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ABSTRACT

Multi-agent stigmergy forms the basis of explanatory theories for various self-organized

biological phenomena, and also serves as an implementation strategy for several important

artificial applications. While a number of sophisticated techniques have been used in the

modeling and analysis of stigmergic processes, none of them, yet, seem to be drawn from the

toolbox of classical distributed computing. Our goals are to investigate and lay the groundwork

for the use of classical distributed computing ideas in reasoning about stigmergic computation.

Specifically, we investigate case studies that are drawn from the domain of binary matrix

pattern sorting. Here, a ‘swarm’ of memory-less and non-communicating agents follow a set

of local stigmergic rules to asynchronously sort the binary states of cells in a 2-D grid so as

to satisfy some global pattern specification. This domain is attractive as a test-bed because

it serves as an abstraction for instances of biological pattern sorting and also because of its

stigmergic expressiveness.

We demonstrate the application of the following four distributed computing concepts: (1)

execution serializability, (2) local checking, (3) variant functions, and (4) indistinguishability

(the last as an impossibility proof technique) in the modeling and analysis of our case studies.

Based on our preliminary experience with this particular domain, it seems to us that

classical distributed computing techniques could be applied further in reasoning about stig-

mergic systems, perhaps leading to the formulation of a generalized stigmergic computational

paradigm based on the principles of distributed computing.
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CHAPTER 1. Introduction

The term Stigmergy was coined by Pierre-Paul Grassé, to refer to the process of cooperative

nest construction by termites [6]. It proposed that the nest under construction itself acts as

a coordination mechanism for the worker termites, rather than any direct communication

between them. Workers get stimulated by particular local configurations of the construction,

and in response transform the current configuration into a new configuration, which in turn

may trigger another transformation response from the same or some other worker in the colony.

This process repeats until there are no more stimulating configurations, at which point the

construction stops.

Today, stigmergy or stigmergic computation denotes any abstract cooperative task per-

formed by a multi-agent system in which (a) the past modifications of the environment by

the agents guide their current actions, (b) the agents individually follow local rules that taken

together have the desired global effect, and (c) the agents have a limited local view of the

environment [1]. The agents are usually very loosely coupled, with almost no direct commu-

nication between them and posses very limited individual memory. While these limitations

make global coordination more difficult, it makes such agent ‘swarms’ quite robust and scal-

able. Any failed agent can be easily replaced by a new working agent that has identical local

rules as part of its ‘DNA’. Since the original agent had no memory nor has sent any direct

agent-to-agent messages, its failing does not lead to any significant loss of acquired information

or disruption of the task in progress. Similarly, because agents are unaware of each other, it is

easy to introduce new agents into an ongoing process to possibly speed up the task completion.

To sum up, in a stigmergic computation, the environment, i.e. the domain of the task under

progress, and the modifications made to it—structural and chemical (for example by insect
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pheromones)—act as the sole mechanism for mediating the actions of all the agents involved.

1.1 Our goals

Stigmergy has been used as an explanatory tool in the analysis of various biological phe-

nomena involving self-organization [3]. It has also seen applications in artificial domains like

collective robotics [15], and optimization problems [9]. The techniques used in modeling and

reasoning about stigmergic processes include genetic algorithms [2], random walk models [14],

and various statistical and stochastic methods [3]. However, to the best of our knowledge there

has been no attempt, yet, to apply ideas and tools from classical distributed computing the-

ory in the modeling and analysis of stigmergic problems. Our aim therefore, is to investigate

the use of these classical ideas—in suitably adapted form—for the framing of, and subsequent

reasoning about, stigmergic computational problems.

1.1.1 Motivation

Over the years distributed computing has matured into a field with a large arsenal of tools

and ideas that could be applied to multi-agent systems. We are motivated by the intuition

that the application of some of these ideas to stigmergic problems may reveal aspects that

complement the insights yielded by more sophisticated techniques like stochastic analysis.

This intuition is based on the observation that an autonomous multi-agent stigmergic system

with its decentralized control has a lot in common with an asynchronous distributed computing

system with limited shared memory.

1.2 Our contributions

As an initial step in validating our intuition, this paper presents several examples where

we apply classical distributed computing concepts to reason about stigmergic problems. The

examples are all drawn from a specific domain of stigmergic applications called “pattern sort-

ing”. Before explaining the details of pattern sorting and the reasons for its selection as the

domain of investigations, we would like to summarize our contributions. In this paper, we
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• make explicit the assumptions about the individual and collective behavior of agents

which (among other things) ensure the serializability [12] of each stigmergic execution

(Sec. 2.4.3).

• adapt the notion of local checking [16] from self-stabilization (Sections 2.3.1 and 2.5.1).

• design and use variant functions [4] (again from self-stabilization), to reason about the

correctness of a stigmergic solution (Sections 3.1.1.1 and 3.2.1.1).

• apply the general notion of indistinguishability due to limitations imposed by local knowl-

edge [10], in order to prove impossibility results (Sections 3.2 and 3.3).

1.3 Informal overview of pattern sorting

It might be useful, for explanatory purposes, to think of our model as a kind of a puzzle

that consists of light bulbs arranged in a rectangular grid on a vertical wall, with each bulb’s

ON/OFF switch located next to the bulb itself. The objective of the puzzle is to transform

any given configuration of ON and OFF bulbs in the grid, into a configuration in which the

spatial arrangement of the ON and OFF bulbs satisfies some pattern specification. There are

additional restrictions which we will give shortly, but first we start with a couple of examples

of pattern specifications (these examples will also be covered in detail in a later chapter).

Our first pattern specification is called the corner grouped pattern—CG for short. Infor-

mally, CG specifies that ON bulbs in any row must be to the left of any OFF bulbs in that row,

and ON bulbs in a column must be above any OFF bulbs in the same column (See Fig. 3.1

in Sec. 3.1). Another example is called the two layer pattern—TL, which specifies that ON

bulbs and OFF bulbs should form two horizontal layers in the grid, with the ON layer on top.

A possibly mixed row of ON and OFF bulbs may separate the two layers, but all the ON bulbs

in this mixed row must be to the left of all the OFF bulbs in the row (see Fig. 3.8 in Sec. 3.2).

Now we give the additional restrictions for this puzzle system. The puzzle is to be solved

by a team of workers each of whom can move around non-deterministically over the grid, and

who are subject to the following constraints:
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1. Each worker can see and modify the ON/OFF states of a limited number of bulbs at a

time—bulbs that are within a local neighborhood of some predefined size. Thus a worker

can never view the entire global state of the grid at once.

2. Workers do not have access to the row-column coordinates of any bulb; however, they

can detect when a bulb is at the edge of the grid and when it is in the interior. Thus a

worker can tell if a particular bulb is, or is not, at the top, right, bottom or left edges

(or the respective corners) of the grid.

3. Workers cannot communicate with each other directly, nor can they keep any record of

their past actions; they carry out their respective local modifications in a completely

asynchronous manner w.r.t. the actions of other workers.

4. Two concurrent local modifications (by two different workers) cannot overlap in their

local neighborhoods i.e. their local sets of bulbs must be mutually disjoint.

5. Each local modification must preserve the total number of ON (and OFF bulbs) in the

grid.

The last constraint is why we refer to our problem as “pattern sorting” and not “pattern

formation”. A worker can only swap around the states of bulbs within the current local

neighborhood, and cannot arbitrarily turn them ON or OFF. We now briefly detour into an

explanation of our results in terms of this puzzle analogy, before returning back to connect it

to our actual model.

We first semi-formally describe the behavior of workers, (both as individuals and as part of

a team) so as to clearly state some simple assumptions that confer several desirable properties

on our system. We then formally characterize the properties of patterns that can be sorted in

such a puzzle system by adapting the idea of local checking [16] from self-stabilizing systems

to our stigmergic context. Next, we prove that pattern CG can be sorted in such a system;

this proof uses a cost measure that is based on the concept of variant functions [4] (also from

self-stabilization literature). Then we give an impossibility proof using the general notion of
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indistinguishability to show that TL cannot be sorted in such a system (we also apply this

technique to another pattern instance not covered here in the introduction).

Returning back to our puzzle board, imagine that each bulb also has a paper and pencil

next to it, so that workers can now annotate each bulb with some label that serves as a sign to

guide the future actions of other workers (or even itself). With this additional power it is now

possible to sort pattern TL, and we see one such solution using 4 labels later in this paper.

Next, we justify the choice of this domain.

Why is our pattern sorting domain a good test-bed for stigmergic investiga-

tions? There are two main reasons for this. First, there are several biological examples

that can be described as self-organized pattern sorting such as, for example, embryonic cell

sorting [13], and brood sorting in ants [5]. Our domain serves as a compact abstraction of

such examples and future investigations could perhaps lead to insights into these phenomena.

Secondly, two forms of stigmergic interactions have been observed in nature: one is mediated

by a functional and structural modification of environment, and the other by the addition

of non-functional information in the environment. Our model, with its clear distinction be-

tween visible states and auxiliary states (non-functional w.r.t. patterns), allows both kinds of

stigmergic interactions to be effectively expressed.

1.3.1 Connection to the formal model

To make our formal model easier to understand we now informally show the correspondence

between the various parts of this puzzle analogy and the components of our actual model.

Instead of a grid of light bulbs we have a 2-dimensional matrix of triples which we call the

tri-state matrix. Each entry, or cell, of this tri-state matrix is a triple that consists of (1)

a “visible” binary state corresponding to the ON/OFF state of the bulbs, (2) a “positional”

state that indicates whether the cell is located at one or more edges (outer rows and columns)

of the matrix or is in the interior, and (3) an “auxiliary” state which models the paper and

pencil next to each bulb.
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The team of workers is now a collective of identical memoryless agents that we call stigbots—

short for stigmergic robots. Each stigbot is assumed to possess (a) sensors with which it

can sense all three kinds of states for each cell in some local sub-matrix (analog of local

neighborhoods of bulbs), and (b) actuators with which it can change the visible and auxiliary

states of the cells in that same sub-matrix. We model the link between sensors and actuators

abstractly as a set of rules, where each rule is a stimulus-response pair. The sensors detect

when the states of cells in a sub-matrix matches a stimulus, and this activates the appropriate

actuators causing them to change the states of the cells (in the same sub-matrix) according to

the specification of the paired response for that particular stimulus. For example, stimulus-

response rulesets for sorting CG and TL are given in Fig. 3.2 (Sec. 3.1) and Fig. 3.10 (Sec. 3.2)

respectively.

1.4 Related work

The work closest to ours is the in-depth work by Yamins and Nagpal [19] dealing with

pattern formation (but not patten sorting) in 1-dimensional cellular automata-like models.

While their agents are the processors forming the pattern itself, and they do not seem to

explicitly focus on stigmergic computations, nevertheless our notion of local checkability can

be considered as the stigmergic analog of the local checkability as defined in their model. They

carry out a much deeper analysis of local checkability, and prove that it is necessary and

sufficient for local solvability in their model. Their main goal is an automatic global-to-local

compiler for automatic ruleset generation, and they do not seem to use any classical distributed

computing tools in their analysis.

Holland and Melhuish [7] investigate the stigmergic clustering and sorting of frisbees by

physical robots using a very simple rule set. Inspired by biological examples, their aim is is to

investigate the role that real-world physics plays in such self-organized activities.

Karsai and Pénzes [8] show how a simple set of building rules based on local information

can be used to explain the construction of nests comprising of hexagonal cells (see Fig. 1.1)

by paper wasps. Their building algorithms—using rules based on information about the age
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of the cells—are able to generate all forms of paper wasp nests found in nature.

Figure 1.1 A paper wasp nest with (roughly) hexagonal cells.

Next, we look at a couple of works related to distributed construction and reconfiguration

by robots using (various degrees of) stigmergy.

Werfel [18] describes solutions to the inverse problem of collective construction, where given

a goal configuration, the robots autonomously decide where to attach each building block.

Here the goal shape is specified by a coordinate-based map of all sites where a block should

be attached. Each robot has access to this global shape map, and uses the local geometric

features of the structure under construction as a reference (their basic version of stigmergy) to

determine its own location relative to the shape map—in order to decide where to attach the

block that it is carrying. Werfel then describes an extended form of stigmergy using building

blocks that are more sophisticated in terms of the data storage and communication abilities.

Using their own inter-block communications and the global shape map, these sophisticated

blocks can now indicate to a passing robot as to where a block attachment is needed. The

active entities here are thus quite powerful in terms of their computational and communication
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power, and access to global knowledge.

Walter et al. [17] describe distributed reconfiguration algorithms for metamorphic robots,

where the goal is to have a chain of robots change its orientation in a plane. Here the robots

themselves play the role of building blocks, and each robot can sense the presence or absence

of its neighbors and can keep track of its own location w.r.t. some global coordinate system.

Their robots move in lock step—i.e. are synchronized—and each has a fixed algorithm with a

slight hint of stigmergy in that a robot’s next step is based on the “stimulus” about the state

of its neighboring cells.
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CHAPTER 2. Our model

We now formalize our model which consists of configurations, patterns and stigbots. Since

2-dimensional matrices are at the core of our model, we start by defining some useful data

structures and notation for general matrices that will be used later in the context of our

tri-state matrices.

2.1 Rectangular domains

A cell of a m × n matrix, is any pair (i, j) where 1 ≤ i ≤ m and 1 ≤ j ≤ n. We

now formalize the grouping of cells that are bounded by a rectangle of certain width and

height, within a matrix. If for some m× n matrix, we have positive integers i, j, p, q such that

1 ≤ p ≤ m, 1 ≤ q ≤ n, 1 ≤ i ≤ m− p + 1, and 1 ≤ j ≤ n− q + 1, then the rectangular domain

Di,j(p, q) denotes the set of all cells within the p-row and q-column rectangle that has cell (i, j)

as its top-left corner, i.e. Di,j(p, q) = {(i′, j′) : i ≤ i′ ≤ i + p− 1 ∧ j ≤ j′ ≤ j + q − 1}.

The set of all p× q rectangular domains in a m×n matrix, is denoted by D∗
m,n(p, q) and is

the set of all rectangular domains Di,j(p, q) where 1 ≤ i ≤ (m− p+1) and 1 ≤ j ≤ (n− q +1).

Finally, the set of all rectangular domains (in a m × n matrix) with dimensions at most

p × q, i.e. at most p rows, and at most q columns, is denoted by D∗
m,n(≤ p,≤ q) and is equal

to
p⋃

x=1

 q⋃
y=1

D∗
m,n(x, y)

.

2.1.1 Sub-matrices corresponding to domains

The value of a rectangular domain d in some matrix C is just the sub-matrix of C corre-

sponding to the rectangle of cells in d, and is denoted C(d). Formally, for a m× n matrix C,
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and a rectangular domain Di,j(p, q) (that is valid for C), C(Di,j(p, q)) is a p × q matrix, say

V , such that ∀ 1 ≤ x ≤ p, 1 ≤ y ≤ q : V [x, y] = C[i + x− 1, j + y − 1].

2.2 Configurations (tri-state matrices)

As described in the introduction, a configuration in our model is a 2-D matrix of triples,

called a tri-state matrix, such that each entry is a triple in the set {0, 1} ×P(E) × L, where

E is a set of edge indicators, and L is a finite set of labels (more on these sets below).

For a m × n configuration C, we use CV , CP , and CA to denote respectively the m × n

matrices of the first, second and third components of C, i.e. CV , CP , and CA are respectively

the visible state matrix, the positional state matrix, and the auxiliary state matrix of C, where

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n :

CV [i, j] ∈ {1, 0}. The number of 1 values in CV is denoted by #1(CV ).

CP [i, j] ∈ P(E), where E = {‘T’,‘B’,‘L’,‘R’}. ‘T’,‘B’,‘L’ and ‘R’ represent positions

relative to the boundaries of the matrix, i.e. respectively top edge, bottom edge, left edge

and right edge. Thus ‘T’ ∈ CP [i, j] ⇐⇒ (i = 1), ‘B’ ∈ CP [i, j] ⇐⇒ (i = m), ‘L’

∈ CP [i, j] ⇐⇒ (j = 1), and ‘R’ ∈ CP [i, j] ⇐⇒ (j = n). Clearly, CP [i, j] = ∅ for all (i, j)

locations in the ‘interior’ of the matrix.

CA[i, j] ∈ L where L is a finite set of labels such that ‘ ’ ∈ L. The ‘ ’ value is a default or

nil label. If CA[i, j] = ‘ ’ for each 1 ≤ i ≤ m, and 1 ≤ j ≤ n, then CA is a default auxiliary

state matrix.

Figure 2.1 shows a configuration as ‘sliced’ into its three component matrices, and Fig. 2.2

shows a 2 × 2 sub-matrix of this configuration.

2.3 Patterns

We define a pattern as a unary predicate on visible state matrices. For a pattern P and a

configuration C, P (CV ) is true if the arrangement of binary values in the visible state matrix

CV is consistent with the specification of P . We say C is a P -configuration if P (CV ) holds.



11

{T,L}

{L}

{L}

{L,B}

{L}

{T}

{}

{}

{B}

{}

{T}

{}

{}

{B}

{}

{T}

{}

{}

{B}

{}

{R,T}

{R}

{R}

{B,R}

{R}

?
*
>

$
$

<
>
>

$
<

>
?
#

>
*

>
<
#

<
>

?
>
?

<
>

0
0
0

1
0

0
0
1

0
1

1
0
1

0
0

0
1
0

1
1

0
1
0

1
1

Visible State Matrix C V

Auxiliary State Matrix C A

Positional State Matrix CP

C[i,j] = (C V[i,j], C A[i,j], C P[i,j])

Tri-state 
Matrix C

Figure 2.1 Slicing a configuration into its three component matrices.

The various patterns we consider in this work will be specifications of spatial constraints on

the arrangement of 1 and 0 values in the visible state matrix of a configuration.

We call a pattern P universal if for any given row-column dimensions there is always a

configuration satisfying the pattern, irrespective of the total number of 1 cells, i.e. ∀ m,n ∈

Z+,∀ 1 ≤ t ≤ m·n : ∃m×n configuration C : (#1(C) = t)∧P (CV ). All the patterns considered

in this work are universal; henceforth when we write “patterns” we mean “universal patterns”.

2.3.1 Locally checkable patterns

We now adapt the idea of local checking from self-stabilizing network protocols [16], into

our stigmergic context. A network protocol is locally checkable if whenever the protocol is in a

bad state, some link subsystem (i.e. a pair of neighboring processors and the channels between

them), is also in a bad state. To apply this idea in the pattern sorting domain, we ask the

question: for a pattern P , given any configuration C, is it possible to determine that C does

not satisfy P by looking at the cells in just some small localized area of C? In other words, is

there a sub-matrix of at most some fixed dimension, in any configuration, that can indicate if

P does not hold in that configuration? If so, then the pattern is locally checkable. We make
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Tri-state 
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(1,>,{}) (1,>,{R})

(0,<,{B}) (1,<,{B,R})

2 x 2 sub-matrix of C

Figure 2.2 A 2 × 2 sub-matrix of the example configuration in Fig. 2.1.

this idea concrete by introducing the notion of a local detector.

A local detector for a pattern P is a predicate PD on tri-state matrices of at most some

fixed dimensions, such that for any configuration C, P does not hold in C iff there is at least

one sub-matrix in C that satisfies PD. Formally, given positive integer constants Krow and

Kcol, PD is a local detector for P , if PD is a predicate on tri-state matrices of size at most

Krow and Kcol, such that for any m × n configuration C, P (CV ) does not hold if and only if

there exists a d ∈ D∗
m,n(≤ Krow,≤ Kcol) such that PD(C(d)) is true.

We denote a pattern P as locally checkable if there exists a local detector for P .

2.3.1.1 Checkerboard example

Consider a ‘checkerboard’ pattern which is informally stated as: no two adjacent cells (in

the same row or same column) have the same visible state. This pattern is locally checkable

because its violations are locally detectable as shown by two instances in Fig. 2.3.

2.4 Stigmergic sorting agents (stigbots)

As described in the introduction, we model the abstract connection between a stigbot’s

sensors and actuators with a stimulus-response pair. Each such pair defines a rule, and all

stigbots in a swarm have an identical set of rules called the ruleset. Intuitively, a stigbot’s
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two examples
of violations

Figure 2.3 Violations of the checkerboard pattern—i.e. two adjacent cells
having the same visible state—are locally detectable; each vio-
lation is detectable within a sub-matrix of size either 1 × 2 or
2 × 1.

ruleset represents the genetically programmed behavior of a social insect, i.e. the actions of a

stigbot can be considered to be completely determined by its ruleset.

2.4.1 Rules and their applications

We now formalize the concept of a rule as a stimulus-response pair. The stimulus and

the response of a rule, are both predicates on tri-state matrices (of same dimensions), such

that any matrix matching the response contains the same number of 1 cells as any matrix

matching the stimulus, and the positional state of the corresponding cells in both matrices are

the same. Thus, a p × q stigmergic rule Rx is a pair (STx,RSx), where STx and RSx are

unary predicates on p×q tri-state matrices, such that for any pair of tri-state matrices M,M ′ :

(STx(M) ∧RSx(M ′)) =⇒ (#1(MV ) = #1(M ′
V ) ∧ MP = M ′

P ).

A stigmergic ruleset R is a set of stigmergic rules, all associated with a label set LR, where

LR is some fixed set restricting the labels that can used by the rules. Formally, if M is a

tri-state matrix satisfying either a stimulus or response predicate of a rule in R, then every

entry of MA belongs to LR.

2.4.1.1 Rule application semantics

We define the semantics of a rule application in a configuration by describing the relation-

ship between the pre-configuration, and the post-configuration resulting from the application.
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An application of a p×q rule Rx in a m×n configuration C results in an m×n configuration

C ′, if there is a rectangular domain d, where d = Di,j(p, q) (for some 1 ≤ i ≤ m, and 1 ≤ j ≤ n),

such that:

(1) STx(C(d))∧RSx(C ′(d)), and (2) ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n : (i, j) /∈ d =⇒ (C[i, j] = C ′[i, j]).

We refer to domain d in the above definition as the site of the application of Rx in C.

The first condition says that the same group of cells must match the stimulus in C and the

response in C ′, while the second condition requires containment, i.e. all the other cells outside

of the application site should not be affected.

Atomicity We assume that once a stigbot starts a rule-application at some site, it does

not sense any other stimuli, nor can it be interrupted by other stigbots, until the rule has been

completely applied.

No overlap We assume that the behavioral characteristics of the stigbots ensures that

any two concurrent application sites will be disjoint w.r.t their cells.

2.4.1.2 Graphical notation for rules

We find it easier to express our rules using a graphical notation consisting of a grid of squares

to represent the possible tri-state matrices that can satisfy the stimulus/response predicates.

We use no-fill squares for 1 values and gray-filled squares for 0 values of the visible state. We

display the label corresponding to the auxiliary state, on top of the square. Thick borders of

the square specify the cell’s positional state—the cell has no neighbors to the side with the

thick border. Thin borders however are not the opposite, but are instead an underspecification

of positional state so as to avoid repeating rules. Thus a thin border does not necessarily mean

that there has to be a neighbor on that side.

For example, consider the following square representation of a single cell in some config-

uration: ?thick borders thin borders One possible cell matching this notation is the

triple: (1, { ‘T ’,‘L’}, ‘?’). But it can also match any cell which had more edge indicators
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besides top and left. Thus it could also match (1, { ‘T ’, ‘L’, ‘B’ }, ‘?’) for example. In short

it will match any cell whose positional state value is ∗, where {‘T ’,‘L’} ⊆ ∗ ⊆ E .

2.4.2 Active stimuli locations

The set of possible sites for applications of a p × q rule Rx in a m × n configuration C,

denoted by SIT ESRx(C), is the set of all sub-matrices in C that satisfy the stimulus for rule

Rx: SIT ESRx(C) = {d ∈ D∗
m,n(p, q) : STx(C(d))}. We say that the stimulus for rule Rx is

active in a configuration C, if SIT ESRx(C) 6= ∅.

The set of all possible sites for the applications of any of the rules in a ruleset R, in a

configuration C, is denoted SIT ESR∗ (C) and is equal to
⋃
{SIT ESRx(C) : Rx is a rule of

R}. Each element of SIT ESR∗ (C) is an active stimulus location for R in C. Configuration C

is terminal for a ruleset R if SIT ESR∗ (C) = ∅.

The left side of Fig. 2.4 shows a ruleset for sorting the CG pattern (explained further in

Sec. 3.1), and the right side shows the active stimuli for this ruleset in an example configuration.

Note that the active stimuli can contain overlapping sites as seen. The stigbots can choose

any non-empty, non-overlapping subset of these stimuli locations for rule applications. This is

explained in detail, next.

R1

R2

Figure 2.4 Active stimuli for the CG ruleset.On the left is the CG ruleset,
while on the right are the active stimuli for this ruleset in an
example configuration. The right-to-left arrows show the possi-
ble sites for application of rule R1, while the vertical red arrows
show the sites for applications of rule R2.
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2.4.3 Ruleset executions

An execution of a ruleset on some initial configuration consists of asynchronous and possibly

concurrent rule applications at various non-deterministically chosen active stimuli locations,

by a non-empty collection of stigbots. Since each rule application in an execution is triggered

by its stimulus being active in the formation, the execution ends when there are no more

active stimuli left. Thus, an execution of ruleset R must start in some configuration that is

not terminal for R, and can only end in some other configuration which is terminal for R.

Progress We assume the following liveness property for all executions: if there are one

or more active stimuli locations in a configuration, then at least one will be eventually chosen

for a rule application. This assumption implies no deadlock, i.e. if two or more stigbots si-

multaneously sense either the same active stimulus or different active stimuli with overlapping

sub-matrices, then they all contend for the sub-matrix matching their respective stimuli, and

one stigbot emerges as the eventual winner and gets to apply its rule atomically. The progress

assumption does not however mean no starvation, because an active stimulus location may

never be chosen for rule application (i.e. will be starved) if there is always some other stimu-

lus location active simultaneously. Thus an active stimulus location is guaranteed to have an

eventual response only when there are no other active stimuli in the configuration.

Containment and no overlap assumptions together ensure that any changes being made

by a rule application are not visible to any other concurrent rule applications. This indepen-

dence of concurrent applications allows us to serialize any admissible execution by ordering its

constituent rule applications according to their start times, breaking ties arbitrarily. Taken

together with the progress and the atomicity assumptions, execution serializability aids in rea-

soning about correctness because, any admissible execution by a group of non-zero number

of stigbots is now functionally equivalent to some admissible execution by a single stigbot

carrying out rule applications in a sequential and non-deterministic manner.
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2.5 Sorter definitions

We now formally define two types of stigmergic solutions for pattern sorting—namely lo-

cal and non-local—by giving the conditions that a ruleset must satisfy in order for it to be

considered to be of either type.

A ruleset R is a stigmergic sorter for a pattern P , if for any configuration C with a default

auxiliary state matrix CA, the following two conditions are satisfied:

1. If ¬P (CV ), then C is not a terminal configuration for R, and every execution of R

starting from C terminates in some P -configuration.

2. If P (CV ), then every execution of R starting from C is finite and preserves the visible

matrix CV , i.e. if C ′ is a configuration occurring in some execution starting from C, then

CV = C ′
V . Thus, in this case, any execution must affect only the auxiliary state matrix.

If a ruleset R is a stigmergic sorter for a pattern P and if the rules of R do not change the

auxiliary states of cells, i.e. LR = {‘ ’}, then R is a local stigmergic sorter for P .

A pattern P is (locally) stigmergic-sortable iff there exists a (local) stigmergic sorter for P .

2.5.1 Local checkability is necessary for local sorting.

Based on the definitions of locally checkable patterns and local stigmergic sorters, it is

straightforward to show that local checkability is a necessary condition for a pattern to be

locally sorted. The idea is that the disjunction of all the stimulus predicates of a ruleset that

is a local stigmergic sorter for a pattern, constitutes a local detector for that pattern. We state

this observation as a lemma for future reference.

Lemma 1 A pattern P is locally stigmergic-sortable only if P is locally checkable.

Proof: Let P be a locally sortable pattern, and R be some ruleset which can locally sort P ,

i.e. without using labels. For any configuration C, if C does not satisfy P , then by condition

1 in the above definition of stigmergic sorters, C must contain at least one active stimulus

for some rule of R. On the other hand if C does satisfy P , then by condition 2 of the above
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definition—and because R does not use labels—C cannot contain any active stimulus for the

rules of R. The logical disjunction of all the stimulus predicates for the rules of R thus forms

a local detector for sub-matrices of size at most maxrowR ×maxcolR, where maxrowR and

maxcolR are respectively the largest row and column spans in the stimulus predicates for the

rules of R. It follows that P is locally checkable. Thus P is locally stigmergic-sortable =⇒ P

is locally checkable.

2.5.2 Transforms and legality of configurations w.r.t. rulesets

Given a ruleset R, a configuration C ′ is a R-transform of a configuration C if there exists

a (possibly empty) sequence of rule-applications drawn from R, that transforms C into C ′.

Clearly, the R-transform relation is reflexive and transitive.

Since the definition of sorters given above requires that sorting rulesets work correctly only

on input configurations that have a default auxiliary state matrix, we can formalize the legality

of a configuration w.r.t. a ruleset as given below.

A configuration C is legal for a ruleset R if and only if C is a R-transform of some

configuration with a default auxiliary state matrix.



19

CHAPTER 3. Three pattern paradigms

We now consider three instances of pattern sorting, each from a general pattern paradigm.

The three paradigms are informal pattern classifications which we intuitively feel might be

useful as initial targets of experimentation. Although the specific pattern instances we cover

are of course binary, these general paradigms can also apply to patterns of cells with any number

of different visible states (not just binary). Our three paradigms (in order of their instances

covered here) are (1) clustering which includes patterns in which cells with the same visible

state are grouped together in a single cluster, (2) axial separation, covering patterns in which

cells with different visible states are cleanly separated along some axis, and (3) connectivity

which refers to patterns in which cells having some particular visible state are all connected

together.

3.1 Corner Grouped pattern (CG)

This pattern specifies that 1 cells in any row must be to the left of any 0 cells in that row,

and 1 cells in a column must be above any 0 cells in the same column. Roughly speaking,

the 1 s are grouped around top left corner, while the 0 s are grouped around the bottom right

corner. I.e., the pattern predicate CG is defined as follows. For any m × n configuration C,

CG(CV ) holds iff ∀ 1 ≤ i, i′ ≤ m; 1 ≤ j, j′ ≤ n :

(CV [i, j] ∧ ¬CV [i′, j′]) =⇒ (i < i′ ∨ j < j′).

Figure 3.1 shows the visible states of three example configurations—the first two satisfy

CG, while the last one does not because there are 0 values above and to the left of some 1

values.
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violations

X V Y V Z V

Figure 3.1 Visible state matrices of three 8× 8 configurations called X, Y

and Z. While X and Y are CG-configurations, Z is not a
CG-configuration—the arrows show the violations in ZV (white
square = 1 -cell and gray square = 0 -cell).

R1

R2

Figure 3.2 A 2-rule ruleset that is a local stigmergic sorter for CG. No
re-labeling happens in either rule i.e. LR = {‘ ’}.

3.1.1 A local stigmergic sorter

Figure 3.2 shows a simple ruleset—consisting of just two swapping rules. Rule R1 swaps

the visible states between two horizontally adjacent cells, while rule R2 swaps them in two

vertically adjacent cells. We now outline the proof that this ruleset is a local stigmergic sorter

for CG; we go into some detail in order to illustrate the use of a classical distributed computing

idea—variant functions—in a stigmergic context.

3.1.1.1 Cost function

Variant functions [4] are used to show convergence in self-stabilizing systems. The idea is

to assign a cost function over the configuration set, whose value is bounded and then show that

(a) the cost monotonically decreases with each individual step in the stabilizing algorithm, and
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(b) after the cost reaches a certain threshold the system has entered a stable configuration.

We use this idea in the stigmergic context by defining a simple cost function that measures

the amount of ‘disorder’ w.r.t to pattern CG in each configuration. Then we show that each

of the two rule applications in Fig. 3.2 reduce this disorder, thus monotonically reducing the

cost to zero, at which point CG is satisfied. We define the cost function as follows: the total

cost for a m× n configuration is the sum of costs for each individual cell in the configuration;

for any 1 -cell the cost is zero, while for each 0 -cell (i, j), the cost is the number of 1 -cells in

the rectangle whose top-left corner is (i, j) and bottom-right corner is (m,n). We will refer to

this rectangle as the cost rectangle of cell (i, j). Figure 3.3 shows an application of this cost

function in calculating the individual costs of three 0 -cells in a configuration example.

Cost is 4

Cost is 2

Cost is 8

Figure 3.3 The cost of a 0 -cell is just the number of he number of 1 -cells
within its cost rectangle. The cost rectangles for each of the
three example 0 -cells are shown in red.

Formally, the cost function is as follows: For a m × n configuration C, totalCost(C) =
m∑

i=1

n∑
j=1

cost(CV , i, j),

where cost(CV , i, j) =



0 if CV [i, j]

m∑
i′=i

n∑
j′=j

CV [i′, j′] if ¬CV [i, j]

We now prove some useful lemmas relating the cost function to the ruleset of Fig. 3.2.
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Lemma 2 For any configuration C, totalCost(C) ≥ 0.

Proof: This follows from the fact that the total cost of a configuration is a summation of

the non-negative cost of each individual cell.

Lemma 3 For any configuration C, totalCost(C) = 0 iff C is a CG-configuration.

Proof: For a configuration C, totalCost(C) = 0

⇐⇒ the cost of each 0 -cell in C is zero,

⇐⇒ the cost rectangle of each 0 -cell contains no 1 -cells,

⇐⇒ every 1 -cell is above or to the left of each 0 -cell,

⇐⇒ the configuration satisfies CG.

Lemma 4 For any configuration C,

SIT ESR1(C) ∪ SIT ESR2(C) 6= ∅ ⇐⇒ ¬CG(CV ).

Proof: For a m× n configuration C,

SIT ESR1(C) ∪ SIT ESR2(C) 6= ∅,

⇐⇒ a 1 -cell is directly to the right of a 0 -cell in the same row

or a 1 -cell is directly below a 0 -cell in the same column,

⇐⇒ configuration C does not satisfy CG.

⇐⇒ ¬CG(CV ).

Lemma 5 If an application of rule R1 or R2 in some configuration C results in a configuration

C ′, then totalCost(C ′) < totalCost(C).

Proof: We will prove the claim only for an application of rule R1; the argument for an

application of R2 has the exact same structure. Let (i, j) and (i, j + 1) be the two cells in a

1× 2 rectangular domain that is the site of application for R1 in C. Clearly, CV [i, j] = 0 and

CV [i, j + 1] = 1 (to meet the stimulus specification of R1). We now consider the costs of cells

(i, j) and (i, j + 1), before and after the rule application.
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Before application of R1 (refer to Fig. 3.4): Since CV [i, j] = 1, by the cost function

cost(CV , i, j + 1) = 0. We assume cost(CV , i, j) = x, i.e. the cost rectangle of cell (i, j) in C

contains x number of 1 -cells (including cell (i, j + 1)).

cost of cell (i,j) is 
assumed to be x

cost of cell (i,j+1) is 0cell(i,j)

cell(i,j+1)

cost rectangle for cell (i,j)

Figure 3.4 The costs of cells (i, j) and (i, j+1) in C, before the application
of rule R1.

After application of R2 (refer to Fig. 3.5): Now cost(C ′
V , i, j) = 0, while cost(C ′

V , i, j+

1) = x− 1−
m∑

i′=i+1

C ′
V [i′, j]. The former follows from the cost function, while the latter can be

informally explained as follows: the cost rectangle of cell (i, j +1) in C ′ is formed by excluding

the cell (i, j + 1) and the region D (see Fig. 3.5) from the cost rectangle of (i, j) in C (the

summation term
m∑

i′=i+1

C ′
V [i′, j] in the above cost equation is just the number of 1 -cells in

region D).

By comparing the costs before and after the application, it is clear that the total cost of

cells (i, j) and (i, j +1) is at least one less in C ′ than in C. To complete the proof, we will now

show that the total cost of all the other cells is non-increasing. For this we partition the rest

of the cells into three regions A, B, and C as shown in Fig. 3.6. Formally, the three regions

can be described as follows:

A = {(i′, j′) : 1 ≤ i′ ≤ i ∧ 1 ≤ j′ ≤ j} − (i, j)

B = {(i′, j′) : 1 ≤ i′ < i ∧ j′ = j + 1}
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cost of cell (i,j) is now 0

cost of cell (i,j+1) is now 
x – (1 + number of 1-cells in D)

cell(i,j)

cell(i,j+1)

cost rectangle for cell (i,j+1)

D

Figure 3.5 The costs of cells (i, j) and (i, j+1)—in configuration C ′—after
the the application of rule R1.

C = {(i′, j′) : i′ > i ∨ j′ > j + 1}

Based on the formal descriptions of the cost function and the above three regions, it is

straightforward to derive the following relationships between the cells (i, j) and (i, j + 1), and

the cost rectangles for any 0 -cells in each of the three regions (see Fig. 3.6):

A: the cost rectangles include both cells (i, j) and (i, j + 1).

B: the cost rectangles include the cell (i, j + 1), but not (i, j).

C: the cost rectangles exclude both cells (i, j) and (i, j + 1).

From the above inclusion-exclusion relationships it is easy to see that the cost of each 0 -cell

in both region A and region C is the same in configuration C as well as C ′, while the cost

of each 0 -cell in region B is reduced by 1 in C ′ (due to cell (i, j + 1) becoming a 0 -cell), see

Fig. 3.7. The cost of a 1 -cell in any region, of course, remains zero in either configuration.

Thus the total cost of all the other cells besides (i, j) and (i, j + 1) is non-increasing.

Using the above lemmas we now prove the correctness of the local sorter for CG.

Theorem 6 The ruleset given in Fig. 3.2 is a local stigmergic sorter for CG.
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A B

C

cost rectangles of any 
0-cells in this region 
INCLUDE both cells 
(i,j) and (i,j+ 1) 

cost rectangles of any
0-cells in this region
EXCLUDE both cells 
(i,j) and (i,j+ 1)

cost rectangles of any 0-cells in this region 
INCLUDE cell (i,j+ 1) but EXCLUDE cell (i,j)

cell(i,j)

cell(i,j+1)

Figure 3.6 Partitioning the remaining cells (i.e. those besides (i, j) and
(i, j + 1)) into regions A, B and C.

A B

C

cost of each cell 
is UNCHANGED  

cell(i,j)

cell(i,j+1) cost of each cell
is UNCHANGED  

cost of each 1-cell is UNCHANGED, 
cost of each 0-cell is REDUCED by 1  

Figure 3.7 Effect of the application of R1 on the costs of each of the cells
in the regions A, B and C.

Proof: We first show that the ruleset in Fig. 3.2 satisfies the two conditions in the definition

of stigmergic sorter given in Sec. 2.5. For condition 1, let C be some non CG-configuration. By

Lemma 4, C is not a terminal configuration for the ruleset. By Lemma 5, each successive con-

figuration resulting from consecutive rule applications in any non-empty (serialized) execution

has a strictly lower total cost than its predecessor. Since Lemma 2 tells us that this cost cannot

decrease indefinitely, therefore each execution starting from C must eventually terminate. Due

to Lemmas 3 and 4, none of these executions can terminate in configurations with total cost

> 0. Thus each execution starting from C terminates with a configuration whose total cost
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= 0, i.e. a CG-configuration, and so condition 1 is satisfied. Condition 2 is trivially satisfied

because, by Lemma 4, if C is a CG-configuration, then there are no executions starting from

C. Thus the ruleset of Fig. 3.2 meets the definition of a stigmergic sorter for CG. Since neither

of its two rules use relabeling, therefore, this ruleset is also a local stigmergic sorter for CG.

Corollary 7 CG is locally stigermic-sortable.

3.2 Two Layered pattern (TL)

In this pattern 1 and 0 cells form two horizontal layers in the grid, with the 1 -cells layer

on top. A possibly mixed row of 1 s and 0 s may separate the two layers, but all the 1 s in this

mixed row must be to the left of all the 0 s in the row. For a m× n configuration C, TL(CV )

holds iff ∀ 1 ≤ i, i′ ≤ m; 1 ≤ j, j′ ≤ n :

(CV [i, j] ∧ ¬CV [i′, j′]) =⇒ (i < i′ ∨ (i = i′ ∧ j < j′))

For example, in Figure 3.8, X and Y satisfy the TL pattern specification, but Z does not.

X V Y V Z V

Figure 3.8 The visible states of three 8 × 8 configurations called X, Y

and Z. While X and Y are TL-configurations, Z is not a
TL-configuration, because there can be at most one row whose
cells do not all have the same visible state.

Theorem 8 TL is not locally checkable.

Proof: We prove the result by contradiction. Assume, that pattern TL is locally checkable.

Therefore, there must exist positive integers Krow and Kcol, and a detector predicate TLD, such
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that for any configuration C, C is not a TL-configuration if and only if there is a sub-matrix

in C with dimensions at most Krow by Kcol that satisfies the detector predicate TLD.

Given constants Krow and Kcol, we construct a non TL-configuration C, and two TL-

configurations C ′ and C ′′, each with 2 rows and Kcol + 1 columns, such that any sub-matrix

of C is equivalent to some sub-matrix of either C ′ or C ′′, and therefore cannot satisfy the

detector predicate TLD, giving a contradiction. We define C, C ′ and C ′′ below. Formally,

we prove that for all rectangular domains d in D∗
2,Kcol+1(≤Krow,≤ Kcol), C(d) cannot satisfy

predicate TLD.(Recall that D∗
2,Kcol+1(≤Krow,≤ Kcol) denotes all rectangular domains of size at

most Krow ×Kcol within a 2×Kcol + 1 matrix.)

We define configuration C (see Fig. 3.9) with 2 rows and Kcol + 1 columns, with a default

auxiliary state matrix, and a visible state matrix as follows: (first row) ∀ 1 ≤ j ≤ Kcol :

CV [1, j]∧¬CV [1,Kcol + 1], and (second row) CV [2, 1]∧ (∀ 2 ≤ j ≤ Kcol + 1 : ¬CV [2, j]). Next,

we define two TL-configurations C ′ and C ′′ (see Fig. 3.9) such that each differs from C in the

visible state of exactly one cell: C ′ is exactly the same as C except C ′
V [1,Kcol + 1], and C ′′ is

exactly the same as C except ¬C ′′
V [2, 1].

Next, we group the domains of D∗
2,Kcol+1(≤ Krow,≤ Kcol) into two proper (but not disjoint)

subsets; S1 are the domains which exclude (1,Kcol + 1) and S2 are those which exclude (2, 1).

Thus S1 = {d : (1,Kcol + 1) /∈ d}, and S2 = {d : (2, 1) /∈ d}. Due to the adversarial choice for

the number of columns to be Kcol + 1, there is no domain in D∗
2,Kcol+1(≤ Krow,≤ Kcol) which

contains both of the cells (2, 1) and(1,Kcol + 1). Hence S1 ∪ S2 = D∗
2,Kcol+1(≤ Krow,≤ Kcol).

C

C’

C’’

K col + 1

Figure 3.9 C, C ′ and C ′′ are each 2× (Kcol + 1) configurations. C is not a
TL-configuration, while both C ′ and C ′′—each differing from C

by the visible state of just one cell—are both TL-configurations.
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Now we are set up to exploit the indistinguishability of the three configurations defined

above since they contain equivalent sub-matrices. Consider C and C ′: since the domains in S1

do not include cell (1,Kcol +1), therefore every domain in S1 evaluates to the same sub-matrix

in both C and C ′. I.e., ∀ d ∈ S1 : C(d) = C ′(d). Arguing similarly for C, C ′′ and the domains

of S2, we have ∀ d ∈ S2 : C(d) = C ′′(d). Thus, for every sub-matrix C(d) in C—of size at

most Krow ×Kcol—there is a TL-configuration that has the same exact sub-matrix. Now, by

definition of a non-TL configuration, there exists some sub-matrix C(d) that satisfies TLD.

Since there exists a TL-configuration E such that C(d) = E(d), this implies that E(d) satisfies

TLD, contradicting the fact that E is a TL-configuration.

Corollary 9 TL is not locally stigermic-sortable.

R12
R10a

R10b<< <<

R11a>> >>

R11b> >

R7
> >>

R9
<> <<

>
R8

<
R2

? ??

R4
? >

?
R3

<

R1a ?

?
R1b< <

R5<? <<

R6
>? >>

Figure 3.10 A 15-rule ruleset R that is a (non-local) stigmergic sorter for
TL, with LR = {‘ ’,‘?’, ‘ >’, ‘ <’}.

3.2.1 A non-local stigmergic sorter

Fig. 3.10 shows a 4-label ruleset for stigmergically sorting TL. Figure 3.11 shows a simple

execution example of this ruleset. As can be seen in the execution, an invariant of this ruleset

is that once a cell acquires a non-default label, its visible state does not change again for the
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C 1

R1a

R10a
?

C 2

R2

R12
? ?

C 3

R2

C 4

R3

C5

R5

C 6

R5

C7

R10b

C 8

R1b

C 9

R4

C10

? ? ? ? ? <

? < < < < < < < < <
?

< < <
>

< <
R5

Figure 3.11 An example execution of R starting from configuration C1,
and ending in configuration C10. Several transitions have con-
current rule applications.

rest of the execution. The ‘?’ label is like a query propagated rightwards to check if the current

row is completely filled with 1 -cells. The ‘>’ and ‘<’ labels act as directional signs for the

stigbots telling them which way to swap the visible states of cells in the row directly beneath.

We sketch an outline of the correctness proof for the the ruleset in Fig. 3.10, using the

following cost function.

3.2.1.1 Cost function

For a m× n configuration C, totalCost(C) =
m∑

i=1

n∑
j=1

cost(C, i, j), where

cost(C, i, j) =



m∑
i′=i+1

n∑
j′=1

CV [i′, j′] if ¬CV [i, j]

Acost(C, i, j) if CV [i, j]

Acost(C, i, j) =



4 if CA[i, j] = ‘ ’

3 if CA[i, j] = ‘?’

Acost>(C, i, j) if CA[i, j] = ‘>’

Acost<(C, i, j) if CA[i, j] = ‘<’



30

Acost>(C, i, j) =


2 if (∀ 1 ≤ j′ ≤ n : CV [i, j′]) ∨ ¬(∀ i < i′ ≤ m; 1 ≤ j′ ≤ n : ¬CV [i, j′])

0 otherwise

Acost<(C, i, j) =


1 if ¬(∀ 1 ≤ j′ ≤ n : CV [i, j′])

0 otherwise

A brief explanation of the cost function The total cost of the configuration is the

sum of individual cost of each cell in the configuration given by the cost() function. This

function assigns the cost of a 0 -cell as being the number of 1 -cells that are below it1. For a

1 -cell this function uses the Acost() function to compute the cost based on the label of the

1 -cell. The Acost() function assigns 1 -cells with a default label and a ‘?’ label, the costs of

4 and 3 respectively. For 1 -cells with labels ‘>’ and ‘<’ it uses the Acost>() and Acost<()

functions respectively to assign costs. The Acost>() function assigns a 1 -cell with label ‘>’

the cost of 2 if the cell is in a row that contains all 1 -cells or if there is at least one 1 -cell in

the rows below. If neither of these two conditions hold, then the cost of that 1 -cell with label

‘>’ is 0. The Acost<() function assigns a 1 -cell with label ‘<’ the cost of 1 if there is at least

one 0 -cell in its row. If not, then its cost is 0.

We will show the correctness of the ruleset of Fig. 3.10 by connecting the changes in the

total cost of a configuration—as given by the above cost function—with the application of

the rules from the ruleset of Fig. 3.10. We give semi-formal proofs and proof outlines for the

subsequent Lemmas and Theorem; a formal and completely rigorous proof of correctness would

probably be quite tedious and lengthy. We use the following in Lemmas 10-17:

• R is the ruleset of Fig. 3.10.

• C is any m× n configuration which is legal for R (see Sec. 2.5.2 for legality).
1The TL specification requires not only that there should be no 1 -cell below a 0 -cell, but also that in a mixed

row, if any, the 1 -cells should all be to the left of the 0 -cells. We ignore this latter requirement in the cost
function because doing so allows the application of any rule from the ruleset of Fig. 3.10 to have a non-increasing
effect on the total cost of the configuration. This simplifies reasoning about the executions of the ruleset.
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Lemma 10 A cell in C has a non-default label only if this cell and all cells to the left of it in

the same row are 1-cells, i.e. ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n : CA[i, j] 6=‘ ’ =⇒ ∀ 1 ≤ j′ ≤ j : CV [i, j]

Proof: A cell with a default label gets a non-default label only via applications of rules R1a,

R1b, R2, and R7. The stimulus predicates of these four rules each require that the cell be a

1 -cell, and that either the cell be the leftmost in the row (rules R1a and R1b) or already have

a 1 -cell with a non-default label as its left neighbor (R2 and R7). Finally, the rules of R do

not ever change a cell’s non-default label back to the default, and they also do not change the

visible state of a cell once it has a non-default label, thus proving the claim.

Lemma 11 The total cost of C is non-negative, i.e. totalCost(C) ≥ 0

Proof: This follows from the fact that the total cost of a configuration is a summation of

the non-negative cost of each individual cell.

Lemma 12 The total cost of C is zero only if C is a TL-configuration, ı.e. totalCost(C) =

0 =⇒ TL(CV )

Proof: We argue this by constructing the different types of configurations that have zero

total costs, and then filtering out only those that are legal configurations.

The cost function stipulates that for any configuration to have a zero total cost, the indi-

vidual cost of each cell in the configuration must be also zero, i.e. cost(C, i, j) = 0. This gives

us the following constraints on such configurations:

1. No 0 -cell must ever be above a 1 -cell. This means that the 1 and 0 cells in the configu-

ration are separated into two vertical layers with a possibly mixed row of cells in between

the two layers.

2. The Acost() for each 1 -cell must be 0. This gives us the following sub-constraints on the

labels of 1 -cells.

(a) Each 1 -cell in a row of all 1 -cells must have the ‘<’ label (by Acost<()).
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(b) Each 1 -cell in the mixed row (if any) must have the ‘>’ label (by Acost>()).

These constraints give us three different types of configurations that have a zero total cost.

These three types are shown in Fig. 3.12. Lemma 10 forbids any 0 -cell to be to the left of any

1 -cell with a non-default label. Thus configuration TX of Fig. 3.12 is clearly not legal for R

because of its violations of Lemma 10 in the disordered mixed row. It can be easily seen from

Fig. 3.12 that both T1 and T2 are TL-configurations, thus proving the claim. Note that we

need not prove the legality of either T1 or T2 w.r.t. ruleset R.

<T 1

> > > > >> >

T 2 T X
< < < < < < <

< < < < < < < <
< < < < < < < <
< < < < < < < <

< < < < < < < <
< < < < < < < <
< < < < < < < <

< < < < < < < <
< < < < < < < <
< < < < < < < <

>

no mixed row ordered mixed row disordered mixed row

Figure 3.12 T1, T2, and TX are the three possible types of configurations
that have zero total cost. T1 has no mixed row of cells, but
instead has two clearly differentiated layers of 1 and 0 -cells. T2

has a mixed row where the 1 -cells in the row are all to the left
of the 0 cells in the row. TX has a mixed row with no ordering
between the 1 and 0 cells. By Lemma 10 configuration TX is
not legal for R

Lemma 13 C does not contain any active stimuli for R only if its total cost is zero, i.e.

SIT ESR∗ (C) = ∅ =⇒ totalCost(C) = 0

Proof: (A rough outline) We will inductively construct the different possible types of config-

urations which have no active stimuli for R, i.e. terminal configurations for R. The following

argument is only a rough sketch and an actual formal proof (by exhaustive enumeration) would

be much longer.
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Assume that C is terminal for R. Consider the 1 -cells of the first row of C. All the 1 -cells

of the remaining rows in C are below these 1 -cells of the first row, because otherwise there

would be an active stimulus for rule R12. Also, because of the absence of stimuli for rule R10a,

all the 1 -cells in the first row are to the left of any 0 -cells in that row.

There are now two possibilities for visible state of the cells in the first row:

Case 1: There is at least one 0-cell in the row. In this case, what are possible values for

the label on the leftmost cell in the first row, i.e. the corner cell? By absence of stimuli for

R1a it definitely cannot be the default, but could ‘?’ be a possibility?. Consider the right

neighbor of this corner cell. If the right neighbor is an 0 -cell then clearly the corner cell should

be labeled ‘>’, otherwise we have stimuli for R4. But what if the right neighbor of the corner

cell is an 1 -cell? Then the right neighbor too cannot have a default label, otherwise we have

stimuli for R2. Could it again have ‘?’ as its label? For that we consider its right-neighbor

and so on, until at some point the right-neighbor has to be an 0 -cell. Working backwards from

there by considering the absence of stimuli for R6, we see that the only possibility allowed is

for each 1 -cell in the row to have ‘>’ as its label. By exhaustively considering all other cases

of possible legal label assignments (such as those that involve the absence of stimuli for R7),

it can be shown that for this case, each 1 -cell in the row having ‘>’ as its label is the only

possible result which has no active stimuli. Finally, by the absence of stimuli for rules R11a,

R11b, and R12, there cannot be any 1 -cells in the rows below, and we are done.

Case 2: All the cells in the row are 1-cells. By exhaustively enumerating (and eliminat-

ing) the various label possibilities by considering with the absence of stimuli for various rules

including R3, R5, R8 and R9, we can show that in this case, each 1 -cell in the row having ‘<’

as its label is the only one which has no active stimuli. In this case there can be 1 -cells in the

row directly below, however, due to the absence of rule R10b all the 1 -cells in the that row are

to the left of any 0 -cells in that row. The entire argument is now repeated for this row, this

time using the absence of stimuli for R1b instead of R1a. This process will terminate either

with a case 1 row, or if there are no more rows.

It is easy to see that the above inductive construction will produce a terminal configuration
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that belongs to type T1 or T2 of Fig. 3.12. As argued earlier, both of these configuration types

have zero total cost.

Lemma 14 Let R′ be a ruleset consisting only of the four rules: R10a,R10b, R11a, and R11b.

For any configuration C ′ that is a R′-transform of C, totalCost(C ′) = totalCost(C).

Proof: None of the four rules change the labels of any cell. They simply swap the visible

state of cells sideways in a row. It is easy to see from the cost function that these sideways

swaps without label changes will not change the total cost.

Lemma 15 There are only a finitely many different configurations that are R′-transforms of

C (see Sec. 2.5.2 for transforms), i.e. all executions of R′ starting from C are of finite length.

Proof: The four rules swap the visible state sideways in one particular direction; rules R10a

and R10b swap the 1 -state to the left in a row, while R11a and R11b swap it to the right. The

stimulus predicates of these rules ensure that the visible state of a cell cannot be involved in

swaps in both directions. Therefore, for each row, there can only be at most n applications of

any of these rules. Thus all executions of R′ starting from C will be of finite length.

Lemma 16 Let R′′ be a ruleset consisting of all rules of R, except for these four rules:

R10a,R10b, R11a, and R11b. For any configuration C ′′ that is a R′′-transform of C, if

C ′′ 6= C then totalCost(C ′′) < totalCost(C).

Proof: Using the cost function it is easy to see that, other than R8 and R9, the application

of any other rules of R′′ will result in a configuration with a lesser total cost. Applications

of R8 or R9 also reduce the total cost, but the argument for that are slightly longer as given

below.

The reason that the argument for R8 and R9 is slightly trickier is because both of these

rule applications involve changing the label of a cell from ‘>’ to ‘<’. Unlike for other rules

of R′′, this label change by itself is not sufficient to show that the individual cost of the cell

undergoing the change is actually reduced. For that we need to also show that the cost of the
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cell with ‘>’ was non-zero before application, and becomes zero after application i.e. with the

new label of ‘<’.

To show this, first note that none of the rules of R′′ (or for that matter even R) change the

label of a cell once it has the ‘<’ label. This fact along with the dependencies between rules

R3, R9, R8 and R5 ensures that when a cell has the ‘<’ label, then that cell and all the cells

to its right up to the end of the row are 1 -cells with label ‘<’. This means the cell with the

label ‘>’ matching the stimulus predicate of either R8 or R9 is in a row that has all 1 -cells.

By the cost function its cost is therefore 2 before the application of either of these rules. After

the application that same cell has a ‘<’ label and is still in a row with all 1 -cells. By the cost

function its cost is now 0, thus proving the claim.

Lemma 17 Let C be a R-transform of a configuration C0 with a default auxiliary state

matrix. If C0 is already a TL-configuration, then C does not contain active stimuli for any of

the following five rules: R10a,R10b, R11a,R11b and R12 i.e. TL(C0
V ) =⇒ SIT ESR10a(C) ∪

SIT ESR10b(C) ∪ SIT ESR11a(C) ∪ SIT ESR11b(C) ∪ SIT ESR12(C) = ∅

Proof: Because C0 was a TL-configuration to begin with, and since there are no rules that

can move 1 -cells downward, therefore, the visible state of all the 1 -cells and 0 -cells that are

not in the mixed row of C0 (if any) will be preserved in any execution of R starting from C0

(obviously including those that lead to C). Thus it follows that C does not contain a stimulus

for rule R12 since no 1 -cell is below a 0 -cell in C.

We now eliminate the possibility of any active stimuli for either rules R11a or R11b in C.

An active stimulus for rule R11a or R11b can exist in C only if cells in the row directly above

the mixed row have the ‘>’ label. But none of the cells of this row can ever acquire the ‘>’

label as discussed below.

A cell can get the ‘>’ label only by previous applications of rules R4 or R7. From the

dependencies between R4 and R7 it is clear that the application of R7 in any row needs to

be preceded by an application of R4 in the same row. From the stimulus predicate of R4 it

follows that a row will contain an active stimulus for R4 only if that row also has a 0 -cell. But

since the row directly above the mixed row always has only 1 -cells (throughout any execution
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of R starting from C0), therefore none of cells in that row will ever have the ‘>’ label. This

eliminates the possibility of stimuli for rules R11a and R11b from C. We now use this to argue

against the existence of stimuli for R10a and R10b in C, as given below.

Note that because C is assumed to be any R-transform of C0, therefore, from the discus-

sion above, no R-transform of C0 ever has any active stimuli for rules R11a and R11b. In

other words any execution of R starting from C0 will contain no applications of either R11a

or R11b. Thus configuration C will have all the 1 -cells of its mixed row to the left of all the

0 -cells in that row (as was the case in C0). This eliminates any stimuli for rules R10a and

R10b from C.

Theorem 18 The ruleset given in Fig. 3.10 is a stigmergic sorter for TL.

Proof: We will show that the ruleset in Fig. 3.10 satisfies the two conditions in the definition

of stigmergic sorter given in Sec. 2.5. Let C0 be any configuration with a default auxiliary

state matrix.

For condition 1, assume that C0
V does not satisfy TL i.e. ¬TL(C0

V ). By Lemma 12, the

total cost of C0 6= 0. By Lemma 13, C0 contains an active stimuli for some rule in R. Thus C0

is not a terminal configuration for R. By Lemmas 14, 15 and 16, and a repeated application of

Lemma 13, any execution ofR that starts from C0 will produce (at finite intervals) intermediate

configurations with lower total costs than its predecessors. By Lemma 11 it follows that these

executions must all terminate with configurations with total cost = 0. By Lemma 12, each of

these terminal configurations satisfy TL.

For condition 2, assume that C0 is a TL-configuration, i.e. TL(C0
V ) holds. Using an argu-

ment similar to that for Condition 1, it is straightforward to show that every execution of R

that starts from C0 will eventually terminate. All we need show now is that these executions

never affect the visible state matrix. By Lemma 17, it follows that none of these executions

will ever contain any application of either of the five rules: R10a,R10b, R11a,R11b and R12.

But a careful observation of Fig. 3.10 shows that these five rules are the only rules of R that
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modify the visible state matrix. All the other rules can change only the auxiliary state matrix,

leaving the visible state unaffected—thus satisfying condition 2.

Corollary 19 TL is stigmergic-sortable.

3.3 Fully Reachable pattern (FR)

This pattern specifies that every 1 value is reachable from any other 1 value in the con-

figuration, i.e. there is a path made up entirely of 1 s between any two 1 s. See Fig. 3.13 for

an illustration. To formally specify this pattern, we need to first define two relations between

cells of a configuration as given below.

In an m× n configuration C, if 1 ≤ i, i′, i′′ ≤ m and 1 ≤ j, j′, j′′ ≤ n then

1. Cell (i, j) is adjacent to cell (i′, j′) if and only if |i− i′|+ |j − j′| = 1, and

2. Cell (i, j) is reachable from cell (i′, j′) if and only if either (i, j) = (i′, j′) or cell (i, j) is

adjacent to a cell (i′′, j′′) such that CV [i, j] = CV [i′′, j′′] and (i′′, j′′) is reachable from

(i′, j′). Clearly, this relation is symmetric, and any two cells reachable from each other

have the same visible state.

Using the reachability relation defined above, we can now specify pattern FR. For an m × n

configuration C, FR(CV ) holds iff ∀ 1 ≤ i, i′ ≤ m; 1 ≤ j, j′ ≤ n :

(CV [i, j] ∧ CV [i′, j′]) =⇒ (i, j) reachable from (i′, j′).

Figure 3.13 shows examples of configurations in which FR does and does not hold.

Theorem 20 FR is not locally checkable.

Proof: The proof is exactly the same as the proof for TL (see Theorem 8), except that now C,

C ′ and C ′′ are as shown in Fig. 3.14, and S1 = {d : (1,Kcol +1) /∈ d} and S2 = {d : (1, 1) /∈ d}.

Corollary 21 FR is not locally stigmergic-sortable.

An outline of a non-local stigmergic sorter for FR is discussed in the next chapter.
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X V Y V Z V

Figure 3.13 The visible state matrices of three 8× 8 configurations called
X, Y and Z. X and Y are FR-configurations, while Z is clearly
not a FR-configuration—the 1 values in ZV form two discon-
nected groups.

C

C’

C’’

K col + 1

Figure 3.14 C, C ′ and C ′′ each are 1× (Kcol +1) configurations. C is not a
FR-configuration. C ′ and C ′′ each differ from C by the visible
state of just one cell, and both are FR-configurations.
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CHAPTER 4. Observations, conclusions and future work

The three pattern instances we covered in this work, can all be ordered by the relative

strengths of their predicates. To formalize this ordering, consider a refinement relation between

patterns, where P is a refinement of P ′ if P is a logically stronger predicate than P ′. Thus a

pattern P refines pattern P ′ if P (CV ) =⇒ P ′(CV ) for any configuration C. It can be easily

verified that every TL-configuration is also a CG-configuration. With a little more effort it

can be proven that every CG-configuration is also a FR-configuration. Thus we have the

ordering: TL refines CG, and CG refines FR. From this ordering and Corollaries 7, 9 and

21 we can then make the observation that local sortability of patterns is not monotonic with

pattern refinement.

Although the use of the cost function in the proof for the local sorter for CG was quite

straightforward, in the case of TL, the argument for correctness of the non-local sorter using

the cost function is quite involved. It seems that cost functions may be too weak for non-local

stigmergic solutions, and it might be better to develop specialized proof techniques for such

problems, perhaps by adapting more expressive distributed system formalisms like, input/out

automata [11] into the stigmergic context.

We have a preliminary design for a relabeling ruleset that we think can stigmergically sort

FR. The idea is to first (stigmergically) identify a distinguished 1 -cell—for example the one

with the small row index followed by the smallest column index. Then using this particular cell

as the root, the stigbots work outwards marking each unmarked adjacent 1 -cell with a special

marking label. If for any marked 1 -cell, there are no more unmarked adjacent 1 -cells, then the

labels reverse direction in that cell, flowing back to the root. Once all the outward going labels

have flowed inwards to the root, all the 1 -cells reachable from the root have been marked,
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and the marking process is thus complete. At this point the root “broadcasts” another special

label outward to “pull in” any unmarked (and thus unreachable) 1 -cells in the configuration.

Since we do not yet have a formal proof of correctness of this scheme, we have the following

conjecture.

Conjecture 22 FR is stigmergic sortable.

One of our future goals is to try and prove Conjecture 22, and use that experience in

abstracting a specialized proof technique for stigmergic sorters. Another goal would be to

prove that local checking is sufficient for local sortability in universal patterns. It also seems

worthwhile to investigate non-universal patterns like, for example, “checkerboard” which is

clearly locally checkable, but does not seem to be locally sortable (the proof for this can

perhaps use the notion of indistinguishability). Thus it seems that in non-universal patterns

local checkability may not be a sufficient condition. Finally, a more long term goal is to devise

a comprehensive theory of the stigmergic computational paradigm.
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