiveness of anergic CD4 T-cells isolated from tumor bearing mice (Wang et. al. 

unpublished observations).  These studies led us to unveil a novel role for HDAC11, in 

particular, as a transcriptional repressor of IL-10 in murine and human APCs, providing 

one potential molecular mechanism which we plan to specifically examine in the setting 

of CLL(Villagra, Cheng et al. 2009). 
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Our studies did not directly focus on the direct cytotoxic effect of HDAC and 

DNMT inhibitors; instead we focused our efforts on the epigenetic changes which result 

in improved immunological function.  In preliminary in-vitro testing we established a 

working concentration of 1µM for 5A2 and 25nM for LAQ which demonstrated 

negligible direct cytotoxicity over the 72 hour treatment, as measured by Annexin V  and 

propidium iodide staining, yet yielded sustained epigenetic effect, as measured by CTA 

upregulation or histone acetylation.  Although we cannot rule out the possibility that 

autophagy may occur(Fink and Cookson 2005), we have demonstrated quantifiable 

epigenetic changes which could conceivably be independently responsible for the 

demonstrated functional modifications.  In addition, although our studies do not directly 

focus on treating T-cell and instead focused on the polarization of T-cells by treated CLL 

APCs , preliminary data from our laboratory suggest that these drugs do not negatively 

affect the proliferation or IFNγ production capacity of primary CD4 and CD8 T-cells .  

Future ongoing studies in our laboratory will focus on the direct effects of epigenetic 

modifiers on the T-cells themselves (Dubovsky et. al. unpublished observations). 

It has been suggested that the survival of CLL hinges upon the balance between 

receiving lymphocyte activation, survival, and proliferation signals while maintaining 

immunosupression of the remaining healthy lymphocyte compartments(Tangye and 

Raison 1997; Rossmann, Lewin et al. 2002).  This model implies that a given CLL clone 

may preserve this balance in a different manner explaining the heterogeneity we see in 

the disease.  Our results elucidate some of these subtle differences and provide a potential 

mechanism for tilting the balance towards immune stimulation.  This balance is 

exemplified in our costimulatory phenotyping experiments (Figure 14A) which 
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demonstrated that slight to moderate improvements in the surface expression of 

costimulatory and MHC molecules can facilitate the changes seen in the SMAC complex.  

Our studies confirm the current understanding that slight alterations to APC molecular 

machinery enable CLL cells to facilitate their own survival while circumventing or 

diverting T-cell stimulation.  It is also possible that the epigenetic modifiers alter 

functional affinity and avidity of certain costimulatory molecules. 

Our studies focused on drug treatment and its effects on B-CLL immunology.  

However, in the clinical setting it is unlikely that these inhibitors will be so exclusive in 

their actions.  In prior studies we have demonstrated that the epigenetic effects of 5A2 do 

preferentially act on malignant cells, potentially due to deregulation of the chromatin 

packaging machinery such as DNA methyltransferase I (DNMT1) or brother of the 

regulator of imprinted sites (BORIS)(Klenova, Morse et al. 2002; Loukinov, Pugacheva 

et al. 2002; Vatolin, Abdullaev et al. 2005; Dubovsky and McNeel 2007).  Our previous 

efforts also indicate a potential for drug treatment to elicit long term molecular changes 

specifically in cancer cells, allowing for temporal separation of drug treatment and 

effector reaction.  Additional evidence comes in the form of studies conducted by Guo et. 

al. demonstrating elimination of lung metastases by CTA specific cytolytic T-

lymphocytes in a murine mammary carcinoma model after treatment with 5A2(Guo, 

Hong et al. 2006). 

Altogether, our results suggest that epigenetic modifiers which release chromatin 

constriction via DNA demethylation and histone acetylation may effectively restore the 

functional immunogenicity of chronic lymphocytic leukemia by inducing the expression 

of novel and highly antigenic tumor targets, increasing costimulatory potential, repairing 
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defective SMAC formation, and rectifying cytokine stimulation.  These effects could aid 

in the generation of more robust TCR mediated cytolytic responses in primary CLL. 

Materials and Methods 

Subject Populations 

Sera and peripheral blood mononuclear cells (PBMCs) were obtained from 

patients with CLL.  All subjects gave written institutional review board (IRB)-approved 

informed consent for their blood products to be used for research.  Blood was collected at 

the H. Lee Moffitt Cancer Center (Tampa, FL). PBMCs were stored in 1ml aliquots at -

140°C and sera were stored in aliquots at -80°C until used. 

Cell Culture and Drug Treatments 

Unless otherwise stated cells were cultured in-vitro at 37°C and 5%CO2 using 

RPMI1640 medium supplemented with 10% fetal calf serum and antibiotics.  The MEC1, 

MEC2, and WaC3 cell lines were kindly provided by Dr. John Byrd at Ohio State 

University and were previously characterized in the following references(Wendel-

Hansen, Sallstrom et al. 1994; Stacchini, Aragno et al. 1999).  Drug treatments were 

carried out on the CLL cells (separate from T-cells) for 72hr in complete medium using 

either 1uM 5-aza-2’-deoxycytidine (5A2), 25nM LAQ824 (LAQ), 1uM5A2 + 25nM 

LAQ, or neither.  At the conclusion of treatment cells were washed twice using pre-

warmed serum-free RPMI1640 and subjected to the various assays.  For treatments 

involving primary CLL cells, cultures of purified B-CLL cells (>95% purity) were 

maintained in 6 well plates atop irradiated (30Gy) monolayers of CD40L expressing 

murine fibroblasts (a kind gift from Dr. John Gordon at the University of Birmingham) in 
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the presence of 500U/ml recombinant human IL-4 (Research Diagnostic Inc., Concord, 

MA) 

Reverse Transcriptase-PCR (RT-PCR) 

Total RNA was prepared from pelleted cells (RNeasy mini columns and RNAse 

free DNAse, Qiagen, Valencia, CA) or was commercially obtained (BioChain, Hayward, 

CA).  RT-PCR reactions were conducted using the Qiagen one-step RT-PCR kit (Qiagen) 

with transcript-specific primers and total RNA from CLL cell lines as templates.  RT-

PCR amplification reactions were resolved on 2% agarose gels and the size of the 

amplified transcript confirmed by comparison with a standard DNA ladder (GelPilot 1Kb 

Plus Ladder, Qiagen).  Heatmap depictions were created using Image Quant 5.1 software 

(Molecular Dynamics) and the Heatmap Builder tool kindly provided by the Quertermous 

lab at Stanford.  

Cell Conjugation Assays 

Healthy or malignant B-cells were stained with CellTracker Blue (PKH26 for 

flow cytometric analysis) following the manufacturer’s instructions and pulsed with or 

without 2ug/ml of a cocktail of staphylococcal superantigens (SEA and SEB; Toxin 

Technologies; Sarasota, FL) for 30min at 37°C.  B-cells were then centrifuged (200g for 

5min) with 5 times the number of T cells stained with mitotracker deep-red (Invitrogen, 

Carlsbad, CA) (or CFSE for flow cytometric analysis ) and were incubated at 37°C for 

10min unless otherwise stated, then plated onto poly-L-lysine slides and fixed using 3.7% 

formaldehyde in PBS for 15min.  Additional antibody staining was conducted using 1:50 

anti-perforin (Pierce, Rockford, IL) followed by 1:125 anti-mouse FITC (Sigma).  

Microscopic acquisition and analysis of immune synapses was conducted using a Leica 
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upright fluorescent confocal microscope with the associated software according to the 

methods developed by Ramsay et. al.(Ramsay, Johnson et al. 2008).  Controls which 

lacked sufficient conjugation to acquire microscopic images (controls without SEA/SEB, 

without APCs, or without T-cells) were investigated and documented in low-resolution 

wide-field images showing no significant conjugation, unless otherwise stated.  All 

microscopy experiments were repeated three independent times unless otherwise stated. 

Flow Cytometry Immunophenotyping 

Flow cytometric analysis of cultured cells was performed using fluorochrome-

labeled monoclonal antibodies (mAbs; anti-HLA-A,B,C, -HLA-DR, -CD40, -CD80, -

CD86, -CD19, and –CD20, Becton Dickinson, San Jose, CA and eBiosciences, San 

Diego, CA)  and the viability dye 4',6-diamidino-2-phenylindole (DAPI, Sigma).  For 

CFDA-SE (CFSE) staining cells were resuspended in 0.5µM CFSE (Invitrogen) in RPMI 

medium for 15 minutes at 37°C followed by a wash and additional 30 minute incubation 

in serum supplemented medium prior to resuspension in culture medium.  For 

conjugation based T-cell phenotype experiments cells were allowed to conjugate 

according to the methods described in cell conjugation assays and conjugated cells were 

stained for anti-CD20 and anti-CD4.  Conjugation events were sorted using a FACS Aria 

cell sorter and separate populations were assayed for cytokine production using CBA 

array. Cytokine bead array (CBA) (Becton Dickinson) was conducted according to the 

manufacturers published protocol using cellular supernatant from three replicate 

experiments.  PKH26 staining was carried out and data was acquired on an LSRII 

cytometer (Beckman Coulter), and analyzed with FlowJo software (Tree Star, Ashland, 

OR).  For analysis    
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Mixed Lymphocyte Proliferation 

CLL cells or healthy B-cells were incubated in serum supplemented RPMI1640 

(Invitrogen) with allogenic, ficoll density gradient separated, PBMCs from a healthy 

donor which had been stained 30 minutes prior with 0.5µM CFSE at a 1:10 

effector:target (E:T) ratio.  Cultures were maintained at 37°C for 60 hours and were 

subsequently subjected to flow cytometric analysis.  Viability dye was used to gate out 

dead cells, CD4 and CD8 cells were stained using spectrally separate fluorophores and 

were individually investigated for CFSE dilution resulting from proliferation. 

FACS Based Cytotoxicity Assay 

Healthy allogenic T-cells were stained with CFSE as previously described.  CLL 

cells were pulsed with SEA and SEB superantigens at 2ug/ml for 2 hours and were 

centrifugally collected and incubated with T-cells at a 1:10 E:T ratio for 45 minutes at 

37°C in serum-free RPMI1640.  Cells were then carefully chilled to 4°C, centrifuged, and 

resuspended in FACS buffer containing the viability dye propidium iodide.  FACS 

analysis was immediately conducted and the percentage of T-cells conjugated with dead 

cells was tracked and compared to a T-cell only control.  Cytotoxicity analyses were 

conducted in triplicate and experiments were repeated at least twice. 

Lactate Dehydrogenase (LDH) Cytotoxicity Assay 

Allogenic CD8 T-cells (or B-cells) were separated from healthy donor ficoll 

density purified PBMCs using magnetic negative selection on an MACS LS magnetic 

column (Miltenyi Biotec, Auburn, CA) using the manufacturer specified protocol.   CD8 

T-cells and purified primary CLL B-cells (>95%) were washed twice with 37°C 

RPMI1640 without phenol red/1%FCS.  Cells were then incubated together at 1:100, 
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1:50, and 1:25 E:T ratios in RPMI1640 without phenol red/1%FCS in 96 well round 

bottom plates for 4 hours at 37°C/5%CO2.  Cytotoxicity was measured using the 

cytotox96 non-radioactive LDH assay kit according to the manufacturers published 

protocol (Promega, Madison, WI).  Control wells corresponding to minimum cytotoxicity 

(targets alone), maximum cytotoxicity (Triton X100 lysed targets), and culture medium 

alone were used to calculate experimental sample percent lysis. 

Statistical Analysis 

Unless otherwise stated, all continuous data conducted in replicates were analyzed 

using a two tailed Students T test.  P values are displayed on the graph to indicate the 

level of significance.  Error bars presented on graphical representations of data indicate 

standard deviation unless otherwise stated.  

Chromatin Immunoprecipitation (ChIP)  

After 72 hours treatment with 5-aza, LAQ, 5’-aza + LAQ or DMSO control (no 

treatment) cells were crosslinked with 1% formaldehyde and incubate with rotation at 

room temperature.  After 10 minutes, reactions were stopped by the addition of glycine to 

a final concentration of 0.125M.  Cells were washed twice with ice cold PBS and 

resuspended in ice cold TX-100/NP40 buffer (10mM Tris pH 8.1, 10mM EDTA, 0.5M 

EGTA, 0.25% TX-100, 0.5% NP40, 1mM PMSF, 0.5x Protease inhibitors) at a density of 

4x106 cells/ml.  Cells were re-suspended in 10ml ice cold Salt-wash buffer (10mM Tris 

pH 8.1, 1mM EDTA, 0.5M EGTA, 200mM NaCl,1mM PMSF, 0.5x Protease inhibitors) 

and incubated for 10 minutes at 4 oC.  Cells were lysed by adding sonication buffer 

(10mM Tris pH8.1, 1mM EDTA, 0.5M EGTA, 1% SDS, 1mM PMSF, 1x Protease 

inhibitors) at a cell density of 1x106 cells/30µl. Lysate was sonicated using a water bath 
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sonicator (Diagenode).  Chromatin immunoprecipitation was carried out for 16 hours at 4 

oC  using 4.5x106 cells and 5µg of specific antibody (anti acetyl histone-H4)(Upstate) or 

5 µg of rabbit IgG (Upstate).  Immunoprecipitated chromatin was captured by incubation 

with pre-blocked protein A/G beads (Santa Cruz) for 4hrs at 4oC then washed 

sequentially with low salt wash (20mM Tris pH8.1, 2mM EDTA, 150mM NaCl, 0.1% 

SDS, 1% tritonX 100), high salt wash (20mM Tris pH8.1, 2mM EDTA, 500mM NaCl, 

0.1% SDS, 1% tritonX 100) and LiCl wash (10mM Tris pH8.1, 250 mM LiCl, 1% NP-

40, 1% sodium deoxycholic acid, 1mM EDTA).  DNA was eluted with elution buffer 

(10mM Tris pH8, 1% SDS, 1mM EDTA) and crosslinks were reversed by incubating 

with 312 mM NaCl at 65oC for 4 hours. The immunoprecipitated DNA was treated with 

RNase (Ambion) for 30 minutes at 37oC and proteinase K (Roche) for 1 hour at 45oC. 

The DNA was purified with Qiagen PCR spin columns per manufacturer’s instructions.  

Purified DNA was analyzed by quantitative PCR using primers to the CNS+18 region of 

the human IFNγ locus (FWD 5’-GACTGGGTGAGGGAGATTG-3’, REV 5’-

GGGAGTGACAGGTAGGGAGA-3’) using an annealing temperature of 55°C.  Data 

was analyzed by calculating enrichment for acetylation versus IgG using percent input of 

each sample. 
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Chapter Four: 

Molecular, epigenetic, and phenotypic repolarization of T lymphocytes from chronic 

lymphocytic leukemia patients using 5-aza-2’-deoxycytidine. 

Abstract 

T cell immune dysfunction has an important role in the profound immunosupression that 

characterizes chronic lymphocytic leukemia (CLL).  Improper polarization of T cells has 

been proposed as one of the mechanism involved. Mounting data implicates chromatin 

regulation, namely promoter methylation, in the plasticity of naïve human T cells.  

Recent in-vitro evidence indicates that this plasticity may be phenotypically altered by 

using methylation inhibitors which are approved for clinical use in certain types of 

cancer. These results beg the question: can the ineffective polarization of T lymphocytes 

in the context of CLL be effectively modulated using methylation inhibitors in a 

sustainable therapeutic fashion?  To answer this question our laboratory has studied the 

effects of 5-aza-2’-deoxycytidine (5A2) in helper and cytotoxic T lymphocytes from 

healthy donors and CLL patients in well characterized molecular and epigenetic signaling 

pathways involved in effective polarization.  Moreover, we sought to investigate the 

consequences of methylation inhibitor treatment on lymphocyte survival, activation 

intensity, and naïve cell polarization. Our data indicates that 5A2 treatment can repolarize 

Th2 cells to effectively secrete interferon gamma, signal via T-bet, and achieve 

demethylation of critical Th1 specific promoters. Moreover, we demonstrate that 5A2 can 

force Th1 polarization of naïve T cells despite a strong IL-4 stimuli and a lack of IL-12.  
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In conclusion our data seeks to define a modality in which improper or ineffective T cell 

polarization can be altered by  5AZA and could be incorporated in future therapeutic 

interventions.  

Results 

T lymphocytes display phenotypic Th1 repolarization after treatment with 5A2 

To understand the activity of DNA methyltransferase inhibitors (DNMTi) on T 

helper cell polarization we examined the effects of a single dose of 5A2 (0.3µM, 1µM, 

3µM, 10µM, and 30µM) on fresh CD4 T lymphocytes obtained from healthy blood 

donors.  Intracellular staining revealed an increase in IFNγ (Th1 cytokine) positive cells, 

ranging from 10-13% at baseline to 39% in the 30µM dosage (Figure 20A).  To identify 

any potential detriment to CD8 T lymphocyte responses we examined IFNγ production in 

CD8 T cells from healthy donors and observed a similar increase which directly 

correlated with drug treatment (Figure 21).  

To more specifically address alterations to Th2 cells we conducted phosflow 

analysis of pSTAT6 levels in CD4 T cells from healthy donors.  Since pSTAT6 levels in 

Th2 cells quickly rise following activation via CD3ζ and CD28 we conducted a 

timecourse analysis spanning 15 to 75 minutes post activation(Chapoval, Dasgupta et al. 

2010).  Interestingly, pSTAT6 was found to decrease with drug treatment indicating that 

Th2 signaling patterns were abrogated by the DNMTi (Figure 20B). 

 To better understand the effects of 5A2 on Th1 and Th2 cell populations in-vitro 

polarized T cells were subjected to 5A2 treatment and the secreted levels of IFNγ were 

measured by CBA (Figure 23A and Figure 22).  The results confirmed that IFNγ 
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production in Th2 cells increased in a dose dependent manner with 5A2.  It was also 

noted that Th1 cells produced more IFNγ, however this was less pronounced. 

 In addition we tested the resulting polarity of 5A2 treated naïve cells after 

stimulation under strong Th1 or Th2 polarizing conditions using intracellular staining of 

Figure 20: Intracellular staining reveals 5A2 induced IFNγ and reduced 
pSTAT6.  Magnetically isolated CD4+ T cells from healthy donors were treated with 
5A2 (30, 10, 3, 1, 0.3, and 0µM) or left untreated and stimulated in-vitro prior to 
FACS analysis. A) Intracellular levels of IFNγ and IL-4 after 12 hours of 
PMA/ionomycin stimulation.  B) T cells were assayed for intracellular pSTAT6 at 
various timepoints after stimulation with αCD3 and αCD28 (15, 30, 45, 60, and 75 
minutes) all percentage data were normalized to an untreated and unstimulated 
sample.  All experiments were repeated at least three times with various healthy 

Figure 21: 5A2 increases IFNγ response in CD8 T cells from a healthy donor.  
Purified and PMA/ionomycin stimulated CD3+ T cells were treated with the indicated 
concentration of 5A2 and assayed via flow cytometry for CD8α and intracellular 
IFNγ.  Cells were gated on CD8+ and the gated population represents IFNγ positive. 
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IFNγ and IL4.  As expected, in the control sample Th2 polarizing conditions resulted in 

exclusively IL4 secreting cells, however 5A2 was capable of eliminating the IL4 

response and inducing the secretion of IFNγ in a dose dependent manner (Figure 23B).  

Our data also confirmed that Th1 polarizing conditions resulted in exclusive IFNγ 

production which was further exacerbated by 5A2 treatment. 

T cells from CLL patients alter polarization towards Th1 in response to 5A2 

 It has been previously demonstrated that T cells from CLL patients generally 

proliferate poorly after in-vitro stimulation with low IL2 (20U/ml) and secrete high levels 

of IL4, and relatively low levels of IFNγ(Scrivener, Kaminski et al. 2001; Frydecka, 

Kosmaczewska et al. 2004).  Given our previous data we wanted to test the repolarizing 

effects of 5A2 on these cells.  We started by examining the IFNγ secreted by T cells 

isolated from four CLL patients using CBA.  Our results matched the characteristic dose-

dependent increase in IFNγ revealed earlier in healthy donor T cells (Figure 24A).  These 

results were further confirmed using intraceullular staining to examine the levels of IFNγ 

Figure 22: In-vitro polarized Th1 and Th2 T cells have divergent expression of T-
bet and GATA3 by qRT-PCR.  mRNA analysis of 5 week in-vitro polarized Th1 
and Th2 cultures reveals that Th1 cells express relatively high levels of T-bet 
meanwhile Th2 cultures express relatively high levels of GATA3 indicating polarity. 
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produced in response to stimulation (Figure 24B).  In addition, we found that the 

percentage of IL4 positive T cells decreased under 5A2 treatment, indicating that a high 

percentage of Th2 polarized cells were no longer responding to in-vitro stimulation via 

IL4. 

 As mentioned earlier, the proliferation of T cells from CLL patients after in-vitro 

stimulation is characteristically poor, thus we were curious if 5A2 treatment could 

alleviate this anergic condition.  Using MTX proliferation assays we found that CD4 T 

cell proliferation directly correlated with 5A2 dose resulting in a 500% increase in 

proliferation compared to untreated samples (Figure 24C). 

Th2 cells treated with 5A2 induce constitutive pSTAT1 signaling and express T-bet 

 The phenotypic alterations we have identified thus far must derive from a specific 

set of molecular signaling networks. T-bet is considered the master regulator of Th1 

phenotype and it is controlled by activated STAT1 signaling.  We decided to investigate 

the protein expression levels of T-bet and pSTAT1 in healthy donor and CLL CD4 T 

lymphocytes by western blot.  As depicted in Figure 25A T-bet in healthy donor CD4 T 

cells is expressed at a basal level, however treatment with 5A2 increases this expression.  

This correlates with the increased phosphorylation of Tyr 701 on STAT1.  Similar results 

were observed in T cells obtained from a CLL patient; however both T-bet and pSTAT1 

were not identified at a basal level (Figure 25B). 

 Our prior experiments revealed phenotypic repolarization was restricted to the 

Th2 cells, thus we wanted to confirm that molecular alterations in purified populations of 

Th1 and Th2 were restricted to the Th2 population.  Using western blot analysis on 

polarized T cells we identified an increase in pSTAT1 Tyr 701 in Th2 cells when treated 



89 

with 5A2.  Notably, pSTAT1 levels were maintained at a higher basal level in Th1 cells 

Figure 23: Th2 cytokine polarization is inhibited by 5A2 treatment.  A) IFNγ 
released by In-vitro polarized and 5A2 treated Th1 and Th2 T cells subjected to 24 
hours of stimulation with αCD3 and αCD28 was assayed via CBA.  Error bars 
represent the standard deviation of four replicate samples.  B) Intracellular staining of 
IL4 and IFNγ in magnetically isolated 5A2 treated naïve CD4 T cells from a healthy 
blood donor subjected to stimulation with αCD3 and αCD28 along with strong Th1 or 
Th2 stimulation (indicated under title). 
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Figure 24: T cells from CLL patients are phenotypically repolarized by 5A2.  
CD4 T cells were magnetically isolated from CLL patients, immediately subjected to 
5A2 treatments, and assayed for alteration to phenotype.  A) T cells secretion of IFNγ 
was measured using CBA.  Data represents the mean and standard deviation of 
triplicate samples of four independent CLL patients.  B) T cells from a CLL patient 
were assayed via FACS analysis for intracellular levels of IFNγ (top panel) and IL4 
(bottom panel) in response to 5A2 treatment and PMA/ionomycin stimulation.  For 
comparison histograms representing an unstimulated (red) and stimulated yet 
untreated (blue) sample are provided along with the relative percentage of positive 
cells for each histogram. C) Proliferation of T cells from CLL patients in response to 
αCD28 and αCD3 along with 20U/ml IL2 was interrogated using an MTX assay.  
Data are normalized to the untreated sample and the graph represents triplicate well 
from four independent CLL patients with error bars representing standard deviation. 
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potentially rendering any alteration of pSTAT1 levels by 5A2 less evident (Figure 25C 

and D. 

5A2 treatment of T cells stimulates a well characterized IFNγ autocrine loop 

 Our data identified a link between T-bet, pSTAT1, and 5A2 treatment of CLL and 

Th2 T cells.  We wanted to know if the demethylating agent was eliciting the expression 

and secretion of IFNγ thus inducing a well defined STAT1α mediated autocrine feedback 

loop.  To explore this possibility we decided to abrogate this autocrine loop using anti-

IFNγ.  Our experiments revealed that soluble IFNγ was directly linked to the activation of 

STAT1α in response to 5A2, confirming our hypothesis (Figure 26A).  To confirm that 

the IFNγ and T-bet were upregulated at the transcriptional level we conducted qRT-PCR.  

Figure 25: 5A2 induces pSTAT1 and T-bet signaling in T cells.  Magnetically 
purified 5A2 treated CD4 T cells from a healthy blood donor A) or a CLL patient B) 
were assayed via western blot for total cellular levels of pSTAT1 ant T-bet protein.  
In-vitro polarized C) Th2 and D) Th 1 T cells were assayed via western blot for 
pSTAT1.  For comparison β-Actin and total STAT1 levels were also included.  
Western blots are representative of three independent experiments. 
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Our examination of mRNA levels indicated that both T-bet and IFNγ mRNA were 

increased after 5A2 treatment (Figure 26B). 

5A2 treatment of CLL T cells specifically induces demethylation of the IFNG promoter 

 In order to link the phenotypic changes with the molecular alterations we 

observed it was necessary to provide a mechanism for 5A2 induced IFNγ expression.  

The IFNG locus spans a 110kb region on human chromosome 12.  Using methylation 

specific PCR and bisulfite sequencing we identified a region comprised of 200bp 

proximal to exon I of IFNG which was demethylated by 5A2 (Figure 27A, B, and C).  

Our results reveal the methylation percentage of two independent CpG sites was 

decreased in T cell populations from CLL patients after treatment with 5A2.  Although, 

using Methyl-ChIP, we tested other regions of the IFNG locus, including the Conserved 

noncoding sequence (CNS)-56kb, -54kb, -34kb, Intron I, +18-20kb, +24kb, +46kb, and 

+55kb, we could only identify significant alterations in methylation within the promoter 

Figure 26: pSTAT1 signaling is induced by autocrine IFNγ.  A) Magnetically 
isolated CD4 T cells from healthy donors were treated with 5A2 and αIFNγ as 
indicated and subjected to western blot for pSTAT1 and total STAT 1.  B and C) 
Total RNA obtained from magnetically isolated CD4 T cells from healthy donors 
were subjected to T-bet and IFNG transcript specific qRT-PCR.  Error bars indicate 
two times the standard deviation of the mean of three replicate experiments. 
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region (data not shown).  Notably, the basal methylation level of untreated CLL cells 

resembled the highly methylated state seen in purified Th2 T cells. 

In mouse studies it has been shown that the CNS-6kb region was divergently 

methylated in Th1 and Th2 cells.  Additionally, it has been postulated that 5A2 treatment 

demethylates this region resulting in transcription of the IFNG gene in human T cells.  

Figure 27: 5A2 specifically demethylates the IFNG promoter. A) Synthetically 
methylated, unmethylated, and gemomic DNA were assayed using methylation 
specific PCR primers demonstrating transcript specificity.  B) MSP was carried out on 
bisulfite treated DNA obtained from Th1, Th2, and CD4 T cells obtained from CLL 
patients treated with various concentrations of 5A2 in addition to synthetically 
methylated and unmethylated DNA samples. C) Bisulfite sequencing of the promoter 
region of the IFNG locus confirms MSP results.  For methylation analysis the relative 
level of methylation for three independent experiments is depicted along with error 
representing the standard deviation.  Note that the graphical range is abbreviated for 
graph clarity.  D) A graphical depiction of our proposed signaling model in which 
5A2 induces ectopic demethylation, expression, and secretion of IFNγ resulting in 
autocrine IFNGR signaling via pSTAT1α a known T-bet transcription factor resulting 
in T-bet expression. 
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Our studies confirmed the notion that Th1 and Th2 cells differ in their respective 

methylation levels within the CNS-6kb region using bisulfite sequencing, however after 

detailed analysis using bisulfite sequencing we could not confirm demethylation in T 

cells after treatment with 5A2 indicating that this region is not responsible for the 

phenotypic and molecular changes in T cell polarity that we have identified (Figure 28A 

and B).    Figure 27D shows our proposed schema for the activation of T-bet using 5A2 

based on the evidence at hand. 

Discussion 

 The heritable epigenetic alterations which underpin T cell polarity can also 

become chromatin-based patterns which are altered in disease states.  Our studies have 

shed light on a potential mechanism by which therapeutic application of demethylating 

agents such as 5A2 can induce the signaling patterns of Th1 phenotype in what would 

generally be considered Th2 T cells.  We have also demonstrated this in a disease state, 

Figure 28: 5A2 does not induce demethylation of the CNS-6kb region of the 
IFNG locus.  A) Bisulfite sequencing analysis of the CNS-6kb region of the IFNG 
gene revealed divergent patterns of methylation between Naïve, Th1, Th2, and CLL T 
cells however B) no change was identified in CLL T cells after treatment with various 
concentrations of 5A2.  Note that the graphical range is abbreviated for graph clarity. 
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CLL, for which Th2 polarization regularly results in the inability to adequately deal with 

external pathogens.  As of yet it is uncertain how long these molecular alterations can 

persist in the absence of continued 5A2 treatment.  In unpublished studies we have 

identified phenotypic changes which continue for weeks post treatment and our ongoing 

studies will work to identify any temporal limitations to these chromatin modifications.  

It is conceivable, that even temporary alteration of T cell phenotype may have an impact 

in the T cell imunosuppression seen in patients with CLL. 

 With the general goal of chemotherapeutic effect many of the clinical trials to 

date have used concentrations of 5A2 which are detrimental to the healthy lymphoid 

compartment.  We too have occasionally witnessed a reversal of immunotherapeutic 

effects at higher doses of 5A2 (30µM or higher).  A recent clinical trial has been 

conducted using a relatively low dose 5A2 in CLL patients.  While 5A2 alone 

demonstrated little cytotoxic effect on CLL cells the 10mg/m2 dosage was well tolerated; 

unfortunately however, the effects to T lymphocytes were not studied(Blum, Liu et al. 

2010).  In a similar Phase I study of T-cell lymphomas 5A2 at 10mg/m2 reduced global 

DNA methylation in T lymphocytes by 2.5-6%, lending credence to the idea that sub-

chemotherapeutic levels of demethylating agents may alter the methylation of the T cell 

compartment(Stewart, Issa et al. 2009).   

 Currently, there is scant evidence regarding the regulation of IFNG in human T 

lymphocytes, however regulation in mice has been comprehensively studied by CB 

Wilson(Schoenborn, Dorschner et al. 2007).  A single manuscript has previously 

identified the epigenetic repolarization of human tumor infiltrating lymphocyte clones 

using 5A2, however the scope of this study lacked a detailed analysis of the mechanism 
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and molecular phenotype(Janson, Marits et al. 2008).  In prior published studies we 

identified a number of demethylation-induced immunotherapeutic effects which in total 

lead to an increased antigen presenting phenotype in CLL cells, a result which 

complements our current findings(Dubovsky, Wang et al. 2010). 

 We have identified molecular signatures which parallel the increased IFNγ 

response.  The molecular signals recapitulate an expected Th1 T cell including T-bet, 

pSTAT1, and decreased pSTAT6.  To our knowledge we are the first to identify these 

molecular signature alterations in response to demethylating agents.  In addition, we have 

identified a region of the IFNG locus which is actively demethylated by 5A2 and 

potentially induces expression in T cells.  In previous reports using human T cells 

methylation of the CNS-6kb region of the IFNG locus was shown to mirror T cell 

phenotype.  Our studies clearly demonstrate that demethylation of the CNS-6kb region is 

not necessary for IFNG expression and a Th1 phenotype.  It remains unclear why the 

CNS-6kb region was unchanged by 5A2 however it is possible that this region may be 

progressively demethylated as a Th1 clone expands, further reinforcing Th1 polarity. 

 Our findings generate provocative questions regarding the efficacy of new 

immunotherapeutic strategies based around 5A2.  Numerous studies have identified the 

induced expression of various cancer germline antigens in both solid and hematologic 

malignancy, including CLL(Dubovsky, Villagra et al. 2010).  A strategy which 

incorporated the restoration of T cell cytolytic capacity with the expression of potent 

immunotherapeutic antigens specifically within tumor cells would likely be attractive. 

Materials and Methods 

Subject Populations 
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Sera and peripheral blood mononuclear cells (PBMCs) were obtained from 

patients with CLL.  All subjects gave written institutional review board (IRB)-approved 

informed consent for their blood products to be used for research.  Blood was collected at 

the H. Lee Moffitt Cancer Center (Tampa, FL). PBMCs were stored in 1ml aliquots at -

140°C and sera were stored in aliquots at -80°C until used. 

Cell Culture, Drug Treatments, and T cell Polarization 

Unless otherwise stated cells were cultured in-vitro at 37°C and 5%CO2 using 

RPMI1640 medium supplemented with 10% fetal calf serum and antibiotics.  Drug 

treatments were carried out on plate-bound anti-CD3, soluble anti-CD28, and IL-2 

(20U/ml) stimulated magnetically isolated T cells (>95% purity) for 72hr in complete 

medium using the indicated concentration of 5-aza-2’-deoxycytidine (5A2) (dissolved at 

10mM in DMSO).  At the conclusion of treatment cells were washed twice using pre-

warmed serum-free RPMI1640 and subjected to the various assays (Supplementary 

Figure 1).  Th1 and Th2 polarized T cells were obtained from magnetically purified naïve 

human CD4 T cells by weekly stimulation with plate-bound anti-CD3, soluble anti-

CD28, and IL-2 (20U/ml) in the presence of IL-12 (10ng/ml) and anti-IL-4 (1:100) for 

Th1 or IL-4 (5ng/ml) and anti-IL-12 (1:100).  Medium was replaced twice weekly and 

stimulation was repeated for four weeks upon which a sample was collected and tested 

via CBA array and qRT-PCR for polarity (Figure 29). 

Reverse Transcriptase-PCR (RT-PCR) 

Total RNA was prepared from pelleted cells (RNeasy mini columns and RNAse 

free DNAse, Qiagen, Valencia, CA).  RT-PCR and qRT-PCR reactions were conducted 

using the Qiagen one-step RT-PCR kit (Qiagen) or the iScript SYBR green RT-PCR kit 
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 (BioRad, Hercules, CA) with transcript-specific primers (T-bet: 

5’TGACCCAGATGATTGTGCTC, 3’ATCTCCCCCAAGGAATTGAC) (GATA3: 

5’AAGGCAGGGAGTGTGTGAAC, 3’TGGATGCCTTCCTTCTTCAT) (IFNG: 

TTCAGATGTAGCGGATAATGGA, 3’TCAGCCATCACTTGGATGAG) and 200ng of 

total RNA.  RT-PCR amplification reactions were resolved on 2% agarose gels and the 

size of the amplified transcript confirmed by comparison with a standard DNA ladder 

(GelPilot 1Kb Plus Ladder, Qiagen).  qRT-PCR experiments were analyzed using the 

MyiQ software package.  After confirming a single melt curve peak CT values for Actin 

were compared to CT values for the transcript of interest using the 2-∆∆CT method. 

Flow Cytometry and Cytokine Bead Array 

Flow cytometric analysis was performed using fluorochrome-labeled monoclonal 

antibodies (mAbs; anti-CD3, -CD4, -CD8, -IL-4, -IFNγ, and anti-pSTAT6, Becton 

Dickinson, San Jose, CA and eBiosciences, San Diego, CA)  and the viability dye 4',6-

diamidino-2-phenylindole (DAPI, Sigma).  Intracellular staining of IL-4, IFNγ, and 

pSTAT6 was conducted according the appropriate manufacturer protocol (Becton 

Dickinson).  Cytokine bead array (CBA) (Becton Dickinson) was conducted according to 

the manufacturers published protocol using cellular supernatant from three replicate 

Figure 29: Schema for in-vitro experimental analysis of T cells.  Purified CD4 or 
CD8 T cells are stimulated using plate bound αCD3, soluble αCD28 and 20U/ml IL2 
for 72 hours in the presence of the indicated concentration of 5A2.  Cells are then 
washed and restimulated using the same methodology prior to analysis. 
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experiments.  Flow cytometric data was analyzed with FlowJo software (Tree Star, 

Ashland, OR) on a minimum of 30,000 collected events. 

Methylation Analysis 

 For both methylation specific PCR (MSP) and bisulfite sequencing purified DNA 

(Qiagen DNA miniprep kit, Qiagen) was bisulfite treated according to the manufacturer 

protocol using the Epitect Bisulfite treatment kit (Qiagen).  MSP was conducted using 

transcript specific primers designed to specifically recognize either methylated or 

unmethylated CpG motifs (IFNG-methyl 5’AAGAGTTAATATTTTATTAGGGCGA, 

3’TAAACTCCTTAAATCCTTTAACGAT) (IFNG-unmethyl 

5’TGAAGAGTTAATATTTTATTAGGGTGA, 

3’TAAACTCCTTAAATCCTTTAACAAT).  Touchdown PCR was utilized to generate 

PCR products which were subjected to gel electrophoresis, stained with ethidium 

bromide and densitometrically analyzed. 

Bisulfite sequencing was conducted using primers indifferent to methylation 

status (IFNG-Promoter 5’TAGAATGGTATAGGTGGGTATAATGG, 3’ 

ATAACAACCAAAAAAACCCAAAAC) (CNS-6kb 

5’TGAGTAAAGGTTTAGGGTATTTTTT, 3’ACTCACTACAAACTCTACCTCCC).  

PCR amplicons were cloned into plasmid vectors using a T-A cloning kit (Qiagen) and 

transformed bacterial colonies were directly sequenced using vector primers.  A 

minimum of 12 bacterial colonies were sequenced for each sample.  Sequencing results 

were used to calculate methylation status of CpG motifs and average methylation stats 

was depicted in graphical form. 

Western Blot Analysis 
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  Western blotting experiments were conducted using conventional methodology 

previously described(Dubovsky, McNeel et al. 2009).  Blotting was conducted using 

pSTAT1 Y701 (Cell Signaling Technologies, Danvers, MA), T-bet (eBiosciences), 

STAT1, and β-Actin (Santa Cruz Biotechnology, Santa Cruz, CA) specific antibodies. 
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Chapter Five: 

Scientific significance and future directions 

Antigen specific immunotherapy for CLL 

Vaccines in general have had wide-ranging success and, in fact, are the only 

means by which the human race has achieved eradication of a disease.  Unfortunately, 

however, vaccines are generally only effective when administered prior to challenge. 

  Active immunotherapeutic strategies are hardly a novel concept in solid tumors.  

For the past two decades immunotherapeutic vaccines have been tested, primarily in 

melanoma and renal cell carcinoma, which tend to be slightly more immunogenic in 

nature.  While many of these vaccine strategies and antigens have been ineffective in fast 

growing solid tumors there are a few select strategies which persist, among these are 

cancer testis antigen based cellular vaccines.   

In hematologic malignancies, namely CLL, antigen specific vaccines have not 

been studied in such a fervent manner.  Instead, much attention was initially devoted to 

the development of idiotype-specific vaccines which would elicit an immune response 

against the clonal CLL antigen receptor.  While this was a meritous concept, few trials 

have demonstrated success and, like antigen-specific vaccines for solid tumors, only a 

few permutations of this idea persist.  Nowadays, immunotherapeutics for CLL have 

followed the general trend initiated by the success of anti-CD20 monoclonal antibody 

therapy; however there exists little curative potential with conventional antibody therapy.  
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With the new era of epigenetics the novel concept of vaccinate-induce has the potential to 

recapitulate the twentieth century success of anti-viral vaccines. 

Our studies represent the first comprehensive identification of inducible antigens 

in CLL.  While true identification of circulating T cells capable of responding to CLL 

antigens is extremely difficult in CLL we were able to identify isotype-switched antibody 

responses. The generation of an IgG response towards any antigen requires isotype 

switching, a phenomenon which occurs in response to helper T-cell antigen recognition.  

Thus a robust IgG response to a given cancer-specific antigen can be an extremely 

informative event indicating the presence of a functional T-cell repertoire specific to the 

antigen; data which becomes vastly more important when you consider that CLL-induced 

antigen-specific T-cell inhibition tends to eliminate the majority of these clones.  One 

could envision that the most potent antigens should have no detectable immune 

responses.  Although this may also be true, it is now understood that cancer progression 

is marked by repeated immune-evasive events, leading to the epigenetic suppression of 

many highly antigenic proteins.  Immune-evasion conceivably leads to the generation of 

an antibody milieu specific to potent tumor antigens.  Thus finding a single response 

towards an antigen which is not expressed by the current tumor potentially indicates 1) 

epigenetic suppression of the antigen and 2) antigen expression leads to an immune 

response capable of eliminating a particular CLL clonal population. 

 In future studies it will be necessary to assess the efficacy of various inducible-

antigen based immunotherapeutic strategies.  Amongst the most promising is a novel 

strategy which utilizes patient T cells transfected with chimeric antigen receptors capable 

of responding to surface antigens on CLL cells.  Since the chimeric receptor is composed 



103 

of an antibody-based antigen recognition regions and T cell derived signaling the 

possibilities are not limited to MHC presented peptide antigens.  One conceivable 

permutation of this therapeutic tool would be to derive chimeric antigen receptors which 

recognize an epigenetically inducible surface antigen on CLL.  Conceivably, this antigen 

could even be an epigenetically induced carbohydrate molecule; a concept which is still 

in its virgin stage. 

Alleviating B cell dysfunction in CLL 

 In healthy individuals B cells play a critical role in promoting the adaptive 

immune response via presentation of antigens to the T lymphocyte wing of the immune 

system.  This antigen presentation normally provides costimulatory and cytokine signals 

which direct T cell polarization, proliferation, and effector function as well as inducing 

proliferation, isotype switching, and plasma cell differentiation of the B cell.  Since CLL 

patients progressively loose their healthy B cell compartment due to competition with the 

malignant clone these necessary functions of B cell immunity are lost.  In addition, the 

loss of normal B lymphocytes truncates the available naïve B cell pool, limiting the 

ability to respond to new pathogens. 

Clinically, this dysfunction poses a huge obstacle to effectively treating the 

disease.  Currently, the majority of approved therapeutic interventions, including anti-

CD20 monoclonal antibody therapy and chemotherapeutic agents such as fludarabine, 

have the capacity to kill both healthy and malignant B cells exacerbating the 

immunosupression.  In light of this, there is an obvious need for novel therapeutics which 

are significantly more specific in their cytotoxic efforts.  While many of the epigenetic 

modifiers, including 5-aza-2’-deoxycytidine and LAQ, were initially developed as 
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cytotoxic chemotherapeutic agents, their effect at sub-chemotherapeutic levels may lead 

to a more profound clinical advantage. 

Our studies demonstrated that using low doses of both hypomethylating and 

histone deacetylation agents resulted in an alteration of immune phenotype amongst CLL 

cells.  Importantly, we were able to effectively alter the antigen presentation signals such 

that Th1 T cell responses were enhanced, immune synapse signaling was improved, 

immunosuppressive cytokines were reduced, and CLL specific cytotoxicity was 

achievable.  Since our studies were focused on the malignant arm of the B cell repertoire 

it remains to be seen whether or not healthy B cells derived from the bone marrow will 

recapitulate healthy antibody responses alleviating the other half of B cell base 

immunosupression.  These studies will be most effectively carried out in animal model 

systems, a task which our lab actively seeks to carry out.   

In B-CLL the stromal environment has drastic impact on the survival, 

proliferation, signaling, and localization of tumor cells further complicating the transition 

from benchtop to bedside.  There currently exists a single mouse model which adequately 

recapitulates CLL.  Developed by Dr. Carlo Croce this mouse has the TCL1 oncogene 

under the transcriptional control of the antibody immunoglobulin µ promoter.  Recent 

molecular evidence suggests that the µTCL1 mouse model accurately mimics the stromal 

environment of CLL, inducing T-cell dysfunction and ignorance identical to that found in 

human CLL patients.  However, the unfortunate consequence of conventional murine 

models for immunotherapeutic research is that the antigens derived have variable 

conserved levels of peptide sequence, epigenetic control, cell specificity, and expression.  

In the past this has led to conclusions which were not translatable to the human system.   
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An alternative approach would be to utilize the new genetic stock of IL-2R 

common γ chain deficient NOG (NOD-SCID/IL-2Rγnull) mice for the implantation of 

human tissue.  These mice have demonstrated superior engraftment of human cells 

attributable to their lack of functional NK, B-, and T-lymphocytes.  In our preliminary 

work we have successfully engrafted B-CLL along with T-cells from patients within our 

PBMC bank enabling us to conduct preclinical studies, including immunotherapeutic 

strategies.  Another benefit is the ability to utilize human antigens as opposed to murine 

homologues of varying antigenicity as would be necessary in other spontaneous tumor 

models.  Although this research is still in its infant stages, this new model provides a 

necessary tool for preclinical testing of immunotherapeutic strategies which incorporate 

the alteration of B cell immunogenicity.  

Alleviating T cell dysfunction in CLL 

 While more indirect, the immunosuppressive effect CLL has on the T cell 

armament is no less profound.  In healthy individuals professional antigen presenting 

cells such as B cells are critically necessary for the appropriate licensing of CD4 helper 

and CD8 cytotoxic responses.  Although the complex interactions which take place 

between T cells and B cells in-vivo are still being studied, there are a few variables which 

have proven critical for effective T cell polarization.  First and foremost is adequate 

synapse formation.  Research indicates that synapse formation consisting of long lasting 

TCR engagement followed by costimulatory signals derived from interactions involving 

CD28 and stabilized by engagement of the ICAM1/LFA scaffolding promote memory 

cell formation, polarization, and proliferation of the recently mature lymphocyte clone. 
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 Interestingly, our research focusing on relieving B cell immunosuppressive had 

the unintended consequences of improving the dynamics of naïve T cell activation and 

polarization via interaction with CLL APCs.  Our data demonstrated that T cells 

interacting with epigenetically modified CLL cells were of Th1 polarity.  Evidence 

indicates that this leads to a cytotoxic response capable of eliminating intracellular 

pathogens such as virus infection or potentially even CLL cells. 

While the proper polarization of naïve T cells responding to new pathogens is 

important, it does not repair the damage which has already accumulated within the T cell 

repertoire of a CLL patient.  It is postulated that the T cell repertoire still contains the 

receptor diversity necessary to respond to numerous external pathogens and perhaps even 

CLL.  However, as a result of the CLL improper Th2 polarization, anergy, and the 

inability to form new antibody responses renders T cells powerless against the majority 

of challenges.  Our studies successfully demonstrated a methodology which could be 

utilized to regain Th1 functionality amongst T helper cells in CLL.  Moreover, we 

demonstrated that newly formed T cell responses could be therapeutically modulated as 

well.  All in all we have identified what may become a useful therapeutic tool for CLL. 

What remains unclear is whether or not a revitalized T cell compartment will, 

without further intervention, be capable of eliminating CLL cells.  We have started to 

investigate this hypothesis; however using conventional methodology it is difficult to 

isolate adequate CD4 and CD8 T cells along with CLL cells from a single blood donor.  

Moreover, in-vitro culture of T cells from CLL patients requires supra-physiologic 

concentrations of IL2.  For these reasons it would be ideal to directly test this hypothesis 

in an in-vivo tumor model.  A model such as the NOG/SCID model described earlier 
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would be ideal.  In preliminary studies we have identified a methodology which allows 

for selective engraftment of the CD3 T cell compartment allowing for experimental 

control animals to be generated alongside fully engrafted littermates. 
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