
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

Comparison of encoding schemes for symbolic
model checking of bounded petri nets
Nishtha Arora
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Arora, Nishtha, "Comparison of encoding schemes for symbolic model checking of bounded petri nets" (2010). Graduate Theses and
Dissertations. 11511.
https://lib.dr.iastate.edu/etd/11511

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11511?utm_source=lib.dr.iastate.edu%2Fetd%2F11511&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Comparison of encoding schemes for symbolic model checking of bounded petri

nets

by

Nishtha Arora

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Andrew S. Miner, Major Professor

Samik Basu
Robyn Lutz

Iowa State University

Ames, Iowa

2010

Copyright c© Nishtha Arora, 2010. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to my parents who have been a source of inspiration and

encouragement to me all throughout my life. A very special thanks to Prof. Andrew Miner

for his constant support and guidance. I learnt a lot from him and would like to thank him

from all my heart. I would also like to take this opportunity to thank Junaid Babar and my

committee members, Prof. Samik Basu and Prof. Robyn Lutz for their help and support.

Thanks to my siblings for their unconditional love that has helped me succeed at every

step. Finally, I would like to thank my friend Shantanu, who instilled in me the confidence

that I am capable of doing anything I put my mind to.

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vii

ABSTRACT . ix

CHAPTER 1. OVERVIEW . 1

1.1 Introduction . 1

CHAPTER 2. REVIEW OF LITERATURE 3

2.1 Overview . 3

2.2 Decision Diagrams . 3

2.2.1 Binary Decision Diagrams . 4

2.2.2 Algebraic Decision Diagrams . 5

2.2.3 Multi Valued Decision Diagrams . 6

2.2.4 Matrix Diagrams . 9

2.2.5 Operations on DDs . 11

2.3 Petri Nets . 14

2.4 Building Transition relation and Reachability set 20

2.5 Model Checking . 22

CHAPTER 3. ENCODING SCHEMES . 29

3.1 Overview . 29

3.2 One-hot Encoding Scheme . 29

3.3 Logarithmic encoding . 32

3.4 Native MDD Encoding . 34

iv

3.5 Proposed Encoding Scheme - K-Hot Encoding 39

3.5.1 Encoding Forkjoin model with k as 2 . 42

3.5.2 Encoding Forkjoin model with k as 3 . 42

CHAPTER 4. RESULTS . 44

4.1 Overview . 44

4.2 Experimental setup . 44

4.2.1 CuddImpl . 45

4.2.2 MeddlyImpl . 46

4.3 Fork-join model . 47

4.4 Dining philosopher model . 51

4.5 Swaps model . 55

4.6 Kanban model . 58

4.7 Tiles model . 62

4.8 Performance in computing CTL formulas . 66

4.9 Discussion . 68

CHAPTER 5. SUMMARY AND FUTURE WORK 70

BIBLIOGRAPHY . 72

v

LIST OF TABLES

Table 3.1 Encoding for place p1 . 31

Table 3.2 Part of the transition relation for the Petri net shown in Figure 2.26 for

N = 9 . 32

Table 3.3 Place p1 encoded using variables xp1,0, xp1,1, xp1,2 and xp1,3 34

Table 3.4 Part of the Transition relation of Petri net in Figure 2.26 with N = 9 . 35

Table 3.5 Representing number of tokens at a place with bound 9 using 2-hot . . 41

Table 3.6 Representing number of tokens at a place with bound 9 using 3-hot . . 41

Table 3.7 Part of the transition relation for Figure 2.26 with N = 9 using k-hot

encoding with k as 2 . 42

Table 3.8 Part of the Transition relation for Figure 2.26 with N = 9 using k-hot

encoding with k as 3 . 43

Table 4.1 Properties of Fork-join model . 48

Table 4.2 Fork-join in CuddImpl . 49

Table 4.3 Fork-join in MeddlyImpl . 50

Table 4.4 Properties of Philosophers model . 53

Table 4.5 Philosophers model in CuddImpl . 53

Table 4.6 Philosophers model in MeddlyImpl . 54

Table 4.7 Properties of Swaps model . 55

Table 4.8 Swaps model in CuddImpl . 56

Table 4.9 Swaps model in MeddlyImpl . 57

Table 4.10 Properties of Kanban model . 59

Table 4.11 Kanban model in CuddImpl . 60

vi

Table 4.12 Kanban model in MeddlyImpl . 61

Table 4.13 Properties of Tiles model . 62

Table 4.14 Tiles model in CuddImpl . 64

Table 4.15 Tiles model in MeddlyImpl . 65

Table 4.16 Comparing time taken to evaluate CTL formulas 67

vii

LIST OF FIGURES

Figure 2.1 BDD representing function f = ab′ + a′bc 4

Figure 2.2 Function f defined using a truth table on the right and ADD represent-

ing this function on the left . 6

Figure 2.3 Example of an MDD . 7

Figure 2.4 MDD on the left shows the quasi-reduced form of the MDD in Figure 2.3

and the one on the right shows its fully-reduced form. 8

Figure 2.5 Truth table for function f on the left and its MTMDD representation

on the right. 8

Figure 2.6 MTMDD on the left shows the quasi-reduced form of the MTMDD in

Figure 2.5 and the one on the right shows its fully-reduced form. . . . 9

Figure 2.7 Identity reduced MxD [14] . 10

Figure 2.8 Apply method to compute v1 ⊕ v2 . 12

Figure 2.9 BDD for ¬(x1 ∧ x3) on the left and x2 ∧ x3 on the right [4] 13

Figure 2.10 BDD for ¬(x1 ∧ x3) ∨ (x2 ∧ x3)[4] . 14

Figure 2.11 Petri Net . 15

Figure 2.12 Petri Net with inhibitor arcs . 15

Figure 2.13 BDD for the marking set M = {[100], [011], [101]} 18

Figure 2.14 Petri net for Forkjoin Model . 18

Figure 2.15 Reachability graph for Forkjoin model with N = 1 19

Figure 2.16 Building enabling relation . 20

Figure 2.17 Building firing relation . 21

Figure 2.18 Building overall Transition relation . 21

viii

Figure 2.19 Algorithm for building Reachability Decision Diagram 22

Figure 2.20 MxD for enabling expression on the left, firing expression in the middle

and transition t on the right . 23

Figure 2.21 M, s |= AGg and M, s |= AFg . 25

Figure 2.22 M, s |= EFg and M, s |= EGg . 25

Figure 2.23 Algorithm for CTL formula EXp . 26

Figure 2.24 Algorithm for CTL formula EpUq . 26

Figure 2.25 Algorithm for CTL formula EGp . 27

Figure 2.26 Reachability graph of the Petri net of Figure 2.14 28

Figure 3.1 MDD for x > y on the left and the corresponding BDD on the right . . 36

Figure 3.2 MDD representing the initial state of the Petri net shown in Figure 2.26

with N = 9 . 36

Figure 3.3 MxD representing a part of the transition relation of the PN shown in

Figure 2.26 with N = 9 . 37

Figure 3.4 MDD representing a part of the reachability set of the PN shown in

Figure 2.26 with N = 9 . 38

Figure 3.5 Encoding place p using k-hot encoding 40

Figure 4.1 3 Dining philosophers model . 52

Figure 4.2 Swaps-3 model . 55

Figure 4.3 Kanban model . 58

Figure 4.4 Tiles(2,2) model . 63

ix

ABSTRACT

Petri nets are a graph based formalism used for modelling concurrent systems. Binary

Decision Diagrams or Multi-Valued Decision Diagrams can be used in the analysis of systems

modelled by Petri nets. An encoding scheme is required to be able to map the Petri net state to

decision diagram values. Various encodings like One-hot scheme, Logarithmic scheme and Mdd

scheme exist for this purpose. This thesis compares the performance of the existing encodings

based on time and space taken to represent and analyze the system modelled as Petri net.

It also introduces and compares a new encoding scheme called k-hot encoding and shows a

gradual improvement in performance of the scheme with increasing values of k. The process

of analyzing properties like deadlock and starvation is explained and a comparison is made

between the encoding schemes based on the time taken by each to analyze these properties.

1

CHAPTER 1. OVERVIEW

1.1 Introduction

The software or hardware systems used nowadays are mostly huge and complicated. Thus,

modelling and analyzing such systems has become complicated too. A representation for such

a system can be used to evaluate the possible states the system can be in. One of the problems

with representing such systems is the possibility of exponential growth in the number of states

with the size of the system. This problem is well known as the State Explosion problem. The

state explosion problem restricts huge concurrent systems from being represented and thus

analyzing them or verifying properties for such system has become an issue. A lot of research

work has been done in this context to make it possible to represent bigger and bigger systems

efficiently and in a compact manner.

Efficiently modelling a system requires taking less space and time in representing the sys-

tem. Decision Diagrams are used as they are capable of representing large systems in the form

of compact data structures. In order to efficiently model concurrent systems, firstly a compact

representation is chosen, secondly a good encoding scheme for the representation is selected

and lastly a good enough ordering for the encoding variables is used.

The contributions of this thesis are as follows:

• This thesis evaluates and compares the existing encoding schemes(for Petri nets) namely

One-hot scheme, Logarithmic scheme and MDD scheme based on their performance. The

metrics used for evaluation are time and space taken to represent and analyze well known

concurrent systems.

2

• A new encoding scheme called k-hot encoding is introduced which extends the One-hot

and performs better with every increasing value of k.

• A comparison is made between the existing schemes and the new k-hot scheme using the

same time and space metrics.

• Some of the systems are analyzed for properties like deadlock and starvation. This anal-

ysis is done using the existing and new schemes. A comparison is made between the time

taken by each encoding scheme to analyze the given properties on the system.

Choosing the right encoding scheme is important for efficiently modelling a system, hence

this evaluation helps in deciding the appropriate scheme for a system.

The remainder of this thesis is organized as follows. Chapter 2 of this thesis gives an

introduction to the basic concepts like Decision Diagrams, Petri nets and Model checking.

Chapter 3 explains in detail the existing encoding schemes. Towards the end, this chapter

introduces a new encoding scheme and explains it in detail with the help of the Fork-join

Petri net model. Chapter 4 compares the existing and proposed encoding schemes based on

several metrics and lists the advantages and disadvantages of each scheme. The results of this

comparison conclude when to use each encoding scheme. Chapter 5 summarizes the results of

this thesis and describes some of the open problems in this context.

3

CHAPTER 2. REVIEW OF LITERATURE

2.1 Overview

This chapter introduces some of the key concepts related to modelling concurrent systems.

Decision Diagrams have been popular data structures for representing huge concurrent systems.

They generally provide a compact representation for sets of states and are discussed in detail

in Section 2.2. Decision Diagrams can be further narrowed down to Binary Decision Diagrams,

Multi Valued Decision Diagrams or more. Some of these types are also dicussed in this section.

Section 2.3 introduces Petri Nets, which provide a front end used for modelling and analyzing

concurrent systems. Lastly, Section 2.5 introduces Symbolic Model Checking [17]. Model

checking refers to the process of verifying if a given model of the system satisfies a system

property or not. Traditionally, the process of model checking consists of building the state

graph and using temporal logic to verify a system property for that graph. In Symbolic Model

Checking, BDD’s are used for representing the state graph of the system.

2.2 Decision Diagrams

Decision Diagrams(DD) are used for representing points of decision and their possible

results. It is possible to calculate the probability of an outcome/result using a DD [7]. They

can be used for calculating and comparing the total cost for various alternative decisions and

thus help in decision making [7]. Some important and popular types of Decision Diagrams are

discussed below.

4

2.2.1 Binary Decision Diagrams

Binary Decision Diagrams(BDD’s) [5, 9, 10] are directed acyclic graphs (DAGs) which rep-

resent a boolean function over a finite set of boolean variables {0, 1}l → {0, 1}. The vertices of

the DAG are called nodes. These nodes could be terminal or non-terminal. The non-terminal

nodes represent variables of the function represented by the BDD. Each non-terminal node of

a BDD has exactly two children. A terminal node has no children and represents the values

0/false or 1/true.

To reach the right child denoted by n(0), of a non-terminal node n, the value 0 or false

is assigned to the corresponding variable of node n. Similarly, to reach the left child denoted

by n(1), the value 1 or true is assigned to the corresponding variable of node n. To evaluate

the value of the function represented by the BDD, the DAG is traversed such that for every

non-terminal node n, if the value of its corresponding variable is true, then n(1) is evaluated

next, else n(0) is evaluated. On reaching the terminal node, the value of the terminal node is

the value of the function with the given variable assignments.

T
F

T

T

a

b

c

1

Figure 2.1 BDD representing function f = ab′ + a′bc

5

A BDD can be ordered by ordering its variables such that nodes occur according to the

ordering in every path through the BDD. All non-terminal nodes in an ordered Decision Dia-

gram representing variable xk are said to belong to level k [23]. All terminal nodes belong to

the level 0. The level of a non-terminal node is always greater than its child nodes. A Reduced

Ordered BDD(ROBDD), is formed by reducing an ordered BDD as per the reduction rules of

Elimination and Redundancy. The Elimination rule involves eliminating duplicate nodes. Two

terminal nodes are duplicates if they have the same value. Two non-terminal nodes u and v

are duplicates if they are labelled with the same variable and u(0) = v(0) and u(1) = v(1).

The Redundancy rule eliminates redundant nodes. A non-terminal node u is redundant if

u(0) = u(1). This reduction process helps to reduce the size of the BDD’s. This property

is important as functionally equivalent ROBDD’s are unique if the variable ordering is fixed

[12]. Due to this canonical nature, verifying functional equivalence is reduced to verifying if

the corresponding ROBDD’s(with same variable order) are isomorphic or not.

A BDD can be fully-reduced or quasi-reduced. A BDD is fully-reduced if both reduction

rules of Elimination and Redundancy are applied. On the other hand, quasi-reduction requires

only the reduction rule of Elimination. Presence of all redundant nodes is required for quasi-

reduction as otherwise there can be more than one way to quasi-reduce a BDD, thus no longer

leaving the representation unique.

2.2.2 Algebraic Decision Diagrams

Algebraic Decision Diagrams(ADD’s) [2] are also directed acyclic graphs representing func-

tions. Unlike BDD’s, ADD’s represent functions of the form {0, 1}l → R where R is the set of

real numbers. They are also known as Multi Terminal BDD’s.

Unlike a BDD, the ADD in Figure 2.2 has terminal values as real numbers. Thus ADD’s

basically extend BDD’s by representing functions which can take a real value and not just 0 or

1. The number of terminal nodes in an ADD is equal to the number of distinct values which

6

F

T

F

a

T

b

a

0.3 2.3

2.3

0.3

0.3

0.3

a b f

TT

T

TF

F

FF

Figure 2.2 Function f defined using a truth table on the right and ADD
representing this function on the left

the function represented by the ADD can take.

Like BDD’s, ADD’s can be ordered by ordering their variables such that nodes occur

according to the ordering in every path through the ADD. The reduction rules of Elimination

and redundancy apply to ADD’s as well. Functionally equivalent Reduced Ordered ADD’s

with fixed variable ordering are unique. Thus if two Reduced Ordered ADD’s are isomorphic,

then it implies that they are functionally equivalent [25].

2.2.3 Multi Valued Decision Diagrams

Decision Diagrams can be further generalized to represent multi-valued input functions

of the form X → {0, 1} where X is the cross product X = XL × . . . × X1 of L finite sets

and each Xk, for L ≥ k ≥ 1, is of the form Xk = {0, 1, . . . , nk − 1}. Multi Valued Decision

Diagrams(MDD’s) [14, 15] are directed acyclic graphs which can represent such functions. In

MDD’s, terminal nodes represent values 0/1 and non-terminal nodes have an integral number

of children. A non-terminal node n representing variable xk contains a vector of nk pointers to

other nodes(children). Figure 2.3 shows a Multi Valued Decision Diagram. In this MDD, the

7

non-terminal node x4 points to the same child node for values 1 and 2, x4(1) = x4(2). This is

shown in Figure 2.3 as an arrow labelled with 1, 2 from node x4 pointing to the child node x3.

x4

x3
x3 x3

x2 x2 x2
x2

x1
x1 x1

0 1

0 1,2 3

20,120,12

0,1 0,1

0,1,20
0,1,2

1,2

10

0,1

0,1

Figure 2.3 Example of an MDD

Two level k nodes u and v are said to be duplicates [14] if u(i) = v(i) for all 0 ≤ i ≤ nk. A

level k node u, is said to be redundant [14] if u(i) = u(0) for all 0 ≤ i ≤ nk.

Like BDD’s, MDD’s are said to be ordered if in every path through the MDD, the nodes

appear as per the ordering. Like BDD’s, MDD’s can be fully-reduced or quasi-reduced. Full

reduction comprises of both reduction rules of Elimination and Redundancy. Quasi reduction

on the other hand includes the Elimination reduction rule only. An MTMDD (Multi Terminal

Multi Way Decision Diagram) [24] can be used to represent multi-valued input multi-valued

output functions. In MTMDD, non-terminal nodes can point to an integral number of children

at a level below and also there can be integral number of non-terminal nodes. Truth table for

function f and its MTMDD representation is shown in Figure 2.5.

8

0 1,2 3

2

1

0

0 1,2 3

20,120,120,1

0,1 1 0,1

0,1,201,2

00,1

0,1,2

20,1

0,1

1,2

2

0

0,1

x2x2

x1x1

0 0

x4

x2

x1

1

x4

x3 x3 x3

x2
x2

x1

1

x3 x3 x3

Figure 2.4 MDD on the left shows the quasi-reduced form of the MDD
in Figure 2.3 and the one on the right shows its fully-reduced
form.

x1

0

0

1

1

2

2

x2

0

1

1

0

0

0

1

2

f

1

2

2

1

x1

x2 x2

2 2

0
1 2

0 1 0 1

0 1 1

x
2

0,1

Figure 2.5 Truth table for function f on the left and its MTMDD repre-
sentation on the right.

9

To fully reduce this MTMDD, the duplicate and redundant nodes are eliminated. Duplicate

nodes are the terminal nodes with value 1 and 2(shaded terminal nodes). Removing these

nodes, reduces the MTMDD to its quasi reduced form. In the quasi reduced MTMDD shown

on the left in Figure 2.6, the right most node at level x2 is a redundant node(shaded non

terminal node) as it has identical children. Removing this node, reduces the quasi reduced

MTMDD further to its fully reduced form as shown on the right in Figure 2.6.

x2 x2

0
1 2

0

1

x2

1 0 1 0
1

x x1

x2 x2

0 1

0

2

1
1

0

0 1 2 0 1 2

Figure 2.6 MTMDD on the left shows the quasi-reduced form of the MT-
MDD in Figure 2.5 and the one on the right shows its fully-re-
duced form.

2.2.4 Matrix Diagrams

Matrix Diagrams(MxDs) [18, 24] are used to encode functions of the form (X × X) →
{0, 1}(X is described in Section 2.2.3). In modelling a sytem, the variables used to represent

the current state are called unprimed variables or from variables. Variables used to represent

the next states are known as primed or to variables. Matrix diagrams can represent both

primed and unprimed variables.

In an MxD, a non-terminal node n at level k encoding variables xk and x′k has (nk × nk)

edges (pointers to other nodes) pointing to the level below, such that n(a, a′) points to the node

that can be reached when xk = a and x′k = a′. Identity patterns often occur in asynchronous

10

systems. A node n is an identity node if,

n
(
a, a′

)
=

0, if a 6= a′

n(0, 0), otherwise
(2.1)

Clearly, an Identity node reduction captures no change and no dependency behavior of the

variable represented by the node. An MDD with 2k levels, where k is the number of variables,

can be used to represent the same function as represented by an MxD. The benefit of MxD over

MDD in this case, lies in the fact that MxDs are able to exploit identity patterns. Figure 2.7

shows an MxD with identity pattern on the left and its identity reduced version on the right.

The middle node at level x1(MxD on the left in Figure 2.7) is an identity node. Removing this

identity node, generates the MxD on the right in Figure 2.7. As shown in this figure, node x2

can reach node x1 if x2 = 0 and x′2 = 2(shown as label (0, 2) on the arrow pointing from x2 to

x1).

x1,x’1 x1,x’1 x1,x’1 x1,x’1 x1,x’1

(1,0),
(1,1)

(1,0),
(1,1)

(0,0),
(1,1)

(2,1) (0,2)

(1,1)

(1,0),
(1,1)

(1,0),
(1,1)

(1,1)

(2,1)

(0,2)

1 1

x ,x’ x ,x’2 2 2 2

Figure 2.7 Identity reduced MxD [14]

An MxD can be either fully-reduced, quasi-reduced or identity-reduced. A fully-reduced

MxD has no duplicate and redundant nodes; a quasi-reduced MxD has no duplicate nodes and

an identity-reduced MxD has no identity and duplicate nodes.

11

2.2.5 Operations on DDs

Some of the operations that can be performed on DD’s are AND, OR, NOT etc [20]. The

algorithm described in this section can be used for many useful operations on MTMDD’s.

Hence this algorithm also works for operations on BDD’s, MDD’s and MTBDD’s. It also

works for MxD’s with some small modifications.

Given two decision diagrams B1(representing function f1) and B2(representing function f2)

and an operator ⊕ to be applied to these DD’s, the root nodes v1 and v2 of the two DD’s are

passed to the funtion Apply shown in Algorithm 2.8 which returns the root node of the result

DD(representing function f such that, f = f1 ⊕ f2).

Each node v of a DD(over l variables) has:

• v(j): If v is a non-terminal node such that value of the variable represented by v is j,

then v points to v(j)

• level: represents level of v, could be 0 through l(terminal nodes have level 0)

• val: value of the node v if v is a terminal node

The algorithm can be broken down into 3 cases. The first case includes the trivial case

where both v1 and v2 are terminal nodes(lines 2-4) and the operator specific cases(line 5). If

both v1 and v2 are terminal nodes, the result DD consists of a terminal node with value val(v1)

⊕ val(v2). Few operator specific cases are (1, ∨, v2) and (1, ∧, v2). In the process of computing

operation ⊕ on v1 and v2, the value of a subgraph may be used more than once. In order to

not evaluate the value of the subgraph more than once, a compute table T is maintained. An

entry of set T is used to store the value computed by Apply on each node pair. The second

case of the algorithm checks to see if there exists some u such that (v1,⊕, v2, u) ∈ T (lines

6-8). In that case u is returned. The last case is when both nodes are non-terminal. If they

are at the same level k, then a new node u is created at level k and the Apply procedure is

recursively applied on all child nodes v1(j) and v2(j) to obtain u(j) where 0 ≤ j ≤ nk − 1.

12

node Apply(node v1, operator ⊕, node v2)

1: k := Max(level(v1), level(v2));
2: if k == 0 then
3: return terminal node with value val(v1) ⊕ val(v2);
4: end if
5: check for operator specific cases eg. 1 ∨ x = 1, 1 ∧ x = x;
6: if ∃ u such that (v1,⊕, v2, u) ∈ T then
7: return(u);
8: end if
9: u := new level-k node;

10: for j = 0 to nk − 1 do
11: if level(v1) == level(u) then
12: c1 := v1(j);
13: else
14: c1 := v1;
15: end if
16: if level(v2) == level(u) then
17: c2 := v2(j);
18: else
19: c2 := v2;
20: end if
21: u(j) := Apply(c1, ⊕, c2);
22: end for
23: Reduce(u);
24: add (v1,⊕, v2, u) to T ;
25: return(u);

Figure 2.8 Apply method to compute v1 ⊕ v2

13

Else if level(v1) = k and (level(v2) < k or v2 is a terminal node), a new node u is created

at level k and the Apply function is recursively applied on v1(j) and v2 to obtain u(j) for all

0 ≤ j ≤ nk − 1. The node u is then reduced(eliminating duplicate and redundant nodes) by

calling the method Reduce. An entry (v1,⊕, v2, u) is added to T and u is returned.

a1

a2

a3 a4
b3

b4

b2

b1

0

1

0

0

0

1

11

1 10 0

x1

x3
x3

x2

Figure 2.9 BDD for ¬(x1 ∧ x3) on the left and x2 ∧ x3 on the right [4]

Figure 2.9 shows two BDD’s B1 and B2 where B1 represents function f1 = ¬(x1 ∧ x3) and

B2 represents function f2 = x2 ∧ x3. Algorithm 2.8 is used compute the BDD for function f

given by,

f(x3, . . . , x1) = f1(x3, . . . , x1) ∨ f2(x3, . . . , x1) (2.2)

The function Apply(a1, ∨, b1) is called and it generates the BDD representing function f

shown in Figure 2.10.

14

1

1

1

0

0

0

10

x1

x2

x3

Figure 2.10 BDD for ¬(x1 ∧ x3) ∨ (x2 ∧ x3)[4]

2.3 Petri Nets

A Petri Net [21, 25] is a weighted bipartite graph used to describe and model concurrent

systems. It is generally used to model applications in which there is a flow of resources or

concurrent behavior needs to be handled. It consists of places and transitions, and arcs are

drawn pointing from a place to a transition and vice versa. A place in a Petri Net represents

conditions. Transitions represent events that may occur. When the event represented by a

transition occurs, the transition is said to have fired. An input arc from a place p to a transition

t shows that the event represented by t requires the condition encoded in p. In this case, p is

called the input place for t. Similarly, an output arc from t to p shows that the condition in p

is generated as a result of the occurrence of event represented by t and in this case, p is called

the output place for t. Every arc is assigned a weight, which is a non-negative integer used to

determine the firing conditions of a transition and the token flow between the set of input and

output places for that transition. A Marking m ∈ M of a Petri net is a mapping m : P → N

where P is the set of places of the net and N is the set of naturals, representing the number of

tokens at each place of the net. M is the set of all possible markings of the net.

15

A Petri net is said to be 1-bounded or safe if each place in the initial marking of the net

has a maximum of one token. A b-bounded PN has a maximum of b tokens at each place.

Figure 2.11 shows a safe Petri net.

P1
T1

P2

P3

T2
P4

Figure 2.11 Petri Net

Petri nets can have inhibitor arcs. A transition having an inhibitor arc along with normal

arcs, is enabled if all input places connected to the normal arcs have at least as many tokens as

the weight of the arcs and all input places connected to the inhibitor arc do not have number

of tokens greater or equal to the weight of the arc. If the weight of an inhibitor arc is ∞,

then number of tokens in the input place cannot inihibit the transition. Figure 2.12 shows an

example of Petri Net having both normal and inhibitor arcs. Inhibitor arcs are shown as arcs

with circles.

p1 p2 p1 p2 p1 p2

t t t

ENABLED DISABLEDDISABLED

Figure 2.12 Petri Net with inhibitor arcs

16

A Petri Net PN , is represented as

PN = (P, T ,W,H,M0) (2.3)

where,

• P is a finite set of places

• T is a finite set of transitions

• W : (P × T) ∪ (T × P) → N is a multiset of arcs such that each arc is assigned a

non-negative integer called the weight of the arc

• H : (P × T) → N ∪ {∞} is a multiset of inhibitor arcs such that each inhibitor arc is

assigned the weight of the arc

• M0: P → N is the initial marking

Transitions cause the Petri net model to change state. A state is represented by marking

the places with tokens. A transition t ∈ T is enabled in a marking m if for all places p,

m(p) ≥ W(p, t) and m(p) < H(p, t). This is called the enabling expression for transition t.

Multiple transitions can be enabled at the same time. An enabled Petri net transition may

fire. This makes firing of transitions in Petri nets non-deterministic. On firing, a transition

produces a new marking denoted by m′. The firing expression for transition t is,

∀p ∈ P : m′(p) = m(p) +W(t, p)−W(p, t) (2.4)

Thus it removes tokens from each input place and adds tokens to each output place of the

transition. The number of tokens removed is equal to the weight of the corresponding input arc

and similarly, the number of tokens added is equal to the weight of the corresponding output

arc. A marking m′ is reachable from marking m if there is a sequence of firings from m that

lead to m′, denoted by m → m′. All markings reachable from the initial marking form the

17

reachability set.

The transition function δ defines the new marking of the Petri net after an enabled tran-

sition fires. It transforms a set of markings M1 to a new set of markings M2 where M is the

set of all markings.

δ : 2M × T → 2M (2.5)

For a transition t ∈ T ,

δ(M1, t) = M2 = {m2 ∈M : ∃m1 ∈M1, t is enabled in m1 and firing t leads from m1 to m2}
(2.6)

This set M2 is called the post-image of M1. The inverse image computation or pre-image

computation results in a set of markings from which the current marking can be obtained.

A transition relation contains pairs (m,m′) where m′ is reachable from m by firing a single

transition, once(there is some t such that m enables t, and when t fires in m, produces new

marking m′).

A marking m ∈M of a safe Petri net with n places can be represented using an encoding

function which provides a binary mapping from M → Bn(B = {0, 1}), where the image of

m is encoded into an element (e1, e2, e3, e4, . . . , en) ∈ Bn such that ei = m(pi). Using this

representation a marking m such that m(p1) = 0 and m(p2) = 1 is encoded as [01].

This binary mapping allows using Binary Decision Diagrams to represent sets of markings.

For instance a Petri net marking set M = {m1, m2,m3} where m1(p1) = 1, m1(p2) = 0,

m1(p3) = 0; m2(p1) = 0, m2(p2) = 1, m2(p3) = 1 and m3(p1) = 1, m3(p2) = 0, m3(p3) = 1

is represented using a BDD in Figure 2.13. The marking m1 can be encoded as [100], m2 can

be encoded as [011] and m3 can be encoded as [101] using the representation discussed earlier.

The combinations of p1, p2, p3 which belong to the set M, point to the terminal node 1, and

18

all the other combinations point to the terminal 0.

0 1

0

00

0
1

1

1

p1

p2
p2

p3

10

Figure 2.13 BDD for the marking set M = {[100], [011], [101]}

1

t1

p2

p4

t2

t4

t3

p5

p3

t5

p

N

Figure 2.14 Petri net for Forkjoin Model

The forkjoin Petri net model is shown in Figure 2.14. It shows the forking of one main

thread to create other threads that execute in parallel and then finally the joining of these

forked threads back to the main thread. This Petri net shows a very common model of con-

current execution where the main process creates parallel executing sub-processes and waits

for them to be finished before resuming execution.

19

The Forkjoin Petri net consists of 5 places(p1, p2, p3, p4 and p5) and 5 transitions(t1, t2,

t3, t4 and t5). Each place has a bound of N . The initial state of this Petri net has N tokens

in place p1 which represents the main thread and 0 tokens at all other places. Transition t1

forks the main thread p1 to sub-threads and transition t5 joins the sub-threads back to the

main thread p1. Thus, a fork is a transition with more than one output places and a join is a

transition with more than one input places. Figure 2.15 also shows the reachability set of this

net with N = 1.

10000

01010

00110 01001

00101

Figure 2.15 Reachability graph for Forkjoin model with N = 1

20

2.4 Building Transition relation and Reachability set

This section explains how the transition relation and reachability set for a Petri net model

PN = (P, T , W, H, M0) are built using the initial marking and the Petri net structure.

Algorithm 2.16 shows how enabling relation for a transition t is built. Enabling relation

for t represents the possible current states in which t is enabled. It is built using the enabling

expression for t. Hence, enabling relation is the relation for expression ∀p ∈ P : m(p) ≥ W(p, t)

∧ m(p) < H(p, t)

Relation enablingRelation(transition t)
1: V := M×M;
2: for all p ∈ P do
3: R := {(m,m′) ∈M×M : m(p) ≥ W (p, t)};
4: V := V ∩R;
5: R := {(m,m′) ∈M×M : m(p) < H(p, t)};
6: V := V ∩R;
7: end for
8: return(V);

Figure 2.16 Building enabling relation

Similarly, Algorithm 2.17 shows how firing relation for a transition is built. Firing rela-

tion for t represents the possible next reachable states when t is fired. It is built using the

firing expression for t. Hence, firing relation is the relation for expression ∀p ∈ P : m′(p) =

m(p) +W(t, p)−W(p, t).

21

Relation firingRelation(transition t)
1: V := Relation for M×M;
2: for all p ∈ P do
3: R := {(m,m′) ∈M×M : m′(p) = m(p)+W (t, p)−W (p, t)};
4: V := V ∩R;
5: end for
6: return(V);

Figure 2.17 Building firing relation

Taking the intersection of the two relations(enabling and firing) produces the transition

relation for t. Algorithm 2.18 shows how the complete transition relation is built by taking

the union of the relations for all transitions(built using Algorithms 2.16 and 2.17).

Relation buildTransitionRelation()

1: Q := ∅;
2: for all t ∈ T do
3: F := enablingRelation(t) ∩ firingRelation(t);
4: Q := Q ∪ F ;
5: end for
6: return(Q);

Figure 2.18 Building overall Transition relation

Algorithm 2.19 shows how the Reachability set is built using the initial DD and Transition

relation(obtained from Algorithm 2.18). The reachabilitySet DD initially consists of the ini-

tial marking. Next the post image operator is applied on the reachabilitySet to find the next

reachable states denoted by postImage DD. Then, the union of postImage DD and reachabili-

tySet is done. This process of finding the post image and its union with the reachabilitySet is

repeated until the post image operation does not create any new markings to be added to the

reachability set.

22

DD BuildReachabilitySet(Relation T , DD M0)
1: R := M0;
2: P := ∅;
3: while P 6= R do
4: P := R;
5: I := PostImageOperator(T , R);
6: R := R ∪ I;
7: end while
8: return(R);

Figure 2.19 Algorithm for building Reachability Decision Diagram

The Petri net in Figure 2.14 has 5 transitions. The enabling and firing expressions for

transition t1 are (m(p1) ≥ 1) and (m′(p1) == m(p1)− 1 ∧ m′(p2) == m(p2) + 1 ∧ m′(p4) ==

m(p4) + 1). The enabling, firing and transition MxD for t1 are shown in Figure 2.20.

2.5 Model Checking

Model Checking [3, 11] is an automatic procedure for verifying a specification over a given

model. This process involves three steps. Firstly, Kripke structures or finite automata are

used to formally model a system. Secondly, the specification is written using either classical or

temporal logic. Specification in this context means a propositional logic formula which could

be a safety property like no deadlock or liveness. Lastly, it is verified if the model satisfies the

specification or not. A model checker takes as input, a finite state model and a specification

expressed as a temporal logic formula and returns either a true result or an execution show-

ing why the specification is not satisfied by the model. Due to the size of the model(Kripke

structure/finite automata), model checkers also suffer from the state explosion problem as they

need to verify the specification amongst every execution of the model. Due to their compact

structure, Reduced Ordered BDD’s are often used for representing the transition relation al-

lowing verification of much larger models.

23

1,

p ,p’2p ,p’2

p ,p’4

1

(1,1),
(0,0),(0,1)

(1,1),
(0,0),(0,1)

(1,0),

(1,1),
(0,0),(0,1)

(1,0),

(1,1),
(0,0),(0,1)

(1,0),

p ,p’44

1

(1,0)

1

p1 1,p’ p1 1,p’

2

p1

p ,p’2 2

1,p’

4

(1,0)

(0,1)

(0,1)

2

(1,1)
(1,0)

p ,p’

p

p ,p’

3 3

4 ,p’4

5 5

(0,1)(1,0),

(0,1)

Figure 2.20 MxD for enabling expression on the left, firing expression in
the middle and transition t on the right

Temporal logic in contrast with the classical logic, allows reasoning about the system

behavior over time.

• The temporal operator G also called the Global operator, along with a proposition logic

formula p as Gp, is true for a path if p holds at all states(point of time) along the path.

• The future temporal operator F when used with a propositional logic formula p as Fp, is

true for a path if p holds at some state(points of time) along the path.

• The Until operator (pUq) is true for a path if q holds at some state along the path, and

p is true in all states before that state.

• The Next operator (Xp) is true for a path if p holds at the next state(points of time)

along the path.

24

Computational Tree Logic also called CTL [6], is used to represent temporal logic. In CTL,

a logical formula may consist of path quantifiers and temporal operators. Path quantifiers pro-

vided by CTL are, A: for all paths and E: there exists a path.

A CTL formula can be a state or a path formula. M, s |= f , denotes the state formula f holds

in state s of model M . A state formula can be:

• An atomic proposition

• p ∧ q, p ∨ q, ¬ p, where p and q are state formulas

• A(g), E(g) where g is a path formula

A path formula can be Xp, Fp, Gp, pUq, where p and q are state formulas. The CTL operators

can be reduced to the set (EX, EU, EG) using the following equivalence,

• AXp = ¬EX¬p

• AFp = ¬EG¬p

• EFp = EtrueUp

• AGp = ¬EtrueU¬p

• ApUq = ¬E[¬qU(¬q ∧ ¬p)] ∧ ¬EG¬q

Let p and q be propositional logic formulas, then

• EXp: This formula is satisfied by a state s if for some path from s, the formula Xp is

satisfied.

• EpUq: This formula is satisfied by a state s if for some path from s, the formula (pUq) is

satisfied.

25

• EGp: This formula is satisfied by a state s if for some path from s, the formula Gp is

satisfied.

.

.

.

.

.

.

.

.

.

.

gggg

g g

g

g

g g

.

.

.

.

.

.

Figure 2.21 M, s |= AGg and M, s |= AFg

.

.

.

.

.

.

.

.

.

.

g g

.

.

.

.

.

.

g

g

Figure 2.22 M, s |= EFg and M, s |= EGg

Algorithms to implement the three basic CTL operators are shown. Figure 2.23 shows the

algorithm for implementing the CTL formula EXp.

26

SetOfStates EX(LogicFormula p)
1: E := Satisfy(p);
2: T := Pre-Image(E);
3: return(T);

Figure 2.23 Algorithm for CTL formula EXp

To implement the CTL formula EpUq as shown in Figure 2.24, initially the set Y contains

the set of states satisfying the logical formula q. Then any state that satisfies the logical for-

mula p and can reach a state that satisfies EpUq, is added to the set until a fixed point is reached.

SetOfStates EpUq(LogicFormula p, LogicFormula q)
1: Y := Satisfy(q);
2: X := {};
3: Z := Satisfy(p);
4: while Y 6= X do
5: X := Y ;
6: Y := Y ∪ (Pre-Image(Y) ∩ Z);
7: end while
8: return(Y);

Figure 2.24 Algorithm for CTL formula EpUq

The algorithm for implementing the formula EGp is shown in Figure 2.25. The set of states

satisfying EGp can be obtained by starting with the states satisfying the logical formula p. At

each iteration, any state that cannot reach a state satisfying EGp is removed from the set. This

iterative process continues until a fixed point is reached.

CTL model checking can be used to verify properties in systems modelled as Petri nets. It

requires the generation of reachability graph, on which the model checking procedure is then

applied. Figure 2.14 showed the Forkjoin Petri net model. Figure 2.26 shows the reachability

graph of this petri net with N = 9.

27

SetOfStates EGp(LogicFormula p)
1: Y := Satisfy(p);
2: X := {};
3: while Y 6= X do
4: X := Y ;
5: Y := Y ∩ Pre-Image(Y);
6: end while
7: return(Y);

Figure 2.25 Algorithm for CTL formula EGp

Let f = (p1 contains 8 tokens and p2 contains 1 token and p3 contains 0 tokens and p4

contains 1 token and p5 contains 0 token). Using CTL model checking, it is possible to check

if the CTL formula EX(f) is satisfied or not. It can be seen from the reachability graph that

the markings/states which satisfy the logical formula f are {81010}. Next, the states which

satisfy the formula EX(f) form the set {90000}. As the initial state 90000 is included in this

set, it is concluded that the given CTL formula is satisfied by the initial state. To evaluate the

CTL formula EG(#p1 ≥ 8) where #p1 represents number of tokens in p1, all states satisfying

(#p1 ≥ 8) are found. The set Y , satisfying (#p1 ≥ 8) is {90000, 81010, 80110, 81001, 80101}.
Initially, the set X satisfying formula EG(#p1 ≥ 8) is equal to set Y . Next, any state in Y

that cannot reach a state in X needs to be removed. As every state in Y can reach a state in

X, a fixed point has been reached and {90000, 81010, 80110, 81001, 80101} is returned.

28

81010

90000

80110 81001

80101

72020

71120

71111

72011

Figure 2.26 Reachability graph of the Petri net of Figure 2.14

29

CHAPTER 3. ENCODING SCHEMES

3.1 Overview

State encoding is a way to capture the state of a system. An encoding scheme basically

maps the state of the system to decision diagram variable values. In case of Petri nets, captur-

ing the state of the system would mean being able to capture the number of tokens at every

place in the net at that time. Thus encoding a Petri net means encoding every place of the

net using encoding variables. The size of the BDD can increase exponentially with increase in

the number of encoding variables used to represent the Petri net model [16].

This Chapter explains the various encoding schemes and introduces a new encoding scheme

called the k-hot encoding. Section 3.2 descibes the One-hot Encoding Scheme. Section 3.3

explains in detail the Logarithmic encoding. Native MDD encoding is explained in Section 3.4.

Lastly, Section 3.5 introduces the new encoding scheme called k-hot encoding.

3.2 One-hot Encoding Scheme

Various encoding schemes have been proposed. The One-hot encoding scheme [15, 22] is

extremely simple to implement. In an unsafe Petri net, a b-bounded place p uses b encoding

variables under the One-hot scheme. Each of these b variables is used to encode the possibility

of up to b tokens for that place. At most one of these b variables can be set at a time.

A marking m of a b-bounded Petri net with n places can be encoded using the One-hot

scheme. Every place p of the Petri net, is encoded using b encoding variables, thus in total n · b

30

encoding variables are needed to encode a marking m. xp,i represents value of the ith encoding

variable of place p.

xp,i =

1, if m(p) = i where 1 ≤ i ≤ b

0, otherwise
(3.1)

To decode the marking at a place p(encoded using b boolean variables),

m(p) =

i, if there exists an i such that xp,i = 1 where 1 ≤ i ≤ b

0, otherwise
(3.2)

Thus under One-hot encoding, an ADD/MTMDD for the function f = m(p) is equivalent

to DD(ADD/MTMDD) for the variable xp,i where xp,i = 1. For safe Petri net models, this

scheme uses the same number of encoding variables as the number of places in the safe Petri

net. Thus this scheme is also known as one variable per place encoding scheme.

The Petri net in Figure 2.26 of Chapter 2 is a N -bounded Petri net. For N = 9, each place

in this net can have a maximum of 9 tokens. As per the One-hot encoding scheme, each of

these five places use nine variables to encode the number of tokens present. Table 3.1 shows

the encoding for place p1 of this Petri net. Thus the total number of encoding variables needed

to encode a marking of this Petri net are 45.

31

xp1,1 xp1,2 xp1,3 xp1,4 xp1,5 xp1,6 xp1,7 xp1,8 xp1,9 m(p1)
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 2
0 0 1 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0 0 4
0 0 0 0 1 0 0 0 0 5
0 0 0 0 0 1 0 0 0 6
0 0 0 0 0 0 1 0 0 7
0 0 0 0 0 0 0 1 0 8
0 0 0 0 0 0 0 0 1 9

Table 3.1 Encoding for place p1

As discussed in Chapter 2, transition function δ transforms a set of markings M1(also

called the from state) to a new set of markings M2(also called the to state) such that for

every marking m2 ∈ M2, there exists a marking m1 ∈ M1 such that m2 can be reached from

m1 on firing of a single transition which is enabled in m1. For example, the transition relation

transforms the marking [p1:9, p2:0, p3:0, p4:0, p5:0] to marking [p′1:8, p′2:1, p′3:0, p′4:1, p′5:0].

The transition function of Petri Net in Figure 2.26 can be represented as a function over

90 variables (xp1,1, xp1,2, . . . , xp5,9, x′p1,1 , x′p1,2, . . . , x′p5,9), where the function evaluates to 1 if

(x′p1,1, x′p1,2, . . . , x′p5,9) can be reached from (xp1,1, xp1,2, . . . , xp5,9) in one step. The enabling

decision diagram of Algorithm 2.18 is is a graph over the 45 unprimed variables and the firing

DD is a graph over the 45 primed variables. The reachability set of this Petri Net consists of

385 markings.

To encode the transition relation of a Petri net, both from and to states are encoded using

the chosen encoding scheme. Section 2.4 of Chapter 2 showed how transition relation is built

using the enabling and firing expressions of the net. The enabling and firing decision diagrams

are built using one-hot encoding and hence the resulting transition relation is encoded as shown

in Table 3.2. The unprimed variables encode the from state of the Petri net [p1:9, p2:0, p3:0,

32

p4:0, p5:0]. The next state represented by primed variables has the marking [p′1:8, p′2:1, p′3:0,

p′4:1, p′5:0].

from state m(p1) m(p2) m(p3) m(p4) m(p5)
to state m(p′1) m(p′2) m(p′3) m(p′4) m(p′5)

p1:9,p2:0,p3:0,p4:0,p5:0 000000001 000000000 000000000 000000000 000000000
p′1:8,p′2:1,p′3:0,p′4:1,p′5:0 000000010 100000000 000000000 100000000 000000000
p1:8,p2:1,p3:0,p4:1,p5:0 000000010 100000000 000000000 100000000 000000000
p′1:7,p′2:2,p′3:0,p′4:2,p′5:0 000000100 010000000 000000000 010000000 000000000
p1:8,p2:1,p3:0,p4:1,p5:0 000000010 100000000 000000000 100000000 000000000
p′1:8,p′2:0,p′3:1,p′4:1,p′5:0 000000010 000000000 100000000 100000000 000000000
p1:8,p2:1,p3:0,p4:1,p5:0 000000010 100000000 000000000 100000000 000000000
p′1:8,p′2:1,p′3:0,p′4:0,p′5:1 000000010 100000000 000000000 000000000 100000000
p1:7,p2:2,p3:0,p4:2,p5:0 000000100 010000000 000000000 010000000 000000000
p′1:6,p′2:3,p′3:0,p′4:3,p′5:0 000001000 001000000 000000000 001000000 000000000

Table 3.2 Part of the transition relation for the Petri net shown in Fig-
ure 2.26 for N = 9

The efficiency of this scheme can be improved by interleaving the primed and unprimed

variables. Instead of storing all unprimed variables of place p1 followed by its primed variables,

an interleaved encoding stores xp1,1, the first unprimed variable for p1 followed by its corre-

sponding prime variable x′p1,1; then the second unprimed variable of p1 which is xp1,2, followed

by its primed variable x′p1,2 and so on. This ordering usually produces a more compact BDD

as compared to the normal ordering [20, 26].

3.3 Logarithmic encoding

The Logarithmic encoding [15, 22] scheme uses same or fewer encoding variables as com-

pared to the One-hot. For an unsafe Petri net with up to b tokens at each place, the log-based

scheme uses dlog(b + 1)e encoding variables to encode the tokens at every place. xp,i represents

value of the ith encoding variable of place p.

33

For a marking m, the value of m(p) can be encoded as

xp,i = ai mod 2 (3.3)

where a0 = m(p), ai = bai−1/2c and 0 ≤ i ≤ dlog(b + 1)e − 1.

The above encoding can be decoded to obtain the number of tokens at place p,

m(p) =
dlog(b+1)e−1∑

i=0

xp,i · 2i (3.4)

In order to build ADD/MTMDD representing the function f = m(p), the decison diagrams

for constant 2i and variable xp,i are built for all i, such that 0 ≤ i ≤ dlog(b + 1)e− 1. Next for

all i, the multiplication operator is applied on DD’s for 2i and xp,i. Addition of all such DD’s

results in the graph representing function f .

The Forkjoin Petri net model shown in Figure 2.26 with N = 9 can also be encoded under

the Logarithmic encoding scheme where each of the five places of the Petri net use four variables

to encode the number of tokens present. Thus under this scheme the total number of encoding

variables required are 20 as opposed to the 45 variables required under the One-hot scheme.

Place p1 can be encoded using four boolean variables xp1,0, xp1,1, xp1,2 and xp1,3 as shown in

Table 3.3.

As explained earlier, encoding the transition relation requires encoding both from and to

states of the relation. With the log-based scheme, the from state will need four unprimed

encoding variables and the to state will need four primed encoding variables. The encoded

transition relation is shown in Table 3.4.

34

xp1,0 xp1,1 xp1,2 xp1,3 m(p1)
0 0 0 0 0
1 0 0 0 1
0 1 0 0 2
1 1 0 0 3
0 0 1 0 4
1 0 1 0 5
0 1 1 0 6
1 1 1 0 7
0 0 0 1 8
1 0 0 1 9

Table 3.3 Place p1 encoded using variables xp1,0, xp1,1, xp1,2 and xp1,3

Table 3.4 shows the transition from state [p1:9, p2:0, p3:0, p4:0, p5:0] to state [p′1:8, p′2:1,

p′3:0, p′4:1, p′5:0] and from state [p1:8, p2:1, p3:0, p4:1, p5:0] to state [p′1:7, p′2:2, p′3:0, p′4:2, p′5:0]

and so on. Interleaving the primed and unprimed variables can increase the efficiency of this

encoding scheme as well.

3.4 Native MDD Encoding

Petri net models encoded using the native MDD encoding [15, 22], are represented using

Multi Valued Decision Diagrams. The MDD encoding scheme uses a single encoding variable

to encode the number of tokens present at a place in the Petri net. For a b-bounded Petri net

model, the number of tokens at each place can be encoded using a single integer variable with

value equal to the number of tokens at that place.

For a given BDD, its corresponding MDD can be built by grouping l BDD variables (binary

variables) into a single MDD variable (multi-valued variable). The advantage of an MDD over

its corresponding BDD is that, if the BDD requires q memory accesses and the MDD requires

z memory accesses then z ≤ q ≤ l ·z [16]. Figure 3.1 shows a BDD and its corresponding MDD

for the function:

f(x, y) = 1 if x > y (3.5)

35

from state m(p1) m(p2) m(p3) m(p4) m(p5)
to state m(p′1) m(p′2) m(p′3) m(p′4) m(p′5)

p1:9,p2:0,p3:0,p4:0,p5 1001 0000 0000 0000 0000
p′1:8,p′2:1,p′3:0,p′4:1,p′5 0001 1000 0000 1000 0000
p1:8,p2:1,p3:0,p4:1,p5 0001 1000 0000 1000 0000
p′1:7,p′2:2,p′3:0,p′4:2,p′5 1110 0100 0000 0100 0000
p1:8,p2:1,p3:0,p4:1,p5 0001 1000 0000 1000 0000
p′1:8,p′2:0,p′3:1,p′4:1,p′5 0001 0000 1000 1000 0000
p1:8,p2:1,p3:0,p4:1,p5 0001 1000 0000 1000 0000
p′1:8,p′2:1,p′3:0,p′4:0,p′5 0001 1000 0000 0000 1000
p1:7,p2:2,p3:0,p4:2,p5 1110 0100 0000 0100 0000
p′1:6,p′2:3,p′3:0,p′4:3,p′5 0110 1100 0000 1100 0000

Table 3.4 Part of the Transition relation of Petri net in Figure 2.26 with
N = 9

where 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2. Note that the BDD uses 4 variables to represent the function

as opposed to the 2 variables used by the corresponding MDD. Hence q ≤ 2z, where q and z

are the memory accesses required by BDD and MDD of Figure 3.1.

In order to build an MTMDD representing the function f = m(p), a decision diagram

having an edge from xp to terminal node m(p) is built. MDD encoding of a Petri net also

involves encoding its initial state, transition relation and the reachability set. The initial state

of the Petri net of Figure 2.26 with N = 9 is encoded as shown in Figure 3.2.

36

1
2

0

1

2

1

0 1

10

0 1 01

0

10

02

x0

1

0 0

1

y

x

y

10

10

x

y y

y

Figure 3.1 MDD for x > y on the left and the corresponding BDD on the
right

9

0

0

0

0

p1

p2

3
p

p4

p5

1

Figure 3.2 MDD representing the initial state of the Petri net shown in
Figure 2.26 with N = 9

37

The transition relation of the Petri net of Figure 2.26 with N = 9 is encoded as shown in

Figure 3.3.

(8,8) (7,6)

(0,0)

(0,0)

(0,1)

(0,0)

(0,1)

(2,3)

(0,0)

(2,3)

(8,7) (9,8)

(1,2)

(0,1)

(1,0)

(0,1)

(1,1)
(1,2)

(1,1)

(0,0)

(1,0)

5 5x ,x’

x ,x’44
x ,x’44 x ,x’44 x ,x’44

x ,x’3 3 x ,x’3 3 x ,x’3 3
x ,x’3 3

x ,x’3 3

x ,x’22 x ,x’22 x ,x’22 x ,x’22 x ,x’22

x ,x’1 1x ,x’1 1

1

Figure 3.3 MxD representing a part of the transition relation of the PN
shown in Figure 2.26 with N = 9

38

The reachability set of the Petri net of Figure 2.26 with N = 9 is encoded as shown in

Figure 3.4.

0

0

9

0

9

9

0

9

7

2

0

2

0

8

1

0

1

0

9

0

0

0

0

0

p p p

p p p
p p

2 2 2
p

2

55
555

p1

p3p3
p3

p3 p3

p
4

p
4

p
4

p
4

p
4

1

Figure 3.4 MDD representing a part of the reachability set of the PN shown
in Figure 2.26 with N = 9

39

3.5 Proposed Encoding Scheme - K-Hot Encoding

This thesis proposes a new encoding scheme called the k-hot encoding. The factor k deter-

mines the number of variables used by the encoding. The idea behind this encoding scheme

is to not necessarily use b encoding variables to encode b combinations(place p with bound b).

If b variables are used, it is easier as only one variable is set at a time and the position of the

set-variable determines the value at that place.

With k-hot encoding we use fewer variables depending on the value of k, and a maximum

of k encoding variables can be set per place to represent a combination. If x variables are set

for place(where x ≤ k), then the last x − 1 variables must be set. A place p of the Petri net,

with bound b is encoded using l variables depending on the factor k.

l =

⌈
b

k
+

k − 1
2

⌉
, where 1 ≤ k ≤ l (3.6)

The values of k can be calculated for a fixed b such that if k variables are used and all of

them are set, it is enough to cover b.

b

k
+

k − 1
2

≥ k (3.7)

The maximum value of k such that it covers b when all variables are set is l. Hence for k > l,

the number of variables does not decrease with increase in k. Therefore, k-hot is equivalent

to (k+1)-hot for k > l. The value of the ith variable of place p is represented as xp,i. For a

marking m, the value of m(p) can be encoded with l boolean variables using Algorithm 3.5.

The number of tokens at a place is determined by adding the value of the set tokens. The

number of tokens at a place p, encoded using l variables can be decoded as:

m(p) = xp,1 + 2xp,2 + . . . + lxp,l (3.8)

40

Encode(p, l)
1: t := m(p);
2: while l ≥ 1 do
3: if t ≥ l then
4: xp,l := 1;
5: t := t− l;
6: l := l − 1;
7: else
8: xp,l := 0;
9: l := l − 1;

10: end if
11: end while

Figure 3.5 Encoding place p using k-hot encoding

In order to build ADD/MTMDD representing the function f = m(p), the decison diagrams

for constant i and variable xp,i are built for all i, such that 1 < i < l. Next for all i, the

multiplication operator is applied on DD’s for i and xp,i. Addition of all such DD’s results in

the graph representing function f .

2-hot encoding would require 5 variables to encode every place p in the Petri net of Fig-

ure 2.26(N = 9). These boolean variables are xp,1, xp,2, xp,3, xp,4 and xp,5. A marking at p,

which can be 0 through 9 is encoded as shown in Table 3.5.

41

xp,1 xp,2 xp,3 xp,4 xp,5 m(p)
0 0 0 0 0 0
1 0 0 0 0 1
0 1 0 0 0 2
0 0 1 0 0 3
0 0 0 1 0 4
0 0 0 0 1 5
1 0 0 0 1 6
0 1 0 0 1 7
0 0 1 0 1 8
0 0 0 1 1 9

Table 3.5 Representing number of tokens at a place with bound 9 using
2-hot

Similarly, 3-hot encoding would require 4 variables to encode the place p.

xp,1 xp,2 xp,3 xp,4 m(p)
0 0 0 0 0
1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4
1 0 0 1 5
0 1 0 1 6
0 0 1 1 7
1 0 1 1 8
0 1 1 1 9

Table 3.6 Representing number of tokens at a place with bound 9 using
3-hot

An advantage of the k-hot scheme is the flexibility offered by this encoding. By setting

different values of k, time and space metrics for computing the reachability set can be evalu-

ated and compared. Interleaving the primed and unprimed variables can further improve the

efficiency of this scheme.

42

The Forkjoin Petri net model introduced in Chapter 2 can be encoded using the k-hot

encoding with different values of k. For k = 1, the k-hot encoding behaves exactly the same

as the one-hot which was explained in Section 3.2. Hence, the following sub-sections explains

the encoding of the Forkjoin model using k = 2 and k = 3.

3.5.1 Encoding Forkjoin model with k as 2

Using Equation(3.5), we can calculate the number of variables required to encode each

place of this model using k-hot encoding with k as 2. Thus, we use 5 encoding variables per

place in this case. The Transition relation for this Petri net is encoded as shown in Table 3.7.

from state m(p1) m(p2) m(p3) m(p4) m(p5)
to state m′(p1) m′(p2) m′(p3) m′(p4) m′(p5)

p1:9,p2:0,p3:0,p4:0,p5 00011 00000 00000 00000 00000
p′1:8,p′2:1,p′3:0,p′4:1,p′5 00101 10000 00000 10000 00000
p1:8,p2:1,p3:0,p4:1,p5 00101 10000 00000 10000 00000
p′1:7,p′2:2,p′3:0,p′4:2,p′5 01001 01000 00000 01000 00000
p1:8,p2:1,p3:0,p4:1,p5 00101 10000 00000 10000 00000
p′1:8,p′2:0,p′3:1,p′4:1,p′5 00101 00000 10000 10000 00000
p1:8,p2:1,p3:0,p4:1,p5 00101 10000 00000 10000 00000
p′1:8,p′2:1,p′3:0,p′4:0,p′5 00101 10000 00000 00000 10000
p1:7,p2:2,p3:0,p4:2,p5 01001 01000 00000 01000 00000
p′1:6,p′2:3,p′3:0,p′4:3,p′5 10001 00100 00000 00100 00000

Table 3.7 Part of the transition relation for Figure 2.26 with N = 9 using
k-hot encoding with k as 2

3.5.2 Encoding Forkjoin model with k as 3

The k-hot encoding with k as 3, uses 4 variables to encode each place of the Petri net. Thus

in all, 20 variables are used to encode the Initial state of this model. The encoded transition

relation looks as follows:

43

from state m(p1) m(p2) m(p3) m(p4) m(p5)
to state m′(p1) m′(p2) m′(p3) m′(p4) m′(p5)

p1:9,p2:0,p3:0,p4:0,p5 0111 0000 0000 0000 0000
p′1:8,p′2:1,p′3:0,p′4:1,p′5 1011 1000 0000 1000 0000
p1:8,p2:1,p3:0,p4:1,p5 1011 1000 0000 1000 0000
p′1:7,p′2:2,p′3:0,p′4:2,p′5 0011 0100 0000 0100 0000
p1:8,p2:1,p3:0,p4:1,p5 1011 1000 0000 1000 0000
p′1:8,p′2:0,p′3:1,p′4:1,p′5 1011 0000 1000 1000 0000
p1:8,p2:1,p3:0,p4:1,p5 1011 1000 0000 1000 0000
p′1:8,p′2:1,p′3:0,p′4:0,p′5 1011 1000 0000 0000 1000
p1:7,p2:2,p3:0,p4:2,p5 0011 0100 0000 0100 0000
p′1:6,p′2:3,p′3:0,p′4:3,p′5 0101 0010 0000 0010 0000

Table 3.8 Part of the Transition relation for Figure 2.26 with N = 9 using
k-hot encoding with k as 3

44

CHAPTER 4. RESULTS

4.1 Overview

This chapter compares the proposed k-hot encoding scheme with the traditional encoding

schemes using the Cudd and Meddly libraries. The metrics used for comparison are time and

space to build the transition relation, time and space to build the reachability set and time

taken to evaluate CTL formulas. Time and space metrics are measured in seconds and KB

respectively. Section 4.2 describes the environment in which the experiments were run and

also gives implementation specific details for both Cudd and Meddly in Section 4.2.1 and Sec-

tion 4.2.2 respectively. Next, Section 4.3 describes the Fork-join Petri net model and compares

the performance of various encoding schemes used to represent this model in Cudd and Med-

dly. Sections 4.4, 4.5, 4.3 and 4.7 give a similar comparison for Dining Philosopher, Swaps,

Kanban and Tiles Petri net models respectively. Lastly, Section 4.9 concludes about the over-

all performance of encoding schemes based on results derived for individual models. In the

following sections transition relation is referred to as TR, reachability set as RS, peak node

count as PN, final node count as FN, peak memory as PM, final memory as FM and number

of variables/levels as L.

4.2 Experimental setup

The expermients were run on a Linux machine with CPU speed of 800MHz, memory of 2Gb

and memory speed of 533MHz. The comparison tool uses the PNFront library[19] to parse

Petri nets. This library parses the set of places, bounds for each place, transition enabling

and firing expressions which are used by the tool to build the transition relation and reacha-

45

bility set for the input PN model. The comparison tool supports both safe and unsafe Petri

net models with extensions such as inhibitor arcs, marking dependent arc cardinalities and

transition guards. Transition guards represent conditions under which a transition is enabled.

Cudd 2.4.1[27] was used to obtain a Cudd-based implementation called CuddImpl and Meddly

Revision-80[1] was used to obtain a Meddly-based implementation called MeddlyImpl.

4.2.1 CuddImpl

This sub-section explains the Cudd-based implementation. CuddImpl uses fully-reduced

BDD’s for transition relation. The basic process of building TR and RS was explained in Sec-

tion 2.4 of Chapter 2. Cudd provides an excellent interface for manipulating BDD’s and ADD’s.

The Cudd bddApply operator can be used to apply several operations to two input BDD’s.

Some of the operations supported by Cudd bddApply are multiplication(Cudd bddTimes),

addition(Cudd bddPlus), or(Cudd bddOr), minus(Cudd bddMinus), divide(Cudd bddDivide)

etc. To build the relation for a transition t, the intersection of enabling and firing relations of t is

computed. Building the enabling relation requires computing a relation R where R = (m,m′) :

m(p) ≥ W (p, t). Chapter 3 explained how a relation for m(p) is built. If W (p, t) is a constant,

then BDD for the constant is built and Cudd bddApply with Cudd bddOneZeroMaximum as

parameter can be used to build BDD for m(p) ≥ W (p, t). If W (p, t) is a function of m of

the form m(pk)⊕m(pj), then BDDs for m(pk) and m(pj) are computed and Cudd bddApply

function with appropriate parameter is used to build the final BDD. Similarly, the firing re-

lation requires building the relation for m′(p) = m(p) + W (t, p) − W (p, t). Once BDD’s for

m(p), W (t, p) and W (p, t) are built, Cudd bddApply with Cudd bddPlus and Cudd bddMinus

can be used to build the firing relation. The intersection of enabling and firing BDD’s can be

easily computed using Cudd bddApply method with Cudd bddTimes as parameter. Once we

have the relations for all transitions, union of all these relations is computed to obtain the final

transition relation. Cudd bddApply method with Cudd bddOr as parameter can be used to

obtain the union of two BDD’s.

46

The Reachability set(initially consisting of initial marking), is built by finding post image

of the reachabilty set and then computing the union of the post image with the reachability

set as described in algorithm of Figure 2.19. The Post image operation is computed in Cudd

as follows. Firstly, Cudd bddApply method with Cudd bddTimes as parameter is applied on

the input BDD’s - TR and RS, where RS initially contains just the initial marking. It pro-

duces a BDD relation such that, the from states are in RS and the next states are the next

reachable states from RS. Next, the Cudd bddCompose method is used to manipulate the

BDD of the previous step such that the next states become the from states of the relation.

Lastly, union(Cudd bddApply method with Cudd bddOr parameter) of this BDD with RS is

obtained. This process is repeated until no new markings are to be added to RS.

In order to measure the time consumed in building TR and RS, a timer is set before start-

ing the process of building the decision diagram and the value of the timer is recorded after

the graph is built. The final node count of a DD is measured using the method Cudd DagSize

which takes as argument the decision graph whose node count needs to be measured. The

peak node count in Cudd is calculated using Cudd ReadPeakLiveNodeCount. This method

computes the peak node count for the entire forest(containing both TR and RS). Thus, unfor-

tunately the peak node count for building RS can not be computed using the Cudd interface

in case when peak node count for building TR is more than RS. The peak and final memory

consumed by a decision graph is computed by multiplying the peak and final node counts

with the memory consumed by a single node of the graph. Therefore, peak memory is also

computed for the entire forest and not the individual decision graph.

4.2.2 MeddlyImpl

This sub-section explains the Meddly-based implementation. MeddlyImpl uses identity-

reduced MxD’s for transition relation. The Meddly library features several methods including

47

the apply method(similar to the Cudd bddApply operator in Cudd) which can be used to

perform several operations on MDD’s like union, intersection, difference, plus, minus, divide

etc. To build the relation for a transition t, the intersection of enabling and firing rela-

tions of t is computed. Building the enabling relation requires computing a relation R where

R = (m,m′) : m(p) ≥ W (p, t). If W (p, t) is a constant, then MxD for the constant is built and

apply method with GREATER THAN EQUAL can be used to build MxD for m(p) ≥ W (p, t).

If W (p, t) is a function of m of the form m(pk)⊕m(pj), then MxDs for m(pk) and m(pj) are

computed and apply method with appropriate parameter is used to build the final BDD. Sim-

ilarly, the firing relation requires building the relation for m′(p) = m(p) + W (t, p) −W (p, t).

Once MxD’s for m(p), W (t, p) and W (p, t) are built, apply with PLUS and MINUS can be

used to build the firing relation. The intersection of enabling and firing BDD’s can be easily

computed using parameter TIMES with apply method. Once we have the relations for all

transitions, union of all these relations(computed using UNION with apply) is computed to

obtain the final transition relation. The Meddly library also features a POST IMAGE param-

eter with the apply method which can be used to obtain the post image of the reachability

set. Hence, it is straight forward to implement the algorithm in Figure 2.19 using the Meddly

interface.

In order to measure the time consumed in building TR and RS, a timer is set before starting

the process of building the decision diagram and the value of the timer is recorded after the

graph is built. The final and peak node counts of a DD are measured using getNodeCount and

getPeakNumNodes respectively. The final and peak memory consumed by a decision graph

are measured using the methods getCurrentMemoryUsed and getPeakMemoryUsed.

4.3 Fork-join model

The forkjoin Petri net model was discussed in Section 2.5. Properties of this model for

various values of N are shown in Table 4.1. Table 4.1 shows the number of places and tran-

48

sitions in the model for different values of N . The maximum bound column represents the

maximum number of tokens a place can have. Lastly, it also shows the number of markings in

the reachability set of that model.

N Places Transitions Max bound Reachable markings
1 5 5 1 5
9 5 5 9 385

10 5 5 10 506
20 5 5 20 3,311
30 5 5 30 10,416

Table 4.1 Properties of Fork-join model

The variables for the model are xp1,1, xp1,2, xp1,3, . . . xp5,N . The variable ordering used for

these variables is (xp5,N , xp5,N−1, . . . , xp1,3, xp1,2, xp1,1) from top to bottom level(where bottom

level is the one right above the terminal nodes). Table 4.2 shows the Fork-join model in Cud-

dImpl for various values of N . Table 4.3 shows the performance in MeddlyImpl for various

values of N .

Table 4.2 shows the peak node count for TR and RS to be the same for some evaluations

like 1-hot, 2-hot, 3-hot for 20-Fork-join and 2-hot, 3-hot for 30-Fork-join. For these evaluations,

the peak node count for RS generation is less than the peak node count for TR generation and

as Cudd interface measures the peak node count for the forest and not the individual graph,

thus the peak node count for RS can not be measured for such cases.

49

Cudd
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
1 1-hot 5 0.0 76 37 1 0 0.0 1,381 12 21 0
1 log 5 0.0 76 37 1 0 0.0 1,381 12 21 0
9 1-hot 45 0.1 20,971 14,334 327 13 1.1 27,959 804 436 12
9 2-hot 25 0.0 11,010 8,144 172 7 0.3 15,874 410 248 6
9 3-hot 20 0.0 11,182 8,304 174 8 0.2 14,381 321 224 5
9 log 20 0.0 18,139 16,932 283 16 0.2 23,002 307 359 4

10 1-hot 50 0.3 28,035 18,872 438 18 1.7 36,875 1,038 576 16
10 2-hot 30 0.1 22,580 15,919 352 15 0.6 26,829 574 419 8
10 3-hot 25 0.0 11,182 8,304 174 8 0.3 15,541 370 242 5
10 log 20 0.0 17,898 16,712 279 16 0.3 23,836 350 372 5
20 1-hot 100 8.3 346,180 172,269 5,409 168 65.9 346,180 6,073 5,409 94
20 2-hot 55 1.8 224,063 126,053 3,500 123 11.7 224,063 2,989 3,500 46
20 3-hot 40 0.8 129,661 81,487 2,025 79 4.3 129,661 1,779 2,025 27
20 log 25 0.2 117,817 113,539 1,840 110 2.7 145,266 1,160 2,269 18
30 2-hot 80 13.0 1,028,821 481,869 16,075 470 159.7 1,028,821 8,504 16,075 132
30 3-hot 55 5.1 565,195 262,226 8,831 256 75.0 565,195 5,452 8,831 85
30 4-hot 45 4.5 585,504 307,972 9,148 300 32.4 585,504 4,350 9,148 67
30 5-hot 40 4.2 570,133 313,858 8,908 306 20.6 570,133 3,844 8,908 60
30 log 25 0.2 107,305 104,027 1,676 101 8.4 177,097 2,065 2,767 32

Table 4.2 Fork-join in CuddImpl

50

Meddly
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
1 1-hot 5 0.0 65 37 1 1 0.0 20 12 0 0
1 log 5 0.0 65 37 1 1 0.0 20 12 0 0
1 Mdd 5 0.0 65 37 1 1 0.0 20 12 0 0
9 1-hot 45 1.0 1,253 710 35 18 0.2 1,371 804 27 16
9 2-hot 25 0.3 537 352 15 9 0.0 746 410 15 8
9 3-hot 20 0.2 469 324 13 8 0.0 612 321 13 6
9 log 20 0.0 343 227 7 6 0.0 614 307 13 6
9 Mdd 5 0.0 227 133 9 6 0.0 148 88 5 2

10 1-hot 50 1.5 1,578 797 43 20 0.4 1,762 1,038 35 21
10 2-hot 30 0.4 764 439 21 11 0.2 1,044 574 21 11
10 3-hot 25 0.1 483 324 13 8 0.1 720 370 15 7
10 log 20 0.0 343 227 7 6 0.1 717 350 15 7
10 Mdd 5 0.0 247 145 10 7 0.0 174 102 6 3
20 1-hot 100 58.9 8,263 1,667 195 42 4.5 10,538 6,073 210 121
20 2-hot 55 5.9 2,768 874 68 22 2.6 5,621 2,989 115 61
20 3-hot 40 1.2 1,147 586 32 15 1.5 3,547 1,779 74 37
20 log 25 0.1 434 294 10 8 0.8 2,595 1,160 56 24
20 Mdd 5 0.0 447 265 27 19 0.3 521 297 29 14
30 2-hot 80 26.9 6,630 1,309 147 33 11.7 16,313 8,504 331 171
30 3-hot 55 7.6 3,244 904 79 23 8.2 10,871 5,452 225 111
30 4-hot 45 3.7 2,019 760 53 19 5.8 8,846 4,350 186 90
30 5-hot 40 2.3 1,748 792 49 20 5.1 7,912 3,844 168 80
30 log 25 0.1 434 294 10 8 1.5 4,978 2,065 109 44
30 Mdd 5 0.0 647 385 52 37 0.6 1,058 592 80 36

Table 4.3 Fork-join in MeddlyImpl

51

4.4 Dining philosopher model

The philosophers model is a safe Petri net model. Figure 4.1 shows a 3-Philosophers model.

All three philosophers(ph1, ph2 and ph3) have a fork(f1, f2 and f3) on their left and right. A

philosopher needs both forks to eat. But, as there are only three forks, only one philosopher

can eat at a time. Philosopher phi is initially not-hungry(place nhi has a token). When a

philosopher becomes hungry, transition thinking(ti) fires and a token each is added to places

want-left(wli) and want-right(wri). If the fork on the left is available, transition get-left(gli)

gets enabled which on firing removes a token from wli and adds it to hli. Similarly if the fork

on the right is available, transition get-right(gri) gets enabled. On firing, gri removes a token

from wri and adds it to hri. Once both hri and hli have a token each, transition eat(ei) is

enabled which on firing removes a token each from hli and hri and adds a token to nhi leaving

phi back in not hungry state and making left and right forks available.

Thus, a philosopher can eat only if both forks(left and right) are available. For ph1 to eat,

both f1 and f3 should be free, for ph2 to eat, f1 and f2 should be free and for ph3 to eat, f2

and f3 should be free. The variable ordering used for this model is (f3, hr3, wr3, hl3, wl3, nh3,

f2, hr2, wr2, hl2, wl2, nh2, f1, hr1, wr1, hl1, wl1, nh1) from top to bottom level. This model can

also be extended easily to N -Philosophers. For 4-Philosophers, group another philosopher say

ph4 such that ph3, ph4 share the same fork f3 and ph4, ph1 share the same fork f4.

52

t1

nh1

1e

1 1

 f1

 f f

t

wl

gl

hl

e

hr

grnh

wr

2

e2

2

2nh2

2

2

2

t2

3

3 3

333

3 3

2

1

1 1

1

wr wl

glgr

hr hl

wr

gr

hr

wl

gl

hl

3 2

Figure 4.1 3 Dining philosophers model

Properties(count of places, transitions, reachable markings etc) of this model for various

values of N are shown in Table 4.4. Table 4.5 shows the Philosophers model in CuddImpl with

various values of N . For a safe PN model, all three encodings 1-hot, logarithmic and MDD

are equivalent. Thus, the metrics are same for all encodings in Cudd and Meddly as shown in

Tables 4.5 and 4.6.

53

N Places Transitions Max bound Reachable markings
5 30 20 1 1364

10 60 40 1 1,860,498
20 120 80 1 3,461,452,808,002
30 180 120 1 6,440,026,026,380,244,498
40 240 160 1 11,981,655,542,024,930,675,232,002
50 300 200 1 22,291,846,172,619,859,445,381,409,012,498
60 360 240 1 1,473,935,220,454,921,602,871,195,774,259,272,002

Table 4.4 Properties of Philosophers model

Cudd
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
5 1-hot 5 0.0 775 528 12 0 0.1 7,256 187 113 2
5 log 5 0.0 775 528 12 0 0.1 7,256 187 113 2

10 1-hot 10 0.2 1,680 1,195 26 1 3.5 31,432 450 491 7
10 log 10 0.2 1,680 1,195 26 1 3.4 31,432 450 491 7
20 1-hot 20 0.7 3,470 2,505 54 2 34.3 127,704 950 1,995 14
20 log 20 0.7 3,470 2,505 54 2 34.6 127,704 950 1,995 14
30 1-hot 30 4.4 5,260 3,815 82 3 284.4 286,341 1,450 4,474 22
30 log 30 4.4 5,260 3,815 82 3 284.1 286,341 1,450 4,474 22
40 1-hot 40 6.4 7,050 5,125 110 5 355.4 510,794 1,950 7,981 30
40 log 40 6.4 7,050 5,125 110 5 355.3 510,794 1,950 7,981 30
50 1-hot 50 19.4 8,840 6,435 138 6 2304.8 798,356 2,450 12,474 38
50 log 50 20.6 8,840 6,435 138 6 2304.7 798,358 2,450 12,474 38
60 1-hot 60 21.1 10,630 7,745 166 7 4403.6 1,149,769 2,950 17,965 46
60 log 60 21.4 10,630 7,745 166 7 4403.1 1,149,769 2,950 17,965 46

Table 4.5 Philosophers model in CuddImpl

54

Meddly
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
5 1-hot 5 0.0 681 528 15 14 0.0 638 187 13 4
5 log 5 0.0 681 528 15 14 0.0 638 187 13 4
5 Mdd 5 0.0 681 528 15 14 0.0 638 187 13 4

10 1-hot 10 0.1 1,496 1,195 33 32 0.7 2,218 450 68 10
10 log 10 0.1 1,496 1,195 33 32 0.7 2,218 450 68 10
10 MDD 10 0.1 1,496 1,195 33 32 0.7 2,218 450 68 10
20 1-hot 20 0.2 3,106 2,505 69 68 8.3 13,484 950 296 22
20 log 20 0.2 3,106 2,505 69 68 8.3 13,484 950 296 22
20 Mdd 20 0.2 3,106 2,505 69 68 8.3 13,484 950 296 22
30 1-hot 30 0.9 4,718 3,815 104 104 41.4 31,424 1,450 687 34
30 log 30 0.9 4,718 3,815 104 104 40.3 31,424 1,450 687 34
30 Mdd 30 1.0 4,718 3,815 104 104 41.1 31,424 1,450 687 34
40 1-hot 40 0.9 6,328 5,125 140 139 114.4 56,868 1,950 1,239 46
40 log 40 1.0 6,328 5,125 140 139 114.5 56,868 1,950 1,239 46
40 Mdd 40 0.9 6,328 5,125 140 139 114.4 56,868 1,950 1,239 46
50 1-hot 50 3.0 7,938 6,435 176 175 287.0 89,802 2,450 1,953 58
50 log 50 3.0 7,938 6,435 176 175 287.6 89,802 2,450 1,953 58
50 Mdd 50 3.1 7,938 6,435 176 175 287.3 89,802 2,450 1,953 58
60 1-hot 60 2.3 9,548 7,745 212 211 412.5 130,240 2,950 2,828 70
60 log 60 2.4 9,548 7,745 212 211 412.5 130,240 2,950 2,828 70
60 Mdd 60 2.4 9,548 7,745 212 211 412.7 130,240 2,950 2,828 70

Table 4.6 Philosophers model in MeddlyImpl

55

4.5 Swaps model

The swaps-3 model is shown in Figure 4.2. This model has 3 places(p0, p1 and p2) and 2

transitions(t1 and t2). The variable ordering used for this model is (p2, p1, p0) from top to

bottom level. Transition t1 is enabled when place p0 has #p0 tokens and place p1 has #p1

tokens. On firing, t1 removes #p0 tokens from p0 and adds #p1 tokens to it. It also removes

#p1 tokens from p1 and adds #p0 tokens to it. Hence, tokens get swapped between p0 and

p1. Similarly, transition t2 gets enabled when p1 has #p1 tokens and p2 has #p2 tokens. On

firing, t2 removes #p1 tokens from p1 and adds #p2 tokens to it. It also removes #p2 tokens

from p2 and adds #p1 tokens to it. Hence, tokens get swapped between p1 and p2.

#p1

#p1 #p1

#p1
#p2 #p2

#p0 #p0p0 p23

p1
1 2t1 t2

Figure 4.2 Swaps-3 model

This model can be easily extended to swaps-N model. For example, in order to extend it to

swaps-4, another place p3 and transition t3 are added such that on firing, t3 swaps the tokens

between places p2 and p3. Thus any transition in this model exchanges the number of tokens

in adjoining places. Properties of this model for various values of N are shown in Table 4.7.

N Places Transitions Max bound Reachable markings
6 6 5 6 720
7 7 6 7 5,040
8 8 7 8 40,320
9 9 8 9 362,880

10 10 9 10 3,628,800
11 11 10 11 39,916,800

Table 4.7 Properties of Swaps model

56

Tables 4.8 and 4.9 show the performance of swaps model in CuddImpl and MeddlyImpl

for various values of N .

Cudd
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
6 1-hot 36 0.2 22,308 16,385 348 16 0.5 35,145 581 549 9
6 2-hot 24 0.1 9,941 7,422 155 7 0.3 18,886 425 295 6
6 log 18 0.0 4,594 3,246 71 3 0.2 11,412 299 178 4
7 1-hot 49 0.5 44,911 32,841 701 32 2.9 90,613 1,413 1,415 22
7 2-hot 28 0.1 15,239 11,411 238 11 1.2 41,958 900 655 14
7 log 21 0.0 5,814 4,027 90 3 0.7 25,239 629 394 9
8 1-hot 64 1.2 79,976 58,002 1,249 56 20.3 236,814 3,333 3,700 52
8 2-hot 40 0.3 31,409 23,301 490 22 11.0 132,518 2,524 2,070 39
8 3-hot 32 0.2 18,467 13,636 288 13 5.5 98,003 1,905 1,531 29
8 log 32 0.1 27,488 21,528 429 21 5.3 105,573 1,759 1,649 27
9 1-hot 81 2.9 134,791 97,972 2,106 95 144.7 671,499 7,685 10,492 120
9 2-hot 45 0.4 36,888 27,099 576 26 52.0 343,041 5,277 5,360 82
9 3-hot 36 0.3 40,461 25,993 632 25 41.4 268,864 3,918 4,201 61
9 log 36 0.1 32,817 25,112 512 24 41.3 265,699 3,838 4,151 59

10 1-hot 100 5.5 212,971 154,755 3,327 151 686.0 2,018,231 17,413 31,534 272
10 2-hot 60 1.3 76,338 56,716 1,192 55 397.3 1,183,929 13,861 18,498 216
10 3-hot 50 0.4 50,542 31,698 789 30 175.8 744,280 8,270 11,629 129
10 log 40 0.2 39,503 29,782 617 29 189.4 735,528 8,250 11,492 128
11 1-hot 121 10.4 317,318 229,643 4,958 224 4639.9 6,227,662 38,917 97,307 608
11 2-hot 66 1.6 86,213 63,686 1,347 62 1712.1 3,344,138 28,712 52,252 448
11 3-hot 55 2.5 220,012 132,758 3,437 129 1200.1 2,782,814 23,143 43,481 361
11 log 44 0.2 45,070 33,275 704 32 814.6 2,043,994 17,488 31,937 273

Table 4.8 Swaps model in CuddImpl

The node count and memory consumed by logarithmic encoding is less than k-hot for most

cases. However, for Swaps-8 in CuddImpl, the final/peak node count and final/peak memory

consumed for TR by logarithmic encoding is greather than that for 3-hot.

In most scenarios, k-hot encoding shows a gradual decrease in the node count and memory

consumed for increasing values of k. But, for Swaps-11 in MeddlyImpl, the final/peak node

count and memeory consumed for TR by 2-hot is better than that for 3-hot.

57

Meddly
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
6 1-hot 36 0.4 4,420 3,350 92 73 0.3 1,140 581 23 12
6 2-hot 24 0.3 2,912 2,362 63 53 0.2 794 425 17 9
6 log 18 0.0 1,693 1,625 38 37 0.1 591 299 13 6
6 Mdd 6 0.0 524 494 19 18 0.1 155 65 6 2
7 1-hot 49 1.3 8,416 6,144 177 132 1.4 3,422 1,413 71 30
7 2-hot 28 0.5 6,454 4,770 146 109 0.8 2,164 900 46 19
7 log 21 0.1 3,054 2,135 69 50 0.5 1,565 629 35 14
7 Mdd 7 0.0 1,148 773 46 32 0.3 375 129 14 5
8 1-hot 64 6.9 14,279 10,388 301 222 7.4 10,375 3,333 215 70
8 2-hot 40 1.6 9,367 6,620 204 146 4.3 7,614 2,524 161 54
8 3-hot 32 0.8 7,979 5,946 188 136 3.3 5,884 1,905 129 42
8 log 32 0.2 11,855 8,834 270 202 4.0 5,600 1,759 123 39
8 Mdd 8 0.0 1,698 1,140 73 50 1.3 924 257 40 12
9 1-hot 81 14.0 22,760 16,512 479 351 27.7 30,685 7,685 636 160
9 2-hot 45 2.1 11,743 8,086 256 179 15.0 20,464 5,277 438 113
9 3-hot 36 1.1 10,342 7,228 235 166 12.7 15,718 3,918 347 87
9 log 36 0.3 14,584 10,726 337 246 14.9 15,288 3,838 338 85
9 Mdd 9 0.1 2,398 1,607 111 75 5.5 2,421 513 111 26

10 1-hot 100 26.8 29,198 25,002 726 529 156.5 88,310 17,413 1,829 361
10 2-hot 60 5.5 21,542 14,923 466 326 80.9 67,211 13,861 1,424 293
10 3-hot 50 1.4 12,604 8,616 287 198 47.8 41,607 8,270 937 186
10 log 40 0.4 18,057 12,774 413 293 62.2 40,136 8,250 919 184
10 Mdd 10 0.1 3,266 2,186 163 109 21.1 5,827 1,025 301 56
11 1-hot 121 36.5 50,392 36,400 1,059 767 4450.9 246,988 38,917 5,110 806
11 2-hot 66 6.1 25,787 17,509 559 382 1684.7 175,451 28,712 3,738 608
11 3-hot 55 4.2 29,910 21,319 679 485 1186.2 143,593 23,143 3,126 502
11 log 44 0.4 21,626 14,978 495 344 791.4 106,813 17,488 2,443 391
11 Mdd 11 0.1 4,320 2,889 229 152 123.5 14,541 2,049 801 120

Table 4.9 Swaps model in MeddlyImpl

58

4.6 Kanban model

The Kanban Petri net model consists of 4 parallel processes which are synchronized amongst

each other. The model is shown in Figure 4.3. The net has 4 stations. A part enters a sta-

tion only if a kanban ticket is available (places pkan). The part is then processed in the

station. If the processing completes correctly, transition tok fires and the part moves to the

next station. Else, the part is sent back to the same station via transition tback for repro-

cessing. After passing station 1, a part splits into two parts, one each for station 2 and

station 3. After the processing completes successfully at station 2 and station 3, the two parts

join and move to station 4. The initial state of the model has N tokens at pkan1, pkan2,

pkan3 and pkan4. All places have a bound of N . The variable oredering used by this model is

(pout4, pkan4, pback4, pm4, pout3, pkan3, pback3, pm3, . . . , pout1, pkan1, pback1, pm1) from top to

bottom level.

tin1 pm1 tredo1
pback1

tback1pout1
tok1pkan1

pm2

tback2

tredo
2

pback
2

pkan2
tok2

pout2

tback
3

pback3tredo3

pm
3

pkan3
tok3

pout3

pm4

pkan4

tredo4 pback4

tback4

tok4 pout4 tout4

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

N

N

N

N

Figure 4.3 Kanban model

Properties of this model for various values of N are shown in Table 4.10.

59

N Places Transitions Max bound Reachable markings
1 16 16 1 160
3 16 16 3 58,400
5 16 16 5 2,546,432
7 16 16 7 41,644,800
8 16 16 8 133,865,325
9 16 16 9 384,392,800

10 16 16 10 1,005,927,208

Table 4.10 Properties of Kanban model

Tables 4.11 and 4.12 show performance of the Kanban model in CuddImpl and Meddly-

Impl respectively.

As seen from Table 4.11, 3-hot encoding performs better than logarithmic with respect

to node count and memory(for both TR and RS) for 8-Kanban in CuddImpl. 1-Kanban is a

safe PN model and hence the performance of 1-hot and logarithmic is same for this model in

CuddImpl and MeddlyImpl.

60

Cudd
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
1 1-hot 16 0.0 321 160 5 0 0.0 1,562 34 24 0
1 log 16 0.0 321 160 5 0 0.0 1,562 34 24 0
3 1-hot 48 0.2 22,759 16,797 355 16 1.1 30,547 227 477 3
3 2-hot 32 0.0 2,932 2,369 45 2 0.5 11,332 143 177 2
3 log 32 0.0 2,980 2,369 46 2 0.5 11,380 143 177 2
5 1-hot 80 2.7 258,402 169,841 4,037 165 13.2 258,402 672 4,037 10
5 2-hot 48 0.3 38,547 27,490 602 26 4.8 72,329 382 1,130 5
5 log 48 0.1 32,932 25,843 514 25 4.7 68,950 361 1,077 5
7 1-hot 112 130.5 2,067,911 1,172,033 32,311 1,144 323.3 2,067,911 1,449 32,311 22
7 2-hot 64 3.4 348,642 187,682 5,447 183 58.9 348,642 790 5,447 12
7 log 48 0.2 62,708 45,684 979 44 39.6 148,665 527 2,322 8
8 1-hot 128 517.8 3,469,820 1,921,133 54,215 1,876 758.1 3,469,820 1,987 54,215 31
8 2-hot 80 19.3 793,940 472,450 12,405 461 277.2 793,940 1,196 12,405 18
8 3-hot 64 4.1 348,642 187,682 5,447 183 179.7 395,923 943 6,186 14
8 log 64 4.3 915,246 670,122 14,300 654 139.8 915,246 854 14,300 13
9 1-hot 144 2402.1 7,504,474 4,016,745 117,257 3,922 1742.7 7,504,474 2,638 117,257 41
9 2-hot 80 20.7 793,940 472,450 12,405 461 488.8 834,391 1,406 13,037 21
9 3-hot 64 4.1 348,642 187,682 5,447 183 345.0 475,103 1,112 7,423 17
9 log 64 4.5 917920 672735 14342 656 289.1 936913 987 14639 15

10 2-hot 96 163.8 2,505,916 1,392,599 39,154 1,359 1250.8 2,505,916 1,976 39,154 30
10 3-hot 64 4.1 348,642 187,682 5,447 183 628.6 570,332 1,300 8,911 20
10 log 64 4.7 909,036 663,726 14,203 648 560.6 1,015,040 1,131 15,860 17

Table 4.11 Kanban model in CuddImpl

61

Meddly
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
1 1-hot 16 0.0 306 160 6 5 0.0 114 34 2 0
1 log 16 0.0 306 160 6 5 0.0 114 34 2 0
1 Mdd 16 0.0 306 160 6 5 0.0 114 34 2 0
3 1-hot 48 1.0 1,298 784 29 21 0.3 1,414 227 29 5
3 2-hot 32 0.3 676 392 15 11 0.2 938 143 20 3
3 log 32 0.0 684 392 15 11 0.2 941 143 20 3
3 Mdd 16 0.0 492 264 13 9 0.1 439 75 11 2
5 1-hot 80 6.1 2,479 1,486 54 39 7.9 7,139 672 147 15
5 2-hot 48 1.2 1,324 833 30 23 4.7 4,201 382 94 9
5 log 48 0.1 1,083 643 24 19 4.2 4,352 361 95 8
5 Mdd 16 0.0 676 368 21 15 2.0 1,354 128 37 3
7 1-hot 112 19.9 3,645 2,188 80 58 126.3 22,648 1,449 468 31
7 2-hot 64 2.6 2,151 1,310 49 35 60.3 12,689 790 282 17
7 log 48 0.1 1,083 643 24 19 38.3 9,770 527 216 12
7 Mdd 16 0.0 857 472 30 22 23.7 3,058 193 91 6
8 1-hot 128 21.5 4,334 2,539 93 67 293.6 36,260 1,987 742 43
8 2-hot 80 6.8 2,283 1,413 50 38 206.0 22,878 1,196 492 26
8 3-hot 64 3.6 2,151 1,310 49 35 121.7 18,482 943 403 21
8 log 64 0.2 1,488 902 33 26 125.8 18,636 854 398 19
8 Mdd 16 0.1 954 524 36 26 54.7 4,286 230 133 7
9 1-hot 144 64.6 4,811 2,890 105 76 738.0 55,067 2,638 1,127 56
9 2-hot 80 8.8 2,283 1,413 50 38 491.4 31,312 1,406 659 31
9 3-hot 64 4.1 2,151 1,310 49 35 306.7 24,735 1,112 550 25
9 log 64 0.2 1,488 902 33 26 260.4 24,032 987 541 22
9 Mdd 16 0.1 1,046 576 41 30 114.1 5,765 270 186 9

10 1-hot 160 71.9 5,471 3,241 119 85 1524.1 80,138 3,412 1,638 72
10 2-hot 96 17.4 2,765 1,764 63 47 924.6 49,126 1,976 1,033 43
10 3-hot 64 4.0 2,151 1,310 49 35 707.5 33,940 1,300 734 29
10 log 64 0.2 1,488 902 33 26 440.3 32,019 1,131 699 25
10 Mdd 16 0.1 1,076 628 47 34 226.5 7,535 313 253 11

Table 4.12 Kanban model in MeddlyImpl

62

4.7 Tiles model

Tiles(M ,N) is another unsafe Petri net used for comparison. Figure 4.4 shows tiles(2,2)

model. This model consists of 4 places(p11, p12, p21, p22) and 8 transitions. The initial marking

of the Petri net is [p11 : 0, p12 : 1, p21 : 2, p22 : 3]. The variable ordering used is (p22, p21, p12, p11)

from top to bottom level. It is basically a 2-dimensional version of swaps model where the

exchange of tokens takes place only when one of the places is empty. For example, if place

p12 does not have any tokens then the transition e12 is enabled. On firing, e12 removes all

tokens from place p11 and adds them to place p12. As a result, p11 has 0 tokens which enables

transition w11. On firing, w11 removes all tokens from p12 and adds them to p11. This model

can be easily extended for different values of M and N . For an increase in the values of M , a

sub-graph similar to g1 shown in Figure 4.4 is added to the left of g1. Hence, for tiles(3,2) a

sub-graph similar to g1 with places (x31 and x32) and transitions (w31, n21, n22, e32, s31 and

s32) is added. Similarly, for an increase in the value of N , a sub-graph similar to g2 shown in

Figure 4.4 is added.

Properties of this model for various values of M and N are shown in Table 4.13.

M ×N Places Transitions Max bound Reachable markings
2×2 4 8 3 12
2×3 6 14 5 360
3×2 6 14 5 360
2×4 8 20 7 20,160
4×2 8 20 7 20,160
3×3 9 24 8 181,440
2×5 10 26 9 1,814,400
5×2 10 26 9 1,814,400

Table 4.13 Properties of Tiles model

Tables 4.14 and 4.15 show performance of the Tiles(M ,N) model in CuddImpl and Med-

dlyImpl respectively.

63

#p21

#p22

#p11

#p12

#p11

#p21

#p11

#p21

#p22

#p12

#p12

#p21

#p22

#p22

#p12

#p11

1

2

g

g

e22
e12w21

w11

n11

n

21

22
12

21

22

12

11

s

s

p p

pp

Figure 4.4 Tiles(2,2) model

64

Cudd
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
2×2 1-hot 12 0.0 832 540 13 0 0.0 1,982 53 30 0
2×2 2-hot 12 0.0 337 219 5 0 0.0 1,078 36 26 0
2×2 log 8 0.0 345 219 5 0 0.0 1,068 36 25 0
2×3 1-hot 30 0.1 5,941 4,007 92 3 0.4 12,717 691 198 10
2×3 2-hot 18 0.0 2,377 1,697 37 1 0.2 6,994 432 109 6
2×3 log 18 0.0 1,905 1,410 29 1 0.2 6,715 425 104 6
3×2 1-hot 30 0.1 5,308 3,336 82 3 0.3 10,788 691 168 10
3×2 2-hot 18 0.0 2,112 1,416 33 1 0.1 6,008 432 93 6
3×3 log 18 0.0 1,710 1,199 26 1 0.1 5,845 425 91 6
2×4 1-hot 56 0.5 21,482 14,837 335 14 26.9 192,164 5,143 3,002 80
2×4 2-hot 32 0.1 10,586 7,344 165 7 9.2 111,689 3,421 1,745 53
2×4 log 24 0.0 3,642 2,817 56 2 6.3 79,429 2,430 1,241 37
4×2 1-hot 56 0.4 17,066 10,260 266 10 18.4 119,766 5,143 1,871 80
4×2 2-hot 32 0.1 8,366 5,041 130 4 6.4 73,014 3,421 1,140 53
4×2 log 24 0.0 2,888 2,024 45 1 4.0 51,718 2,430 808 37
3×3 1-hot 72 0.9 31,947 21,118 499 20 128.8 801,294 12,623 12,520 197
3×3 2-hot 45 0.2 15,586 10,800 243 10 60.0 526,454 9,911 8,225 154
3×3 3-hot 36 0.2 11,677 7,838 182 7 40.3 416,685 7,581 6,510 118
3×3 log 36 0.0 10,019 7,696 156 7 40.5 404,438 6,827 6,319 106
2×5 1-hot 90 1.9 56,333 39,500 880 38 2064.9 6,343,758 29,787 99,121 465
2×5 2-hot 50 0.5 21,116 15,766 329 15 928.3 3,658,287 21,146 57,160 330
2×5 3-hot 40 0.3 15,805 11,493 246 11 631.1 2,927,929 16,006 45,748 250
2×5 log 40 0.1 13,529 10,946 211 10 630.3 2,911,142 15,346 45,486 239
5×2 1-hot 90 1.6 40,434 23,184 631 22 1205.7 2,746,699 29,787 42,917 465
5×2 2-hot 50 0.3 14,773 9,252 230 9 460.8 1,691,830 21,146 26,434 330
5×2 3-hot 40 0.2 11,131 6,693 173 6 290.1 1,359,777 16,006 21,246 250
5×2 log 40 0.1 9,528 6,768 148 6 288.9 1,322,711 15,346 20,667 239

Table 4.14 Tiles model in CuddImpl

65

Meddly
N Enc. L TR RS

CPU PN FN PM FM CPU PN FN PM FM
2×2 1-hot 12 0.0 430 347 11 8 0.0 73 53 1 1
2×2 2-hot 12 0.0 306 214 6 5 0.0 52 36 1 0
2×2 log 8 0.0 306 214 6 5 0.0 52 36 1 0
2×2 Mdd 4 0.0 184 129 4 3 0.0 26 17 0 0
2×3 1-hot 30 0.1 3,080 2,365 66 52 0.3 1,065 691 22 14
2×3 2-hot 18 0.0 2,015 1,604 45 37 0.2 725 432 15 9
2×3 log 18 0.0 1,855 1,489 42 34 0.2 750 425 16 9
2×3 Mdd 6 0.0 893 674 27 22 0.0 211 105 6 3
3×2 1-hot 30 0.2 2,318 1,979 56 44 0.2 1,035 691 21 14
3×2 2-hot 18 0.0 1,704 1,320 38 30 0.1 620 432 13 9
3×2 log 18 0.0 1,580 1,243 36 28 0.1 650 425 14 9
3×2 Mdd 6 0.0 748 531 23 17 0.0 179 105 5 3
2×4 1-hot 56 4.3 11,782 8,810 250 193 21.8 26,282 5,143 546 107
2×4 2-hot 32 1.0 8,781 7,022 195 159 8.7 15,932 3,421 348 74
2×4 log 24 0.1 4,168 3,030 92 69 5.3 12,017 2,430 278 55
2×4 Mdd 8 0.1 2,960 2,226 104 81 3.5 3,339 481 132 20
4×2 1-hot 56 6.9 8,547 5,990 183 132 11.9 19,546 5,143 405 107
4×2 2-hot 32 1.7 6,061 4,528 135 103 4.6 12,020 3,421 260 74
4×2 log 24 0.1 3,078 2,112 68 48 3.4 8,908 2,430 203 55
4×2 Mdd 8 0.1 2,050 1,372 73 51 1.3 2,421 481 97 20
3×3 1-hot 72 24.0 18,410 12,996 393 284 94.4 154,261 12,623 3,181 262
3×3 2-hot 45 5.4 11,316 8,069 244 178 53.7 101,876 9,911 2,173 210
3×3 3-hot 36 2.9 10,841 7,968 241 181 38.1 81,344 7,581 1,785 166
3×3 log 36 0.6 10,316 7,831 228 177 36.3 80,273 6,827 1,762 151
3×3 Mdd 9 0.1 4,298 3,027 162 117 14.5 17,377 989 765 46
2×5 1-hot 90 49.2 34,266 24,466 728 532 2046.7 975,343 29,787 20,266 617
2×5 2-hot 50 7.8 17,652 12,452 380 274 918.3 578,716 21,146 12,550 452
2×5 3-hot 40 3.8 17,028 12,417 379 282 621.8 464,598 16,006 10,609 354
2×5 log 40 1.0 16,108 12,021 355 271 618.2 482,098 15,346 10,850 340
2×5 Mdd 10 0.3 7,830 5,761 308 233 316.0 94,361 2,009 4,691 101
5×2 1-hot 90 45.9 20,331 13,580 436 297 728.4 535,041 29,787 11,143 617
5×2 2-hot 50 6.9 10,452 6,869 227 153 368.6 334,832 21,146 7,217 452
5×2 3-hot 40 3.6 9,824 6,638 220 151 287.6 269,443 16,006 5,981 354
5×2 log 40 0.7 9,341 6,599 208 149 279.5 262,647 15,346 5,809 340
5×2 Mdd 10 0.2 4,400 2,832 177 116 79.3 51,801 2,009 2,595 101

Table 4.15 Tiles model in MeddlyImpl

66

4.8 Performance in computing CTL formulas

Average time taken to compute CTL formulas such as deadlock for the N -Philosophers

model, are also used as a metric for comparison. Table 4.16 shows the time taken in seconds

for evaluating few CTL formulas in both Cudd and Meddly. The N -Philosopher model is used

for this comparison. The CTL formulas used for comparison are,

start = not-hungry1 ∧ not-hungry2 ∧ . . . ∧ not-hungryn,

not dead = EFstart,

deadlock = ¬not dead,

can deadlock = EFdeadlocked,

will deadlock = AFdeadlocked,

will eat1 = AFeat1,

will eatn = AFeatn,

(4.1)

The CTL formula start is satisfied by a state where the places (not − hungry1, not −
hungry2, . . ., not−hungryn) have a token each. In other words, start holds if all philosophers

are not-hungry. EFstart is true for a state s if there exists a path from s where start holds for

some state along the path. The CTL formula deadlock describes a state s such that there is

no state reachable from s where all philosophers are not-hungry. Formula can deadlock holds

for a state s if there exists a path from s where deadlock holds for some state along the path.

The CTL formula will deadlock holds for a state s if for every path from s, there exists a state

along the path where deadlock is satisfied. Next, will eatn holds in a state s if for every path

from s, there exists a state along the path where transition eatn is enabled(Philosophern can

eat).

67

CTL formula evaluation
N CTL Formula 1-hot Log MDD

CuddImpl MeddlyImpl CuddImpl MeddlyImpl MeddlyImpl
5 will eat1 0.0 0.0 0.0 0.0 0.0
5 will eat2 0.0 0.0 0.0 0.0 0.0
5 can deadlock 0.0 0.0 0.0 0.0 0.0
5 will deadlock 0.0 0.0 0.0 0.0 0.0

10 will eat1 0.0 0.1 0.0 0.1 0.1
10 will eat2 0.0 0.0 0.0 0.0 0.0
10 can deadlock 0.0 0.0 0.0 0.0 0.0
10 will deadlock 0.0 0.0 0.0 0.0 0.0
20 will eat1 0.1 0.1 0.1 0.9 0.9
20 will eat2 0.0 0.0 0.0 0.0 0.0
20 can deadlock 0.0 0.0 0.0 0.0 0.0
20 will deadlock 0.5 0.0 0.8 0.0 0.0
30 will eat1 0.2 0.8 0.3 0.8 0.7
30 will eat2 0.0 0.0 0.0 0.0 0.0
30 can deadlock 0.0 0.0 0.0 0.0 0.0
30 will deadlock 0.1 0.0 0.1 0.0 0.0
40 will eat1 0.5 1.1 0.6 1.2 1.2
40 will eat2 0.0 0.0 0.0 0.0 0.0
40 can deadlock 0.0 0.0 0.0 0.0 0.0
40 will deadlock 0.2 0.3 0.3 0.2 0.2

Table 4.16 Comparing time taken to evaluate CTL formulas

68

4.9 Discussion

As k-hot and logarithmic encoding schemes use boolean encoding variables, RS is expected

to match in CuddImpl and MeddlyImpl and hence have the same final node count. The peak

node count depends on the efficiency and order of operations performed and hence may differ

in CuddImpl and MeddlyImpl. The results in the previous sections show same RS final node

count in CudImpl and MeddlyImpl for k-hot and logarithmic schemes. For TR, CuddImpl

uses fully reduced BDD’s and MeddlyImpl uses identity reduced MxD’s. Hence TR peak/final

node count may not match for the two implementations. For a safe Petri net model, RS and

TR both are expected to match because all three encodings are equivalent for a 1-bounded PN

model.

MDD encoding clearly performs the best in terms of time taken to build TR and RS,

peak/final memory consumed in the process and peak/final node count of TR and RS. Loga-

rithmic encoding seems the best choice, when using BDD’s. For most models in CuddImpl and

MeddlyImpl, it performs the best in terms of time taken, peak/final node count and peak/final

memory consumed. However, for some models like swaps8 in CuddImpl, 3-hot encoding uses

fewer peak and final nodes for TR as compared to logarithmic. Both k-hot and logarithmic

encodings perform better in MeddlyImpl than in CuddImpl with respect to time taken, node

count and memory consumed in building TR and RS. For k-hot encoding in both CuddImpl

and MeddlyImpl, a gradual decrease in consumption of time and nodes is seen with increasing

values of k.

The current implementations in CuddImpl and MeddlyImpl do not support increase in

bound during the generation of DDs. However, if Cudd and Meddly libraries provide the

feature to dynamically assign variables to a DD, then dynamic increase in bound can be sup-

ported with slight modifications to the encodings. Encodings like k-hot and logarithmic can

be modified to support this change by adding a new variables to accomodate the increase in

bound. Mdd encoding uses a single variable per place, hence no change in the encoding would

69

be needed to support the increase in bound.

70

CHAPTER 5. SUMMARY AND FUTURE WORK

This thesis introduced a new encoding scheme called k-hot encoding. Existing encoding

schemes were implemented and compared in BDD based Cudd library and MDD based Meddly

library. The results in Chapter 4 showed that Mdd encoding performed far better than other

encodings in terms of time taken, node count and memory consumed in building the transition

relation and reachability set. Also, k-hot encoding showed a gradual improvement in time,

memory and node count with increasing values of k.

This thesis can be extended to use existing variable ordering heuristics along with the en-

coding schemes discussed in Chapter 3. A lot of work has been done regarding ordering of

the encoding variables [8, 13]. A good ordering can result in a significantly smaller BDD as

opposed to a bad ordering. Thus a good ordering gives scope of being able to encode larger

Petri net models. The behaviour of the newly introduced k-hot encoding along with the exist-

ing heuristics for ordering encoding variables, could throw more insight on the usability and

efficiency of this scheme as compared to the conventional schemes like One-hot.

As discussed in Section 4.9, the encodings can be modified to support dynamic increase in

bounds. The models discussed in this thesis have a fixed maximum bound specified for each

place. With the option to dynamicaaly increase bounds, we would be able to encode models

for which the maximum bound is not known at the start. The suggestions discussed above

could make analyzing concurrent systems far more efficient. The first suggestion would help

represent even larger concurrent systems using Petri nets. For any system to be modelled using

a Petri net, the seconds suggestion would eliminate the need of knowing the bounds on each

71

place. Only the list of places and transitions would be required, which is much easier to realize

for any system.

72

BIBLIOGRAPHY

[1] J. Babar and A. Miner. Meddly. https://meddly.svn.sourceforge.net/svnroot/meddly.

[2] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Algebraic

Decision Diagrams and their Applications, 1993.

[3] C. Baier and J. Katoen. Principles of Model Checking. The MIT Press, 2008.

[4] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transac-

tions on Computers, 35:677–691, 1986.

[5] R. Bryant and A. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision

Diagrams. ACM Computing Surveys, 24:293–318, 1992.

[6] J. Burch, Jr. Edmund M. Clarke, K. Mcmillan, D. Dill, and L. Hwang. Symbolic Model

Checking: 1020 States and Beyond. Information and Computation, 98(2):142–170, 1992.

[7] N. Chawla and D. Cieslak. Evaluating Probability Estimates from Decision Trees. Amer-

ican Association for Artificial Intelligence, 2006.

[8] G. Ciardo, G. Luttgen, and A. Yu. Improving Static Variable Orders via Invariants. In

Application and Theory of Petri Nets, pages 83–103, 2007.

[9] R. Drechsler and B. Becker. Binary Decision Diagrams: Theory and Implementation.

Springer, 1998.

[10] R. Drechsler and D. Sieling. Binary Decision Diagrams in Theory and Practice. Interna-

tional Journal on Software Tools for Technology Transfer, 3(2):112–136, 2001.

73

[11] Jr. Edmund M. Clarke, M. Edmund, O. Grumberg, and D. Peled. Model Checking. MIT

Press, Cambridge, MA, USA, 1999.

[12] E.Hansen, R. Zhou, and Z. Feng. Symbolic Heuristic Search using Decision Diagrams.

In Proceedings of the 5th International Symposium on Abstraction, Reformulation and

Approximation, LNCS 2371:83–98, 2002.

[13] O. Grumberg, S. Livne, and S. Markovitch. Learning to Order Bdd Variables in Verifica-

tion. Journal of Artificial Intelligence Research, 18(1):83–116, 2003.

[14] T. Kam, T. Villa, R. Brayton, and A. Vincentelli. Synthesis of Finite State Machines:

Functional Optimization. Kluwer Academic Publishers, Norwell, Massachusetts, 1997.

[15] S. Malik, A. Srinivasan, and R. Brayton. Algorithms for Discrete Function Manipulation.

In Proceedings of the IEEE International Conference on Computer-Aided Design, pages

90–95, 1990.

[16] P. McGeer, K. McMillan, A. Saldanha, A. Sangiovanni, and P. Scaglia. Fast Discrete

Function Evaluation using Decision Diagrams. International Conference on Computer-

Aided Design, page 402, 1995.

[17] K. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

[18] A. Miner. Saturation for a General Class of Models. IEEE Transactions on Software

Engineering, 32:559–570, 2006.

[19] A. Miner. Petri Net Parser. http://sourceforge.net/projects/pnparser/, 2009.

[20] A. Miner and D. Parker. Symbolic Representations and Analysis of Large Probabilistic

Systems. Validation of Stochastic Systems, LNCS 2925:296–338, 2004.

[21] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,

77(4):541–580, 1989.

74

[22] E. Pastor and J. Cortadella. Efficient Encoding Schemes for Symbolic Analysis of Petri

Nets. In Proceedings of the conference on Design, automation and test in Europe, pages

790–795, 1998.

[23] E. Pastor, O. Roig, J. Cortadella, and R. Badia. In Petri Net Analysis using Boolean

Manipulation. 15th International Conference on Application and Theory of Petri Nets,

pages 416–435, 1994.

[24] E. Pastor, O. Roig, J. Cortadella, and R. Badia. Data Representation and Efficient

Solution: A Decision Diagram Approach. Formal Methods for Performance Evaluation,

LNCS 4486:371–394, 2007.

[25] J. Peterson. Petri Nets. ACM Computing Surveys, LNCS 2371:223–252, 1977.

[26] E. Reinhard, F. Thomas, and T. Dirk. Generating BDDs for Symbolic Model Checking

in CCS. Distributed Computing, 6(3):155–164, 1993.

[27] F. Somenzi. CUDD 2.4.2. http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

	2010
	Comparison of encoding schemes for symbolic model checking of bounded petri nets
	Nishtha Arora
	Recommended Citation

	tmp.1335711608.pdf.sX968

