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ABSTRACT

Advances in wireless communication and positioning technology have made possible the

identification of a user’s location and hence collect large volumes of personal location data.

While such data are useful to many organizations, making them publicly accessible is generally

prohibited because location data may imply sensitive private information. This thesis inves-

tigates the challenges inherent in publishing location data while preserving location privacy

of data subjects. Since location data itself may lead to subject re-identification, simply re-

moving user identity from location data is not sufficient for anonymity preservation, and other

measures must be employed. We provide a literature survey and discuss limitations of related

work on this problem. We then propose a novel location depersonalization technique that

produces efficient depersonalization of large volumes of location data. The proposed technique

is evaluated using simulation. Our study shows that it is possible to guarantee a desired level

of anonymity protection while allowing accurate location data to be published.
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CHAPTER 1. INTRODUCTION

Today’s wireless communication and positioning technology allows wireless service providers

to fairly precisely identify geographic location of their users. This capability not only makes it

possible to comply with federal E-911 regulations, but also enables service providers to collect

large volumes of personal location data. Such data reveals patterns of city population dynamics

and therefore can be used in many important applications, including transportation schedul-

ing (1), enterprise and urban planning (2), social interaction and community studies (3), and

emergency response (4), just to name a few. While large collections of location data are of

great value to a variety of organizations, making them publicly accessible is generally pro-

hibited, since a person’s whereabouts may reveal sensitive private information. For example,

frequent visits to certain types of locations may be linked directly to one’s health condition,

lifestyle, and political associations. In particular, unlike other personal data posted on the

Internet, location information has the potential to allow an adversary to physically locate a

user. Clearly, exposing such information can present significant privacy and security threats

to individuals.

This thesis investigates the challenges of publishing location data while preserving the

anonymity of data subjects. It may first appear that one can simply replace user identities

with randomly generated pseudonyms, but using pseudonyms, or even not using any stated

identity at all, is not sufficient for anonymity protection. This is due to the fact that location

information by itself can possibly reveal a user’s real-world identity. For example, if a location

specifies a private address, the subject is likely to be the owner of that address. It may be

difficult to link an individual location sample to a subject, but a significant accumulation of

location data will eventually reveal a user’s true identity. This has been confirmed in a number
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of experimental studies by different research groups ( (5), (6)).

For anonymity protection, location data must be depersonalized before they can be pub-

lished. The problem of location depersonalization has been investigated in a series of research

work ( (7), (8), (9), (10), (11), (12)) to support anonymous uses of location-based services

(LBS). The basic idea is to reduce location resolution to prevent service providers from deriv-

ing their users’ true identity based on the location information they submitted in their requests

for services. Specifically, when a client node requests LBS, it reports the current position to

an anonymity server; the server then computes a cloaking box that contains the client node

and at least K − 1 other mobile nodes. This box is then reported as the client’s location to

the LBS request. Since any entity inside the cloaking box could be the one that requests the

service, this strategy effectively provides K-anonymity protection to the service user.

Authors in (8) present a novel cloaking algorithm that is able to compute a minimal cloak-

ing box with a given anonymity requirement. Making a cloaking box as small as possible,

without comprise of anonymity protection, is critical to ensure that the published data re-

mains informative and statistically usable. Until now, (9) is the only source that considers

minimizing cloaking resolution. However, the proposed CliqueCloaking algorithm must com-

pute a clique graph and therefore is NP-hard, making it impractical for depersonalizing a large

set of location data. In contrast, the complexity of the algorithm proposed in (8) is polynomial

time.

The existing techniques fall short when applied to publishing large volumes of location

data. They are all designed for anonymous uses of LBS. Since a user’s location needs to

be cloaked only when requested by LBS, these techniques individually depersonalize location

samples one at a time. In the case of depersonalizing large volumes of location data, significant

savings on disk I/O and CPU time can be achieved through batch processing. Therefore, new

algorithms should be designed for efficient location data publishing, and to our knowledge

such work has not been described in the literature. The contributions of this thesis are as

follows: We propose to periodically publish location data which can be easily collected by

wireless service providers. The collected data is periodically refreshed, maintaining a historical



3

database of location samples. We develop a scalable batch-processing algorithm to efficiently

de-personalize large volumes of such location data. Our simulation shows that, by using batch

processing, disk I/O and CPU time can be reduced by more than 50% as compared to the

process of cloaking location samples one at a time.

The remainder of this thesis is organized as follows. In Chapter 2, we discuss existing work

on location depersonalization in more detail. In Chapter 3, we present a system overview and

goals, and propose our cloaking algorithms. The performance of the proposed techniques is

evaluated in Chapter 4. Finally, we present conclusions in Chapter 5.
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CHAPTER 2. RELATED WORK

There has been an exponential growth in the number and variety of data collection activities

related to user-specific information (13). Data holders, such as hospitals or banks, must release

this information for external access or else there is no practical use of such data. However,

there are significant privacy concerns associated with release of such data. Existing works

as described in (14) discuss the privacy act and the need for legitimate data access. There

have been studies to demonstrate the possibility of enhancing access to federated data while

preserving confidentiality (15). These works emphasize the need for privacy protection of

users, while making use of their personal data. Researchers have widely discussed the concept

of anonymity (16) for protecting user privacy.

2.1 Traditional Data Anonymity

The need for public data access and associated privacy problems was originally studied

for relational data, such as occurs in the release of patient records by hospitals. The Datafly

system (17) was created to guarantee anonymity while sharing medical data. Sweeney et al

( (13), (18)) studied a formal protection model named K-anonymity to ensure privacy pro-

tection for publicly-accessed person-specific data. The idea is to release data such that every

record is indistinguishable among at least K-1 other individuals whose records also appear in

the released data. The problem of privacy protection and preservation of anonymity has also

been studied in the realm of internet communication. Researchers have addressed the need for

anonymous communication over the internet by creating a protocol called Hordes (19). An

anonymous email communication over an unsecured network using pseudonyms was proposed

by Chaum (20).
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2.2 Location Anonymity

Privacy protection schemes for location data can be broadly classified into regulatory (21),

policy-based, or anonymity-based. Location-based applications initially adopted a policy-based

approach for privacy protection (22). In this approach, users must evaluate the policies offered

by the provider and trust in a contractual agreement that the data collected by the providers

is protected. Protecting the actual identity of users by using pseudonyms instead of actual

identities has been studied in ( (23), (24)). However, studies have shown ( (5), (6)) that

pseudonyms are relatively unsafe for location anonymity. Extending on the traditional K-

anonymity model, researchers have studied K-anonymity protection for location data as well.

Location data is made K-anonymous by replacing exact user locations with a larger area that

includes K users. This area, that makes the user indistinguishable among K users, is called a

cloaking area. Researchers have proposed various algorithms to find cloaking areas for a given

user location and a K-anonymity requirement.

2.3 Spatial and Temporal Cloaking

The problem of location depersonalization on dynamic data was studied by Gruteser and

Grunwald (10). The authors in this work introduced middleware architecture, with the use of a

trusted location broker service, that provided only anonymous data to the service providers. As

an extension of the traditional K-anonymity model (13), they proposed reducing the accuracy

of a user’s location information along spatial and/or temporal dimensions to produce a certain

level of anonymity protection. Specifically, spatial cloaking is used to ensure that every location

reported to a service provider is a cloaking area that contains at least K nodes. If the resolution

of a location is too coarse for quality services, temporal cloaking is applied, i.e., user’s service

request is delayed. When more mobile nodes come near the user, a smaller cloaking area can

be computed. This basic concept has inspired a series of research publications.
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2.4 Personalized Anonymity

In (9), Gedik and Liu considered personalized anonymity. The approach by Grunwald

et al provided spatial and temporal cloaking but there was a reduced quality of service either

because of a coarse location resolution or a delayed response. Authors in this work allowed users

to specify the minimum value of anonymity desired and the maximum spatial and temporal

resolution they were willing to tolerate. Authors also developed the CliqueCloak algorithms to

minimize the size of the cloaking areas, a factor critical for the quality of LBS. The proposed

algorithm, however, has non-polynomial time complexity and is appropriate only when the

value of K is small. The techniques proposed in (7) and (25), by Mokbel et al and Kalnis et

al, respectively, also support customization of K, but do not minimize the size of the cloaking

areas. An important contribution of these two works is their consideration of query processing,

i.e., how a location-dependent query can be processed with a location of reduced resolution.

2.5 Single Cloaking

Xu and Cai proposed exploring historical location samples, known as footprints, for location

cloaking (8). If a region has been visited by many different people, it is most likely a public

area and cannot be linked directly to any specific user. Thus, as long as an area contains a

sufficient number of different footprints, it can be used as a cloaking area. While this strategy

significantly improves cloaking resolution for a given anonymity requirement, it also makes

it possible to support anonymous uses of continuous LBS, wherein users must report their

location frequently.

Xu and Cai propose an efficient polynomial time algorithm to find the cloaking area. Given

a node N , the algorithm finds its minimal cloaking area , i.e., the minimum bounding circle

(MBC) that contains N and K − 1 other nodes. Let Cmin denote this MBC, Ca denote a

containing circle that contains N and at least K − 1 other nodes, and Cb denote the bounding

circle centered at N with a radius that is twice that of Ca. Also, let C.R denote the radius

for a given circle C. These notations are illustrated in Figure 3.1. The following observation

supports the authors algorithm for searching Cmin :
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Theorem 1 Cmin must be bounded by Cb.

Proof. By its definition, Ca contains K nodes including N . Since Ca is a candidate of

Cmin, Cmin must be no larger than Ca, i.e., Cmin.R ≤ Ca.R. Since both Cmin and Ca contain

N , the distance between any point in Cmin and N ’s position must not be larger than 2 ·Ca.R.

As a result, Cmin must be inside Cb.

2R

R

N

o

o

o
o

o

o

o

o
o

Figure 2.1 Cmin must be inside Cb (K = 4)

The problem is how to find a Ca with a small radius. Location samples are indexed using

a quad-tree, and the following simple approach is used to find a Ca. First, find the cell where

N locates and mark this cell as the searching box. If the number of nodes inside the searching

box is less than K, then expand the searching box by including its adjacent cells. This process

is repeated until the searching box contains at least K nodes. Among these nodes, find K − 1

nodes that are nearest to N and set Ca to be the MBC that bounds these K − 1 nodes and

N . This step costs O(K).
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After locating a Ca, determine Cb and retrieve all nodes inside Cb. Let S be the set of

these nodes and |S| the number of nodes in the set. As the area of Cb is 4 times that of Ca,

the number of nodes inside Cb is O(K). Given Cb and the set of nodes inside it, construct the

candidates for Cmin and then select the one that has the smallest radius as Cmin. Since Cmin

is the minimum circle that contains N and at least K − 1 other nodes, the circumference of

Cmin contains at-least two nodes. Cmin’s candidates are classified into two categories.

A candidate in the first category has exactly two nodes on its circumference. In this case,

the two nodes must form a diameter of the candidate. Such candidates can be enumerated by

considering all possible pairs of nodes inside Cb. Given a pair of nodes, construct the circle

with these two nodes as its diameter. The circle is a valid candidate if it contains N and

at least K − 1 other nodes. Among all valid candidates, find the one that has the smallest

diameter. Let this candidate be C. Given a set of nodes S, there are totally
(|S|

2

)
different

pairs of nodes. The computational cost in this step is O(K2).

A candidate in the second category has at least three nodes on its circumference. Note that

any three nodes can form a triangle in a two-dimensional domain (as long as they are not on

the same line), and this triangle can form only one circumscribed circle. Enumerate all possible

triple nodes in S. For each triple, construct the circum-circle of the triangle formed by these

three nodes. If the circle contains N and at least K − 1 other nodes, it is a valid candidate.

Again, among all valid candidates, find the one that is the smallest. Let this candidate be C ′.

The computational cost in this step is O(K3).

Finally, compare C with C ′, and designate the smaller one as Cmin. Since the total cost

of the entire process is O(K) + O(K2) + O(K3) = O(K3), the above algorithm finds Cmin in

polynomial time.

Despite the differences of these techniques in cloaking computation, they are all designed

for anonymous uses of LBS, and they depersonalize users’ locations one at a time when their

requests arrive.
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CHAPTER 3. LOCATION DATA PUBLISHING

3.1 System Overview

We assume a large number of mobile users with their locations sampled periodically. Each

location sample is represented as a two-dimensional point. The location samples collected

within one cycle are stored in a location table. For efficient retrieval of locations in a given

region, we assume a quad-tree is used to index location samples from each location table. Over

a period of time, many such location tables are created and old location tables might contain

only a user’s footprint. A footprint is defined to be a user’s location sample collected at some

point of time although the user might have physically moved from the location. Footprints

help reduce the anonymizing area for location data published for a given time interval. Also,

footprints enhance security, because the more footprints in a given region the less likely one can

be correlated to successfully identify a subject. We also consider using footprints as location

samples while publishing anonymized location data. From this point on we will use the terms

location sample and footprint interchangeably.

Each user can specify a value of K (i.e., a desired level of anonymity protection) that can

be included in a user’s profile. Given a user’s location (x, y) and the corresponding value of

K, we want to identify a K-Anonymity Area (KAA), defined to be a circular region 1 that

contains the point (x, y) and at least K − 1 other users’ locations sampled at the same time

period. Thus, given a location table with n users’ positions, we want to convert it into a new

location table with n KAA. The new table can then be released to the general public.

To make published location data as useful as possible, each KAA should be as small as
1A rectangular region can also be used as a KAA. We choose to use a circular rather than rectangular region

because different rectangles can have the same area. Nevertheless, our algorithm can also generate a rectangular
KAA.
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possible. In the following subsections, we discuss how to compute KAA for a number of nodes

in one batch, by extending the Single Cloaking algorithm proposed in (8). Our proposed batch-

cloaking algorithm takes advantage of the proximity of nodes to anonymize a set of nodes per

iteration of the single cloaking algorithm. We also extend this random batching of nodes, by

proposing a sweep technique. The proposed sweep technique attempts to maximize the number

of nodes in each batch.

3.2 Batch Cloaking - Random

Given a set of location samples, the Single Cloaking algorithm depersonalizes them one at

a time. This process can be improved through batch processing. Specifically, in the process

of finding a Cmin for a particular node N with an anonymity requirement of K, we can also

find Cmin for other nodes that are nearby. Ca is defined as the containing area with K nodes

associated with the node being anonymized. Our key observation here is that the containing

area would remain the same for all nodes within Ca, and having an anonymity requirement less

than or equal to K. Let Ca be a bounding circle that contains N and at least K−1 other nodes,

where K is N ’s anonymity requirement, and CB the circle centered at N with a radius that

is three times that of Ca. Let N ′ be any node inside Ca with an anonymity requirement K ′,

where K ′ ≤ K, and C ′
min be its minimum KAA. These notations are illustrated in Figure 3.1.

We have the following claim for Cmin of any node in Ca:

Theorem 2 C ′
min must be bounded by CB.

Proof. By its definition, Ca contains K nodes including N ′ and is therefore a candidate of

C ′
min. As N ′ is inside C ′

min, its distance to any point in C ′
min must not be larger than 2 ·Ca.R.

Since the largest distance between N ′ and N is Ca.R, the distance between N and any point

in C ′
min must not be larger than 3 · Ca.R. Thus, C ′

min must be inside CB.

Once we determine Ca for a particular node, we can find Cmin for all nodes inside Ca

with an anonymity requirement no larger than K. We will refer to these nodes as batch nodes

hereafter. However, with batch cloaking the search scope increases to CB (with a radius of
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Figure 3.1 C ′
min must be inside CB (K = 4)

3 · Ca.R), as compared to Cb (with a radius of 2 · Ca.R). This means batch cloaking is more

expensive if we find Cmin for one node at a time. Whether or not we should apply batch

processing depends on whether there are a sufficient number of batch nodes. Suppose there

are n nodes inside Ca and the number of batch nodes is nb. Assuming the nodes are uniformly

distributed, the number of nodes inside Cb and CB can be estimated as 4n and 9n, respectively.

If we cloak each node one by one, the total number of Cmin candidates we need to construct is

nb · (
(4n

2

)
+

(4n
3

)
). On the other hand, if we apply batch cloaking, then the total number of Cmin

candidates in CB is
(9n

2

)
+

(9n
3

)
. Thus, if the number of batch nodes is larger than (9n

2 )+(9n
3 )

(4n
2 )+(4n

3 ) ,

then batch processing can be applied to improve performance.

In light of the above observation and analysis, we can devise a batch cloaking algorithm.

Supposing that we allocate a buffer B in main memory to hold the location samples to be

cloaked, we have the following algorithms.

BatchCloaking
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1. Fill B with the location samples to be depersonalized;

2. Find the location sample, say N , in B with the highest value of K;

3. Find a bounding circle Ca that contains N and at least K − 1 other nodes;

4. Let n be the number of nodes inside Ca (these nodes are all batch nodes since their

anonymity requirement must be no larger than K);

5. If n <
(9n

2 )+(9n
3 )

(4n
2 )+(4n

3 ) , then do single cloaking as follows:

• Compute Cb;

• Load all nodes inside Cb;

• Construct all Cmin candidates;

• Set Cmin to be the one with the smallest radius that contains N and at least K − 1

other nodes;

• Output N and its Cmin;

• Remove N from B.

6. Otherwise, do batch cloaking as follows:

• Compute CB;

• Load all nodes inside CB;

• Construct all possible circles with these nodes (remove one immediately if its radius

is larger than Ca);

• For each node inside Ca, find its Cmin from the candidates constructed above;

• Output all these nodes and their corresponding Cmin;

• Remove all these nodes from B.

7. Fill B with the remaining nodes on the disk and repeat the above process until all nodes

are depersonalized.
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those in the previous iterations

Figure 3.2 Containing circle samples in random batching

3.3 Batch Cloaking - Sweep

The batch-cloaking algorithm proposed above works significantly better than the single-

cloaking algorithm. However, the approach used, to group nodes into one batch is greedy.

The drawback to this approach is that it does not consider the distribution of nodes and does

not follow any order in de-personalizing nodes and hence might result in picking redundant

nodes for batch processing. A redundant node in our case would be a location sample which

is already de-personalized. For example, with the random-batching technique we pick a node

with the highest value of anonymity requirement, K, and find a containing circle. We then

construct the bounding circle and identify the KAA for all nodes within this containing circle.

In subsequent iterations we follow the same approach, picking nodes with higher value of K

among the remaining unprocessed nodes. It is possible that the containing area constructed

here overlaps with one of the containing areas from previous iterations. This reduces the

number of unprocessed nodes that can be added to the current batch. Figure 3.2 depicts one

such scenario. The containing circle designated in the figure will result in fewer batching nodes

for the current iteration. The algorithm would require more iterations to complete processing
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all nodes and hence higher computational cost. Hence, it is desirable to increase the number

of batching nodes per iteration.

 recreated

x

y

0

Figure 3.3 Containing circle samples in sweep batching

We propose an improvement over random batching, called a sweep technique. The sweep

technique is a simple approach which considers the density of location sample distribution.

The location samples are represented on a quadrant formed by x and y axes, and the idea

is to sweep over the quadrant starting at one end and covering the entire area, as shown in

Figure 3.3. We estimate the average density, Davg of the location samples (footprints) and the

average anonymity requirement value, Kavg. We now construct an imaginary containing area

Cavg based on Kavg and Davg. In the first iteration the x and y co-ordinates of the centre of

the containing circle are set to x = y = r, where r is the radius of Cavg. All nodes within this

containing area are included for batch processing and if there is any node with an anonymity

requirement value greater than Kavg, the K value is reset to this higher value for the current

iteration. Finally, we reconstruct the containing area for the current iteration with centre (r,r)

and the latest K value for the current iteration. We then follow the approach discussed in the

previous section to find KAA for all nodes in the batch. For the next iteration, we roll Cavg to
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the next position by retaining the y-co-ordinate but resetting the x-co-ordinate to the previous

value + 2*r, r being the radius of Cavg. We continue the sweep until we hit the boundary on

the x-axis and then reset x to r and y to previous value + 2*r. We stop once the entire grid is

covered and we then use our random batching to process any remaining nodes.
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CHAPTER 4. PERFORMANCE STUDY

We have implemented the proposed techniques and evaluated their performance with sim-

ulated collections of location samples, each having its own anonymity requirement K. Given

a set of location samples, we index them using a quad-tree. Each internal node of the tree has

pointers linking its four child nodes, and each external (leaf) node is a fixed-size buffer that

occupies one disk page. For each set of location samples, we depersonalize them using these

approaches, single cloaking , random batching and sweep batching. The former depersonalizes

location samples one at a time while the latter two do so in batch. We plot the results for

all three techniques in the same graphs. We observe that random batching outperforms single

cloaking, and the sweep technique shows further improvement in performance over random

batching. We choose two performance metrics:

• CPU cost: Given a set of location samples, we record the total CPU time used by each

technique to depersonalize them all, and report this time as a technique’s CPU cost.

• Disk I/O cost: Given a large set of location samples, it may be too large to be entirely

loaded into main memory for processing. In this case, disk I/O becomes the performance

bottleneck, and cache-replacement policies have a significant impact on the total time

spent in depersonalization. To avoid assuming some specific cache-replacement policy,

we count the number of different leaf nodes accessed in processing each location sample,

and use this count as the estimation of disk I/O cost.

Our first study investigates how the techniques performance is affected by the number of

location samples. In this study, we generated a number of different sets of location samples,

ranging from 10,000 to 100,000. The level of anonymity requirement K of these location

samples range from 5 to 20 with an average of 10. The disk page size (quad-tree leaf node) is
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set to be 4K bytes. We ran both single and batch approaches on these sets of location samples

and plotted their performance results in Figure 4.1 and Figure 4.2 . As the number of location

samples increases, both batch and single take more CPU time and disk I/O cost to complete

depersonalization. However, batch outperforms single by about 50% in all settings, showing a

significant advantage of depersonalizing as many location samples as possible per iteration.

Our second study investigates how the performance of the two techniques is affected by

the level of anonymity requirement. In this study, we generated 50,000 location samples, but

varied their average anonymity requirement K from 5 to 20. The size of the quad-tree leaf

node is again fixed at 4KB. The performance results of both single and batch are illustrated

in Figure 4.3 and Figure 4.4. For CPU cost and Disk IO, when the value of K is small

(from 5 to 10), the performance of the techniques is about the same, but as K increases

(beyond 10), the performance gap increases as well due to the fact that when K is smaller,

the number of batch nodes included in Ca is less. When this number is not sufficient, there is

actually no batch processing. When the number K becomes larger, there is more chance for

batch processing, which in turn significantly improves the overall system performance. This

study indicates that batch processing can perform much better when there is sufficient memory

allocated for depersonalization. In reality, users tend to choose a larger value of K for their

privacy protection, making batch processing highly desirable.
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CHAPTER 5. SUMMARY AND DISCUSSION

Today’s wireless service carriers have accumulated large collections of location data that

are of great value to many organizations. However, making such data accessible to the general

public would present significant privacy and security threats to individuals. To the best of

our knowledge, this paper is the first that investigates the challenges of anonymity-preserving

location data publishing. Our research goal was to allow location data to be published as

accurately as possible, yet prevent them from being used for subject re-identification with a

level of guarantee that is user-specified. We have presented a novel location depersonalization

technique for efficient depersonalization of large volumes of location data. We have evaluated

the performance of the proposed techniques through simulation, and our results show that the

batching technique is highly efficient in publishing large volumes of location data.
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