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ABSTRACT 
 
 
 

Natural Killer cells (NK) are critical components of the innate immune system. 

Often referred to by their morphology, these large granular lymphocytes (LGLs) are bone 

marrow-derived lymphocytes and can be found throughout the body. NK cells reside in 

the liver, lymph nodes, spleen, thymus, and mucosal-associated lymphoid tissues 

(MALT). Importantly, NK cells also circulate throughout the blood where they function 

as surveyors of the body and are armed to eliminate malignant, infected, damaged, or 

foreign cells. 

NK cells function by a dual receptor system. That is, NK receptors are broadly 

categorized as inhibitory or activating. It is a fine balance, or lack thereof, that dictates 

the function of an NK cell. Unlike their T and B cell adaptive counterparts, NK cell 

receptors (NKR) are germline encoded and do not undergo gene rearrangement. NKRs 

are expressed in a variegated but overlapping fashion such that different cell subsets in 

the NK compartment elaborate different combinations of activating and inhibitory NKR. 

Varying the array of NKRs used by each subset increases the potential specificities of the 

NK compartment, while retaining tolerance to self. Thus, a diverse and balanced NK cell  
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receptor repertoire (NKRR) is extremely important in order for this lineage to 

respond to various immunologic challenges and to do so in a normal, effective manner.  

As we have previously shown, aberrations in the expression of NKRs or 

downstream signaling can lead to severe immune deficiency, as observed in SHIP-

deficient mice. We also showed that in the absence of SHIP-1, 2B4 becomes highly 

upregulated, functioning as a dominant inhibitory receptor and rendering the SHIP-1-

deficient NK cell unresponsive to complex tumor targets. Traditionally MHC-I inhibitory 

ligands are largely responsible for the regulation of NK function. However, we show here 

that 2B4, which mediates MHC-I-independent inhibition, is required for formation of a 

normal NKRR, NK homeostasis, and effector functions. Moreover, in the absence of 2B4 

and SHIP-1, NK cells have improper licensing, or education. In addition to SHIP-1 and 

2B4 we show that the nature of the MHC-I ligands also play a significant role in 

repertoire formation, NK effector functions, and NK cell education.  

As described above, NK cells are critical components of the immune system. 

Understanding how NK cell biology and function are regulated, or affected in the context 

of pathology is of high significance. NK function is often severely impaired in a diseased 

state, and more importantly, NK cells are frequently adversely affected by the treatments 

themselves. Here we sought out to determine the effects of an immunomodulating drug, 

lenalidomide, on the biology and function of healthy NK cells. Lenalidomide is a unique 

drug that displays immune enhancing functions yet can be cytotoxic to tumor cells. 

However, lenalidomide treatment can result in immune suppression and severe cytopenia, 

and has the ability to impair NK viability. We show here that if used in combination with 

cytokine treatment (e.g. IL-2 or IL-15), many of these negative affects can be overcome. 
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Furthermore, we show that lenalidomide treatment results in what appears to be an NK 

activating phenotype with a down-modulation of inhibitory KIRs and upregulation of 

CD16. Lenalidomide also leads to a sustained and robust activation of STAT5 and 

consequential increase in perforin and granzyme B. Finally, we find that treatment with 

lenalidomide in combination with IL-2 or IL-15 enhances the expression of IL-Rβ and 

IL-2Rγ chains, a presumed mechanism of action, which may provide a positive feedback 

loop. These findings have important clinical application. We propose that using 

lenalidomide in combination with IL-15 can augment its immune activating effects, while 

minimizing unwanted cytopenias.  
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Chapter 1: Background 
 
Natural Killer Cells 
 

Natural killer (NK) cells are bone marrow derived lymphocytes that belong to the 

innate branch of the immune system. They mediate cytolysis of malignant, infected, 

stressed or damaged self-cells, and allogeneic cells. Moreover, NK cells produce large 

amounts of cytokines and chemokines, and function to shape early anti-viral responses. 

Natural Killer cells, as their name implies, were identified and subsequently named for 

their “natural” ability to kill. That is, unlike T and B lymphocytes, NK cells are able to 

kill a target cell without prior immunization. A process referred to as “natural 

cytotoxicity” 1. This killing occurs spontaneously, or what originally appeared to be non-

specifically, and does not require clonal proliferation or antigen receptor gene 

rearrangement.  It is quite common within the immune system (and most areas of study) 

for cells, proteins, etc, to be named based off their function (i.e. Antigen Presenting 

cells). However, NK cells are not merely killers. These cells play important roles in 

adaptive and innate immune regulation as well as being critical in the clearance of viral 

infections 2.  

 

The Discovery of NK Cells. It has been over 30 years since the discovery of the 

Natural Killer cell. When examining cell-mediated cytotoxicity against tumor cells 3-7 and 

virally infected cells 8-10, several groups reported what was referred to at the time as 

unexplained “background” killing . It was observed that tumor cells and viral infections 
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from non-immunized animals, as well as normal donors, could be eliminated at levels 

similar to what was seen with immunized animals and cancer patients. Based on the 

knowledge regarding immunity and cancer immunology at the time (1975), T and B 

lymphocytes were responsible for the rejection of tumors and virally infected cells.  

Studies of virally induced tumors 11, 12 implicated a thymus-derived lymphocyte in the 

elimination of these tumors 12, 13. In vivo and in vitro studies provided further support that 

the tumor regression or killing was indeed T cell mediated 14, 15. According to a T-cell 

mediated model of tumor destruction, athymic and/or nude mice, which lack T cells, 

should have unrestrained tumor growth. However, unimpeded growth of tumors in the 

absence of T cells was never observed in these models 16, 17, suggesting that another cell 

type is mediating tumor cytolysis. There was now a large amount of data demonstrating 

“spontaneous” T cell-independent cell-mediated cytotoxicity that could not be ignored. 

Taken together, these findings eventually led to the coining of the terms “natural killing” 

and “natural cytotoxicity” 1, 18. 

 Although there was now a better explanation of the disturbing “background” 

killing, the idea of NK cells as a distinct subset was resisted. Instead, NK cells were 

defined as “null” cells, which meant they were non-B, non-T, non-phagocytic and non-

adherent cells that are largely Fc receptor positive, mostly complement receptor negative, 

and have low affinity to form rosettes with sheep erythrocytes 19-21. A few years later, 

Timonen and colleagues correlated their morphological appearance and function to that 

of large granular lymphocytes 22. Seminal studies demonstrating that NK cell activity was 

associated with in vivo resistance to tumor growth18, and the use of NK cells in cancer 

immunotherapy, particularly IL-2 activated NK cells (lymphokine activated killer cells- 
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LAK cells) 23, 24 provided evidence that these cells were important players in the immune 

system. The presence (and relevance) of NK cells remained somewhat controversial up 

until the late 1980’s, but by then NK cells became generally considered a unique 

population having distinct functional, morphological, and phenotypical characteristics.  

 

Missing Self Hypothesis. Following the discovery of the NK cell, considerable 

progress was made characterizing this cell type in the context of its lytic mechanisms19, 25 

and regulation by cytokines and other soluble factors26, 27. However, the nature of target 

cell recognition and the basis of selectivity and specificity remained elusive. It was clear 

that NK cells preferred (certain) malignant, virally infected, undifferentiated, and 

allogeneic cells 28, but the molecular event(s) that transformed a cell into an ‘NK 

sensitive’ target or an ‘NK resistant’ target remained elusive. The ‘Missing Self 

Hypothesis’, ingeniously presented by Klas Karre as part of his doctoral thesis, proposed 

that NK cytolysis of a target cell could be triggered by a decrease or absence of host 

major histocompatibility class I molecules (MHC-I) on the surface of a target cell. In 

other words, NK recognition of MHC class I molecules, unlike T cell-MHC-I interactions 

results in inhibition of the NK cell.  

In addition to “the mystery of the NK cells themselves,” a major impetus for 

pursuing the missing self hypothesis was derived from a perplexing question asked many 

years earlier regarding hybrid resistance and bone marrow graft and/or tumor rejection 29. 

Hybrid resistance refers to the rejection of parental strain bone marrow cells by NK cells 

that are F1 hybrids from two inbred parental strains and this was proposed to be regulated 

by the MHC molecules themselves 30. Simply put, A x B (F1) mice progeny reject (B x B) 
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or (A x A) parental bone marrow, where A and B refer to MHC-I haplotype 31. It was 

evident by the late 1970’s that tumors and bone marrow grafts can be rejected in a T cell-

independent, NK cell-dependent manner and MHC-I plays a role, but a major question 

remained as to how NK cells rejected the grafts 32, 33. Ironically, the only thing 

researchers could agree on was that NK cells were not at all influenced by target cell 

expression of MHC-I. As Karre wrote his thesis he asked not what NK and T cells have 

in common, but rather, what are the differences between these two cell types when it 

comes to target recognition? He found a common theme: targets that were insensitive to 

T cells were sensitive to NK cells, and vice versa. Considering this, Karre’s model 

predicted the expression of NK receptors that were specific for MHC-I and engagement 

between these molecules resulted in inhibition of the NK cell.  

There was literature that supported his hypothesis, but to address this 

experimentally, Karre created several MHC-I mutant cell lines. His results were in close 

agreement with his hypothesis: cell lines lacking MHC-I were highly susceptible to NK 

cytolysis and this was inversely proportional to the amount of MHC-I expressed on the 

surface of the target cell. Even more stunning, when they moved this to an in vivo mouse 

model, mice receiving MHC-I-deficient lymphoma cells failed to develop palpable 

tumors. When mice were injected with MHC-I+ lymphoma cells, but depleted of NK cells 

using an anti-NK1.1 antibody, this effect was completely abrogated 34, 35. 

 Parallel studies provided support and confirmation 36, 37. Eventually technology 

caught up with Karre’s hypothesis. Introduction of an H-2Dd transgene into C57BL6 (H-

2Db) mice resulted in acquired resistance, or rejection, of C57BL lymphoma grafts and 

B6 bone marrow cells 38, 39. Taken together, these studies and others 40 demonstrated that 
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NK cells utilize an MHC-I-dependent system whereby they are prevented to attack self or 

normal cells, but have the ability to detect and lyse non-self, or cells that have down-

regulated MHC-I. 

NK Cell Recognition. NK cells distinguish normal healthy cells from non-

healthy, or foreign cells by way of a sophisticated repertoire of receptors 41. These 

receptors are broadly categorized as ‘inhibitory’ or ‘activating’. Unlike T cells and B 

cells, where their activation, proliferation, and function is driven by a single antigen 

receptor, NK cells assimilate signals coming from a multitude of receptors that may be 

classified as adhesion or co-stimulatory molecules on other cells. Initial engagement of 

an NK cell with a potential target cell results in NK inhibitory and activating receptor 

interactions with ligands present on the other cell. An integration of signals downstream 

of the different NK receptors occurs and the NK cell will either detach and move away, 

or stay and respond. If an NK cell remains, cytosolic granules containing pre-stored pools 

of perforin and granzymes will reorganize and be prepared for release. Further, cytokines 

will be transcribed and secreted41.  

In the case of NK recognition and action (or no action), there are several different 

scenarios that can occur (Fig. 1). In a normal or healthy state virtually all cells express 

MHC-I molecules, which are recognized by NK inhibitory receptors. Some exceptions to 

this are erythrocytes, which lack MHC-I 42, and the central nervous system, which mostly 

has low levels of MHC-I 43 and embryonic and immature hematopoietic cells44. In the 

absence of MHC-I, NK receptors that recognize ubiquitous, or constitutive molecules 

may function to inhibit the NK cell. Such examples include, 2B4 (mice)45, NKRP1-d46, 

LAIR147, Klrg148, Siglec-749, and others50, 51. The inhibitory signal transmitted to the NK 
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cell sets the threshold and sufficient activating signals must occur in order for an NK cell 

to kill and/or produce cytokines. Importantly, activation signals may come in the form of 

cytokines or interferons, or cell-cell contact. Often times during transformation, cellular 

stress, or infection, MHC-I molecules become down-regulated52, 53 and/or activating 

ligands become up-regulated54-57. This skews the balance and triggers activation of the 

NK cell. It is important to mention, although not depicted below, in addition to detecting 

self and non-self, NK cells are capable of recognizing pathogen components directly 

(discussed later). 

  

 

Figure 1. NK target cell recognition and outcomes. The presence of ligands on the 
target cell directly affects the outcome of NK-target cell interactions. A) A normal 
healthy cell may lack expression of MHC-I and activating ligands and therefore no 
response is provoked. B) Commonly a cell will express MHC-I, but will not express 
activating ligands. Like the above situation, the NK cell will not respond. C) In the case 
where a target cell expresses MHC-I, but may also express activating ligands (at low  
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levels), the MHC-I-NK inhibitory receptor interaction sets the threshold and the NK cell 
will be inhibited. D) During infection, stress, or malignant transformation MHC-I 
molecules are down-regulated. This alters the balance and the NK cell will become 
activated E) During transplantation and bone marrow grafts foreign cells are recognized 
by the NK cell as ‘non-self’ and thereby eliminated. 
 
 
 
 

 NK Receptors. NK function is directly influenced by the receptors expressed on 

the surface of the NK cell. NK receptors are broadly categorized as inhibitory and 

activating. Because there are several different NK receptors that are inhibitory or 

activating, it is useful to further categorize them by their ligand recognition. Simply, there 

are specific receptors for MHC-I and MHC-I-like molecules and also receptors 

categorized as MHC-independent receptors. Further, there are both inhibitory and 

activating members that bind MHC-I. This is also the case for MHC-independent 

recognition. Thus, at any given time an NK cell is integrating multiple signals in order to 

effectively deal with potential harm, all while preventing autoreactivity.  

 

 MHC-I and MHC-like Recognition. Karre and colleague’s pioneering work 

quickly led to the discovery that NK cells are actively inhibited by MHC-I. The ‘Missing 

Self Hypothesis’ predicted the presence of inhibitory receptors, however, this theory 

wasn’t fully substantiated until the discovery of the first MHC-I specific inhibitory NK 

receptor58.  There are three distinct receptor systems utilized by NK cells to recognize 

MHC-I molecules: Ly49s, KIRs, and CD94/NKG2 heterodimers. Rodents and humans 

have structurally distinct receptors for direct recognition of MHC-I. Mice utilize the 

lectin-like Ly49 family of receptors59, while humans have killer cell immunoglobulin-like 
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receptors, or KIRs60. This is a perfect example of functional convergent evolution: 

different species independently evolving similar traits to perform the same function61. 

These MHC-specific receptors are encoded by two gene complexes on different 

chromosomes: the natural killer complex (NKC), which is located on mouse chromosome 

6 and human chromosome 1262, and the leukocyte receptor complex (LRC) on human 

chromosome 1963. Besides Ly49s and KIRs, rodents and humans share a receptor system 

that recognizes MHC-I in an indirect manner64 65, 66. The lectin-like heterodimeric 

receptors, CD94 with NKG2A, NKG2C, NKG2E or NKG2F, recognize HLA-E 

(humans)67 or Qa-1b (mice)66, which are non-classical MHC-I molecules and therefore 

this interaction is termed MHC-like recognition.  

 

 The Ly49s and the KIRs. Although there are two structurally distinct receptor 

families mediating the same function, there are some very striking similarities between 

the Ly49s and the KIRs. Both gene complexes, the NKC and the LRC are rapidly 

evolving68, 69, highly polymorphic70, 71, have undergone duplication many times, and are 

variable in different individuals in regards to their terms of sequence and whether they 

are expressed or not 69. Moreover, both the Ly49s and KIRs are expressed in a clonal 

fashion and employ similar mechanisms of signal transduction72, 73. Even the MHC 

ligands they recognize, which are not direct orthologues74, are also rapidly evolving and 

highly polymorphic, likely to maintain a functionally matched repertoire75.   

The Ly49 family of receptors has both activating and inhibitory members. Ly49A, 

which is the prototypical Ly49 receptor, was the first MHC-I specific inhibitory receptor 

identified on mouse NK cells58. The Ly49 family of receptors comprises a possible 23 
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members (Ly49a to Ly49w), which are encoded by a complex of genes located on the 

distal mouse chromosome 6 (NKC)76. Ly49 receptors belong to the C-type lectin family 

of proteins and are expressed at the cell surface strictly as transmembrane disulphide-

bonded homodimers. Each chain is composed of a C-type lectin-like domain (CTLD), 

which is connected to the cell membrane by an alpha-helix stalk region77. Classically, 

CTLD domains are carbohydrate binding protein domains where the ‘C’ stands for 

calcium binding78. However, unlike other members in this protein family, the Ly49s 

recognize carbohydrate-independent epitopes on the MHC-I molecule and do not require 

calcium 79.  

Inhibitory Ly49s have immunoreceptor tyrosine inhibitory motifs, or ITIMs, in 

their cytoplasmic domains73. There are several inhibitory Ly49 receptors, but Ly49A, 

Ly49G2 and Ly49C/I are the best characterized in terms of ligand binding and function79-

82. Classically, ITIMs are involved in cellular inhibition. Upon inhibitory Ly49 

engagement with its ligand, specific tyrosine residues of the ITIM are phosphorylated and 

subsequent recruitment of tyrosine and inositol phosphatases occurs 83. The end result of 

this signaling cascade is inhibition of NK cytolytic function.  

Based off functional data or the presence of an ITIM, of the 23 Ly49 members, 13 

are inhibitory. Of the remaining Ly49 receptors, 8 are predicted to be activating77. 

Typical activating members include, Ly49D and Ly49H84-86. Ly49H is very important for 

the clearance of murine cytomegaloviral (CMV) infections by NK cells since mice 

lacking Ly49H have uncontrolled viral titers and markedly higher levels of morbidity 

caused by CMV infection87. It was later shown that Ly49H directly recognizes m157, a 

virally encoded protein expressed by infected cells during the early phases of infection88, 
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89. Activating Ly49s lack ITIMs, but instead have charged amino acids in their 

transmembrane (TM) domains, which allow them to non-covalently associate with 

transmembrane homodimeric signaling adaptors, such as DNAX-activating protein of 

12kD (DAP12)90. Each polypeptide chain of the signaling adaptor (DAP12) has an 

immunoreceptor tyrosine activating motif (ITAM). Interaction of a Ly49 activating 

receptor with its ligand results in phosphorylation of ITAMs, syk tyrosine kinase, and 

several other substrates91. Initiation of this signaling cascade leads to NK cytolysis and 

activation of effector functions.  

Like the Ly49s, there are inhibitory and activating KIRs. There are 18 KIR genes 

clustered on human chromosome 19q13.42 (LRC)63. KIRs are members of the 

immunoglobulin superfamily (IgSF) of proteins and are only found in primates; there is 

no evidence of rodents expressing KIRs. Other IgSF members, such as the ILTs, 

leukocyte-associated inhibitory receptors (LAIRs), and the NK activating receptor, 

NKp46 also reside in this complex71. Existing mainly as monomeric type I 

transmembrane glycoproteins, KIRs are characterized by the number of extracellular Ig 

domains (2D or 3D) and by the length of their cytoplasmic tail92. For example, long-

tailed KIRs (2DL or 3DL) contain ITIMs and are inhibitory. In contrast, short-tailed 

KIRs (2DS or 3DS) do not have ITIMs and instead send stimulatory signals to the NK 

cell by way of associated signaling adaptors, namely DAP12 (synonymous with the 

activating Ly49 receptors)83.  Thus, the nomenclature of KIRs provides useful 

information regarding their structure and function. For example, KIR2DL1 has 2 

extracellular Ig domains and a long cytoplasmic ITIM domain. The basic signaling 

mechanisms employed by the KIRs are identical to the Ly49 system.  
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Inhibitory KIRs recognize MHC-I molecules, or human leukocyte antigens 

(HLA)-A, HLA-B, and HLA-C, with HLA-C being the most committed to interaction 

with KIRs: all HLA-C allotypes interact with a KIR and HLA-C interaction with KIRs is 

fixed. That is, every human being has at least one HLA-C molecule that is recognized by 

a KIR75. Only a third of HLA-B alleles are known to interact with KIRs, and HLA-A 

appears to be the least committed to binding KIRs75. An interesting feature of KIRs is 

that multiple HLA-allotypes can be recognized by the same KIR. For instance, KIR2DL1 

and KIR2DS1 can bind HLA-Cw2, 4, 5, 6, and 15; while KIR2DL2 and KIR2DL3 both 

recognize HLA-Cw1, 3, 7, and 8. Like the KIRs, HLA molecules are highly 

polymorphic. In the case of HLA-C, amino acid residue 80 appears to be critical75. Until 

this understanding it wasn’t clear how KIRs were recognizing HLA. We now know that 

KIRs bind regions of HLA molecules that are not polymorphic and this explains how 

KIRs are capable of recognizing many different HLA allotypes92. Although variable for 

the different Ly49s and their interaction with MHC-I93, 94, the MHC associated peptide is 

critical for KIR interaction95. 

Characterization of NK activating KIRs and their ligands has lagged behind the 

inhibitory receptors, and the precise role for MHC-specific activating receptors is still 

debated. There are activating KIRs that bind the same HLA molecules as the inhibitory 

KIRs, albeit activating KIRs (and other MHC-I specific activating receptors) generally 

bind the target ligand with lower affinity96, 97. Moreover, often times activating and 

inhibitory KIRs with the same Class I specificity are not expressed on the same cell98. 

The presence of MHC-specific activating KIRs may be useful if the target cell down-

regulates the inhibitory allele, but retained the stimulatory allele. This cell would then 
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become sensitized to lysis by the NK cell. During viral infection there are high levels of 

interferons, which up-regulate the expression of MHC-I99. Thus, activating KIRs may 

preferentially function to detect high levels of MHC-I. Alternatively, these stimulatory 

KIRs specific for MHC may have evolved as a mechanism to detect virally infected cells. 

There are known viral-specific MHC-I decoy molecules that presumably were intended 

to inhibit the NK cell, but perhaps the NK cell had pressure to evolve a method of 

detecting these viral molecules100.  It has also been proposed that activating KIR may be 

involved with NK maturation. However, a few findings challenge this idea: mice that 

lack DAP12 have functional NK cells 101 and further, activating receptors are expressed 

after inhibitory receptors during development102.  

 

 CD94/NKG2. CD94/NKG2 are C-type lectin heterodimers, which are encoded by 

genes located in the NKC64. Like the KIRs and the Ly49s, there are activating and 

inhibitory members. Unlike the KIRs and Ly49s, however, the CD94/NK92 heterodimers 

recognize MHC-I indirectly. Specifically, the CD94/NKG2 receptor recognizes peptides 

processed from the leader sequences of classical MHC-I molecules, rather than the 

mature Class I molecule itself. These peptides are bound into the groove of a nonclassical 

class Ib molecule and are HLA-E (humans)67 or Qa-1 (mice)66. CD94 has a short 

cytoplasmic domain lacking any apparent signaling capabilities and functions as the 

“common” subunit of these receptor pairs. Dimerization of CD94 with an NKG2 partner 

is required for cell surface expression and signaling103. CD94 can bind with NKG2A, C, 

E, or F isoforms, with the combination of CD94/NKG2A being the only inhibitory pair. 

Importantly, NKG2D also belongs to this family; however, NKG2D does not pair with 
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CD94 nor does it recognize MHC-I molecules (although it recognizes molecules 

homologous to MHC. NKG2D will be discussed later). In humans, the activating 

heterodimer, CD94/NKG2C, associates with DAP12 via a charged amino acid residue in 

the TM domain of NKG2C104. In mice, however, this interaction is dependent on a 

charged residue in CD94, not NKG2C105.  Human CD94/NKG2A and CD94/NKG2C can 

both recognize HLA-E106, which means like the KIRs, there are inhibitory and activating 

members with identical MHC specificity. This also occurs in the mouse. Again, the 

inhibitory pair tends to dominate the activating pair since the CD94/NKG2C binds Qa-1 

with lower affinity107.  

 

MHC-I-independent Recognition 

2B4. For many years following the discovery of NK cells it was thought that NK 

inhibition was strictly mediated by MHC-dependent receptors. However, there are now 

numerous reports demonstrating that NK inhibition (and activation) is largely regulated 

by receptors that recognize ligands other than MHC molecules45, 108-110. A prominent NK 

receptor falling under this category is 2B4.  

2B4 (CD244) belongs to the signaling lymphocytic activation molecule (SLAM)-

related receptor family111. There are several members in this family, including but not 

limited to, SLAM, CD48, Ly9, CD84, NK-T and B-antigen (NKTB-A), and CD2-like 

receptor activating cytotoxic cells (CRACC). These receptors belong to a larger family of 

proteins, the CD2 superfamily of immunoglobulin domain containing molecules112. 

SLAM-related receptors, and their ligands, are expressed on a wide variety of 

hematopoietic and non-hematopoietic cells, implicating them in diverse functions from 
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cellular activation, costimulation, cell-cell adhesion, and importantly, immune 

tolerance113-116.  

2B4 is expressed on NK cells, γδ−T cells, a subset of αβ−CD8+ T cells, and other 

leukocytes111. 2B4 recognizes and binds it ligand, CD48, with high affinity and CD48 is 

expressed on virtually all cells of the hematopoietic system117. Structurally, 2B4 has a V-

like (variable) and C-like (constant) Ig domain in its extracellular region. As a member of 

the SLAM family of receptors, 2B4 possesses four immunoreceptor tyrosine-based 

switch motifs (ITSMs) in its cytoplasmic tail. An ITSM, distinct from an ITAM (which 

recruits syk), or an ITIM (which recruits SHP-1 and other phosphatases such as SHIP) 

recruits SAP, or SLAM-associated protein and other proteins involved with cellular 

activation or inhibition112. ITSMs are known to bind several SH2-domain containing 

kinases, phosphatases, and adaptors. Engagement of 2B4 on mouse NK cells results in 

phosphorylation of all four ITSMs. It has been shown that subsequent recruitment of 

FynT and further 2B4 phosphorylation occurs in a SAP-dependent manner. This leads to 

downstream activation of Vav1 and c-CBL118. Despite extensive work to elucidate the 

signaling mechanisms downstream of 2B4, there remains a great deal of mystery around 

how this receptor exerts its opposing functions.  

Although 2B4 was first discovered as an activating receptor119-121, it has since 

been shown that 2B4 functions as an inhibitory receptor in mice. This has been 

unequivocally demonstrated using 2B4 knockout mice, which have normal NK numbers 

and cytolytic function against certain tumor targets, but have significantly higher killing 

against CD48 expressing targets when compared to 2B4 WT mice122, 123. However, 2B4 

is an activating receptor in humans124, 125. The reason for this difference between mice 
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and man is not completely clear, especially since human 2B4 also recognizes CD48 and 

has an identical four ITSMs in its cytoplasmic domain. However, there are a few 

explanations for the dichotomous functions of human and mouse 2B4. One explanation is 

that two isoforms of 2B4 exist in mice, which are generated by alternative splicing126. 

The only differences between the two murine isoforms are found in the cytoplasmic 

region: a long form (2B4-L) that has four tyrosine residues in the cytoplasmic tail; and a 

short form (2B4-S), which has only one tyrosine residue126. It has been shown that these 

isoforms have distinct functions regarding cell activation or cell inhibition in mice, with 

2B4-L mediating cellular inhibition via the recruitment of SHP-2, while 2B4-S mediates 

cell activation in a SAP-dependent manner.127 Interestingly, the human 2B4 gene also 

produces two isoforms, however, unlike the mouse 2B4, both isoforms produce 

intracytoplasmic domains with four tyrosine residues128. Based off previous findings, this 

would suggest an inhibitory function of human 2B4, although this is typically not the 

case. Another study suggests that the inhibitory/activating role of 2B4 may be regulated 

by the different signaling molecules recruited to the ITSMs, and these molecules may be 

expressed at different levels in mouse NK cells129. Specifically, recruitment of SAP to 

2B4 imparts cytotoxicity, but recruitment of EWS-activated transcript-2 (EAT-2) or Eat-

2-related transducer (ERT) results in NK cell inhibition130. Importantly, EAT-2 and ERT 

can mediate global inhibition of NK cells since deletion of these molecules results in an 

increased ability to produce IFN-γ in response to triggering of NK receptors: CD16, 

NKG2D, Ly49D, and 2B4. One explanation for the differences in signaling potentials of 

these very related molecules is that SAP, but not EAT-2 or ERT, can recruit FynT kinase 

via an SH3 domain located in SAP131, 132 and this recruitment is required for SAP-
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mediated activation of NK cells by 2B4 triggering118, 133. EAT-2 and ERT genes are both 

functional in mice, however, only EAT-2 appears to be functioning in humans130. 

2B4 is a very important receptor on NK cells and other lymphocytes. An 

intriguing study done recently demonstrates an unappreciated role for 2B4. 2B4 

positively regulates NK cell-mediated control of T cells in persistent viral infections134. 

Using an LCMV model of persistent viral infection, this group showed that in the 

absence of 2B4 (using 2B4 KO mice), NK cells from these mice lysed highly activated 

CD8+-LCMV specific T cells. Due to NK-mediated cytolysis of these activated T cells, 

clearance of the viral infection was delayed and there were immunopathologies, such as a 

major increase in naïve CD8 T cells and splenomegaly. These impairments were reversed 

when NK cells were depleted from 2B4-/- mice, confirming an NK-dependent defect. 

Moreover, the deficiency in viral-specific CD8+ T cells was not due to the absence of 

2B4 on T cells134. NK cells have long been known for their direct anti-viral activities, 

however, this study highlights a newer, more regulatory role for NK cells in the control 

of virus specific CD8 T cells. It also underscores previously proposed notions that 2B4 

functions in immune tolerance116.  

Many of the MHC-I independent inhibitory NK receptors recognize self-

molecules that have broad expression. This positions these receptors in the establishment 

or maintenance of self-tolerance. This is exceptionally apparent in individuals with a 

mutation in TAP2, or Transporter associated with antigen processing-2, a protein 

required for proper peptide presentation and stable MHC-I cell surface expression135. 

These patients have normal numbers of NK cells and the NK cells are capable of killing 

tumor cells, albeit to a lower extent. Still, the NK cells are capable of self-tolerance in the 
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absence of MHC-I108, 136, 137. Further, about 10% of NK cells lack MHC-specific 

inhibitory receptors; molecules such as 2B4 may prevent auto-reactivity under this 

circumstance. Finally, during NK development, cytotoxic functions precede the 

expression of MHC-specific inhibitory receptors. These developing cells have the 

potential for autoaggression, yet, NK cells maintain tolerance and are not autoreactive. 

Evidence suggests that MHC-independent receptors, such as 2B4, are expressed earlier in 

development than their MHC-specific counterparts, and thus may function to maintain 

tolerance during these times45. Interestingly, this last study was done using human NK 

cells, where 2B4 classically functions as an activating receptor. The stipulation here 

being that these immature NK cells were deficient in SAP. Taken together, these studies 

stress the importance of this molecule in the biology of NK cells and demonstrate the 

need to further define a precise role of 2B4 in the development and functions of NK cells 

(and other immune cells) and the acquisition of the NKRR.  

 

NKG2D. NK group 2 member D (NKG2D) is a prototypical NK activating 

receptor. It belongs to a subfamily of the C type lectin-like receptors and like other 

members of this family, the gene encoding NKG2D is located in the NKC on human 

chromosome 12 and mouse chromosome 662.  NKG2D is expressed by virtually all NK 

cells, a large fraction NKT cells, most γδTCR T cells, all CD8+ T cells, macrophages, and 

αβ CD4 T cells in certain pathological states 54, 138-140. NKG2D exists as a disulphide-

linked homodimer and upon ligand recognition and binding, NKG2D associates with two 

DAP12 or DAP10 dimers, forming a hexameric structure141. Two isoforms of NKG2D 

exist in the mouse, NKG2D short (NKG2D-s) and NKG2D long (NKG2D-l). NKG2D-s 
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can bind both adaptors, while NKG2D-l can only bind DAP10142, 143. There are structural 

differences in the TM domain of human NKG2D, which restricts it to pair exclusively 

with DAP10144. DAP12 contains an ITAM in the cytoplasmic domain, which is 

phosphorylated by members of the Src family of kinases, after which recruitment of SH2-

domain containing kinases, Syk and/or ZAP70 occurs145, 146. Unlike DAP12, DAP10 

contains a YINM motif similar to what is found in CD28 or CTLA-4. YINM motifs, 

when phosphorylated, offer potential binding sites for Grb2, PI-3K, and Shc147-149. The 

ability of DAP12 and DAP10 to recruit several different signaling molecules allows 

NKG2D to carry out diverse functions.   

A unique property of NKG2D is that it is capable of mediating the destruction of 

tumor cells and virally infected cells by recognizing multiple different ligands. Although 

NKG2D is well conserved between humans and rodents, NKG2D ligands differ between 

the two species and vary in structure. While seemingly disparate, NKG2D ligands share 

several common features: all known NKG2D ligands are distant structural homologs of 

MHC-I molecules150-152. However, unlike true MHC-I, they do not bind antigenic 

peptides or associate with β2-microglobulin. Another shared feature of NKG2D ligands 

is that they are expressed at relatively low levels on normal healthy cells, but become 

upregulated during stress, infection, or malignant transformation153. Thus, NKG2D 

mediates “induced self”. Human NKG2D recognizes MICA and MICB, or MHC-I chain 

related protein A, -B54 and UL16 binding proteins (ULBPs), cell surface proteins that 

bind human CMV55. Mouse NKG2D recognizes a family of retinoic acid early inducible 

proteins (Rae1)138, 154. It also binds to the closely related histocompatibility antigen 60 

(H60) glycoproteins, and the murine UL-16-binding protein-like transcript 1 
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(MULT1)138. Most NKG2D ligands are expressed at very low levels on normal tissues, 

but can be upregulated during stress. Because of the negative implications that can occur 

by expression of these ligands (e.g. autoimmunity), regulation of these ligands occurs at 

the transcriptional and/or post-transcriptional levels and is tightly controlled. 

 In addition to 2B4 and NKG2D, There are numerous NK receptors that recognize 

ligands that are not MHC-I molecules. The previous and following discussions (due to a 

lack of space) only scratch the surface. A family of receptors that deserve discussion are 

the natural cytotoxic receptors, or the NCRs. NKp46, NKp44 and NKp30 trigger NK cell 

activation upon ligand recognition or antibody cross-linking and therefore function as 

activating receptors. Expression of NCRs, especially NKp46, is specific to the NK 

compartment, with a few known exceptions155-157. NKp46 and NKp30 are expressed by 

all human NK cells, resting and activated, while NKp44 expression is (mostly) limited to 

IL-2 activated NK cells, and thus has been proposed as a marker for activated NK cells158, 

159. Despite extensive study of the NCRs, the exact ligands for these receptors remain 

unknown. It is clear, however, that these receptors are involved with the recognition of 

pathogen components, such as viral hemagglutinins and Mycobacterium bovis bacillus 

Calmette-Guérin (BCG)160-162. It has been shown by several groups that the expression of 

NCRs correlates with NK function and absence, or inhibition of NCRs has a severe 

negative impact on NK cytotoxic functions and disease progression163-167. 
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NK Cell Effector Functions. NK cells have two main functions: they lyse target 

cells and produce soluble mediators (cytokines and chemokines). These functions help 

them to control the early stages of infections, promote antigen presentation, recruit other 

immune cells, and regulate the development of the adaptive immune response.  

 

Granule Exocytosis. NK cell mediated death is rapid and efficient. There are two 

main pathways by which NK cells initiate apoptosis of their targets: the granule 

exocytosis pathway or ligation of death receptors. 

The most common pathway is granule exocytosis. Cytotoxic lymphocytes contain 

specialized compartments, secretory lysosomes, which are dual function organelles 

combining the degradative function of lysosomes with the capacity to undergo regulated 

exocytosis168. These secretory lysosomes contain important cytolytic mediators (among 

other molecules), namely perforin and granzymes. Perforin, or cytolysin, produces pores 

in the membranes of target cells. It was considered for a long time that perforin was 

solely responsible for the lysis of target cells, although it was never ruled out that there 

may be other molecules contributing to cell death169. Either way, the exact role of 

perforin remains controversial. Without a doubt perforin is a critical component of 

secretory lysosomes and the granule exocytosis pathway in cytotoxic lymphocytes170. It 

can induce death on it’s own and has also been shown to facilitate the transfer of 

granzymes into the target cell. Granzymes are a family of closely related serine proteases 

that are expressed by cytotoxic T cells and NK cells. There are 5 granzymes in humans 

(A, B, H, K, M) and 10 functional granzymes in mice (A-G, K, M, N)171, 172. Granzymes 
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A and B are the most abundant and the most well studied. Granzyme B, in particular 

because it initiates caspase-dependent cell death, whereas Granzyme A can mediate 

caspase independent apoptosis173, 174. The actual killing of a target cell is rapid and can 

occur within 20 minutes. It is a multistep process that is well orchestrated and highly 

regulated: step one involves NK cell binding to the target cell, which is mediated by 

interaction of LFA-1 integrins on the NK cell with ICAM-1 molecules present on the 

target cell. This induces a talin-dependent polarization of the actin cytoskeleton175 and 

translocation of the lytic granules. Finally, the granules fuse with the target cell 

membrane and perforin and granzymes are released. The complex formed between an 

NK cell and a target cell is often referred to as the “lytic immune synapse”. LFA-1, actin, 

and talin form a ring, which provides stability to the interaction and functions as the 

scaffold for the assembly of inhibitory and stimulatory signaling complexes176. An 

important feature of NK cells, and one that lends them their ‘ready-to-go’ state is that 

these granules are formed during development and unlike T cells, synthesis of new 

molecules is not required. This is also what allows NK cells to act as a first line defense 

and control infections until the adaptive immune system is ready.  

 

Death Receptor System. NK cells express ligands on their surface that when 

bound with the respective receptor present on the target cell will induce death of that 

target cell. This system, which is used throughout the body as a method of immune 

homeostasis and regulation, is called the death receptor system and functions as a 

complementary system to granule exocytosis in cytotoxic lymphocytes. For example, NK 

cells express FasL, TNF-α, and TRAIL, members of the TNF-like family of molecules 
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that when bound to their receptors will initiate caspase-dependent apoptosis 177-181. NK 

death receptor-mediated induction of apoptosis has been shown to be important for the 

destruction of tumors182-184, graft rejection185, virally infected cells186, and even NK-

mediated death of DCs187. Interestingly, IFN-γ production by NK cells can induce the 

expression of TRAIL by NK cells183, and IFN-γ also up-regulates the expression of Fas 

on certain tumor cells188. 

 

ADCC. NK cells carry out target killing either “naturally” through direct 

recognition of the target cell by NK receptors, or through a process known as antibody-

dependent cell-mediated cytotoxicity (ADCC). ADCC is an adaptive immune function 

and typical ADCC involves activation of NK cells by antibody coated target cells189; 

however, neutrophils and eosinophils can also perform ADCC.  ADCC by NK cells is 

mediated by the low affinity Fcγ receptor (FcγRIIIa), which binds immune-complexed 

IgG. This interaction between CD16 and IgG activates the NK cells to kill and/or produce 

cytokines since CD16 associates with the γ-chain signaling adaptor containing an 

ITAM190. ADCC is an important NK mediated function in cancer immunotherapy and 

has shown success with monoclonal antibody treatments against: CD20 (NHL, CLL), 

Her2 (breast), EGFR (metastatic colon) GD2 (multiple tumor types-somewhat tumor 

specific), and several others191-195. NK-ADCC function is also highly influential in 

combating certain infections, especially HIV196. 

 

Immunoregulatory Functions of NK Cells. NK cells are not merely killers. 

Cytokine and chemokine production by NK cells puts them in a powerful position to 
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regulate both adaptive and innate immune functions. NK cells are found throughout the 

body, including the skin, liver, pancreas, mucosal tissues, and lungs, and during infection 

or high levels of inflammation, NK cells are even recruited to the CNS and joints. The 

major functions of NK cells in these locations are to amplify the immune response and 

kill infectious agents directly. NK cells are also found in the uterus and the placenta, 

where they have a major role in the fetal-maternal interface197. The distribution of NK 

cells is not a static process and during an infection as NK cell number increase in one 

location, they decrease in another, indicating that most NK cells are indeed derived from 

the bone marrow and spleen.   

It is easy to divide human NK cells into functionally distinct subsets based on 

their expression of CD56 and CD16. The predominate NK subset found circulating 

throughout the blood are CD56dimCD16bright (~90% of blood NK); NK cells present in the 

peripheral lymphoid organs are CD56brightCD16-/dim (<10% of blood NK). CD56dim NK 

cells are highly cytolytic and produce relatively low levels of cytokines198. On the other 

hand, CD56bright NK cells produce robust amounts of cytokines upon proinflammatory 

cytokine stimulation, are highly proliferative, and have low cytolytic potential199, 200. 

There are also differences in the expression of inhibitory and activating receptors 

between these two subsets. The cytolytic CD56dim cells tend to express KIRs, but lack 

expression of inhibitory CD94/NKG2A, and the CD56bright NK cells lack KIR expression, 

but express high levels of CD94/NKG2A. Both subsets express activating receptors, 

NKG2D, NKP46, and NKp30, but there are differences in the expression of chemokine 

receptors. In line with their presence in secondary lymphoid organs, the CD56bright NK 

express homing receptors, CCR7, CD62L, and CXCR3, which are markers for adhesion 
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and migration and trafficking201, 202. These subsets are specific to humans. There has yet 

to be a discovery of a murine CD56 homolog, however, mouse NK cells can be classified 

based on their expression of CD11b, CD27, CD127, and B220203-205. Like human NK 

subsets, mouse NK subsets also have disparities in their cytotoxic and immunoregulatory 

functions. In contrast to resting T lymphocytes, NK cells constitutively express receptors 

for a multitude of monokines206. A characteristic that allows them to rapidly and 

spontaneously respond to various stimuli produced by other immune cells. 

In line with the immunoregulatory (and immune surveillance) role of NK cells, 

they are widely distributed throughout the body and have different functions depending 

on the location and state of health 207. NK cell subsets (both human and mouse) also have 

different distribution patterns within the various anatomical locations suggesting 

specialized functions between the subsets. In normal human lymph nodes NK cells are 

present at significant levels in perifollicular T cells zones. There, NK cells are activated 

by T cell production of IL-2, which in turn stimulates the production of IFN-γ by NK 

cells. This localization of CD56bright NK to the perifollicular regions provides a possible 

interaction with resident and incoming DCs. The proximity of NK to DC provides IL-12 

and IL-15 in vivo, which can further stimulate NK IFN-γ secretion and activation208-210. 

The NK-DC interaction is an important one, and has been shown by many to be a two-

way street. The first study demonstrating DC-NK cross-talk in a tumor setting was done 

using a non-immunogenic in vivo mesothelioma model where they showed DC activation 

of NK cells was required for NK killing of MHC-I negative tumors. Importantly, 

depletion of NK cells also resulted in a loss of the anti-tumor effects indicating that NK 

cells are important for activation of DC and other immune cells211. A later study showed 
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a similar involvement of NK-DC for the elimination of MHC-deficient tumors; however, 

this study worked out a pathway demonstrating IFN-γ production by NK was responsible 

for IL-12 production by DC. The NK-DC interaction eventually led to a DC-mediated 

activation of CD8 T cells. Thus, NK cells can promote protective CD8 T cell responses to 

tumors by providing stimulation to DCs212. IFN-γ production by NK cells has also been 

shown to induce a TH1 polarization, and this effect is abrogated by TGF-β  213, 214. 

The NK-DC pair is not only important for tumor immunity, but also for anti-viral 

responses. NK cells and DCs are both involved in resistance to viral infections215, 216 and 

IFN-α/β, IL-12, and IL-15 stimulate NK anti-viral responses 217. Upon virus infection, 

DCs (conventional and IFN-producing, plasmacytoid) are major producers of IL-12 and 

IFN-α/β. Production of these cytokines by DCs enhances the NK IFN-γ response and 

cytotoxicity and thus the clearance of the viral infection by NK cells. An interesting 

regulatory function of NK cells is that they can also kill DCs that fail to undergo proper 

maturation (“DC editing”) and the NK activating receptor, NKp30, is responsible for the 

lysis of these immature DCs (iDC)218. NK cells have been (and are still) used for 

immunotherapeutic purposes due to their outstanding ability to lyse tumor cells; however, 

perhaps NK cells should also be harnessed for their ability polarize adaptive immune 

responses via DCs.  
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SHIP-1 

SH2 (Src homology 2)-containing inositol phosphatase-1 (SHIP-1) was initially 

identified for its role in erythropoietin (EpoR) signaling in hematopoietic cell lines 219. In 

1996 SHIP-1 was independently cloned by five groups based on its ability to interact with 

the protein-tyrosine binding domain (PTB) of SH2-containing sequence protein (Shc), the 

SH3 domain of growth factor receptor-bound protein 2 (Grb2), and the FcγRIIB 

receptor220-224. SHIP was also shown to have enzymatic properties and could hydrolyze 

the 5’ phosphate of phosphatidylinositol-3,4,5-phosphate (PIP3) and inositol-1,3,4,5- 

tetrakisphosphate (IP4) 220, 221, 223, 224. Because of SHIP’s ability to modulate PIP3 and IP3 

levels, SHIP is positioned to regulate cell viability, differentiation, proliferation, and 

effector functions225-227. 

 

Structure and Functional Domains. SHIP-1 is a large (145kD) multi-domain 

protein with the capacity to regulate many cellular functions. There is an SH2 domain in 

the amino terminus of SHIP-1, a central 5’ inositol phosphatase domain (IP domain), two 

NPXY motifs and several polyproline rich motifs (PxxP) located in the carboxy terminal 

end of the protein (Fig. 2).  

 

SH2 domain. SH2 domains are conserved protein regions that specifically bind 

phosphorylated tyrosine residues228. Thus, the SH2 domain of SHIP-1 allows it to bind 

phospho-tyrosines present in signaling molecules, adaptors, growth factor receptors, and 

immune receptor cytoplasmic signaling chains 229-231. Namely, SHIP-1 can be directly 

recruited to FcγRIIB on B cells220, the IgE receptor, FcγRI, on mast cells232, IL-4R233, 

fms-like tyrosine kinase receptor-3 receptor (flt-3 R)234 on hematopoietic cells, and 
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several NK receptors (discussed in more detail later)129, 235, 236. The SH2 domain of  

SHIP-1 has been shown to bind phosphorylated tyrosines of tyrosine phosphatase, SHP-2 

and Src family kinase, Lyn237, 238. SHIP-1 is also indirectly recruited to receptor signaling 

complexes by its association with adaptor proteins (i.e. Shc, Grb2, and DOK3)239. 

Association of SHIP with receptor signaling motifs and/or adaptor and scaffolding 

proteins stabilizes SHIP at the membrane where its function is enhanced.  

 

5’ Inositol Phosphatase Domain. Inositol phospholipid signaling is involved in 

many cellular processes225-227. After recruitment to the plasma membrane, SHIP can then 

hydrolyze PI(3,4,5)P3 to generate PI(3,4)P2, and by doing so, SHIP attenuates different 

PI-3K effector pathways226, 227. The 5’ inositol phosphatase domain of SHIP-1 

specifically recognizes a phosphate group, PO4, which is positioned at the D3 location of 

the inositol ring. SHIP’s enzymatic activity is limited to the phosphoinositides, PIP3 and 

IP4, which are converted to PI(3,4)P2 and I(1,3,4)P4, respectively224. Contrarily, PI-3K 

generates PIP3 by adding a phosphate group to the 3’ position of PI(4,5)P2
240. Careful 

and precise balance of these opposing enzymatic activities is necessary to control the 

levels of PIP3 since this molecule plays a key role in recruiting pleckstrin homology (PH) 

domain containing proteins such as AKT241-244. 

By decreasing levels of available PIP3, SHIP can directly negatively regulate 

AKT, bruton's tyrosine kinase (Btk), and phospho lipase C gamma (PLC-γ) signaling. 

Upon production of PIP3 by PI-3K, AKT translocates to the plasma membrane via its PH 

domain. AKT is subsequently phosphorylated at two key residues, threonine 308 and 

serine 473, which when phosphorylated, AKT is said to be activated242, 245, 246. Activated 
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AKT phosphorylates and inactivates pro-apoptotic proteins, such as BAD and inhibits the 

intrinsic apoptotic pathway247. This finding and a role for SHIP in the negative regulation 

of proliferation and survival is substantiated by our findings demonstrating increased 

levels of the anti-apoptotic molecule, Bcl-2 (a target of BAD), and enhanced proliferation 

and survival of several hematolympoid cell compartments in SHIP-deficient mice248-251. 

Btk, a Tec family kinase is affected in a similar way. Like AKT, Btk is a downstream of 

PI-3K and becomes recruited and activated by increased levels of PIP3. Btk when 

anchored at the membrane is in close proximity to PLC-γ and subsequently 

phosphorylates and activates PLC-γ. However, low levels of PIP3 results in decreased 

activation of Btk and ultimately a block in the influx of extracellular calcium due to 

decreased levels of activated PLC-γ 252.  

 

NPXY and PxxP Motifs. SHIP-1 has two NPXY motifs at its carboxy terminus 

where (N) represents arginine, (P) for proline, (X) is any amino acid, and (Y) is 

tyrosine253, NPXY motifs are recognized by proteins containing a PTB or 

phosphotyrosine-interacting domain (PID) 254. Upon activation of SHIP, NPXY motifs 

are phosphorylated at the tyrosine residue (NPXpY), which forms a binding site for PTB 

domains present in Shc, DOK1, and DOK2131, 255, 256. There are also a number of proline 

rich (PxxP) motifs (possibly 8) located throughout the carboxy terminus of SHIP and 

allow interaction with (Src homology 3) SH3 domain containing proteins253. Importantly, 

these proline-rich motifs have been shown to be critical for the phosphatase activity of 

SHIP-1257. 
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Figure 2. Structure of SHIP. Full-length SH2 domain containing 5’ inositol 
phosphatase is a 145 kDa protein primarily expressed in the hematopoietic system. 
 

 

SHIP and NK Cells. When one considers phosphatase signaling in NK cells, the tyrosine 

phosphatases, SHP-1 and SHP-2 are the most thoroughly studied83. However, the inositol 

phosphatase, SHIP also has an important role in NK cells as demonstrated previously by 

our group and in the present study 250, 258. Original studies of SHIP did not implicate a 

role for this phosphatase in NK cells specifically, but the finding that SHIP can be 

recruited to ITIMs259 eventually led to the exploration of SHIP in NK cells. The first 

studies, however, demonstrated a role for SHIP in the negative regulation of activating 

receptors, not ITIM bearing inhibitory receptors235, 260. This group was investigating the 

involvement of Shc in NK natural cytotoxicity and ADCC. They found that Shc becomes 

phosphorylated upon CD16 (FcR) engagement and forms a complex with Grb2 and SHIP 

(and CD16 phospho zeta chain). However, overexpression of a mutant Shc resulted in 

reduced Ca2+ influx by a PLC-γ dependent manner, which was attributed to an increase in 

SHIP recruitment to Shc-CD16 receptor complexes260. This group followed up these 

findings by showing that SHIP rapidly and transiently translocates to lipid rafts upon 

CD16 (FcR) stimulation where it functions to suppress ADCC. Overexpression of SHIP 

led to a reduction CD16-mediated killing and this negative regulation is dependent on 5’ 
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inositol phosphatase activity of SHIP 235. Consistent with these findings, Parihar et al 

found a reduction in CD16-activation induced cytokine production when WT SHIP was 

overexpressed, and this too was dependent on SHIP’s enzymatic domain 261. Together 

these studies reveal that SHIP has an important function in NK receptor mediated killing 

and cytokine production. 

  In addition to a role for SHIP in NK receptor signaling, our lab has discovered a 

more crucial role for SHIP in the NK cell 250. We found that SHIP knock out (KO) mice 

have an over representation of key NK receptors, Ly49A and C/I. Remarkably, the  SHIP-

/- mouse could fully accept a bone marrow transplant from a MHC mismatched mouse250, 

and this was due to the overrepresentation of these inhibitory Ly49 receptors. Further 

studies expanded our understanding of SHIP in the NK cell by showing that SHIP is 

recruited to Ly49B, KLRG1, and 2B4129, 236, 262. In recent reports we found that in the 

absence of SHIP, 2B4 functions as a dominant inhibitory receptor258 and this is due to 

inappropriate recruitment of SHP-1. This latter finding is likely due to the fact that in the 

absence of SHIP, SHP-1 gets over recruited as a compensatory mechanism. This study 

here will attempt to build off our earlier studies and delve deeper into the specific 

molecular role SHIP plays in the NK cell and how 2B4, a “SHIP regulated receptor” also 

contributes to NK function and receptor repertoire formation. 

The role for SHIP has extended beyond mouse studies and in vitro mechanisms of 

cytotoxicity. Trotta et al went on to define a role for SHIP in the two human NK subsets, 

CD56bright and CD56dim 263. CD56bright are traditionally the cytokine producers, while the 

CD56dim NK cells have robust cytolytic function264. Moreover, these subsets are also 

found in distinct locations. This group found that SHIP is differentially expressed by the 
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two subsets with the CD56bright NK cells having significantly less SHIP, and the cytolytic 

CD56dim NK cells having high levels of SHIP. They went on to show that SHIP levels 

decrease in response to monokine stimulation and overexpression of SHIP resulted in a 

decreased production of IFN-γ in response to stimulation by monokines263. However, it 

has also been shown that a subset of human NK cells from patients with chronic HIV 

infection has elevated levels of SHIP and lowered perforin levels. Unlike NK cells from 

normal donors, this subset of cells has been shown to become functionally anergic in 

chronic HIV infection265. 

 

Lenalidomide 

 

Thalidomide. Lenalidomide (Len) is an analog of thalidomide. Thalidomide (α-

(N-phthalimidoglutarimide) is a synthetic derivative of glutamic acid and was first 

synthesized in the early 1950s266. Thalidomide has a tragic history: it was originally 

intended as an anti-convulsant to treat epileptic patients, but it wasn’t very effective for 

this. However, thalidomide was quite good as a sedative and as an anti-emetic and so was 

given to pregnant women during their first trimester of gestation to treat morning 

sickness. A few years later, two independent physicians from different sides of the globe 

linked thalidomide to devastating congenital malformations 267, 268. It was quickly banned 

due to these discoveries. The United States Food and Drug Administration (FDA) 

actually never approved thalidomide, but not because of its teratogenic effects (this was 

unknown at the time), but because thalidomide has other adverse side effects such as 

deep vein thrombosis, neuropathy, and unwanted sedation. There are over 30 proposed 
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mechanisms for the teratogenic effects of thalidomide. These proposed mechanisms are 

not mutually exclusive and it is very likely there are working in parallel or 

synergistically269, suggesting that thalidomide (and other IMiDs) have multiple targets. 

The chemistry of thalidomide has shed some light on the differential effects of this drug. 

Thalidomide exists as a racemic mixture of R(+) and S(-) enantiomers (Fig. 3). That is, 

the two isoforms are mirror images of one another having identical chemical 

composition, yet they are not superimposable. The thalidomide enantiomers have a 

segregation of function: the S(-) isoform has been associated with the teratogenic effects 

of thalidomide, while the R(+) isoform is said to be responsible for the sedative effects270, 

271.  

A serendipitous finding by an Israeli dermatologist, Jacob Sheskin, put the 

spotlight back on thalidomide. Dr. Sheskin was treating a patient with erythema nodosum 

leprosum (ENL) who was having sleep difficulties. Dr. Sheskin recalled the sedative 

effects of thalidomide and so gave this patient the drug. Amazingly after just one dose of 

thalidomide, the patient’s fever, night sweats, and lesions were dramatically improved272. 

ENL is a potentially life threatening complication of leprosy treatment. It is an immune-

mediated inflammatory disease with the major pathology being antibody-antigen 

complexes that deposit in the skin, but ENL can affect many organ systems. There is a 

resulting local activation of complement and inflammation with an infiltration of 

neutrophils273. T cells and macrophages can be found in the skin where levels of IFN-γ 

and TNF-α mRNA are detected. There is also increased levels of TNF-α in the serum of 

some patients274, 275. Understanding the pathophysiology of this disease led researchers to 

understand that thalidomide is an anti-inflammatory and immunomodulatory agent. After 
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a multi-thousand-person study (that included only men) conducted by the World Health 

Organization (WHO), thalidomide was eventually approved in 1998 to treat ENL, but of 

course with very strict guidelines for obtaining the drug276. A partial explanation for 

thalidomide’s anti-inflammatory effects came when it was discovered that thalidomide 

inhibits monocyte-derived TNF-α and does so by enhancing the degradation of TNF-α 

mRNA277, 278. Thalidomide was then used in several open-labeled studies where increased 

TNF-α production was associated with disease279.  

Judah Folkman was among the first researchers to link angiogenesis, or the 

formation of new blood vessels with tumor growth and metastasis. His laboratory also 

discovered that thalidomide has anti-angiogenic properties280. This was the main impetus 

to use thalidomide in the treatment of cancers. About a half decade later, thalidomide had 

remarkable success in treating advanced or refractory multiple myeloma (MM)281. MM is 

an incurable B cell malignancy where an increase in bone marrow vascularization, or 

bone marrow microvessel density (MVD) is associated with poor prognosis. A link 

between thalidomide and decreased bone marrow MVD was not shown by these authors, 

but it was later demonstrated that only patients responding to thalidomide had a decrease 

in the bone marrow MVD, thus indicating angiogenesis as a therapeutic target in MM282. 

This clinical finding has since been confirmed and many subsequent studies have shown 

that thalidomide has multiple mechanisms of action in MM including inhibition of 

vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), IL-6 

and TNF-α283. Thalidomide (and Len) inhibits NF-κB-mediated expression of 

intracellular adhesion molecule -1 (ICAM-1)284, 285. This disruption is an important 

mechanism of thalidomide action in MM and other cancers. Inhibition of NK-kB has also 
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been shown to lend direct anti-tumor effects through the down-regulation of anti-

apoptotic molecules286 and activation of caspases287. This list is not exhaustive, however, 

despite the many benefits of thalidomide, its use is severely limited because of the 

negative side effects. To this end, thalidomide became the lead compound in a drug 

discovery program to produce more potent immunomodulatory drugs, and so, IMiDs 

were born.  

 

Immunomodulatory Drugs. Shortly after discovering that thalidomide has anti-

angiogenic properties, attempts were made to create compounds with similar features. 

IMiDs are structurally and functionally analogous to thalidomide (Fig X). This class of 

drugs represents a promising new class of immunomodulators for the treatment of 

inflammatory, autoimmune, and malignant diseases. There were actually four IMiDs 

developed, but only two of them, CC-5047 (Actimid; pomalidomide) and CC-5013 

(Revlimid; lenalidomide) have shown clinical stamina288. Len has been far more 

successful in the clinic compared to pomalidomide289. The initial goal when generating 

the second generation IMiDs was to enhance the anti-TNF-α function of thalidomide, 

which was achieved290, 291. Improved anti-angiogenic, anti-tumor, and 

immunomodulatory/immune enhancing effects were also desired, all while striving for a 

safer toxicity profile. Indeed the neurotoxicity seen with thalidomide is very rare in 

patients receiving Len treatment292. IMiDs (including thalidomide) are currently being 

investigated in over 1000 clinical trials; over 400 of those involve Len (clinicaltrials.gov 

search “thalidomide”, “lenalidomide”, “pomalidomide”).  
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Figure 3. Chemical structures of thalidomide and its analogues, lenalidomide and 
pomalidomide. Lenalidomide, a second generation IMiD, was created using thalidomide 
as a template by adding an amino group (highlighted in blue) to the 4th carbon of the 
phthaloyl ring and removal of a carbonyl group. Pomalidomide, generated in a similar 
manner, also has an amino group added to the 4th carbon, but the carbonyl group is left in 
tact (highlighted in red).  
 

 

 

Lenalidomide Functions. As intended, lenalidomide and pomalidomide do have 

superior anti-TNF activity compared to thalidomide. Additionally, these compounds 

appear to have more robust immunomodulatory properties, specifically T cell co-

stimulation (pomalidomide is even more effective at T cell co-stimulation compared to 

Len). However, there is still some concern regarding toxicity. Myelosuppression is the 

major dose-limiting side effect. The multiple clinical benefits of lenalidomide make it an 

outstanding drug, but also make it difficult to organize and interpret the data. Moreover, 

the effects of lenalidomide are often conflicting and controversial with variances in the 
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results depending on the cell type being studied, the stimulus being received, and the 

pathological state. A simple approach is to categorize the data based on three broad 

mechanisms studied: Anti-angiogenic, anti-neoplastic, and immunomodulatory/immune 

enhancing. 

 

Anti-angiogenesis. Angiogenesis is the growth of new blood vessels from 

existing vessels and is critical for tumor growth and metastasis 293. A characteristic 

feature of tumor cells is their ability to attract or promote the generation of new blood 

vessels. Moreover, without new vasculature tumors cannot grown beyond a critical size 

or metastasize to another organ. Thus, inhibition of angiogenesis provides a strategy for 

tumor arrest294. Proper activation, proliferation, migration, maturation, and adhesion of 

the endothelial cells (EC) is required for angiogenesis295. Thalidomide is most noted for 

its anti-angiogenic effect in multiple myeloma, while lenalidomide (and pomalidomide) 

is far better as an immunomodulator. Nonetheless, a few studies have demonstrated that 

lenalidomide has anti-angiogenic potential and this may be applicable to MM and other 

malignancies. The anti-angiogenic effects of lenalidomide are independent of the 

immunomodulatory effects and involve inhibition of EC migration, not proliferation296. 

One proposed mechanism for inhibited EC migration, and ultimately angiogenesis was 

decreased VEGF and bFGF-induced AKT phosphorylation297. Using an in vivo model in 

the absence of tumors, the direct effects on angiogenesis were explored. As the authors 

mention, this implies that Len is working directly on EC migration and is not inhibiting 

any growth factors that may be produced by the tumors. The ability to inhibit VEGF and 

bFGF signaling has significant implications that extend beyond angiogenesis since these 
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molecules are also involved with up-regulation of pro-inflammatory cytokines such as 

IL-6298. 

 Abnormal angiogenesis has also been implicated in MDS and leukemias. MDS 

are a heterogeneous group clonal stem cell disorders characterized by ineffective 

hematopoiesis and a variable risk for transformation to AML299. The overproduction of 

proinflammatory cytokines and growth factors has been implicated in the pathology of 

MDS. There have been reports of modestly increased bone marrow MVD in MDS, as 

well as expression of VEGF, bFGF, and angiogenin in the bone marrow and/or plasma of 

MDS and AML patients300-303. However, the in vivo or in vitro effects, if any, of Len on 

angiogenesis in these diseases has yet to be clearly defined. Delineation of a role for Len 

as an anti-angiogenic factor as lagged behind its function as an anti-neoplastic agent and 

immunostimulatory drug. This is likely because several more specific and more potent 

anti-angiogenic therapies already exist.  

 

Anti-neoplastic. A unique feature of Len is that it can target malignant, or 

cancerous cells while mostly sparing normal cells. The anti-neoplastic function of Len is 

variable and can result in cell cycle arrest or cell death via apoptosis. This disparity may 

be in part due to the levels of p21 and the mutational status of p53304. Len upregulates 

p21 (and other cyclin-dependent kinase inhibitors), which results in decreased cyclin-

dependent kinase activity and reduced phosphorylation of retinoblastoma proteins, which 

causes G0/G1 arrest. In a study using MM cell lines and primary MM cells from patients, 

the authors showed that cell growth inhibition occurred because Len caused 

downregulation of IL-6 and could inhibit proliferation of drug resistant cells. Importantly, 
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the combination of Len and dexamethasone (Dex) enhanced the anti-MM effect304. IL-6 

is an important cytokine for the growth of tumor cells in vivo and in vitro305, 306, and the 

ability of Len (and other IMiDs) to inhibit IL-6 is a very relevant anti-cancer feature of 

this class of drugs. Also in MM cells, Len can activate caspase-3, -8, and -9 in certain cell 

lines and caspase-8 in both MM lines and patient samples. Treatment with an inhibitor of 

caspase-8, but not caspase-9 abrogated the pro-apoptotic effects, suggesting a caspase-8-

dependent mechanism307. This caspase-dependent pathway is likely due to 

downregulation of the transcription factor, nuclear factor kappa-B (NF-κB) by Len. NF-

κB results in the activation of anti-apoptotic proteins, FLIP (FLICE-inhibitory protein) 

and cellular inhibitor of apoptosis protein 2 (cIAP2), which have both been shown to 

inhibit caspase-8 activation307-310.   

In a model of non-Hodgkin’s lymphoma (NHL), Len was capable of inducing cell 

death and growth inhibition of lymphoma cells311. This was an interesting study and these 

authors demonstrated disparate effects of the drug in vitro and in vivo. Although in vitro 

these NHL cells underwent cell death or arrest, there were no direct anti-tumor effects 

observed in vivo. However, using a severe combined immune deficient mice (SCID) 

xenograft model of NHL they showed a strong anti-tumor response when Len was 

followed by treatment with rituximab, a monoclonal antibody that targets CD20, an 

antigen expressed by lymphoma cells. This anti-tumor effect was completely abrogated 

when NK cells were depleted311, suggesting NK-mediated tumor clearance, although 

experiments to rule out (or in) a CD16-dependent activation (ADCC) of NK cells was not 

demonstrated in this study. The mechanism of cell death and growth arrest in vitro was 

also not investigated.  
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Lenalidomide is also capable of inducing apoptosis in tumor cells as a result of 

modulating the surrounding microenvironment. This is especially true for MM where the 

bone marrow stromal cells (BMSC) have been shown time and time again to support MM 

survival and even confer drug resistance. Specifically, Len downregulates VEGF, bFGF, 

TGF-β, TNF-α, IL-10, and IL-6, molecules that are involved in the cooperation of MM 

cell growth306. In addition to BMSC and epithelial cells in the microenvironment, 

osteoclasts also have an essential role in MM pathogenesis312. A large percent of MM 

patients have osteolytic bone disease, which is due to an imbalance in the osteoblast and 

osteoclast activity as a result of increased osteoclast stimulating factors produced by MM 

cells313. MM cells also release factors that suppress osteoblast differentiation, which leads 

to reduced osteoblast numbers and decreased bone formation314. Len has been shown to 

interfere with osteoclast differentiation and function, while bortezomib can induce 

osteoblast function in vitro and in vivo in MM patients315. This drug combination results 

in new bone formation. Indeed, Len and bortezomib are currently used in combination to 

treat MM and have shown great success316.  

The scenario of Len in MDS is complicated and multifaceted, characteristics 

inherent to this group of disorders. The major clinical challenge among lower risk MDS 

patients (with or without chromosomal deletions) is refractory anemia caused by 

ineffective erythropoiesis, which is a hallmark of this disease317. Len hit the fast track to 

approval in 2005 because of its high response rates in lower-risk, transfusion-dependent 

MDS patients where a significant percent of patients had improved erythropoiesis and 

cytogenetic responses. The efficacy of Len to restore erythropoiesis and induce 

transfusion independence is greatest when there is an isolated 5q deletion. However, 
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patients with a normal karyotype also respond well, and patients that have other 

karyotypic abnormalities do respond to Len although with a lower frequency 318, 319. 

Despite clinical responses, the major limiting factors are severe neutropenia and 

thrombocytopenia, which occur in the majority of patients receiving high dose 

monotherapy Len. Something that has been debated is whether clinical responses are due 

to the immunomodulatory effects of Len, or if Len has direct cytotoxic function on 

abnormal progenitor cells present in MDS BM. Very likely both of these features of Len 

contribute to the responses.  

The commonly deleted region (CDR) of MDS del(5q) is a 1.5Mb interstitial 

region containing 44 genes320. A few studies (discussed below) have demonstrated genes 

present in this CDR to be essential for MDS pathogenesis and response to Len treatment. 

For example, RPS14, an integral component of the 40S ribosomal subunit when partially 

deleted (by RNAi or using a genetic mouse model) reproduces a similar phenotype 

observed in human MDS321, 322. Moreover, RPS14 expression is decreased compared to 

normal controls in lower-risk MDS patients and upon treatment with Len, RPS14 

expression becomes up regulated321, 323. Although RPS14 is not the target of Len, these 

data provide strong evidence that this protein is involved in the pathogenesis of del(5q) 

MDS. Our group has shown del(5q) MDS clones are sensitive to Len and this is due to 

allelic haploinsufficiency of dual specificity phosphatases, Cdc25C and PP2A, genes also 

located in the CDR of chromosome 5. Treatment of Len induces a G2 arrest and apoptosis 

in del(5q) clones, but has no effect in non-del(5q) cells. In fact, using siRNA to reduce 

the levels of PP2A and Cdc25c in non- del(5q) MDS BM cells we could sensitize these 

cells to Len, providing strong evidence that these phosphatases are involved in the 
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response of 5q MDS patients to Len treatment324. An earlier study investigating the 

molecular basis for response to Len implicates SPARC (secreted protein acidic and rich 

in cysteine) and activin A in the pathogenesis of the 5q clone. Treatment of del(5q) (and 

normal BM) cells with Len had a global effect on gene expression with down regulation 

of several genes and up regulation of others. Of interest, SPARC was consistently up 

regulated upon treatment with Len (in MDS and normal cells) and is found in the CDR of 

chromosome 5. SPARC functions as a tumor suppressor protein and is anti-proliferative, 

anti-adhesive, and anti-angiogenic325. Like our study, allelic haploinsufficiency of 

SPARC is a proposed mechanism of how Len selectively targets the 5q clones. A very 

recent study has implicated SPARC in the growth arrest of medulloblastoma cells326. 

Although Len treatment was not involved with this study, the authors did show that the 

G2/M arrest induced by exogenous SPARC was dependent on p21 and cdc25C, two 

proteins modulated by Len. Moreover, expression of SPARC also results in decreased 

STAT3 activation, an effect observed in our lab (Fortenbery, unpublished data) and other 

labs. Addition of constitutively active STAT3 overcame the induction of G2/M arrest 

mediated by SPARC. Together these data, and others327 provide support for one of the 

pathways controlled by Len that leads to its anti-tumor activity. Whether a STAT3-

dependent mechanism occurs in del(5q) MDS BM progenitor cells remains unknown. 

Another active area of investigation is p53 and its role in Len treatment. MDS and AML 

patients with (del)5q frequently have TP53 mutations328, 329. What’s more is that del(5q) 

MDS clones have resistance to treatment with Len330. A recent study investigating the 

efficacy and safety of high dose Len in AML and high-risk MDS patients found a striking 

similarity: a high frequency of patients enrolled in this study had a TP53 mutation and 
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moreover, the presence of this mutation had significant association with Len 

resistance329. In fact, only two cases with TP53 mutations responded to treatment. This 

study also reported that there were no differences between patients having an isolated 

del(5q) and patients with complex cytogenetic patterns, which implicates a direct anti-

tumor effect of Len even in non-del(5q) individuals329. Our group has also made an 

attractive connection between Len, RPS14, p53, MDM2, and PP2A (manuscript in press, 

Oncogene). When ribosomal integrity is disrupted, free ribosomal proteins are released 

which bind and trigger degradation of MDM2331. Consequently, p53 becomes activated 

and p53 mediated genes are transcribed and/or cells undergo apoptosis. In our study, we 

demonstrate that p53 is overexpressed by erythroid precursors from del(5q) MDS BM 

and reduced MDM2 expression accompanies elevated p53 expression. More importantly, 

we Len acts to stabilize MDM2, which accelerates p53 degradation. When we 

investigated the biochemical and molecular events associated with this process we find 

that Len-mediated inhibition of PP2A results in hyperphosphorylation of inhibitory 

serine-166 and serine-186 residues on MDM2, and displaces binding of RPS14 to 

suppress MDM2 auto-ubiquitination. When we overexpressed PP2A (to simulate 

haplosufficiency) we observed drug resistance. In fact, BM specimens from del(5q) MDS 

patients that were resistant to Len had overexpressed PP2Acα accompanied by restored 

accumulation of p53 in erythroid precursors. These findings indicate that Len restores 

MDM2 functionality in the 5q- syndrome to overcome p53 activation in response to 

nucleolar stress (manuscript in press, Oncogene). Collectively, these findings suggest that 

Len has multiple targets. Discussed below are the newest findings that eloquently 
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demonstrate Len and thalidomide’s ability to directly bind and inhibit an E3 ligase, 

cereblon269, 332, 333. This is one of the proposed mechanisms of teratogenecity. 

 

Immunomodulatory Functions of Lenalidomide 

 

Anti-inflammatory. Lenalidomide’s ability to kill or inhibit tumor cell growth all 

while enhancing different components of the immune system may explain how patients 

rapidly respond to treatment and show sustained responses, respectively. Inflammation is 

now well understood to underlie many diseases, especially cancer. Len is a potent anti-

inflammatory compound and has the ability to inhibit TNF-α and IL-6, IL-12, IL-1β, and 

GM-CSF, IL-10 by CD3-stimulated T cells or PBMC291, 334, 335. A reduction of 

inflammatory cytokines especially, TNF-a and IL-6 is a proposed mechanism of action in 

MM and MDS, and there is a good amount of evidence supporting this283, 304, 306, 336-338. 

However, the ability of Len to modulate cytokine production varies greatly depending on 

cell type and stimulus received. For example, Len can enhance the production of TNF-α, 

monocyte chemoattractant protein-1 (MCP-1), and IFN-γ by DCs co-stimulated in vitro 

with GM-CSF or IL-2. Increased cytokine production was shown to augment NK-

mediated ADCC339Although in contrast to what others have found, this ability of Len to 

enhance TNF-α and MCP-1 by DCs provides a protective effect and aids in the 

recruitment and activation of neutrophils, macrophages, T cells, B cells, and NK cells. 

Increased activity of the transcription factor, AP-1 may be partially responsible for the 

increased production of cytokines by T cell lines, however, the precise molecular 
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mechanisms governing the differential effects induced by Len on other cell types remain 

undiscovered340.  

T cell Modulation. Although Len does not have the apparent ability to directly 

induce T cell proliferation, it can very powerfully amplify co-stimulated T cells and 

overcome CTLA-4 mediated inhibitory signals via phosphorylation of CD28 340, 341. Len 

also induces the production of Th1 cytokines, IL-2 and IFN-γ, Th2 cytokines, IL-4 and IL-

10340 342. More recently, Len has been shown to enhance antigen-specific CD8+ T cell 

responses from healthy donors and patients. This has major clinical applications 

regarding the use of Len as an adjuvant in peptide-based, peptides, or tumor lysate 

vaccines343. These authors also demonstrated an upregulation of cytolytic mediators, 

perforin and granzyme, which provides support for our data. Immune dysfunction and 

suppression are hallmarks of cancer and aging. Multiple T cell abnormalities exist in CLL 

patients, such as increased ZAP-70 and CD3ζ signaling, which results in chronic and 

aberrant activation of T cells344. Len is not only capable of restoring T cell subset 

numbers (CD4, CD8, and Treg) and function (production of TNF-α, IL-2, IFN-γ) to 

normal in CLL patients that respond to Len treatment344, but Len can also reverse 

immunological synapse defects, another hallmark of CLL345. An interesting study 

recently showed that Len has differential effects on T cells isolated from young (21-40 

years) and old (≥65 years) individuals. Like other groups, they confirmed that Len 

induces IL-2 and IFN-γ production by T cells; however, its immunomodulating effects 

are more potent in elderly people. These results provide rationale to use Len as a method 

to improve immunity in the older population346. 
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Lenalidomide in NK Cells. NK cells are major effectors of the innate immune 

response. NK cell function is severely impaired in many types of malignancies, namely 

MDS, MM, and CLL, diseases that have clinical responses to lenalidomide347-349. As 

described above, the mechanisms of action of Len in these diseases includes anti-

angiogenesis, alteration of the BM microenvironment, direct anti-tumor effects, and 

enhancement/modulation of T cell responses. However, an undeniable attribute of Len is 

its ability to enhance NK cells. NK cells can kill or produce cytokines. Of the two 

functions, their cytolytic ability is more thoroughly studied in the context of Len. A 

unanimous finding is that Len can up-regulate the expression of CD16 (FcR), which 

mediates ADCC189. Enhanced ADCC function is the best-defined effect of Len on NK 

cells and has been shown by several groups to translate to enhanced killing of tumor cells 

in vitro311, 349-352.  

Most of the focus of Len and NK cell activation has been on MM and lymphomas 

(NHL and CLL). Len is used in combination with different therapies, which has proven 

to be most successful. However, in the case of MM, the use of Dex in combination with 

Len negates the immunostimulatory effects produced by Len353. Although NK numbers 

are increased in patients receiving this drug combination, cytotoxic functions by NK cells 

is largely impaired. This was attributed to a Dex-dependent decrease in IL-2 production 

by T cells353. As is the case with Len and T cells (e.g. Len cannot directly stimulate T 

cells- it is more of a co-stimulator), Len also does not directly activate NK cells. T cell-

produced IL-2 has been implicated in the stimulatory effects of Len on NK cells354. The 

question then becomes, how does the combination of IL-2 and Len result in 

hyperactivated NK cells? We sought out to define the molecular mechanisms governing 
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this effect. We argue that understanding this in NK cells will allow future treatments to 

be tailored to enhance this function (e.g. Len in combination with cytokine therapy).  

 

Cereblon. Based on the multitude of effects and the disparities observed with Len 

when different cell types are studied, it seems obvious that there must be multiple targets 

for this drug. However, despite extensive studies little is known regarding the direct 

target of Len (and thalidomide) and their precise molecular mechanisms. There have been 

over 30 proposed mechanisms of action for thalidomide and Len’s teratogenecity alone, 

each one providing evidence to support its claim355. One explanation is the hypothesized 

>20 (some say over 100) hydrolysis products and metabolites that may form from the 

metabolism of these drugs356-358.  

Recently, thalidomide and Len were shown to bind and inhibit cereblon (CRBN) 

386, 387. CRBN is abundantly expressed in the hippocampus and neocortex of the brain and 

is important for normal human nervous system development and function359, 360. It has 

been shown to function as a regulator of voltage-gated ion channels in neuronal synapses, 

which is likely how CRBN contributes to memory and learning361. CRBN is also an E3 

ligase332, 362 and forms a functional E3 ubiquitin ligase complex with damaged DNA 

binding protein 1 (DDB1), Cullin-4A (CUL4A), and regulator of cullins 1 (ROC1), with 

CRBN and DDB1 being functionally associated332, 363. Proteins are commonly 

polyubiquitinated as a form of post-translational modification and as a method of normal 

protein degradation and turnover. This CRBN-DDB1-CUL4A-ROC1 complex 

ubiquitinates several different proteins and by an unknown mechanism, inhibits the 

production of FGF-8, which regulates many developmental processes, such as limb 
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development and auditory vesicle formation332. In an earlier study, thalidomide treatment 

caused a reduction of fibroblast growth factor 8 (FGF-8) in rabbit (a thalidomide 

sensitive species), but not rat embryos (insensitive to thalidomide teratogenecity)364. 

Using chicken embryos, a well-established model for studying the teratogenic effects of 

thalidomide, Knobloch et al found that thalidomide induced the expression of bone 

morphogenic proteins (BMPs)365. Interestingly, in mice, BMPs have been shown to 

inhibit the expression of FGF-8366. Therefore, CRBN seems to be the link between these 

developmental proteins and in some part, thalidomide’s teratogenecity.  

 A role for CRBN in antimyeloma efficacy and myelosuppression has been 

suggested recently. Deletion of CRBN from human myeloma cells was cytotoxic and the 

cells that survived CRBN deficiency became resistant to lenalidomide333. Moreover, 

using MM1.S myeloma cell lines, the authors showed that the presence or absence of 

CRBN was directly linked to Len sensitivity or resistance, respectively333.  

CRBN also directly binds to and is a negative regulator of amp-activated protein 

kinase (AMPK), which is a serine-threonine protein kinase that regulates pathways 

involved in cell growth, apoptosis, and protein, lipid, and carbohydrate metabolism367. 

How CRBN’s reported functions contribute to the diverse effects of Len are not clear. 

Important questions remaining are: what are other targets of CRBN? Do other E3 ligases 

share sequence homology to CRBN and may then also be targets for Len and 

thalidomide? What is the expression of CRBN in other hematopoietic and immune cells? 

Can CRBN binding explain the immune enhancing effects? Answering these questions 

will undoubtedly drive this field forward and allow the generation of safer, more effective 

analogues.  
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CHAPTER 2 
Regulation of NK Homeostasis, Function, and Repertoire Formation: SHIP-1, 2B4, 

and MHC-I 
  
A note to reader  

This work has been previously published in the Journal of Immunology, 
Fortenbery et al.368 and has been reproduced here with permission from the publisher. 

 
 
Introduction 

Natural killer cells express invariant receptors that are broadly categorized as 

activating or inhibitory. These receptors enable responses to viral infections, tumor cells, 

allogeneic grafts and damaged cells369, 370. A fine balance, or lack thereof, of stimulatory 

and inhibitory signals transmitted via these receptors that dictates the function of an NK 

cell. Thus, a diverse and balanced NK receptor repertoire (NKRR) is extremely important 

in order for this lymphocyte compartment to respond to various immunological 

challenges and to do so in a normal, effective manner. Aberrations in the expression of 

NK receptors (NKR) or the downstream signaling can lead to severe immune deficiency, 

as observed demonstrated in our in SHIP-deficient-/- mice250, 258, 371. Upon engagement of 

an NK activating receptor with its ligand, or cross-linking the receptor with an antibody, 

a functionally competent NK cell will produce cytolytic mediators e.g. perforin, 

granzymes and/or cytokines, such as γ-IFN. NKR are expressed in a variegated but 

overlapping fashion such that different cell subsets in the NK compartment elaborate 

different combinations of activating and inhibitory NK receptors.  Varying the array of 

NKR used by each subset increases the potential specificities of the NK compartment, 
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while retaining tolerance to self 372. Therefore, it is essential to understand how this 

repertoire diversity is created, maintained or remodeled.  

The acquisition of NKR expression is considered a semi-stochastic process with 

the representation of an individual NKR largely determined by the relative strength of its 

promoter373. This probabilistic model for NKR expression is based on inherent promoter 

features373 as further supported by the demonstration that a genomic Ly49A transgene 

recapitulates the representation of Ly49A in the NK compartment374. However, there is a 

wealth of evidence that the NKRR is not solely determined by relative promoter strength 

as the presence or absence of NKR ligands, such as major histocompatibility complex 

class I (MHC-I), as well as mutations in intracellular signaling molecules can 

significantly impact the representation and expression of NKR250, 258, 371, 375, 376. Thus, 

differential effects on the proliferation and/or turnover of NK subsets provide a secondary 

layer of regulation that determines the final composition of the NKRR. Defining the 

ligands, receptors and signaling molecules that constitute these secondary regulation 

pathways is required to fully understand how the NKRR is formed and thus how it might 

be manipulated to better control malignancy, and infection and inflammatory diseases. 

A major extrinsic influence on NKRR formation are ligands encoded by MHC 

class- I genes377-379. The influence of MHC-I on the NKRR presumably reflects education 

of the developing NK cell to avoid reactivity against self. There are two models that have 

been proposed for the MHC-specific education of the murine NKRR: The sequential 

activation model and the two-step selection model380. The first model proposes that a 

developing NK cell sequentially acquires, or activates, Ly49 genes and it does so in a 

seemingly random fashion.  Once the NK cell expresses a Ly49 gene, expression is 
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maintained throughout the life of that NK cell. The NK cell acquires expression of a 

sufficient number of self-reactive inhibitory receptors to establish an inhibitory signaling 

threshold that prevents inappropriate killing of normal host cells. Thus, interaction of 

inhibitory receptors with host MHC signals the NK cell to terminate further expression of 

Ly49 genes and complete the maturation process. In the alternative model a developing 

NK cell acquires a fully formed repertoire at an initial stage of development by a 

stochastic process, but can undergo two possible types of selection. NK cells that have at 

least one self-specific Ly49 inhibitory receptor are positively selected for, or NK cells 

that express multiple self-specific Ly49 receptors are selected against to avoid 

accumulation of cells in the compartment that have too great of an inhibitory threshold380.  

In addition to influencing formation of the NKRR, MHC-I interactions with self-

specific Ly49 or Killer Immunoglobulin-like Receptor (KIR) are also necessary for 

efficient NK function through a process referred to alternatively as licensing381, or 

disarming382, or tuning383. For example, a Ly49A receptor that has high affinity for H-2d 

molecules can “license” or tune an NK cell’s function in H-2d haplotype mice381. In the 

absence of these interactions, others argue that the NK cell is disarmed.  The recent 

demonstration that NK cells also express inhibitory and activating SLAM family 

receptors for ubiquitous self-ligands encoded outside the MHC locus122, such as 2B4, is 

likely to increase the complexity of NK education by self-ligands and their receptors.  

              The signal transduction pathways that regulate NKRR formation are 

incompletely defined. PI3K384 and SHIP250 are recruited to inhibitory NKR upon MHC-I 

engagement and are therefore able to control activation of AKT/PKB in NK cells. This 

suggests a role for inositol phospholipid signaling in the regulation of the NKRR by 
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allowing differential turnover of various NK cell subsets (indirect effects) and directly by 

alteration of NKR gene transcription by transcription factors that are distal mediators of 

PI3K signaling.  The former was shown to be the case in SHIP-/- mice where a specific 

NK subset that dominated the compartment also exhibited decreased turnover250. We 

have also shown that SHIP functions in NK cells to prevent certain inhibitory receptors 

from dominating the NKRR. We found that on a C57BL/6 background (H-2b) SHIP-

deficiency leads to a number of signaling and gene expression perturbations that 

culminate in an NK cell being hyporesponsive to complex tumor targets that express both 

MHC-I and an activating ligand, RMA-Rae1+ and or BaF-m157+258, 371. These disruptions 

include increased surface expression of 2B4 and the tyrosine phosphatase, SHP1, and 

inappropriate recruitment and activity of SHP1 at 2B4. Thus, a signaling environment 

where the inhibitory mode of the 2B4 receptor dominates is created,, and rendering SHIP-

/- NK cells are rendered hyporesponsive.  

To examine whether 2B4 receptor dominance might also be responsible for the 

NKRR receptor repertoire disruption we observe in SHIP-deficient mice and whether 

another receptor might dominate cytolytic function in the absence of 2B4, we created 

2B4-/-SHIP-/- mice on an H-2b background. As anticipated from our previous studies, 2B4 

deficiency restores the ability of SHIP-/- NK cells to kill via NKG2D; however, we find 

that both 2B4 and SHIP are required for formation of a normal NK cell repertoire. SHIP 

is required for the induction of γ-IFN production upon stimulation of all NK activating 

receptors examined in this study (NKp46, NKG2D and NK1.1), but 2B4 regulates or 

restrains this induction only when NK1.1 is stimulated. Moreover, we demonstrate a 

novel role for SHIP and 2B4 in lineage-restricted expression of Ly49B, which is 
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normally restricted to myeloid cells.  Intriguingly, we also find that MHC haplotype can 

overcome the negative impact of 2B4 over-expression on SHIP-/- NK cytolytic function, 

since deregulated 2B4 expression by SHIP-/- H-2d NK cells does not compromise their 

ability to lyse MHC matched targets or MHC mismatched targets, indicating that MHC 

haplotype has a critical role in the cytolytic competency of SHIP-deficient NK cells.  

Significantly, H-2d NK cells, similar to H-2b NK cells, display a highly disrupted NKR. 

Thus, the interplay of SHIP, 2B4 and MHC influences NKRR formation, γ-IFN 

production, and cytolytic function in the NK compartment.  

 

Results 

Discordance of cytolytic function and IFN-γ  induction in SHIP-/-, 2B4-/-SHIP-

/- and 2B4-/- NK cells. To assess whether 2B4 deficiency influences homeostasis, 

repertoire formation, cytolysis and IFN-γ induction in SHIP-deficient NK ells, we 

generated 2B4-/-SHIP-/- mice on an H-2b background. 2B4-/-SHIP-/- mice exhibit the same 

pathologies previously reported in SHIP mice including splenomegaly, weight loss, and a 

crystalline pneumonia that culminates in their demise at 8-10 wk old. As previously 

reported, we continue to observe a significant increase in peripheral NK cell numbers in 

SHIP-deficient mice; however, this expansion is dependent on 2B4, because 2B4-/-SHIP-/- 

mice have normal peripheral NK cell numbers comparable to that of 2B4SHIP+/+ and 

2B4+/+SHIP+/+ controls (Fig. 4).
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Figure 4. SHIP and 2B4 are required for NK homeostasis. Representative NK1.1 
versus CD3 contour plots of splenocytes from the indicated genotype and bar graph 
indicating the mean percent of splenic NK cells for each genotype (n = 5 per genotype). 
Results were considered significant when p<0.05 (* p< 0.05; ** p< 0.005; *** p< 
0.0005). Statistical analyses was performed using Graphpad Prism Software and the 
Student’s two-tailed paired t test. 
 

 

The interaction of self-specific NK inhibitory Ly49 receptors with MHC has been 

shown to endow murine and human NK cells with cytolytic competence, a process 

alternatively referred to as NK licensing381 or disarming382. The functional competence of 

NK cells can be assessed by intracellular flow cytometric detection of IFN-γ production 

by freshly isolated splenocytes following Ab mediated cross-linking of an activating 

receptor such as NK1.1, NKp46, or NKG2D381. Analysis of the frequency of IFN- γ 

producing NK cells following engagement by plate-bound anti-NK1.1, -NKG2D, or –

NKp46 revealed that SHIP NK cells have defective IFN- γ production relative to WT 

controls, which is consistent with their previously reported cytolytic effector function 

defect250, 258. However, the absence of 2B4 expression in SHIP-deficient NK cells did not 
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restore IFN- γ induction by any NK-activating receptor tested, including NK1.1, NKp46, 

and NKG2D. Surprisingly, we find that 2B4 also plays a prominent role in induction of 

IFN- γ by NK activating receptors because 2B4-/- NK cells exhibit significantly reduced 

induction after NK1.1 engagement (Fig. 5A, B) and supernormal induction following 

NKp46 engagement 5A,C). NKG2D induction of IFN-g is normal in 2B4-/- NK cells 

(Fig 5A,D). The supernormal induction of IFN-γ is likely due to the increased frequency 

of NKp46-expressing cells present in the 2B4-/- NK compartment (see below).  However, 

NK1.1 levels are normal in 2B4-/- NK cells, implying that signals from this CD28 

receptor facilitate induction of IFN-γ. 
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Figure 5. Defective IFN-γ  production in NK cells that lack expression of SHIP, 2B4 
or both. (A) Representative DX5 vs. γ-IFN contour plots (back gated on DX5+TCRβ-) of 
splenocytes Representative NK1.1 vs.   γ-IFN contour plots of NK cells exposed to wells 
coated with 0, 1, or 10µg of αντια-NK1.1 (PK136), α-NKp46, or α-NKG2D (clone 
PK136). Genotypes of the NK cells and the percentage of γ-IFN+ NK cells are indicated.  
(B-D) Percentage of licensed γ-IFN+ NK cells in each genotype analyzed based on γ-IFN 
production in response to NK activating receptor cross-linking of NK1.1. (B) NK1.1 
(10µg) (C) 1µg anti-NKp46 (50µg) (D) 10µg anti-NKG2D (25µg). Results were 
considered significant when p<0.05 (* p< 0.05; ** p< 0.005; *** p< 0.0005). Statistical 
analyses was performed using Graphpad Prism Software and the Student’s two-tailed 
paired t test. 
 
 

The above results demonstrate that 2B4 deficiency restores normal homeostatic 

control to the peripheral NK compartment, but does not restore the ability of key NK 

activating receptors, including NKG2D, to induce IFN-γ production. To determine 

whether 2B4 could restore cytolytic function we then assessed the ability of NK cells 

from 2B4-/-SHIP-/- mice to lyse RMA/Rae1+ targets as compared with NK cells from WT 

(2B4+/+SHIP+/+), 2B4-/-, and SHIP-/- mice. Cytolysis of RMA/Rae1+ targets was measured 

in a standard 4 h 51Cr release assay with different E:T ratios, using IL-2 activated NK 

cells (Fig 6). In fact, we find that 2B4 deficiency restores SHIP NK killing to WT levels 

at all E:T ratios tested. Thus, 2B4 expression compromised SHIP NK cytolysis of 

complex targets that express MHC-I with an NKG2D ligand. However, these results 

!-NK1.1 !-NKp46 !-NKG2D
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indicate the functional competence of NK cells, as measured by IFN-γ production is not 

inextricably linked to cytolytic competency.  

 

   

Figure 6. Inhibitory dominance by 2B4 in BL6 SHIP-/- NK cells. NK cells were 
magnetically enriched from splenocytes of mice of the indicated genotypes by 
AutoMACS depletion of B, T, and myeloid cells and then cultured in 2000U/mL of 
human recombinant IL-2 for 7 days.  Cytolysis of RMA/Rae1+ transfectants was then 
assessed by a 4-h 51Cr release assay at the indicated E:T ratios. %Specific lysis= 100 x X 
[(experimental release-spontaneous release) / (maximum release-spontaneous release)]. 
These studies are representative of three independent experiments. Killing for all three 
genotypes was significantly greater than SHIP-/- at all E:T ratios tested. Results were 
considered significant when p<0.05 (* p< 0.05; ** p< 0.005; *** p< 0.0005). Statistical 
analyses was performed using Graphpad Prism Software and the Student’s two-tailed 
paired t test. 
 
 

2B4 and SHIP are mutually required for a normal NK receptor repertoire. 

SHIP deficient NK cells have a highly disrupted NKRR with under representation of 

many NK receptors and severe over expression of 2B4 (Fig 7B). We then asked whether 

2B4-deficiency might also lead to a normal receptor repertoire in the peripheral NK 

compartment of SHIP-deficient mice. To determine how SHIP and 2B4 contribute to the 

acquisition of the NKRR we did flow cytometry on splenocytes from naïve mice, first 

RMA-Rae1+ Targets
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gating on NK1.1+Lin- cells and then analyzing the percent expression of the indicated 

receptors (Fig. 7). These data are depicted as bar graphs where the representation of each 

NK receptor in the compartment is normalized to that of WT controls analyzed in parallel 

with each of the three mutant genotypes (2B4-/-SHIP+/+, SHIP-/-2B4-/-, SHIP-/-2B4+/+) (Fig. 

7A-C). With the exception of 2B4, all “% of normal” values refer to the frequency of NK 

cells in the indicated mutant after normalization to WT. The 2B4 “% of normal” values 

refer to mean fluorescence intensity (MFI) or surface density after normalization to WT 

controls.  

 Contrary to what was observed with cytolytic function, we find that the NK 

repertoire of 2B4-/-SHIP-/- mice remains severely disrupted, with 12 of 14 NK receptors 

showing a significant alteration in either their representation or surface density (Fig. 7A).  

However, we also observe a significant degree of repertoire disruption in 2B4-/- mice with 

9 out of 14 NK receptors significantly altered as compared to WT mice (Fig. 7C).  Thus, 

expression of both 2B4 and SHIP is required for the normal development of the NK 

receptor repertoire.  Because SHIP is recruited to 2B4 in NK cells385 and can influence 

the role of 2B4 in cytolytic function258, 371, it is possible that 2B4 and SHIP interact in a 

signaling pathway that also promotes NK repertoire formation. Thus, NK receptors 

whose expression is altered in a similar manner by 2B4, SHIP, or combined 2B4/SHIP 

deficiency are then potentially regulated by signaling pathways controlled by a 2B4:SHIP 

complex.  However, certain NK receptors exhibit different patterns of disruption by 2B4- 

and SHIP-deficiency (Fig.7B,C). For example, 2B4 deficiency leads to increased 

representation of key activating receptors like NKp46 and DNAM-1 in the NK 

compartment, but only in the context of SHIP competency (Fig. 7A,C).  On the contrary, 
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there are significantly fewer SHIP-deficient NK cells that express NKp46 and NKG2D, 

two key NK activating receptors that are supposedly expressed by virtually all NK cells 

(Fig 7B).  Up-regulation of these two key activators could account for the improved 

killing of tumor targets by 2B4-/- NK cells that we and others have observed123. Thus, 

2B4 and SHIP have overlapping, and distinct effects on the NK receptor repertoire. 

 



 

 59 

Figure 7.  Normalized representation of each NK receptor (NKR) in the peripheral 
NK compartment (A) 2B4-/-SHIP-/-, (B) SHIP-/- and (C) 2B4-/- mice. All % and MFI for 
NK receptors were determined after gating on NK1.1+Lin- splenocytes of 6-8 week old 
adult mice (Lin panel:  IgM, CD3, TCR-β, Gr1, CD11c). In order to estimate the 
percentage of NKR+ cells in the NK compartment, positive NKR gates were set at ≥95% 
of NK1.1+Lin- cells staining positive for an isotype control stain performed on an equal 
mixture of null and WT splenocytes. Representation of individual NKR in splenic SHIP-/-

, SHIP-/-2B4-/-, and 2B4-/- NK cells are presented after normalization to WT.  The % of 
normal was calculated as follows: = (%NKR+ SHIP-/-genotype “X”/ %NKR+ SHIP+/+) x 
100 for each indicated NKR. Where “X” represents the genotypes indicated (e.g. SHIP, 
2B4 or SHIP 2B4 double knockout).  For the 2B4 receptor, % normal was calculated in 
the same manner except that MFI was used rather than %NKR+.  White, black and grey 
bar graphs represent % normal values that are significantly lower, higher, and/or 
unchanged in the SHIP-/-, SHIP-/-2B4-/-, and 2B4-/- NK compartment as compared to WT, 
respectively. Results were considered significant when p<0.05 (* p< 0.05; ** p< 0.005; 
*** p< 0.0005). Statistical analyses was performed using Graphpad Prism Software and 
the Student’s two-tailed paired t test. 
 
 

SHIP and 2B4 are required to prevent lineage inappropriate expression of 

Ly49B by NK cells. In addition to the NK-associated receptors analyzed above, we also 

examined the role of SHIP and 2B4 on Ly49B expression. Ly49B and Ly49Q are the sole 

members of the Ly49 gene family that are not expressed by NK cells, but instead are 

restricted to myeloid lineage cells262. Like the Ly49A and C receptors we have previously 

found to be regulated by SHIP, Ly49B is also a promiscuous MHC-I receptor that does 

not exhibit precise specificity for a given MHC haplotype385. SHIP is also recruited to 

Ly49B262 making it a strong candidate for a SHIP-regulated receptor.  Analysis of Ly49B 

expression revealed that it is expressed on a significant proportion of SHIP-/- NK cells in 

either an H-2b (C57BL/6) background (Fig. 8A) or an H-2d (B10.D2) background (Fig. 

8B) in both the spleen and BM, while virtually no Ly49B expression was detected on WT 

NK cells from both haplotypes, consistent with the findings of Gays et al262. We 

performed Ly49B blocking studies using hybridoma supernatants or purified antibody 
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against Ly49B262 in H-2d SHIP-/- and WT in 51Cr release assays. Blocking of Ly49B did 

not significantly increase or decrease cytolysis by SHIP-/- LAK cells (data not shown). 

These in vitro assays indicate that deregulated Ly49B expression may not influence 

SHIP−/− NK effector functions. Whether there are functional consequences for NK cells 

in vivo that arise owing to lineage-inappropriate expression of Ly49B will require the 

development of Ly49B−/− mice and thus remain to be determined.  

 

 

Figure 8. SHIP is required to limit the expression of Ly49B in the NK compartment 
of H-2b and H-2d mice. Spleen and bone marrow of (A) H-2b mice and (B) H-2d mice.  
Gates for Ly49B+ in SHIP-/- (black histogram) or SHIP+/+ (gray histogram), were based 
on gating beginning at the 95th percentile of an rIgG1 isotype control. Statistical analysis 
of the frequency of Ly49B expression in H-2b and H-2d SHIP-/- vs. SHIP+/+ mice is shown 
by bar graphs under the respective histogram. Results were considered significant when 
p<0.05 (*p<0.05) as determined by the student’s t test using Graphpad Prism software for 
analysis. 
  

2B4-/- NK cells from the bone marrow and spleen also express Ly49B at 

significant levels (Fig. 9A). This finding suggests a direct role for 2B4 in lineage-specific 

regulation of Ly49 receptors. Not surprisingly, BM and spleen NK cells from SHIP-/-2B4-
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/- NK cells also express high levels of Ly49B (Fig. 9B). Whether there are in vivo 

functional consequences for NK cells due to aberrant expression of Ly49B is not known 

at this time. 

 

 

Figure 9.  2B4 is also required to prevent lineage inappropriate expression of 
Ly49B. Spleen and bone marrow of (A) 2B4-/- and (B) 2B4-/-SHIP-/- mice.  Black 
histograms are Ly49B staining while grey histograms are isotype control stains.  
Statistical analysis of the frequency of Ly49B expression in the (C) bone marrow and (D) 
Spleen in the following three genotypes: 2B4+/+SHIP+/+(WT), 2B4-/-SHIP-/- and 2B4-/-

SHIP+/+ ***p<0.0001 represents significance of Ly49B in the indicated mutants versus 
WT NK cells. 
 

SHIP-/- H-2d NK cells are cytolytically competent despite a disrupted 

repertoire and overexpression of dominant inhibitory receptors. As with 2B4, we 

find that the expression or representation of most Ly49 receptors is abnormal in the 

peripheral NK compartment of H-2b SHIP-/- mice (Fig. 7). To determine whether 

variation in MHC haplotype might alter how the repertoire is disrupted in SHIP-/- NK 
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cells, we assessed the NK repertoire perturbation in SHIP-/- mice with an H-2d haplotype 

known to have a unique effect on the representation of certain Ly49 receptors. For 

example, surface expression of Ly49A is downmodulated in the presence of high-affinity 

MHC-I ligands in the H-2d locus378. Analysis of the peripheral NK repertoire in SHIP-/- 

mice with an H-2d haplotype (Fig. 10A) indicated that the repertoire perturbation in these 

mice is essentially identical to that of SHIP-/- H-2b mice, with the exception of Ly49A, 

NKp46, and DNAM-1. We find that Ly49A is significantly overexpressed in H-2d SHIP-/- 

NK cells relative to NK cells of WT littermates (Fig. 10A, B). Consistent with the MHC 

independence of its ligand, the surface density of 2B4 is abnormally high in the 

peripheral NK compartment of SHIP-/- H-2d mice, similar to what we observed on an H-

2b background. The frequency of NKp46+ NK cells is not significantly reduced as it is in 

H2b SHIP-/- NK cells (Fig. 10A), whereas DNAM-1 is highly overexpressed in H-2d 

SHIP-/- NK cells as compared with H-2d WT controls (Fig 10A). 

 

Figure 10. H-2d NK receptor repertoire and Ly49A overexpression. (A) Normalized 
representation of the NKRR in SHIP-/- splenic H-2d NK cells (n=6 mice for each 
genotype). Representation of individual NKR in splenic SHIP-/- NK cells are presented 
after normalization to WT.  The % of normal = (%NKR+ SHIP-/- / %NKR+ SHIP+/+) x 100 
for each indicated NKR. For Ly49A and 2B4 receptors, % normal was calculated in the 
same manner except that MFI was used rather than %NKR+.  White, black and grey bar 
graphs represent % normal values that are significantly lower, higher, and/or unchanged 
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in the SHIP-/- NK compartment as compared to WT, respectively. *p<0.05 as determined 
using the student’s t-test. (B) Representative Ly49A staining on NK1.1+CD3- splenic NK 
cells on WT and SHIP-/- H-2d backgrounds. 

 

As shown above (Fig. 10), Ly49A is downregulated in the presence of H-2d. 

According to a newly proposed quantitative regulation model of NK education383, high 

expression of Ly49A by NK cells in an MHC-I background with a strong educating 

impact should reduce the threshold required for NK cell activation. To assess whether 

inappropriate expression of 2B4 or Ly49A might alter cytolytic function in H-2d SHIP-/-

NK cells, we compared the ability of SHIP-/- and WT H-2d NK cells to kill H-2d (self) 

and H-2b (missing self/non-self) tumor targets. We find that SHIP-/- H-2d NK cells have 

normal cytolytic activity against two different H-2d MHC-I matched tumor targets, BCL1 

and A20 (Fig. 11A, B). We find that overexpression of 2B4 does not compromise H-2d 

SHIP-/- NK cytolytic function as it does on an H-2b background. Thus, Ly49A 

overexpression by SHIP-/- H-2d NK cells does not function as a dominant inhibitory 

receptor and impair cytolysis. In fact, we find that H-2d SHIP-/- NK cells exhibit 

supernormal cytolytic activity against MHC mismatched H-2b tumor targets, RMA cells 

(Fig. 11C). However, this finding is not the case for SHIP-/- NK cells with an H-2b 

haplotype, because these cells exhibit impaired cytolytic function against the MHC-I 

mismatched targets, A20 and BCL-1 (Fig 12). The increased expression of the DNAM-1 

activating receptor in SHIP-/- H-2d NK cells could potentially account for their normal or 

enhanced cytolytic function against MHC-matched and mismatched targets, respectively. 

Thus, MHC haplotype can modulate the effect of SHIP on the NK repertoire and its 

impact on effector function, such that SHIP-deficiency in certain MHC-I mismatched 

contexts can promote supernormal cytolytic activity by NK cells. 
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Figure 11. 2B4 is not a dominant inhibitory receptor in H-2d SHIP-/- NK cells where 
a strong licensing receptor is overexpressed. H-2d SHIP-/- and WT NK cytolysis of (A) 
BCL1 (H-2d) lymphoma targets, (B) A20 (H-2d) lymphoma targets and (C) RMA (H-2b) 
lymphoma targets at various E:T ratios, 6:1; 20:1; 50:1.  Cytolysis was analyzed in a 
standard 4-hr 51Cr release assay.  Each analysis is representative of at least 2-3 
independent experiments. *p<0.05 as determined by the student’s t test. Statistical 
analyses was performed using Graphpad Prism Software  
 

 

Figure 12. H-2b SHIP-deficient NK cells have defective killing against allogeneic 
targets. H-2b SHIP-/- and WT NK cytolysis of BCL1 (H-2d) lymphoma targets and A20 
(H-2d) lymphoma targets at various E:T ratios, 6:1; 25:1; 50:1.  Cytolysis was analyzed in 
a standard 4-hr 51Cr release assay.  Each analysis is representative of at least 2-3 
independent experiments. *p<0.05 and **p<0.005 as determined by Student’s t test. 
 

NK cells from H-2d mice have impaired IFN-γ  induction. Our analysis of 2B4-

/-SHIP-/- NK cells indicated discordance in cytolytic function and IFN-γ induction. We 

then wanted to determine whether the normal or supernormal cytolytic capacity of H-2d 
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SHIP-/- NK cells could also result in the restoration of normal or above-normal IFN-γ 

induction from key NK activating receptors. To investigate this, we primed the mice with 

polyinosinic-polycytidylic acid (day -1) and harvested the spleens on day 0. To induce 

IFN-γ production, we cross-linked NK1.1 (Fig.13 and 14B) or NKG2D (Fig. 13 and 14C) 

using plate-bound mAbs. We measured the production of IFN-γ by intracellular flow, and 

we show here that SHIP-deficient NK cells from H-2d mice have a markedly impaired 

ability to induce IFN-γ from both NK activating receptors (Fig.14). This finding is 

consistent with the discordance of cytolytic function and IFN-γ induction in 2B4-/- SHIP-/- 

NK cells, and it indicates that although in certain genetic contexts (2B4 deficiency, H-2d 

haplotype) SHIP-deficient NK cells can have normal or supernormal cytolytic function, 

they nonetheless remain poor producers of IFN-γ in response to engagement of major NK 

activating receptors. We can conclude that SHIP expression is a uniform and essential 

requirement for this NK effector function. 
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Figure 13. H-2d NK cells exhibit impaired ability to produce γ-IFN. Representative 
DX5 vs. γ-IFN contour plots (back gated on DX5+TCRβ-) of whole spleen cells either  
unstimulated (PBS) or stimulated with 50µg of plate-bound α-NK1.1 (clone PK136) or 
50µg of plate-bound α-NKG2D (A10). 
 

 

 

Figure 14. Statistical analysis of licensed NK cells from SHIP+/+ and SHIP-/- mice with 
an H-2d haplotype. Graphs represent data from Fig 13. (A) unstimulated (B) NK1.1 and 
(C) NKG2D ***P<0.0001 compared to WT control. Representative of at least 3 
independent experiments. 
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Discussion 

In this study, we provide genetic evidence that the interaction of SHIP with both 

2B4 and MHC-I loci is required for the acquisition of a normal repertoire of inhibitory 

and activating receptors, normal cytolytic function, and induction of IFN-γ production by 

key NK activating receptors. Consistent with our previous study showing that blockade 

of CD48 on complex MHC-I+Rae1+ targets restored normal cytolysis to SHIP-deficient 

NK cells258, the cytolytic defect of SHIP-deficient NK cells is corrected by 2B4 

deficiency. Cytolytic competence against Rae1+ target cells by 2B4-/- SHIP-/- and 2B4-/- 

NK cells occurs despite a highly disrupted NKRR. However, SHIP-/-2B4-/- and H-2d 

SHIP-/- NK cells exhibit defective induction of IFN-γ, although they exhibit normal or 

supernormal cytolytic capacity. This defect in IFN-γ induction can result from decreased 

expression of NKp46 and NKG2D in SHIP-/- NK cells; however, NK1.1 receptor 

expression levels are normal or elevated on SHIP-/- NK cells250, indicating that SHIP 

actually is required downstream of certain NK activating receptors for efficient induction 

of IFN-γ. Surprisingly, we find that 2B4 restrains induction of IFN-γ in response to 

engagement of the NK activating receptor NKp46, but not NK1.1. These findings 

demonstrate that IFN-γ induction and cytolytic competence are regulated by distinct 

mechanisms in NK cells and that both SHIP and 2B4 play a prominent role in IFN-γ 

production by NK cells by modulating activating receptor expression and/or signaling 

pathways downstream of these receptors. 

The finding that 2B4 limits the expression of key activating receptors, NKp46 and 

DNAM-1, is attractive and may explain why we and Vaidya et al123 observed enhanced 
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killing by 2B4-/- NK cells. These data suggest that 2B4 may be necessary to limit the 

expression of these activating receptors. In addition, we find that SHIP and 2B4 are 

required to prevent the lineage-inappropriate expression of Ly49B, the polyspecific 

MHC-I receptor that is normally restricted to myeloid cells262. This finding establishes a 

previously unappreciated role for SHIP and 2B4 in maintaining restricted expression of 

immune receptors. The in vivo functional consequences of inappropriate Ly49B 

expression in the NK cell compartment of SHIP-/-, SHIP-/-2B4-/-, and 2B4-/- mice remains 

unknown, but certainly merits further investigation. 

We also find that the effects of SHIP on repertoire formation and cytolytic 

function is influenced by the composition of MHC-I ligands, because a potent educating 

or licensing receptor, Ly49A, is overexpressed by SHIP-deficient NK cells in the 

presence of its high-affinity H-2d ligand. Surprisingly, cytolytic function is not found to 

be defective in SHIP-/- H-2d NK cells, suggesting that the increased educating or licensing 

capacity of Ly49A in H-2d SHIP-/- NK cells could counteract inhibitory signals resulting 

from overexpression of 2B4; however, H-2d NK cells have defective IFN-γ induction. 

The normal or supernormal cytolytic activity we observe with H-2d SHIP-/- NK cells 

could also be due to the normal levels of NKp46 expression or increased expression of 

DNAM-1, respectively, that we observe in H-2d SHIP-/- NK cells. Based on our findings, 

we suggest that the IFN-γ induction assay may not always be a valid surrogate for NK 

cytolytic competence, particularly for analysis of signal transduction mutations that can 

affect NK function. Others have also observed a similar discordance of IFN-γ induction 

and cytolysis in Bcl10-/- NK cells386. 

The interaction of SHIP and 2B4 influences signaling pathways that determine the 
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cytolytic function of mature NK cells in both humans and mice371, 385. Our findings 

suggest that 2B4:SHIP signaling could also play a role in early NK development to 

promote the efficient acquisition of NK receptors that sense MHC-I ligands. In fact, 

expression of 2B4116, 387 and SHIP precedes expression of the Ly49 and CD94/NKG2 

receptors in NK development. The early expression of 2B4 in developing NK cells may 

be necessary to achieve self-tolerance until a properly diverse Ly49 and CD94/NKG2 

repertoire is acquired. Consistent with this hypothesis, McNerney et al.388 found that 2B4 

promotes self tolerance by mature murine NK cells in rodents, and Sivori et al.45 showed 

that 2B4 inhibitory signals limits cytolysis by NK cells that have yet to acquire KIR 

expression. This putative function of 2B4 in developing NK cells could be particularly 

important in preventing inappropriate NK cytolysis in the BM compartment, because 

immature NK cells have been shown to acquire cytolytic activity prior to acquisition of 

Ly49 receptors and KIR receptors45, 387. Consistent with this hypothesis, the ligand for 

2B4, CD48, is ubiquitously expressed in the developing hematopoietic system providing 

nearly constant interaction of developing NK cells with a tolerizing signal in the form of 

CD48. The exception to this is the primitive subset of hematopoietic stem cells (HSCs) 

that lack CD48 expression389. Presumably developing NK cells do not co-occupy the 

endosteal niche where primitive HSC reside, although this merits direct analysis. 

 A role for 2B4 in maintaining self-tolerance in early NK cells and a lack of CD48 

expression by HSCs would enable the NK lineage to modulate hematopoiesis by lysis of 

CD48- HSCs. Because NK cells are the only cytolytic lymphocyte that develops in the 

BM, this role for 2B4 would provide a means for NK cells to mediate negative feedback 

on HSCs and thus lymphoid output. The plausibility of such a mechanism is further 
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suggested by evidence that syngeneic HSC function can be limited by NK cells in 

vivo390. Thus, a 2B4: SHIP complex could potentially play a role in such a lymphoid 

feedback pathway. Consistent with this hypothesis, CD48- HSCs inappropriately 

accumulate in the BM of SHIP-/- mice248. An additional role for the 2B4:SHIP complex in 

NK tolerance toward APCs in secondary lymphoid tissues is also a distinct possibility. 

Evidence for this role includes the inappropriate expansion of the dendritic cell 

compartment in the lymph nodes (LNs) of SHIP-/- mice249, increased expression of SHIP 

in a subset of LN NK cells that lack KIR, but express 2B4263, and that 2B4 has inhibitory 

function in human LN NK cells45. 

 How 2B4 signals promote NK tolerance toward CD48+ targets in the absence of 

MHC-I inhibitory receptors, and trigger the acquisition of a full repertoire of MHC-I 

receptors, remains to be defined. 2B4 can directly or indirectly recruit a wide variety of 

signaling molecules via its four immunoreceptor tyrosine-based switch motifs. To date, 

the following signaling components have been shown to be recruited to 2B4: PLC-g, 

LAT, Grb2, SAP, Fyn, EAT2, PI3K, SHP1, SHP2, and SHIP129, 130, 371, 391. Thus, 

signaling complexes at 2B4 have the biochemical capacity to impact a wide variety of 

distal signaling pathways that can control NK cell survival, proliferation, and/or gene 

expression. Because 2B4 is recruited to the NK synapse and SHIP can attenuate PI3K 

activity from other receptors in trans392, a 2B4:SHIP complex also has the potential to 

limit PI3K activity originating at other NK receptors. In fact, immature KIR- NK cells 

can kill autologous cells, including APCs, via PI3K-mediated pathways downstream of 

NKp46 and NKp3045, 393, and 2B4 limits this activity. Thus, trans activity of SHIP at 2B4 

to oppose PI3K activity at other receptors could be an essential feature of NK tolerance 
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signaling. The expansion of HSCs in BM and APCs in the LNs of SHIP-/- mice is 

consistent with this possibility249.  

The NKRR is regulated by elements intrinsic and extrinsic to the NK lineage. 

Several studies have shown that external signals received by NK cells from self-ligands, 

such as MHC-I, can influence the repertoire through differential effects on NK subset 

survival and/or proliferation394, 395. In addition, NK intrinsic signaling pathways influence 

NKR expression, including 2B4, via cis-acting sequences present in receptor 

promoters373, 374, 396, 397 and by activation of transcription factors that bind to these sites398, 

399. The challenge for biologists studying NK cells is to better understand how integration 

of these extrinsic and intrinsic pathways determines the final composition of the NKRR. 

Co-expression of 2B4 and SHIP prior to MHC-I receptor expression suggests that 

2B4:SHIP complexes are uniquely positioned to play such a role. For example, the trans 

activity of SHIP from 2B4 could oppose PI-3K activity at MHC-I receptors and thus limit 

the survival or proliferation of NK subsets expressing these MHC-I receptors. Consistent 

with this possibility, PI-3K can be recruited to MHC-I inhibitory receptors to activate 

AKT. SHIP acting in trans from 2B4 or in cis from the same MHC-I receptors could 

limit PI-3K/AKT survival signals, and thereby prevent inappropriate expansion of such 

NK subsets. SHIP can also be recruited directly to MHC-I receptors; therefore, SHIP may 

also limit these subsets in cis 262, 310, 385. This cis activity may be important when MHC-I 

receptors are in a genetic background where high-affinity MHC-I ligands are also 

present, as suggested by the overexpression of Ly49A in SHIP-/- H-2d mice. 

In addition to limiting expansion of specific subsets of NK cells, it is also possible that 

2B4:SHIP complexes influence intrinsic pathways that determine NK receptor expression 
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and effector function. For example, activation of transcription factors known to act on 

promoters for NK receptors and/or 2B4 (e.g., Ets, NF-κB, CREB) is influenced by 2B4 

engagement397 and signaling molecules recruited to 2B4 (e.g., Fyn, SHIP, PI3K)400. 

Consistent with this hypothesis, 2B4 expression is deregulated in SHIP-/- NK cells258, 

whereas Fyn-/-, SHIP-/-, and PI3K-/- mutants all exhibit profound disruptions of their 

MHC-I NK receptor repertoires375, 376. The receptor expression changes created by SHIP 

or 2B4 deficiency are likely to cause some of the alterations in effector function that we 

observe in SHIP-/- and 2B4-/- NK cells. 

However, independent of these receptor expression changes, 2B4: SHIP 

complexes also appear to influence signaling pathways that promote NK effector 

functions. For example, SHIP-/- NK cells are unable to trigger IFN-γ induction in response 

to NK1.1 engagement despite normal or increased surface density of NK1.1. This finding 

suggests a role for SHIP in promoting IFN-γ expression via generation of its product 

PI(3,4)P2, which along with PI(3,4,5)P3 is a critical second messenger for the PI3K 

pathway. This is consistent with a recent report showing that SHIP promotes rather than 

inhibits, macrophage effector function via generation of PI(3,4)P2401. Thus, the uniform 

defect in IFN-γ induction that we observed for SHIP-deficient NK cells, whether 2B4-

deficient or of different MHC haplotypes, demonstrates an absolute requirement for SHIP 

in the induction of IFN-γ production by major NK activating receptors. These findings 

reveal a pivotal role for the interaction of SHIP and 2B4 in the regulation of the NKRR, 

cytolytic function, and IFN-γ production. 

Materials and Methods 
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Mice. All H-2b repertoire analyses described herein are derived from analysis of 

SHIP+/+ and SHIP-/- mice derived from intercrosses of SHIP+/- mice F10XC57BL6/J mice. 

SHIP-/-2B4-/- were generated by intercrossing C57BL/6  2B4-/- mice  with our SHIP+/- mice 

(2B4-/- were kindly provided by J.D. Schatzle). The 2B4-/-SHIP-/- genotype of the 

offspring from these matings was confirmed by flow cytometry of viable cells and PCR 

analysis of genomic DNA. SHIP-/-  H-2d  mice were generated by crossing SHIP+/- mice to 

the B10.D2 (H-2d) strain.  The progeny of these initial crosses were then backcrossed 

once more to the H-2d congenic strain to obtain SHIP+/- males and females homozygous 

for the H-2d haplotypes. H-2d homozygous SHIP-/- males and females were identified and 

their SHIP+/- progeny intercrossed to generate WT and SHIP-/- progeny for NK repertoire 

studies on the H-2d haplotypes. All NK repertoire analyses were performed with mice 

between 6 to 9 weeks of age. All studies were performed in accordance with the 

guidelines and approval of the Institutional Animal Certification and Use Committee 

(IACUC) at the University of South Florida.   

 

Flow cytometry. Anti-CD16/32 was co-incubated with the samples to block Fc 

receptor binding.  Antibodies used for staining included: NK1.1(PK136) (mIgG2a); 

CD3ε and TCRβ; Ly49A(A1) and Ly49C/I(5E6) (mIgG2a,κ); Ly49F(HBF-719) and 

Ly49I(YLI-90) (mIgG1,κ); Ly49G2(4D11) and CD94(18d3) (rIgG2a,κ) were obtained 

from BD Pharmingen (San Jose, CA). 2B4(244F4) (rIgG2a,κ); Ly49H(3D10) (mIgG1); 

Ly49D(4E5) (rIgG2a,κ); C7 (hIgG1) were purchased from eBioscience (San Diego, CA). 

The anti-Anti-KLRE1(7E8)402 (rIgG1); -NKRP1D(2D12) (mIgG2a), Ly49B(2G4A1)262 

(rIgG1), and -KLRG1236 antibodies were previously described and are conjugated to 
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biotin and revealed with SA-APC as described here. Ly49B(2G4) (rIgG1) was produced 

in the laboratory of by Colin Brooks. KLRG1. Samples were acquired on a FACS Calibur 

and analyzed using FlowJo8.  Dead cells were excluded from the analysis following 

cytometer acquisition of staining data based on exclusion of the 7AAD dye. 

 

Cytotoxicity assays. Cytolysis of RMA, RMA-Rae1+, A20, and Bcl-CL1 targets 

was measured in a standard 4-h 51chromium release assay. Briefly, on day 7 of NK 

culture, target cells were loaded with 100 µCi of 51Cr per106 cells for 60 min at 37°C. 

The target and NK (effector) cells were then incubated together in a sterile U bottom 96 

well plate at 37°C for 4-5 h. The total volume in each well was 200µL. After the 4-5 h 

incubation, 100µL of supernatant was collected and measured for radioactivity on a 

gamma counter (Wizard 1470; PerkinElmer). %Specific lysis= 100 x X [(experimental 

release-spontaneous release) / (maximum release-spontaneous release)]. Statistics were 

calculated with Prism software using the Student’s t test.  

 

Cytokine assay. To stimulate NK cells, 4-6 million splenocytes from naïve mice 

were incubated with antibody-coated 6- well plates for 5-6 hours at 37oC in the presence 

of GolgiPlug (BD Biosciences). Plates were coated with anti-NK1.1 (PK136), or anti-

NKG2D (A10), or anti-NKp46/NCR1 for 2 hours at 37oC or overnight at 4C. Spleens 

were harvested on day 0 and put into single cell suspension by passing through a 70µM 

cell strainer. Red blood cells were lysed with ACK buffer for 5 minutes at room 

temperature. Cells were washed with cold PBS and resuspended in RPMI 1640 

supplemented with 10% FBS, 1% Penicillin-Streptomycin, 1% L-glutamine, 1% sodium 
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pyruvate, and 1% non-essential amino acids. After the 5-6 hour incubation, the cells were 

harvested, Fc receptor blocked, and stained for DX5, TCRβ and γ-IFN, with the latter 

stain performed following cell permeabilization and fixation. For H-2d licensing assays 

only, mice were injected intraperitoneally with 70µg of Poly I:C on day –1 and spleens 

were harvested on day 0. 
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CHAPTER 3: Lenalidomide Combined with IL-2 or IL-15 Results in Robust 
Activation of STAT5 and Subsequent Increase in Cytolytic Mediators and Natural 

Cytotoxicity 
 

Introduction 
 
IMiDs, or immunomodulatory drugs, are a series of compounds developed by using the 

thalidomide backbone as the lead compound288. Lenalidomide (Len) is a second 

generation IMiD and is currently approved to treat Myelodsyplastic Syndromes (MDS) 

and Multiple Myeloma (MM)318, 403, 404. There are also several (>400) ongoing clinical 

trials investigating the use of Len to treat hematological malignancies as well as solid 

tumors, autoimmune diseases, and inflammatory conditions (clinicaltrials.gov search 

“lenalidomide”). There are many proposed mechanisms of action, although the target(s) 

of Len, and its parent compound thalidomide, remain unknown. The side effects with Len 

are not as severe as with thalidomide, but Len is still associated with negative side 

effects, such as thrombosis, pulmonary embolus, and hepatoxicity. Additionally, there is 

bone marrow toxicity resulting in severe neutropenia and thrombocytopenia, with 

myelosuppression being the major dose-limiting toxicity of this drug319, 405.  

The effects of Len vary greatly depending on the cell type being studied and the 

stimulus being received. It is quite effective at treating transfusion-dependent anemia in 

low-risk myelodysplastic syndrome (MDS), for which it has been shown to target the 

abnormal (5q) progenitors. Our group has demonstrated that haploinsufficiency of 

serine/threonine phosphatases PP2A and Cdc25c sensitize del(5q) MDS clones to Len. In 

fact, silencing these proteins in non-del(5q) MDS progenitor cells using siRNA imparted 
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a similar sensitivity to Len and subsequent arrest and apoptosis324. These findings suggest 

that Cdc25c and PP2A play an important role in the mechanism of lenalidomide in 

del(5q) MDS. There are also many other studies implicating genes located in the 

commonly deleted region (CDR) of chromosome 5 in the pathogenesis of MDS and 

treatment using Len322, 325, 406. However, these findings cannot explain the 

immunomodulatory and immune enhancing effects seen with Len in other cell types and 

pathological conditions.   

Natural Killer (NK) cells are a major component of the innate immune system. As 

their name implies, they are effective killers of malignant, virally infected, and stressed 

cells. Killing by NK cells is carried out by the introduction of cytolytic proteins, such as 

perforin and granzymes into the target cell. Perforin inserts itself into the target cell, 

forming a pore in the membrane thereby directly killing the cell170. Perforin is also 

involved with the transport of granzymes into the cell. Granzymes, which are serine 

proteases, are released into the target cell thereby inducing apoptosis by caspase cleavage 

and activation172.  In addition to cytolytic functions, NK cells are potent producers of 

several cytokines and chemokines, which position them as regulators of both the innate 

and adaptive arms of the immune system216. NK cell function is regulated by a dual 

receptor system. That is, they possess inhibitory and activating receptors, where the 

inhibitory receptor sets the threshold for whether an NK cell will kill, produce cytokines, 

both, or neither. The expression of NK receptors directly affects the function of an NK 

cell41.  

Len can upregulate CD16 and enhance Natural Killer (NK) cell Antibody 

Dependent Cell cytotoxicity (ADCC) in vitro311, 349-352. In addition to ADCC, NK cells 
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can be activated to kill without the requirement of antibody production by B cells. This 

function is termed ‘natural cytotoxicity’ and is mediated by direct binding of other NK 

activating receptors (e.g. NKG2D, 2B4, KIRs) with their target ligands. NK cells are 

important players against cancer, and if manipulated properly they can be harnessed to 

eliminate hematological as well as solid tumors407-410. Much of the regulation of NK cell 

cytotoxicity also applies to cytotoxic T lymphocytes (CTL)411, and thus we propose that 

understanding the molecular mechanisms of Len in NK cells will undoubtedly provide 

some insight into how this drug impacts CTLs. The precise molecular mechanisms 

governing Len’s effects on CTLs also remain undiscovered. 

NK cells require several cytokines for their development, activation, and 

survival412, 413. Specifically, members of the IL-2 family of cytokines are extremely 

imperative, and in certain cases, critical for the development of functional NK cells. IL-2 

and IL-15 are prime examples. These cytokines belong to the IL-2 family of cytokines 

and signal through a common receptor system where they share the IL-2Rβ and IL-Rγ 

chains. The common gamma chain (γc), is shared by all members in the IL-2 family of 

cytokines414. Upon receptor stimulation by cytokines (e.g. IL-2 or IL-15), cytoplasmic 

portions of the IL-2R are phosphorylated and subsequent recruitment and activation of 

Janus Activated Kinase-3 (JAK3) occurs. JAK3 then phosphorylates STAT5, or STAT5 

is directly recruited to the phosphorylated IL-2R chains via its SH2 domain. 

Phosphorylation of STAT5 is required for it homodimerization, nuclear translocation, and 

DNA binding415, 416. Of relevance, IL-2 and/or IL-15 activation of STAT5 can result in 

perforin, granzyme B, and IL-2R expression415, 417, 418. In the present study, we examined 

the impact Len has on NK cell viability and proliferation, the phenotype and the receptors 
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expressed, as well as cytotoxic functions, including natural cytotoxicity and cytokine 

production. There has only been one other study (to our knowledge419) that has explored 

the effects of Len on normal healthy NK cells. This study had important findings that are 

in agreement with our data here. However, the authors did not assess the molecular 

mechanisms involved. We sought out to do a thorough investigation of how Len 

modulates NK cell function and biology. We find that many receptors are unaffected by 

treatment with Len, however, NKp46 and two inhibitory KIRs become downregulated. In 

support of other studies351, we also find CD16 to be upregulated upon treatment. 

Importantly, natural cytotoxicity is enhanced with concomitant increases in granule 

mobilization and granzyme B and perforin expression. This upregulation of cytotoxicity 

is likely due to the fact that we find a sustained and robust activation of STAT5. This 

effect is enhanced when we treat the cells with exogenous IL-2 or IL-15. IL-Rβ and IL-

2Rγ chains are also increased at the surface level and are presumably involved in a 

positive feedback loop. These finding have important clinical application since IL-15 is 

critical for NK development and function, and for the proliferation of memory CD8 T 

cells414, 420, 421. We provide what we feel is rationale to further study the combination of 

Len with IL-15 in order to enhance the immunomodulatory and activating properties of 

this drug, while ideally eliminating some of the immune suppressive side effects seen 

with Len monotherapy.  
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Results 

The effect of lenalidomide on NK viability, proliferation, and cell cycle. 

Lenalidomide is an emerging drug with much emphasis and focus placed on it over the 

last few years. Despite intensive work, there remains a lot of mystery and conflicting 

results associated with this drug. It has been previously reported that Len has differential 

effects depending on the cell type being studied and the stimulus received. In certain 

instances it can induce apoptosis304, in others, Len causes G0/G1
307 or G2 arrest 324. 

Considering these findings we sought to determine what effect, if any, Len had on cell 

cycle and viability of NK cells. In our early studies we employed the NK cell line, YT. 

YT cells provided a valuable tool with reproducible results and easy manipulability. We 

found that Len does not induce apoptosis of YT cells, even at a high dose (20µM; low 

dose: 5µM, data not shown) (Fig. 15). However, Len does severely impair cell 

proliferation (Fig. 16) and cell cycle progression in G0/G1 (Fig. 17) and by 14 days of 

treatment 100% of cells are arrested.  

 

Figure 15. Lenalidomide effect on YT cell viability. The YT NK cell line was 
treated with a 20µM lenalidomide or DMSO for 1, 5, or 7 days and apoptosis was 
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measured using Annexin V and PI staining. This is a representative of 3 independent 
experiments. 

 

  

Figure 16. YT cell proliferation is impaired by lenalidomide treatment. YT cells 
were cultured in the presence of 10µM or 20µM Len for 1, 3, 5, or 7 days or DMSO and 
proliferation of YT cells was determined by quantifying overnight incorporation of [3H] 
thymidine (1.0 µCi per well) Results are expressed as the mean counts per minute (cpm) 
of triplicate wells plus or minus the SD. Statistical analyses was performed using 
GraphPad Prism Software and the Student’s two-tailed paired t test. Results were 
considered significant when p<0.05 (* p< 0.05; ** p< 0.005; *** p< 0.0005). 
 

 

Figure 17. Lenalidomide induces G0/G1 YT cell cycle arrest. YT cells were cultured 
with 20µM Len or DMSO for up to 14 days. Cell cycle analysis was assessed by PI 
staining and Modfit software was used to analyze the data. Data from at least 3 
independent experiments were pooled. Error bars represent the mean +/-SD from pooled 
experiments. Statistical significance was determined using Student’s t test (* p< 0.05; ** 
p< 0.005; *** p< 0.0005). 
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A unique feature of YT NK cells is their IL-2 independence, a feature that other 

NK cell lines and primary NK cells are not privy to422. Based on previous data 

implicating a role for Len-induced T cell-derived IL-2 in the activation of NK cells354, we 

asked what effect exogenous IL-2 in combination with Len would have on YT 

proliferation. Addition of exogenous IL-2 overcame proliferation impairment caused by 

Len. In fact, proliferation was restored to levels greater than the DMSO control group 

(Fig. 18), indicating Len can synergize with IL-2 to enhance NK cell proliferation. Not 

surprisingly, cell cycle progression was also rescued by IL-2 (Fig. 19). Primary 

unstimulated human NK cells are not actively proliferating. Thus, when we measured 

proliferation (CFSE) and cell cycle (PI) in primary human NK cells, we observed no 

difference between Len treated and DMSO treated cells (Fig. 20). Given Len’s ability to 

“co-stimulate” T cells, we anticipated perhaps an induction in cell cycle or proliferation, 

but this was never realized. In line with the general concept of chemotherapeutics, Len 

appears to be mostly specific for rapidly dividing cells.  
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Figure 18. IL-2 restores proliferation defects caused by lenalidomide. YT cells were 
cultured in the presence of 10µM or 20µM Len or DMSO plus hrIL-2 (100U/mL) for 1, 
3, 5, or 7 days and proliferation of YT cells was determined by quantifying overnight 
incorporation of [3H] thymidine (1.0 µCi per well). Results are expressed as the mean 
counts per minute (cpm) of triplicate wells +/- SD. Statistical analyses was performed 
using Graphpad Prism Software and the Student’s two-tailed paired t test. Results were 
considered significant when p<0.05 (* p< 0.05; ** p< 0.005; *** p< 0.0005). 
 

 

Figure 19. YT Cell cycle arrest is overcome by exogenous IL-2. YT cells were 
cultured with 20µM Len or DMSO for 7 days in the presence of hrIL-2 (100U/mL). Cell 
cycle analysis was assessed by PI staining and Modfit software was used for data 
analysis. Data from at least 3 independent experiments were pooled. Error bars represent 
the mean +/-SD from these pooled experiments.  
 

 

 

YT NK cell line
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Figure 20. Human primary NK cell proliferation and cell cycle are not affected by 
lenalidomide. Human primary NK cells from healthy donors were FACS sorted based on 
the expression of CD56+CD3- and cultured with 10µM Len or DMSO for 7 days in the 
presence or absence of IL-2. Cell cycle analysis was assessed by PI staining and Modfit 
software was used for data analysis. This is representative of 2-3 independent 
experiments.  
 

We also assessed PBMC cell viability and whether addition of exogenous 

cytokines can affect Len’s impact. Interestingly, after 7 days of treatment there was no 

major difference in viability between DMSO and Len treated groups (Fig. 21); however, 

after 14 days of treatment we found that Len induced a substantial amount of apoptosis. 

This effect was partially restored by the addition of exogenous IL-2, but we saw a major 

improvement in cell viability when the cells were treated with IL-15 (Fig. 22). These data 

provide impetus for investigating how cytokines (specifically IL-2 or IL-15) combined 

with Len can further exploit Len’s immune enhancing properties, while helping to 

eliminate unwanted cytopenias and immune suppression.  
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Figure 21. 7 days of treatment with lenalidomide does not induce apoptosis of 
healthy PBMC. PBMCs from healthy donors were cultured in the presence of hrIL-2 
(100U/mL) and treated with a 20µM Len or DMSO for 7 days. Apoptosis was measured 
using Annexin V and PI staining by flow cytometry. This is a representative of at least 3 
independent experiments.  
 

 

Figure 22. IL-15 rescues PBMC viability after long-term treatment with 
lenalidomide. PBMCs from healthy donors were treated with 10µM Len or DMSO for 
14 days either without exogenous cytokines or with the addition of IL-2 (100U/mL) or 
IL-15 (10ng/mL) and apoptosis was measured using Annexin V and PI staining. This is 
representative of at least 3 independent experiments. 
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Lenalidomide selectively modulates the expression of key NK receptors. Len 

can modulate the expression of CD56350, 351, a marker used to define the human NK cell 

subsets264. We examined PBMC isolated from healthy donors and found that Len induces 

CD56bright expression in a time-dependent manner (Fig. 23). Because there are many cell 

types present in a PBMC culture, we wanted to eliminate the possibility of an indirect 

effect. Therefore, we FACs sorted NK cells and treated them directly with Len. There is 

an identical upregulation of CD56 on primary sorted NK cells from healthy donors (Fig. 

24), indicating that Len has a direct effect on CD56 expression by NK cells. The 

possibility that CD56bright NK cells are surviving longer, or proliferating in response to 

Len was also a consideration; however, as measured previously (Fig. 20), ex vivo NK 

cells are not actively proliferating when treated with (or without) Len, nor do they 

undergo apoptosis after 7 days, thereby ruling out CD56bright proliferation or CD56dim 

death. It should be mentioned that we do not see any major changes in the percentages of 

NK cells, NKT cells, or CD3+ T cells upon treatment with Len (Fig. 23, gates are drawn 

around the two subsets and total NK population). The molecular mechanisms governing 

CD56 upregulation, and the functional implications, if any, have not been investigated.  
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Figure 23. CD56 expression on PBMC is upregulated by Lenalidomide. PBMCs from 
healthy donors were treated with a 10µM Len or DMSO for 1, 5, or 7 days and were then 
stained for the expression of CD56. Viable cells were gated by on the exclusion of DAPI 
or another viability marker (e.g. 7-AAD). NK cells were identified as CD3-CD56+; NKT 
cells were considered CD56+CD3+ (no further phenotypic analysis was done); and CD56-

CD3+ cells were considered T cells (no further phenotypic analysis was done). CD56dim 
and CD56bright NK are designated by gates drawn around those populations. These data 
are representative of more than 10 independent experiments.  
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Figure 24. Lenalidomide acts directly on NK cells to induce CD56 expression. NK 
cells from healthy donors were FACS sorted based on the expression of CD56+CD3- and 
cultured with 10µM Len or DMSO for 1, 5, or 7 days in the presence of hrIL-2 
(100U/mL). NK cells were assessed for their expression of CD56 by flow cytometry. 
These data are representative of more than 5 independent experiments. 
 

NK activating and inhibitory receptor expression has a direct impact on the 

function of an NK cell370. Len can modulate the expression of receptors by NK cells and 

other cell types350, 419. Therefore we did a comprehensive analysis of Len’s impact on NK 

receptor expression. We find that several key NK receptors are affected (Fig. 25A,B). 

Like others, we find CD16 expression is increased and it appears to be specific to NK 

cells that are also CD56bright 351. NKp46, a key NK activating receptor, is down-

modulated in the CD56bright population, but unchanged on CD56dim cells (Fig 25A). We 

looked at two inhibitory KIRs, KIR2DL1 and KIR2DL3, which were both reduced. 

KIR2DL3 being more profoundly decreased and KIR2DL1 being only modestly affected 
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(Fig. 25A). Len had no major effect on the expression of NKG2D, 2B4, NKG2C, NKp30, 

NKp44, or DNAM-1 (Fig. 25B and data not shown).  
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Figure 25. Lenalidomide differentially affects the expression of key NK receptors. 
PBMCs from normal healthy donors were treated with a 10uM lenalidomide or DMSO 
for 7 days and were then examined for the expression of several NK receptors. NK cells 
were gated based on their expression of CD56. NKR were then analyzed for their 
differential expression in the two NK subsets. Shown are: (A) CD16, NKp46, KIR2DL3, 
KIR2DL1 (B) NKG2D, 2B4, DNAM-1, Not shown: NKp30, NKp44, NKG2C. These 
data are representative of more than 10 independent experiments. 
 

Inhibition of AKT by lenalidomide results in down-modulation of NKp46. 

Len can affect multiple signaling pathways (our data not shown, and 286). Len can inhibit 

AKT activation as measured by phosphorylation levels (Fig. 26A). There is no difference 

in total AKT protein levels, or p85 levels, the catalytic subunit of PI-3K suggesting a 

specific inhibition of AKT activation (Fig. 26A). Further experiments to investigate the 

mechanism for NKp46 downregulation revealed that the PI-3K/AKT pathway in part 

regulates NKp46 expression as supported by chemical inhibition of PI-3K using 

wortmannin, which resulted in decreased expression of NKp46 (Fig. 26B). We also used 

a MEK inhibitor (U0126) to rule out the ERK pathway and as a negative control. To 
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substantiate these findings, we infected YT cells with vaccinia viral vectors expressing a 

constitutively active PI-3K (CAp110) or a dominant negative PI-3K (DNp110) and 

treated the cells with Len for four days. Cells expressing DNp110 had a considerable 

inhibition of NKp46 as anticipated based off our wortmannin experiment, while the 

active p110 restored expression and overcame any inhibitory effects of Len (Fig. 26C). 

Whether this pathway is also responsible for the alteration of other NK receptors remains 

unknown. 

 

 

Figure 26. Lenalidomide-induced down-modulation of NKp46 is partly mediated by 
PI-3K. (A) YT cells were treated with 5µM or 20µM of Len or DMSO for 1, 3, 5, or 7 
days and activation of AKT was measured by western blot using antibodies specific for 
phosphorylated serine 473 or threonine 308 (phospho threonine 308 shown). (B) 
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Wortmannin (PI-3K inhibitor) was added to YT cells at 0.2µM and 20nM for 4 days after 
which expression of NKp46 was measured by flow cytometry. The MEK inhibitor, 
U0126 was used as a negative control and DMSO was always used as a vehicle control. 
(C) YT cells were infected with vaccinia viral vectors expressing a CD56 irrelevant 
control, DNp110, or CAp110 and cells were treated with Len for 4 days. After which, 
cells were harvested and stained for NKp46 in order to measure percent inhibition of 
NKp46 expression ((% Inhibition= (%DMSO - %Len / % DMSO) X 100)). The CD56 
control group was done to establish the percent of NKp46 inhibition seen when treated 
with Len alone. Data are representative of 4 independent experiments. 
 

Lenalidomide has Differential Effects on NK Cytokine Production. NK cells 

are potent producers of several cytokines, which play a role in immune regulation, tumor 

destruction, and activation of the adaptive and innate arms of the immune system. 

Lenalidomide and its parent compound, thalidomide, are well known for their inhibitory 

effects on cytokine and growth factor production, especially IL-6 and TNF-a291, 304. 

Further, Len has differential effects on IFN-γ secretion depending the cell type studied 

and the context of the experiments334, 339, 344. Not surprisingly, we find that Len leads to a 

dramatic decrease in IL-6 and TNF-α production by NK cells, as well as IFN-γ. We find 

no major change in IL-2 secretion by NK cells when treated with Len (Fig. 27).  
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Figure 27. Modulation of NK cytokine production by lenalidomide. Human primary 
NK cells from healthy donors were FACS sorted based on the expression of CD56+CD3- 

and cultured with 10µM Len or DMSO for 1, 5, or 7 days in the presence of hrIL-2 
(100U/mL). Cell culture supernatants were harvested and measured for the secretion of 
IL-6, TNF-α, IFN-γ, and IL-2 using a cytometric bead array flow cytometric assay (BD 
Biosciences). Error bars represent the mean +/- SD of three independent experiments. 
Experiment is a representative of 5 different donors. 
 

Enhanced NK cytotoxicity is due to increased production of cytolytic 

mediators. Attractive immune modulating features of Len include its ability to co-

stimulate T cells340 and enhance NK cell mediated ADCC351, 354. We find that NK natural 

cytotoxicity is also enhanced against several tumor targets (Fig. 28) and this improved 

killing is associated with an increase in granule mobilization as measured by flow 

cytometric staining of CD107a (Fig. 29).  
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Figure 28. Natural cytotoxicity is enhanced by lenalidomide. Cytotoxicity of 3 
different tumor targets, 721.221, K562, and MDS-1, was measured after primary NK 
cells were cultured in the presence of 5µM or 20µM Len or DMSO for 7 days. NK 
effectors were tested at two different E:T ratios (5:1 and 10:1 as indicated on x-axis). 
Statistical analysis was performed using GraphPad Prism software. The statistical test 
used was a Student two-tailed t test. Results were considered significant when p<0.05 (* 
p< 0.05; ** p< 0.005; *** p< 0.0005).  
 

 

   

Figure 29. Lenalidomide treatment results in increased Granule mobilization upon 
tumor stimulation. Purified NK cells were cultured in 10µM lenalidomide or DMSO for 
7 days. NK cells were then co-incubated with 721.221 or K562 tumor targets at a 1:1 
ratio for 5 hours. Anti-CD107a antibody was added at the beginning of the culture; Golgi 
Stop and Golgi Plug (BD Biosciences) were added 30 minutes into the co-incubation. 
Cells were harvested and stained for expression of CD3-CD56+CD107a+. This is 
representative of at least 3 independent experiments.  
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Cytolysis is enhanced as well as granule mobilization, however, we see a disparity 

between the amount of killing and the increase in CD107a staining, with the killing being 

disproportionately higher than granule mobilization. This difference may be explained by 

the sensitivity of the two assays, but we argued that Len might also stimulate expression 

of perforin and/or granzyme B343. We found that upon treatment both mRNA and protein 

levels are increased (Fig. 30), which provides an explanation as to why we see such an 

enhancement in cytolysis. 

 

Figure 30. Lenalidomide upregulates the expression of cytolytic mediators in NK 
cells from healthy donors. (A) Primary NK cells from healthy donors were cultured in 
the presence of 10µM Len or DMSO for 7 days. mRNA expression of perforin and 
granzyme B was calculated by the ΔΔCt method where DMSO treated cells were the 
experimental control and the housekeeping gene GAPDH was the internal control. Error 
bars represent the mean +/- SD of three independent experiments. Statistical analysis was 
performed using GraphPad Prism software. The statistical test used was the Student’s 
two-tailed t test. Results were considered significant when p<0.05 (*** p< 0.0005). (B) 
Expression of perforin and granzyme B was measured by Western blot. Human primary 
NK cells from healthy donors were purified using the human NK negative enrichment kit 
(Stem Cell Technologies) and cultured with 10µM Len or DMSO  for 7 days in the 
presence of hrIL-2 (100U/mL). Whole cell equivalents of 750,000 cells were used. 
Whole cell lysates were prepared and Western blots performed for the indicated protein; 
blots were subsequently stripped and reprobed for actin as a loading control.  
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Lenalidomide combines with IL-2 and IL-15 and activates STAT5. Perforin 

expression is regulated by IL-2R signaling, and specifically STAT5 activation418. 

Considering this, we next asked if Len may also activate STAT5. We found that PBMCs 

treated with Len for 7 days have robust activation of STAT5 (Fig. 31A). This effect was 

augmented when the cells were treated with exogenous IL-2 (Fig 31A). It is known that 

Len can induce IL-2 production by T cells, so we reasoned that the increase in STAT5 

phosphorylation in PBMCs could in part be due to the presumed additional IL-2 in the 

culture. To address this, we sorted NK cells from healthy donors and treated with them 

with IL-2 and Len. Because IL-15 shares a common receptor with IL-2 and because it is a 

potent NK stimulating cytokine, we also checked the effect of IL-15 in combination with 

Len. We find that both IL-2 and IL-15 synergize with Len to activate STAT5 (Fig 31B).  

 

 

 
Figure 31. STAT5 activation in PBMC and primary NK from healthy donors. (A) 
PBMCs from healthy donors were treated with 10µM Len or DMSO for 7 days without 
additional cytokines or with 100U/mL of hrIL-2. (B) FACS sorted NK cells from healthy 
donors were treated with 10µM lenalidomide or DMSO for 7 days with 100U/mL IL-2 or 
10ng/mL IL-15. Whole cell lysates were prepared and Western blots performed for the 
indicated protein; blots were probed for actin and total STAT5 as loading controls. Whole 
cell equivalents of 750,000 cells were used. 
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IL-2Rβ  and IL-2Rγ  chains are upregulated upon treatment with 

lenalidomide. STAT proteins have multiple levels of regulation423. To investigate the 

mechanism by which Len results in a robust and sustained activation of STAT5 we 

considered our previous findings regarding Len’s role in the modulation of other 

receptors. We looked at the surface expression of IL-2Rβ and γc chains to determine 

whether increased surface expression of IL-2R could be a contributing factor to the 

enhanced STAT phosphorylation. We find that IL-2Rβ expression is mostly unaffected 

by treatment with Len and IL-2 combined, but quite dramatically increases with IL-15 

and Len (Fig. 32). Contrarily, IL-2Rγ expression appears to be mostly affected by Len 

when used in combination with IL-2, not IL-15 (Fig. 32). Others have also shown similar 

divergent effects of IL-2 and IL-15 cytokines on IL-2Rβ and γc subunit expression417. 
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Figure 32. Differential effects of Len on IL-2R subunits. PBMCs from healthy donors 
were treated with 10µM lenalidomide or DMSO for 7 days with 100U/mL of IL-2 or 
10ng/mL of IL-15. Cells were stained and gated based on their expression of CD3-CD56+ 
and then analyzed for IL-2 beta or gamma chains by flow cytometry. 

 

The effect of lenalidomide on NK cells: A Model. Based on our findings here, 

we propose that lenalidomide, by itself, or in combination with IL-2 or IL-15 can amplify 

and sustain STAT5 activation. This in turn results in increased expression of IL-2R 

subunits and a presumed positive feedback loop. The overall increase in IL-2R and 

sustained STAT5 activation leads to an upregulation of cytolytic mediators, perforin and 

granzyme B, and consequently, enhanced cytotoxicity (Fig. 33).  This model explains 

why we do not see an increase, or alteration in IFN-γ since NK cytokine production is 

largely mediated by the PI-3K and MAPK pathways424, which are actually decreased in 

our cells when treated with Len (data not shown).  

 

Figure 33. Proposed model of Len-mediated NK activation. Under normal conditions, 
IL-2 and IL-15 bind to the IL-2R and propagate signals to activate JAK3 and 
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subsequently, STAT5. Phosphorylated STAT5 homodimerizes and translocates into the 
nucleus where it regulates the transcription of many target genes involved in NK cell 
development, growth, survival, and activation. In the presence of lenalidomide, there is a 
sustained STAT5 activation and consequent upregulation of cytolytic mediators and 
importantly IL-2R, which in turn enhance cytolysis and contribute to a positive feedback 
loop maintaining NK activation, respectively. 
 

Discussion 

 Lenalidomide is a fascinating drug that possesses great potential to treat cancer 

and other immune-mediated diseases. There have been numerous studies on its efficacy 

in hematological as well as solid malignancies318, 351, 425-427. A major limitation, however, 

is that the target(s) and precise molecular mechanisms of lenalidomide remain unknown. 

We set out to gain a better understanding and perform a comprehensive study of how this 

drug impacts NK cells from healthy donors. Our goal is to identify possible treatments 

that may be combined with Len in effort to exploit its immune enhancing properties. We 

identified an important pathway that is activated by Len, especially when combined with 

IL-2 or IL-15. Specifically, we find that NK cells have improved natural cytotoxic 

function against several tumor targets and augmentation of killing is likely due to 

increases in perforin and granzyme B. In contrast to what we see with cytolysis, we do 

not find that NK cytokine pro-inflammatory cytokine production is increased. Upon 

treatment with Len, there is a robust and sustained activation of STAT5, which 

presumably functions to promote transcription of perforin and granzyme B and IL-2R 

subunits since we see a concomitant increase in IL-2Rβ and γc signaling chains. This is 

one of our proposed mechanisms of how NK cells when treated with Len and IL-2 or IL-

15 maintain their activation of STAT5.  
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Cytokines govern many immune functions and multiple levels of regulation are 

required in order to maintain a controlled state. There must also be tight regulation of the 

signaling that occurs downstream of cytokine receptors, such as with JAK-STAT 

signaling423. Here we did not investigate the many possible mechanisms of STAT5 

regulation, but in agreement with our data, Len has previously been linked to enhanced 

JAK-STAT signaling, not only in NK cells (here and428), but also in T cells428 and 

erythroid cells426. The unifying theme is that Len treatment results in hyperactive JAK-

STAT signaling and does so by inhibiting different negative regulators of this pathway. 

For example, Len can inhibit CD45 in T cells and erythroid cells, which results in T cell 

activation and improved Ag-specific responses, and rescued erythropoietic 

differentiation, respectively343, 429. CD45, a protein tyrosine phosphatase (PTP), is highly 

expressed in the hematopoietic compartment and is a negative regulator of JAK 

activation430. Early studies showed that MDS patients have impaired erythropoietin 

(Epo)-induced STAT5 signaling431, which is restored upon treatment with Len406, 429, 432. 

Most recently, Len was shown to improve functional responses of anergic T cells in MDS 

patients and restore T cell subset homeostasis433. Interestingly, the patients that had 

erythropoietic responses also had desired T cell responses, suggesting a shared 

mechanism of Len between these two cell types. Whether CD45 inhibition and activation 

of the JAK-STAT pathway was responsible for these effects was not investigated or 

mentioned433. Further, CD45-/- mice have markedly increased NK cell numbers and when 

CD45-null NK cells are stimulated with IL-2 they exhibit significantly higher killing 

compared to CD45+/+ NK cells434. Whether CD45 is also inhibited in our studies was not 

investigated however.  
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Another mechanism of Len-rescued STAT5 signaling was recently demonstrated. 

This group showed that Len treatment resulted in decreased expression of SOCS1, also a 

negative regulator of JAK-STAT signaling 428. Importantly, downregulation of SOCS1 

correlated with response to Len and immune enhancement against MM cells428. 

Collectively, these studies offer a strong linkage between Len and JAK-STAT signaling. 

A question, however, remains as to how Len regulates this pathway.  

Recently it has been shown that thalidomide and lenalidomide can bind to and 

inhibit cereblon, an E3 ligase332. It has also been shown that STATs and JAKs are 

regulated by ubiquitin modification and E3 ligases423. In line with this, it would be 

exciting to know whether this could be a mechanism in NK cells when treated with Len. 

The role, if any, of cereblon in NK cells is unknown. This protein is best studied in the 

central nervous system where it is connected to mild mental retardation360, 362. Cereblon is 

also required for normal myeloid cell growth and survival and deletion of the protein is 

toxic to this cell compartment333. This latter finding is what links Len to the severe 

myelosuppression seen in the majority of patients. Inhibition of an ubiquitin ligase could 

explain the multitude of effects observed with treatment of IMiDs, but inhibition of 

CRBN may not provide the answer alone. Thalidomide binds the C-terminus of CRBN at 

104 amino acids, which is the most highly conserved region of the protein332. 

Investigation into whether other E3 ligase complex subunits share this sequence 

similarity would provide insight into whether or not thalidomide or Len have the 

potential to inhibit other E3 ligases. Proteosome-mediated protein degradation is an 

important mechanism of removing unnecessary or damaged proteins. Moreover, this 

process is essential for cell cycle, growth survival, and differentiation. Assessment of 
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cereblon protein expression in NK cells and then subsequent deletion (by siRNA for 

example) in the presence of Len would provide valuable information into whether this 

protein is also responsible for the observed effects in NK cells. 

When PBMC are treated with Len in the absence of cytokines for long term (14 

days), there is substantial cell death. Addition of IL-2 is capable of restoring this to some 

degree, however, IL-15 results in a much more pronounced effect, suggesting this 

cytokine in combination with Len may restore some of the cytopenias seen with 

lenalidomide monotherapy. Moreover, although IL-2 has been used for immunotherapy, 

there have been variable degrees of success191, 435. IL-15 is absolutely required for NK 

development, while IL-2 is indispensible414, 421, 436. Moreover, IL-15 induces proliferation 

of CD8+ memory T cells, CD4+ T cells and B cells414, 420, 421. There have been numerous 

in studies using IL-15 to augment immune function to eliminate tumors437-442 and 

reviewed here442. There are also several ongoing clinical trials using IL-15 in order to 

activate NK and CTLs to fight different cancers (clinicaltrials.gov; search “IL-15”). Our 

findings suggest that IL-15 and Len may synergize to activate the immune system and 

provide another potential use for lenalidomide in the treatment of malignancies.  

 

Materials and Methods 

 

Cells and reagents. The human NK cell line, YT, was a kind gift from Eric Long. 

YT cells were maintained in RPMI 1640 plus 12.5% fetal bovine serum (FBS) and 1% 

pen-strep and L-glutamine. K562, 721.221, and MDS-1 target cells were maintained in 

RPMI supplemented with 10%  FBS and 1% pen-strep and L-glutamine. PBMC were 
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obtained from buffy coats from healthy donors (Florida Blood Services). All cells were 

grown in a humidified 37C incubator, 5% CO2. PBMCs were isolated by Ficoll-plaque 

plus density gradient per manufactures instructions (GE Healthcare). In the experiments 

where only NK were used, NK cells were either FACs sorted (viable CD56+ CD3- cells) 

using a FACS Aria cell sorter (BD Biosciences) or enriched using a negative NK cell 

enrichment kit from Stem Cell Technologies. Purity was ≥95% (data not shown). PBMCs 

and NK cells were cultured in RPMI 1640 supplemented with 10% FBS and the 

following: 1mM HEPES, 50µM β2 mercaptoethanol and 1% of the following: non 

essential amino acids (Gibco), sodium pyruvate (Gibco), pen-strep (Gibco) and L-

glutamine (Gibco). Recombinant human IL-2 was added at 100U/mL and recombinant 

human IL-15 (R&D Systems) was added at 10ng/mL, where indicated. Lenalidomide was 

obtained from Colene and was kindly provided by the laboratory of Dr. Alan List. 

Lenalidomide was dissolved in DMSO at a 10mM concentration and further diluted to 

working concentrations in warm media before adding to cells. Len was added every day 

or every other day. DMSO was added at an equal volume in all experiments.  

 

Cell cycle and apoptosis. Cells were washed twice in 1X PBS before performing 

experiments. For cell cycle, 7.5e5 cells were resuspended in 500µL ice cold PBS. Cells 

were pipetted well and vortexed gently to promote a single cell suspension. 1.5mL of ice 

cold 100% ethanol was added while gently vortexing cells. Cells were fixed overnight at 

-20C. The next day, or up to 1 week later, the cells were washed twice in 1X PBS and 

resuspended in a mixture containing propidium iodine (1mg/mL), RNAse (10mg/mL) 

and PBS. Staining took place in the dark at room temp for 2-3 hours or overnight at 4C. 
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Cells were acquired on a FACs Calibur (BD Biosciences) and analyzed using Modfit 

Software using manual analysis (Verity Software House). To measure apoptosis, cells 

were stained with Annexin V FITC and PI in Annexin V Binding Buffer (BD 

Biosciences) according to manufacture’s instructions. Cells were acquired on a FACS 

Calibur and data was analyzed using FlowJo software (TreeStar).  

 

Proliferation and CFSE. YT cells treated with indicated concentrations of 

lenalidomide +/- IL-2 were cultured in a 96-well U bottom plates (Corning Life Sciences, 

Acton, MA) for 1, 3, 5, or 7 days. After the final day of culture, proliferation of YT cells 

was determined by quantifying overnight incorporation of [3H] thymidine (1.0 µCi per 

well; MP Biomedicals, Irvine, CA). Results are expressed as the mean counts per minute 

(cpm) of triplicate wells plus or minus the SD. For primary NK cell proliferation using 

CFSE, sorted NK cells were treated with CFSE (Invitrogen) per manufacture’s 

instructions and cultured for 1, 5, or 7 days in the presence of 10uM lenalidomide. 

Proliferation was measured by acquisition of cells on the LSRII. 

  

 

Flow cytometry of human NK receptors. Prior to antibody staining, cells were counted 

and washed in 1X PBS. Antibodies were added in FACs buffer, which consisted of 1mM 

HEPES and 3% bovine serum albumin (BSA) in 1X PBS. Human IgG was co-incubated 

with the samples for 10 min on ice to block Fc receptors. The following antibodies were 

obtained from BD Biosciences: CD3 FITC or PE, CD16 FITC, NKG2D PE, NKp44 PE 

and NKp30 PE, IL-2Rgamma PE and IL-2R beta PerCP eFluor 750, CD107a PE or 
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PECy7, and IFN-g APC or eFluor 450. The following antibodies were obtained from 

ebioscience: CD56 APC or FITC, 2B4 PE, DNAM-1 APC; and R&D Systems: NKp46 

PE, KIR2DL1 FITC and KIR2DL3 FITC. Viable cells were gated using 7AAD (BD 

Bioscience) or DAPI. Samples were acquired on the Calibur or the LSRII and data was 

analyzed using FlowJo software (TreeStar). 

 

Chromium release assays. Cytolysis of K562, 721.221, and MDS-1 targets was 

measured in a standard 5-h 51Cr release assay. Briefly, on day 7 of NK culture, target 

cells were loaded with 100 µCi of  51Cr per106 cells for 60 min at 37°C. The target and 

NK (effector) cells were then incubated together in a sterile U bottom 96 well plate at 

37°C for 5 h The total volume in each well was 200µL. After the 5 h incubation, 100µL 

of supernatant was collected and measured for radioactivity on a gamma counter (Wizard 

1470; PerkinElmer). Statistics were calculated with GraphPad Prism software (GraphPad 

Software, La Jolla, CA) using the Student two-tailed t test.  

 

Cytokine production. Culture supernatants from PBMC or NK cultures were 

saved and stored at -80C until use. Cytokines were measured using cytometric bead array 

(BD Biosciences) and flow cytometry. IL-6, TNF-α, IFN-γ, and IL-2 were measured. 

 

Western blotting. Cells were harvested, washed in ice cold 1X PBS, and lysed 

for 30 min on ice in a modified TNE buffer consisting of 50 mM Tris-HCl, 1% Nonidet 

P-40, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 mM NaOV, 1 mM NaF, and protease 

inhibitor cocktails I and II (Sigma and Pierce). Protein lysates were quantified using the 
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Bradford protein assay and a spectrophotometer. Alternatively, cell equivalents for 

DMSO and Len treated lysates were resolved on a 10-12% Tris Acrylamide gel and 

transferred to a PVDF membrane (BioRad). Blots were blocked with 5% nonfat milk- in 

a Tris Buffered Salt (TBS) and 0.05% Tween 20 (sigma). Primary Abs were used at 

varying concentrations: Perforin and Granzyme B 1:500 (Santa Cruz Biotechnology); 

Total and phospho STAT5 1:2500 (Cell Signaling); Actin 1:5000 (Sigma). The 

appropriate anti-IgG HRP secondary was used and resolved with the West Pico HRP 

detection system (Pierce). 

 

RNA isolation, cDNA synthesis, and Real Time PCR. Cells were harvested, 

centrifuged, and resuspended in Trizol Reagent (Sigma). RNA was isolated per 

manufacture’s instructions. Alternatively, RNA was isolated using the RNeasy kit 

(Qiagen). RNA concentration was measured using a Nanodrop Spectrophotometer 

(ThermoScientific) and 1µg RNA was used for reverse transcription (RT) (iScript cDNA 

synthesis kit, BioRad). A “no RT” control was used for all experiments to confirm the 

absence of DNA contamination. After reverse transcription, 1µL of cDNA was used for 

each reaction during quantitative real-time RT-PCR (IQ SYBR Green Supermix, 

BioRad). All samples were done in triplicate and reactions were conducted in a 96-well 

spectrofluorometric thermal cycler (CFX96 realtime sytem, BioRad). Fluorescence was 

monitored during every PCR cycle at the annealing step. The PCR conditions were as 

follows: 95°C for 3 min followed by 40 cycles of 95°C, 15 s; 60°C–62°C, 30 s and 95°C, 

1 min. A melting curve was added to every run for quality assessment starting at 55°C 

and ramping at 0.5°C for 80 repeats. All genes were analyzed through the 2-ΔΔCt method 
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following previously described calculations443. The following primers were used: 

Perforin forward 5’CAGCACTGACACGGTGGAGT 3’ ; Perforin Reverse- 

5’GTCAGGGTGCAGCGGG 3’; Granzyme B forward- 5’ 

TCCTAAGAACTTCTCCAACGACATC 3’ ; Granzyme B reverse- 5’ 

GCACAGCTCTGGTCCGCT 3’ ; Actin forward- 5’ TGGCACCCAGCACAATGAA-3’; 

Actin reverse- 5’ CTAAGTCATAGTCCGCCTAGAAGCA3’. 
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