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ABSTRACT

Many applications are inherently multicast in nature. Such applications can benefit tremen-

dously from reliable multicast support at the MAC layer since addressing reliability at the MAC

level is much less expensive than handling errors at the upper layers.

However, the IEEE 802.11 MAC layer does not support reliable multicast. This void in

the MAC layer is a limiting factor in the efficacy of multicast applications. In this work,

we propose a Slot Reservation based Reliable Multicast protocol that adds a novel reliability

component to the existing multicast protocol in the 802.11 MAC. Our protocol builds on the

existing DCF support in the IEEE 802.11 MAC to seamlessly incorporate an efficient reliable

multicast mechanism. Intelligent assignment of transmission slots, minimal control packet

overhead and an efficient retransmission strategy form the basis of our protocol. We evaluate

the performance of our protocol through extensive simulations. Our simulation results show

that our protocol outperforms another reliable multicast protocol, Batch Mode Multicast MAC

in terms of delivered throughput in various scenarios.

We enhance our protocol to add a fairness component in the presence of parallel unicast

and multicast flows and provide unicast friendly multicast operation. We then evaluate the

performance of our Slot Reservation Based Reliable Multicast Protocol with Fairness through

extensive simulations and see that the scheme ensures fairness among parallel unicast and

multicast flows.
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CHAPTER 1. INTRODUCTION

1.1 Overview of the Problem

Multicast is an efficient technique to disperse data to a group of recipients. By sending

data to all the recipients simultaneously, multicast leads to significant savings in the usage of

network resources and the time needed to disperse the data to all the recipients. A number of

applications such as video conferencing, shared whiteboards, ground/air transportation net-

works, and military communication and control are inherently multicast in nature. Several

popular routing protocols such as Dynamic Source Routing (DSR) [22][23] and Ad Hoc On

Demand Distance Vector Routing (AODV) [24] rely on broadcast, which is a special case of

multicast where the group of recipients includes all nodes the sender can communicate with.

Works such as [20][21] describe the benefits of using multicast in several existing applications

and how numerous applications in the future will benefit from a well defined multicast infras-

tructure.

IEEE 802.11-based wireless LANs are widely deployed in homes, offices, university cam-

puses, and public areas. When stations in a wireless LAN are interested in receiving multicast

data, they can benefit greatly from reliable multicast support at the MAC layer. Ensuring relia-

bility at the MAC layer can significantly reduce the time and bandwidth spent in error recovery

compared to handling errors in the upper layers. As a result, better end-to-end throughput

and delay guarantees can be achieved. However, as described in the next chapter, the existing

multicast technique in IEEE 802.11 [25] is unreliable. In addition, multicast frames are sent

at the base rate of 1Mbps to increase the robustness of the communication. This means that

we are not fully utilizing the bandwidth offered by the 802.11 MAC. Introducing reliability

allows multicast frames to be sent at higher rates akin to unicast frames. In purview of the
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aforementioned benefits of reliable multicast at the MAC layer, this work aims at enhancing

the IEEE 802.11 protocol to include reliable multicast support.

1.2 Contribution of this work

In this work, we propose a Slot Reservation based Reliable Multicast Protocol that adds a

novel reliability component to the existing multicast protocol in the 802.11 MAC. Our protocol

builds on the existing DCF support in the IEEE 802.11 MAC to seamlessly incorporate an

efficient reliable multicast mechanism. Intelligent assignment of transmission slots, minimal

control packet overhead and an efficient retransmission strategy form the basis of our protocol.

We also address the fairness issue in parallel unicast-multicast transmissions and provide a

simple and elegant solution to tailor the level of fairness and throughputs obtained from the

unicast and multicast flows.

The proposed efficient and fair reliable multicast protocol has the following features.

1. The reliability of multicast communication is achieved with RTS-CTS-DATA-ACK ex-

change. Using RTS and CTS control frames to capture the channel before sending mul-

ticast data is more efficient than recovering from an unsuccessful multicast because data

frames are generally much longer than control frames and hence retransmitting data is

more costly.

2. Efficient utilization of network bandwidth is achieved with a slot reservation based

scheduling algorithm that schedules the transmission of CTS and ACK frames from

different recipients to avoid collisions at the access point (AP).

3. The scheme also achieves fairness in terms of parallel operation of unicast and multi-

cast transmissions by preventing multicast transmissions from starving unicast commu-

nications. By introducing multicast-free time periods, the scheme ensures that unicast

transmissions receive a fair share of the bandwidth.

4. We propose several possible strategies for introducing multicast-free time periods which

may be adopted based on the required level of fairness [17].
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We simulate our protocol using the ns-2 [36] simulator and provide comparative results

with another efficient reliable multicast protocol, the Batch Mode Multicast MAC protocol

[31], and show that our protocol outperforms it. We then add the fairness component to our

simulation and show how varying levels of fairness can be achieved with parallel unicast and

multicast transmissions.

1.3 Outline of this work

The rest of this thesis is organized as follows. We start with an overview of the IEEE

802.11 [25] protocol, its architecture and its advantages in chapter 2. In chapter 3 we review

relevant literature in the area. In chapter 4 we describe the Slot Reservation Based Reliable

Multicast Protocol [39] and provide comparative simulation results. In chapter 5 we present the

Slot Reservation Based Reliable Multicast Protocol with Fairness by providing enhancements

to achieve fairness in the basic protocol described in chapter 4. We evaluate our fairness

scheme under various scenarios and metrics. We end the thesis by providing conclusions from

our work and outlining future work in chapter 6.
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CHAPTER 2. OVERVIEW OF IEEE 802.11 PROTOCOL

2.1 Introduction

A wireless LAN (WLAN) as defined by [1] is ’a data transmission system designed to

provide location-independent network access between computing devices by using radio waves

rather than a cable infrastructure’. A wireless network is deployed typically as the final link

between the wired network and mobile clients allowing these systems wireless mobile access

to network resources [1]. The IEEE 802.11 was developed by by the IEEE LAN/MAN Stan-

dards Committee (IEEE 802) [25] as a set of standards for wireless local area networking, and

currently is the de-facto standard in the area. 802.11 based wireless networks are extensively

deployed in the corporate environment, educational institutions and homes making them vir-

tually pervasive and ubiquitous.

802.11 based wireless networks operate in two major modes.

• Infrastructure Mode: Infrastructure mode 802.11 based wireless networks are character-

ized by the presence of Access Points (APs), which act as bridges between the wire-

less network and the wired backbone. Access Points themselves are connected using a

wired backbone [12]. Wireless clients communicate with each other through these Access

Points. Thus, communication between wireless station within an AP’s realm takes place

via the AP. This effectively doubles the bandwidth usage compared to the case where the

stations directly communicate with each other. However, this is the most widely used

category of WLANs, and this work is based on the infrastructure mode of operation.

• Ad-Hoc Mode: Ad-Hoc mode is characterized by stations directly communicating with

one another. Networks can be set up and torn down without the need of any backbone
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or infrastructure. These networks are typically active for short periods of time, and torn

down when they are no longer needed.

There are a number of benefits in using wireless LANs [2] as listed below.

• The most important benefit is increased mobility. The end user is no longer wired and

hence makes mobile communication truly possible. In addition, as described above, the

infrastructure mode bridges wired and wireless components of the network, thus enabling

seamless integration of the two.

• Another important benefit is low cost and ease of deployment of wireless LANs [7][6].

Wireless network interface cards and access points are inexpensive devices and hence the

cost of deployment and replacement is low. In addition, the placement of access points

can be easily changed as required since they are small, handy devices. Deployment is

extremely simple compared to its wired counterpart since physical obstacles have no

effect on the placement of these devices.

• Wireless LANs are extremely useful in cost-effective network setup for hard-to-wire lo-

cations since the high cost of laying cables can be avoided.

• Wireless stations or APs can be added or removed without any disruption to the remain-

der of the system. Building scalable systems becomes possible because of this.

• Wireless LANs operate in the unlicensed frequency bands. This considerably reduces the

cost of network operation since licensing is avoided.

2.2 The IEEE 802.11 Protocol Architecture

The IEEE 802.11 protocol architecture is shown in Figure 2.1 [4]. The lowest layer is the

physical layer which defines the operating frequency bands, the supported data rates and the

details of radio transmission. IEEE 802.11 comes in various flavors based on physical layer

criterion of the operating frequency band and the modulation techniques used.
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Figure 2.1 The IEEE 802.11 Protocol Architecture

We now outline the various flavors of the IEEE 802.11 standard and some of their important

features [3]. 802.11b is the most popular and widespread of the various IEEE 802.11 standards.

It operates in the unlicensed 2.4GHz frequency band. It uses DSSS (Direct-sequence spread

spectrum) modulation at the physical layer. It is capable of delivering a throughput of up

to 11Mbps; however the observed throughput is considerably lesser and is typically about

6Mbps since it faces interference from microwave ovens, cordless phones and other such devices.

802.11a was an improvement on 802.11b. It operates at a higher frequency (5 GHz) and avoids

wireless interference. It is more vulnerable to signal loss through walls and other obstacles. Its

operating range is smaller compared to 802.11b. Theoretically it supports data rates of up to

54 Mbps. 802.11a equipment tends to be more expensive than 802.11b. 802.11g was designed

to be interoperable with 802.11b while maintaining the high data rate achieved by 802.11a.

It provides 802.11a’s higher bit-rate of up to 54Mbps in the 2.4Ghz band. The coverage

area is better than 802.11a. 802.11n is the latest standard and can potentially deliver up

to 600Mbps, which is 50 times greater than 802.11b, and 10 times greater than 802.11a or

802.11g. It is based on MIMO (Multiple Input Multiple Output) which comprises the use of

multiple antennas at both the transmitter and receiver to improve communication performance.
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Although the standard is expected to be finalized by December 2009, 802.11n based cards are

already in production.

Above the physical layer is the Medium Access Control (MAC) layer where in the heart

of operation of IEEE 802.11 lies. The MAC layer arbitrates access to the shared medium.

The IEEE 802.11 MAC is based on CSMA/CA, (Carrier Sense Multiple Access with Collision

Avoidance) [26]. The basic idea is to avoid collision by not transmitting if the medium is busy

thus ensuring that the transmitting wireless stations do not interfere with each other. The

MAC layer has two sublayers, the DCF and the PCF and are described in section 2.3. The

Logical Link Control Layer sits on top of the MAC and provides interface to the higher layers

and performs basic Link level functions such as error control.

2.3 The IEEE 802.11 DCF and PCF

The IEEE 802.11 standard [25] defines two medium access control (MAC) protocols,

namely the Distributed Coordination Function (DCF) and the Point Coordination Function

(PCF). These are described below.

2.3.1 The Distributed Co-ordination Function (DCF )

The DCF is the most popular mode of MAC operation in 802.11 and this work is based on

DCF. The DCF uses a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

[26] based scheme for its operation and is augmented with a RTS-CTS mechanism for collision

free frame transfer.

2.3.1.1 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

In this section we describe the CSMA/CA protocol used in IEEE 802.11. Any station

wishing to transmit senses the channel for a period of time called the DCF InterFrame Spacing

(DIFS). If the medium is idle for DIFS, the station transmits its frame. If the medium is busy,

the station continues to listen until the medium is idle for DIFS and then backs off a random

number of slots of time chosen within the size of its contention window [0, CW ] where each slot
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is equivalent to one slot time (typically 20 µs). If the channel becomes busy before the backoff

timer expires, the timer is frozen. The station continues to listen to the medium until the

medium is idle for a period of DIFS and the backoff timer is restarted. The stations transmits

its frame once the backoff timer expires.

After transmitting the data frame, the transmitting station expects an ACK from the re-

ceiver within a fixed period called the ACK timeout. If the station receives an ACK within

the ACK timeout period, the transmission is deemed complete and successful. Else, the trans-

mission is unsuccessful and the station attempts to retransmit the frame. Every time a re-

transmission attempt is made, the size of the contention window is doubled up to a maximum

of CWmax, which is the maximum possible size of the contention window. This operation is

called the Binary Exponential Backoff scheme.

2.3.1.2 The Hidden Terminal Problem

The CSMA/CA protocol described in section 2.3.1.1 is known to suffer from the Hidden

Terminal problem. Consider three stations A, B, and C where A and C are within B’s trans-

mission range but A and C are outside each other’s transmission range. Suppose node A wants

to transmit a frame to node B while B’s neighbor, C, is transmitting. Node A will find the

medium idle and transmit the frame, causing collisions at B between its frames and frames

from C.

The RTS-CTS mechanism was proposed to circumvent this problem and is described in the

next section.

2.3.1.3 The RTS (Request to Send) - CTS (Clear to Send) Operation

If the channel is found to be free for a period of DIFS, the station sends out an RTS

frame containing the receiver’s MAC address and the time duration it would require for the

transmission. Any station in the transmission range of the sender will see the RTS frame. When

the receiver receives the RTS, it checks to see if it can accommodate the transmission request.

If so, it responds by sending a CTS frame to the sender. Any station in the transmission range
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of the receiver will see the CTS frame. When a station sees an RTS or CTS, it realizes that

some station is going to occupy the medium for the duration of time specified in the frame and

therefore defers its transmission. The RTS and CTS work together to ensure that the areas

in the transmission range of the sender and the receiver are clear of any parallel transmission

that might overlap with the transmission they are guarding. Upon receipt of the CTS, the

sender transmits the data frame. Upon successful reception of the data frame, the receiver

sends an ACK. Upon an ACK timeout, the sender retransmits the corresponding data frame

until it hits the retry limit.

If the intended receiver of an RTS sees that it will not be able to accommodate the requested

transmission, it does not send a CTS back to the sender. Upon non receipt of a CTS from the

sender (based on a timeout), the sender realizes that the intended receiver is unable to process

the request at this time and performs Binary Exponential Backoff before contending for the

medium again.

2.3.2 The Point Co-ordination Function (PCF )

The point co-ordination function is designed to provide contention free frame transfer

service for time bound transmissions. In PCF, a point coordinator in the access point controls

transmission of frames from stations. It controls medium access, by determining which station

is allowed to access the medium at any point of time. The point co-ordinator can enter into

contention free periods and control transmissions when required by gaining control of the

medium. The contention period is simply the DCF operation. The point coordinator senses

the medium at the beginning of each contention-free period and if the medium is deemed to be

free for a specified period of time, the PIFS (PCF Inter Frame Spacing), the point co-ordinator

sends out a beacon frame with the duration of the contention free period and all stations defer

their attempt to grab the channel till the expiration of the contention free period. The point

co-ordinator typically implements a round robin scheduling scheme.
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2.4 Multicast support in IEEE 802.11

The point of interest for this work arises from the fact that the RTS-CTS-ACK exchange

and the Binary Exponential Backoff algorithm is defined only for unicast transmission, i.e.

transmission to a single receiver. The semantics for broadcast (transmission to all stations)

and multicast (transmission to a group of stations) are completely different. Hereafter, we treat

broadcast as a special case of multicast where the multicast group includes all stations in the

purview of an Access Point’s service group. To make a multicast transmission, the sender (the

AP) senses the medium for a period of DIFS. If the medium is found to be free for this period

of time, it transmits the multicast frame. The RTS-CTS mechanism is not used. Thus, the

scheme doesn’t check if the receivers are busy, or if they have interfering transmissions going on

in parallel. In addition, the destination stations do not respond with ACKs after they receive

the multicast frame. Thus, the sender does not know whether the intended receivers received

the multicast frame. This means that reliability is not ensured for multicast transmission.

As described in the previous section, for unicast transmissions the size of the contention

window is doubled every time there is an unsuccessful attempt of an RTS transmission. The

size of the contention window is doubled up to a maximum value of CWmax after which the

frame is eventually dropped. However, no such scheme exists in case of multicast transmissions.

If the medium is free for a period of DIFS, the station transmits its frame and the transmission

is deemed complete. If the medium is not free for a period of DIFS, the transmitting station

waits until the medium is free for a period of DIFS and backs off for a fixed period of time

(typically CWmin) and there is no increase in the size of the contention window since there

is no concept of ACK in multicast. The backoff timer is frozen when the channel becomes

busy and restarted after the channel is deemed free for a period of DIFS similar to unicast

transmissions. This unfairness in terms of the sizes of the backoff windows between unicast

and multicast transmissions shows a marked effect when there are simultaneous unicast and

multicast transmissions [37], which will be dealt in detail in chapter 5 where we incorporate

fairness into the scheme we propose.

Another drawback of the native DCF multicast algorithm is that multicast frames are
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transmitted at the base rate of 1 Mbps to increase the robustness of the communication, even

though 802.11b can support data rates of up to 11 Mbps and 802.11a/g up to 56Mbps. This

means that rate adaptation [34][13][19] where in senders dynamically adapt their transmission

rate based on channel conditions is void.

To address the aforementioned problems of DCF multicast, we propose a slot reservation

based reliable multicast protocol in chapter 4 and enhance it to incorporate fairness as described

in chapter 5.
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CHAPTER 3. LITERATURE REVIEW

In this chapter we review some of the relevant literature in the area. The schemes for reliable

multicast in IEEE 802.11 can be broadly classified into two categories based on whether or not

the scheme uses an additional signaling interface. We review the basic ideas, advantages and

drawbacks of schemes presented in [27],[28], [29], [30] and [31] in the single interface category

and [33] which uses an additional signaling interface. We then review [37] which introduces

fairness when there are parallel unicast and multicast flows where in native unreliable DCF

multicast protocol is used. At the time of writing this thesis we have come across no prior

work that provides a reliable multicast solution which is also fair to parallel unicast flows.

3.1 Schemes for Reliable Multicast

3.1.1 The Broadcast Medium Window (BMW) protocol [28]

3.1.1.1 Main Idea

This is a protocol designed to support reliable multicasting in wireless Ad-hoc networks.

We review this paper since it does some fundamental work in introducing reliability in wire-

less MAC multicast and can be extended to infrastructure networks. Each node maintains a

NEIGHBOR LIST of all its neighbors. An entry is purged off it if a node hasn’t been heard

from for a specified time. Each node also maintains a SEND BUFFER that stores frames that

were already sent but haven’t been acknowledged by all stations. A frame is purged from the

SEND BUFFER after all neighbors have received it. Each node also maintains RECEIVER

BUFFER where in it maintains the sequence number of each received frame. A transmitting

node sends the range of frame sequence numbers in that transmission. Each destination node
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checks its RECEIVER BUFFER to determine if there are any frames missing in the range. If

so, the destination node replies with the missing sequence number in the CTS response (the

start sequence number of the least numbered unreceived frame). When a sender has to trans-

mit, it goes into the collision avoidance phase similar to DCF. It then sends RTS to one of its

neighbors, specifying what sequence numbers were already transmitted and what the current

sequence number is. Upon receiving the RTS, the intended neighbor examines its RECEIVER

BUFFER and specifies the frames it needs in its CTS. All other neighbors hearing the RTS will

wait for this CTS-DATA-ACK sequence to finish. After the reception of the CTS, the source

transmits data, and neighbors back off until the ACK has been transmitted. Upon receiving

the DATA, the destination node updates its RECEIVER BUFFER and replies with an ACK.

In the meantime neighboring nodes that received the DATA will also update their RECEIVER

BUFFER. If the DATA sent to a receiver was obtained from the SENT buffer, transmission is

continued until the current data is sent; collision avoidance is omitted in this case. The source

node then buffers the current packet and chooses the next neighbor in its NEIGHBOR LIST

until all neighbors have received the current frame. This is the basic mode of operation of the

protocol. This formed one of the earlier significant works in the area.

3.1.1.2 Advantages

• The protocol ensures completely reliable multicast.

3.1.1.3 Drawbacks

• The protocol involves a large number of contention phases. There can be a maximum

of n contention phases for a multicast group size of n stations. This makes the protocol

inefficient and unsuitable for delay intolerant applications.

• Modification to existing frames is needed.
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3.1.2 MAC Layer Broadcast Support [29] [30]

3.1.2.1 Main Idea

In [29] after executing the collision avoidance phase, the source sends RTS to all neighbors

and waits for WAIT-FOR-CTS time for a CTS. Neighbors of source send CTSs if they are not

in the YIELD state and wait for WAIT-FOR-DATA time for data. If source receives a CTS

it sends its data frame. Else,on expiry of the WAIT-FOR-CTS timer, it back off and goes

back to contend for the medium. Nodes that are not involved in the broadcast exchange, upon

receiving CTS, set their state to YIELD and wait for the broadcast operation to finish.

[30] enhances the operation of [29] to improve reliability. In addition to the steps described

for [29], neighbors of the sender send NAK if WAIT-FOR-DATA timer expires and data has

not been received. If source receives a NAK before the WAIT-FOR-NAK period, it goes back

to retransmit its frame. Else, the broadcast is considered complete.

3.1.2.2 Advantages

• These protocols are very simple extensions to IEEE 802.11 multicast/broadcast.

3.1.2.3 Disadvantages

• The protocols do not ensure completely reliable multicast.

3.1.3 The Leader based protocol [27]

3.1.3.1 Main Idea

This protocol takes a leader based approach to solving the reliable multicast problem. The

leader is in charge of sending CTSs and ACKs on behalf of the group. In this approach, a leader

is elected for a multicast group, and only the leader sends a CTS to the sender. Other stations

remain silent if they see that the transmission is feasible from their standpoint, else send a

NCTS. If no NCTS was received the sender goes ahead and sends data. A similar scheme works



15

for ACK and NACK, where only the leader sends an ACK if data was successfully received.

Other stations only send NACKs if they had problems in receiving the data frame.

The protocol abstractly works in terms of slots.

• Slot 1: The Access Point sends multicast RTS.

• Slot 2: The leader sends a CTS if it is ready to receive data. Other stations in the group

remain silent if they are ready to receive data. Else they send NCTS (not clear to send).

• Slot 3: If CTS was heard in slot 2, the Access Point starts multicast data operation. Else

it executes the backoff scheme and starts from slot 1.

• Slot 4: After the Access Point has transmitted data, the leader sends an ACK if it received

data correctly. Else it sends a NACK. Other stations remain silent if they received data

correctly. Else they send NACK. The basic idea here is that if at least one station

sends a NCTS or a NACK, it either collides with the CTS/ACK sent by the leader if

it sent one, or the NCTS/NACK reaches the sender. In either case, the transmission is

considered unsuccessful. If the leader didn’t sent a CTS/ACK or the NCTS/NACKs sent

by multiple stations collide and do not reach the sender, the transmission is considered

unsuccessful in which case it retries after a timeout.

• Slot 5: If a ACK was heard in slot 4, the transmission is considered complete. Else, the

access point retransmits the multicast RTS in slot 1.

3.1.3.2 Issues with Leader Selection

This scheme has several drawbacks based on leader selection. First, a new leader needs

to be chosen every time the current leader leaves the network. Second, an intelligent leader

selection algorithm is needed to choose an appropriate leader. For example, choosing a leader

which is very close to the sender compared to another node could lead to a case where when

the leader sends its CTS and the other node sends its NCTS at the same time, the signal from

the leader reaches the sender at a higher strength, hence suppressing the NCTS from the other

node. Leader selection scheme should also be based on the current load distribution. Selecting
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a station whose neighboring traffic or interference is lesser compared to other multicast member

stations as a leader means that there is a lesser chance of a NCTS or a NACK successfully

reaching the Access Point compared to the CTS or ACK from the access point. Such a selection

becomes more difficult in the presence of mobility and variable traffic and network conditions.

3.1.3.3 Advantages

• Reduced number of contention phases; a single contention phase in the best case.

• Control frame overhead is minimal.

3.1.3.4 Drawbacks

• As evident from section 3.1.3.2, leader selection/election algorithm is critical .

• The protocol cannot ensure 100% reliability in the following cases.

– Criterion such as capture effect [38] introduce unreliability.

– The protocol doesn’t work when the RTS reaches certain stations and not others.

There is no way of ensuring that everyone received the RTS.

– The protocol fails when a NCTS or a NACK is lost and the leader sends a CTS or

an ACK. The failure of the non-leader is suppressed and the multicast is deemed

successful.

• Use of new control frames namely NCTS and NACK.

3.1.4 Delayed Feedback Based (DFB) and Probabilistic Feedback based (PFB)

protocols [27]

3.1.4.1 Main Idea

In the DFB protocol, random timers are used to avoid CTS/ACK collisions. The Access

Point sends a multicast RTS and waits for a CTS timeout period to receive all CTSs, else backs

off and retransmits. On hearing the RTS, stations start a countdown of a random number of
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backoff slots and decrease timer by 1 in each slot. If a station hears a CTS before its timer

expires, it freezes its counter, called CTS suppression. Else it sends a CTS at the end of

the timer expiration. If the Access Point doesn’t hear a CTS by the expiration of the CTS

timeout, it backs off and tries to send the RTS again. Else it starts multicast transmission. If

the stations receive data in error, they send a NAK after contending for the channel to avoid

collisions among NACKS. In the PFB protocol, instead of sending the CTS after a countdown

period, the group members send out a CTS in the slot immediately following the RTS with

a certain probability based on the number of stations. The stations can send a NCTS with a

probability 1 if they are not ready to receive data. If a NCTS was not heard in the first slot,

the Access Point waits for either a CTS in one of the following slots or its CTS timer to expire.

The rest of the protocol operation is similar to DFB.

3.1.4.2 Advantages

• Simple to implement since they are variations of DCF operation.

3.1.4.3 Drawbacks

• Time taken for a RTS-CTS exchange can be considerably large since CTS collisions are

possible.

• Since they are NAK based, link level buffering requirements are high at both the Access

Point and the receivers for retransmission and sequencing purposes respectively.

• Choosing ideal wait times or probabilities is not trivial.

• 100% reliablility cannot be ensured.

3.1.5 The Batch mode multicast MAC (BMMM) protocol [31]

3.1.5.1 Main Idea

Perhaps the most interesting work in this area, and the approach our work is based on is

the Batch Mode Multicast MAC (BMMM) proposed in [31]. In BMMM, in order to send a
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multicast frame, the sender sends RTSs to each station individually and waits for CTSs from

each of them. Upon receipt of CTSs from all intended recipients, the sender goes ahead and

sends the data frame. Then, it sends a special frame called RAK, Request for ACK, to each

of the stations serially, and each station responds to the RAK with an ACK. Upon receipt of

ACKs from all intended recipients, the transmission is deemed complete. If there were stations

who did not send ACKs, the sender again contends for the medium and repeats the above

procedure, although this time, the recipient set is the subset of stations whose ACKs were not

received. BMMM is a simple and rather efficient scheme to achieve reliable multicast in IEEE

802.11. We design our slot reservation based reliable multicast protocol based on BMMM, but

takes a slightly different approach to improve the efficiency of multicast.

3.1.5.2 Advantages

• The scheme can ensure reliable multicast.

• The scheme involves a single contention phase.

3.1.5.3 Drawbacks

• Excessive control frame overhead. n pairs of RTS-CTS and RAK-NAK for a multicast

group of size n.

• Use of a new control frame, NAK.

3.1.6 The 802.11 MX (A busy tone based protocol)[33]

3.1.6.1 Main Idea

The protocol in [33] requires each node to have an additional busy tone interface. Busy

tones are used to signal NCTSs or NACKs instead of sending packets. The advantage here is

that, even if multiple stations signal NCTSs or NACKs simultaneously, it is alright since it is

only a tone. The protocol functions as follows. The sender executes the contention phase and

then transmits an RTS. It then listens on its signaling channel (busy tone) to see if any station
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is transmitting an NCTS tone. If not, it goes ahead with data transmission and then senses

its signaling interface to check if any station has set a NACK tone. If not, the transmission

is deemed successful. Else the sender goes into contention and retransmits multicast data

repeating the procedure described above.

3.1.6.2 Advantages

• The scheme ensures reliable multicast.

3.1.6.3 Drawbacks

• Use of an additional signaling interface is inconsistent with the IEEE 802.11 standard

and is difficult to implement in existing deployments.

• Extensive modification of the MAC protocol.

In table 3.1 we summarize some of the major drawbacks of existing schemes for reliable

multicast.

3.2 Schemes for Fairness

There is a single significant work that addresses the issue of fairness among simultaneous

unicast and multicast flows using native IEEE 802.11 multicast. We review the work here. At

the time of writing this thesis, there were no schemes that addressed unicast-multicast fairness

in the presence of reliable multicast operation.

3.2.1 Unicast-Friendly Multicast in IEEE 802.11 Wireless LANs [37]

3.2.1.1 Main Idea

The main idea here is to achieve fairness between unicast and multicast flows by using

the concept of Unicast-Friendly Multicast (UFM). In this scheme, the contention window size

for multicast flows is dynamically adjusted with an aim to limit the bandwidth share of a

multicast flow equal to that of a unicast flow. The scheme adjusts contention window size
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Scheme Drawbacks

Broadcast Medium Window

Protocol [28]
• Large number of contention phases. n contention

phases for a multicast group of size n.

• Inefficient; not suitable for delay intolerant net-

works.

• Modification to existing frames needed.

Batch Mode Multicast MAC

Protocol [31]
• Use of new control frame, the RAK.

• One RTS frame per CTS and one RAK frame per

ACK. Excessive overhead of control frames.

MAC Layer Broadcast Sup-

port Protocols [29][30]
• These protocols do not ensure 100% reliable deliv-

ery.

Leader Based Protocol [27]
• Leader election is inherently difficult.

• Use of new control frames namely NCTS and

NACK.

• The protocol doesn’t ensure 100% reliable delivery.

Busy Tone Based Protocols

[33]
• Use of an additional signaling interface is difficult

to implement in existing deployments and requires

hardware.

• Extensive modification of the MAC protocol.

Probabilistic and Delay

Feedback based protocols

[27]

• Time taken for a RTS-CTS exchange can be con-

siderably large since CTS collisions are possible.

• Since they are NAK based, link level buffering

requirements are high at both the Access Point

and the receivers for retransmission and sequenc-

ing purposes respectively.

• Choosing ideal wait times or probabilities is not

trivial.

• Cannot ensure 100% reliable delivery.

Table 3.1 Reliable Multicast schemes and their drawbacks
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for multicast based on the number of competing stations. Two versions of the scheme are

presented. In the first version, each multicast node infers packet collision probability of its

multicast frames based on the estimate of the number of other competing stations. Assuming

the knowledge of average number of packet collisions until successful transmission, it virtually

performs binary exponential backoff like a unicast station until it reaches the inferred average

backoff stage called virtual backoff. This is based on the assumption that the average number

of packet collisions until successful transmission is known apriori. At each backoff stage, it

picks up a random number from its contention window corresponding to that of a unicast flow.

At the final stage, the size of the contention window is equal to the recursive sum of all the

selected backoff times, each of which is multiplied by its collision probability. The station then

performs a backoff within this interval. In the second version, each station maintains a table

of multicast contention window sizes for different number of competing stations such that on

adopting the specified contention window size, the the bandwidth share of the multicast flow

becomes equal to that of a competing unicast flow.

3.2.1.2 Advantages

• The scheme ensures fairness among unicast and multicast flows.

3.2.1.3 Drawbacks

• The scheme doesn’t work with reliable multicast schemes as described in section 5.2.

After reviewing several existing schemes, we now enlist some of the desirable features that

a reliable multicast MAC protocol which also ensures fairness should possess. Our protocol

incorporates all the features mentioned below.

• The protocol should support complete reliability in terms of delivery.

• The number of contention phases should be minimized.

• As far as possible, new control frames should not be introduced.
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• The protocol should be designed for a single interface to enable seamless integration with

the existing standard.

• The time spent in control frame exchange as compared to data transmission must be

minimized.

• The protocol should ensure unicast-multicast fairness in the presence of reliable multicast.

• The comparative throughputs of unicast and multicast flows must be adjustable to pro-

vide required degree of fairness. In other words, the protocol should be able to provide

user requested degree of fairness.



23

CHAPTER 4. THE SLOT RESERVATION BASED RELIABLE

MULTICAST SCHEME

4.1 Introduction

We propose an efficient reliable multicast protocol with the following features.

1. The reliability of multicast communication is achieved with RTS-CTS-DATA-ACK ex-

change. Using RTS and CTS control frames to capture the channel before sending mul-

ticast data is more efficient than recovering from an unsuccessful multicast because data

frames are generally much longer than control frames and hence retransmitting data is

more costly.

2. Efficient utilization of network bandwidth is achieved with a slot reservation based

scheduling algorithm that schedules the transmission of CTS and ACK frames from

different recipients to avoid collisions at the access point (AP).

4.2 The Basic Idea

The proposed SRB protocol uses the RTS-CTS-DATA-ACK exchange to ensure reliable

multicast. To send a multicast frame, the AP first sends an RTS frame to the multicast group

address. A station in the multicast group responds with an CTS if it can accommodate the

transmission request. After the AP receives the CTSs from all multicast group members, it

transmits the multicast data frame. A station in the multicast group responds with an ACK

if it successfully receives the data frame. Clearly, the stations in the multicast group should

not transmit their CTSs or ACKs simultaneously, or else collision will occur at the AP. Thus,

there needs to be a mechanism to coordinate the transmissions of the CTSs and ACKs from
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different stations to avoid collision at the AP. Our solution is to schedule the transmissions

from different stations in a non overlapping fashion. This concept of scheduling lies at the

heart of our protocol.

4.3 The AID and MAID

Before going into describing the actual solution, we introduce the concepts of Association

ID (AID) and Multicast AID (MAID) which help us establish the schedule of transmissions of

the multicast receivers.

Upon successful association of a station with an AP, the station receives from the AP,

among several other parameters, a parameter called the Association ID (AID) as a part of

AP’s Association Response frame. An AID is a number between 1 and 2007 [35]. It is unique

within the set of stations associated with the AP. It is primarily used in the Powersave mode

[25] to deliver frames buffered at the AP while the station is in a low power (sleeping) state.

We will use the AID concept to arrive at a serialized schedule for broadcast communication.

We impose the following two constraints on the issue of AIDs.

1. Before issuing an AID to a station, the issued AID set is examined to see if there are

unused AIDs resulting from the disassociation of stations that existed before. If such

AIDs are found, the smallest such AID is issued.

2. The AIDs shall be issued in increasing order starting from AID 1.

To derive a serialized schedule for multicast communication, we make use of Multicast AIDs

(MAIDs). If a station subscribes itself to a multicast group, the AP issues a Multicast AID

(MAID) which uniquely identifies the station within its multicast group. The rules for issuing

a MAID remain the same as described for AID. Why we require a MAID when a station can

be uniquely identified by its AID, is simply for efficiency. Further details are based on the

operation of the protocol itself, and shall be provided in section 4.5.
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4.4 Proposed Solution

Consider an AP and a set of n stations associated with the AP such that these n stations

make up a multicast group G. Whenever an AP wants to send a multicast frame to G, it

first executes the contention phase exactly as in DCF. Once it gains access to the medium,

it sends out an RTS for multicast. The receiver address field of the RTS frame contains the

multicast group address of G. The time duration in the RTS frame is the time required to

transmit n CTSs, the data frame, and n ACKs. A station, on seeing that it belongs to the

multicast group G, transmits a CTS if it can accommodate the transmission request. The CTS

is transmitted in a time slot determined by a simple rule. A station with MAID i transmits

in the ith time slot. A CTS is always transmitted at the base rate of 1 Mbps. Since the CTS

frame size is fixed, the time required for a CTS transmission is fixed, denoted by TCTS . Hence,

a station with MAID i transmits starting at time (i− 1) ∗TCTS from the instance of reception

of the RTS. After the AP sends out the RTS, it waits for nTCTS and then transmits the data

frame. Once the data frame has been received, each station transmits its ACK at time starting

(i−1)∗TACK from the instance of reception of the data frame, where TACK is the time required

for the transmission of an ACK. In case of broadcast, stations will use their AIDs instead of

MAIDs to determine the transmission time of the CTS and ACK frames. This forms the first

and compulsory phase of our protocol.

It is well possible that not all stations respond with CTSs and/or ACKs. These control

frames might also be lost. Hence we need some way of retransmission to such stations to

ensure reliability, and on top of it, we need to take efficiency into consideration when performing

retransmissions. A straightforward extension to our scheme for retransmissions is to retransmit

the RTS just like before. However, the sender now expects CTSs and ACKs only from those

stations whose transmissions were unsuccessful in the previous attempt. Repeating this scheme

until all stations have received the data frames successfully would ensure reliability. Although

simple to implement, this scheme is highly inefficient. The inefficiency arises from the fact

that only the CTS and ACK time slots for those stations which require a retransmission are

really useful. Those slots corresponding to stations whose transmissions were successful in a
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previous phase go waste. Hence, we propose a modification of the protocol presented above in

case of retransmissions.

For each retransmission phase, we establish an order of transmissions among stations par-

ticipating in that particular retransmission phase using a modification to the RTS multicast

frame sent out at the beginning of each retransmission phase. The RTS frame is appended

with a bitmap with n bits, where n is the number of stations in the multicast group. There

is a one-to-one mapping from bits in the bitmap to the MAIDs of stations in the multicast

group, i.e., bitmap[i] corresponds to station with MAID i. The bits corresponding to stations

participating in the current retransmission phase are set. In other words, bitmap[i] = 1 iff

station with MAID i is a participant in this retransmission phase. Looking into this bitmap,

the stations can determine their transmission slots for CTS/ACK as follows. The first bit

position which is set corresponds to the station that has to transmit in the first slot (recall

the one-to-one mapping between bit positions and MAIDs). The second bit position that is

set corresponds to the station that should occupy the second slot and so on. Specifically, a

station with MAID i should occupy slot j if bitmap[i] is the jth bit that is set. Thus, with

relatively small increase in the size of the RTS, in any retransmission phase, we effectively

schedule only those stations who are participating in the current phase, and thus avoid the

inefficiency described earlier. The retransmission phase is repeated until all stations have suc-

cessfully received the data frame, or we have reached a specified retry limit. These two phases

make up our protocol. In the next section, we provide an algorithmic description of the two

phases.
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4.5 The Algorithm

4.5.1 The Initial Transmission Phase

1: AP sends RTS reserving time for n CTS slots, data, and n ACK slots where n is the

number of stations in the multicast group.

2: Station Si (i = 1 to n) transmits CTS in the ith slot if feasible.

3: At the end of the n CTS slots, the AP sends DATA.

4: Station Si (i = 1 to n) transmits ACK in the ith slot if feasible.

5: If AP received n CTSs and n ACKs, END. Else enter Retransmission Phase.

4.5.2 The Retransmission Phase

1: Construct the modified RTS frame with the bits corresponding to stations whose trans-

missions were unsuccessful in the previous phase set. The RTS frame reserves time for n′

CTS slots, data, and n′ ACK slots where n′ is the number of stations participating in this

phase.

2: Station Si (i = 1 to n) transmits CTS in the jth slot if MAID i is the jth bit set in the

bitmap where 1 ≤ j ≤ n′.

3: At the end of the n′ CTS slots, the AP sends DATA.

4: Station Si (i = 1 to n) transmits ACK in the jth slot if MAID i is the jth bit set in the

bitmap where 1 ≤ j ≤ n′.

The retransmission phase is executed until all stations have received the data frame successfully,

or a retry limit is reached.

We are now in a position to answer the question we stated about the manner in which we

issue MAIDs. We issue MAIDs in a serial fashion starting from 1, since the MAIDs have a

one-to-one mapping to the transmission slots of stations. Issuing continuous MAIDs ensure

that our scheme is efficient. We also check if there are MAIDs freed in the set of MAID starting

from 1 to the maximum issued MAID till the current time since it is possible that a station

previously joined a multicast group leaves the group, and hence its MAID becomes unused.
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Figure 4.1 Comparison of the initial transmission phase.

  

Figure 4.2 Comparison of the retransmission phase.

By utilizing all such MAIDs before issuing new ones, we minimize the time slots wasted due

to the occurrence of such events.

4.6 Comparison with BMMM

Fig. 4.1 represents a timeline comparison of the initial transmission phase of the SRB and

the BMMM schemes. The timelines represent combined activity of the AP and n multicast

receiver stations. In the case of BMMM the timeline begins with transmissions of RTS-CTS

pairs for each of the n stations in the multicast group. Assuming that all stations sent CTSs,

data is then transmitted. This is followed by a phase of RAK-ACK exchanges. In case of

the SRB scheme, the timeline begins with a single RTS transmission followed by CTS replies

from all stations in the multicast group. Then there is a data transmission phase where the

AP sends its data. This is followed by a phase of ACK transmissions from all stations in the

multicast group.
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We now compare the transmission time of BMMM and SRB in the initial transmission

phase. We have

TBMMM = (TRTS + TCTS) ∗ n + TData + (TRAK + TACK) ∗ n

TSRB = TRTS + TCTS ∗ n + TData + TACK ∗ n

Therefore, TBMMM = TSRB +((n− 1) ∗TRTS +n ∗TRAK). That is, SRB achieves a saving

of (n − 1) ∗ TRTS + n ∗ TRAK in the initial transmission phase.

Fig. 4.2 represents a timeline comparison of the retransmission phase of the SRB and

the BMMM schemes, assuming station 1 and station 3 did not successfully receive the data

in the initial transmission phase. For BMMM, there are two RTS-CTS and two RAK-NAK

exchanges for stations 1 and 3. In the case of SRB, a modified RTS with the bitmap of station

MAIDs is sent, where the first bit and the third bit of the bitmap are set. This is followed

by CTS transmissions from station 1 and station 3. Following this, data is transmitted by the

AP. Then, station 1 and station 3 send their ACKs.

For a retransmission phase with k participating stations (k ≤ n), we have TBMMM =

TSRB + ((k − 1) ∗ TRTS + k ∗ TRAK) assuming the time to transmit an RTS with the bitmap

is about the same as TRTS . Hence, SRB achieves a saving of (k − 1) ∗ TRTS + k ∗ TRAK in the

retransmission phase.

Compared with BMMM, SRB is absent of multiple RTS-CTS and RAK-ACK frame ex-

changes. The former is replaced by a singe RTS followed by a CTS sequence while the latter

is replaced by a series of ACK responses alone.

4.7 Simulation Scenarios and Results

We simulated our SRB protocol using the ns-2 simulator [36][14]. We modeled a 802.11b

network which is capable of delivering up to 11Mbps as our basic network topology with

a single AP and 25 stations associated with it. The AP was set up to generate Constant

Bit Rate (CBR) traffic with data packets with varying rates and sizes as required for specific

experiment scenarios. We then compared the performance of our SRB scheme with the BMMM

protocol under the influence of various controlling factors. The results from the experiments
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Figure 4.3 BMMM and SRB throughput vs. multicast group size for vary-

ing bit error rates.

are presented below.

4.7.1 BMMM and SRB throughput vs. multicast group size for varying bit error

rates

Fig.4.3 represents a graph of throughput from the BMMM and the SRB protocols for

varying Bit Error Rates (BER). We fixed the traffic generation rate at 512 packets per second.

The length of each packet is fixed at 1024 bytes. We plot the throughput under various BERs

for multicast groups ranging from size 2 to 20. From the graph, we see that as the BER

increases, the throughput of BMMM with respect to a given multicast group size decreases.

For example, for a BER of 0.00001 the observed throughput for a multicast group of 12

stations is 63Kbps and reduced to 56Kbps and 48Kbps as the error rate is increased to 0.0001

and 0.00025 respectively. This occurs since a higher BER means more packets in error and

hence more retransmissions. We also observe that for a given BER the throughput drops with

increasing number of stations. This is expected since the number of control frames transmitted

and hence the transmission time per data frame increases with increasing number of stations.

As a consequence, the time spent in backoff periods also increase. As a result, a newly generated



31

packet will have to wait for a longer period of time before it can be transmitted.

In case of the SRB protocol, a similar phenomenon to what was observed with BMMM

is seen. The throughput decreases with increasing bit error rates and increasing multicast

group sizes. But the performance under increasing bit error rates for a given multicast group

size is much better compared to BMMM. For a group size of 10 stations, the throughput in

case of the SRB scheme is approximately 64Kbps, 64Kbps and 63.5Kbps for error rates of

0.00001, 0.0001 and 0.00025 respectively, while for the same scenario, the throughputs from

the BMMM protocol are 64Kbps, 59Kbps and 51Kbps respectively. We see an improvement

of about 8.5% for BER 0.0001 and 22.5% for BER 0.00025 respectively. For a given bit error

rate, the throughput is considerably greater in case of SRB. For example, for a multicast

group of 14 stations and a bit error rate of 0.00025 the throughput from SRB is 55kbps

compared to 40Kbps obtained by BMMM. The drop in throughput with increasing number of

stations is more marked in BMMM in contrast to SRB. For a BER of 0.00025 throughput of

BMMM drops from about 65Kbps to 38Kbps as the number of stations increase from 2 to 20.

In comparison SRB drops from about 65Kbps to about 52Kbps. As the error rates and the

associated retransmissions increase SRB continues to perform increasingly better than BMMM

since the control packet overhead is lesser in the SRB protocol.

4.7.2 BMMM and SRB throughput vs. multicast group size for varying packet

generation rates

Fig.4.4 is a graph of throughputs of SRB and BMMM under various CBR traffic packet

generation rates namely 256, 512 and 1024 packets per second, for various multicast group

sizes. The BER is fixed at 0.00025. Since 802.11b can support data rates up to 11Mbps for

its data frames, the observed throughput increases with increased packet generation rate for a

fixed multicast group size. For example, for a multicast group of 10 stations, the throughput

from SRB is about 30Kbps for a generation rate of 256 packets per second while it increases to

55Kbps for 512 packets per second. Also, we notice that the throughput drops with increasing

number of stations for the same reasons as described for Fig.4.3.
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The throughput obtained by SRB for all packet generation rates is considerably higher

compared to BMMM. For instance, for a packet generation rate of 1024 packets per second

and a multicast group of 14 stations BMMM provides a throughput of 20Kbps while SRB

provides a throughput of about 60Kbps which amounts to a 200% improvement. We also

notice that the gap between curves for BMMM and SRB for a given packet generation rate

grows bigger with increasing multicast group sizes. This again, is due to the difference in control

packet overhead between the two protocols. The overhead becomes increasingly striking with

increasing multicast group sizes.

4.7.3 BMMM and SRB throughput vs. multicast group size for varying packet

sizes

Fig.4.5 shows the performance of the two protocols for varying packet sizes for a fixed BER

and packet generation rate. The BER is fixed at 0.00025 and the packet generation rate is

fixed at 512 packets per second. At a low packet size of 256 bytes, the performance of the

two schemes is almost the same. This is due to the fact that the number of control bytes

transmitted per data byte is so high that most bandwidth is consumed in transmitting control
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packets. The operative earnings of SRB over BMMM in terms of control bytes saved is masked

by an extremely high control packet overhead. As the packet size increases, the throughputs of

both schemes increase considerably. However, SRB grows at a much faster rate compared to

BMMM since it consumes fewer control bytes. This coupled with the improvement over BMMM

with increasing multicast group size greatly improves the performance of SRB over BMMM

as evident from Fig.4.5. For instance, for a multicast group of 14 stations the throughput of

SRB increases from about 5Kbps to 42Kbps for increase in packet size from 512 bytes to 1024

bytes. The corresponding improvement in BMMM is from approximately 1Kbps to 20Kbps.

4.7.4 BMMM and SRB throughput vs. number of cross flows

Fig.4.6 is a comparison of throughputs of BMMM and SRB in the presence of cross traffic.

Cross traffic refers to flows that occur simultaneously with the multicast transmission. We have

simulated cross flows by having nodes outside the multicast group communicate with nodes

inside the group. The graph plots the total throughput of all flows in the presence of 0 to 4

cross flows. The BER is fixed at 0.00001 and the traffic generation rate for each of the flows is

512 packets per second. We see that both with BMMM and SRB there is an increase in the
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throughput with increasing flows as expected. However, the throughput of SRB is consistently

better. This is because of the fact that the bandwidth spent in control frame transmission is

lesser in case of SRB. As a consequence, more bandwidth is dedicated to data frame transfer.

From the above illustrations, we have seen that the SRB protocol outperforms BMMM in

presence of increased bit error rates, packet transmission rates and cross traffic, and the im-

provement is more marked as the size of the multicast group increases. Thus, we believe that

the SRB protocol is extremely scalable since variations of all the factors mentioned above are

part of any real world network.
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4.8 Functionality with RTS/CTS disabled

It is not uncommon for network operators to completely turn off the RTS-CTS mechanism.

This is done in order to avoid the control packet exchange overhead incurred. In this case,

a sender senses the channel for a period of DIFS, and if the channel is idle, it transmits the

data and waits for an ACK from the receiver. If the channel is busy, it backs off. Our scheme

functions efficiently in such a scenario as well. The MAIDs in this case, are used to consolidate

ACKs alone. As before, stations transmit ACKs in the slots corresponding to their MAIDs.

It is clear that our scheme incurs less overhead than BMMM in this case as well due to the

absence of the RAK frame transmissions.

4.9 Advantages of the scheme

Outlined below are the advantages of using the Slot Reservation based Reliable Multicast

protocol.

• As in BMMM, the number of contention phases is reduced to 1.

• The number of control frames is further reduced since we use a single RTS to co-ordinate

n CTSs and n ACKs.

• The scheme completely eliminates possible collisions among control frames.

• The scheme doesn’t require introduction of new control frames unlike other protocols as

described in chapter 3.
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CHAPTER 5. THE SLOT RESERVATION BASED RELIABLE

MULTICAST ALGORITHM WITH FAIRNESS

5.1 Introduction

Firstly, we describe the problem of fairness between co-existing unicast and multicast flows

with the multicast flows operating on the native unreliable IEEE 802.11 protocol. We recollect

that the backoff period for a multicast flow is fixed, and is typically CWmin while unicast flows

use Binary Exponential Backoff. Consider a situation where in the medium is currently busy.

A competing unicast flow will now sense the medium to be busy and backs off. Once its backoff

timer expires the station transmits its frame. If the frame is not delivered successfully, the

unicast station doubles its contention window size up to a maximum of CWmax. However

the backoff period for the multicast station is CWmin time slots constantly. Now, when the

medium becomes free, the multicasting station will have to wait for a smaller period of time

before it can transmit in most cases. However, the unicast station backs off for a longer

period of time and by the time its backoff is complete, the medium would have been captured

by the multicasting station. The unicast station again doubles its backoff interval since its

transmission will be interrupted by the multicast flow and the problem grows worse with each

such backoff. In the mostly improbable case where both unicast and multicast flows sense at

the same time that the medium is free i.e. they both count down their backoff slots to 0 at

the same time, the multicast flow sends out its data frame immediately while the unicast flow

sends out its RTS at the same time. The RTS and the data frame collide and the RTS is lost.

The unicast station now goes into a RTS timeout and has to retransmit its RTS after it counts

down its doubled contention window. Since multicast is unreliable, the collision is ignored with

respect to the multicast frame. Thus, in this case as well, multicast transmissions overwhelm
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parallel unicast flows.

In chapter 3 we provided an overview of [37] which solves the fairness problem in the case

of native IEEE 802.11 multicast operation. However, for reasons elucidated in section 5.2, we

show that such contention window based schemes do not work in the case of reliable multicast.

We then propose a novel solution to solve the fairness issue with reliable multicast in section

5.3.

5.2 Unsuitability of Contention Window Based Schemes for Reliable

Multicasting

We now describe why Contention Window Based schemes [37] where in the size of the

contention window of multicast flows is varied to achieve fairness doesn’t work when a reliable

multicasting scheme such as [39][31] is used. The time taken for a reliable multicast transmis-

sion is considerably larger compared to a unicast transmission. Consider the situation where

a multicast transmission gains access to the medium. Suppose that a station with a unicast

transmission now tries to gain access to the medium. The station now sees that the medium is

busy and backs off. Once the multicast transmission is complete and the medium is idle, both

the unicast and multicast station sense the medium to be free. Once the multicast station

senses that the medium is free, it goes ahead and sends its RTS. The unicast station however,

has to complete backing off for its remaining slots before it can send out its RTS and in the

meanwhile, the multicast station occupies the medium again. Now, since the time taken for a

reliable multicast is considerably large, in most cases, before the unicast can finish counting

down to the 0th slot, an RTS timeout is triggered and the station attempts to retransmit the

RTS. In the process, it also doubles the size of its contention window. As a result, the chances

of a unicast transmission capturing the medium decreases rapidly with time. After trying to

transmit the RTS for certain number of times, the packet is eventually discarded.

In such a situation, clearly, increasing the contention window size of the multicast station

has little effect on fairness since very rarely does a multicast station gets to execute the backoff

phase. Even if a multicast station gets to execute its backoff, there is a good chance that it
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Figure 5.1 Throughput comparison with various contention window based

schemes for fairness

will eventually get to transmit its frame, since the duration of a unicast flow is considerably

smaller compared to a multicast and there is a very small chance of the RTS being timed

out. Decreasing the contention window size of unicast transmission also doesn’t work since the

main issue affecting fairness is the time required for multicast transmissions and the related

timeouts in unicast stations. Although, there is some benefit to be gained from reducing the

backoff period for unicast transmissions, the effect is masked by the time spent in waiting

for the medium to become idle after a multicast transmission. The wait time, and not the

contention window size is the determining factor in affecting fairness. Simulation results in

figure 5.1 confirm this observation. The simulation scenario consisted of a single multicast flow

with multicast group size of 12 stations and 3 parallel unicast flows. 1024 byte packets were

generated at the rate of 512 packets per second.

Basic Scheme in figure 5.1 refers to the scenario where the native SRB scheme is adopted

for multicast and normal DCF for unicast flows. In Extension 1, we modify SRB where in

the unicast stations do not double their contention window sizes if they are backing off due

to an ongoing multicast transmission. In other words, they back off with the same size of

the contention window and use the normal exponential backoff if they are backing off due

to an ongoing unicast transmission. However, despite this modification we see that the total
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throughput and the multicast throughput remains the same confirming the observation we

made before. The multicast flow quickly grabs the channel before the unicast flows can come

out of their backoffs. In Extension 2, we set the contention window size for the multicast

flow fixed at CWmax time slots. In this scenario as well, we see that the total throughput

increases very slightly from about 63486bps to 63584 bps. In The unicast throughput in this

case is about 90bps and is still negligibly low. In Extension 3, we combine Extension 1 and

Extension 2. In this scenario as well, we see very little improvement in the throughput as

demonstrated in figure 5.1 and remains the same as in Extension2. We see that these schemes

are still extremely unfair to unicast flows. The above observations confirm that contention

window based schemes do not work well when reliable multicast strategies are used in coalition

with DCF unicast transmissions.

In the next section, we provide our unicast friendly reliable multicast extension to the Slot

Reservation based scheme described in chapter 4.

5.3 The Delay Based Method for Fairness in the Slot Reservation Based

Reliable Multicast Scheme

Having seen in section 5.2 how and why contention window based schemes which help

ensure fairness in case of native DCF multicast fail when a reliable multicast scheme is used,

we now set out to design a scheme which ensures fairness with such a scheme. We extend the

Slot Reservation based algorithm from chapter 4 to introduce a fairness component.

Figure 5.1 shows how contention window based schemes add no fairness component when

used with reliable multicast schemes. We delved into the details of operation of parallel unicast

and multicast flows in section 5.2 to see why such schemes do not work as expected. In doing

so, we noted a particularly important criterion. The reason that contention window based

schemes do not work are twofold.

• The multicasting station rarely ever has to perform backoff. Hence increasing contention

window size of the multicasting station has no effect.
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• As a consequence of the multicasting station rarely ever performing backoff, the effect of

reducing or limiting the contention window sizes of unicast stations is annulled.

Close inspection of the above points suggests that the main reason that compromises fair-

ness is the fact that a multicast station almost always gets access to the medium every time

it has a frame to transmit. In other words, due to various factors described in section 5.2 as

long as a multicast station has a frame to send, it beats any other waiting unicast station in

staking claim to the medium and capturing it. The wait time between successive multicasts is

virtually nil and hence unicast stations are never able to capture the medium. If we made the

medium multicast free for a period of time i.e. a period of time where the multicast station is

inactive, then unicast stations could contend for the medium during that period, thus giving

them an opportunity to transmit their frames. This is the basic idea that we use to introduce

fairness.

This idea serves as a basic framework for introducing fairness into parallel unicast and

reliable multicast transmissions. We only present the idea as a proof of concept to show that

the scheme helps achieve fairness. Schemes can build on this backbone to achieve various

degrees of fairness as measured by the fairness index [17][37]. Schemes can also be based on

various factors like total operating load [5][11][8][9] and desired bandwidth distribution between

unicast and multicast transmissions [10][15][18].

We provide outlines of various possible strategies to introduce wait periods below.

1. Schemes can be based on adjusting the wait time between successive multicast trans-

missions based on desired fairness index [17][37] and bandwidth distribution strategies

[15][16]. The frequency of occurrence of these wait periods is kept constant.

2. Based on the above mentioned factors, the number of multicast transmissions after which

the wait period is introduced can be varied. The duration of a wait period itself is

maintained a constant.

3. (1) and (2) can be combined for fine grained control by varying both the frequency of

occurrence and the duration of the wait periods.
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Figure 5.2 Total, Multicast and Unicast Throughputs vs multicast group

size for wait period CWmin

We demonstrate the efficacy of the idea by using fixed values of wait periods and introducing

wait periods between each pair of successive successful multicast transmissions. This might

not be the best strategy in terms of achieving optimal throughput and desired fairness levels,

but our intention is to demonstrate the effectiveness of the basic approach. Making informed

decisions for the above forms our future work as described in chapter 6.

5.4 Simulation Results and Evaluation

We simulated our fairness scheme using our ns-2 [36] setup. We now present observations

from our simulation experiments. We introduced different wait periods between successive

multicasts to generate various scenarios for our simulation. We set the packet generation rates

for both unicast and multicast transmissions at 512kbps. The packet size was fixed at 1024

bytes. Our simulation scenario consisted of one multicast transmission and three unicast flows

in parallel.

In figure 5.2 we plot the Total, Multicast and Unicast Throughputs for various multicast

group sizes for a wait period of CWmin. We obtain total throughput ranging from about

250Kbps to 160Kbps as the mutlicast group size increases from 2 to 20. The decrease in
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Figure 5.3 Total, Multicast and Unicast Throughputs vs multicast group

size for wait period CWmax

throughput can be attributed to increased time spent in control frame exchange with increased

multicast group size as described in section 4.7. We see that a large share of bandwidth

is consumed by unicast flows. The total unicast bandwidth varies from about 190Kbps to

100Kbps with increase in multicast group size from 2 to 20 while the multicast bandwidth

varies from about 50Kbps to 30Kbps.

In figure 5.3 we plot the Total, Multicast and Unicast Throughputs for various multicast

group sizes for a wait period of CWmax. We obtain total throughput ranging from about

230Kbps to 160Kbps as the mutlicast group size increases from 2 to 20. We again see that

a large share of bandwidth is consumed by unicast flows. The total unicast bandwidth varies

from about 190Kbps to 150Kbps with increase in multicast group size from 2 to 20 while the

multicast bandwidth varies from about 40Kbps to 12Kbps.

In figure 5.4 we plot the Total, Multicast and Unicast Throughputs for various multicast

group sizes for a wait period of CWmin +(CWmax−CWMin)∗0.5. We obtain total throughput

ranging from about 235Kbps to 130Kbps as the mutlicast group size increases from 2 to 20.
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Figure 5.4 Total, Multicast and Unicast Throughputs vs multicast group

size for wait period CWmin + (CWmax − CWMin) ∗ 0.5

We again see that a large share of bandwidth is consumed by unicast flows. The total unicast

bandwidth varies from about 195Kbps to 100Kbps with increase in multicast group size from

2 to 20 while the multicast bandwidth varies from about 40Kbps to 20Kbps.

In figure 5.5 we plot total throughput against multicast group size for various wait periods

of CWmin, CWmin + (CWmax − CWmin) ∗ 0.25, CWmin + (CWmax − CWmin) ∗ 0.5, CWmin +

(CWmax − CWmin) ∗ 0.75 and CWmax. We see that the curve gets steeper in terms of the

drop in total throughput with increasing multicast group sizes as the wait period decreases.

For example, for a wait period of CWmin the throughput drops from about 210Kbps to about

170Kbps as the multicast group size increases from 6 to 12 while the corresponding drop

for a wait period of CWmax is from about 220Kbps to 195Kbps. This can be explained

as follows. As the multicast group size increases, the time taken for a successful multicast

increases. This means, the multicasting station occupies the medium for increasing periods

of time as the multicast group size increases. This in turn means that lesser opportunity

is available for unicast transmissions. Unicast transmissions get an opportunity in the wait

period. Hence, larger the wait period, higher is the opportunity for unicast stations to transmit
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Figure 5.5 Total Throughput vs multicast group size for various wait pe-

riods

and hence higher throughput. As seen in figure 5.5 this phenomenon becomes more marked as

the multicast group size increases as expected.

In figure 5.6 we plot multicast throughput against multicast group size for various wait

periods. We see that the multicast throughput decreases with increase in size of the multicast

group for reasons described in section 4.7. We also see that the multicast throughput decreases

with increasing wait periods since the wait periods indicate multicast inactivity. For example,

for a wait period of CWmin the multicast throughput for a multicast group size of 6 is about

45Kbps while it decreases to 22Kbps for CWmax.

In figure 5.7 we plot unicast throughput against multicast group size for various wait

periods. We see that the unicast throughput decreases with increase in size of the multicast

since the time taken for a successful multicast increases with increase in multicast group size

implying lesser opportunity for unicast transmissions. For example for a wait period of CWmax,

the unicast throughput with a multicast group of size 2 is about 195Kbps while it reduces

to 145Kbps as the size increases to 20. Also, for a given multicast group size, the unicast

throughput increases with increase in wait period as expected. For example, for a multicast
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Figure 5.8 Throughput breakup for different wait periods

group of size 12, for a wait period of CWmin+(CWmax−CWmin)∗0.75, the unicast throughput

is 180Kbps while for a wait period of CWmin+(CWmax−CWmin)∗0.25, the unicast throughput

is 135Kbps.

In figure 5.8 we plot the break up in throughputs between the total, unicast and multicast

throughputs for a fixed mulitcast group size of 12 stations for various wait periods. As ex-

pected, unicast throughput increases with increasing wait periods. Also, as a consequence, the

time for which the multicasting stations occupies the channel is reduced and hence the mul-

ticast throughput decreases. However, the total throughput still increases since the increase

in unicast throughput is greater than the decrease in multicast throughput, and the difference

grows with increasing wait periods since the turn around time for a multicast transmission is

much greater than that for a unicast.

In figure 5.9,we plot total throughput against different multicast group sizes for selected

wait periods of CWmin,CWmin + (CWmax − CWmin) ∗ 0.5 and CWmax and the basic scheme.

In doing so, we demonstrate how the SRB scheme with fairness outperforms the basic SRB

scheme in terms of total achieved throughput. For example, the total throughput in the basic
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Figure 5.9 Comparison in total throughput between basic SRB and SRB

with fairness

scheme falls from 220Kbps to about 65Kbps as the multicast group size increases from 4 to

10 while the corresponding decrease in throughput is from about 220Kbps to 210Kbps when

the wait period is CWmax. As described before, this fall in throughput can be attributed

to unfairness caused by multicast flows overwhelming the channel thus reducing the unicast

throughput and the total throughput considerably. With the introduction of the wait period,

unicast transmissions take place successfully thus increasing the total observed throughput as

described before.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Multicasting at the MAC layer has the potential of greatly improving current protocols

and services and can also form the basis for optimized and efficient schemes in the future.

However, multicast operation in the IEEE 802.11 protocol is inherently inconsistent with

its unicast mode of operation in terms of reliability and fairness. Multicast operation in the

IEEE 802.11 does not include RTS-CTS-ACK operation and binary exponential backoff unlike

unicast transmissions. When used in coalition with unicast flows, multicast flows are unfair to

unicast flows and overwhelm the network preventing unicast transmissions from taking place.

The IEEE 802.11 MAC does not support reliable multicast and is unfair to unicast trans-

missions when operating in parallel. As a result, multicast applications with receivers in an

802.11-based LAN cannot deliver data reliably to the multicast receivers unless error recovery

is implemented by the upper layers. Ensuring reliability at the MAC layer can greatly reduce

the time and bandwidth spent in error recovery compared to handling errors in the upper

layers. Therefore, it is desirable to enhance the 802.11 MAC to support reliable multicast. In

this work, we provided a simple, elegant, and efficient protocol to ensure reliability in 802.11

multicast. The protocol uses RTS-CTS-DATA-ACK exchange with a slot reservation based

scheduling mechanism to ensure reliable multicast data delivery. We have compared our proto-

col with an existing reliable multicast protocol, namely BMMM through extensive simulations.

The results show that our scheme achieves considerably higher multicast throughput compared

to BMMM.

We then addressed the problem of fairness when unicast and multicast transmission occur

in parallel in the IEEE 802.11 MAC. We established that the relatively large duration of time

taken by a multicast transmission compared to its unicast counterpart and the related effect
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on the backoff and waiting time before it grabs the medium was the cause of the problem.

We showed that a multicast transmission waits a much smaller period of time before staking

claim to the medium compared to a unicast transmission. By introducing a variable delay

between successive multicasts, we showed that the unicast throughput and hence the overall

throughput is considerably increased. The achieved throughput (unicast and multicast) can

be controlled by appropriately choosing the wait time between multicasts.

As future work, we would like to enhance the fairness scheme and provide a more concrete

basis for deciding the wait time between multicasts. We would like to use the concept of load

[5] [8] [11] to decide the frequency and duration of wait time between multicasts and vary it

dynamically depending on existing load and network conditions.
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