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ABSTRACT

A parametric model and a query language ParaSQL for temporal databases has been pto-

posed in the past. As the attribute values in the model can vary in length, it is difficult to use

existing relational storage technology. To address this, CanStoreX, our XML-based storage

technology has been deployed in a prior implementation. In parallel, the storage technology as

well as our style of implementation for database prototypes have gone through an evolution.

This has necessitated the previous implementation to be revisited. In addition, a new parser

has been developed using JavaCC. Furthermore, a larger subset of ParaSQL has been imle-

mented. For testing, a utility to generate synthetic temporal relations has been developed.

Conforming to the new style, the present implementation has been encapsulated in terms of

high level commands. This allows end-users to system developers on one hand and various

database protototypes on the other, to interact with a central storage system from a common

GUI that facilitates execution of batches of commands. Our implementation has helped to

identify pragmatic issues in temporal database implementation as well as as the storage tech-

nology more clearly. 
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1. Introduction 

Conventional databases are only capable of storing and querying the current perception of

reality and relationship among objects, such database systems exclude old data values when

the data is updated. Unlike conventional databases, a temporal database is capable of storing

evolution of data, thereby allowing users to examine complete object histories.

Temporal databases are one of the active research areas in the database community and tre-

mendous research work has been done by many researchers. Applications of temporal data-

bases include organizational record-keeping, economics, and scientific applications.

In the temporal database literature, we can find three types of timestamps – instants, inter-

vals, and temporal elements. A temporal element is a finite union of intervals [20, 22]. Based

on timestamps, temporal data models are termed point-based models, interval-based models,

and temporal-element based models, respectively. An interval is obviously a temporal ele-

ment. An instant can be thought of as a closed interval with the same end-points. Therefore, an

instant of time can also be considered a temporal element. Thus a temporal element general-

izes all the three data types for time. 

 In our implementation, we are concerned with developing a temporal database system

based on the Parametric model which assumes the presence of a hypothetical underlying

space called the Parametric Space. The parametric data model defines attribute values as func-

tions over the parametric space. This leads to a one-to-one correspondence between an object

in the real world and a tuple in the database. Such one-to-one correspondence between an

object and a tuple can avoid self-joins which are inevitable in temporal data models where

temporal elements are not used as exclusive use of intervals and instants fragment an object

into multiple tuples. Although at the model level the use of temporal elements gives rise to a

natural framework for users, implementation becomes more challenging because of variable

size of attribute values. Whereas with intervals and instant time stamps several tuples would

reside on a page on the disk, when temporal elements are used tuples would vary in length

from several tuples fitting in a page to a tuple spanning several pages. In particular, it is diffi-

cult to adapt the parametric temporal data model within relational database storage technology

that is deployed commonly in interval and point based models. 
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In order to meet the implementation challenge, we use XML and our own XML-based stor-

age technology called CanStoreX (Canonical Storage for XML). CanStoreX is capable of pag-

inating large XML data in order to store them in pages on the disk. Once the data is stored in a

binary paginated form as tree, it is processed using CsxDOM, which is our version of the clas-

sical DOM API. In addition for storing data that is possibly very large in size, we make other

interesting uses of XML Many artifacts, such as parse trees (also called abstract syntax tree)

and expression trees are also represented in XML, which are human readable and more reli-

able by removing the reliance on traditional linked list-based binary structures that are acces-

sible only when some module implemented in some specific programming language is being

executed. These XML documents are small and we use the usual text-based representation as

ordinary files in the operating system and use a conventional DOM API. In addition, we use

XML for representing many configurations, catalogs, and complex parameter passing. 

Several query languages exist that can be used to query temporal databases. One such query

language, ParaSQL which is based on the parametric model is used in our approach. The way

in which a natural language query is expressed varies significantly from one query language

to another. ParaSQL has three types of expressions: relational expressions, domain expres-

sions, and boolean expressions that, when evaluated, result into relations, temporal elements,

and boolean values True and False. There three types of expressions are mutually recursive

and natural to use. For example, the help realize what appear to be selection in a natural lan-

guage as a selection in a ParaSQL rather than requiring joins as in other language – thereby

leading to convoluted expressions. 

It is interesting to note that in the parametric model the boundary between those queries that

can and those that cannot be expressed in classical framework is very clear. The two kinds of

are called weak and strong (meaning non weak) queries, respectively. It turns out that the clas-

sical boolean expressions map directly to domain expressions in ParaSQL. The classical que-

ries are absorbed by relational and domain expressions in our model. Clearly, this implies that

the relational and domain expressions in ParaSQL are weak. The boolean expression in

ParaSQL, however, have no counterpart in the classical framework. Therefore, the queries

involving boolean expressions in ParaSQL are strong. We describe these concepts in detail

later on. In the rest of this section we present an outline of the work undertaken, putting it in

the context of existing work. 
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A prior implementation of a temporal database system on the Parametric model using Can-

StoreX as the storage was undertaken by Seo-Young Noh. CanStoreX pagination requires

every page to be a self-contained XML document on its own right. In an early version of Can-

StoreX although the interpage navigation was in terms of binary pointers, the pages them-

selves were stored in text format and traditional DOM API was used for internal navigation

with in pages. This is the version used by Noh in his implementation. Because pages were

binary objects their instreaming beyond one GByte caused serous problems. Later on the

pages were also implemented as trees in a binary format. Also, the prior implementation was a

stand-alone system, having its own storage and buffer managers as well as a customized

graphical interface. The GUI consisted of consisted of text boxes and buttons with very spe-

cific functionality for stepping through the life-cycle of a single query, from creation of

expression tree to its execution. In the recent past, our style of implementing database proto-

types has also gone through some evolution leading to CyDIW, the Cyclone Database Imple-

mentation Workbench. CyDIW enables unified handling of multiple database subsystems.

Subsystems can be existing database systems such as various SQL-platforms such as Oracle

as well database prototypes under development. In order to facilitate database development a

storage consisting of a heap of pages, the storage manager, and buffer manager are available.

Rudimentary file system and file services are available to client modules. In addition Can-

StoreX technology that includes pagination utility to store XML documents in binary format

and consume them vis csxDOM are available. A simple, yet powerful integrated GUI has also

been developed that is used for interacting will all database subsystems. The integrated GUI is

command based and executes batches of commands for every registered database subsystem. 

To conform to the above mentioned changes in CyDIW the previous implementation has

been revised in several respects. The temporal database system now uses the binary version of

CanStoreX. Also, the common storage and buffer managers are used. Following our new style

of implementation, the system is encapsulated in terms of commands. In order to port our new

implementation to use the binary version of CanStoreX, we have re-written the execution

engine to interact directly with the new CanStoreX engine. Also, to integrate our system with

the CyDIW, we have developed a suite of commands and a command parser specifically

designed for our system.
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Noh implemented a parser manually using SJM. In our group we use the highly popular

JavaCC for our parsing needs. Therefore, we have implemented a new parser in using

JavaCC. In addition, we have implemented some additional language constructs of ParaSQL. 

For testing generation of synthetic datasets was undertaken. The previous version available

to us generated relations with fixed amount of variability where all tuples would have the

same variability and length. The new implementation is more versatile. The desired details for

generation of data can be included in the XML-based database catalog. 

The organization of the rest of this thesis is as follows. Chapter 2 briefly describes some of

the related work in temporal databases. Chapter 3 and 4 describe the Parametric Model and

Parametric SQL respectively. Chapter 5 briefly discusses the XML based storage system and

the pagination technique. Chapter 6 provides details of our implementation spanning from

generation of test data to revamping the ParaSQL parser to re-writing the query execution

engine. Integration of our temporal database system with CyDIW in terms of a suite of com-

mands, specifically designed for our system, is described. Chapter 7 summarizes our findings

and Chapter 8 describes further work that can be done to extend our system.
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2.  Related Work 

Several approaches have been developed to represent time in databases. These include point

based [2] and the interval based [2] approached on one hand and the parametric approach on

the other, which represents domain of an object as a temporal element consisting of a finite

union of time intervals. 

TSQL2 [18] and IXQL[38] are examples of works that use interval timestamps. Temporal

element based representation has been used in ParaSQL [20]. Tinsel's model also uses tempo-

ral elements, but the attribute values are not explicitly formalized as functions NTC [39].

They use nesting within attribute values to describe variation in values over time. Comparison

of the different approaches toward utilizing XML in parametric model for temporal data have

been done by Noh et. al. in [8] and [24]. 

There has been a significant growth in the usage of XML to model databases. Several XML

databases systems exist today which include Xindice[40] and eXist[41]. In these works XML

is used to model the temporal data at logical level itself as well as for storing the temporal data

at the physical level. In other words users as well as the system think in terms of XML. In the

parametric approach XML is used only at physical level to store and access data [7]. In other

words XML plays no role in the queries expressed by end users who are oblivious to the role

of XML at the physical level. These issues are clarified in [25], where it is argued that use of

XML in modeling the variability arising in time dimension offers little advantage to users. 

More recently, [37] discusses the general algorithmic approaches to answering similarity

queries on spatial, spatiotemporal and temporal databases. [42] discusses the differences

between abstract (theoretical languages such as relational algebra) and concrete temporal

query languages (for example that are SQL-based). [43] proposes an event based approach to

modeling spatiotemporal data. [44] propose a unique theoretical annotated temporal algebra

which is convenient for specifying how algebraic operations should behave. 
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3. Parametric model 

Parametric data model uses temporal element based, explicit time domain, and attribute

level time-stamping. The main objective of the parametric data model is to obtain a query lan-

guage that is most natural in favor of users. 

To further delve into the details of the parametric model, let us consider a Personnel data-

base is shown in Figure 1 as a running example. The Emp relation lists the employees in an

organization. Name serves as the key and the relation lists the Salary and DName (department

name) attributes. Dept relation consists of DName and MName attributes that are names of the

department and the manager, respectively with DName as its key. The Personnel database

consists of the Emp and Dept relation, we note that alternatively MName can be chosen as the

key of the information in the Dept relation. Thus an alternative to Dept is Manager relation,

also shown in Figure 1. Whereas Dept relation represents the history of departments, the Man-

ager relation represents the history of Managers. The information in thethe relation is inter-

twined; the snapshots of Dept and Manager at some given time t is the same.   

3.1. Temporal elements 

The parametric model [29] assumes that there is a universe of time that consists of an inter-

val [0,NOW] and for the sake of simplicity we assume that to be equal to the set

{0,1,…,NOW}. A temporal element, introduced in [20,22], is defined to be a finite union of

intervals. As is clear from the definition, a single interval is also a temporal element and so is

an instant t as this instant can be identified as the interval [t, t]. 

The set of all temporal elements is closed under union, intersection, and complementation

(∪, ∩ and −, respectively). The complementation is computed with respect to [0,NOW]. The

set of temporal elements along with ∪, ∩, −, ∅ and [0,NOW] is obviously a Boolean algebra. 

3.2. Attribute Values 

To capture changing value of an attribute we define a temporal value of an attribute A to be

a function from a temporal element into the domain of A [22]. For example, the salary might

change from 50,000 in [0,10] to 65,000 in [11,25].   
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3.3. Associative navigation op −comparisons

Our counterpart to the construct A op B of the relational model is [[A op B]], which captures

the time when A is in op-relationship with B [30]. 

[[A op B]] = {t : A(t) op B(t) is True}. 

We also allow the construct [[A op b]] where b is a constant, which is evaluated by identify-

ing the constant b with the constant function [0,NOW] b. 

For example the temporal element during which Salary was equal to 50,000 is represented

as [[Salary=50000]], which in this case evaluates to [0,10]. Another example is [[ ([25,32]

Toys, [33,NOW] Shoes) = ([0,NOW] Shoes) ]] = [33,NOW].

Emp Relation

Dept Relation 

Manager Relation as an alternative to Dept relation 

Figure 1. Personnel database

Name Salary DName

[11,60]               John [11,49] 50K 
[50,54] 55K 
[55,60] 60K 

[11,44]∪[55,60]    R&D 
[45,54]                  Test 

[0,20]∪ [41,51] Tom [0,20] 45K 
[41,51] 50K

[0,20]                    Test 
[41,51]                  Sales 

DName MName

[0,50]∪[71,NOW]       R&D [0,50]         Kim
[71,NOW]  Lee

[11,NOW]                    Test [11,44]        Leu
[45,NOW]  Inga

[45,NOW]                    Sales [45,NOW]  Leu

DName MName

[0,50]          R&D [0,50]            Kim
[71,NOW]  R&D [71,NOW]     Lee
[11,44]        Test
[45,NOW]  Sales

[11,NOW]     Leu

[45,NOW]  Test [45,NOW]     Inga
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3.4. Tuples and relations 

Informally a tuple or a record is said to be a concatenation of attribute values. The first row

in the Emp relation shown in Figure 1 is an example of a tuple. It consists of the salary history

and the department history group together by the key which in this case happens to be the

name of the employee. If we assume that all the temporal values in a tuple have the same

domain, then it is called a homogeneous tuple [22]. 

Relations are defined as a set of temporal tuples [28]. It has to be noted that not every set of

tuples is a relation. This is because, a relation is always defined together with a key. 

<Relation name="Emp">
 …

<tuple>
  <attribute name="Name">
   <value> John
    <pdom><dunit start="11" end="60"/></pdom>
   </value>
  </attribute>
  <attribute name="Salary">
   <value> 50K
    <pdom><dunit start="11" end="49"/></pdom>
   </value>
   <value> 55K
    <pdom><dunit start="50" end="54"/></pdom>
   </value>
  <value> 60K
    <pdom><dunit start="55" end="60"/></pdom>
   </value>
  </attribute>
  <attribute name="DName">
   <value> R&D
    <pdom> <dunit start="11" end="44"/>
          <dunit start="55" end="60"/>

</pdom>
   </value>
   <value> Test
    <pdom><dunit start="45" end="54"/></pdom>
   </value>
  </attribute>
  <pdom><dunit start="11" end="60"/></pdom>
 </tuple>
…
</Relation>

Figure 2. XML representation of Emp relation 
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3.5. XML-based physical representation 

Following [7], the XML representation of the Emp relation is shown in Figure 2. Only a

snapshot of the xml file is shown in the figure. This file actually contains all the tuples from

the relation. The <tuple> tag encodes a tuple in the relation. The <attribute> encodes an attri-

bute value that is broken into atomic values included in the <value> element together with its

temporal domain <pdom> consists is a temporal element. The temporal element consists of

several intervals with their start and end points described in the <dunit> elements. 
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4. Parametric SQL 

Parametric SQL consists of relational, domain, and boolean expressions [19]. These expres-

sions evaluate to relations, temporal elements, and boolean values (True and False), respec-

tively. We explain each of these in detail in this section.The simplified BNF of Relational,

Domain and Boolean expressions in the parametric model is shown in Figure 1. 

4.1. Relational Expressions 

Relational expressions are the syntactic counterpart of temporal relations. A relational

expression returns a relation that is a set of temporal tuples. They include union, difference,

restructuring, projection, selection and natural Join. These are defined in detail in [27]. In this

thesis we do not consider union and difference operators. We only consider the SQL-style

select operator which absorbs the selection, projection, and join (SPJ) operators as well as the

restructuring operator. The restructuring operator, discussed later on, allows one to apply a

different key to a relation. 

4.2. Domain Expressions 

 Domain expressions are the syntactic counterpart of temporal elements [27]. They are

formed using temporal elements, [[e]], [[A]], [[A op B]], [[A op b]], ∪,  ∩, and −. Here e is a rela-

tional expression. It has to be noted here that a domain expression could contain a relational

expression as described in its BNF. This gives us the ability to nest one query inside another.

Detailed explanation of relational expression and domain expressions can be found in [23]. . 

4.3. Boolean Expressions 

Boolean expressions are formed by μ⊆ ν where μ and ν are domain expressions. More com-

plicated Boolean expressions can be formed using “and, “or”, and “not”. Any Boolean expres-

sion evaluates to True or False. This is the condition that is used to qualify tuples before they

are restricted and projected. 

As shown in the BNF of the select statement, we see that the where clause takes a Boolean

expression as input, evaluates the result and hence either qualifies or disqualifies a tuple based

on the result. 
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<expression>::= 
<relational expression> | 
<domain expression> | 
<boolean expression> 

<relational expression>:== stored_relation> | 
 <relational expression> union <relational expression> | 
 <relational expression> difference <relational expression> | 
select <attribute list> 
[restricted To <domain expression>] 
from <relation list> 
[where <boolean expression>] 

<domain expression> ::= 
<temporal element> 
[[<attribute>]] | 
[[<attribute> op <attribute>]] | 
[[<attribute> op <value>]] | 
[[<value> op <value>]] | 
[[<relational expression>]] | 
(<domain expression>) union <domain expression | 
(<domain expression>) intersection <domain expression | 
(<domain expression>) minus <domain expression | 

<boolean expression> ::= 
True | 
False |
<atomic boolean expression> | 
(<boolean expression>) and <boolean expression | 
<boolean expression> or <boolean expression> | 
not <boolean expression> 

<atomic boolean expression> ::= 
<domain expression><set op><domain expression> | 
<attribute> <op> <attribute> | 
<attribute> <op> <value> | 
<function> <op> <value> | 
<function_identifier> ( <domain expression> ) <op> <value> 

<set op> ::= 
subset | 
superset | 
equal to | 
not equal to 

Figure 3. BNF for expressions in ParaSQL 
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 Our implementation includes a rule that helps apply a function to a domain expression and

comparing the resulting value with another value. 

Example 1.  To illustrate the select statement, let us consider a simple query shown below:

select e.Name, e.Salary 
restricted to [[e.DName=’Toys’]]
from Emp e
where NOW ⊆ [[e]];

The query aims to find the name and salary of those employees who currently work in the

Toys department. The where clause here contains the condition NOW ⊆ [[e]] that verifies that

the employee is currently working. The restricted to clause limits the information to be

retrieved for such employees to the time when they worked in Toys. 

Example 2.  Now, consider the two queries written in ParaSQL 

select e.Salary 
from Emp e 
where e.Dept='Sales'; //--Q1 

select e.Salary 
restricted to [[e.Dept='Sales']] 
from Emp e; //--Q2 

Let’s consider Q1. As shown here, it is not required to have a restriction clause in all queries

in ParaSQL. This query aims to retrieve all the salary details of the employees who have

worked sometime in the Sales department. Note that e.Dept='Sales' is simply a short hand for

“[[e.Dept='Sales']] != emptySet” Therefore all the tuples will be scanned and from those that

have worked in the Sales department, the Salary details will be retrieved. Tuples that have

never worked in Sales will be deleted. 

 Now consider the query Q2. Here the where condition is absent. This query aims to find the

salary details only during the time the employee worked in the Sales department. Therefore all

the tuples will be scanned the salary details will be restricted to the time when an employee

worked in the Sales department. Obviously, the salary details of an employee who has never

worked in the Sales department will not be fetched. The difference between the two queries is

that the first one will retrieve the entire salary history whereas the second will retrieve salary

history only during the employee worked in Sales. 
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4.4. Weak Equality

To show the significance of where clause, we have to discuss the concept of weak equality.

[22] defines two relations r and s to be weakly equal if at every instant t, the snapshots of r and

s at t are equal. The parametric approach injects the classical concepts into a temporal data-

base through snapshots of that database. Such concepts, in the context of temporal databases

are termed weak. The weak equality between two relations means that the two relations have

the same snapshots. An example of a weak identity is r ∪ s = s ∪ r. It turns out that all notions

in temporal databases are not weak. For the sake of emphasis, the notions that are not weak

are termed strong [36]. 

The snapshot of relation r at time instant t is the relation obtained by restricting each tuple

of the relation r to t. For example, consider our Dept relation shown earlier. If we restrict each

of the tuples in that relation to NOW, then we get a snapshot of the Dept relation at time

instant t = NOW. This relation is shown in Figure 4 

To illustrate the concept of weak equality, we restructure the Dept relation by changing the

key of the relation from Dept to MName. This relation is called Manager which is also shown

in Figure 1. 

4.5. Weak Operators 

A unary relational operator O is said to be weak if O(r1) is weakly equal to O(r2) whenever

r1 is weakly equal to r2. Similarly, a binary relational operator O is said to be weak if O(r1, s1)

is weakly equal to O(r2, s2) whenever r1 is weakly equal to r2 and s1 is weakly equal to

s2 [5,27].

Figure 4. Snapshot of the Dept Relation at NOW

DName MName 

NOW R&D NOW Lee 
NOW Test NOW Inga 
NOW Sales NOW Leu 
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Example 3.  Consider the two queries written in ParaSQL. 
select D.MName 
from Dept D 
where [11,60] ⊆ [[D.MName]];  //--Q3 

select M.MName 
from Manager M 
where [11,60] ⊆ [[M.MName]];  //--Q4 

The grammatical structures of the two queries are identical. The only difference is that the

former selects the names of the manager from the Dept relation such that the interval [11,60]

is contained in the domain of MName and the latter does the same for Manager relation. This

translates to list all the managers that managed between [11,60] in plain English. For the state

of the database as in Figure 1, the query Q3 will return an empty relation while the query Q4

will return one tuple matching the name of 'Leu'. We know that the two relations Dept and

Manager are weakly equal to each other but the result that we get from running the queries Q3

and Q4 are not equal. This means that the where clause is strong. The implication of this is the

queries Q3 and Q4 cannot be expressed in classical SQL. The where clause separates weak

and strong queries. In general, queries that do not involve the where clause are weak and those

that do include a where clause are strong. The separation between weak and strong concepts is

clear in the parametric model. 
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5. Existing database implementation technologies 

In this section we give a brief introduction to CanStoreX (Canonical Storage for XML) and

the pagination algorithm used to store our relations. In the temporal database prototype tem-

poral relations are stored as XML documents using CanStoreX pagination technology. The

query language is implemented by processing the paginated document using CsxDOM, the

DOM API for the paginated XML document in CanStoreX. 

XML [46] is a simple, natural but powerful language to describe data and metadata. An

XML document can be viewed as a rooted tree with nodes having a varying number of

ordered child nodes. Recursively, child nodes can be trees of varying size and complexity as

XML elements on their own right. XML is capable of representing relational and objected-ori-

ented data, scientific data, documents such as this thesis, web content, and metadata.

 Traditionally, there have been two important APIs for XML. These are SAX and DOM

API. SAX is a parser that scans a documents as a text stream from beginning to end linearly

and as events are detected, actions pre-specified by the user are taken. DOM API on the other

hand is quite powerful and recognizes the hierarchical nature of XML. It allows traversal from

a node to its parent, siblings and children and is a versatile tool for processing XML docu-

ments. 

5.1. Storage System

A general purpose computer system consists of a CPU (Central Processing Unit), main

memory and a disk. When information residing on the disk is to be processed by the CPU, it

has to be first brought into the main memory in order for CPU to access it. A page size is cho-

sen and used as a unit of transfer between main memory and disk. A page once read in main

memory, should be large enough to keep CPU busy until it is ready to handle the data on the

next page. Page sizes in a given environment are typically fixed. 

In many applications, a page may be large enough to hold several logical units of informa-

tion called records. This is a standard situation in relational databases where logical records

are typically much smaller than a page. In other applications, logical units of information such
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as records could be larger than pages. For example a tuple in temporal database may not only

not fit in a page, it may span several pages. 

The place where a page is stored in main memory for processing is called a buffer. Thus the

size of a buffer is same as that of the page. A buffer is a window in main memory to the disk.

Typically, a system sets a certain amount of memory aside for buffers called buffer space, buf-

fer pool or cache. 

Since main memory is small and more expensive relative to the disk, the buffer space is a

premium resource. Buffers have to be managed wisely for obtaining a good performance and

the objective is to reduce the number of disk accesses that is often the bottleneck when pro-

cessing large amounts of information. This gives rise to the need for a buffer manager whose

job is to manage buffer space wisely. 

5.2. CanStoreX 

CanStoreX (a Canonical Storage for XML) paginates an XML document into pages [45].

An interesting characteristic of CanStoreX is that each page itself is organized as an XML

document on its own right. The page-based organization of the document directly mimics the

hierarchical structure of the original document. Figure 5 shows the basic idea behind pagina-

tion. Figure 5(a) shows an XML document where the root has a variable number of children.

The child trees are XML elements on their own right and vary in complexity and physical

size. Recursively the base case is when the whole document fits on a page. If this is not true

than there can be one of two reasons for it. First, considered in Figure 5(b), is where the num-

ber of children is so large that even pointer to all of them will not fit in a page. In this case

some children can be grouped together and a dummy parent can be created to represent all of

them via a single pointer. Second, shown in Figure 5(c), is when a child is so large that it

would not fit in a page. In this case the child can be differed to a page of its own and be repre-

sented by a pointer. This argument is the basis from where CanStoreX starts. Here, the two

types of nodes have been used to facilitate pagination. 

CanStoreX does not place any limits or expectations on what kinds of nodes will be needed

or used to accomplish pagination. However, CanStoreX requires an XML document to be bro-
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ken into pages where the pages themselves are XML documents on their own right. (Except

when information has no structure and requires multiple pages). 

Natix is another technology for storing XML documents. Using what are called helper and

proxy nodes, Natix breaks up a documents into small chunks. Several chunks, that are possi-

bly unrelated, may share a page for their storage. A page is not required to be a self-contained

XML document. Natix uses helper and proxy nodes in specific way, where as CanStoreX con-

siders the types and use of storage facilitating nodes to be open to future evolution. 

Since XML is a technology that enables other technologies, the CanStoreX system can be

used to implement a general-purpose seamless storage for relational and object-oriented data-

bases, XML, and metadata.   

Recall that a page in CanStoreX is required to be a self-contained XML document in its

own right. In the earliest version of CanStoreX, implemented by Shihe Ma [12], the pages

 

(a) The source XML document  

(b) Case A. The fanout is too large 

(c) Case B. A child is very large 

Figure 5. Pagination using CanStoreX

<_f>

<_c>
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were stored as plain text. This pagination algorithm took an input XML file and converted it to

a pff (page formatted file) file. The inter-page navigation was supported via binary pointers.

But for navigation within pages the traditional DOM API was used. Due to use of Java, the

pages were treated as objects and due to heap based storage environment in Java the pagina-

tion did not scale to large documents in several gigabyte range. 

Using the CanStoreX developed by Ma and making some minor improvements, a prototype

for NC94, a spatiotemporal dataset for agriculture, was implemented by Seo-Young Noh. Noh

also implemented a prototype for temporal databases. The work under this thesis builds with

the prototype developed by Noh. Patanroi[14] implemented pages in a binary format. The

binary page implementation removed major memory issues and allowed CanStoreX to parse

paginate and process terabyte range XML documents. Further development was continued by

Bob Stark, Srikanth Krithivasan, and Matt Swanson. Krithivasan made significant addition

making traversal of XML-axes iterator based. He also implemented an XQuery engine on the

top of CsxDOM using a parser for XQuery, developed earlier by Satyadev Nandakumar. [16].

Niranjan Kumar ported NC94 prototype to binary version of CanStoreX. 

5.3. Cyclone Database Implementation workbench (CyDIW) 

We are developing several database prototypes. In past each prototype has been developed

separately, having its own storage and buffer management and a dedicated GUI. The GUIs

were button-based where buttons were customized to render some specific functionalities. In a

paradigm shift CyDIW, the Cyclone Database Implementation Workbench has been devel-

oped. The storage and buffer management for all database prototypes have been centralized.

CanStoreX pagination and CsxDOM have been turned into services available to all prototypes

that may need to use large XML documents to store data. Artifacts consisting of binary pages

are stored as files. Artifacts include traditional relations that are stored in industry standard

binary pages but viewed as XML documents, indexes, and spatiotemporal datasets. The GUI

provides a framework from where a batch of commands can be executed. Every prototype and

subsystem is assigned a prefix. Prefixed commands belonging to different prototypes can be

interleaved in the same batch. The workbench provides services to facilitate command execu-
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tion. Commands can be stored in variables and commands on such commands can be exe-

cuted. As some results of some commands can be very large, they can be redirected to

operating system as well files internal to CyDIW. Customized buttons are not needed anymore

and the same time the GUI is far more powerful and natural with hardly any learning curve.

Storage of command containing variables that store commands, together with ability to high-

light and selectively execute it, is like having custom designed recursive buttons within a pro-

totype. The GUI provides ability to display XML and text documents. As many of our

artifacts, such as syntax trees, expression trees, catalogs, metadata, global variables, and sys-

tem configurations are stored as XML documents this makes the development as well as end

user environments highly visible, readily accessible, and self-contained. The GUI also facili-

tates performance benchmarking. XML-based logs can be created, performance commands

can be logged, and generation of performance reports can be automated. 

The entire behavior of a system is encapsulated in terms of commands. A batch of com-

mands can be used to encapsulate an experiment. An experiment may consist of creation of

storage spanning multiple disks consisting of specified page size, start storage and buffer

managers with a desired number of buffers, create synthetic datasets or load datasets, start a

database prototype, execute commands, do benchmarking, prepare reports, and close a data-

base prototype. The entire experiment can be repeated with the click of a button. This would

make project management a very high level activity, make prototypes self documenting at

very high level, reduce learning curves – all via a very simple GUI that is used by students,

instructors, developers, and researchers. 

All our prototypes are being ported to CyDIW. Narayanan [17] ported the NC94 prototype

to CyDIW. As mentioned before, CanStoreX style pagination and CsxDOM have become ser-

vices. XQuery engine has been ported and being further developed by Xinyuan Zhao. Porting

of the TDB, originally developed by Noh, and its further development are being accomplished

under this thesis and discussed in the next section. 
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6. Implementation of the TDB System 

The project under this thesis covers several aspects of the TDB (temporal database system)

prototype. These are listed below and described later in greater detail in the remainder of this

section. It helps to keep in mind that the temporal relations are stored as XML documents that

reside in the central storage of CyDIW in paginated format. For processing CsxDOM API is

used. 

• As mentioned in previous section, the existing prototype developed by Seo-Young Noh was

a stand alone system with its own storage manager, buffer manager, and the GUI. This

prototype has been ported to our Cyclone Database Implementation Workbench (CyDIW). 

• The parser has now been implemented in JavaCC. 

• The query language ParaSQL has been extended to include nesting of the domain of a

relational subexpression in the restricted to clause. 

• Noh’s implementation generated tuples of fixed size. The data generation now is more

flexible. The configuration information for the synthetic data to be generated is added to thee

relation catalog. For preparing datasets, first ordinary .xml files are generated and then they

are copied into .bxml file using copyfile command in CyDIW. The command internally

invokes pagination. 

• The entire implementation has been made command based. 

6.1. General architecture 

The general architecture of a Temporal Database system is shown in Figure 7. Most imple-

mentations of a database system along with a query language follow a similar procedure. The

user query is first parsed using a query language parser. The parser checks the query string for

valid syntax. If the syntax is correct a parse tree is built, otherwise an error is returned. The

parser creates a parse tree using only fixed rules about the syntactic structure of the language.

It does not consult the system catalogs, so there is no opportunity to understand the detailed

semantics of the requested operations. The parse tree is XML-based.   
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After the parser completes, an expression tree generator takes the parse tree handed back by

the parser as input and does the semantic interpretation needed to understand which relations,

functions, and operators are referenced by the query by looking up the system catalog. The

data structure that is built to represent this information is called the expression tree. The

expression tree is also XML-based. Implemented by Noh, the conversion of a parse tree into

an expression tree is done by using prune and graft operations in DOM API. 

The generated expression tree is then passed on to the query executor. The query executor

evaluates tuples returned by the iterator which acts a demand-pull pipeline. Each time the iter-

ator is called, it has to deliver one or more tuples or report that it is done delivering tuples. The

tuples are evaluated to determine if they qualify the conditions specified in the user query and

are returned as a result. 

6.2. Prior Work 

 In order to implement TDB, a prototype for temporal databases, Noh [7] used XML to

model the temporal relations on which the temporal queries would be executed. We are using

the same XML-based representation. Whereas Noh [13] used CanStoreX as a self contained

Query Parser 

Expression Tree 
Generator

Tuple Iterator 

Query Executor 

Database 

Query Result Writer 

User Query 

Tuple Node instreaming 

Parse Tree

Expression Tree

Figure 7.  TDB System Architecture 
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storage technology we are using the centralized storage in CyDIW and CanStoreX as a utility

to paginate the XML documents. 

The query processing layer consisted of a ParaSQL query parser written using SJM parser

API which produced an abstract syntax tree. This syntax tree is then converted to an expres-

sion tree. Both the syntax tree and the expression trees are internally represented using XML. 

The storage system used in this implementation was CanStoreX, which at that time used a

text based pagination scheme. DiskNode iterators developed by Ma [12] were used to in-

stream the tuple nodes to the execution engine. The query execution engine then proceeded to

evaluate the tuples in-streamed by the iterator and write the result.

The user interface for this system was a command button based graphical input method. The

end user was provided with a set of buttons to perform various activities from selecting the

database to executing the query. The system itself was a self contained stand alone module

which took a page file formatted file (pff) consisting of the relations as input. The features of

this system included either a graphical or XML representation of the parse and expression

trees.

6.3. The need for a new prototype

During the time of this prior implementation, the storage system CanStoreX used a textual

pagination scheme. In this scheme, the paginated XML file was stored as characters. In other

words, the page file formatted file (pff) would be human readable if opened using a text editor.

From then onwards, CanStoreX has gone through a series of changes geared toward providing

a more powerful storage system. The evolution of CanStoreX has been discussed in detail in

the previous chapter.

 Also during this time, there was a strong need to integrate different database prototypes to

work on a common platform. The Cyclone Database Implementation Workbench has been in

development by our research group for the past few years. This platform provides us with a

centralized storage and buffer manager, a customized implementation of DOM API called the

CxDOM API to traverse our custom files in the storage and a simple but elegant command

based user interface which can execute batches of commands. 
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In keeping with our current implementation style of developing database prototypes on top

of the Cyclone Database Implementation Workbench it was decided to port the existing tem-

poral database system to the workbench and to use the current binary version of CanStoreX. 

In the next few sections, we describe some of the important components of a temporal data-

base system along with the changes that have been made to the existing system to completely

port it to work on top of the Cyclone Database Implementation Workbench.

6.4. The database catalog 

Following [7], the XML-based database system catalog is the place where schema meta-

data, such as information about the different relations, their keys, attributes, and the physical

location of the relation on the disk are stored. The catalog (Personnel.xml) for the Personnel

temporal database is shown in Figure 8. The catalog file is of immense importance for a data-

base system as it contains valuable information. The expression tree generator needs the cata-

log to perform semantic interpretation needed to understand which relations, functions, and

operators are referenced by the query. The execution layer needs the physical location of the

relation on the disk to instream the tuples to the query executor. 

An important change in the catalog from the prior implementation is the inclusion of <Data-

Set> element to describe the nature of the dataset in the database. The Type attribute describes

if the dataset consists of live operational data, a real dataset, or synthetic one. It is intended

that the catalog will evolve over time to include more useful information. As our current pre-

occupation is with generation of synthetic data, we have considered further expansion of

annotations for configuration of synthetic data. An algorithm for generation of synthetic tem-

poral data has been implemented. The algorithm takes many characteristics of temporal data

into consideration in order to generate a random data. The need for such a procedure was felt

when it was noted that the prior implementation of the system did not generate a truly random

data set. 

It is possible to generate a relation with either desired number of tuples or a desired size of

the XML data file depending on the user requirements. The data generation algorithm pro-

duces the same data set using the fixed seed value to provide a consistent data set to reproduce

our experiment. The tupleOverride attribute helps us choose between the two options stated
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above. If tupleOverride is set to true, then a fixed file size document is generated and vice

versa. Also, it possible to specify individual variations in the attributes may be specified as

required. In the example shown, the start value specifies the lowest value that salary can take,

the end value specifies its maximum value and maxvar specifies the maximum number of

variations that can occur in a single tuple for that particular attribute. 

<Database name="Personnel">
<RelationList number="2">

<Relation name="Emp">
<DimensionInfo/>

 <AttributeInfo NumberofAttributes="3">
 <Attribute name="Name" pos="0" length="32" type="string"/>
 <Attribute name="Salary" pos="1" length="4" type="float"/>
 <Attribute name="DName" pos="2" length="32" type="string"/>

</AttributeInfo>
<Key><Attribute>Name</Attribute></Key>
<StorageInfo FileName="Emp.bxml"/>

</Relation>
<Relation name="Dept">

<DimensionInfo/>
<AttributeInfo NumberofAttributes="2">

 <Attribute name="DName" pos="0" length="32" type="string"/>
 <Attribute name="Manager" pos="1" length="32" type="string"/>

</AttributeInfo>
<Key><Attribute>DName</Attribute></Key>
<StorageInfo FileName="Dept.bxml"/>

</Relation>
</RelationList>
<DataSet Type = “Synthetic” Method=”RandomA” Now=”16000”> 

<Relation name = “Emp”> 
<Parameters FileSize=”100” Use=”Yes”/>
<Parameters NumOfTuples = “1000” Use="No"/ >
<Variations>

<Attribute name="Salary" MinVal="40000" MaxVal="140000" 
Step = "1000" MaxVars="100"/>

<Attribute name="DName" NumOfValues="5" MaxVars=”10”/>
</Variations>

</Relation> 
<Relation name = “Dept”> 

<Parameters NumOfTuples = “5” Use="Yes"/ >
<Variations>

<AttributeInfo name="MName" MaxVars="10"/>
</Variations>

</Relation> 
</DataSet> 

</Database>

Figure 8. TDB System Catalog
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A snapshot of the randomly generated Emp relation is shown in Figure 9. The legend in the

figure explains the meaning of the tags used in the file. 

6.5. ParaSQL Query Parser

 As mentioned earlier, the parser module checks the syntax of the query and generates an

abstract syntax tree if the parsing is successful or returns an error if the parsing is a failure.

The existing version of the parser was implemented manually using SLJM Because of its pop-

ularity and ease of use to implement parsers, JavaCC compiler-compiler tool has been adopted

in our database implementation workbench. Therefore a parser for a subset of ParaSQL has

now also been implemented in JavaCC. Moreover, the subset of ParaSQL that has been imple-

mented has been expanded over the previous version. The importance of Boolean expression

was discussed earlier and we felt that in addition to the already existing Boolean expression

rules, it would be very useful to answer more complicated queries if we add more functional-

ities to the same. To elucidate this point, consider the following English language queries. 

Query 1: List the names of the current employees

<Database> Legend: 
<Relation name="Emp"> t-> tuple 

<t> a->attribute
<a name="Name"> v->value

<v>Emp_0<p><d>[0,16000]</d></p></v> p->pdom
</a> d->dunit
<a name="Salary"> 

<v>3000<p><d>[0, 200]</d></p></v> 
<v>3300<p><d>[201,400]</d></p></v> 
<v>5000<p><d>[401,600]</d></p></v> 

…
< /a> 
<a name="DName"> 

<v>Dept_0<p><d>[0, 500]</d><d>[2001, 2500]</d> …</v> 
…
</a> 
<p><d>[0,16000]</d></p> 
</t> 
…

</Relation> 
</Database> 

Figure 9. Snapshot of the randomly generated data
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Query 2: List the names of the employees that have a combined working experience of

greater than 10 years in ‘Toys’ or ‘Shoes’ departments.

In order to support above queries we have added support for the ‘subset’ set operation of

ParaSQL and a Length function respectively. With the subset operation, it will be possible for

us to find out if NOW is contained in the domain of a particular employee. If this evaluates to

true, then it means that the employee is currently working in the firm. The Length function

can be used to measure the time during which the employee worked in a particular depart-

ment. Using these two new additions, one can easily express the queries in ParaSQL as shown

below.

Query 1:

Select e.Name
From Emp e
Where NOW subset [[e.Name]];

Query 2:

Select e.Name
From Emp e
Where Length ( [[e.Dept=’Toys’]] union [[e.Dept=’Shoes’]]) > 10;

The ParaSQL parser checks the syntax and generates a parse tree. This parse tree is inter-

nally represented using XML. Representing parse trees using XML has several benefits. An

XML-based parse tree is a self-contained entity that exists on its own. It is independent of the

language and the environment that is used to create it at runtime environment and accessible

outside of such environment. It is easy to read and can be visualized through tools readily

available for XML documents. Lastly, it is easy to process it using code in DOM API that pro-

vides a much higher level interface. Such code is also easy to read and maintain. Because of

the use of XML navigation is very logical. It can help reduce our reliance on linked-list based

structures. An XML representation of a parse tree is shown in Figure 10.

6.6. Expression Tree Generator 

The expression tree generator takes the abstract syntax tree as its input and does the seman-

tic interpretation needed to understand which relations, functions, and operators are refer-

enced by the query by looking up the system catalog. As in [7], in XML based expression tree,
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<ParseTree>
<QueryExpression>

<SelectStatement>
<SelectClause>

<AttributeList>
<AttributeTerm>

<ObjectName>Emp</ObjectName>
<AttributeName>Name</AttributeName>

</AttributeTerm>
</AttributeList>

</SelectClause>
<RestrictClause/>
<FromClause>

<ObjectList>
<Object>

<ObjectName>Emp</ObjectName>
<ObjectNickName>e</ObjectNickName>

</Object>
</ObjectList>

</FromClause>
<WhereClause>

<AtomicBooleanExpression>
<FuncOpConstBooleanExpression>

<Function>
<Name>Length</Name>
<Arg>
<AtomicDomainExpression>

<AttrOpValAtmDomainExpression>
<AttributeTerm>
<ObjectName>Emp</ObjectName>
<AttributeName>Dept</AttributeName>
</AttributeTerm>

<Operation>=</Operation>
<String>Dept_0</String>

</AttrOpValAtmDomainExpression>
</AtomicDomainExpression>
</Arg>

</Function>
<Operation>greaterThan</Operation>
<Number>10</Number>

</FuncOpConstBooleanExpression>
</AtomicBooleanExpression>

</WhereClause>
</SelectStatement>

</QueryExpression>
</ParseTree>

Figure 10. XML Representation of a Parse Tree
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the nodes representing projection, restriction and where clauses are at the same level. They do

not have a parent-child relationship, but instead are siblings of each other as shown in

Figure 11. 

6.7.  Iterator

Iterators offer a mechanism to access one object at a time, on demand, from a collection of

objects. Iterators go hand in hand with streaming (instreaming and outstreaming) that is a pri-

mary paradigm for query processing in databases. In our case, they’re used to iterate over

tuples in relations. Iterators help hide tedious details implicit in dealing with page boundaries.

This makes the implementation of consumer modules simpler that would otherwise turn into

spaghetti-like code. Base iterators instream and outstream tuples from and to the disk, respec-

tively. Relational operators, including the select statement is a complex composition of itera-

tors. A tuple outstreamed by a query is assembled based upon instreaming from base iterators

and other operators. 

It has to be noted here that we’re concerned with instances of an iterator that instreams data
<expression>

<Iterator type="scan" relname="Emp">
<projection isAll="false">

<AttributeList num="1">
<attribute relation="Emp" name="Name" attrPos="0" type="string"/>

</AttributeList>
</projection>
<restrict isUniversal="true"/>
<relationlist>

<relation name="Emp" nickname="e"/>
</relationlist>
<condexp isTrue="False">

<Function name="Length">
<DomainExp opType="unary">
<BinaryOp type="=">
<attribute relation="Emp" name="Dept" attrPos="2" type="string"/>
<const value="Dept_0" type="string"/>
</BinaryOp>
</DomainExp>
<op>></op>
<number>100</number>

</Function>
</condexp>

</Iterator>
</expression>

Figure 11. XML Representation of Expression Tree
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directly from the disk and an iterator that outstreams tuples assembled by the select statement.

As our relations are stored using XML, the base iterators require XML processing. In the cur-

rent version of our TDB prototype, we use the iterators for the CanStoreX system developed

by Krithivasan and others. These base iterator were implementations of an interface called

DOMNodeIterator. It has to be noted here that this DOMNodeIterator returns a DOMNode

which is a custom implementation of DOM API called CxDOM API. The custom implemen-

tation is designed specifically with CanStoreX in mind. These base iterators traverse through

the bxml (binary XML) files that reside in paginated format of our stored relations. The base

iterator that we have used extensively is the ChildNodeIterator. This iterator is used to return

all the children of the current node. Internally, the iterator would return the first child of the

node initially followed by the right siblings of the first child until it either reaches a node with

no right sibling or the user explicitly invokes the close function. This iterator helps us iterate

through all the tuples in a relation. It has to be noted here that all our tuple nodes are siblings

of each other and are children of <Relation> node. Thus running the ChildNodeIterator by

passing the relation node to it, will instream all the tuples in our relation. Note that the Child-

NodeIterator that accesses data from the disk is very high level compared to the usual iterators

in classical relational databases. Whereas classical relations are stored as sequences of tuples

that are themselves flat byte sequences, in our case the tuples have a complex tree-based struc-

ture. Even so our temporal database system is a client for which such details are low level. 

We have implemented iterators to instream tuples from our temporal relations. These itera-

tors are used in the query execution algorithm. One such iterator is called RelationScan. Fol-

lowing the methodology of iterator implementation, the basic functionalities that we have

implemented are: open, close, hasNext, getNext and getRemaining. The open() method of an

iterator is used to instantiate and start a new iterator. The close() method destroys the iterator

and makes it void. The hasNext() returns a boolean value of either true if there are more tuples

available to be fetched or false if there are no more tuples. The getNext() method increments

the iterator to point to the next available tuple and fetches that tuple and finally, the getRe-

maining() method fetches all the available remaining tuples starting from the current location.

The use of getRemaining is mainly when instreaming is done by executing commands via the

GUI. 
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6.8. ParaSQL Query Executor

As mentioned earlier, Noh in his prior work developed a query execution engine for a tem-

poral database system which directly interfaced with the textual implementation of CanStoreX

to execute the query. Our implementation uses the binary implementation of CanStoreX.

Therefore, the entire query execution engine has been revised to interface with the binary

implementation of CanStoreX.

The query execution algorithm is shown in Figure 12. This algorithm takes the expression

tree generated by the expression tree generator as its input. First it checks if the expression

tree if there is another query in its restricted to clause. If this is the case, then the inner query is

first executed and the domain of that result is stored in a temporal element. It has to be noted

here that the inner query has already been parsed by our query parser and the expression tree

already contains all the information needed to execute the inner query. Moreover the strategy

of executing the inner query first works as currently we only allow such queries to be self con-

tained. This means the variables used in the where and select clauses are those that have been

declared in the from clause of the subquery. In other words the where and select clauses do not

used variables declared in from clause of the outer query. Under such conditions subquery

returns a fixed result that is independent of the variables in the outer query and it is necessary

to compute it only once. After this computation is completed, when we check if there is a sin-

gle relation or two relations in the from clause of the outer query. In case of a single relation a

simple relation scan is required. A relation scan is an operation that sequentially traverses a

single relation from beginning to end. Presence of two relations invokes a JoinIt iterator. 

An example of query that involves a join is given below. 

Select e.Name, D.DName Restricted To [[e.Dept=D.DName]] 
From Emp e, Dept D 
Where length([[e.Salary>60000]]) > 10; 

It should be noted that many queries that require complex 2-way to multi-way joins in other

temporal query languages become simple selections in ParaSQL that in turn lead to simple

relation scans. For example, the above query in interval-based approach would involve a join

between Emp and Dept relations. 

Depending on the type of the query we create either a RelationScan iterator or a Join itera-

tor. These iterators themselves use some of the base iterators to perform a simple relation scan
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or a join operation. Once an iterator has been created, we can start retrieving tuples. The rela-

tion scan iterator and the join iterator both return tuples in a stream. We evaluate these tuples

and further restrict them based on the restriction clause before projecting (writing) the tuple as

an output.   

6.9. Query Result Writer 

The query result writer module simply takes the generated tuples from the query executor

and writes these tuples into an output XML file. The output of the query is in xml format,

which we can easily paginate to recursively execute more queries. This pagination has cur-

rently not been undertaken. One way to do this is to implement it by using copyfile command

to transform .xml output file to a .bxml file that will internally invoke pagination. A better and

far more efficient way of implementing would be to outstream the output directly to the pagi-

nation algorithm. Once such an implementation has been accomplished, nested queries in

ParaSQL can be implemented. 

6.10. Commands for the CyDIW GUI 

The Cyclone Database Implementation Workbench requires a command-based interface to

all database subsystems. Next we give an overview of existing commands and then go on to

list commands that we have developed for the TDB prototype. 

Algorithm 1 Query Execution
1: procedure Execution e e:= expression tree
2:  if e has a nested query in the restricion clause then
3:   te=ProcessInnerQuery(e) te:= temporal element
4:  if e has join condition then
5:   it ← Join(e) it:= iterator
6:  else if e has relation scan condition then
7:   it ← RelationScan(e)
8:  end if
9:  while it.hasNext() =  True do
10   tuple=it.getNext()                                                              retrieve a tuple
11:  tuple=Evaluation(e, tuple, NULL)                                    evaluate the tuple
12:  tuple=Restriction(e, tuple, te)                                            restrict the tuple
13:  if tuple ≠ NULL then
14:   Projection(tuple)                                                               write the tuple
15:  end if
16: end while
17:end procedure

Figure 12. Query Execution Algorithm
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6.11. Overview of CyDIW 

We are developing several database prototypes that share common needs for storage, stor-

age management, buffer management and GUI-based interface. The Database Integrated

Workbench (CyDIW) that meets these needs has evolved over several years encapsulating

considerable efforts of many individuals. This integration also minimizes configuration and

organizational overlaps among multiple systems that become as independent of each other as

possible. The Integrated workbench architecture is shown in Figure 6. The command based

architecture follows the convention of using prefixes to differentiate between commands tar-

geted toward different layers of the system. As evident from the figure, the integrated GUI

provides us with not only a general-purpose page-based storage and buffer management ser-

vices but also included are pagination and DOM API services for large XML documents. 

The lowest layer in the architecture is the storage system. The storage manager component

in the integrated system is responsible for two important functionalities, creation and manage-

ment of storage. All storage manager commands have the prefix CyDB:>. The command

CyDB:>CreateRawStorage storageConfig.xml is used to create a storage based on the param-

eters set in the XML-based storageConfig file. The storage config file specifies the physical

location where the storage has to be created, the size of the storage, the size of pages, the num-

ber of buffers and the buffer replacement policy to be used. (Currently only policy that is

available is LRU (least recently used.) 

The top layer of the storage engine is the buffer manager layer. It is responsible for bringing

pages from the storage to main memory as required. The size of each buffer is equal to the size

of the pages. Buffers are used both for reading pages from the disk and for writing pages to the

disk. The collection of buffers is called the buffer pool. The buffer manager manages the buf-

fer pool. When all the buffers in buffer pool are full, the buffer manager uses buffer replace-

ment policy to decide the victim buffer. The buffer manager also keeps track of counters for

the page accesses and number of pages allocated and deallocated. 

The common GUI component is a command based system. Every sub-system is assigned a

prefix and used with the command to indicate the targeted subsystem for the command. The

prefix for our temporal database system is tdb:>. Every sub-system should have a dedicated
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command parser which will be called by the GUI parser when a command for that sub-system is

encountered. In our case, this parser is called the TDB Command Parser.

When the GUI parser encounters a command starting with the prefix tdb:>, then it immediately

delegates the command to the target sub-system, which in this case is TDB Command Parser, for

execution. 

The GUI itself has some native commands. These commands have the prefix CyDB:>. Some of

the GUI commands that we’re interested in are:

CyDB:>declare string[10] a;

This command is used to declare an array of variables which can hold our temporal data que-

ries. Storing our query in a variable makes it easy to follow its life-cycle from parsing to execu-

tion. 

CyDB:>set a[0] = <temporal database query written in ParaSQL>;

This command is used to assign a query to a variable. The design of the GUI is such it consists

of two panes, one for the commands and one for output. There is a third pane in the lower end

which is used to display console information. The command buttons that are available are Open,

Save, Save As, Run Selected, Run All, Find/Replace and Clear on the commands pane and Save,

Save As, Find and Clear on the output pane. 

The GUI also displays some performance parameters like the number of page accesses, the

number of pages allocated/deallocated and the hit ratio. We can use these values to compare the

execution of different queries.

6.12. TDB Command Format

A suite of commands to execute the core temporal database functionalities has been developed.

As mentioned earlier, our temporal database system commands have tdb:> as the prefix. The gen-

eral command format for our temporal database commands is shown below.

tdb:> <command name> <list of arguments>; 

The command is loaded into the commands pane of the GUI, selected and executed. The GUI

parser delegates this command to the TDB command parser once it encounters the prefix. Once

the TDB command parser gets the command, it matches the command name with a list of pre-

defined commands and calls the associated routines.



35

6.13. Some Important TDB Commands

As mentioned earlier, the TDB command parser is used to parse the TDB commands and exe-

cute the appropriate routines associated with them. Here we discuss some of the important TDB

commands by giving a brief description of what they do along with their command format.

6.13.1. Command for generation of synthetic temporal data 
tdb:> GenerateTDBData Catalog.xml;

With configuration information for the desired data contained in XML-based database catalog,

this command creates randomly generated data The data consists of relations represented in XML

format. 

6.13.2. Command to load a dataset 
tdb:> LoadTDBData <relation_name>; 

This command loads the specified relation from an xml file onto our general purpose paginated

file storage system. The above command takes temporal relation name as input parameter and

loads the specific relation into the common storage. <relation_name> parameter takes ‘Emp’ or

‘Dept’ as values. On execution of this command, the specific temporal relation data are paginated

and loaded into the common storage. This command creates the bxml files in our storage and

names them as specified in the catalog file. 

Currently, the data is first created in standard XML format and then paginated. In future the

generator can directly outstream data to the CanStoreX pagination algorithm. 

6.13.3. Command to open a database 
tdb:> OpenTDBDatabase <database_name>; 

The OpenTDBDatabase command takes the catalog file name as its argument and caches the

root pages of all the relations in that catalog. Note that the relations are files in our storage, e.g.

Emp is stored as Emp.bxml. The address of the root page is obtained by internally consulting the

directory for our storage. For processing the catalog of the system, DOM API is used. 

6.13.4. Command to display TDB catalog
tdb:> DisplayTDBCatalog; 

The DisplayTDBCatalog command opens the TDB system catalog in the system default web

browser. 
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6.13.5. Command to parse query 

tdb:> ParseQuery <variable_name>; 

This command calls the ParaSQL parser routine to parse the query associated with a variable.

This assumes that the database has already been opened. Otherwise it throws a parser failed

exception. The command parses the given query and creates an XML-based parse tree (also called

abstract syntax tree) with the name <variable_name>.parsetree.xml. 

6.13.6. Command to display Parse Tree
tdb:> DisplayParseTree <variable_name> <view_type>;

DisplayParseTree command is used by the client to display the parse tree that has been created

for the query in the previous step. The above commands takes variable name which holds the tar-

get query and type of view as parameters. It provides two types of tree views, XML view and

graphical view. This command can be executed only after parsequery command has been exe-

cuted for the target query. The view_type parameter can take ‘xmlview’ or ‘graphicalview’ as val-

ues. Using ‘xmlview’ opens the xml representation of the parsed tree in a web browser and

‘graphicalview’ converts the xml representation of parsed tree on the fly to the graphical view and

displays in the new pop up window. 

6.13.7. Command to build expression tree

tdb:>BuildExpressionTree <variable_name>; 

This command calls the expression tree generator routine which builds the expression tree

based on the parse tree generated in the previous command. If the parse tree has not been created

already then this command will throw an exception. The above command takes variable name

which holds the target query as an input parameter. The expression tree is constructed based on

the parse tree and is also represented as an XML document with the name. The name

<variable_name>.exptree.xml.

6.13.8. Iterator based command for query execution 

Query execution in databases is stream based. Tuples from operand relations are instreamed

and the tuples resulting from the query are outstreamed. Whereas instreaming is internal to the

execution environment and not directly visible to a user, outstreaming is. Typically, and iterator

consists of the OpenIterator, GetNextTuple (or PutNextTuple), CloseIterator functions. In addi-

tion there is a boolean HasNextTuple that remains True while there are more tuples and becomes
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False when no tuples are left in the stream. Consequently we have implemented the following

commands. 

tdb:>OpenIterator <variable_name>; 

tdb:>HasNextTuple <variable_name>; 

tdb:>GetNextTuple <variable_name>; 

tdb:>CloseIterator <variable_name>; 

These commands take the variable name which holds the target query as input parameter.

Before iterating through the result of the query, the expression tree for the query should have

already been created. If an associated expression tree does not exist, then commands will report

an error. The commands work as follows. 

• The OpenIterator command is used to instantiate and open an iterator for the query referenced

by the variable name. The OpenIterator command is used to instantiate and open an iterator for

the query referenced by the variable name. Without opening the iterator, the client can not execute

other functions. 

• HasNextTuple command indicates whether any more tuples are available in the result of the

query. GetNextTuple command is used to retrieve the next tuple of the query result. Once the

tuple is retrieved, the iterator attempts to point to the next tuple in the resultant tuples associated

with this query. 

• GetNextTuple is intended to be executed only when HasNextTuple is True. On execution,

GetNextTuple simply assembles a tuple and deposits it to the output stream. 

• CloseIterator command is used to close the iterator for the target query associated with the

given variable name. The buffers occupied by the iterator are released to the storage. Once the

iterator is closed, it is not possible to iterate through the resultant tuples one or more at a time

anymore. An iterator can be closed prematurely through the GUI. Ordinarily the iterator will be

executed only when GetNextTuple becomes false. For the sake of convenience the following

command is also available through the GUI. 

tdb:>GetRemainingTuples <variable_name>; 

GetRemainingTuples command is used by the client to retrieve all the remaining tuples starting

from the iterator’s current position. After all the remaining tuples are outstreamed the boolean

HasNextTuple will become False. 
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It is important to understand the division of labor between the functionalities of HasNextTuple

and GetNextTuple. The HasNextTuple must really makes sure that the query will indeed return a

tuple when GetNextTuple is executed. This means that it has to preemptively verify that the next

tuple is indeed a qualified one. Internally, this can amount to quite a bit of work depending upon

the query and the query language. In case of the select statement the where clause has to be veri-

fied for the candidate operand tuples. In TDB it also has to make sure that the restricted to clause

does not compute to an empty temporal element. Until both of these are ensured, more tuples

from the input relations will be instreamed until the required conditions for existence of the next

tuples are met. HasNextTuple can go as far as assembling a tuple but that is not a good idea. In

relational databases there is a small gap between where HasNextTupe ends its work and where

getNextTuple resumes it. In more complex models and query languages the role of HasNextTuple

is only to guarantee that there is a next tuple. The fragments of the next tuples reside in the buf-

fers. These fragments have to be assembles according to the requirements of a model. Unlike a

tuple in ordinary classical relational databases where several tuples reside in the same page, in

more advanced models a tuple can occupy several buffers. In fact this is the case with TDB as

well. Preparing the next tuple will require extra memory. Such memory may not be accounted for

if it outside of the buffer pool which is hardly desirable.    

6.13.9.  Execute Query

tdb:>ExecuteTDBQuery <variable_name> <result_filename>; 

This command is used to combine the above iterator steps into one by dumping all the resultant

tuples into a file name specified in <result_filename>. It take the variable name which holds the

target query as another input parameter. When this command is executed, an iterator for the result

is automatically created and the query is executed. This result is stored in the file name specified

in the command. Note that in the current implementation the output is a standard XML document

and not a paginated one. This has the advantage that the XML document can be examined in a

browser. Currently a browser for paginated .bxml documents is not available. On the other hand, a

paginated document that is desirable if nested queries of ParaSQL were to be implemented. Pagi-

nated documents would also be more helpful if the results are large and need to be processed. 

6.13.10. Close Database

tdb:>CloseTDBDatabase; 
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This command is used to close the TDB database system. It closes the handler to the temporal

relations in our storage and releases the currently held resources using Java’s native garbage col-

lection method. 

6.14.  TDB Command Execution

To execute a command, the command has to be selected and the [Run Selected] button in the

GUI has to be clicked. This method gives us the ability to run one or more sequential commands

at a time. Sometimes it might be more appropriate to run all commands at the same time. To meet

this need, we can load a batch of commands and click [Run All] button in the GUI. This would

execute all the commands in the batch. Extra flexibility can be availed by suppressing execution

of commands by making them remarks by adding “//” at the beginning of the line. An individual

command that has been converted to a remark can also be executed by highlighting the command

by carefully avoiding “//” characters. An example TDB batch is shown in Appendix A. 
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7. Conclusion

We have presented a temporal database implementation based on the parametric model using

XML. The use of XML in our implementation has been helpful. XML has helped us do away with

complicated data structures and eliminated our reliance on linked-list based data structures for

parse tree, expression tree, and the database catalog. All settings and configuration become

explicit and readily available without having to sift through code. Furthermore, any changes that

might be made to these artifacts would not affect the overall working of the system. 

The storage is drawn from the central storage facility provided by the Cyclone Database Imple-

mentation Workbench (CyDIW). The parsing has now been implemented in JavaCC making

future development much easier. We have implemented a function to determines the length of a

temporal element. Additional functions can be parsed and implemented in the same style. A query

with local variables can be nested inside the restricted to clause. A rudimentary implementation of

the subset boolean operation has been started. These additions when fully expanded will help one

to harness greater power of ParaSQL for temporal databases. 

We have also developed a more random temporal data generation algorithm which can be used

to generate a relation with desired number of tuples or a relation size. This algorithm takes input

from the XML-based catalog file and generates data based on the configuration information. After

the physical representation of the datasets is revisited for efficiency, benchmarking with large

scale temporal datasets can take place. 

Finally, in order to conform to the requirements of CyDIW and its GUI, we have encapsulated

the implementation in terms of commands that can be executed via the GUI without needing any

specialized graphical elements such as buttons. As required by CyDIW, an entire experiment

starting from creation or using existing storage, a synthetic temporal dataset, execution of queries,

and benchmarking can be encapsulated in terms of a beach of commands. This also makes exper-

iments entirely reproducible by anyone anywhere and anytime. 

Our work provides a framework that will make the ongoing and future development of our tem-

poral databases prototype easier in order to harness the latent promise of the parametric approach. 
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8. Future Work

Our implementation of the temporal database system prototype TDB is now in conformance

with the requirements of Cyclone Database Implementation Workbench (DWI) and its GUI. This

would make future development of the TDB prototype much easier. Here we list several direc-

tions. 

8.1. Physical Representation 

A more efficient support storage and consumption of temporal elements, values, tuples, and

relations is needed. A temporal element such as [11,20] ∪ [21,36] ∪ [45,81] ∪ [106,202] can be

efficiently represented as a sequence of integers 11, 20, 21, 36, 45, 81, 106, 202 which at 4 bytes

per integer would require 32 bytes. The same idea can be applied to a value such as < [11,20] ∪

[21,36] ∪ [45,81] ∪ [106,202] “Toys” >. This type of representation would help efficient compu-

tation of expressions such as [[DName = “Toys”]]. Another efficient representation of values can

be in sorted order of the instants. A value such as < [21, 40] ∪ [75,86] Toys, [41,50] Shoes> could

be stored as a sequence of triplets 21, 40, Toys, 41, 50, Shoes, 75, 86, Toys. The advantage of this

is that it keeps the value sorted by time. This is advantageous because it would allow stream-ori-

ented processing that is a core idea in database implementation. One would expect support for

such storage strategies to be shared between CanStoreX as a general-purpose storage technology

on one hand and temporal database as a specific domain application on the other. This would

greatly improve performance as currently the binary pagination inflates the size of XML repre-

sentation significantly. 

This may seem like one is circumventing XML. But one can have virtual XML document with

different storage methodologies underneath. A case in point is with middle-ware a client can see a

relation, stored internally in industry standard format with pages containing tu[ples as byte

sequences, as an XML document. This is on one end of the spectrum with a completely heteroge-

neous artifact on the other end a great deal of interpolation is need to take full advantage of XML. 

In databases pinning is a very important mechanism to implement caching strategy of an algo-

rithm. While a buffer is pinned to a page, it cannot be removed prematurely. Only a client knows

when it is done using a page and must bear the responsibility of unpinning the buffer. As far as
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CyDIW provides the support for pinning and unpinning as long as it is requested. This needs to be

exploited by iterators. The main thing is that an iterator must do its own bookkeeping to keep

track of pages that it wishes pinned and unpin them when those pages are no longer needed. After

a tuple has been processed the resource needed exclusively for the tuple can be released. But

tuples can be large, spanning multiple pages and one should be able to release pages even while a

tuple is being processed. This would require us to visit primitive and composite expressions in

ParaSQL of temporal databases to be visited carefully. Note that iterators can do pinning directly

or have CyDIW do the pinning on its behalf but unpinning has to be requested explicitly by the

iterators. 

Some gaps between the parser and query processing that was available in [7] has not been

incorporated in our implementation. This includes set operations (∪,  ∩, and −) on domain expres-

sions and boolean operators (an, or, and not) on boolean expressions. 

The structure of the expression tree needs to be revisited. Following [7], the restricted to, from,

and where clauses are treated as siblings in the parse tree and the same relationship is carried on to

the expression tree. This needs to be changed to reflect the customary representation of the

expression tree to reflect its underlying algebraic structure. 

To execute recursive queries, it becomes necessary to paginate the resulting xml file back to

bxml format. This bxml file is directly stored in our common storage. Once this has been done, it

would be possible to query this result file just as if it were another stored relation. Currently the

output of a query is an ordinary XML document. This can be copied into a paginated binary bxml

document by using the copyfile command available in CyDIW. This intermediate step is not nec-

essary as the pagination can be invoked directly. Know-how for accomplish this is already avail-

able in the createfile command in CanStoreX that creates an XML document of any pre-specified

size by using the well known XMark benchmark. Instead of storing the document first in XML

and then paginate it, the document is paginated on the fly as fragments of the document become

available. As XMark is a C program, for direct pagination JNI (Java Native Interface) is used to

pass the character stream created by XMark directly to the Java-based pagination algorithm. An

additional thing to keep in mind here is that the XML document being produced should conform

to the chosen representation of temporal elements and temporal values discussed above if such

representations are deployed. In a nutshell the format of a computed temporal relation should be
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no different from the format of the stored temporal relation.   

Although we have enlarged the subset of the ParaSQL language that has been implemented,

there are still several much needed additions. We have implemented subqueries inside the

restricted-to clause in our language, but the current implementation assumes that the inner query

variables are independent from the outer query variables. This need not be the fact as the inner

query can reference variables from the outer query. Subqueries can appear in many other places.

Example include addition of constructs such as in (L), not-in (L), exists(L), all(L), and any(L)

where L is a subquery. Our implementation is primarily targeted towards executing queries that

retrieve information from the stored relations. Update operations have been implemented in dis-

tant past but the nature of our platform has simplified implementation to such an extent that a

fresh implementation should be quite easy. For users visualization of temporal relations in tabular

form would also be useful. 

ParaSQL itself can be extended in significant and useful ways. For example, in addition to clas-

sical style inter-tuple aggregates, ParaSQL offers tremendous opportunities to tuple level aggre-

gates. The latter would allow a construct such as e.TAvg(e.Salary) to be used seamlessly at par

this attribute values such as e.Salary. (Here, “T:” in “TAvg” indicates tuple level aggregation.) In

human experience, periodicity of time plays an important role. For example a year may be seen as

a cycle and one may like to compile analyze and compare events year-wise. Linguistics support

for such constructs would be a welcome addition. 

A much needed addition to our system would be the implementation of an algebraic query opti-

mizer. A theoretical framework for algebraic query optimization is available in [27]. The next

steps would be development of indexes and plan generation. This would lead to a full-fledged

implementation of a query optimizer. A query statement can be executed in many different ways,

such as full table scans, index scans, nested loops, and hash joins. The query optimizer determines

the most efficient way to execute a query statement after considering many factors related to the

objects referenced and the conditions specified in the query. The output from the optimizer is a

plan that describes an optimum method of execution. This determination is an important step in

the processing of any query statement and can greatly affect execution time. 

Finally, a comparison between our parametric model based ParaSQL and the interval model

based ISQL based on usability and efficiency can also be done. This would probably help settle
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the debate for determining which data model is most appropriate for temporal databases. 

In this thesis we have only considered the parametric model for historical data to capture the

evolution of objects in the real world. The parametric approach has been extended to other forms

of time in databases, spatial databases, spatiotemporal databases, and belief databases of which

multilevel security is a special case. It would be fruitful to extend the implement to such cases as

well. 
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APPENDIX A 

This section shows a batch file of commands for the Temporal Database system. The batch is

completely self-contained from creation of storage, to creation and loading of a synthetic dataset,

creation of parse and expression trees for queries, their visualization, step-by-step as well as com-

plete execution of queries, and creation of a log of performance. The batch represents an experi-

ment that can be reproduced by anyone, anywhere, and at anytime. The batch is a high level

encapsulation of the system behavior. 

/* Title : TDB Demo File
   Author : Kartic Ramesh
   Date   : Mar 25, 2010 */
   
// Config for the storage is in StorageConfig.xml ; 
// Create storage from scratch, format with fixed size pages, start buffer manager ; 

// CyDB:>createrawstorage StorageConfig.xml;
// CyDB:>formatStorage 16;
// CyDB:>startBufferManager 100;

// Use storage that has alredy been created  ;
CyDB:>usestorage StorageConfig.xml;

// Show contents of directory ; 
CyDB:>showdirectory;

// Create synthetic dataset with configuration in TDB_Catalog.xml ; 
// tdb:>GenerateTDBData TDB_Catalog.xml;

// Load the database; 
// tdb:>LoadTDBData Emp;
// tdb:>LoadTDBData Dept;

//Open the TDB Database; 
//The connection is opened and the root of the database is cached ;
tdb:>OpenTDBDatabase;

//Display the catalog information for the database ; 
CyDB:>displayXML C:\Users\ramesh\workspace\TDB_Workspace\TDB_Catalog.xml;

//Declare a variable; 
 CyDB>declare string[10] a;

// Set a query to the variable declared above ;
CyDB>set a[0] := tdb:>
Select * 
From Emp E;

// Parse the query, build expression tree, and display them; 
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tdb:>ParseQuery a[0];
tdb:>BuildExpressionTree a[0];
CyDB:>DisplayXML C:\Users\ramesh\workspace\TDB_Workspace\a[0].parsetree.xml;
CyDB:>DisplayXML C:\Users\ramesh\workspace\TDB_Workspace\a[0].exptree.xml;

// Compute tuple at-a-time ; 
tdb:>OpenIterator a[0];
tdb:>HasNextTuple a[0];
tdb:>GetNextTuple a[0];
tdb:>GetRemainingTuples a[0];
tdb:>CloseIterator a[0];

// Execute the query using the expression tree’; 
// tdb:>ExecuteTDBQuery a[0] queryresult.xml log>> <Stat1> MyLogTDB.xml;

// Another query; 
CyDB>set a[1] := tdb:>
Select Emp.Name
From Emp E
Where Length([[Emp.Dept="Dept_0"]])>100;

tdb:>ParseQuery a[1];
tdb:>BuildExpressionTree a[1];

tdb:>OpenIterator a[1];
tdb:>HasNextTuple a[1];
tdb:>GetNextTuple a[1];
tdb:>GetRemainingTuples a[1];
tdb:>CloseIterator a[1];

tdb:>ExecuteTDBQuery a[1] queryresult.xml log>> <Stat1> MyLogTDB.xml;

// Close the TDB Database ;
tdb:> CloseTDBDatabase;
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