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ABSTRACT

A chosen ciphertext attack against the RSA encryption standard PKCS#1 v1.5 was intro-

duced by Daniel Bleichenbacher at Crypto ’98. This attack was the first example where an

adaptive chosen ciphertext attack is not just a theoretical concept but a practical method to

crack a semantically secure encryption scheme.

This paper reviews the notion of the semantic security which was believed to be secure

enough in reality and the reason for which this belief was denied. The paper also presents a

demonstration of the Bleichenbacher’s attack by using a simplified version of PKCS#1 v1.5

format.
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1 Introduction

For many years, the chosen-ciphertext security was a theoretical concept in cryptography.

Before 1998, when the Cramer-Shoup cryptosystem [6] was introduced, secure encryptions

against a chosen-ciphertext attack were often impractical or not provably secure. Most of the

attacks were based on unintended software bugs instead of cryptanalytic methods. Thus, using

an encryption scheme which provides the highest level security was probably not a priority for

the engineers.

In public key cryptosystem, semantically secure [9] encryption, such as PKCS#1 v1.5 +

RSA, was normally believed to be a secure envelope. Since there is no way that we can gain any

information about the letter from the securely sealed envelope, this notion of security seemed

quite enough to use. However, Daniel Bleichenbacher has proved that one of the most popular

encryptions, which is semantically secure, was vulnerable against the chosen-ciphertext attack.

The attack was a proper cryptanalytic attack, and it triggered people to realize the importance

of the chosen-ciphertext security.

In this paper, we briefly review the concept of cryptanalytic attacks and the notion of

semantic security. Then, we explain Bleichenbacher’s attack in detail along with the idea of

the attack. A small example of Bleichenbacher’s attack will also be demonstrated which does

not require a computer to perform the attack.

2 Definition

2.1 Possible Cryptanalytic Attacks

While transferring the data through the network, one must always assume that there is

always an anonymous person with malicious purposes who eavesdrops on the conversation.

The goal of cryptography is to prevent attacks from this adversary. This task may not seem

very hard to achieve since there are various problems for which there is no known effective

solution, and we can convert a plaintext into an unreadable data by using them. However, we

should not expect that the adversary is merely a passive eavesdropper. For example, maybe
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he has an ability to obtain some plaintexts and corresponding ciphertexts, or perhaps he has

access to an encrypting machine without knowing the encryption key. Therefore, when we

evaluate any cryptographic scheme as a solid tool, they must be secure enough against every

possible cryptanalytic attack. These attacks are normally classified as follows:

1. Ciphertext-only attack is an attack in which the adversary is only an eavesdropper. In a

ciphertext-only attack, the adversary may observe one or more ciphertexts and attempts

to determine corresponding plaintexts or partial information about the plaintexts. This

is the most fundamental of all attacks.

2. Known-plaintext attack is an attack in which the adversary is skillful enough to collect one

or more pairs of plaintexts and corresponding ciphertexts. However, the adversary cannot

choose the plaintexts or ciphertexts to be encrypted or decrypted. The adversary may

be able to understand some relationship between plaintexts and ciphertexts, so he can

decrypt a challenge ciphertext c based on this information. In worst case, this information

may be used to identify the key, either encryption or decryption, of the cryptosystem.

3. Chosen-plaintext attack is an attack in which the adversary has the ability to access an

encryption oracle. In this model, the adversary can choose one or more plaintexts and

can obtain corresponding ciphertexts through the encryption oracle. The adversary does

not have to understand the exact mechanism by which the plaintext is being encrypted.

The goal of the adversary is to determine the plaintext of a challenge ciphertext c by

using the ability to access an encryption oracle.

4. Chosen-ciphertext attack is an attack in which the adversary has the ability to access

a decryption oracle. In this case, the adversary can obtain the decryption of one or

more ciphertexts which he has chosen. Again, the decryption is computed through the

decryption oracle, so we assume that the adversary does not have any understanding of

the decryption mechanism. We also assume that the adversary cannot use this decryption

oracle to directly decrypt the challenge ciphertext c.
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2.2 Security Notions For Public Key Cryptosystem

Before we start considering the security notions, we first define the syntax of a public key

encryption scheme, which we will use for the rest of this section.

Definition 1 A public key encryption scheme is given by a triple of algorithms, Π = (K, E ,D),

such that

- K, the key generation algorithm, is a probabilistic algorithm that takes a security param-

eter k ∈ N as an input and outputs a pair of keys (k1, k2) which are a public and secret

key respectively,

- E, the encryption algorithm, is a probabilistic algorithm that takes k1 and a plaintext m

as an input and outputs a ciphertext c,

- D, the decryption algorithm, is a deterministic algorithm that takes k2 and a ciphertext

c as an input and outputs a plaintext m,

where Dk2(Ek1(m)) = m for all m and (k1, k2).

2.2.1 Semantic Security

To determine the security level of a public key cryptosystem, one would set a standard

notion as a potential goal of this system. Goldwassar and Micali [9] first introduced a notion

of security for a public key cryptosystem, named semantic security. To achieve this level

of security, a system should not leak any partial information about the plaintext of a given

corresponding ciphertext. To be more specific, let f be a polynomial time computable function

and m ∈ {0, 1}n be a plaintext. Then, the public key cryptosystem is semantically secure if

the probability that an adversary can guess f(m) in polynomial time given the ciphertext is

almost the same as the probability of guessing f(m) without the ciphertext. We say that these

two probabilities are almost the same if the difference is less than 1/p(n) for every polynomial

p on input n. Thus we can conclude that in a semantically secure public key cryptosystem,
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whatever information a polynomial time bounded adversary can compute about the plaintext

given the ciphertext is also computable even without the ciphertext.

This idea can be formally verified through the following experiment called polynomial-time

Indistinguishability (a.k.a. polynomial security [9]) experiment against an eavesdropper. Let

Π = (K, E ,D) be the public key encryption scheme and let A be a polynomial-time adversary.

For any n ∈ N as a security parameter:

Experiment Expeav
Π,A(n) :

1. The adversary A outputs a pair of plaintexts (m0,m1). Both m0 and m1 are

n-bit string.

2. Choose a key k ← K(1n) and a random b ∈ {0, 1}. Information of k and b

cannot be leaked to A.

3. Compute an encryption c← Ek(mb).

4. The adversary A receives c and guesses b′ ∈ {0, 1}.

5. Return 1 if b′ = b. Otherwise, return 0.

If the adversary outputs b′ at random, the probability that Expeav
Π,A(n) = 1 should be 1/2.

This cryptosystem has indistinguishable encryptions against an eavesdropper if any adversary

whose computation power is no better than a probabilistic polynomial-time Turing machine

cannot guesses b′ = b with significantly higher probability than 1/2; that is, the probability

that an adversary guesses b′ = b is, again, almost 1/2.

Note that in a public key cryptosystem, an eavesdropper can attempt a chosen plaintext

attack(CPA) by simply encrypting any plaintext with the given public key. Therefore, if a

public key cryptosystem is indistinguishable against an eavesdropper, then this system is also

indistinguishable under CPA (i.e. Pr[ExpCPA
Π,A (n) = 1] = Pr[Expeav

Π,A(n) = 1].) Moreover, this

probability never reaches exactly to 1/2 no matter how large the message space is because every

public key cryptosystem is vulnerable to an adversary performing chosen plaintext attack by

computing every possible probabilistic encryption of each plaintext in the message space.
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In [9], the definition of semantic security was only given against CPA. In fact, the equiva-

lence between semantic security(SS) and indistinguishability under CPA(IND-CPA) was proven

(IND-CPA → SS by [9], SS → IND-CPA by [11].)

In order to make a formal definition of Indistinguishability against CPA attack model, we

consider the following two definitions:

Definition 2 A function f : N → R, f(n) ≥ 0 for n ∈ N is negligible if for every polynomial

p on input n, f(n) < 1/p(n) holds.

Definition 3 (Indistinguishability-CPA) A public key encryption scheme Π = (K, E ,D)

has an indistinguishable encryption under CPA if for every polynomial-time adversary A, there

is a negligible function f such that

Pr[ExpCPA
Π,A (n) = 1]− 1

2
≤ f(n).

Later on, Watanabe et al [17] have shown that semantic security and indistinguishability

against other attack models are also equivalent by using extended definition of semantic security

based on the security framework given by Bellare et al [1].

2.2.2 Chosen Ciphertext Attack

In a public key cryptosystem, every eavesdropper can perform a chosen plaintext attack as

well as known plaintext attack by using the public key as a key for the encryption oracle. Thus,

now we consider a final attack model: Chosen ciphertext attack(CCA). There are two different

types of CCA model. In chronological order, these are named non-adaptive chosen ciphertext

attack(CCA1) and adaptive chosen ciphertext attack(CCA2). Recall that an adversary under

chosen-cipher attack has an ability to access a decryption oracle so that he can decrypt the

ciphertext that he has chosen. The difference between CCA1 and CCA2 lies in whether or not

this ability is restricted by the challenge ciphertext c. Under CCA1, due to Naor and Yung [12],

the adversary can access the decryption oracle only before he receives the challenge ciphertext

c. That is, the adversary’s queries to a decryption oracle cannot be adapted to the challenge

c. This is the reason why the term ‘non-adaptive’ is appended in the name of CCA1. Under
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CCA2, due to Rackoff and Simon [13], the adversary has an ability to access a decryption oracle,

and now he can use this decrypting function even after he obtains the challenge ciphertext c.

The only restriction to this model is that an adversary cannot send c to the decryption oracle

to verify the real message. In this model, an adversary can decide queries for the decryption

oracle based on c, which is an extremely strong notion of security.

3 Semantically Secure Encryption

Semantically secure encryption is often described as a secure envelope. Once you seal the

envelope, no attacker can gain any information on the content of the letter unless an authorized

receiver breaks the seal. Assume that you wrote an important message for your parents and

asked your friend to seal it with a secure envelope and to place it on the desk. Since all secure

envelopes appear identical to each other, it is impossible to distinguish which one contains

the letter you wrote to your parents if there was another sealed envelope on the desk. Even

though you knew how to seal the envelope for yourself, this ability would not be of any help in

finding your letter. The only way to distinguish the message is to unseal the envelopes. This

illustrates the indistinguishability under chosen plaintext attack (IND-CPA), which is identical

to the semantic security.

Since the semantic security looks to ba a fairly strong notion of security in public key

encryption, IND-CPA might seem too difficult to achieve when constructing a cryptosystem.

Then, why do we have to endeavor to accomplish semantic security? Throughout this section,

I provide an answer to this question by showing vulnerabilities of a particular cryptosystem

which has a certain level of security but is not semantically secure.

3.1 Plain RSA Is Not Semantically Secure

First, we focus on one of the most famous public key algorithms named RSA. The RSA

scheme was originally introduced by Ron Rivest, Adi Shamir, and Leonard Adleman [14] in

1978. The basic concept of this scheme is the fact that we believe a factoring problem of a large

integer n, where n is the product of large random primes p and q, is computationally hard.
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The message space per single encryption is upper bounded in n, i.e., a block of the message

should be an integer between 0 and n− 1.

The RSA scheme involves a public key and a private key. These keys can be generated

through the following procedure:

1. Pick two large primes p and q. Let n = pq.

2. Compute φ(n) = (p− 1)(q − 1), where φ is the Euler’s totient function.

3. Choose e, d ∈ Zφ(n) such that ed ≡ 1 (mod φ(n)).

4. Public key: (n, e)

5. Private key: d

Let m be the plaintext, then the encryption of m is

c = me mod n.

After receiving the ciphertext c from the sender, the decryption of c can be computed as

m = cd mod n.

It is believed that the private key d cannot be determined as long as φ(n) is kept secret,

and it is computationally infeasible to compute φ(n) without factoring n. Thus, an attacker

cannot illegally decrypt the ciphertext in a reasonable amount of time. However, even though

the RSA cryptosystem is assumed to be secure, it is not secure enough to qualify as a secure

envelope. There are some important weak points of the RSA encryption that we should focus

on.

First of all, a ciphertext encrypted by the RSA leaks some of the information in the message.

Clearly, any deterministic encryption would not be able to overcome this weakness because there

is only a unique encoding for each message. This could be a fatal defect for the public key

encryptions as they are always vulnerable to the dictionary attack – an attacker can construct a

dictionary which contains encryptions of every possible plaintext in the message space. Assume
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the case where an eavesdropper already knows that the message is the 3-digits of a credit card

security code. Then, the attacker can undoubtedly create a dictionary filled with 1000 lines of

encryptions and figure out the original security code.

Another known drawback of the plain RSA is its malleability. Any eavesdropper can con-

struct the encryption of a transformed plaintext. Let m be the original plaintext and c be the

encryption of the plaintext. Then, an adversary computes

c′ = c× te ≡ mete ≡ (mt)e mod n

for any t. If an adversary happens to know that this modification has a proper meaning, then he

can encrypt a distorted message even though he does not know the plaintext m. For instance,

setting t = 1
2 instantly reduces m into half, and this kind of attack could be very critical if the

plaintext was a numerical value such as price, date, or time.

Intuitively, the secure envelope should not allow malleable encryption as a sealed envelope

cannot be opened without breaking the seal. Moreover, the non-malleability is also an impor-

tant concept of security since it is shown by [1] that non-malleability under CPA (NM-CPA)

implies IND-CPA as well. In other words, a non-malleable public key cryptosystem is seman-

tically secure. As we now know that this attack can be a practical threat, NM-CPA should be

achieved along with IND-CPA when designing a secure encryption scheme.

3.2 Random Padding Scheme

We now describe a random padding scheme which will reinforce the security level of en-

cryption schemes in order to approach the concept of secure envelope. As we already know

from the last section, it is impossible to acheive semantic security by deterministic encryption

such as plain RSA because of the limited message space which would cause the dictionary at-

tack. To avoid the dictionary attack, we need to add randomness somewhere in the encryption

process. One quick solution for this problem is to use a randomized padding scheme. As an

easy example, we encrypt a message m along with a 10-bit random string r at the end of the

message. With the help of the random string r, a ciphertext would become indistinguishable to

the eavesdropper if the sender encrypts the same message twice and sends both ciphertexts to
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the receiver. After the decryption of the ciphertext, the plaintext m can be restored by cutting

off the last 10-bits string of the decrypted message.

In 1993, RSA laboratories introduced the RSA Encryption Standard (PKCS#1) version 1.5

which explains how to securely encrypt messages with RSA scheme. One of the key subjects of

the standard is the message block formatting method as a part of the encryption process. Let

(n, e) be a public key for the RSA cryptosystem. Then, for a block type BT , a padding string

PS, and the message D, the encryption block format EB is defined by the standard as

EB = 00 ‖ BT ‖ PS ‖ 00 ‖ D.

The operator ‘‖’ is used for the concatenation between two strings. A block type would be

‘02’ in the case of public key operation, which we will focus on throughout this paper, and a

padding string should be a non-zero random k−3−|D|-byte integer assuming the modulus n is

a k-byte integer. After the encryption block EB is converted to an integer, the leading 00-byte

ensures that the whole block is less than the modulus n. Moreover, the random padding string

should be at least 8-bytes long in order to prevent an adversary from trying every possible

encryption block in the reasonable time.

Then, how secure is the RSA encryption with the PKCS#1 v1.5 padding scheme? If we

carefully construct the message D1, it is generally believed to be semantically secure, although

to date, there is no proof of this fact. It is not known whether the scheme is secure against

CPA.

3.3 Beyond Semantic Security

Figuring out how high the level of security should be guaranteed for secure encryption is

not an easy task. In fact, semantic security seems to be fairly difficult to achieve. Then, is it

enough to set semantic security as a practical standard of public key cryptosystem security?

Intuitively, the CCA model may appear too impractical to be considered a real threat. For

example, it is very unlikely to imagine a real scenario where an adversary uses the CCA model

1[5] showed that the PKCS#1 v1.5 encryption is vulnerable to the chosen plaintext attack if the plaintext
ends with sufficiently many zeroes.
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to attack the system. How could an adversary have the ability to access the decryption oracle?

Even if he could, why would he not use this oracle to decrypt the challenge ciphertext? Because

of these doubts, the CCA model was considered a theoretical concept that would never become

a potential threat. However, it has been proven that achieving CCA security is actually a very

important matter.

In 1998, Daniel Bleichenbacher [4] showed that the PKCS#1 v1.5 can be attacked by a

CCA level adversary if we do not take the definition of the CCA model too literally. Instead of

accessing the decryption oracle, the attack adaptively collects the partial information returned

from the oracle whether the ciphertext is a valid PKCS#1 encryption or not. Since an adversary

would not get a full plaintext from the oracle, this attack is also called a partial chosen ciphertext

attack.

We first outline how the Bleichenbacher’s attack works by using a hypothetical storyline.

In the story, your elder sister Alice asked you to deliver a sealed bottle to Bob, her boyfriend.

You knew that there was some kind of liquid inside of the bottle, but since the bottle was

completely opaque, you never knew what liquid was in it just by looking at the bottle. Instead,

you somehow found out a way to inject another fluid through the cork into the container. Then,

you handed over the bottle containing the mixed fluid to Bob. After Bob broke the seal, he

could verify the color of the liquid and decide whether the bottle was actually sent by Alice.

Since you manipulated this gift, Bob may or may not be upset with you for delivering the

wrong bottle. Depending on Bob’s attitude, you may be able to reduce the range of possible

candidates for this secret liquid. For example, if you decided to inject some black ink into the

bottle but Bob did not notice this, then you could exclude light-colored liquids such as water

or milk. You could also use an indicator which would cause a chemical reaction to intentionally

change the color of the liquid. If you repeat this experiment several times, it would be possible

to guess the right answer at some point.

Now we explain the attack in detail. Let (n, e) be a public key for the RSA cryptosystem,

where n is a k-byte modulus and e is an encryption exponent. The ciphertext c is me mod

n, where m is a plaintext. We say the ciphertext c is PKCS comforming if m, a decryption
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of c, has the PKCS#1 format. This means that the first two bytes of m are ‘00’ and ‘02’

respectively. Therefore, if the plaintext m is PKCS conforming, then

2B ≤ m ≤ 3B − 1

where B = 256k−2. Assume that the adversary tries to find the plaintext m by using the corre-

sponding ciphertext and the decryption oracle. The oracle does not provide a full decryption of

a query ciphertext but returns the boolean value whether the ciphertext is PKCS conforming

or not. Essentially, the adversary chooses integers s, and send c′ ≡ cse (mod n) to the oracle

until he finds sufficiently many PKCS conforming ciphertexts c′. According to [4], nearly 220

chosen ciphertexts will be required to derive m, which can be done practically. The process

of the attack can be divided into three steps. We define a set of intervals Mi such that m is

included in one of these intervals after a proper si has been found at the i’th stage.

Step 1: For initialization, let [u, v] = [2B, 3B − 1]. Since m itself is PKCS conforming,

we have

M0 = {[u, v]}

First, we set i = 1 and search for the smallest integer s1 > 1, such that the encryption of

s1m (mod n) is PKCS conforming. Instead of searching for every integer, we can narrow down

the search space with the lower bound on s1. Since s1m is bigger than v for any s1 > 1, we

have the following bound of s1m for some positive integer t.

tn+ u ≤ s1m ≤ tn+ v

Thus, we can start searching from s1 ≥
⌈
n+u
v

⌉
≥
⌈
n

3B

⌉
. We have the lower bound of the

search space

s1 ≥
⌈ n

3B

⌉
. (1)

After we find PKCS conforming s1m, we can update the set of intervals M1 as
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M1 =
⋃
t

{
[u, v] ∩

[
tn+ u

s1
,
tn+ v

s1

]}
(2)

for all t, such that us1−v
n ≤ t ≤ vs1−u

n .

Step 2: After the previous step, M1 most likely contains multiple intervals. In this step,

we narrow down these intervals and find the one which actually contains m.

Increase i by 1 as we move on to the next stage. Now we search for the smallest si, such

that si > si−1 and the encryption of sim is PKCS conforming. After finding si, the set Mi can

be computed as

Mi =
⋃
a,b,t

{
[a, b] ∩

[
tn+ u

si
,
tn+ v

si

]}
(3)

for all intervals [a, b] ∈Mi−1 and asi−v
n ≤ t ≤ bsi−u

n .

We repeat this step until Mi contains only one interval.

Step 3: Step 3 will be repeated until Mi indicates a unique integer. We search for the new si,

such that si ≈ 2si−1 and the encryption of sim (mod n) is PKCS conforming. Recall that the

search space is
⌈
tn+u
v

⌉
≤ si ≤

⌊
tn+v
u

⌋
for some integer t. However, if there is no such t for si,

we discard si and find a new one. The length of Mi is less than v−u
si
≈ B

si
, and the expected

magnitude of si is about double the value of si−1. Therefore, there will be an end point to this

step with sufficiently many iterations.

3.4 A Watered Down Bleichenbacher’s Attack

In this section, we demonstrate a real example of Beleichenbacher’s attack by using a

simplified version of PKCS#1 v1.5. Let P be the probability that a randomly chosen integer

m is PKCS conforming. According to [4], we have

0.18 · 2−16 < P < 0.97 · 2−8
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if we assume that a modulus n is a 512-bit integer. Basically, we need to find a PKCS conforming

integer si at random in order to perform Bleichenbacher’s attack against RSA encryption with

PKCS#1 v1.5 padding scheme. It seems that demonstrating or examining this attack by hand

is almost impossible. Thus, by increasing the probability P , we can actually execute the attack

and see how this attack finds the plaintext m.

3.4.1 A Simplified Version of PKCS#1 v1.5

To increase the probability P , we shall use the following block format EB which is very

similar to the original PKCS#1 v1.5:

EB = 02 ‖ PS ‖ D.

Let the modulus n be a k-byte integer. Then, we need to use the modulus n ≥ 3B where

B = 256k−1. Moreover, since there is no 00-byte between the random padding string and the

data, we assume that we only use a fixed size for the padding string. We call this format a

simplified PKCS#1.

Let us say the plaintext m is PKCS conforming if the format of m is a simplified PKCS#1.

In fact, every string in which the first byte is equal to ‘02’ is PKCS conforming, Therefore, P

becomes much larger than before. To be more specific, the probability that the first byte is

‘02’ is 28(k−1)

n . Thus, for a random integer 0 ≤ m < n, P is larger then 1
256 .

3.4.2 Exercise

- Plaintext(1 byte): 5516

- Random padding(1 byte): AC16

- Simplified PKCS#1 m(3 byte): 02AC5516 = 175189

Assume that the above information is secret.

Let n = 13102589, e = 13, and a ciphertext c = me%n = 3537984. We want to reveal m by

using the Bleichenbacher’s attak. We shall define a set of intervals Mi as we did in the previous
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section.

Initial step: i = 0

Since m is PKCS conforming, 2 · 2562 ≤ m ≤ 3 · 2562 − 1. Let u = 2 · 2562 = 131072 and

v = 3 · 2562 − 1 = 196607, then we have

M0 = {[u, v]}

Step 1: i = 1

We need to find s1 > 1, such that the encryption of s1m (mod n) is PKCS conforming. By

(1), we start searching from the lower bound of s1 ≥
⌈

n
3·2562

⌉
= 67.

During the exercise, we check PKCS conformability by simply computing s1m (mod n)

instead of using the decryption oracle. We start from the lower bound and increase by one for

each attempt. This may be time-consuming to some degree, but still practical even by hand

with a simple calculator. After several attempts, we found our first integer, s1 = 300. A set of

intervals M1, therefore, can be updated by using the equation (2) as

M1 =
⋃
t

{
[u, v] ∩

[
u+ tn

300
,
v + tn

300

]}
for all t, such that 300u−v

n ≤ t ≤ 300v−u
n . As both 3 and 4 are in t, we have two intervals

M1 = {[131463, 131681], [175139, 175356]} ,

and this ends step 1.

Step 2: i = 2

The next smallest integer that we can find as s2 is 375.

Since |M1| = 2, we need to compute M2 for each interval. We start with the first interval

[131463, 131681] in M1. Let a = 131463 and b = 131681 to use them with the equation (3).

However, the bound for t in this case indicates that t cannot be an integer: 3.75 ≤ t ≤ 3.76.

Thus, we discard this interval and move on to the next one. Let a = 175139 and b = 175356.
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By (3), we can determine a proper integer t = 5 from the bound we have for t. We narrow

down M2 from M1 to finish step 2.

M2 =

{
[a, b] ∩

[
5n+ u

375
,
5n+ v

375

]}
= {[175139, 175225]}

Step 3: i = 3, 4, 5

This step will be repeated until the set Mi contains a unique integer. The next si can be

found somewhere in the neighborhood of 2si−1. Therefore, 750 would be a good place to start

searching for the next s3 candidate. Fortunately, we found s3 = 749 which narrows down M3

to [175139, 175196]. By repeating this procedure, s4 and s5 can also be found as follows:

s4 = 1347→M4 = {[175188, 175196]}

s5 = 2544→M5 = {[175188, 175190]}

Our objective is to make the interval uniquely indicate m = 175189 at some point. Hope-

fully, M6 or M7 will achieve this goal. In order to narrow down the interval M5, however,

we need a much bigger s6 than just twice the size of s5. Since the interval M5 very closely

approaches m, it seems quite enough for the demonstration of Bleichenbacher’s attack.

4 Provably Secure Encryption Schemes Against CCA2

Provably secure encryption simply means that it has a mathematical proof to guarantee

its security against certain types of attacks. For instance, one-time pad has been proven

to be a perfectly secure encryption based on the notion of perfect secrecy by Shannon, even

though it is not usually considered as a practical encryption scheme in real life. Throughout the

previous section, we focused on the fact that indistinguishability under chosen-plaintext attack,

or semantic security, is not enough. After Daniel Bleichenbacher had shown that PKCS#1 v1.5,

which was believed to be a secure encryption, was actually crackable by a CCA2 level adversary,

the CCA security has increasingly become a practical issue. Thus, we need encryption schemes

which are secure against CCA2, and it would be even better if these schemes are provably

secure.
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In fact, there are good encryption schemes that provide CCA2 security. One of the most

popular schemes we use at present is the Optimal Asymmetric Encryption Protocol(OAEP).

This protocol was first introduced by [3] in 1994 and was adopted as PKCS#1 v2.0 in 1998.

OAEP is a random padding scheme similar to the one we discussed in the previous section.

Unlike PKCS#1 v1.5, it provides resistance against CCA2 if it is used with the RSA encryption

scheme. For many years, OAEP was believed to be secure not only with RSA but also with

any kind of one-way permutation scheme. However, this belief was denied by Victor Shoup[15],

as he found a significant gap in the OAEP security proof. This gap could not be filled, but

RSA+OAEP has remained to be a provably secure encryption([15], [8]).

In the OAEP security proof, the scheme is secure against CCA2 in the random oracle

model [2]. In the random oracle model, the hash function or the random number generator

used in the encryption scheme is treated as a real random oracle. Even though this model is

often very useful in security proofs, one may think that this assumption is too strong since the

implementation of randomness is impossible in the real world.

The Cramer-Shoup public key encryption scheme [6] is another provably secure cryptosys-

tem against CCA2. This scheme is provably secure assuming that the Diffie-Hellman Decision

Problem cannot be solved in polynomial time and that the hash function is Collision-Resistant2.

One of the strong points of this scheme is that the security proof does not require the random

oracle model. As the assumption used in Cramer-Shoup encryption is much weaker than the

random oracle model, it makes the user think that the scheme is more reliable than the other.

Still, a number of encryption schemes are being designed to provide CCA2 security with

or without the random oracle model. Furthermore, many researchers are presenting security

proofs under lighter assumptions for existing encryption schemes. Ever since the emergence of

practical attacks against semantic security, active research for higher level security is no longer

just a theoretical matter.

2The hash function H is Collision-Resistant if it is infeasible to find x and y such that x 6= y and H(x) = H(y).
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