
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Algorithms for efficient phylogenetic tree
construction
Mukul Subodh Bansal
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bansal, Mukul Subodh, "Algorithms for efficient phylogenetic tree construction" (2009). Graduate Theses and Dissertations. 10668.
https://lib.dr.iastate.edu/etd/10668

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10668?utm_source=lib.dr.iastate.edu%2Fetd%2F10668&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Algorithms for efficient phylogenetic tree construction

by

Mukul Subodh Bansal

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
David Fernández-Baca, Co-major Professor

Oliver Eulenstein, Co-major Professor
Srinivas Aluru

Maria Axenovich
Giora Slutzki

Iowa State University

Ames, Iowa

2009

Copyright c© Mukul Subodh Bansal, 2009. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

CHAPTER 1. General Introduction . 1

1.1 Gene Duplication . 1

1.2 Comparing Phylogenetic Trees . 2

1.3 Thesis Organization . 3

1.3.1 Authors’ Contributions . 3

CHAPTER 2. SPR-Based Local Searches for the Gene-Duplication Problem 4

Abstract . 4

2.1 Introduction . 4

2.1.1 Previous Results . 5

2.2 Basic Notation and Preliminaries . 8

2.2.1 The Gene-Duplication Problem . 9

2.2.2 Local Search Problems . 10

2.3 Solving the SPR-RS problem . 12

2.3.1 Structural Properties . 12

2.4 The Algorithm . 17

2.5 Experimental Analysis . 20

2.6 Conclusion . 21

iii

CHAPTER 3. Algorithms for Gene Tree Parsimony under Duplication-Loss 22

Abstract . 22

3.1 Introduction . 22

3.1.1 Previous Results . 24

3.1.2 Contribution of this Work . 26

3.2 Basic Notation and Preliminaries . 26

3.2.1 Basic Definitions and Notation . 27

3.2.2 The Duplication-Loss Problem . 27

3.2.3 Local Search Problems . 29

3.3 Solving the SPR-RS Problem . 31

3.3.1 Basic Structural Properties . 31

3.3.2 Characterizing Losses . 33

3.4 The Algorithm . 40

3.4.1 Computing the Counters . 41

3.4.2 Computing the Final Loss Values . 43

3.5 Speeding-Up the TBR Local Search Problem . 46

3.6 Experimental Analysis . 48

3.7 Outlook and Conclusion . 49

CHAPTER 4. Comparing Partially Resolved Trees 50

4.1 Introduction . 50

4.2 Preliminaries . 52

4.3 Parametric distances . 54

4.4 Expected parametric triplet and quartet distances 55

4.4.1 Proof of Lemma 4.4.1 . 56

4.4.2 Proof of Lemma 4.4.2 . 57

4.5 Computing parametric triplet distance . 58

4.5.1 The preprocessing step . 59

4.5.2 Computing |R(T1)|, |U(T1)| and |U(T2)| 60

iv

4.5.3 Computing |S(T1, T2)| . 61

4.5.4 Computing |R1(T1, T2)| . 63

4.6 An approximation algorithm for parametric quartet distance 67

4.6.1 Computing a 2-approximate value of |R1(T1, T2)| 67

CHAPTER 5. General Conclusion . 75

BIBLIOGRAPHY . 76

v

LIST OF TABLES

Table 2.1 GeneTree vs. DupTree . 21

Table 3.1 GeneTree vs. DupLoss . 48

vi

LIST OF FIGURES

Figure 2.1 (a) Gene trees G and species tree S are comparable, as the leaf-mapping

from G to S indicates. M is the lca-mapping from G to S. (b) R is the

reconciled tree for G and S. In species X of R gene x duplicates into

the genes x′ and x′′. The solid lines in R represent the embedding of G

into R. 6

Figure 2.2 S1 and S2 are obtained from S by pruning the subtree rooted at v and

regrafting it into the remaining tree S. 10

Figure 2.3 The tree Γ is obtained from G by removing all the red (shaded) nodes. 13

Figure 3.1 S1 and S2 are obtained from S by pruning the subtree rooted at v and

regrafting it into the remaining tree S. 30

Figure 3.2 Example depicting the construction of the tree N from S, and the

subsequent coloring of the nodes in N 32

Figure 3.3 The tree Γ is obtained from G by removing all the red (shaded) nodes. 32

Figure 4.1 Computing |S(T1, T2)| . 63

Figure 4.2 Computing |R1(T1, T2)| . 66

Figure 4.3 Computing a 2-approximation to |R1(T1, T2)| 74

vii

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisors David Fernández-Baca and Oliver

Eulenstein. This thesis would certainly not have been possible without them. It is difficult to

overstate my gratitude towards David. Through his excellent guidance, endless patience, and

immeasurable support, he not only taught me how to think and how to do research, but also

enabled me to grow as a person. I consider myself very fortunate to have not just one great

advisor, but two. Oliver had been like a second advisor to me long before he was formally

designated as such. I would certainly have been less productive during my graduate studies

had it not been for Oliver sharing with me his invaluable ideas and his boundless enthusiasm

for research. I am extremely grateful to him for all his help, support, and guidance.

A very special thanks to Srinivas Aluru and Hridesh Rajan for always taking the time to

talk to me and giving invaluable advice and guidance, particularly during the last few months.

I thank Pavan Aduri, Maria Axenovich, Soma Chaudhuri, Giora Slutzki, and Wallapak Ta-

vanapong along with David Fernández-Baca, Oliver Eulenstein, and Srinivas Aluru for their

extraordinary courses. Many thanks to Mike Sanderson and Gordon Burleigh for introducing

me to the “Biology” in “Computational Biology”, and for so many interesting and insightful

discussions.

I am indebted to my lab mates Wen-Chieh Chang, Duhong Chen, André Wehe, Jianrong

Dong, Harris Lin, Ruchi Chaudhary, and Akshay Deepak for being such excellent friends,

colleagues, and collaborators, and for providing a fun and stimulating environment in which

to learn and grow.

Finally, I thank Linda Dutton, Cindy Marquardt, and Maria-Nera Davis for always being

so helpful, approachable, and friendly.

1

CHAPTER 1. General Introduction

The fact that all life on Earth is genetically related is one of the most profound scientific

observations of all time. Scientists have observed that these genealogical relationships among

living things can (generally) be represented by a vast evolutionary tree, and constructing this

tree of all life is a fundamental scientific problem facing human-kind today. Trees that depict

evolutionary relationships between species, or other entities, are called phylogenetic trees or

phylogenies.

The rapidly increasing amount of available genomic sequence data provides an abundance

of potential information for phylogenetic analyses. Many models and methods have been

developed to build evolutionary trees based on this information [27]. A common feature of most

of these models is that they start out with fragments of the genome, called genes. Depending on

the genes and species, and the methods used to perform the phylogenetic analyses, one typically

ends up with a large number of phylogenetic trees which may not agree with one another.

Simply put, the problem now is the following: Given several discordant phylogenetic trees as

input, infer the (presumably) correct phylogeny. This thesis comprises of three new papers

that address some of the methodological and algorithmic challenges posed by this problem.

The first and second papers (Chapters 2 and 3) are both related to inferring phylogenetic trees

in the presence of gene duplication. The third paper (Chapter 4) discusses a new distance

measure for comparing phylogenetic trees.

1.1 Gene Duplication

Gene duplication is an evolutionary phenomenon in which one or more genes in an or-

ganism are duplicated. Both copies of the duplicated genes then evolve independently. Gene

2

duplication is known to have played a major role in the evolution of almost all life on Earth.

Typically, to build a phylogenetic tree for a set of species, one constructs a phylogenetic tree

from genes taken from those species. Such trees are called gene trees. The implicit assumption

is that the evolution of the chosen genes mimics the evolution of the species themselves. How-

ever, due to complex evolutionary processes such as gene duplication and loss, recombination,

and horizontal gene transfer, trees constructed on genes do not always accurately represent

the evolutionary history of the corresponding species.

The gene duplication model [29] provides a framework for inferring species phylogenies

from a collection of gene trees that are confounded by complex histories of gene duplication

events. This model proposes that the true species tree can be inferred by solving one of the

following two optimization problems: The gene-duplication problem, and the duplication-loss

problem. Unfortunately, both of these problems are known to be NP-hard [33]. Therefore, in

practice, local search based heuristic strategies are used to approach the gene-duplication and

duplication-loss problems.

Even though both the gene-duplication and duplication-loss approaches have been shown

to work well in practice, their utility has been limited due to the high time complexity of

the existing heuristics. Chapters 2 and 3 introduce algorithms that greatly speed-up these

heuristics.

1.2 Comparing Phylogenetic Trees

Most algorithms for constructing phylogenetic trees solve some (typically NP-hard) op-

timization problem. Solving different optimization problems, even on the same input data,

can lead to different phylogenetic trees for the same set of species. In fact, even the same

optimization problem, on the same input data, might produce multiple equally optimal phylo-

genies. Thus, it becomes important to be able to compare and quantify the difference between

different phylogenetic trees. In Chapter 4 we introduce a new distance measure for comparing

phylogenetic trees on the same leaf set. The distinguishing feature of our distance measure

relative to existing distance measures for evolutionary trees is its ability to deal cleanly with

3

the presence of unresolved nodes, also called polytomies.

1.3 Thesis Organization

This thesis consists of five chapters. The next chapter, i.e. chapter 2, describes an algorithm

which greatly speeds-up existing heuristics for solving the NP-hard gene-duplication problem.

A preliminary version of the paper presented in this chapter appeared in [4] and was also

included in my Masters Thesis [5]. Here we present the full and completely re-written version of

this paper. In a similar spirit, Chapter 3 describes an algorithm that greatly speeds-up existing

heuristics for the NP-hard duplication-loss problem. This work is new and unpublished. In

Chapter 4 we introduce a new distance measure for comparing phylogenetic trees on the same

leaf set, and give algorithms that can be used to compute this distance efficiently. A preliminary

version of this work appeared in [6]. Chapter 4 is an extract from the full and re-written version

of this paper. Concluding remarks appear in Chapter 5.

1.3.1 Authors’ Contributions

Chapter 2: MSB contributed to algorithm design, wrote major parts of the manuscript, and

contributed to program implementation; OE contributed to algorithm design and to the writ-

ing of the manuscript; AW contributed to algorithm design and to program implementation.

Chapter 3: MSB was responsible for algorithm design, program implementation, and writing

major parts of the manuscript; OE contributed to algorithm design and to the writing of the

manuscript. Chapter 4: MSB was responsible for algorithm design, and wrote major parts of

the manuscript; DFB contributed to algorithm design and to the writing of the manuscript.

4

CHAPTER 2. SPR-Based Local Searches for the Gene-Duplication

Problem

A paper to be submitted to IEEE/ACM Transactions on Computational Biology and

Bioinformatics

Mukul S. Bansal, Oliver Eulenstein, and André Wehe

Abstract

The gene-duplication problem is to infer a species supertree from a collection of gene trees

that are confounded by complex histories of gene duplications. This problem is NP-hard and

thus requires efficient and effective heuristics. Existing heuristics perform a stepwise search of

the tree space, where each step is guided by an exact solution to an instance of a local search

problem. These local search problems are often defined based on the classical SPR tree edit

operation. We improve on the best-known running time of the SPR based local search problem

by a factor of n, where n is the number of species in the resulting supertree solution. This

makes the gene-duplication problem more tractable for large-scale phylogenetic analyses. We

verify the exceptional performance of our solution in a comparison study using sets of large

randomly generated gene trees.

2.1 Introduction

The rapidly increasing amount of available genomic sequence data provides an abundance

of potential information for phylogenetic analyses. Most phylogenetic analyses combine genes

from presumably orthologous loci, or loci whose homology is the result of speciation. These

5

analyses largely neglect the vast amounts of sequence data from gene families, in which complex

evolutionary processes such as gene duplication and loss, recombination, and horizontal transfer

generate gene trees that differ from species trees. One approach to utilize the data from

gene families in phylogenetics is to reconcile their gene trees with species trees based on an

optimality criterion, such as the gene-duplication model introduced by Goodman et al. [29].

This problem is a type of supertree problem, that is, assembling from a set of input gene trees

a species supertree that contains all species found in at least one of the input trees. The

decision version of the gene-duplication problem is NP-complete [33]. Other approaches make

use of sequence similarity to reconstruct the underlying evolutionary history of genes (see, for

example, [51, 52]). Probabilistic models for gene/species tree reconciliation as well as gene

sequence evolution have also been developed [2, 3].

Existing heuristics aimed at solving the gene-duplication problem search the space of all

possible supertrees guided by a series of exact solutions to instances of a local search problem

[38, 35]. The gene-duplication problem has shown much potential for building phylogenetic

trees for snakes [45], vertebrates [39, 40], Drosophila [20], and plants [43]. Yet, the run time

performance of existing heuristics has limited the size of such studies. We improve on the best

existing solution for the local search problem asymptotically by a factor of n, where n is the

number of species from which sequences in the gene trees were sampled (that is the number

of nodes in a resulting supertree). To show the applicability of our improved solution for the

local search problem, we implemented it as part of standard heuristics for the gene-duplication

problem. We demonstrate that the implementation of our method greatly improves the speed

of standard heuristics for the gene-duplication problem and makes it possible to infer large

supertrees that were previously difficult, if not impossible, to compute.

2.1.1 Previous Results

The gene-duplication problem is based on the Gene Duplication model from Goodman

et al. [29]. In the following, we (i) describe the Gene Duplication model, (ii) formulate the

gene-duplication problem, and (iii) describe a heuristic approach of choice [38, 35] to solve the

6

gene-duplication problem.

Figure 2.1 (a) Gene trees G and species tree S are comparable, as the
leaf-mapping from G to S indicates. M is the lca-mapping
from G to S. (b) R is the reconciled tree for G and S. In
species X of R gene x duplicates into the genes x′ and x′′. The
solid lines in R represent the embedding of G into R.

2.1.1.1 Gene Duplication model

The Gene Duplication model is well studied [37, 31, 36, 23, 54, 18, 10, 30] and explains

incompatibilities between a pair of “comparable” gene and species trees through gene duplica-

tions. A gene and a species tree are comparable, if a leaf-mapping exists that provides a leaf

to leaf mapping that maps every leaf node in the gene tree to a leaf node in the species tree.

Biologically speaking, the leaves in the gene tree represent genes and the leaves in the species

tree represent species, and the leaf-mapping essentially maps each gene to the species from

which it was sampled. Consider the example shown in Figure 2.1, taken from [4]. The leaf to

leaf mapping from the gene tree G to the species tree S is the leaf-mapping. However, both

trees describe incompatible evolutionary histories. The Gene Duplication model explains such

incompatibilities by reconciling the gene tree with postulated gene duplications. For example,

in Figure 2.1 a reconciled gene tree R can be theoretically inferred from the species tree S by

duplicating a gene x in species X into the copies x′ and x′′ and letting both copies speciate

according to the topology of S. In this case, the gene tree can be embedded into the reconciled

tree. Thus, the gene tree can be reconciled by using the duplication of gene x to explain

the incompatibility. The minimum number of gene duplications that are necessary under the

7

Gene Duplication model to explain the incompatibilities can be inferred from the mappingM,

which is an extension of the given leaf-mapping. M maps every gene in the gene tree to the

most recent species in the species tree that could have contained the gene. More precisely, M

maps each gene to the least common ancestor of the species from which the leaves (genes) of

the subtree rooted at the gene were sampled (given by the leaf-mapping). A gene in the gene

tree is a (gene) duplication if it has a child with the same M mapping [37, 23]. The reconcil-

iation cost for a gene tree and a comparable species tree is measured in the number of gene

duplications in the gene tree induced by the species tree.1 The reconciliation cost for a given

collection of gene trees and a species tree is the sum of the reconciliation costs for each gene

tree in the collection and the species tree. The mapping function is linear time computable

on a PRAM [54] through a reduction from the least common ancestor problem [9]. Hence, the

reconciliation cost for a collection of gene trees and a species tree is computable in linear time.

2.1.1.2 Gene-duplication problem and heuristics

The gene-duplication problem is to find, for a given collection of gene trees, a comparable

species tree with minimum reconciliation cost. This approach has been successfully applied

to phylogenetic inference in snakes [45], vertebrates [39, 40], Drosophila [20], and plants [43]

among others. The decision variant of this problem and some of its characterizations are

NP-complete [33, 26] while some parameterizations are fixed parameter tractable [49, 32].

Therefore, in practice, heuristics (e.g. [38, 35]) are commonly used for the gene-duplication

problem, even though they are unable to guarantee an optimal solution. These heuristics are

based on local search and, consequently, involve repeatedly solving a local search problem.

Such a heuristic starts with some species tree comparable with the input gene trees and finds

a minimum reconciliation cost tree in its neighborhood. This constitutes one local search step.

The new tree thus found then becomes the starting point for the next local search step, and

so on, until a local minima is reached. Thus, at each local search step we must solve the local
1Alternatively, the reconciliation cost could be defined in the number of gene duplications and losses. How-

ever, it is often problematic to accurately infer gene losses if there is missing data. Thus, for this study we only
consider gene duplications.

8

search problem. The time complexity of the local search problem depends on the tree edit

operation used to define the neighborhood.

An edit operation of interest is the rooted subtree pruning and regrafting (SPR) operation

[1, 11]. Given a tree S, an SPR operation can be performed in three steps: (i) prune some

subtree P from S, (ii) add a root edge to the remaining tree S, (iii) regraft P into an edge of

the remaining tree S. The resulting tree graph is connected and every node has a degree of

Θ(n2), where n is the size of a species tree comparable to the given gene trees [46]. Assuming,

for convenience, similar gene tree and species tree sizes, the local search problem for the SPR

edit operation can be solved naively in Θ(n3) time per gene tree. If there are k gene trees then

this gives a total time bound of O(kn3). This is the best-known algorithm to solve the local

search problem for SPR operations. In practice, the cubic run time typically allows only the

computation of smaller supertrees [38, 35]. We show how to solve the local search problem for

the SPR edit operations within O(kn2) time.

Contribution of the Manuscript: We introduce an algorithm that, irrespective of the sizes

of the gene trees, improves the run time of the best known solution by Θ(n), where n is the

size of the resulting species supertree. To support typical input gene trees, our algorithm

also allows multiple leaf-genes from the same gene tree to map to a single leaf-species. We

implemented our algorithm as part of a standard heuristic for the gene-duplication problem,

and we compared the run times of our implementation and the program GeneTree, which can

infer species trees using the same local search heuristic. Our experiments demonstrate the

great improvement in runtime offered by our algorithm over current approaches.

2.2 Basic Notation and Preliminaries

By and large, we follow the basic definitions and notation from [8]. Given a tree T , let

V (T) and E(T) denote the node and edge sets of T respectively. T is rooted if it has exactly

one distinguished node called the root which we denote by rt(T). We define ≤T to be the

partial order on V (T) where x ≤T y if y is a node on the path between rt(T) and x. The set of

minima under ≤T is denoted by rt(T) and its elements are called leaves. If {x, y} ∈ E(T) and

9

x ≤T y then we call y the parent of x denoted by paT (x) and we call x a child of y. The set of

all children of y is denoted by ChT (y). If two nodes in T have the same parent, they are called

siblings. The least common ancestor of a non-empty subset L ⊆ V(T), denoted as lca(L), is

the unique smallest upper bound of L under ≤T . A subtree of T rooted at node y ∈ V (T),

denoted by Ty, is the tree induced by {x ∈ V (T) : x ≤T y}. T is fully binary if every node

has either zero or two children. Throughout this paper, the term tree refers to a rooted fully

binary tree.

Next, we introduce the definitions necessary for stating the gene-duplication problem.

2.2.1 The Gene-Duplication Problem

A species tree is a tree that depicts the evolutionary relationships of a set of species.

Given a gene (or gene family) for a set of species, a gene tree is a tree that depicts the

evolutionary relationships among the sequences encoding only that gene (or gene family) in

the given species.2 Thus, the nodes in a gene tree represent genes from some species. In this

work, we shall assume that each leaf of the gene trees is labeled with the species from which

that gene was sampled. Thus, unlike species trees, a gene tree might have several leaves with

the same label.

Definition 2.2.1 (Mapping). The leaf-mapping LG,S : Le(G) → Le(S) maps a leaf node

g ∈ Le(G) to that unique leaf node s ∈ Le(S) which has the same label as g. The extension

MG,S : V (G)→ V (S) of LG,S is the mapping defined by MG,S(g) = lca(LG,S(Le(Gg))).

Note: For any node s ∈ V (S), M−1
G,S(s) denotes the set of nodes in G that map to node

s ∈ V (S) under the mapping MG,S .

Definition 2.2.2 (Comparability). Given trees G and S, we say that G is comparable to

S if, for each g ∈ Le(G), the leaf-mapping LG,S(g) is well defined. A set of gene trees G is

comparable to S if each gene tree in G is comparable to S.

Throughout this paper we use the following terminology: G is a set of gene trees that is

comparable to a species tree S, and G ∈ G.
2A gene family is a set of homologous genes assumed to have shared ancestry.

10

Definition 2.2.3 (Duplication). A node g ∈ V (G) is a (gene) duplication if MG,S(g) ∈

MG,S(Ch(g)) and we define Dup(G,S) = {g ∈ V (G) : g is a duplication}.

Definition 2.2.4 (Reconciliation cost). We define reconciliation costs for gene and species

trees as follows:

1. ∆(G,S) = |Dup(G,S)| is the reconciliation cost from G to S.

2. ∆(G, S) =
∑

G∈G ∆(G,S) is the reconciliation cost from G to S.

3. Let T be the set of species trees to which G is comparable. We define ∆(G) = minS∈T ∆(G, S)

to be the reconciliation cost of G.

The gene-duplication problem is the problem of finding a species tree that requires the

minimum number of postulated gene duplications. More formally:

Problem 1 (Duplication).

Instance: A set G of gene trees.

Find: A species tree S∗ to which G is comparable, such that ∆(G, S∗) = ∆(G).

2.2.2 Local Search Problems

Here, we first define the SPR [11] edit operation and then formulate the related local search

problems that were motivated in the Introduction.

Figure 2.2 S1 and S2 are obtained from S by pruning the subtree rooted
at v and regrafting it into the remaining tree S.

Definition 2.2.5 (SPR operation). (See Fig. 2.2) For technical reasons we first define for a

tree T the planted tree Φ(T) that is the tree obtained by adding an additional edge, called root

edge, {p, rt(T)} to T .

11

Let T be a tree, e = (u, v) ∈ E(T) and X,Y be the connected components that are obtained

by removing edge e from T such that v ∈ X and u ∈ Y . We define SPRT (v, y) for y ∈ Y to be

the tree that is obtained from Φ(T) by first removing edge e, and then adjoining a new edge f

between v and Y as follows:

1. Create a new node y′ that subdivides the edge (pa(y), y).

2. Add edge f between nodes v and y′.

3. Suppress the node u, and rename y′ as u.

4. Contract the root edge.
We say that the tree SPRT (v, y) is obtained from T by a subtree prune and regraft (SPR)

operation that prunes subtree Tv and regrafts it above node y.

Notation. We define the following:

1. SPRT (v) =
⋃
y∈Y {SPRT (v, y)}

2. SPRT =
⋃

(u,v)∈E(T) SPRT (v)
We now define the relevant local search problems based on the SPR operation.

Problem 2 (SPR-Scoring (SPR-S)).

Instance: A set G of gene trees, and a species tree S such that
⋃
G∈G

⋃
g∈Le(G) LG,S(g) =

Le(S).

Find: A tree T ∗ ∈ SPRS such that ∆(G, T ∗) = minT∈SPRS
∆(G, T).

Problem 3 (SPR-Restricted Scoring (SPR-RS)).

Instance: A set G of gene trees, a species tree S such that
⋃
G∈G

⋃
g∈Le(G) LG,S(g) = Le(S),

and a non-root node v in V (S).

Find: A tree T ∗ ∈ SPRS(v) such that ∆(G, T ∗) = minT∈SPRS(v) ∆(G, T).

Throughout the remainder of this manuscript, S denotes a species tree such that Le(S) =⋃
G∈G

⋃
g∈Le(G) LG,S(g), n is the number of leaves in S, and v is a non-root node in V (S). The

following observation follows from Definition 2.2.5.

Observation 2.2.1. The SPR-S problem on instance 〈G, S〉 can be solved by solving the SPR-RS

problem |V (S)| − 1 times.

We show how to solve the SPR-RS problem in O(
∑

G∈G |V (G)|) time. This immediately

implies an O(
∑

G∈G |V (G)| · n) time algorithm for the SPR-S problem (see Observation 2.2.1).

12

In the next section we study structural properties of the SPR-RS problem and in Section 2.4

we develop our algorithm for the SPR-S problem. Experimental results are discussed in Sec-

tion 2.5 and concluding remarks appear in Section 2.6.

2.3 Solving the SPR-RS problem

Throughout this section, we shall limit our attention to just one gene tree G ∈ G; in

particular, we show how to solve the SPR-RS problem for the instance 〈{G}, S, v〉 in O(|V (G)|+

n) time. Our algorithm extends trivially to solve the SPR-RS problem on the instance 〈G, T, v〉

in O(
∑

G∈G |V (G)|) time.

Notation. We define a boolean function fT : V (G) → {0, 1} such that fT (g) = 1 if node

g ∈ V (G) is a duplication w.r.t. tree T , and fT (g) = 0 otherwise.

Consider the tree NS,v = SPRS(v, rt(S)). Observe that, since SPRNS,v(v) = SPRS(v), solv-

ing the SPR-RS problem on instance 〈{G}, S, v〉 is equivalent to solving it on the instance

〈{G}, NS,v, v〉. Thus, in the remainder of this section, we will work with tree NS,v instead of

tree S; the motivation for doing so will become apparent in light of Lemma 2.3.2.

Since S and v are fixed in the current context, we will, in the interest of clarity, abbreviate

NS,v simply to N .

2.3.1 Structural Properties

To solve the SPR-RS problem on instance 〈{G}, N, v〉, we rely on a strong characterization

which lets us efficiently infer the value of fS′(g) for any S′ ∈ SPRN (v) and any g ∈ V (G). This

characterization is developed in the following six lemmas.

Let u denote the sibling of v in N . We color the nodes of N as follows: (i) All nodes in the

subtree Nv are colored red, (ii) the root node of N is colored blue, and (iii) all the remaining

nodes, i.e. all nodes in Nu, are colored green. Correspondingly, we color the nodes of G by

assigning to each g ∈ V (G) the color of the node MG,N (g).

Then, we have the following lemma.

13

Lemma 2.3.1. Given G and N , if g ∈ V (G) is either red or green, thenMG,S′(g) =MG,N (g)

for all S′ ∈ SPRN (v).

Proof. If g is red, then so are all its descendants. Now, since the subtree Nv is identical in all

trees in SPRN (v), g and all its descendants must map to the same nodes under the mappings

MG,N and MG,S′ , for any S′ ∈ SPRN (v).

Similarly, if g is green, then so are all its descendants. Thus, the mappings from g and

its descendants depend only on the green nodes in any S′ ∈ SPRN (v) and are immune to the

placement of the red nodes. Since the subtree Nv is identical in all trees in SPRN (v), except for

the addition of the red nodes, g and its descendants must map to the same nodes under the

mappings MG,N and MG,S′ for any S′ ∈ SPRN (v).

Lemma 2.3.2. Given G and N , if g ∈ V (G) is either red or green, then fS′(g) = fN (g) for all

S′ ∈ SPRN (v).

Proof. This follows immediately from Lemma 2.3.1.

Thus, only the blue gene tree nodes, i.e. those gene tree nodes that map to the root of

N , are responsible for any difference in the reconciliation costs ∆(G,N) and ∆(G,S′) for any

S′ ∈ SPRN (v).

Consider the version of G obtained by removing all red nodes from it. The leftover, which

we shall call Γ, must also be a tree. See Figure 2.3 for an example. The significance of Γ stems

from the following Lemma.

Figure 2.3 The tree Γ is obtained from G by removing all the red (shaded)
nodes.

14

Lemma 2.3.3. Given G and N , if g ∈ V (G) is a blue node, thenMG,S′(g) = lcaS′(v,MΓ,N (g))

for any S′ ∈ SPRN (v).

Proof. Let R(g) and G(g) denote the set of red and green descendants of g respectively. Note

that since g is blue, neither B(g) nor R(g) may be empty, and, moreover, Le(Gg) = G(g)∪R(g).

Thus, for any S′ ∈ SPRN (v), we must have MG,S′(g) = lcaS′(MG,S′(G(g)) ∪MG,S′(R(g))).

From the definition of the tree Γ, it follows that lcaS′(MS′(G(g))) =MΓ,S′(g), and conse-

quently, by Lemma 2.3.1, lcaS′(MS′(G(g))) = MΓ,N (g). Thus, MG,S′(g) =

lcaS′((MΓ,N (g)),MG,S′(R(g))).

Now observe that the subtree S′v contains precisely all the red nodes in S′. Thus, the least

common ancestor, in S′, of MΓ,N (g) and MG,S′(R(g)), must be simply lcaS′(v,MΓ,N (g)),

yielding the lemma.

Lemma 2.3.3 characterizes the behavior of the mapping from any given blue node in G

when the tree N is modified into some other tree S′ ∈ SPRN (v). This characterization will be

used to prove Lemmas 2.3.4 through 2.3.7.

Note that any blue node g ∈ V (G) must belong to one of the following four categories: (i)

g has two blue children, (ii) g has one blue child and one red child, (iii) g has one blue child

and one green child, or (iv) g has one red child and one green child. We analyze each of these

four cases separately.

Lemma 2.3.4. If g ∈ V (G) is blue, and g has two blue children, then fS′(g) = fN (g) for all

S′ ∈ SPRN (v).

Proof. We will show that fS′(g) = 1 for all S′ ∈ SPRN (v).

Let s denote the node MΓ,N (g), {s′, s′′} = ChN (s), and {g′, g′′} = ChG(g). If either

MΓ,N (g′) or MΓ,N (g′′) is the same as s, then it follows from Lemma 2.3.3 that fS′(g) = 1 for

all S′ ∈ SPRN (v). Therefore, let us assume, without any loss of generality, thatMΓ,N (g′) ∈ Ns′

and MΓ,N (g′′) ∈ Ns′′ . Let S′ = SPRN (v, y) for some y ∈ V (Nu). There are now three possible

cases.

15

y ∈ Ns′: In this case, by Lemma 2.3.3, we must have MG,S′(g) =MG,S′(g′′) = s. Therefore,

fS′(g) = 1.

y ∈ Ns′′: In this case, by Lemma 2.3.3, we must have MG,S′(g) =MG,S′(g′) = s. Therefore,

fS′(g) = 1.

All other y: Here, we must have lcaS′(v,MΓ,N (g)) = lcaS′(v,MΓ,N (g′)) = lcaS′(v,MΓ,N (g′′)).

Consequently, by Lemma 2.3.3, MG,S′(g) = MG,S′(g′) = MG,S′(g′′), and therefore,

fS′(g) = 1.

Thus, since SPRN (v) =
⋃
y∈Nu

SPRN (v, y), we have fS′(g) = 1 for all S′ ∈ SPRN (v).

Lemma 2.3.5. If g ∈ V (G) is blue, and g has one blue and one red child, then fS′(g) = fN (g)

for all S′ ∈ SPRN (v).

Proof. We will show that fS′(g) = 1 for all S′ ∈ SPRN (v). Let g′ and g′′ denote the red and

blue child of g respectively. By definition, since all nodes in the subtree Gg′ must be red, they

can not appear in the tree Γ. Thus, in Γ, the node g has only one child, g′′. This implies that

MΓ,N (g) =MΓ,N (g′′). Consequently, by Lemma 2.3.3, we must have MG,S′(g) =MG,S′(g′′),

i.e. fS′(g) = 1, for all S′ ∈ SPRN (v).

Lemma 2.3.6. Let g ∈ V (G) be a blue node and let s denote the nodeMΓ,N (g). Let {s′, s′′} =

ChN (s), and S′ be a tree in SPRN (v). If g has one blue and one green child, denoted g′ and g′′

respectively, then fS′(g) 6= fN (g) if and only if MΓ,N (g′) ∈ V (Ns′), MΓ,N (g′′) ∈ V (Ns′′), and

S′ = SPRN (v, y) for y ∈ V (Ns′).

Proof. We will show that fS′(g) = 0 if and only if MΓ,N (g′) ∈ V (Ns′), MΓ,N (g′′) ∈ V (Ns′′),

and S′ = SPRN (v, y) for y ∈ V (Ns′).

SupposeMΓ,N (g′) = s. Then, by Lemma 2.3.3, we must haveMG,S′(g) =MG,S′(g′), and,

consequently, fS′(g) = 1, for any S′ ∈ SPRN (v).

Similarly, suppose MΓ,N (g′′) = s. We have two possible cases: (i) y ∈ V (Ns) \ {s}, or

(ii) y 6∈ V (Ns \ {s}). In case (i), Lemma 2.3.3 implies that MG,S′(g) = s, i.e. MG,S′(g) =

16

MG,S′(g′). Consequently, fS′(g) = 1 in this case. In case (ii), Lemma 2.3.3 implies that

MG,S′(g) =MG,S′(g′) and hence, fS′(g) = 1.

Thus, if fS′(g) = 0 for some S′ = SPRN (v, y), then there must exist children s′, s′′ of s such

that MΓ,N (g′) ∈ Ns′ and MΓ,N (g′′) ∈ Ns′′ . There are now three possibilities for y:

y ∈ Ns′: In this case, by Lemma 2.3.3, we have MG,S′(g) = s. Now since MΓ,N (g′′) 6= s, by

Lemma 2.3.1, we know that MΓ,S′(g′′) 6= s. And, since MΓ,N (g′) ∈ Ns′ , we know, by

Lemma 2.3.3, that MΓ,S′(g′) 6= s in this case. Thus, fS′(g) = 0.

y ∈ Ns′′: In this case, by Lemma 2.3.3, we have MG,S′(g) =MG,S′(g′) = s. Thus, fS′(g) = 1.

All other y ∈ V (Nu): In this case, Lemma 2.3.3 implies that we must have MG,S′(g) =

MG,S′(g′). Thus, fS′(g) = 1.

The lemma follows.

Lemma 2.3.7. Let g ∈ V (G) be a blue node and let s denote the node MΓ,N (g). Let S′ be

a tree in SPRN (v). If g has one red and one green child, then fS′(g) 6= fN (g) if and only if

S′ = SPRN (v, y) for y ∈ V (Ns) \ {s}.

Proof. Note that fN (g) = 0. We will show that fS′(g) = 1 if and only if S′ = SPRN (v, y) for

y ∈ V (Ns) \ {s}.

Let g′ and g′′ denote the red and green child of g respectively. By definition, since all nodes

in the subtree Gg′ must be red, they can not appear in the tree Γ. Thus, in Γ, the node g has

only one child, g′′. This implies that MΓ,N (g) =MΓ,N (g′′) = s.

Observe that MG,N (g′′) = MΓ,N (g′′), and consequently, by Lemma 2.3.1, we must have

MG,S′(g′′) = s for all S′ ∈ SPRN (v). Now, Lemma 2.1 implies thatMG,S′(g) = s if and only if

S′ = SPRN (v, y) for y ∈ V (Ns) \ {s}. Thus, it follows immediately that fS′(g) = 1 if and only

if S′ = SPRN (v, y) for y ∈ V (Ns) \ {s}.

17

2.4 The Algorithm

For any s ∈ V (Nu), let A(s) denote the cardinality of the set {g ∈ V (G) : fS′(g) =

0,but fN (g) = 1}, and B(x) the cardinality of the set {g ∈ V (G) : fS′(g) = 1, but fN (g) = 0},

where S′ = SPRN (v, x). Observe that SPRN (v) =
⋃
y∈Nu

SPRN (v, y), and therefore, to solve the

SPR-RS problem we must find a node s ∈ V (Nu) for which |A(s)| − |B(s)| is maximized. Our

algorithm computes, at each node s ∈ V (Nu), the values A(s) and B(s).

In a preprocessing step, our algorithm converts the given tree S into tree N , computes the

mapping MG,N , colors the nodes in G, obtains the tree Γ, and computes the mapping MΓ,N .

It also creates and initializes (to 0) two counters α(s) and β(s) at each node s ∈ V (Nu). This

takes O(n) time.

The algorithm then considers each node g ∈ V (G). There are four possible cases:

1. If g is either green or red, then, by Lemma 2.3.2, we must have fS′(g) = fN (g) for all

S′ ∈ SPRN (v). Consequently, we do nothing in this case.

2. If g blue and satisfies the precondition of either Lemma 2.3.4 or Lemma 2.3.5, then we

must have fS′(g) = fN (g) for all S′ ∈ SPRN (v). Consequently, we do nothing in this case.

3. If g satisfies the precondition of Lemma 2.3.6, then we increment the value of α(y) at each

node y ∈ V (Ns′) (where s′ is as in the statement of Lemma 2.3.6). To do this efficiently

we can simply increment a counter at node s′ such that, after all g ∈ V (G) have been

considered, a single post-order traversal of Nu can be used to compute the correct values

of α(y) at each y ∈ V (Nu). See Algorithm 1 for a more detailed description.

4. If g satisfies the precondition of Lemma 2.3.7, then we increment the value of β(y) at each

node y ∈ V (Ns) \ {s} (where s is as in the statement of Lemma 2.3.7). Again, to do this

efficiently, we can simply increment a counter at node s such that, after all g ∈ V (G) have

been considered, a single post-order traversal of Nu can be used to compute the correct

values of β(y) at each y ∈ V (Nu). See Algorithm 1 for a more detailed description.

18

When the algorithm terminates, the values α(x) and β(x) at each node x ∈ V (Tv) must be

the values A(x) and B(x).

A formal description of our algorithm for the SPR-RS problem appears in Procedure-SPR-RS

(see Algorithm 1).

Algorithm 1 Procedure-SPR-RS

1: Input: G, S, v
2: Construct the tree N from S.
3: Create and initialize to zero two counters α(t), and β(t) at each node t in Nu.
4: for all each G ∈ G do
5: Construct the mapping MG,N , color the nodes of G as described in Section 2.3.1, and

construct the mapping MΓ,N .
6: for all each blue node g ∈

⋃
G∈G V (G) do

7: Let s denote the node MΓ,N (g), and let {s′, s′′} = ChN (s).
8: if g has a red child and a green child then
9: Increment β(s′) and β(s′′) by one each.

10: if g has children g′ and g′′ such that g′ is blue and g′′ is green, and MΓ,N (g′) ∈ V (Ns′)
and MΓ,N (g′′) ∈ V (Ns′′) then

11: Increment α(s′) by one.
12: for each node t in a preorder traversal of Nu do
13: if t 6= u then
14: α(t) = α(pa(t)) + α(t), and β(t) = β(pa(t)) + β(t)
15: A tree with lowest reconciliation cost in SPRS(v) is given by SPRS(v, t), where t ∈ V (Nu)

is a node that maximizes α(t) − β(t). The reconciliation cost of this tree is given by
∆(G, N)− (α(t)− β(t)).

Theorem 2.4.1. The SPR-RS problem on instance 〈G, S, v〉 can be solved in O(
∑

G∈G |V (G)|)

time.

Proof. We will show that Procedure-SPR-RS solves the SPR-RS problem on instance 〈G, S, v〉 in

O(
∑

G∈G |V (G)|) time.

Correctness: Since SPRN (v) =
⋃
y∈Nu

SPRN (v, y), it is sufficient to show that the values A(t) and

B(t) are computed correctly at each node t ∈ V (Nu), where A(t) = |{g ∈
⋃
G∈G V (G) : fS′(g) =

0, but fN (g) = 1}| and B(t) = |{g ∈
⋃
G∈G V (G) : fS′(g) = 1,but fN (g) = 0}|. Since the values

A(t) and B(t), for each t ∈ V (Nu), are computed according to Lemmas 2.3.4 through 2.3.7,

the correctness of Procedure-SPR-RS follows.

Complexity: Let us analyze Procedure-SPR-RS step-by-step. Steps 2 and 3 take O(n) time.

19

The ‘for’ loop of Step 4 can be executed in O(
∑

G∈G |V (G)| + n) time as follows: During

a preprocessing step, with-in O(n) time, we can process the tree N so that lca queries on

any two nodes in V (N) can be answered in O(1) time; see [9] for details on how to do this.

Subsequently, the task of constructing the mappingMG,N only takes O(|V (G)|) time. Coloring

the nodes of G and constructing the mappingMΓ,N also take O(|V (G)|) time. Thus, the total

time complexity of this ‘for’ loop is O(
∑

G∈G |V (G)| + n), which is, since
∑

G∈G |V (G)| ≥ n,

simply O(
∑

G∈G |V (G)|).

The ‘for’ loop of Step 6 involves considering O(
∑

G∈G |V (G)|) gene tree nodes and perform-

ing some processing at each node. We claim that the algorithm can be executed so as to spend

only O(1) time at each node. Observe that the ‘if’ block of Step 8 can be trivially executed

in O(1) time. However, to claim an O(1) time complexity for the ‘if’ block of Step 10, we

must show how to check the conditions MΓ,N (g′) ∈ V (Ns′) and MΓ,N (g′′) ∈ V (Ns′′) in O(1)

time. This is done as follows: In a preprocessing step, with-in O(n) time, we can perform an

in-order traversal of the tree N and label the nodes with increasing integer values in the order

in which they are traversed. Based on the resulting order we can check whether a given node

is in V (Nt) for any t ∈ V (N) in O(1) time. Thus, the ‘if’ block of Step 10 can be executed in

O(1) time as well, yielding a time complexity of O(
∑

G∈G |V (G)|) for the ‘for’ loop of Step 6.

And lastly, the ‘for’ loop of Step 12 involves traversing through the nodes in the subtree

Nu and spending O(1) time at each node. Therefore, this ‘for’ loop requires O(n) time.

The total time complexity of Procedure-SPR-RS is thus O(
∑

G∈G |V (G)|).

Theorem 2.4.2. The SPR-S problem on instance 〈G, S〉 can be solved in O(
∑

G∈G |V (G)| · n)

time.

Proof. This follows immediately from Theorem 2.4.1 and Observation 2.2.1

The best known (näıve) approach to solve the SPR-S problem involves computing the rec-

onciliation cost for each of the Θ(n2) trees in the SPR neighborhood of S separately. This

requires Θ(
∑

G∈G |V (G)| · n2) time. Our algorithm thus improves on the best known solution

for the SPR-S problem by a factor of n.

20

2.5 Experimental Analysis

In order to study the performance of our algorithm we implemented it as part of a standard

local search heuristic for the gene-duplication problem; our program is called DupTree. We

compared the run time performance of DupTree against the program GeneTree [38].3 We

measured the run time of each program to compute its final species supertree for the same set

of input gene trees and the same randomly generated starting species tree. The input gene

trees for each run consisted of a set of 20 randomly generated gene trees, all with the same

set of taxa. We conducted six such runs, each with a different number of taxa (50, 100, 200,

400, 1000, and 2000) in the input trees. All analyses were performed on a 3 Ghz Intel Pentium

4 CPU based PC with Windows XP operating system. The results of these experiments are

shown in Table 2.1. DupTree shows a vast improvement in run time and scalability compared

to GeneTree. Consequently, DupTree can compute much larger supertrees within a reasonable

time. This also allows our algorithm to be used with more thorough versions of the heuristic

to obtain supertrees with lower reconciliation costs. We could not run GeneTree on input

trees with more than 200 taxa. Also, the memory consumption of DupTree was less than the

memory consumption of GeneTree.

Note that even though both DupTree and GeneTree implement the same local search

heuristic, they may produce different supertrees which may also have different reconciliation

costs. This happens because during a local search step, more than one neighboring node may

have the smallest reconciliation cost. In this case the node to follow is chosen arbitrarily among

such nodes, and this may cause the programs to follow different paths in the search space. In

practice we noticed little or no difference in the final reconciliation costs. In fact, during

the experiments, DupTree inferred supertrees with smaller reconciliation cost more often than

GeneTree.
3The programs Mesquite [35] and GeneTree [38] both implement similar brute-force algorithms for SPR local

search under the gene duplication model.

21

Table 2.1 GeneTree vs. DupTree

Taxa size GeneTree DupTree

50 9m:23s 1s
100 3h:25m 6s
200 108h:33m 58s
400 – 9m:19s
1000 – 3h:20m
2000 – 38h:25m

2.6 Conclusion

Despite the inherent complexity of the gene-duplication problem, it has been an effective

approach for incorporating data from gene families into a phylogenetic inference [45, 39, 40, 20].

Yet, existing local search heuristics for the problem are slow and thus cannot utilize the vast

quantities of newly available genomic sequence data. We introduced an algorithm that speeds

up the stepwise search procedure of local search heuristics for the gene-duplication problem.

Our algorithm eliminates redundant calculations in computing the reconciliation cost for all

trees resulting from pruning a given subtree and regrafting it to all possible positions.

Since the publication of a preliminary version of this manuscript in [4], efficient algorithms

have also been presented for TBR [8] and NNI [7] based local searches for the gene-duplication

problem. In particular, the solution for TBR based local searches depends crucially on our

efficient algorithm for the SPR local search problem. We have also implemented our SPR

algorithm, as well as various enhancements, in the software package DupTree [53].

22

CHAPTER 3. Algorithms for Gene Tree Parsimony under

Duplication-Loss

A paper to be submitted to IEEE/ACM Transactions on Computational Biology and

Bioinformatics

Mukul S. Bansal and Oliver Eulenstein

Abstract

The duplication-loss problem is to infer a species supertree from a collection of gene trees

that are confounded by complex histories of gene duplication and loss events. The utility of

this NP-hard problem for large-scale phylogenetic analyses has been largely limited by the

high time complexity of its existing heuristics. These heuristics perform a stepwise search

of the tree space, where each step is guided by an exact solution to an instance of a local

search problem. We present new algorithms for these local search problems that improve on

the time complexity of the best known solutions by a factor of n (the number of taxa in the

species supertree). This makes the duplication-loss problem much more tractable for rigorous

large-scale phylogenetic analyses. We verify the performance of our algorithms in practice by

a comparison study using sets of large randomly generated gene trees.

3.1 Introduction

Large-scale phylogenetic analysis is of fundamental importance to comparative genomics

and ubiquitous in evolutionary biology. Phylogenetics is the study of the evolutionary devel-

opment or history of a species. Most phylogenetic analyses combine genomic sequences, from

23

presumably orthologous loci, or in other words, loci whose homology (similarity) is the result

of a speciation event, into gene trees. Typically, it can be assumed that such gene trees are

similar to the actual species trees. However, these analyses have to neglect the vast amounts

of available sequence information in which gene duplication and gene loss cause gene trees to

differ from the species tree. Phylogenetic information from such gene trees can be utilized by

reconciling the gene trees with a species tree based on the duplication-loss cost (also known as

the mutation cost) [29]. The duplication-loss cost captures the minimum number of gene dupli-

cations and gene losses that are necessary to reconcile the inconsistencies of the gene trees with

the species tree. The corresponding optimization problem, the duplication-loss problem [31],

is to find a species tree with the minimum duplication-loss cost for a given collection of gene

trees. The decision variant of the duplication-loss problem is NP-complete [33]. Other ap-

proaches make use of sequence similarity to reconstruct the underlying evolutionary history of

genes (see, for example, [51, 52]). Probabilistic models for gene/species tree reconciliation as

well as gene sequence evolution have also been developed [2, 3].

Existing heuristics aimed at solving the duplication-loss problem have shown much potential

for building accurate species trees (see, for example, [45, 39, 40, 20, 43]). These heuristics search

the space of all possible species trees guided by a series of exact solutions to instances of a local

search problem [38, 35]. The local search problem is to find an optimal species tree under the

duplication-loss cost in the neighborhood of a given tree. The neighborhood is the set of all

phylogenetic trees into which the given species tree can be transformed by applying a tree edit

operation. The rapidly increasing availability of whole genome data has lent the duplication-

loss problem especially desirable for performing phylogenetic analyses. Yet, the high time

complexity of duplication-loss local search problems has largely limited its applicability for

large-scale phylogenetic analyses.

The duplication-loss problem is closely related to the gene-duplication problem, in which

the cost is defined strictly in the number of gene duplications. Recently, efficient solutions

were given for the standard SPR [4] and TBR [8] local search problems for the gene-duplication

problem. However, due to the added complexity of computing losses, it has remained unclear

24

whether the SPR and TBR local search problems associated with the duplication-loss problem

could be significantly speeded-up as well. In this work we answer this question in the affirmative

by providing algorithms that improve on the complexity of the best known solutions for both

the SPR and TBR local search problems by a factor of n, where n is the size of the resulting

species supertree.

3.1.1 Previous Results

The duplication-loss problem is based on the Gene Duplication model from Goodman et

al. [29]. In the following, we (i) describe the Gene Duplication model, (ii) formulate the

duplication-loss problem, and (iii) describe the standard local search heuristic [38, 35] used to

solve the duplication-loss problem.

3.1.1.1 Gene Duplication Model

The Gene Duplication model is well studied [37, 31, 36, 54, 18, 10, 30] and explains incom-

patibilities between a pair of “comparable” gene and species trees through gene duplications.

A gene and a species tree are comparable, if a leaf-mapping exists that provides a leaf to leaf

mapping that maps every gene to the species from which it was sampled. The minimum num-

ber of gene duplications and gene losses that are necessary under the Gene Duplication model

to explain the incompatibilities can be inferred from the mapping M, which is an extension

of the given leaf-mapping. M maps every gene in the gene tree to the most recent species in

the species tree that could have contained the gene. More precisely,M maps each gene to the

least common ancestor of the species from which the leaves (genes) of the subtree rooted at

the gene were sampled (given by the leaf-mapping). An ancestral gene1 in the gene tree is a

gene duplication if it has a child with the same M mapping. Similarly, the number of losses

associated with an ancestral gene is roughly equal to the number of ancient species between

the mapping of the gene and the mappings of its children. A more precise definition of losses

appears in Section 3.2.2.
1An ancestral gene is a gene that corresponds to some internal node in the gene tree.

25

The duplication-loss cost (also known as the mutation cost) for a gene tree and a comparable

species tree is measured in the number of gene duplications and the number of gene losses.

The duplication-loss cost for a given collection of gene trees and a species tree is the sum of the

duplication-loss costs for each gene tree in the collection and the species tree. The mapping

function is linear time computable [54] through a reduction from the least common ancestor

problem [9]. Consequently, the duplication-loss cost for a collection of gene trees and a species

tree is computable in linear time.

3.1.1.2 Duplication-Loss Problem and Heuristics

The duplication-loss problem is to find, for a given set of gene trees, a comparable species

tree with minimum duplication-loss cost. This approach has been successfully applied to

phylogenetic inference in snakes [45], vertebrates [39, 40], Drosophila [20], and plants [43]

among others. However, the decision variant of this problem and some of its characterizations

are NP-complete [33, 26]. The problem is also known to be fixed parameter tractable [32] for

a particular parameterization. In practice, heuristics (e.g. [38, 35]) are commonly used for the

duplication-loss problem, even though they are unable to guarantee an optimal solution. In

these heuristics, a tree graph (see [1, 44]) is defined for the given set of gene trees and some fixed

tree edit operation. Each node in the tree graph represents a unique species tree comparable

with the given gene trees. An edge is drawn between two nodes exactly if the corresponding

trees can be transformed into each other by one tree edit operation. The duplication-loss cost

of a node in the graph is the duplication-loss cost of the species tree represented by that node

and the given gene trees. Given an initial node in the tree graph, the heuristic’s task is to

find a maximal-length path of steepest descent in the duplication-loss cost of its nodes and to

return the last node on such a path. This path is found by solving the local search problem

for every node along the path. The local search problem is to find a node with the minimum

duplication-loss cost in the neighborhood of a given node. The time complexity of the local

search problem depends on the tree edit operation used. Edit operations of interest are rooted

subtree pruning and regrafting (SPR) [11] and rooted tree bisection and reconnection (TBR) [17].

26

For convenience, assume that the size of the k given gene trees differs by a constant factor from

the size of the resulting species tree, which we denote by n. The best known (naive) solutions

for the SPR and TBR local search problems require Θ(kn3) and Θ(kn4) time respectively, where

k is the number of input gene trees.

3.1.2 Contribution of this Work

We introduce efficient algorithms for local search heuristics based on SPR and TBR neigh-

borhoods. Our algorithms solve the SPR and TBR local search problems in O(kn2) and O(kn3)

time respectively. Consequently, our algorithms provide a speedup of Θ(n) over the best known

algorithms for both of these local search problems. The exceptional speed-ups achieved make

the duplication-loss problem much more tractable for large-scale phylogenetic analyses.

Recently, in [16], Chauve et al. introduced a Loss-only variant of the duplication-loss

problem. This problem seeks to find, for the given set of gene trees, a species supertree that

minimizes the loss cost. Our efficient local search algorithms for SPR and TBR also work under

this Loss-only optimization setting. Chauve et al. [16] also presented an algorithm which, for

a given gene tree, heuristically constructs a species tree minimizing the total loss cost against

the gene tree. This heuristic could possibly be used to obtain good starting species trees for

our local search algorithms.

We implemented our algorithm for the SPR local search and demonstrate the improvement

it offers over the best current solutions by applying it to several large simulated datasets.

3.2 Basic Notation and Preliminaries

In this section we first introduce basic definitions and notation, and then the necessary

preliminaries required for this work. For the most part, we follow the basic definitions, notation,

and preliminaries from Chapter 2.

27

3.2.1 Basic Definitions and Notation

A tree T is a connected graph with no cycles, consisting of a node set V (T) and an edge set

E(T). T is rooted if it has exactly one distinguished node called the root which we denote by

rt(T). Let T be a rooted tree. We define ≤T to be the partial order on V (T) where x ≤T y if y

is a node on the path between rt(T) and x. The set of minima under ≤T is denoted by Le(T)

and its elements are called leaves. The set of internal nodes of T , denoted I(T), is defined

to be V (T) \ Le(T). If {x, y} ∈ E(T) and x ≤T y then we call y the parent of x denoted by

paT (x) and we call x a child of y. The set of all children of y is denoted by ChT (y). If two

nodes in T have the same parent, they are called siblings. The least common ancestor of a

non-empty subset L ⊆ V(T) in tree T , denoted as lcaT (L), is the unique smallest upper bound

of L under ≤T . A subtree of T rooted at node y ∈ V (T), denoted by Ty, is the tree induced

by {x ∈ V (T) : x ≤ y}. Given x, y ∈ V (T), x →T y denotes the unique path from x to y in

T . We denote by dT (x, y) the number of edges on the path x→T y. T is fully binary if every

node has either zero or two children. Throughout this paper, the term tree refers to a rooted

fully binary tree.

Given T and a set L ⊆ Le(T), let T ′ be the minimal rooted subtree of T with leaf set L.

We define the leaf induced subtree T [L] of T on leaf set L to be the tree obtained from T ′ by

successively removing each non-root node of degree two and adjoining its two neighbors.

3.2.2 The Duplication-Loss Problem

We now introduce necessary definitions to state the gene-duplication problem. A species

tree is a tree that depicts the evolutionary relationships of a set of species. Given a gene family

for a set of species, a gene tree is a tree that depicts the evolutionary relationships among the

sequences encoding only that gene family in the given species. Thus, the nodes in a gene tree

represent genes. We shall assume that each leaf of the gene trees is labeled with the species

from which that gene was sampled. In order to compare a gene tree G with a species tree S a

mapping from each gene g ∈ V (G) to the most recent species in S that could have contained

g is required.

28

Definition 3.2.1 (Mapping). The leaf-mapping LG,S : Le(G) → Le(S) maps a leaf node

g ∈ Le(G) to that unique leaf node s ∈ Le(S) which has the same label as g. The extension

MG,S : V (G)→ V (S) of LG,S is the mapping defined by MG,S(g) = lca(LG,S(Le(Gg))).

Note: For any node s ∈ V (S), M−1
G,S(s) denotes the set of nodes in G that map to node

s ∈ V (S) under the mapping MG,S .

Definition 3.2.2 (Comparability). Given trees G and S, we say that G is comparable to

S if, for each g ∈ Le(G), the leaf-mapping LG,S(g) is well defined. A set of gene trees G is

comparable to S if each gene tree in G is comparable to S.

Throughout this paper we use the following terminology: G is a set of gene trees that is

comparable to a species tree S, and G ∈ G.

Definition 3.2.3 (Duplication). A node g ∈ V (G) is a (gene) duplication if MG,S(g) ∈

MG,S(Ch(g)) and we define Dup(G,S) = {g ∈ V (G) : g is a duplication}.

Following [32], we define the number of losses as follows.

Definition 3.2.4 (Losses). The number of losses Loss(G,S, g) at a node g ∈ I(G), is defined

to be:

• 0, if MG,S′(g) =MG,S′(g′) ∀g′ ∈ ChG(g) , and

•
∑

g∈ChG(g) |dS′(MG,S′(g),MG,S′(g′))− 1| , otherwise;

where S′ = S[Le(G)]. We define Loss(G,S) =
∑

g∈I(G) Loss(G,S, g) to be the number of losses

in G.

Under the duplication-loss model, the reconciliation cost for G with respect to S is simply

the duplication-loss cost; that is, the number of duplications and losses.

Definition 3.2.5 (Reconciliation cost). We define reconciliation costs for gene and species

trees as follows:

1. ∆(G,S) = |Dup(G,S)|+ Loss(G,S) is the reconciliation cost from G to S.

29

2. ∆(G, S) =
∑

G∈G ∆(G,S) is the reconciliation cost from G to S.

3. Let T be the set of species trees that is comparable with G. We define ∆(G) = minS∈T ∆(G, S)

to be the reconciliation cost of G.

Problem 4 (Duplication-Loss).

Instance: A set G of gene trees.

Find: A species tree S∗ comparable with G, such that ∆(G, S∗) = ∆(G).

3.2.3 Local Search Problems

Here we first provide the definition of an SPR edit operation [11] and then formulate the

related local search problems that were motivated in the Introduction. The definition and

associated local search problems for the TBR edit operation are considered later in Section 3.5.

Definition 3.2.6 (SPR operation). (See Fig. 3.1) For technical reasons we first define for a

tree T the planted tree Φ(T) that is the tree obtained by adding an additional edge, called root

edge, {p, rt(T)} to T .

Let T be a tree, e = (u, v) ∈ E(T) and X,Y be the connected components that are obtained

by removing edge e from T such that v ∈ X and u ∈ Y . We define SPRT (v, y) for y ∈ Y to be

the tree that is obtained from Φ(T) by first removing edge e, and then adjoining a new edge f

between v and Y as follows:

1. Create a new node y′ that subdivides the edge (pa(y), y).

2. Add edge f between nodes v and y′.

3. Suppress the node u, and rename y′ as u.

4. Contract the root edge.
We say that the tree SPRT (v, y) is obtained from T by a subtree prune and regraft (SPR)

operation that prunes subtree Tv and regrafts it above node y.

Notation. We define the following:

1. SPRT (v) =
⋃
y∈Y {SPRT (v, y)}

2. SPRT =
⋃

(u,v)∈E(T) SPRT (v)
We now define the relevant local search problems based on the SPR operation.

30

Figure 3.1 S1 and S2 are obtained from S by pruning the subtree rooted
at v and regrafting it into the remaining tree S.

Problem 5 (SPR-Scoring (SPR-S)).

Instance: A set G of gene trees, and a species tree S such that
⋃
G∈G

⋃
g∈Le(G) LG,S(g) =

Le(S).

Find: A tree T ∗ ∈ SPRS such that ∆(G, T ∗) = minT∈SPRS
∆(G, T).

Our goal, as seen in the Introduction, is to solve the SPR-S problem efficiently. To that

end, we first define a restricted version of the SPR-S problem, called the SPR-Restricted Scoring

Problem.

Problem 6 (SPR-Restricted Scoring (SPR-RS)).

Instance: A set G of gene trees, a species tree S such that
⋃
G∈G

⋃
g∈Le(G) LG,S(g) = Le(S),

and a non-root node v in V (S).

Find: A tree T ∗ ∈ SPRS(v) such that ∆(G, T ∗) = minT∈SPRS(v) ∆(G, T).

Throughout the remainder of this manuscript, S denotes a species tree such that Le(S) =⋃
G∈G

⋃
g∈Le(G) LG,S(g), n is the number of leaves in S, and v is a non-root node in V (S).

Let n = |Le(S)|, m = |Le(S)| + |Le(G)| and k = |G|, and let us assume, for convenience,

that all G ∈ G have approximately the same size. In the following, we show how to solve the

SPR-RS problem in O(km) time. Since SPRS =
⋃
{pa(v),v}∈E(S) SPRS(v) , it is easy to see that

the SPR-S problem can be solved by solving the SPR-RS problem O(n) times. This yields an

O(kmn) time algorithm for the SPR-S problem. Later, in Section 3.5, we show that the local

search problem corresponding to the TBR operation reduces to solving O(n2) SPR-RS problems;

which yields an O(kmn2) time algorithm for the TBR local search problem.

31

3.3 Solving the SPR-RS Problem

Throughout this section, we shall limit our attention to one gene tree G; in particular, we

show how to solve the SPR-RS problem for G in O(m) time. Our algorithm extends trivially

to solve the SPR-RS problem on the set of gene trees G in O(km) time. For simplicity, we will

assume that Le(G) = Le(S).2

In order to solve the SPR-RS problem for G, it is sufficient to compute only the values

|Dup(G,S′)| and Loss(G,S′) for each S′ ∈ SPRS(v). Bansal et al. [4] (see also Chapter 2) showed

how to compute the value |Dup(G,S′)| for each S′ ∈ SPRS(v), in O(m) time. Therefore, in the

remainder of this section we concentrate on showing how to compute the value Loss(G,S′) for

each S′ ∈ SPRS(v) in O(m) time as well. Altogether, this implies that the SPR-RS problem for

G can be solved in O(m) time.

Recall that an efficient solution for the version of the SPR-RS problem in which the rec-

onciliation cost is defined strictly in terms of gene duplications has already been given in [4].

The problem of additionally incorporating losses into the reconciliation cost might seem like a

simple addition to the results in [4], but achieving this without increasing the time complexity

is non-trivial and quite technical. This is because, when the species tree is modified, losses be-

have very differently compared to gene duplications. However, before we proceed to study the

behavior of losses in detail, we first introduce some of the basic structural properties studied

in Chapter 2 that are helpful in the current setting as well.

3.3.1 Basic Structural Properties

Consider the tree NS,v = SPRS(v, rt(S)). Observe that, since SPRNS,v(v) = SPRS(v), solv-

ing the SPR-RS problem on instance 〈{G}, S, v〉 is equivalent to solving it on the instance

〈{G}, NS,v, v〉. Thus, in the remainder of this section, we will work with tree NS,v instead of

tree S; the reason for this choice becomes clear in light of Lemmas 3.3.3 and 3.3.4.

Since S and v are fixed in the current context, we will, in the interest of clarity, abbreviate
2Note: if Le(G) 6= Le(S) then we can simply set the species tree to be S[Le(G)]. This takes O(n) time and,

consequently, does not affect the time complexity of our algorithm.

32

NS,v simply to N . Similarly, in the remainder of this section, we abbreviateMG,T toMT , for

any species tree T .

Throughout the remainder of this chapter, let u denote the sibling of v in N . We color

the nodes of N as follows: (i) All nodes in the subtree Nv are colored red, (ii) the root node

of N is colored blue, and (iii) all the remaining nodes, i.e. all nodes in Nu, are colored green.

See Figure 3.2 for an example. Correspondingly, we color the nodes of G by assigning to each

g ∈ V (G) the color of the node MN (g).

Figure 3.2 Example depicting the construction of the tree N from S, and
the subsequent coloring of the nodes in N .

Now consider the version of G obtained by removing all red nodes from it. The leftover,

which we shall call Γ, must also be a tree. See Figure 3.3 (taken from Chapter 2) for an

example.

Figure 3.3 The tree Γ is obtained from G by removing all the red (shaded)
nodes.

The following two Lemmas are taken from Chapter 2.

Lemma 3.3.1. Given G and N , if g ∈ V (G) is either red or green, then MS′(g) = MN (g)

for all S′ ∈ SPRN (v).

33

Lemma 3.3.2. Given G and N , if g ∈ V (G) is a blue node, then MS′(g) = lcaS′(v,MΓ,N (g))

for any S′ ∈ SPRN (v).

Lemmas 3.3.1 and 3.3.2 together completely characterize the mappings from nodes in V (G)

for each S′ ∈ SPRS(v). This characterization will be used (often without explicit reference to

the two lemmas) throughout the proofs of Lemmas 3.3.3 through 3.3.8.

3.3.2 Characterizing Losses

To solve the SPR-RS problem efficiently we rely on the following six lemmas, which make it

possible to efficiently infer the value of Loss(G,S′, g) for any S′ ∈ SPRN (v) and any g ∈ V (G).

Consider any g ∈ I(G), and let g′ and g′′ be its two children. Let a =MN (g), b =MN (g′)

and c =MN (g′′). Without loss of generality, node g must correspond to one of the following

six categories.

1. g is red,

2. g is green,

3. g, g′, and g′′ are all blue,

4. g and g′ are blue, and g′′ is green,

5. g and g′ are blue, and g′′ is red, and,

6. g is blue, g′ is red, and g′′ is green.

Lemmas 3.3.3 through 3.3.8 characterize the behavior of the loss cost Loss(G,S′, g), for

each S′ ∈ SPRN (v), for each of these six cases. At this point, it would help to observe that

SPRN (v) = {SPRN (v, s) : s ∈ V (Nu)}.

Lemma 3.3.3. If g is red then Loss(G,S′, g) = Loss(G,N, g) for all S′ ∈ SPRN (v).

Proof. The subtree Nv is identical in all trees in SPRN (v). Moreover, g and all its descendants

must map to the same red nodes under the mappingsMG,N andMG,S′ , for any S′ ∈ SPRN (v).

The lemma follows.

34

Lemma 3.3.4. If g is green then Loss(G,S′, g) = Loss(G,N, g) + 1 if S′ = SPRN (v, x) where

b ≤N x <N a or c ≤N x <N a, and Loss(G,S′, g) = Loss(G,N, g) otherwise.

Proof. Since g is green, so are g′ and g′′, and therefore, by Lemma 3.3.1 we must haveMS′(y) =

MN (y) for any S′ ∈ SPRN (v) and y ∈ {g, g′, g′′}. Thus, if S′ = SPRN (v, x) where b ≤N

x <N a or c ≤N x <N a, then either dS′(a, b) = dN (a, b) + 1 or dS′(a, c) = dN (a, c) + 1; and

dS′(a, b) = dN (a, b), dS′(a, c) = dN (a, c) otherwise. Hence, following Def. 3.2.4, Loss(G,S′, g) =

Loss(G,N, g) + 1 if S′ = SPRN (v, x) where b ≤N x <N a or c ≤N x <N a, and Loss(G,S′, g) =

Loss(G,N, g) otherwise.

Lemma 3.3.5. Let g, g′ and g′′ all be blue nodes, x ∈ V (Nu), and let a′ = MΓ,N (g), b′ =

MΓ,N (g′) and c′ =MΓ,N (g′′).

1. If S′ = SPRN (v, x) where x 6<N a′, then Loss(G,S′, g) = Loss(G,N, g).

2. If S′ = SPRN (v, x) where x <N a′, and S′′ = SPRN (v, pa(x)), then,

(a) Loss(G,S′, g) = Loss(G,S′′, g) + 1 if b′ ≤N x <N a′ or c′ ≤N x <N a′, and,

(b) Loss(G,S′, g) = Loss(G,S′′, g) otherwise.

Proof. First observe that if g, g′ and g′′ are all blue nodes then each of g, g′ and g′′ must be a

node in tree Γ; and hence, the mappings MΓ,N (g), MΓ,N (g′) and MΓ,N (g′′) are well defined.

Next, we prove the correctness of each part separately.

Part 1. In this case we must have lcaN (v, a′) = lcaN (v, b′) = lcaN (v, c′). Therefore, by

Lemma 3.3.2, MS′(g) =MS′(g′) =MS′(g′′) where S′ = SPRN (v, x) and x 6<N a′. Thus,

for each S′ in this case, we must have Loss(G,S′, g) = 0 = Loss(G,N, g).

Part 2.(a) This case is relevant only if at least one of b′ or c′ is not the same as a′. Therefore,

without any loss of generality we may assume that b′ 6= a′. Suppose S′ = SPRN (v, x) where

b′ ≤N x <N a′; then, we must have MS′(g) = MS′(g′′) = a′ and dS′(a′,MS′(g′)) =

dN (a′, x). Also, if b′′ denotes the child of a in tree N along the path a′ →N b′, then, by

Def. 3.2.4, we must have Loss(G,SPRN (v, b′′), g) = 1, which is indeed one greater than

35

Loss(G,SPRN (v, a′), g). Thus, Loss(G,S′, g) = Loss(G,S′′, g) + 1 if b′ ≤N x <N a′. The

argument for the case when c′ ≤N x <N a′ is completely analogous.

Part 2.(b) Let b′′ denote the child of a along the path a′ →N b′, and c′′ denote the child of

a along the path a′ →N b′, in tree N . When x <N a′ but neither b′ ≤N x <N a′ nor

c′ ≤N x <N a′, we must have either (i) x <N b′′ but not such that b′ ≤N x <N a′, or

(ii) x <N c′′ but not such that b′ ≤N x <N a′. In case (i), we must have MS′(g) =

MS′′(g) = MS′(g′′) = MS′(g′′) = a′, and both MS′(g′) and MS′′(g′) must be nodes

along the path b′′ →S′′ b′ such that dS′(a′,MS′(g′)) = dS′′(a′,MS′′(g′)) (note that this

is true even if b′ ≤N pa(x) <N a′). Thus, for case (i), Loss(G,S′, g) = Loss(G,S′′, g). An

analogous argument holds for case (ii).

Lemma 3.3.6. Let g and g′ be blue nodes and g′′ be a green node, x ∈ V (Nu) \ {u}, and let

a′ =MΓ,N (g), b′ =MΓ,N (g′) and c′ =MΓ,N (g′′).

1. If S′ = SPRN (v, x) where x 6<N a′, and S′′ = SPRN (v, pa(x)), then,

(a) Loss(G,S′, g) = Loss(G,S′′, g)− 1 if a′ ≤N x <N u,

(b) Loss(G,S′, g) = Loss(G,S′′, g) − 1 if a′ ≤N pa(x) <N u but x is not such that

a′ ≤N x <N u, and,

(c) Loss(G,S′, g) = Loss(G,S′′, g) otherwise.

2. Let S′ = SPRN (v, x) where x <N a′ and S′′ = SPRN (v, pa(x)).

(a) If a′ 6= b′ and b′′ denotes the child of a′ along the path a′ →N b′, then,

i. Loss(G,SPRN (v, b′′), g) = Loss(G,SPRN (v, a′), g)−2 if a′ 6= c′. And, Loss(G,SPRN (v, b′′), g) =

Loss(G,SPRN (v, a′), g) if a′ = c′,

ii. Loss(G,S′, g) = Loss(G,S′′, g) + 1 if b′ ≤N x <N b′′,

iii. Loss(G,S′, g) = Loss(G,S′′, g) if x is such that x ∈ V (Nb′′) but not such that

b′ ≤N x <N a′,

36

iv. Loss(G,S′, g) = Loss(G,SPRN (v, a′), g) if c′ ≤N x <N a′, and,

v. Loss(G,S′, g) = Loss(G,SPRN (v, a′), g)− 1 otherwise.

(b) If a′ = b′, then,

i. Loss(G,S′, g) = Loss(G,SPRN (v, a′), g) if c′ ≤N x <N a′, and,

ii. Loss(G,S′, g) = Loss(G,SPRN (v, a′), g)− 1 otherwise.

Proof. First observe that g and g′ are blue and g′′ is green. Thus, each of g, g′ and g′′ must be

a node of tree Γ; and hence, the nodes a′, b′ and c′ are well defined. Also observe that c′ = c.

Next, we prove the correctness of each part separately.

Part 1.(a) For any a′ ≤N x <N u we must have MS′(g) = MS′(g′) = paS′(x), and

MS′(g′′) = c′. Also observe that the same holds for the case when x = u. Thus, for each

x such that a′ ≤N x <N u, we have dS′(MS′(g),MS′(g′)) = dS′′(MS′′(g),MS′′(g′)) = 0

and dS′(MS′(g), c′) = dS′′(MS′′(g), c′) − 1. Part 1.(a) of the lemma now follows imme-

diately.

Part 1.(b) In this case, we must have MS′(g) =MS′(g′) = paN (x), and MS′(g′′) = c′, and,

MS′′(g) = MS′′(g′) = paS′′(x), and MS′′(g′′) = c′. Therefore, dS′(MS′(g),MS′(g′)) =

dS′′(MS′′(g),MS′′(g′)) = 0 and dS′(MS′(g), c′) = dS′′(MS′′(g), c′)−1. Hence, Loss(G,S′, g) =

Loss(G,S′′, g)− 1.

Part 1.(c) In this case, MS′(g) = MS′′(g) = MS′(g′) = MS′′(g′) = lcaS′′(x, a′) and

MS′(g′′) =MS′′(g′′) = c′. Therefore, dS′(MS′(g),MS′(g′)) = dS′′(MS′′(g),MS′′(g′)) =

0 and dS′(MS′(g), c′) = dS′′(MS′′(g), c′). Thus, Loss(G,S′, g) = Loss(G,S′′, g).

Part 2.(a).i. Let T and T ′ denote the trees SPRN (v, a′) and SPRN (v, b′′) respectively. Then,

MT (g) = MT (g′) = paT (a′) and MT (g′′) = c′, and, MT ′(g) = a′, MT ′(g′) = paT ′(b′′)

and MT ′(g′′) = c′. For the case when a′ 6= c′ we must therefore have dT (MT (g), c′) =

dT ′(MT (g), c′) + 1, and dT (MT ′(g),MT ′(g′)) = 1. Note that while g is a duplication

under mapping MT , it is not one under mapping MT ′ . Thus, by Definition 3.2.4, we

must have Loss(G,T ′, g) = Loss(G,T, g) − 2. For the case when, a′ = c′, we must

37

have MT (g′′) = a′, and therefore, dT (MT (g),MT (g′′)) = 1, dT (MT (g),MT (g′)) =

0, and, dT ′(MT (g),MT (g′′)) = 0, dT ′(MT (g),MT (g′)) = 1. Thus, Loss(G,T ′, g) =

Loss(G,T, g).

Part 2.(a).ii. This case is relevant only if b′ 6= b′′. We must have MS′(g) = MS′′(g) = a′,

MS′(g′′) = MS′′(g′′) = c′, MS′(g′) = paS′(x) and MS′′(g′) = paS′′(pa(x)). Thus,

dS′(a′,MS′(g′)) = dS′′(a′,MS′′(g′))+1, and consequently Loss(G,S′, g) = Loss(G,S′′, g)+

1.

Part 2.(a).iii. In this case, we must haveMS′(g) =MS′′(g) = a′,MS′(g′′) =MS′′(g′′) = c′,

and both MS′(g′) and MS′′(g′) must be nodes along the path b′′ →S′′ b′ such that

dS′(a′,MS′(g′)) = dS′′(a′,MS′′(g′)) (note that this is true even if b′ ≤N pa(x) <N a′).

The result follows.

Part 2.(a).iv. This case exists only if a′ 6= c′. Let T denote the tree SPRN (v, a′). We

must have MS′(g) = MS′(g′) = a′, and MT (g) = MT (g′) = paT (a′). Therefore,

dS′(a′, c′) = dT (MT (g), c′) = dN (a′, c′)+1. Thus, if c′ ≤N x <N a′, then Loss(G,S′, g) =

Loss(G,SPRN (v, a′), g).

Part 2.(a).v. Let c′′ denote the sibling of b′′ in tree N . Then, in this case, we must have

x ∈ Nc′′ . Moreover, x is not such that c′ ≤N x <N a′. Thus, we must have MS′(g) =

MS′(g′) = a′, and MS′(g′′) = c′. Also, for the tree T = SPRN (v, a′), we have MS′(g) =

MS′(g′) = paT (a′) and dT (MS′(g), c′) = dS′(a′, c′)+1. Hence, Loss(G,S′, g) = Loss(G,T, g)−

1.

Part 2.(b).i. The proof for this part is identical to the proof of part 2.(a).iv.

Part 2.(b).ii. Let T denote the tree SPRN (v, a′). There are two possible cases, either a′ = c′

or a′ 6= c′. For a′ = c′, we must have Loss(G,T, g) = 1 and Loss(G,S′, g) = 0. For a′ 6= c

we must have MS′(g) = MS′(g′) = a′, MT (g) = MT (g′) = paT (a′), and MS′(g′′) =

MT (g′′) = c′; and hence Loss(G,S′, g) = Loss(G,T, g) − 1. Thus, part 2.(b).ii. of the

lemma holds for both cases.

38

Lemma 3.3.7. Let g and g′ be blue nodes and c be a red node, x ∈ V (Nu), and let a′ =

MΓ,N (g).

1. If S′ = SPRN (v, x) where x <N a′, and S′′ = SPRN (v, pa(x)), then Loss(G,S′, g) =

Loss(G,S′′, g) + 1.

2. If S′ = SPRN (v, x) where x 6<N a′, then,

(a) Loss(G,S′, g) = Loss(G,N, g) if a′ ≤N x ≤N u, and,

(b) Loss(G,S′, g) = Loss(G,S′′, g) + 1 for S′′ = SPRN (v, pa(x)) otherwise.

Proof. First observe that since both g and g′ are blue, they must be nodes of tree Γ; and

hence, the mappings MΓ,N (g), and MΓ,N (g′) are well defined. Also, since g′′ 6∈ V (Γ), by the

definition of Γ, we must have MΓ,N (g) = MΓ,N (g′). Next, we prove the correctness of each

part separately.

Part 1. If x <N a′, then MS′(g) = MS′(g′) = a′ and MS′(g′′) = c. Since g′′ is red, c must

be a node in the pruned subtree Nv, therefore, assuming S′′ 6= SPRN (v, a′), we must have

dS′(MS′(g), c) = dS′′(MS′′(g), c)+1 and, consequently, Loss(G,S′, g) = Loss(G,S′′, g)+

1. If S′′ 6= SPRN (v, a′), then we have MS′′(g) = MS′′(g′) = paS′′(a′) and MS′′(g′′) =

c. And therefore, again, we must have dS′(MS′(g), c) = dS′′(MS′′(g), c) + 1, implying

Loss(G,S′, g) = Loss(G,S′′, g) + 1.

Part 2.(a) In the tree N we haveMN (g) =MN (g′) = rt(N) and dN (rt(N), c) = dNv(v, c)+1.

Similarly, if a′ ≤N x ≤N u, then MS′(g) = MS′(g′) = paS′(x) and, consequently,

dS′(MS′(g), c) = dNv(v, c) + 1. Thus, in this case Loss(G,S′, g) = Loss(G,N, g).

Part 2.(b) We have MS′(g) = MS′(g′) and MS′′(g) = MS′′(g′). Now, if a′ ≤N pa(x) ≤N

u, then we must have MS′′(g) = paS′′(paN (x)) and MS′(g) = paN (x), and therefore,

dS′(MS′(g), c) = dS′′(MS′′(g), c) + 1; otherwise, we must have MS′(g) = MS′′(g) =

lcaN (x, a′) and therefore, again, dS′(MS′(g), c) = dS′′(MS′′(g), c) + 1. Part 2. (b) of the

lemma now follows directly.

39

Lemma 3.3.8. Let g be blue, g′ be red, and g′′ be green. Let x ∈ V (Nu)\{u} and a′ =MΓ,N (g).

1. If S′ = SPRN (v, x) where x 6<N a′, and S′′ = SPRN (v, pa(x)), then,

(a) Loss(G,S′, g) = Loss(G,S′′, g)− 1 if a′ ≤N x <N u,

(b) Loss(G,S′, g) = Loss(G,S′′, g) if a′ ≤N pa(x) <N u but x is not such that a′ ≤N

x <N u, and,

(c) Loss(G,S′, g) = Loss(G,S′′, g) + 1 otherwise.

2. If S′ = SPRN (v, x) where x <N a′, and S′′ = SPRN (v, pa(x)), then,

(a) Loss(G,S′, g) = Loss(G,SPRN (v, a′), g) + 2 if x ∈ ChN (a′), and,

(b) Loss(G,S′, g) = Loss(G,S′′, g) + 1 otherwise.

Proof. First observe that since g is blue, the mapping MΓ,N (g) is well defined. Moreover, by

the definition of tree Γ, we must have a′ = MΓ,N (g) = c. Next, we prove the correctness of

each part separately.

Part 1.(a) For any a′ ≤N x <N u we must have MS′(g) = paS′(x), MS′(g′) = b and

MS′(g′′) = a′. Also observe that the same holds for the case when x = u. Thus, for each

x such that a′ ≤N x <N u, we have dS′(MS′(g),MS′(g′)) = dS′′(MS′′(g),MS′′(g′)) and

dS′(MS′(g),MS′(g′′)) = dS′′(MS′′(g),MS′′(g′′)) − 1. Part 1.(a) of the lemma follows

immediately.

Part 1.(b) In this case, we must have MS′(g) = paN (x), MS′(g′) = b and MS′(g′′) = a′,

and, MS′′(g) = paS′′(x), MS′′(g′) = b and MS′′(g′′) = a′. Therefore, dS′(MS′(g), b) =

dS′′(MS′′(g), b) + 1 and dS′(MS′(g), a′) = dS′′(MS′′(g), a′)− 1. Hence, Loss(G,S′, g) =

Loss(G,S′′, g).

Part 1.(c) In this case, MS′(g) = MS′′(g) = lcaS′′(b, a′), MS′(g′) = MS′′(g′) = b, and

MS′(g′′) =MS′′(g′′) = a′. Now since b is a node in the pruned subtree Nv, we must have

40

dS′(MS′(g), b) = dS′′(MS′′(g), b)+1 and, consequently, Loss(G,S′, g) = Loss(G,S′′, g)+

1.

Part 2.(a) If x ∈ ChN (a′) then we must have MS′(g) = MS′(g′′) = a′ and MS′(g′) = b.

Thus, Loss(G,S′, g) = |dS′(a′, b) − 1| + 1. Now, let T denote the tree SPRN (v, a′), then

we must have MT (g) = paT (a′), MT (g′′) = a′ and MT (g′) = b. Thus, Loss(G,T, g) =

|dT (paT (a′), b) − 1|. Finally, observe that dS′(a′, b) = dT (paT (a′), b) + 1, and hence,

Loss(G,S′, g) = Loss(G,T, g) + 2.

Part 2.(b) For any x <N a′, we must have MS′(g) = MS′(g′′) = a′ and MS′(g′) = b.

Since b is a node in the pruned subtree Nv and in this case x <N y for y ∈ Ch(a′),

we must have dS′(MS′(g), b) = dS′′(MS′′(g), b) + 1 and, consequently, Loss(G,S′, g) =

Loss(G,S′′, g) + 1.

3.4 The Algorithm

Observe that SPRN (v) = {SPRN (v, s) : s ∈ V (Nu)}. Therefore, the goal of our algorithm

is to compute at each node s ∈ V (Nu) the value Loss(G,S′), where S′ = SPRN (v, s). The

first step is to compute the value Loss(G,N). This “loss value” is assigned to the node u. To

compute the loss value for the rest of the nodes our algorithm makes use of six different types

of counters at each node in Nu; we shall refer to these counters as counter-i, for i ∈ {1, . . . , 6}.

The loss values behave in non-trivial ways; however, as we shall see, based on Lemmas 3.3.3

through 3.3.8, this behavior can be broken down into six types of patterns (captured by the

six counters). These counters make it possible to compute the difference between the values

Loss(G,N) and Loss(G,S′), where S′ = SPRN (v, s), for each s ∈ V (Nu). Next, we describe

each of these six counters; throughout our description, s represents some node in Nu.

counter-1 If the value of counter-1 is x at node s then this implies that the tree SPRN (v, s)

incurs x additional losses over the value Loss(G,N).

41

counter-2 If the value of counter-2 is x at node s, then this implies that for each t ≤N s the

tree SPRN (v, t) incurs an additional x losses over Loss(G,N).

counter-3 If the value of counter-3 is x at node s, then this implies that for each t ≤N s the

tree SPRN (v, t) loses x losses from Loss(G,N).

counter-4 If the value of counter-4 is x at node s, then this implies that for each t ≤N s the

tree SPRN (v, t) incurs αt · x additional losses over Loss(G,N , where αt = dN (pa(s), t).

counter-5 If the value of counter-5 is x at node s, then it is equivalent to incrementing

counter-4 at the sibling of each node on the path u→N s, except at u, by x.

counter-6 If the value of counter-6 is x at node s, then it is equivalent to incrementing

counter-4 at both children (if they exist) of the sibling of each node along the path

u →N s, except u, and incrementing counter-3 at each node along the path u →N s,

except at u, by x.

Remark: Each of the additions or subtractions implied by these counters are independent

of each other. This makes it possible to handle each addition or subtraction implied by these

counters separately.

In the remainder of this section we first show how to compute the values of these counters,

and then the final loss values, at each node in Nu.

3.4.1 Computing the Counters

We now describe how the values of the six counters are computed. Initially, each counter

at each node in Nu is set to 0. Consider any g ∈ I(G), and let g′ and g′′ be its two children.

Recall that node g must fall under one of the following six categories: 1) g is red, 2) g is green,

3) g, g′, and g′′ are all blue, 4) g and g′ are blue, and g′′ is green, 5) g and g′ are blue, and g′′

is red, or, 6) g is blue, g′ is red, and g′′ is green.

Let a = MN (g), b = MN (g′) and c = MN (g′′). Also, whenever properly defined, let

a′ =MΓ,N (g), b′ =MΓ,N (g′) and c′ =MΓ,N (g′′). Based on Lemmas 3.3.3 through 3.3.8, we

42

now study how the six counters can be updated so as to capture the behavior of losses in each

of these cases.

Case 1. By Lemma 3.3.3, nothing needs to be done in this case.

Case 2. Based directly on Lemma 3.3.4, the contribution of any node g that satisfies the

condition of case 1 can be captured by simply incrementing the value of counter-1 by one

at each node on paths a→N b and a→N b, except at node a.

Case 3. From Lemma 3.3.5 it follows that in this case the contribution of g to the loss value

changes in a way that is captured by incrementing counter-2 by 1, at each node, except

a′, on the paths a′ →N b′ and a′ →N c′.

Case 4. According to Lemma 3.3.6, if Nv is regrafted on an edge of Nu that is not in Na′ ,

then the contribution of g to the loss cost is captured by incrementing counter-3 by 1 at

each node except u along the path u →N a′, and at their siblings. If Nv is regrafted on

an edge of Nu that is in Na′ then there are two possible cases:

a′ 6= b′ Recall that b′′ represents the child of a′ along the path a′ →N b′. In this case, the

contribution of g to the loss cost is captured by (i) incrementing counter-3 by two

at node b′′, (ii) incrementing counter-2 by one at each node along the path b′′ →N b′

except at node b′′, (iii) incrementing counter-3 by one at the sibling of b′′, and (iv)

incrementing counter-1 by one at each node except a′ on the path a′ →N c′.

a′ = b′ In this case, the contribution of g to the loss cost is captured by (i) incrementing

counter-3 by one at both children of a′, and (ii) incrementing counter-1 by one at

each node except a′ on the path a′ →N c′.

Case 5. By Lemma 3.3.7, for this case, the change in the loss contribution of g is captured

by incrementing counter-5 by 1 at node a′, and by incrementing counter-4 by 1 at both

children of a′ in N .

43

Case 6. By Lemma 3.3.8, for this case, the change in the loss contribution of g is captured

by incrementing counter-6 by 1 at node a′, and by incrementing counter-4 and counter-2

by 1 each at both children of a′ in N .

Based on these counters we now describe our algorithm to solve the SPR-RS problem.

3.4.2 Computing the Final Loss Values

Our algorithm considers each internal node of gene tree G, one at a time, and updates the

relevant counters at the relevant nodes in Nu, as shown in the previous subsection. Then, based

on these counters, it computes, at each node s ∈ V (Nu) the value α(s) = LossG,S′−LossG,N .

A complete description of our algorithm to solve the SPR-RS problem on instance 〈{G}, S, v〉

appears in Procedure-SPR-RS (see Algorithm 2).

Algorithm 2 Procedure-SPR-RS
1: Input: G, S, v
2: Construct the tree N from S.
3: Create and initialize to zero six counters counter-i, for i ∈ {1, . . . , 6}, at each s ∈ V (Nu).
4: Construct the mapping MG,N , color the nodes of N and G as described in Section 3.3.1,

and construct the mapping MΓ,N .
5: Compute the value Loss(G,N).
6: for each node s ∈ V (Nu) do
7: Compute the duplication cost |Dup(G,SPRN (v, s))| as shown in [4] (also Chapter 2).
8: for all each node g ∈ I(G) do
9: Update the counters as shown in Section 3.4.1.

10: Perform a post-order traversal of Nu to transform counter-5 into counter-4 (as explained
in the definition of counter-5) throughout Nu.

11: Perform a post-order traversal of Nu to transform counter-6 into counter-4 and counter-3
(as explained in the definition of counter-6) throughout Nu.

12: Perform a pre-order traversal of Nu to transform counter-4 into counter-2. This can be
achieved by incrementing counter-2 at node s ∈ V (Nu) by the sum of the values of counter-4
at each ancestor of s in Nu.

13: Use counter-1, counter-2, and counter-3 to compute the value of α(s) at each s ∈ V (Nu)
by calling Procedure-Loss (see Algorithm 3) on parameters 〈u, 0〉.

14: The reconciliation cost of G and the tree SPRS(v, s), where s ∈ V (Nu), is given by
|Dup(G,SPRN (v, s)|+ α(s)− Loss(G,N).

Lemma 3.4.1. Procedure-SPR-RS solves the SPR-RS problem on the instance 〈{G}, S, v〉.

44

Algorithm 3 Procedure-Loss
1: Input: A node t of the tree Nu, and a counter c.
2: c = c+ counter-2(t)− counter-6(t).
3: α(t) = α(t) + c+ counter-1(t).
4: if t is not a leaf node of N then
5: Let {t′, t′′} = ChN (t).
6: Call Procedure-Loss on parameters 〈t′, c〉.
7: Call Procedure-Loss on parameters 〈t′′, c〉.

Proof. Procedure-SPR-RS computes the duplication cost |Dup(G,SPRN (v, s))|, at each s ∈

V (Nu), as shown in [4]. It then computes the values of the six counters, i.e. counter-i, for

i ∈ {1, . . . , 6}, in accordance with Lemmas 3.3.3 through 3.3.8. Then, in Steps 10 through 12,

the algorithm encodes the changes in loss cost implied by counter-4, counter-5, and counter-6,

at each node in Nu, in terms of the values of counter-1, counter-2, and counter-3. procedure-

Loss then correctly computes the value of α(s) at each s ∈ V (Nu) based on these three counters.

Thus, for any SPRS(v, s), where s ∈ V (Nu), the values |Dup(G,SPRN (v, s))| and α(s) are com-

puted correctly. Note that the reconciliation cost of G and SPRS(v, s), where s ∈ V (Nu), is

given by |Dup(G,SPRN (v, s)|+ α(s)− Loss(G,N). The lemma follows.

To simplify our analysis of the time complexity of our algorithm, we assume that all G ∈ G

have approximately the same size. 3 Recall that n = |Le(S)|, m = |Le(S)| + |Le(G)| and

k = |G|.

Lemma 3.4.2. Procedure-SPR-RS can be implemented to run in O(m) time.

Proof. We analyze the complexity of Procedure-SPR-RS step-by-step. The total time complex-

ity of Steps 2 and 3 is O(n). Step 4 can be implemented in O(m) time as follows: During an

O(n)-time preprocessing step we can process the tree N so that lca queries on any two nodes in

V (N) can be answered in O(1) time; see [9] for details. Subsequently, the task of constructing

the mappingMG,N only takes O(|V (G)|) time. Coloring the nodes of G and N and construct-

ing the mappingMΓ,N also take O(|V (G)|) time. Thus, the total time complexity of this step

is O(|V (G)| + n), which is O(m). In Step 5, the value Loss(G,N) can be computed in O(m)
3We point out that the Θ(n) speed-up obtained by our algorithm over the currently best known solution

does not depend on this simplifying assumption.

45

time by first traversing through N to compute the depth of each node, and then traversing

through G and computing Loss(G,N, g) for each g ∈ I(G) according to Definition 3.2.4. The

‘for’ loop of Step 6 requires O(m) time (see [4]).

Let us now consider the ‘for’ loop of Step 8 in detail. For any g that satisfies the criteria

for case 1, there is nothing to be done. For any g satisfying the criterion for cases 5, or 6,

we are required to update the counters at a constant number of nodes in Nu. Therefore, all

such g can be handled with-in O(m) time. However, for cases 2, 3 and 4, handling each g

might, in the worst case, require updating the counters at Θ(n) nodes, yielding a total time

complexity of O(nm) for these cases. This happens because these cases require us to update

specific counters along the entire length of certain paths in Nu. A simple way to deal with this

issue is to only mark the start node and end node of the path for the specified counter. Once

this is done for each g satisfying the criterion for cases 2, 3 or 4, we can perform a post-order

traversal and set all the relevant counters to their correct value based on the marked start and

end nodes. In this way, cases 2, 3, and 4 can be handled in a total of O(m) time as well. This

gives us a total time complexity of O(m) for computing all the counters.

In Steps 10 through 12, the algorithm encodes the changes in loss cost implied by counter-4,

counter-5, and counter-6, at each node in Nu, in terms of the other counters. It is easy to

verify that each of these steps can be implemented to run in O(n) time by doing either a post-

order or pre-order traversal of Nu, as appropriate. Step 13 calls Procedure-Loss on parameters

〈u, 0〉. Procedure-Loss simply performs a pre-order traversal of the tree Nu, spending O(1) at

each node. The time complexity of Step 13 is thus O(n). Finally, in Step 14, computing the

reconciliation cost for each SPRS(v, s), where s ∈ V (Nu), takes O(n) time.

Thus, we have the following two theorems.

Theorem 3.4.1. The SPR-RS problem can be solved in O(km) time.

Proof. By Lemmas 3.4.1 and 3.4.2 we know that the SPR-RS problem on the restricted instance

〈{G}, S, v〉 can be solved in O(m) time. It is straightforward to extend Procedure-SPR-RS to

solve the SPR-RS problem by considering each gene tree in G separately and combining the

computed reconciliation costs. Since there are k gene trees, the theorem follows.

46

Theorem 3.4.2. The SPR-S problem can be solved in O(kmn) time.

Proof. Observe that SPRS =
⋃
{pa(v),v}∈E(S) SPRS(v). The theorem therefore follows immedi-

ately from Theorem 3.4.1.

The time complexity of the best known (naive) solution for the SPR-S problem is Θ(kmn2).

Our algorithm improves on this by a factor of n.

3.5 Speeding-Up the TBR Local Search Problem

Heuristics based on the TBR local search problem are particularly desirable since they sig-

nificantly extend the search space explored at each local search step; however, due to inefficient

running times, they have rarely been applied in practice. Our solution to the SPR-RS problem

allows us improve to improve the time complexity of the TBR local search problem by a factor

of n.

Intuitively, a (rooted) TBR operation may be viewed as being like an SPR operation ex-

cept that the TBR operation allows the pruned subtree to be arbitrarily rerooted before being

regrafted. In order to define a TBR operation more formally, we need the following definition.

Definition 3.5.1 (RR operation). Let T be a tree and x ∈ V (T). RR(T, x) is defined to be the

tree T , if x = rt(T). Otherwise, RR(T, x) is the tree that is obtained from T by (i) suppressing

rt(T), and (ii) subdividing the edge {pa(x), x} by a new root node.

Definition 3.5.2 (TBR operation). For technical reasons we first define for a tree T the planted

tree Φ(T) that is the tree obtained by adding an additional edge, called root edge, {p, rt(T)}

to T .

Let T be a tree, e = (u, v) ∈ E(T) and X,Y be the connected components that are obtained

by removing edge e from T where v ∈ X and u ∈ Y . We define TBRT (v, x, y) for x ∈ X and

y ∈ Y to be the tree that is obtained from Φ(T) by first removing edge e, then replacing the

component X by RR(X,x), and then adjoining a new edge f between x′ = rt(RR(X,x)) and Y

as follows:

47

1. Create a new node y′ that subdivides the edge (pa(y), y).

2. Adjoin the edge f between nodes x′ and y′.

3. Suppress the node u, and rename x′ as v and y′ as u.

4. Contract the root edge.

Notation. We define the following:

1. TBRT (v, x) =
⋃
y∈Y {TBRT (v, x, y)}

2. TBRT (v) =
⋃
x∈X TBRT (v, x)

3. TBRT =
⋃

(u,v)∈E(T) TBRT (v)
The TBR-Scoring (TBR-S) and TBR-Restricted Scoring (TBR-RS) problems can now be

defined as follows.

Problem 7 (TBR-Scoring (TBR-S)).

Instance: A gene tree set G, and a comparable species tree S.

Find: A tree T ∗ ∈ TBRS such that ∆(G, T ∗) = minT∈TBRS
∆(G, T).

Problem 8 (TBR-Restricted Scoring (TBR-RS)).

Instance: A triple (G, S, v), where G is a set of gene trees, S is a comparable species tree,

and (u, v) ∈ E(S).

Find: A tree T ∗ ∈ TBRS(v) such that ∆(G, T ∗) = minT∈TBRS(v) ∆(G, T).

Our goal is to solve the TBR-S problem. Observe that there are Θ(n) different ways to

select a subtree of S to be pruned. Furthermore, there are O(n) different ways to reroot the

pruned subtree. The idea is to directly use the solution to the SPR-RS problem to compute the

duplication and loss costs for the O(n)-cardinality subset of TBRS defined by any fixed pruned

subtree and its fixed rooting. In particular,

Theorem 3.5.1. The TBR-S problem can be solved in O(kmn2) time.

Proof. The algorithm presented in the previous section allows us to compute the loss cost of

each tree in TBRS(v, x) in O(km) time. Thus, we can compute the loss cost of each tree in

TBRS with-in O(kmn2) time. Similarly, the algorithm presented in [4] allows us to compute

the duplication cost of each tree in TBRS with-in O(kmn2) time as well. This implies that we

can obtain the reconciliation cost (i.e. the duplication cost plus the loss cost) for each tree in

TBRS in O(kmn2) time. Thus, the TBR-S problem can be solved in O(kmn2) time overall.

48

The time complexity of the best known (naive) solution for the TBR-S problem is O(kmn3).

Our algorithm improves on this by a factor of n.

3.6 Experimental Analysis

To evaluate the efficiency, in practice, of our novel local search algorithms, we conducted

comparative studies on simulated datasets. In particular, we implemented our algorithm for the

SPR-S problem as part of a standard search heuristic for the duplication-loss problem; we refer

to our program as DupLoss. The two other publicly available programs for the duplication-loss

problem, Mesquite [35] and GeneTree [38], both implement similar local search heuristics based

on the best known (naive) algorithm for the SPR-S problem. Therefore, for our comparative

study, we only compare the runtime of our implementation against the program GeneTree.

We applied the programs DupLoss and GeneTree to the same set of input gene trees and the

same randomly generated starting species tree and measured the run time of both programs

to compute their final species supertrees. The input gene trees for each run consisted of a set

of 20 randomly generated gene trees, all with the same set of taxa.4 We conducted five such

runs, each with a different number of taxa (50, 100, 200, 400, and 1000) in the input trees.

All analyses were performed on a 3 Ghz Intel Pentium 4 CPU based PC with Windows XP

operating system. As shown in Table 3.1, DupLoss shows a great improvement in runtime and

scalability as compared to GeneTree. We could not run GeneTree on input trees with more

than 200 taxa.

Table 3.1 GeneTree vs. DupLoss

Taxa size GeneTree DupLoss

50 11m:42s 5s
100 3h:57m 33s
200 5d:19h:49m 4m:24s
400 – 43m:08s
1000 – 19h:27m

Note that both DupLoss and GeneTree implement exactly the same standard SPR based
4Our randomly generated trees have a random (binary) topology and a random assignment of leaf labels.

49

local search heuristic. However, the final reconciliation costs obtained by the two programs on

the same input may still be different; this is because ties are broken arbitrarily if more than

one optimal species tree is found during a local search step. In our experiments, we observed

little or no difference in the final reconciliation costs.

3.7 Outlook and Conclusion

The duplication-loss problem has been an effective way to infer species phylogenies from

paralogous data; and is expected to become even more relevant with the rapidly increasing

availability of whole genome data. Our highly efficient algorithms for the standard SPR and

TBR based heuristics make the duplication-loss problem much more tractable for large-scale

phylogenetic analyses.

Bansal and Eulenstein [8] showed that the TBR local search problem for the gene duplication

problem could be solved in O(kmn logm) time. It would be interesting to ascertain if the TBR

local search problem for the duplication-loss problem can be solved in better than Θ(kmn2)

time as well.

50

CHAPTER 4. Comparing Partially Resolved Trees

Modified from a paper to be submitted to Algorithmica

Mukul S. Bansal and David Fernández-Baca

4.1 Introduction

Evolutionary trees, also known as phylogenetic trees or phylogenies, represent the evolu-

tionary history of sets of species. Such trees have uniquely labeled leaves, corresponding to

the species, and unlabeled internal nodes, representing hypothetical ancestors. The trees can

be either rooted, if the evolutionary origin is known, or unrooted, otherwise.

This paper addresses the following question: How does one measure how close two evo-

lutionary trees are to each other? Among the motivations for this question is the growth of

phylogenetic databases, such as TreeBase [41], with the attendant need for sophisticated query-

ing mechanisms and for means to assess the quality of answers to queries. Another motivation

arises from the fact that phylogenetic analyses — e.g., by parsimony [27] — typically produce

multiple evolutionary trees (often in the thousands) for the same set of species.

We address this question by defining an appropriate distance measure between trees. While

several such measures have been proposed before (see below), ours provides a feature that

previous ones do not: The ability to deal elegantly with the presence of unresolved nodes, also

called polytomies. For rooted trees these are nodes with more than two children; for unrooted

trees, they are nodes of degree greater than three. Polytomies cannot simply be ignored, since

they arise naturally in phylogenetic analysis. Furthermore, they must be treated with care: A

node may be unresolved because it truly must be so or because there is not enough evidence

to break it up into resolved nodes — that is, the polytomies are either “hard” or “soft” [34].

51

Our contributions. We define and analyze a new kind of distance measure for phylo-

genies. For rooted trees, our measure is based on the topologies the input trees induce on

triplets; that is, on three-element subsets of the set of species. For unrooted trees, the measure

is based on quartets (four-element subsets). Our approach is motivated by the observation that

triplet and quartet topologies are the basic building blocks of rooted and unrooted trees, in the

sense that they are the smallest topological units that completely identify a phylogenetic tree

[44]. Triplet and quartet-based distances thus provide a robust and fine-grained measure of

the differences and similarities between trees1. In contrast with traditional quartet and triplet

distances, our distance measure deals cleanly with the presence of unresolved nodes.

The measure we propose is called parametric distance: Given a triplet (quartet) X, we

compare the topologies that each of the two input trees induces on X. If they are identical,

the contribution of X to the distance is zero. If both topologies are fully resolved but different,

then the contribution is one. Otherwise, the topology is resolved in one of the trees, but not

the other. In this case, X contributes p to the distance, where p is a real number between

0 and 1. Parameter p allows one to make a smooth transition between hard and soft views

of polytomy. At one extreme, if p = 1, an unresolved topology is viewed as different from a

fully resolved one. At the other, when p = 0, unresolved topologies are viewed as identical to

resolved ones. Intermediate values of p allow one to adjust for the degree of certainty one has

about a polytomy.

After defining our distance measure, we proceed to study its mathematical and algorith-

mic properties. We obtain exact and asymptotic bounds on expected values of parametric

triplet distance and parametric quartet distance. We present a O(n2)-time algorithm to com-

pute parametric triplet distance and a O(n2) 2-approximate algorithm for parametric quartet

distance. To our knowledge, there was no previous algorithm for computing the parametric

triplet distance between two rooted trees, other than by enumerating all Θ(n3) triplets. Two

algorithms exist that can be directly applied to compute the parametric quartet distance (see

also [14]). One runs in time O(n2 min{d1, d2}), where, for i ∈ {1, 2}, di is the maximum degree
1Biologically-inspired arguments in favor of triplet-based measures can be found in [21].

52

of a node in Ti [19]; the other takes O(d9n log n) time, where d is the maximum degree of a

node in T1 and T2 [50].2 Our faster O(n2) algorithm offers a 2-approximate solution when an

exact value of the parametric quartet distance is not required. Additionally, our algorithm

gives the exact answer when p = 1
2 .

Related work. Several other measures for comparing trees have been proposed; we men-

tion a few. A popular class of distances are those based on symmetric difference between sets

of clusters (that is, on sets of species that descend from the same internal node in a rooted

tree) or of splits (partitions of the set of species induced by the removal of an edge in an

unrooted tree); the latter is the well-known Robinson-Foulds (RF) distance [42]. It is not hard

to show that two rooted (unrooted) trees can share many triplet (quartet) topologies but not

share a single cluster (split). Cluster- and split-based measures are also coarser than triplet

and quartet distances.

One can also measure the distance between two trees by counting the number of branch-

swapping operations — e.g., nearest-neighbor interchange or subtree pruning and regrafting

operations [27] — needed to convert one of the trees into the other [1]. However, the associated

measures can be hard to compute, and they fail to distinguish between operations that affect

many species and those that affect only a few. An alternative to distance measures are simi-

larity methods such as maximum agreement subtree (MAST) approach [28]. While there are

efficient algorithms for computing the MAST [25], the measure is coarser than triplet-based

distances.

4.2 Preliminaries

Phylogenies. By and large, we follow standard terminology (i.e., similar to [13] and

[44]). We write [N] to denote the set {1, 2, . . . , N}, where N is a positive integer.

Let T be a rooted or unrooted tree. We write V(T), E(T), and L(T) to denote, respectively,

the node set, edge set, and leaf set of T . A taxon (plural taxa) is some basic unit of classification;
2Note that the presence of unresolved nodes seems to complicate distance computation. Indeed, the quartet

distance between a pair of fully resolved unrooted trees can be obtained in O(n log n) time [12].

53

e.g., a species. Let S be a set of taxa. A phylogenetic tree or phylogeny for S is a tree T such

that L(T) = S. Furthermore, if T is rooted, we require that every internal node have at least

two children; if T is unrooted, every internal node is required to have degree at least three.

We write RP (n) to denote the set of all rooted phylogenetic trees over S = [n] and P (n) to

denote the set of all unrooted phylogenetic trees over S = [n].

An internal node in a rooted phylogeny is resolved if it has exactly two children; otherwise

it is unresolved. Similarly, an internal node in an unrooted phylogeny is resolved if it has

degree three, and unresolved otherwise. Unresolved nodes in rooted and unrooted trees are

also referred to as polytomies or multifurcations. A phylogeny (rooted or unrooted) is fully

resolved if all its internal nodes are resolved.

Let X be a subset of L(T) and let T [X] denote the minimal subtree of T having X as its

leaf set. The restriction of T to X, denoted T |X, is the phylogeny for X defined as follows. If

T is unrooted, then T |X is the tree obtained from T [X] by suppressing all degree-two nodes.

If T is rooted, T |X is obtained from T [X] by suppressing all degree-two nodes except for the

root.

A triplet is a three-element subset of S. A triplet tree is a rooted phylogeny whose leaf set

is a triplet. The triplet tree with leaf set {a, b, c} is denoted by a|bc if the path from b to c

does not intersect the path from a to the root. A quartet is a four-element subset of S and a

quartet tree is an unrooted phylogeny whose leaf set is a quartet. The quartet tree with leaf

set {a, b, c, d} is denoted by ab|cd if the path from a to b does not intersect the path from c to

d. A triplet (quartet) X is said to be resolved in a phylogenetic tree T over S if T |X is fully

resolved; otherwise, X is unresolved.

Finally, we need some special notation for rooted trees T . We write rt(T) to denote the

root node of T . Let v be a node in T . Then, pa(v) denotes the parent of v in T and Ch(v)

is the set of children of v. Furthermore, T (v) denotes the subtree of T rooted at v and T (v)

denotes the tree obtained by deleting T (v) from T , as well as the edge from v to its parent, if

such an edge exists.

54

4.3 Parametric distances

Let T1 and T2 be any two rooted (respectively, unrooted) phylogenies over the same taxon

set S. Define the following five sets of triplets (quartets) over S.

1. S(T1, T2): triplets (quartets) X such that T1|X and T2|X are fully resolved, and T1|X =

T2|X.

2. D(T1, T2): triplets (quartets) X such that T1|X and T2|X are fully resolved, and T1|X 6=

T2|X.

3. R1(T1, T2): triplets (quartets) X such that T1|X is fully resolved, but T2|X is not.

4. R2(T1, T2): triplets (quartets) X such that T2|X is fully resolved, but T1|X is not.

5. U(T1, T2): triplets (quartets) X such that T1|X and T2|X are unresolved.

Let p be a real number in the interval [0, 1]. The parametric triplet (quartet) distance

between T1 and T2 is defined as3

d(p)(T1, T2) = |D(T1, T2)|+ p (|R1(T1, T2)|+ |R2(T1, T2)|) . (4.1)

When the domain of d(p) is restricted to fully resolved trees, and thusR1(T1, T2) = R2(T1, T2) =

U(T1, T2) = ∅, we refer to it simply as the triplet (quartet) distance.

Parameter p allows one to make a smooth transition from soft to hard views of polytomy:

When p = 0, resolved triplets (quartets) are treated as equal to unresolved ones, while when

p = 1, they are treated as being completely different. Choosing intermediate values of p allows

one to adjust for the amount of evidence required to resolve a polytomy4.

Distance measures, metrics, and near-metrics. A distance measure on a set D is a

binary function d on D satisfying the following three conditions: (i) d(x, y) ≥ 0 for all x, y ∈ D;

(ii) d(x, y) = d(y, x) for all x, y ∈ D; and (iii) d(x, y) = 0 if and only if x = y. Function d

3Note that the sets S(T1, T2) and U(T1, T2) are not used in the definition of d(p), but are needed for other
purposes.

4We note that parametric triplet/quartet distance is a profile-based metric, in the sense of [24]. However, the
use of the word “profile” in [24] is quite different from our use of the term.

55

is a metric if, in addition to being a distance measure, it satisfies the triangle inequality; i.e.,

d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ D. Distance measure d is a near-metric if there is a

constant c, independent of the size of D, such that d satisfies the relaxed polygonal inequality :

d(x, z) ≤ c(d(x, x1) + d(x1, x2) + · · ·+ d(xn−1, z)) for all n > 1 and x, z, x1, . . . , xn−1 ∈ D [24].

It is known [6] that (i) d(p) is a metric for p ≥ 1/2, (ii) d(p) is a near-metric, but not a

metric, for 0 < p < 1/2, and (iii) d(p) is not a distance measure for p = 0.

4.4 Expected parametric triplet and quartet distances

We now consider the expected value of parametric triplet and quartet distances. Let u(n)

and r(n) denote the probabilities that a given quartet is, respectively, unresolved or resolved

in an unrooted phylogeny chosen uniformly at random from P (n); thus, u(n) = 1− r(n). The

following are the two main results of this section.

Theorem 4.4.1. Let T1 and T2 be two unrooted phylogenies chosen uniformly at random with

replacement from P (n). Then,

E(d(p)(T1, T2)) =
(
n

4

)
·
(

2
3
· r(n)2 + 2 · p · r(n) · u(n)

)
. (4.2)

Theorem 4.4.2. Let T1 and T2 be two rooted phylogenies chosen uniformly at random with

replacement from RP (n). Then,

E(d(p)(T1, T2)) =
(
n

3

)
·
(

2
3
· r(n+ 1)2 + 2 · p · r(n+ 1) · u(n+ 1)

)
. (4.3)

It is known [48, 47] that

u(n) ∼
√
π(2 ln 2− 1)

4n
. (4.4)

Together with Theorems 4.4.1 and 4.4.2, this implies that E(d(p)(T1, T2)) is asymptotically

2
3 ·
(
n
4

)
for unrooted trees and 2

3 ·
(
n
3

)
for rooted trees.

The proof of Theorem 4.4.1 follows directly from the work of Day [22]; hence, it is omitted

(however, we should note that the proof is similar to that of Lemma 4.4.1 below).

The proof of Theorem 4.4.2, follows from two auxiliary results that will be proved in the

next subsections. In the statements of these results, we use u′(n) and r′(n) to denote the

56

probabilities that a given triplet is, respectively, unresolved or resolved in an rooted phylogeny

chosen at random from RP (n).

Lemma 4.4.1. Let T1 and T2 be two rooted phylogenies chosen uniformly at random with

replacement from RP (n). Then,

E(d(p)(T1, T2)) =
(
n

3

)
·
(

2
3
· r′(n)2 + 2 · p · r′(n) · u′(n)

)
. (4.5)

Lemma 4.4.2. For all n ≥ 1, r′(n) = r(n+ 1) and u′(n) = u(n+ 1).

Proof of Theorem 4.4.2. Simply substitute the expressions for r′(n) and u′(n) given in Lemma 4.4.2

into the expression for E(d(p)(T1, T2)) given in Lemma 4.4.1.

4.4.1 Proof of Lemma 4.4.1

By the definition of d(p) and the linearity of expectation, it suffices to establish the equalities

below.

E(D(T1, T2)) =
(
n

3

)
· 2

3
· r′(n)2 (4.6)

E(R1(T1, T2)) = E(R2(T1, T2)) =
(
n

3

)
· r′(n) · u′(n)) (4.7)

To establish Equation (4.6), consider a triplet X. The probability that X is resolved in T1

(or T2) is r′(n). Thus, the probability that X is resolved in both T1 and T2 is r′(n)2. There are

exactly three different ways in which any given triplet can be resolved. Hence, if α is resolved

in both T1 and T2, the probability that it is resolved differently in both trees is 2
3 . Thus, the

probability of a pre-given triplet being resolved in both T1 and T2, but with different types in

each, is 2
3r
′(n)2. By the linearity of expectation and the observation that the total number of

triplets in T1 (and T2) is
(
n
3

)
, E(D(T1, T2)) =

(
n
3

)
· 2

3r
′(n)2.

To establish Equation (4.7), we only need to study E(R1(T1, T2)); the expression for

E(R2(T1, T2)) follows by symmetry. Consider a triplet X. The probability that X is un-

resolved in T1 is u′(n) and the probability that X is resolved in T2 is r′(n). The expression for

E(R1(T1, T2)) now follows by linearity of expectation.

57

4.4.2 Proof of Lemma 4.4.2

We need some preliminary results. The following lemma is well known (see [48, 27]).

Lemma 4.4.3. For all n ≥ 1, |RP (n)| = |P (n+ 1)|.

Let us define the function Add-Leaf : RP (n)→ P (n+ 1) as follows. Given a rooted tree

T ∈ RP (n), Add-Leaf(T) is the unrooted tree constructed from T by (1) adding a leaf node

labeled n+ 1 to T by adjoining it to the root node of T and (2) unrooting the resulting tree.

The next lemma is well known (see, e.g., [44, p. 20]).

Lemma 4.4.4. Function Add-Leaf is a bijection from the set RP (n) to the set P (n+ 1).

For any triplet X over [n], we define two functions gX : RP (n)→ {0, 1} and fX : P (n+1)→

{0, 1} as follows:

gX(T) =


1 if triplet X is resolved in tree T

0 otherwise
(4.8)

fX(T) =


1 if quartet X ∪ {n+ 1} is resolved in tree T

0 otherwise
(4.9)

We have the following result.

Lemma 4.4.5. Let X be any triplet over [n]. Consider a tree T ∈ RP (n), and let T ′ =

Add-Leaf(T). Then, fX(T ′) = gX(T).

Proof. Follows from the observation that triplet X is resolved in T if and only if quartet

X ∪ {n+ 1} is resolved in T ′.

We are now ready to complete the proof of Lemma 4.4.2. Let X be any triplet over [n]. By

definition, r(n+1) is the probability of any given quartet being resolved in a random unrooted

tree in P (n). In particular, r(n+ 1) is the probability that quartet X ∪ {n+ 1} is resolved in

58

a random unrooted tree. Now,

r(n+ 1) =
∑

T∈P (n+1)

fX(T)
|P (n+ 1)|

=
∑

T∈P (n+1)

fX(T)
|RP (n)|

=
∑

T ′∈RP (n)

gX(T ′)
|RP (n)|

= r′(n),

where the first and last equalities follow from the definitions of r(n+ 1) and r(n), respectively,

the second equality follows from Lemma 4.4.3, and the third follows from Lemma 4.4.4, and

Lemma 4.4.5.

Since u′(n) = 1− r′(n) and u(n+ 1) = 1− r(n+ 1), it follows that u′(n) = u(n+ 1).

4.5 Computing parametric triplet distance

In this section we show that the parametric triplet distance (PTD), d(p), between two

phylogenetic trees T1 and T2 over the same set of n taxa can be computed in O(n2) time.

Before we outline our PTD algorithm, we need some notation. Let T be a rooted phyloge-

netic tree. Then, R(T) denotes the set of all triplets that are resolved in T and U(T) denotes

the set of all triplets that are unresolved in T .

The next proposition is easily proved.

Proposition 4.5.1. For any two phylogenies T1, T2 over the same set of taxa,

1. |R1(T1, T2)|+ |U(T1, T2)| = |U(T2)|

2. |R2(T1, T2)|+ |U(T1, T2)| = |U(T1)|,

3. |S(T1, T2)|+ |D(T1, T2)|+ |R1(T1, T2)| = |R(T1)|.

By Prop. 4.5.1 and Eqn. (4.1), the parametric distance between T1 and T2 can be expressed

as

d(p)(T1, T2) = |R(T1)| − |S(T1, T2)|+ p · (|U(T1)| − |U(T2)|) + (2p− 1) · |R1(T1, T2)|. (4.10)

59

Our PTD algorithm proceeds as follows. After an initial O(n2) preprocessing step (Sec-

tion 4.5.1), the algorithm computes |R(T1)|, |U(T1)| and |U(T2)| using a O(n)-time procedure

(Section 4.5.2). Next, it computes |S(T1, T2)| and |R1(T1, T2)|. As described in Sections 4.5.3

and 4.5.4, this takes O(n2) time. Then, it uses these values to compute d(p)(T1, T2), in O(1)

time, via Eqn. (4.10). To summarize, we have the following result.

Theorem 4.5.1. The parametric triplet distance d(p)(T1, T2) for two rooted phylogenetic trees

T1 and T2 over the same set of n taxa can be computed in O(n2) time.

4.5.1 The preprocessing step

The purpose of the preprocessing step is to calculate and store the following four quantities

for every pair (u, v), where u ∈ V(T1) and v ∈ V(T2): |L(T1(u)) ∩ L(T2(v))|, |L(T1(u)) ∩

L(T2(v))|, |L(T1(u))∩L(T2(v))|, and |L(T1(u))∩L(T2(v))|. These values are stored in a table

so that any value can be accessed in O(1) time by subsequent steps of the PTD algorithm.

Lemma 4.5.1. The values |L(T1(u))∩L(T2(v))|, |L(T1(u))∩L(T2(v))|, |L(T1(u))∩L(T2(v))|,

and |L(T1(u)) ∩ L(T2(v))| can be collectively computed for every pair of nodes (u, v), where

u ∈ V(T1) and v ∈ V(T2), in O(n2) time.

Proof. Consider the value |L(T1(u)) ∩ L(T2(v))|:

1. If u and v are both leaf nodes then computing |L(T1(u)) ∩ L(T2(v))| is trivial,

2. If u is a leaf node, but v is not a leaf node, then we have |L(T1(u)) ∩ L(T2(v))| =∑
x∈Ch(v) |L(T1(u)) ∩ L(T2(x))|, and,

3. If u is not a leaf node then we have |L(T1(u))∩L(T2(v))| =
∑

x∈Ch(u) |L(T1(x))∩L(T2(v))|.

We compute the value |L(T1(u))∩L(T2(v))|, for every pair (u, v), using an interleaved post

order traversal of T1 and T2. This traversal works as follows: For each node u in a post order

traversal of T1, we consider each node v in a post order traversal of T2. This ensures that when

the intersection sizes for a pair of nodes is computed, the set intersection sizes for all pairs of

their children have already been computed.

Once the value |L(T1(u))∩L(T2(v))| has been computed for some pair (u, v), we must have

60

1. |L(T1(u)) ∩ L(T2(v))| = |L(T1(u))| − |L(T1(u)) ∩ L(T2(v))|,

2. |L(T1(u)) ∩ L(T2(v))| = |L(T2(v))| − |L(T1(u)) ∩ L(T2(v))|, and

3. |L(T1(u)) ∩ L(T2(v))| = n− (|L(T1(u))|+ |L(T2(v))| − |L(T1(u)) ∩ L(T2(v))|).

We now analyze the time complexity of computing these values. For each u ∈ V(T1), the

value |L(T1(u))| can be computed in O(n) time by a simple post order traversal of T1. The

same holds for tree T2. For a pair of nodes u and v from T1 and T2 respectively, the value

|L(T1(u)) ∩ L(T2(v))| can be computed in O(|Ch(u)| + |Ch(v)|) time and all the remaining

three set intersection values in O(1) time. Summing this over all possible pairs of edges, we

get a total time complexity of O(
∑

u∈V(T1)

∑
v∈V(T2) |Ch(u)|+ |Ch(v)|), which is O(n2).

We store these O(n2) values in an array indexed by u and v, for each u ∈ V(T1) and

v ∈ V(T2). This enables constant time insertion and look-up of any stored value, when the two

relevant nodes are given.

4.5.2 Computing |R(T1)|, |U(T1)| and |U(T2)|

We use the following terminology. Let e = (v, pa(v)) be any internal edge in T . Consider

any two leaves x, y from L(T (v)), and any leaf z from L(T (v)). Then, the triplet {x, y, z} must

appear resolved as xy|z in T ; we say that the triplet tree xy|z is induced by the edge (v, pa(v)).

Note that the same resolved triplet tree may be induced by multiple edges in T . Additionally,

if x ∈ L(T (v1)) and y ∈ L(T (v2)) for some v1, v2 ∈ Ch(v) such that v1 6= v2, then we say that

the triplet tree xy|z is strictly induced by the edge (v, pa(v)).

Lemma 4.5.2. Given a tree T and a triplet X, if T |X is fully resolved then T |X is strictly

induced by exactly one edge in T .

Proof. Let X = {a, b, c}. Without loss of generality, assume that T |X = ab|c. If v denotes the

lca of a and b in T , the edge (v, pa(v)) must induce ab|c. Moreover, v must be the only node in

T for which there exist nodes v1, v2 ∈ Ch(v) such that a ∈ L(T (v1)) and b ∈ L(T (v2)). Thus,

there is exactly one edge in T that strictly induces T |X.

61

The following lemma shows how |R(T1)|, |U(T1)| and |U(T2)| can all be computed in O(n)

time.

Lemma 4.5.3. Given a rooted phylogenetic tree T over n leaves, the values |R(T)| and |U(T)|

can be computed in O(n) time.

Proof. We compute the value |R(T)| as follows: First, traverse the tree T in post order to

compute the values αv = |L(T (v))| and βv = n− αv at each node v ∈ V(T).

For any v ∈ V(T) \ {rt(T)}, let φ(v) denote the number of triplets that are strictly induced

by the edge (pa(v), v) in tree T . Observe that any triplet that is strictly induced by an edge

in T must be fully resolved in T . Thus, Lemma 4.5.2 implies that the sum of φ(v) over all

internal nodes v ∈ V(T) \ {rt(T)} yields the value |R(T)|. We now show how to compute the

value of φ(v).

Let X = {a, b, c} be a triplet that is counted in φ(v). And, without loss of generality,

let T1|X = ab|c. It can be verified that X must satisfy the following two conditions: (i)

a, b ∈ L(T (v)) and c ∈ L(T (v)), and (ii) there does not exist any x ∈ Ch(v) such that

a, b ∈ L(T (x)). The number of triplets that satisfy condition (i) is
(
αv

2

)
· βv, and the number

of triplets that satisfy condition (i), but not condition (ii) is exactly
∑

x∈Ch(v)

(
αx

2

)
· βv. Thus,

φ(v) = γv −
∑

x∈Ch(v)

(
αx

2

)
· βv.

Computing φ(v) requires O(|Ch(v)|) time; hence, the time complexity for computing |R(T)|

is O(
∑

v∈V(T) |Ch(v)|), which is O(n).

Since |R(T)|+|U(T)| =
(
n
3

)
, the value |U(T)| is easily computed inO(1) additional time.

4.5.3 Computing |S(T1, T2)|

We now describe an O(n2) time algorithm to compute the size of the set S(T1, T2) of shared

triplets; that is, triplets that are fully, and identically, resolved in T1 and T2.

For any u ∈ V(T1) \ (rt(T1)∪L(T1)) and v ∈ V(T2) \ (rt(T2)∪L(T2)), let s(u, v) denote the

number of identical triplet trees strictly induced by edge (u, pa(u)) in T1 and edge (v, pa(v)) in

T2. Our algorithm uses the values computed in the preprocessing step to compute the number

s(u, v). We have the following result.

62

Lemma 4.5.4. Given T1 and T2, we have,

|S(T1, T2)| =
∑

u∈V(T1)\(rt(T1)∪L(T1)),
v∈V(T2)\(rt(T2)∪L(T2))

s(u, v). (4.11)

Proof. Consider any triplet X ∈ S(T1, T2). Since T1|X is fully resolved and T1|X = T2|X then,

by Lemma 4.5.2, there exists exactly one node u ∈ V(T1)\rt(T1) and one node v ∈ V(T2)\rt(T2)

such that the edge (u, pa(u)) strictly induces T1|X in T1, and edge (v, pa(v)) strictly induces

T2|X in T2. Additionally, neither u nor v can be leaf nodes in T1 and T2 respectively. Thus, X

would be counted exactly once in the right-hand side of Equation (4.11) in the value s(u, v).

Moreover, by the definition of s(u, v), any triplet tree that is counted on the right-hand side

of Equation (4.11) algorithm must belong to the set S(T1, T2). The Lemma follows.

The following lemma shows how to compute the value of s(u, v).

Lemma 4.5.5. Given any u ∈ V(T1)\ (rt(T1)∪L(T1)) and v ∈ V(T2)\ (rt(T2)∪L(T2)), s(u, v)

can be computed in O(|Ch(u)| · |Ch(v)|) time.

Proof. We will show that s(u, v) = n1(u, v)− n2(u, v)− n3(u, v) + n4(u, v), where

n1(u, v) =
(|L(T1(u))∩L(T2(v))|

2

)
· |L(T1(u)) ∩ L(T2(v))|,

n2(u, v) =
∑

x∈Ch(u)

(|L(T1(x))∩L(T2(v))|
2

)
· |L(T1(u)) ∩ L(T2(v))|,

n3(u, v) =
∑

x∈Ch(v)

(|L(T1(u))∩L(T2(x))|
2

)
· |L(T1(u)) ∩ L(T2(v))|, and,

n4(u, v) =
∑

x∈Ch(u)

∑
y∈Ch(v)

(|L(T1(x))∩L(T2(y))|
2

)
· |L(T1(u)) ∩ L(T2(v))|.

Consider any triplet tree, ab|c, counted in s(u, v). It can be verified that ab|c must satisfy

the following three conditions: (i) a, b ∈ L(T1(u)) ∩ L(T2(v)) and c ∈ L(T1(u)) ∩ L(T2(v)), (ii)

there does not exist any x ∈ Ch(u) such that a, b ∈ L(T1(x)), and (iii) there does not exist any

x ∈ Ch(v) such that a, b ∈ L(T2(x)). Moreover, observe that any triplet tree ab|c that satisfies

these three conditions is counted in s(u, v). Therefore, s(u, v) is exactly the number of triplets

trees that satisfy all three conditions (i), (ii) and (iii).

The number of triplet trees that satisfy condition (i) is given by n1(u, v). Some of the

triplet trees that satisfy condition (i) may not satisfy conditions (ii) or (iii); these must not

63

Procedure: S(T1, T2)
1: for each internal node u ∈ V(T1) \ rt(T1) do
2: for each internal node v ∈ V(T2) \ rt(T2) do
3: Compute s(u, v).
4: return the sum of all computed s(·, ·).

Figure 4.1 Computing |S(T1, T2)|

be counted in s(u, v). The value n2(u, v) is exactly the number of triplet trees that satisfy

condition (i) but not condition (ii). Similarly, n3(u, v) is exactly the number of triplet trees

that satisfy condition (i) but not (iii). Thus, the second and third terms must be subtracted

from the first term. However, there may be triplet trees that satisfy condition (i) but neither

(ii) nor (iii), and, consequently, get subtracted in both the second and third terms. In order

to adjust for these, the value n4(u, v) counts exactly those triplet trees that satisfy condition

(i) but not (ii) and (iii).

A summary of our algorithm to compute |S(T1, T2)| appears in Figure 4.1.

Lemma 4.5.6. Given two rooted phylogenetic trees T1 and T2 on the same n leaves, the value

|S(T1, T2)| can be computed in O(n2) time.

Proof. By Lemma 4.5.4, the algorithm of Figure 4.1 computes the value |S(T1, T2)| correctly.

We now analyze its complexity. The running time of the algorithm is dominated by the com-

plexity of computing the value s(u, v) for each pair of internal nodes u ∈ V(T1) and v ∈ V(T2).

According to Lemma 4.5.5, the value s(u, v) can be computed in O(|Ch(u)| · |Ch(v)|) time.

Thus, the total time complexity of the algorithm is O(
∑

u∈V(T1)

∑
v∈V(T2) |Ch(u)| · |Ch(v)|),

which is O(n2).

4.5.4 Computing |R1(T1, T2)|

Next, we describe anO(n2)-time algorithm that computes the cardinality of the setR1(T1, T2)

of triplets that are resolved only in tree T1. First, we need a definition. Let X be a triplet

that is unresolved in T2. Let v be the least common ancestor (lca) of X in T2. We say that X

64

is associated with v. Observe that node v must be internal and unresolved. Note also that X

is associated with exactly one node in T2.

For any u ∈ V(T1) \ (rt(T1)∪L(T1)) and v ∈ V(T2) \L(T1)), let r1(u, v) denote the number

of triplets X such that T1|X is strictly induced by edge (u, pa(u)) in T1, and X is associated

with the node v in T2.

The triplets counted in r1(u, v) must be resolved in T1 but unresolved in T2. Our algorithm

computes the value |R1(T1, T2)| by computing, for each u ∈ V(T1) \ (rt(T1) ∪ L(T1)) and

v ∈ V(T2) \ L(T2), the value r1(u, v). We claim that the sum of all the computed r1(u, v)’s

yields the value |R1(T1, T2)|.

Lemma 4.5.7. Given T1 and T2, we must have,

|R(T1, T2)| =
∑

u∈V(T1)\(rt(T1)∪L(T1)),
v∈V(T2)\L(T2)

r1(u, v). (4.12)

Proof. Consider any triplet X ∈ R1(T1, T2). By Lemma 4.5.2, there exists exactly one node

u ∈ V(T1) \ rt(T1) such that the edge (u, pa(u)) strictly induces T1|X in T1. Also observe that

there must be exactly one unresolved node v ∈ V(T2) with which X is associated. Additionally,

neither u nor v can be leaf nodes in T1 and T2 respectively. Thus, X would be counted exactly

once in the right-hand side of Equation (4.12); in the value r1(u, v). Moreover, by the definition

of r1(u, v), any triplet that is counted in the right-hand side of Equation (4.12) must belong

to the set R1(T1, T2). The lemma follows.

Given a path u1, u2, . . . , uk, where k ≥ 2, in tree T1 such that uk is an internal node and u1

is an ancestor of uk, let γ(u1, uk, v) denote the number of triplets X such that T1|X is induced

by every edge (ui−1, ui), for 2 ≤ i ≤ k, in T1 and X is associated with node v in T2.

The following lemma shows how the value of r1(u, v) can be computed by first computing

certain γ(·, ·, ·) values.

Lemma 4.5.8. For any u ∈ V(T1) \ (rt(T1) ∪ L(T1)) and v ∈ V(T2) \ L(T2)),

r1(u, v) = γ(pa(u), u, v)−
∑

x∈Ch(u)

γ(pa(u), x, v).

65

Proof. Let X = {a, b, c} be a triplet that is counted in r1(u, v). And, without loss of generality,

let T1|X = ab|c. It can be verified that X must satisfy the following three conditions: (i) X

must be associated with v in T2, (ii) a, b ∈ L(T1(u)) and c ∈ L(T1(u)), and (iii) there must

not exist any x ∈ Ch(u) such that a, b ∈ L(T1(x)). Moreover, observe that if there exists a

triplet X = {a, b, c} that satisfies these three conditions, then X will be counted in r1(u, v);

these three conditions are thus necessary and sufficient.

Now observe that γ(pa(u), u, v) counts exactly those triplets that satisfy conditions (i) and

(ii), while
∑

x∈Ch(u) γ(pa(u), x, v) counts exactly those triplets that satisfy conditions (i) and

(ii), but not condition (iii). The lemma follows immediately.

To compute the value of γ(·, ·, ·) efficiently we rely on the following lemma.

Lemma 4.5.9. Consider a path u1, u2, . . . , uk, where k ≥ 2, in tree T1 such that uk is an

internal node and u1 is an ancestor of uk. And let v ∈ V(T2) be an internal unresolved node.

Then,

γ(u1, uk, v) = n1(u1, uk, v)− n2(u1, uk, v)− n3(u1, uk, v)− n4(u1, uk, v), where

n1(u1, uk, v) =
(|L(T2(v))∩L(T1(uk))|

2

)
· |L(T2(v)) ∩ L(T1(u2))|,

n2(u1, uk, v) =
∑

x∈Ch(v)

(|L(T2(x))∩L(T1(uk))|
2

)
· |L(T2(x)) ∩ L(T1(u2))|,

n3(u1, uk, v) =
∑

x∈Ch(v)

(|L(T1(uk))∩L(T2(x))|
2

)
·
(
|L(T2(v)) ∩ L(T1(u2))| − |L(T2(x)) ∩ L(T1(u2))|

)
,

and

n4(u1, uk, v) =
∑

x∈Ch(v) |L(T2(x)) ∩ L(T1(uk))| · |L(T2(x)) ∩ L(T1(u2))|

·
(
|L(T2(v)) ∩ L(T1(uk))| − |L(T2(x)) ∩ L(T1(uk))|

)
.

Proof. Consider those triplets X for which T1|X is induced by every edge (ui−1, ui), for 2 ≤

i ≤ k, in T1, and T2|X is a subtree of T2(v). Let us call these triplets relevant. Any relevant

triplet must have all three leaves from L(T2(v)), two leaves from L(T1(uk)), and the third

leaf from L(T1(u2)). Also note that any triplet that satisfies these three conditions must be

relevant. The number of triplets that satisfy these conditions is exactly n1(u1, uk, v).

Any relevant triplet X must belong to one of the following four categories:

1. The lca of X in T2 is not node v : This implies that, in addition to being a relevant

66

Procedure: R1(T1, T2)
1: for each internal node u ∈ V(T1) \ {rt(T1)} do
2: for each internal unresolved node v ∈ V(T2) do
3: Compute r1(u, v).
4: return the sum of all computed r1(·, ·).

Figure 4.2 Computing |R1(T1, T2)|

triplet, all three leaves of X must belong to the same subtree of T2 rooted at a child of

v. The number of such triplets is thus simply n2(u1, uk, v).

2. The lca of X in T2 is node v, X is resolved in T2 and T1|X = T2|X : A relevant triplet

X satisfies this criterion if and only if there exists a child x ∈ Ch(v), such that the two

leaves of this triplet that belong to L(T1(uk)) in tree T1 also occur in L(T2(x)), and, the

third leaf (which occurs in L(T1(u2))| in T1) occurs in L(T2(y)) where y ∈ Ch(v) \ {x}.

The number of such X is thus equal to n3(u1, uk, v).

3. The lca of X in T2 is node v, X is resolved in T2, but T1|X 6= T2|X : A relevant triplet

X satisfies this criterion if and only if there exists a child x ∈ Ch(v), such that a pair

of the leaves of X that occur in L(T1(uk)) and L(T1(u2)) respectively in tree T1 occur

in L(T2(x)) in tree T2, and, the third leaf (which occurs in L(T2(x)) in T1) occurs in

L(T2(y)) where y ∈ Ch(v) \ {x}. The number of such X is thus given by n4(u1, uk, v).

4. The lca of X in T2 is node v, and X is unresolved in T2 : By definition, the number of

relevant triplets that satisfy this criterion is exactly γ(u1, uk, v).

We have shown that n2(u1, uk, v), n3(u1, uk, v), and n4(u1, uk, v) are exactly the number of

relevant triplets belonging to categories 1, 2, and 3 respectively. The lemma follows.

Remark. We do not compute the quantity γ(u1, uk, v) directly because doing so seems

to require higher time complexity than our indirect method.

A summary of our algorithm for computing |R1(T1, T2)| appears in Figure 4.2.

Lemma 4.5.10. Given two phylogenetic trees T1 and T2 on the same n leaves, the value

|R1(T1, T2)| can be computed in O(n2) time.

67

Proof. By Lemma 4.5.7, the algorithm of Figure 4.2 computes the value |R1(T1, T2)| correctly.

We now analyze its complexity. For any given candidate nodes u, v, Lemma 4.5.9 shows how to

compute γ(·, ·, v) in O(Ch(v)) time, and consequently, by Lemma 4.5.8, the value r1(u, v) can

be computed in O(|Ch(u)| · |Ch(v)|) time. Thus, the total time complexity of the algorithm is

O(
∑

u∈V(T1)

∑
v∈V(T2) |Ch(u)| · |Ch(v)|), which is O(n2).

4.6 An approximation algorithm for parametric quartet distance

We now consider the problem of computing the parametric quartet distance (PQD) between

two unrooted trees. Our main result is an O(n2)-time 2-approximate algorithm for PQD.

Our approach is similar to the one for computing the parametric triplet distance. Observe

that Proposition 4.5.1 and, thus, Equation (4.10) hold even when the unit of distance is quartets

instead of triplets. Christiansen et al. [19] show how to compute the values |S(T1, T2)|, |R(T1)|,

|U(T1)|, and |U(T2)| within O(n2) time. In Section 4.6.1 we show how to compute, in O(n2)

time, a value y such that |R1(T1, T2)| ≤ y ≤ 2|R1(T1, T2)|. Now, let us substitute the values of

|R(T1)|, |U(T1)|, |U(T2)| and |S(T1, T2)| into Equation (4.10), and use the value of y instead

of |R1(T1, T2)|. Assuming p ≥ 1/2, it can be seen that the result is a 2-approximation to

d(p)(T1, T2).

To summarize, we have the following result.

Theorem 4.6.1. Given two unrooted phylogenetic trees T1 and T2 on the same n leaves, and

a parameter p ≥ 1/2, a value x such that d(p)(T1, T2) ≤ x ≤ 2 · d(p)(T1, T2) can be computed in

O(n2) time.

We note that the (2p − 1) · |R1(T1, T2)| term in Eqn. (4.10) vanishes when p = 1
2 . In this

case, we don’t even need to compute |R1(T1, T2)| to get the exact value of d(p)(T1, T2).

4.6.1 Computing a 2-approximate value of |R1(T1, T2)|

Let (u, v) be an edge in tree T . Removal of this edge splits the tree T into two subtrees. We

denote the subtree that contains node u by T (←−u, v), and the other subtree by T (←−v, u). Also, we

define adj(u) to be the set of nodes that are adjacent to u. An (undirected) edge (u, v) ∈ E(T)

68

can be viewed as two directed edges (←−u, v) and (←−v, u). Let
←−
E (T) denote the set of directed

edges in tree T . Though our trees do not really contain any directed edges, the idea of viewing

an undirected edge as two directed ones will be useful for stating our algorithm and proving

its correctness.

To achieve the claimed time complexity, our algorithm relies on a preprocessing step which

computes and stores, for each pair of directed edges (←−−−u1, v1) ∈
←−
E (T1) and (←−−−u2, v2) ∈

←−
E (T2),

the quantity |L(T1(←−−−u1, v1)) ∩ L(T2(←−−−u2, v2))|. This can be accomplished in O(n2) by arbitrarily

rooting T1 and T2 at any internal node and proceeding as in the preprocessing step for the

triplet distance case (see Section 4.5.1).

Consider any two leaves a, b from L(T (←−u, v)), and any two leaves c, d from L(T (←−v, u)). Then,

the quartet {a, b, c, d} must appear resolved as ab|cd in T ; we say that the quartet tree ab|cd

is induced by the edge (u, v). Note that the same resolved quartet tree may be induced by

multiple edges in T . Additionally, if x ∈ u1 and y ∈ u2 for some u1, u2 ∈ adj(u)\{v} such that

u1 6= u2, then we say that the quartet tree ab|cd is strictly induced by the directed edge (←−u, v).

Consider a quartet {a, b, c, d}. Then, the corresponding quartet tree is unresolved in T if

and only if there exists exactly one node w such that the paths from w to a, w to b, w to c,

and w to d do not share any edges. We say that quartet {a, b, c, d} is associated with node w

in T . Thus, each unresolved quartet tree from T is associated with exactly one node in T .

For any directed edge (←−u, v) ∈
←−
E (T1) and w ∈ V(T2) \ L(T1), let r1((←−u, v), w) denote the

number of quartets X such that T1|X is strictly induced by the directed edge (←−u, v) in T1, and

X is associated with the node w in T2.

The quartets counted in r1((←−u, v), w) must be resolved in T1 but unresolved in T2. We have

the following result.

Lemma 4.6.1. Given T1 and T2, we have,

2 · |R1(T1, T2)| =
∑

(←−u,v)∈
←−
E (T1),

w∈V(T2)\L(T2)

r1((←−u, v), w).

Proof. Let X = {a, b, c, d} be any quartet in |R1(T1, T2)|. Without loss of generality, assume

that T1|X = ab|cd, and that X is associated with node w ∈ V (T2) \ L(T2). Since X appears

69

resolved in T1,
←−
E (T1) must have exactly two directed edges, say (←−−−u1, v1) and (←−−−u2, v2), which

strictly induce ab|cd. Thus, X is counted in exactly two of the r1(·, ·)’s, namely, r1((←−−−u1, v1), w),

and r1((←−−−u2, v2), w). The lemma follows.

Thus, we can compute |R1(T1, T2)| by computing all the O(n2), r1((←−u, v), w)’s. However,

doing so seems to require at least Θ(n2 · d) time, where d is the degree of T1. Instead, our

algorithm computes a 2-approximate value of |R1(T1, T2)| in O(n2) time. For this we rely on

the next lemma.

Lemma 4.6.2. Given T1 and T2, let T ′1 denote the rooted tree obtained from T1 by designating

any internal node in V (T1) as the root. Then,

|R1(T1, T2)| ≤
∑

u∈V(T ′
1)\(rt(T ′

1)∪L(T ′
1)),

w∈V(T2)\L(T2)

r1((
←−−−−−
u, pa(u)), w) ≤ 2 · |R1(T1, T2)|.

Proof. First, observe that if u ∈ L(T ′1) and w ∈ V(T2) \ L(T2), then r1((
←−−−−−
u, pa(u)), w) = 0.

Therefore, we must have

∑
u∈V(T ′

1)\(rt(T ′
1)∪L(T ′

1)),
w∈V(T2)\L(T2)

r1((
←−−−−−
u, pa(u)), w) =

∑
u∈V(T ′

1)\rt(T ′
1),

w∈V(T2)\L(T2)

r1((
←−−−−−
u, pa(u)), w).

Second, observe that E(T1) = E(T ′1) and, therefore, by Lemma 4.6.1, we must have

∑
u∈V(T ′

1)\rt(T ′
1),

w∈V(T2)\L(T2)

r1((
←−−−−−
u, pa(u)), w) ≤ 2 · |R1(T1, T2)|.

This proves the second inequality in the lemma.

To complete the proof, we now prove the first inequality. Let X = {a, b, c, d} be any

quartet in |R1(T1, T2)|, and, without loss of generality, assume that T1|X = ab|cd, and that X

is associated with node w ∈ V (T2) \ L(T2). Since X appears resolved in T1,
←−
E (T1) must have

exactly two directed edges, say (←−−−u1, v1) and (←−−−u2, v2), which strictly induce ab|cd. Consider the

edge (u1, v1) ∈ E(T ′1). There are two possible cases: Either v1 = pa(u1), or u1 = pa(v1). If

v1 = pa(u1) then the quartet X will be counted in the value r1((
←−−−−−−
u1, pa(u1)), w). Otherwise, if

u1 = pa(v1), then u1, v1, v2, u2 must appear on a same root-to-leaf path in T ′1. Consequently,

70

we must have v2 = pa(u2) and the quartet X would be counted in the value r1((
←−−−−−−
u2, pa(u1)), w).

Thus, we must have |R1(T1, T2)| ≤
∑

u∈V(T ′
1)\rt(T ′

1)

∑
w∈V(T2)\L(T2) r1((

←−−−−−
u, pa(u)), w). The lemma

follows.

Thus, the idea for efficiently computing 2-approximate value of |R1(T1, T2)| is to first root

T1 arbitrarily at any internal node and then compute the value r1((
←−−−−−
u, pa(u)), w) for each non-

root node u ∈ V (T1) and each w ∈ V(T2) \ L(T1).

We now direct our attention to the problem of efficiently computing all the required values

r1(·, ·). Given a path u1, u2, . . . , uk in T1, where k ≥ 2, let γ(u1, uk, w) denote the number

of quartets X such that T1|X is induced in T1 by every edge (ui−1, ui), 2 ≤ i ≤ k, and X is

associated with node w in T2.

The following lemma is analogous to Lemma 4.5.8, and shows how the value r1(·, ·) can be

computed by first computing certain γ(·, ·, ·) values.

Lemma 4.6.3. Let (u, v) ∈ E(T1), and w ∈ V(T2) \ L(T2)), then,

r1((←−u, v), w) = γ(u, v, w)−
∑

x∈adj(u)\{v}

γ(x, v, w).

Proof. Let X = {a, b, c, d} be a quartet that is counted in r1((←−u, v), w). And, without loss

of generality, let T1|X = ab|cd such that a, b ∈ L(T1(←−u, v)). It can be verified that X must

satisfy the following three conditions: (i) X must be associated with node w in T2, (ii) a, b ∈

L(T1(←−u, v)) and c, d ∈ L(T1(←−v, u)), and (iii) there must not exist any x ∈ adj(u) \ {v} such

that a, b ∈ L(T1(←−−x, u)). Moreover, observe that if there exists a quartet X = {a, b, c, d} that

satisfies these three conditions, then X will be counted in r1((←−u, v), w); these three conditions

are thus necessary and sufficient.

Now observe that γ(u, v, v) counts exactly all those quartets that satisfy conditions (i) and

(ii), while
∑

x∈Ch(u) γ(pa(u), x, v) counts exactly all those quartets that satisfy conditions (i)

and (ii), but not condition (iii). The lemma follows.

To state our next results we need the following notation. Given phylogenetic trees T1 and

T2, consider a path u1, u2, . . . , uk where k ≥ 2, in tree T1, and an internal node w ∈ V(T2) of

71

degree at least 4. Let P = L(T1(←−−−u1, u2)), Q = L(T1(←−−−−−uk, uk−1) and let x1, . . . , x| adj(w)| denote

the neighbors of w. Consider the quartets that are induced by every edge (ui−1, ui), 2 ≤ i ≤ k,

in T1: Let us call these quartets relevant. Observe that a quartet is relevant if and only if it

contains exactly two leaves from P and two leaves from Q. Let

1. n1(u1, uk, w) denote the number of relevant quartets X for which there exists a neighbor

x of w in tree T2, such that X is completely contained in T2(←−−x,w),

2. n2(u1, uk, w) denote the number of relevant quartets X for which there exist two neigh-

bors x, y of w in tree T2, such that T2(←−−x,w) contains three leaves from X and T2(←−−y, w)

contains the other leaf,

3. n3(u1, uk, w) denote the number of relevant quartets X for which there exist two neigh-

bors x, y of w in tree T2, such that T2(←−−x,w) contains two leaves from X and T2(←−−y, w)

contains the other two leaves, and

4. n4(u1, uk, w) denote the number of relevant quartets X for which there exist three neigh-

bors x, y, z of w in tree T2, such that T2(←−−x,w) contains two leaves from X, T2(←−−y, w)

contains one leaf from X, and T2(←−−z, w) contains the remaining leaf.

Then, we must have the following.

Lemma 4.6.4.

γ(u1, uk, w) =
(
|P |
2

)
·
(
|Q|
2

)
− n1(u1, uk, w)− n2(u1, uk, w)− n3(u1, uk, w)− n4(u1, uk, w).

(4.13)

Proof. The term
(|P |

2

)
·
(|Q|

2

)
is the number of relevant quartets. Furthermore, each relevant

quartet must occur in tree T2 in exactly one of the five configurations captured by the terms

n1(u1, uk, w), n2(u1, uk, w), n3(u1, uk, w), n4(u1, uk, w), and γ(u1, uk, w). The lemma follows.

The following four lemmas deal with the computation of the values n1(u1, uk, w), n2(u1, uk, w),

n3(u1, uk, w), and n4(u1, uk, w).

72

Lemma 4.6.5. The value n1(u1, uk, w) can be computed in O(| adj(w)|) time.

Proof. We will show that

n1(u1, uk, w) =
| adj(w)|∑
i=1

(
|L(T2(←−−xi, w)) ∩ P |

2

)
·
(
|L(T2(←−−xi, w)) ∩Q|

2

)
. (4.14)

The right hand side of Equation (4.14) counts all those quartets which are completely

contained in L(T2(←−−x,w)) for some x ∈ adj(w) and which have two elements from P and two

from Q. These are exactly the quartets that must be counted in n1(u1, uk, w).

Lemma 4.6.6. The value n2(u1, uk, w) can be computed in O(| adj(w)|) time.

Proof. We will show that

n2(u1, uk, w) =
| adj(w)|∑
i=1

(
|L(T2(←−−xi, w)) ∩ P |

2

)
· |L(T2(←−−xi, w)) ∩Q| · |L(T2(←−−w, xi)) ∩Q| (4.15)

+
| adj(w)|∑
i=1

(
|L(T2(←−−xi, w)) ∩Q|

2

)
· |L(T2(←−−xi, w)) ∩ P | · |L(T2(←−−w, xi)) ∩ P |.

The quartets X counted in n2(u1, uk, w) are exactly those quartets for which there exist

two neighbors x, y of w such that either (i) X ∩ L(T2(←−−x,w)) contains two leaves from P and

one from Q, and X ∩ L(T2(←−−y, w)) contains a leaf from Q or (ii) X ∩ L(T2(←−−x,w)) contains two

leaves from Q and one from P , and X ∩L(T2(←−−y, w)) contains a leaf from P . The first term on

the right hand side of Equation (4.15) is exactly the number of quartets that satisfy condition

(i), and the second term on the right hand side is exactly the number of quartets satisfying

condition (ii).

Lemma 4.6.7. The value n2(u1, uk, w) can be computed in O(| adj(w)|) time.

Proof. We will show that

n3(u1, uk, w) =
| adj(w)|∑
i=1

{
α−

(
|L(T2(←−−xi, w)) ∩ P |

2

)}
·
(
|L(T2(←−−xi, w)) ∩Q|

2

)
(4.16)

+
1
2

| adj(w)|∑
i=1

{γ − |L(T2(←−−xi, w)) ∩ P | · |L(T2(←−−xi, w)) ∩Q|} · |L(T2(←−−xi, w)) ∩ P |

·|L(T2(←−−xi, w)) ∩Q|.

73

Where,

α =
| adj(w)|∑
i=1

(
|L(T2(←−−xi, w)) ∩ P |

2

)
, (4.17)

γ =
| adj(w)|∑
i=1

|L(T2(←−−xi, w)) ∩ P | · |L(T2(←−−xi, w)) ∩Q|. (4.18)

The quartets X counted in n3(u1, uk, w) are exactly those quartets for which there exist

two neighbors x, y of w such that either (i) X ∩ L(T2(←−−x,w)) contains two leaves from P , and

T2(←−−y, w) contains two leaves from Q, or (ii) X ∩L(T2(←−−x,w)) and X ∩L(T2(←−−y, w)) both contain

one leaf each from P and Q. The first term on the right hand side of Equation (4.16) is exactly

the number of quartets that satisfy condition (i). The sum in the second term on the right

hand side counts the quartets satisfying condition (ii) exactly twice each (due to the symmetry

between x and y in condition (ii)). This explains the 1
2 multiplicative factor.

Lemma 4.6.8. The value n2(u1, uk, w) can be computed in O(| adj(w)|) time.

Proof. We will show that

n4(u1, uk, w) =
| adj(w)|∑
i=1

(
|L(T2(←−−xi, w)) ∩ P |

2

)
·
(
|L(T2(←−−w, xi)) ∩Q|

2

)
(4.19)

+
| adj(w)|∑
i=1

(
|L(T2(←−−xi, w)) ∩Q|

2

)
·
(
|L(T2(←−−w, xi)) ∩ P |

2

)

+
| adj(w)|∑
i=1

|L(T2(←−−xi, w)) ∩ P | · |L(T2(←−−xi, w)) ∩Q| · |L(T2(←−−w, xi)) ∩ P |

·|L(T2(←−−w, xi)) ∩Q|

− 2 · n3(u1, uk, w).

The quartets X counted in n4(u1, uk, w) are exactly those quartets for which there exist

three neighbors x, y, z of w such that either (i) X ∩ L(T2(←−−x,w)) contains two leaves from P ,

and T2(←−−y, w) and T2(←−−z, w) each contain a leaf from Q, or (ii) X ∩ L(T2(←−−x,w)) contains two

leaves from Q, and X ∩ L(T2(←−−y, w)) and X ∩ L(T2(←−−z, w)) each contain a leaf from P , or (iii)

X ∩L(T2(←−−x,w) contains a leaf from P and a leaf from Q, X ∩L(T2(←−−y, w)) contains a leaf from

P , and X ∩ L(T2(←−−z, w)) contains a leaf from Q.

74

Procedure: Approx-R1(T1, T2)
1: Convert the unrooted tree T1 into a rooted one by rooting it at any internal node.
2: for each internal node u ∈ V(T1) \ rt(T1) do
3: for each internal unresolved node w ∈ V(T2) do
4: Compute r1((

←−−−−−
u, pa(u)), w).

5: return the sum of all computed r1(·, ·).

Figure 4.3 Computing a 2-approximation to |R1(T1, T2)|

The first term on the right hand side of Equation (4.19) counts all the quartets that satisfy

condition (i), and, in addition, all the quartets that satisfy condition (i) from the proof of

Lemma 4.6.7. Similarly, the second term on the right hand side counts the quartets that

satisfy condition (ii), along with all the quartets that satisfy condition (i) from the proof

of Lemma 4.6.7. The third term on the right hand side counts those quartets that satisfy

condition (iii), and also counts, exactly twice each (again due to symmetry), those that satisfy

condition (ii) from the proof of Lemma 4.6.7.

Lemma 4.6.9. Given two unrooted phylogenetic trees T1 and T2 on the same size n leaf set,

a value y such that |R1(T1, T2)| ≤ y ≤ 2 · |R1(T1, T2)| can be computed in O(n2) time.

Proof. Our algorithm to compute a 2-approximate value of |R1(T1, T2)| is summarized in Fig-

ure 4.3. Lemma 4.6.2 immediately implies that the algorithm computes a value between

|R1(T1, T2)| and 2 · |R1(T1, T2)|.

We now analyze the time complexity of our algorithm. By Lemmas 4.6.5, 4.6.6, 4.6.7,

and 4.6.8, the values n1(u1, uk, w), n2(u1, uk, w), n3(u1, uk, w), and n4(u1, uk, w) can all be

computed within O(| adj(w)|) time. Hence, by Lemma 4.6.4, the value of any γ(·, ·, w) can be

computed in O(| adj(w)|) time. Lemma 4.6.3 now implies that, for any given (u, v) ∈ E(T1) and

w ∈ V(T2) \L(T2)), the value r1((←−u, v), w) can be computed within O(| adj(u)| · | adj(w)|) time.

Thus, the total time complexity of the algorithm is O(
∑

u∈V(T ′
1)

∑
w∈V(T2) |Ch(u)| · | adj(w)|),

which is O(n2).

75

CHAPTER 5. General Conclusion

This thesis deals with three different problems related to phylogeny construction: The

gene-duplication problem, the duplication-loss problem, and the problem of effectively and

efficiently comparing phylogenies. Our algorithm for the gene-duplication problem, presented

in Chapter 2, has already been successfully applied to biological data. Burleigh et al., in [15],

used an implementation of our algorithm to infer the plant tree of life on 136 species from

18,896 input gene trees. This analysis would have been infeasible to perform without our

efficient algorithm. However, a lot more needs to be done in order to make the gene-duplication

and duplication-loss problems even more amenable to large scale phylogenetic analyses. For

example, it would help to have efficient branch and bound or integer programming based

techniques for solving the gene-duplication and duplication-loss problems exactly. This could

be used to verify the performance of the local search heuristics used to solve these problems

in practice. Efficient and effective ways to deal with error in the input trees are also needed.

Our work on comparing phylogenies was inspired in part by the problem of building con-

sensus trees. One way to obtain a consensus tree from a host of input trees is to define an

appropriate distance measure between trees, and then to declare the median tree as the con-

sensus tree. Since our parametric distance measure is a metric for p ≥ 1/2, we can easily find a

2-approximation to the median tree (by simply picking an input tree that minimizes the total

distance to the other input trees as our solution). However, it is not known whether comput-

ing the median tree under our parametric triplet/quartet distance measure is easy; we suspect

that it is NP-hard. It would also be interesting to see if our measure can be generalized to

supertrees, while maintaining some of its desirable mathematical and algorithmic properties.

76

BIBLIOGRAPHY

[1] B. L. Allen and M. Steel, Subtree transfer operations and their induced metrics on evolu-

tionary trees, Annals of Combinatorics 5 (2001), 1–13.

[2] Lars Arvestad, Ann-Charlotte Berglund, Jens Lagergren, and Bengt Sennblad, Bayesian

gene/species tree reconciliation and orthology analysis using mcmc, ISMB (Supplement of

Bioinformatics), 2003, pp. 7–15.

[3] , Gene tree reconstruction and orthology analysis based on an integrated model for

duplications and sequence evolution, RECOMB, 2004, pp. 326–335.

[4] M. S. Bansal, J. G. Burleigh, O. Eulenstein, and A. Wehe, Heuristics for the gene-

duplication problem: A Θ(n) speed-up for the local search, RECOMB, 2007, pp. 238–252.

[5] Mukul S. Bansal, Algorithms for minimum bipartite fill-in and the gene-duplication prob-

lem, Master’s thesis, Iowa State University, Ames, Iowa, USA, 2006.

[6] Mukul S. Bansal, Jianrong Dong, and David Fernández-Baca, Comparing and aggregating

partially resolved trees, LATIN, 2008, pp. 72–83.

[7] Mukul S. Bansal and Oliver Eulenstein, The gene-duplication problem: Near-linear time

algorithms for NNI based local searches, ISBRA, 2008, pp. 14–25.

[8] , An Ω(n2/ log n) speed-up of TBR heuristics for the gene-duplication problem,

IEEE/ACM Transactions on Computational Biology and Bioinformatics 5 (2008), no. 4,

514–524.

[9] M. A. Bender and M. Farach-Colton, The LCA problem revisited, LATIN, 2000, pp. 88–94.

77

[10] P. Bonizzoni, G. D. Vedova, and R. Dondi, Reconciling a gene tree to a species tree under

the duplication cost model, Theor. Comput. Sci. 347 (2005), no. 1-2, 36–53.

[11] M. Bordewich and C. Semple, On the computational complexity of the rooted subtree prune

and regraft distance, Annals of Combinatorics 8 (2004), 409–423.

[12] Gerth S. Brodal, Rolf Fagerberg, and Christian N. S. Pedersen, Computing the quartet

distance in time O(n log n), Algorithmica 38 (2003), no. 2, 377–395.

[13] David Bryant, Building trees, hunting for trees, and comparing trees: Theory and methods

in phylogenetic analysis, Ph.D. thesis, Department of Mathematics, University of Canter-

bury, New Zealand, 1997.

[14] David Bryant, John Tsang, Paul Kearney, and Ming Li, Computing the quartet distance

between evolutionary trees, SODA ’00: Proceedings of the Eleventh Annual ACM-SIAM

Symposium on Discrete Algorithms (Philadelphia, PA, USA), Society for Industrial and

Applied Mathematics, 2000, pp. 285–286.

[15] J. G. Burleigh, M. S. Bansal, O. Eulenstein, S. Hartmann, A. Wehe, and T. Vision,

Genome-Scale Phylogenetics: Inferring the Plant Tree of Life from 18,896 Discordant

Gene Trees, Under review, 2009.

[16] Cedric Chauve, Jean-Philippe Doyon, and Nadia El-Mabrouk, Gene family evolution by

duplication, speciation, and loss, Journal of Computational Biology 15 (2008), no. 8,

1043–1062.

[17] Duhong Chen, Oliver Eulenstein, David Fernández-Baca, and J. Gordon Burleigh, Im-

proved heuristics for minimum-flip supertree construction, Evolutionary Bioinformatics 2

(2006), 347–356.

[18] K. Chen, D. Durand, and M. Farach-Colton, Notung: a program for dating gene dupli-

cations and optimizing gene family trees, Journal of Computational Biology 7 (2000),

429–447.

78

[19] Chris Christiansen, Thomas Mailund, Christian N.S. Pedersen, Martin Randers, and Mar-

tin Stig Stissing, Fast calculation of the quartet distance between trees of arbitrary degrees,

Algorithms for Molecular Biology 1 (2006), no. 16.

[20] J. A. Cotton and R. D. M. Page, Phylogenetic supertrees: Combining information to

reveal the tree of life, ch. Tangled tales from multiple markers: reconciling conflict between

phylogenies to build molecular supertrees, pp. 107–125, Springer-Verlag, 2004.

[21] J. A. Cotton, C. S. Slater, and M. Wilkinson, Discriminating supported and unsupported

relationships in supertrees using triplets, Systematic Biology 55 (2006), no. 2, 345–350.

[22] William H. E. Day, Analysis of quartet dissimilarity measures between undirected phylo-

genetic trees, Systematic Zoology 35 (1986), no. 3, 325–333.

[23] O. Eulenstein, Predictions of gene-duplications and their phylogenetic development, Ph.D.

thesis, University of Bonn, Germany, 1998, GMD Research Series No. 20 / 1998, ISSN:

1435-2699.

[24] Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, and Erik Vee, Compar-

ing partial rankings, SIAM J. Discrete Math. 20 (2006), no. 3, 628–648.

[25] M. Farach and M. Thorup, Optimal evolutionary tree comparison by sparse dynamic pro-

gramming, Proc. 35th Annual Symposium on Foundations of Computer Science (Piscat-

away, NJ), IEEE Computer Society Press, 1994, pp. 770–779.

[26] M. Fellows, M. Hallett, C. Korostensky, and U. Stege., Analogs & duals of the MAST

problem for sequences & trees, European Symposium on Algorithms (ESA), 1998, pp. 103–

114.

[27] J. Felsenstein, Inferring phylogenies, Sinauer Assoc., Sunderland, Mass, 2003.

[28] C. R. Finden and A. D. Gordon, Obtaining common pruned trees, J. Classification 2

(1985), no. 1, 225–276.

79

[29] M. Goodman, J. Czelusniak, G. W. Moore, A. E. Romero-Herrera, and G. Matsuda, Fit-

ting the gene lineage into its species lineage. a parsimony strategy illustrated by cladograms

constructed from globin sequences, Systematic Zoology 28 (1979), 132–163.

[30] P. Górecki and J. Tiuryn, On the structure of reconciliations, RECOMB Comparative

Genomics Workshop, 2004.

[31] R. Guigó, I. Muchnik, and T. F. Smith, Reconstruction of ancient molecular phylogeny,

Molecular Phylogenetics and Evolution 6 (1996), no. 2, 189–213.

[32] M. T. Hallett and J. Lagergren, New algorithms for the duplication-loss model, RECOMB,

2000, pp. 138–146.

[33] B. Ma, M. Li, and L. Zhang, From gene trees to species trees, SIAM J. Comput. 30 (2000),

no. 3, 729–752.

[34] W. P. Maddison, Reconstructing character evolution on polytomous cladograms, Cladistics

5 (1989), 365–377.

[35] W. P. Maddison and D.R. Maddison, Mesquite: a modular system for evolutionary anal-

ysis. version 2.6. http://mesquiteproject.org, 2009.

[36] B. Mirkin, I. Muchnik, and T. F. Smith, A biologically consistent model for comparing

molecular phylogenies, Journal of Computational Biology 2 (1995), no. 4, 493–507.

[37] R. D. M. Page, Maps between trees and cladistic analysis of historical associations among

genes, organisms, and areas, Systematic Biology 43 (1994), no. 1, 58–77.

[38] , GeneTree: comparing gene and species phylogenies using reconciled trees, Bioin-

formatics 14 (1998), no. 9, 819–820.

[39] , Extracting species trees from complex gene trees: reconciled trees and vertebrate

phylogeny, Molecular Phylogenetics and Evolution 14 (2000), 89–106.

[40] R. D. M. Page and J. Cotton, Vertebrate phylogenomics: reconciled trees and gene dupli-

cations, Pacific Symposium on Biocomputing, 2002, pp. 536–547.

80

[41] W. Piel, M. Sanderson, M. Donoghue, and M. Walsh, Treebase, http://www.treebase.org,

Last accessed 2 February 2007.

[42] D. F. Robinson and L. R. Foulds, Comparison of phylogenetic trees, Mathematical Bio-

sciences 53 (1981), 131–147.

[43] M. J. Sanderson and M. M. McMahon, Inferring angiosperm phylogeny from EST data

with widespread gene duplication, BMC Evolutionary Biology 7 (Suppl 1): S3 (2007).

[44] C. Semple and M. Steel, Phylogenetics, Oxford University Press, 2003.

[45] J. B. Slowinski, A. Knight, and A. P. Rooney, Inferring species trees from gene trees:

A phylogenetic analysis of the elapidae (serpentes) based on the amino acid sequences of

venom proteins, Molecular Phylogenetics and Evolution 8 (1997), 349–362.

[46] Yun S. Song, On the combinatorics of rooted binary phylogenetic trees, Annals of Combi-

natorics 7 (2003), no. 3, 365–379.

[47] M.A. Steel and D. Penny, Distributions of tree comparison metrics — some new results,

Systematic Biology 42 (1993), no. 2, 126–141.

[48] Michael A. Steel, Distributions on bicoloured evolutionary trees, Ph.D. thesis, Massey

University, 1989.

[49] Ulrike Stege, Gene trees and species trees: The gene-duplication problem is fixed-parameter

tractable, WADS, 1999, pp. 288–293.

[50] M. Stissing, Christian N. S. Pedersen, Thomas Mailund, Gerth Stølting Brodal, and Rolf

Fagerberg, Computing the quartet distance between evolutionary trees of bounded degree,

APBC (David Sankoff, Lusheng Wang, and Francis Chin, eds.), Advances in Bioinformat-

ics and Computational Biology, vol. 5, Imperial College Press, 2007, pp. 101–110.

[51] Ilan Wapinski, Avi Pfeffer, Nir Friedman, and Aviv Regev, Automatic genome-wide recon-

struction of phylogenetic gene trees, ISMB/ECCB (Supplement of Bioinformatics), 2007,

pp. 549–558.

81

[52] , Natural history and evolutionary principles of gene duplication in fungi, Nature

449 (2007), 54–61.

[53] A. Wehe, M. S. Bansal, J. G. Burleigh, and O. Eulenstein, DupTree: a program for large-

scale phylogenetic analyses using gene tree parsimony, Bioinformatics 24 (2008), no. 13,

1540–1541.

[54] L. Zhang, On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies,

Journal of Computational Biology 4 (1997), no. 2, 177–187.

	2009
	Algorithms for efficient phylogenetic tree construction
	Mukul Subodh Bansal
	Recommended Citation

	tmp.1335708365.pdf.rLSzF

