
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

Monitoring software using property-aware program
sampling
Harish Narayanappa
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Narayanappa, Harish, "Monitoring software using property-aware program sampling" (2010). Graduate Theses and Dissertations.
11410.
https://lib.dr.iastate.edu/etd/11410

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11410?utm_source=lib.dr.iastate.edu%2Fetd%2F11410&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Monitoring software using property-aware program sampling

by

Harish B Narayanappa

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Hridesh Rajan, Major Professor

David Fernández-Baca
Andrew Miner

Iowa State University

Ames, Iowa

2010

Copyright c© Harish B Narayanappa, 2010. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . iv

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. INTRODUCTION . 1

1.1 Thesis Outline . 3

CHAPTER 2. BACKGROUND . 4

2.1 Program Slicing . 4

2.1.1 Example: backward slicing . 4

2.1.2 Example: forward slicing . 6

2.2 Random Sampling . 6

2.3 Basic Definitions . 8

CHAPTER 3. APPROACH . 9

3.1 Problem restated . 9

3.2 Property-Aware Program Sampling . 9

3.2.1 Computation of slice fragments . 11

3.2.2 Normalizing slice fragment population . 13

3.2.3 Sampling fragments for statistical inference 14

CHAPTER 4. EVALUATION . 18

4.1 Environment and Tools . 18

4.2 Subject Programs . 19

iii

4.3 Assessment of statistical significance . 21

4.4 Assessment of sampling and coverage . 22

4.5 Runtime behavior . 25

CHAPTER 5. USE CASES . 32

5.1 Selective Call Path Monitoring . 32

5.2 Distributed Program Monitoring . 33

CHAPTER 6. RELATED WORK . 35

CHAPTER 7. CONCLUSION . 37

APPENDIX A. Reduced cover . 39

A.1 Reduced Cover Construction . 39

A.1.1 Alternate Reduced Cover Construction . 41

BIBLIOGRAPHY . 43

iv

LIST OF TABLES

Table 4.1 Static characteristics of subjects . 19

Table 4.2 Results of slice decomposition and reduction algorithm (Algorithm 1) on sub-

ject programs . 20

v

LIST OF FIGURES

Figure 2.1 An example of a backward slicing: shaded regions represent the backward

slice with <41, discount> as the slicing criterion 5

Figure 2.2 An example of a forward slicing: shaded regions represent forward slice with

<5, userName> as the slicing criterion . 7

Figure 3.1 Slice-pruned CFG for program in Figure 2.2 with respect to slicing criterion

<5, userName>. The numbers on the nodes correspond to the program line

numbers. 16

Figure 3.2 Slice fragments for the slice-pruned control-flow graph shown in Figure 3.1. . 17

Figure 4.1 jaxen-1 statistical analysis (C = coverage, S = samples): a) slice statement

coverage b) slice fragment coverage . 22

Figure 4.2 jaxen-2 statistical analysis (C = coverage, S = samples): a) slice statement

coverage b) slice fragment coverage . 23

Figure 4.3 xstream statistical analysis (C = coverage, S = samples): a) slice statement

coverage b) slice fragment coverage . 23

Figure 4.4 nanoxml statistical analysis (C = coverage, S = samples): a) slice statement

coverage b) slice fragment coverage . 24

Figure 4.5 spec/compress statistical analysis (C = coverage, S = samples): a) slice

statement coverage b) slice fragment coverage 24

Figure 4.6 spec/mtrt statistical analysis (C = coverage, S = samples): a) slice statement

coverage b) slice fragment coverage . 25

vi

Figure 4.7 jaxen-1 runtime analysis: Runtime statement execution (B) and space over-

head (C) under various sample sizes for selected inputs. (A) has these details

for full-slice instrumented version of the program. 26

Figure 4.8 jaxen-2 runtime analysis: Runtime statement execution (B) and space over-

head (C) under various sample sizes for selected inputs. (A) has these details

for full-slice instrumented version of the program. 27

Figure 4.9 xstream runtime analysis: Runtime statement execution (B) and space over-

head (C) under various sample sizes for selected inputs. (A) has these details

for full-slice instrumented version of the program. 28

Figure 4.10 nanoxml runtime analysis: Runtime statement execution (B) and space over-

head (C) under various sample sizes for selected inputs. (A) has these details

for full-slice instrumented version of the program. 29

Figure 4.11 Slice fragments captured: The tables show the slice fragments captured at

runtime over sampling iterations for some inputs 31

Figure 5.1 Slice-pruned call graph of a program . 32

Figure 5.2 Distribution of monitoring tasks across different instances of a program may

be possible based on different dimensions - simple grouping of fragments,

program input, frequency of execution . 33

vii

ACKNOWLEDGEMENTS

I take this opportunity to thank Dr. Hridesh Rajan for his guidance and support during my research

on this work. His research advice and emphasis on collaboration has been of great influence on my the-

sis work and my graduate studies at the university. He has also helped me improve my communication,

specifically the technical writing skills. Additionaly, in the beginning, he was patient with me when I

was struggling to find a thesis problem to work on.

I am thankful to Dr. Mukul S. Bansal for his collaboration on formalizing our ideas to make it more

precise and complete. He has been forthcoming and readily available for the discussions on any issues

or questions we faced.

I would also like to thank my lab mates, specifically Youssef Hanna and Rob Dyer, for their review

and discussions on the various approaches proposed. I would also like to acknowledge Mahantesh

Hosamani, as our collaborative work provided me the thesis problem to work on.

I am grateful to my parents B.R.Narayanappa and H.B.Shylaja, for their encouragement and moral

support during my time on this thesis work.

viii

ABSTRACT

Monitoring and profiling programs provides us with opportunities for its further analysis and im-

provement. Typically, monitoring or profiling, entails program to be instrumented to execute additional

code that collects the necessary data. However, a widely-understood problem with this approach is that

program instrumentation can result in significant execution overhead. A number of techniques based on

statistical sampling have been proposed to reduce this overhead. Statistical sampling based instrumen-

tation techniques, although effective in reducing the overall overhead, often lead to poor coverage or

incomplete results. The contribution of this work is a profiling technique that we call property-aware

program sampling. Our sampling technique uses program slicing to reduce the scope of instrumen-

tation and slice fragments to decompose large program slices into more manageable, logically related

parts for instrumentation, thereby improving the scalability of monitoring and profiling techniques. The

technical underpinnings of our work include the notion of slice fragments and an efficient technique

for computing a reduced set of slice fragments.

1

CHAPTER 1. INTRODUCTION

An insight into the runtime behavior of a deployed software application provides potential oppor-

tunities for its improvement. This has become more relevant today as the software evolves to become

more complex with shorter development and release cycles and limitations of simple static analysis

and testing techniques. Profiling or monitoring software provides such insights. The dynamic infor-

mation gathered from monitoring and profiling can be used in performance tuning of applications [12],

coverage-based testing [24], analyzing the application’s usability etc.

For monitoring or profiling and for tasks involving runtime analyses such as bug detection [27, 20],

continuous testing [2], dynamic optimization [5], it is often necessary to instrument programs. Full

instrumentation to collect data about all interesting program points is reported to cause between 10%

and 390% time and space overhead [14, 27]. A number of techniques have been proposed to reduce the

instrumentation overhead. Statistical sampling-based techniques, for example, instrument a randomly

selected, relatively smaller, subset of program points [4, 27]. A problem with random sampling of

program points is that it often provides inadequate profile of program points relevant to properties of

interest [20]. On the other hand if the selection of program points was based on particular concern or

criteria, intuitively, the generated profiles are likely to be more coherent in understanding the software

better. A problem with random sampling of program points is that to obtain an adequate profile of

program points relevant to a property of interest requires an unnecessarily large amount of samples [20].

Among other things, a profile with respect to a property of interest is helpful in focusing the developer’s

attention, and for reducing the complexity of profiling results [35].

To keep the cost of instrumentation low, while maintaining increased coverage with better monitor-

ing information and runtime profiles, we contribute the notion of property-aware program sampling.

A key insight, which we borrow from Hatcliffet al. [19] among others, is to focus the instrumentation

2

efforts on parts of program that are relevant for a property of interest, i.e. the program slice, with the

property as a slicing criterion [38, 32]. This helps focus instrumentation efforts on the desired parts of

a program. The computed program slices may tend to be as large as the program itself, especially in

well-modularized programs, where the modules are largely cohesive in nature [39]. To resolve this,

our profiling technique randomly samples statements from the program slice, as compared to sampling

from all statements in the program as in earlier approaches [4, 27].

An important issue to consider here is that randomly sampling statements provides inadequate cov-

erage of the implicit control relations between sampled statements. These implicit path profiles have

potential applications in performance tuning, continuous program optimizations, software test cover-

age, hot-path prediction and profile-directed compilation with respect to the property under consider-

ation. A random sample of statements may eventually cover all elements along different paths, thus

giving the needed profile information, however, such coverage would be infrequent. Moreover, if such

coverage is essential more samples would be needed, which would increase instrumentation overhead.

To address this issue, we introduce another strategy based on sampling a population that consists of

slice fragments. Informally, a slice fragment consists of a subset of the statements in the program slices

(we provide formal definitions in Section 2). The statements in a slice fragment are logically related

in that they capture the implicit control structure between the statements of the program slice. During

sampling, whenever a slice fragment is selected, there is a higher probability that the profile data for

all constituent statements will be collected. This translates to higher probability of better profile with

lower instrumentation overhead.

Our sampling strategy based on slice fragments is beneficial in cases where the slice of a program

may itself become very large [37, 39]; in some cases as large as the program. It provides a tradeoff

between overhead and profile information. It has lesser overhead compared to full program profiling.

It has more overhead compared to random sampling of program statements, but provides much more

information about implicit control paths, with potential benefits for use cases such as feedback-based

optimization.

3

1.1 Thesis Outline

The rest of this thesis is presented in the following chapters, in order, as follows:

Background: This chapter provides the background necessary for further chapters. It provides

explanation of program slicing with the help of examples. Then briefly discusses concept of random

sampling. It also provides formal definitions of important concepts upon which we develop our ap-

proach.

Approach: We restate the main problem and arising sub-problems addressed in this thesis. Further

in the chapter we discuss the steps of our approach - property-aware program slicing in detail.

Evaluation: We evaluate the various properties of our approach in this chapter. The details of

the tools and environment, followed by the experimental results such as, statistical significance and

coverage properties of random sampling on fragments are discussed here. Lastly, we provide sample

runtime analysis for a few programs under various sample sizes.

Related Work: In this chapter, we briefly list other studies which share similar goals and have

provided us with useful insight. The differences of our approach with respect the stated related works

are also mentioned.

Conclusion: We introspect on the contribution of this work with a summary. The limitations of the

work in its current state and possible enhancements for the future are also mentioned

4

CHAPTER 2. BACKGROUND

2.1 Program Slicing

Program slicing is a technique for computing a subset of a program with respect to a property of

interest. The result of this slicing is a program slice, which contains parts of the program which have

influenced, either directly or indirectly the property of interest, which is stated as a slicing criterion.

Weiser [38] first proposed this concept in the context of debugging. Since then, several notions of

program slicing have been proposed with applications in software testing, program comprehension,

software maintenance, software measurement, reverse engineering among others. For surveys on pro-

gram slicing, refer Tip [37] and Bao [39].

To compute a program slice, one needs to specify a slicing criterion in the beginning. It is usually

stated as tuple (p, V), where p identifies program point where the computation is to begin and V specifies

the subset of variables in the program reflecting the property of interest. The result of program slicing

based on a slicing criterion C = (p, V), is a decomposed subset which contains only those statements

that are likely to influence the values of variable stated in the slicing criterion.

2.1.1 Example: backward slicing

To illustrate the above with an example lets consider an example program in Figure 2.1, which pro-

cesses an input order Order. Suppose we specify the slicing criterion as <41, discount> for program

slice computation, where the program point here is specified by the line number of the statement in the

program and discount is the program variable of interest, then the shaded regions in the Figure 2.1

represent the program slice - statements which influence the value of discount at statement present at

line number 41.

The slicing illustrated so far represents backward slicing - subset of program which directly or

5

1 public int processOrder(Order order) {
...

3 int discount = 0;
...

5 int userName = order.userName;
6 int userId = getCustomerId(userName);
7 int itemId = order.itemId;

if (! validateCustomer(userId)) {
...

10 logInvalidOrder(userId, itemId);
11 return ERROR_CODE;
12 }

...
14 if (paymentMode == CREDIT_CARD) {

if (! creditCardValid(order.card)) {
...

18 logInvalidOrder(userId, itemId);
19 return ERROR_CODE;
20 }

22 if (isPremiumMember(userId))
23 discount += 0.05;

25 if (overStockedItem(itemId))
26 discount += 0.03;

...
28 updateInvetory(itemId);

...
30 recordCCTransaction(userId, itemId, price);
31 return SUCCESS;
32 }

...
34 if (isPremiumMember(userId)) {
35 discount += 0.03;
36 }

38 price = price - price * discount;
...

40 updateInvetory(itemId);
...

42 recordTransaction(userId, itemId, price);
...

44 logPerformance(...);
...

46 return SUCCESS;
47 }

Figure 2.1 An example of a backward slicing: shaded regions represent the back-
ward slice with <41, discount> as the slicing criterion

6

indirectly affects the value of a given variable at a particular statement. This was the original notion of

program slicing which helped debug unexpected values of variables at program statements by tracing

back in the program slice. In the context of debugging, program slices help reduce the scope of the task

and hence better productivity.

2.1.2 Example: forward slicing

A forward program slice consists of all statements in the program which are affected by the variables

in the slicing criterion [32, 34]. Taking the same example program as before, we illustrate the forward

slice with respect to slice criterion C = (5, userName). In Figure 2.2, the shaded statements represent

the forward program slice. The computation of forward slices is similar to that of backward slices,

except that forward dependencies are taken into account. Forward slices are applicable to scenarios

program comprehension and software re-engineering, where they help reduce the scope of task.

Program slicing have various other applications which are similar in treatment to the examples

shown previously. These various applications make use different properties of program slices.

2.2 Random Sampling

The goal of statistical sampling is to estimate or infer some property of the entire population based

on the data collected from only a subset of elements - samples. Assuming that the size of the population

is N , let s1, s2,...sN represent the constituent elements of the population . A subset of this population

is said to be a random sample if the subset si, si+1,...si+n containing n elements is chosen at random

from all
(
N
n

)
distinct possible subsets in which no element is included more than once. In other words,

each of the
(
N
n

)
subsets has the same probability

(
N
n

)−1
of being chosen. A simple random sample

of size n can be obtained by randomly drawing elements from the population one at a time, n times,

without replacing a drawn element back in the population i.e. once an element has been chosen in a

sample, it is removed from subsequent drawings [7, 6].

An important factor to consider during sampling is choosing an appropriate sample size which

has directly proportional to the sampling cost. The sampling size is correlated with the accuracy and

confidence of the statistical inference. If the sample size is small, then more samples need be taken for

7

1 public int processOrder(Order order) {
...

3 int discount = 0;
...

5 int userName = order.userName;
6 int userId = getCustomerId(userName);
7 int itemId = order.itemId;
8 if (! validateCustomer(userId)) {

...
10 logInvalidOrder(userId, itemId);
11 return ERROR_CODE;
12 }

...
14 if (paymentMode == CREDIT_CARD) {

16 if (! creditCardValid(order.card)) {
...

18 logInvalidOrder(userId, itemId);
19 return ERROR_CODE;
20 }

22 if (isPremiumMember(userId))
23 discount += 0.05;

25 if (overStockedItem(itemId))
26 discount += 0.03;

...
28 updateInventory(itemId);

...
30 recordCCTransaction(userId, itemId, price);
31 return SUCCESS;
32 }

...
34 if (isPremiumMember(userId)) {
35 discount += 0.03;
36 }

38 price = price - price * discount;
...

40 updateInventory(itemId);
...

42 recordTransaction(userId, itemId, price);
...

44 logPerformance(...);
...

46 return SUCCESS;
47 }

Figure 2.2 An example of a forward slicing: shaded regions represent forward
slice with <5, userName> as the slicing criterion

8

better analysis, while on the other hand if the sample size is too large, the benefit using of statistical

sampling in first place may be diminished. There is always a tradeoff between accuracy and confidence

of the statistical inference against the sampling cost: the better the confidence, the more expensive the

sampling.

Random sampling is typically applied to situations, where the generation of the population is not

predictable and its elements have no pre-defined behavior. Analysis of one or few random samples may

depict incorrect or random behavior with respect to the whole population, but if sufficient samples are

taken then results obtained are likely to be close to that of the population.

2.3 Basic Definitions

Let G = (V,E) be a directed graph, where V is the set of vertices of the graph and E ⊆ (V × V)

is the set of edges. Given vertices v, v′ ∈ V , a path in G from v to v′, denoted by v →+ v′, is defined

as follows: v →+ v′ ⇒ (v, v′) ∈ E or ∃v1, . . . , vk ∈ V such that {(v, v1), (v1, v2), . . . , (vk, v
′)} ⊆ E.

Definition 2.3.1 A control flow graph is a directed graph Gcfg = (V,E, v0), where V is a set of

nodes, representing a statement or group of statements, E ⊆ (V × V) is the directed edge set of the

graph representing potential flow of execution between the nodes, and v0 ∈ V denotes a unique entry

vertex. For convenience, it is assumed that all v ∈ V are reachable from v0 i.e. ∀v ∈ V , v0 →+ v

holds.

Definition 2.3.2 A forward static slice S constructed from program, p with respect to crieria C =

(X, c), is the set of statements and predicates that are affected by the values of any variables in X

starting at program point c.

Definition 2.3.3 A back edge in a control flow graph Gcfg = (V,E, v0) is any edge e ∈ E that points

to an ancestor in depth-first(DFS) traversal of the graph.

Any further references to “slice” or “program slice” in this thesis refers to a forward static slice [33,

32]. The back edges in control flow graph are encountered in case of loops, and recursion.

9

CHAPTER 3. APPROACH

In this chapter, we first restate the main problem along with the sub-problems we have attempted

to solve. Further sections, discuss the property-aware program sampling in detail.

3.1 Problem restated

• Monitoring or profiling programs entails program instrumentation which gathers the necessary

data at runtime. This instrumentation typically causes substantial execution overhead resulting

in either incomplete results or avoidance of instrumentation in the program.

• Program slicing is the process of computing subset of statements in a program that directly or

indirectly contribute to the computation performed at a given program point. In our approach,

we propose application of program slicing to reduce the scope of monitoring and profiling. A

well know problem with program slicing is that size of the slice may itself become large; in some

cases as large as the program itself [39, 37]. This problem may render application of program

slicing less lucrative.

• To manage the size of the program slice for instrumentation we decompose it into slice fragments

- path or data related subset of program points in the program slice. This decomposition may lead

to large number of slice fragments, plus some of them might be subsumed within one another.

This raises the issue of fairness of selection during random sampling

3.2 Property-Aware Program Sampling

There are two key insights which drive our approach. Firstly, selecting a subset of program entities

for monitoring and profiling is likely to reduce instrumentation overhead and facilitate efficient moni-

10

toring of a software application [3]. Program slicing, a static analysis technique, produces this subset

of program entities that are relevant to a slicing criterion. Others have used this insight for reducing the

scope of their task. For example, Hatcliff et al. [19] use program slice for reducing the size of the model

that Bandera [10], a model checker for Java verifies. Guo et al. [18] use similar technique for limiting

the input to their shape analysis technique, etc. We have used this technique to guide instrumentation

for monitoring and profiling programs. Limiting the scope of the monitoring technique to the program

slice may help achieve better profile of the parts of the program pertaining to the slicing criterion.

The second insight is that a slice need not be the unit of instrumentation as it often has the tendency

to become large [37, 39]. Instead, only a part of it can be instrumented at a time. The instrumented part

may vary guided by a statistical sampling plan. If the sample population is sufficiently large, samples

are taken sufficiently often and at random; attaining reasonably accurate profiles at a lower overhead

may become possible.

We came up with two possible strategies to decompose a program slice. Initial idea were to select

random program points from the program slice during sampling. This technique was naive but it sam-

pling would likely all program points in the slice. An alternative strategy would be to group statements

in the slice based on a logical relation between them. An example of such logical relation is control

flow relation, although other relations such as data-flow or a combination of these are also feasible

candidates.

The former idea of decomposition may have some advantages. Due to random selection of the

statements in a part, these statements are likely to be spread across the slice. These statements are

also likely to be spread across different control flow paths. If a part of the slice is selected and in-

strumented, the probability that one or more instrumented statements are in the current execution flow

of the program is high. Thus simple profile questions like “Is this statement ever executed?” can be

easily answered. However, a disadvantage is that the amount of information collected is likely to be

low and generally only sufficient for asking profile or monitoring questions related to individual pro-

gram points. The profile questions that require implicit path information are harder to answer without

significant instrumentation overhead and sampling cost.

The latter approach for decomposing a slice is more likely to help in answering better monitoring/

11

profiles questions. The relationship between statements that constitute a part of the slice facilitates

answering path-related questions that build on that logical relation. For example, the logical relation

“control flow” would facilitate answering questions such as “What are the frequently executed paths in

this program?”, “What are the major bottlenecks on a given path?”, etc.

The rest of the sections provide details on specific steps of the approach. Section 3.2.1 explains

and formalizes the notion of slice fragments. In Section 3.2.2, we discuss properties of slice fragment

population and the significance of its cover (Section 3.1). The above two sections are illustrated with

examples. The sampling and instrumentation techniques are discussed in the Section 3.2.3.

3.2.1 Computation of slice fragments

First, we compute program slice with relevance to a slicing criterion as depicted in Figure 2.2.

Such program slice can be computed using any of the numerous techniques proposed in the literature

(cf. [37]). The discussion of program slice computation is orthogonal to the scope of this thesis. After

this, we prune the control-flow graph (Section 2.3), corresponding to the original program, to limit

program points from program slice, while still maintaining the implicit control structures present in

between them in the original graph. Multiple edges between the same nodes of the modified graph, if

any, are reduced to a single edge.

This computed graph is termed as slice-pruned control-flow graph. Figure 3.1 shows the slice-

pruned control-flow graph for the forward program slicing example in Figure 2.2. The computation of

this graph is an important step geared towards the generation of slice fragments. We formally define

slice-pruned control flow graph as follows:

Definition 3.2.1 A slice-pruned control flow graph for a given control flow graph Gcfg = (V,E, v0)

and forward static slice S, is defined to be the graph Gs = (V ′, E′, v0,S) where:

• V ′ is a set of nodes representing slice statements i.e. ∀v ∈ V ′, v ∈ S,

• E′ = {(vi, vj) | (vi, vj) ∈ E, and vi, vj ∈ V ′}

∪ {(vi → vj) such that there exists a path < vi, v1, v2, . . . , vk, vj > in Gcfg, where vi, vj ∈ V ′

and v1, v2, . . . , vk 6∈ V ′, and

12

• v0 is the special entry node

A crucial part of our approach is to group these program points such that each group slice fragment –

is a logically related set with respect to a given property of interest. The construction of slice fragments

is as follows. A depth-first search beginning at the root node (identified by slicing criteria) of slice-

pruned control flow graph is kicked off. During this search we record each root node to leaf node

sequence of the pruned graph as a slice fragment. As a consequence, the back edges encountered

during loops, recursion and method return are ignored during the computation. This is to ensure that

fragments are acyclic paths.

The six slice fragments computed for the graph in Figure 3.1 are shown in Figure 3.2. Consider the

slice fragment 1 in Figure 3.2: it is a sequence 〈entry, 5, 6, 8, 10〉. Each node and its successor in this

sequence is part of the edge set E′ of the pruned graph. During the computation of fragments, the back

edges, if any (due to loops, recursion or method return) are ignored. Some properties worth mentioning

are that entry node is included in all fragments and that the fragments do not contain duplicate vertices.

Based on the above, we have the following definition of slice fragment.

Definition 3.2.2 A slice fragment δGs of a slice-pruned control flow graph Gs = (V ′, E′, v0,S) is a

sequence 〈v0, v1, v2, . . . , vn〉 where:

• v0, . . . , vn ∈ V ′, and vi 6= vj , where 0 ≤ i, j ≤ n and i 6= j,

• for any i, where 1 ≤ i ≤ n − 1, either (vi, vi+1) ∈ E′, or there exists a path in Gs from vi to

vi+1 such that all vertices on this path belong to the set {v1, . . . , vi+1}, and,

• either @v ∈ V ′ such that (vn, v) ∈ E′, or ∀v : (vn, v) ∈ E′ =⇒ v ∈ {v1, . . . , vn−1}

A slice fragment captures partial order(s) of implicit control relations between statements in the

program slice. The construction of the fragment ensures the properties mentioned in definition. Note

that this definition could be extended to relations other than control-flow, such as data-flow or combi-

nations of both.

13

3.2.2 Normalizing slice fragment population

The computed slice fragments ensure that they together encompass all the program points in the

slice of interest. No individual slice fragment can be larger than the slice itself. This is formally

captured in the following lemma. The following observation follows directly from the definition of

slice fragment.

Lemma 3.2.1 Let δGs be a slice fragment of a slice-pruned control flow graph Gs = (V ′, E′, v0,S).

Then, |δGs | ≤ |V ′|.

Proof: According to Definition 3.2.2, (i) each node in δGs belongs to V ′, and (ii) all the nodes in δGs

must be distinct. The lemma follows immediately.

3.2.2.1 Cover and Reduced Cover

The generated slice fragments form the population for sampling. The fragments in the popula-

tion are more often than not likely to be subsumed by one another - program points of a fragment are

completely encompassed within another. This is especially true in our case where typically the pro-

gram points are common across many control structures. To identify this fragment populations which

completely encompass program points in a slice, we define the concept of cover. In other words each

statement in the program slice is covered by at least one slice fragment of a cover. Trivially, the initial

population is a cover.

Definition 3.2.3 Given a slice-pruned control flow graph Gs = (V ′, E′, v0,S), we define a cover of

Gs, denoted by ΘGs , to be a set of slice fragments of Gs, such that for each v ∈ V ′, there exists

δ ∈ ΘGs such that v ∈ δ.

Including all the fragments in the population, may cause selection of fragments which subsume one

another in a sample. This in turn may prove unproductive with regard to a chosen sampling strategy.

This motivates the following definition.

Definition 3.2.4 A cover ΘGs of a slice-pruned control flow graph Gs is called a reduced cover if

there do not exist δ, δ′ ∈ ΘGs such that each element of δ is also an element of δ′.

14

For example, in Figure 3.2, fragments 1, 2, 3 and 5 together form a reduced cover of the slice

depicted in Figure 3.1. Note however, that fragments 1, 2, 3, 5 and 6 together form a cover, but not a

reduced cover of the slice.

For more on reduced cover and its construction refer Appendix A. One point to note here is that

a cover does not associate any order among its fragments and therefore the reduced cover algorithm

disregards the need to preserve or account for any order or priority of fragments in the resulting reduced

cover.

3.2.3 Sampling fragments for statistical inference

To address the need of profiling and monitoring tasks that are the focus of this work, the cost

of an individual monitoring step must remain fairly low, but a large number of such steps can be

applied [8, 31] to gain profile information. The main idea is to pick a random sample of slice fragments

periodically from the lot. The information obtained over a period of time from this sampling process

can then be used to analyze the program with respect to the property under consideration.

One approach would be to perform simple random sampling done without replacement, that is,

a member of the population is not chosen more than once in a sample. This approach is intuitively

appropriate as we have minimum advance information about the population of slice fragments.

Another approach to manage a large slice fragment population, would be group them into few

categories and then apply stratified sampling over these categories. This would give a better control

over the captured profile information.

Following are some of the possible ways in which slice fragments can be “grouped”.

• If the program slice is large and spans across many modules, then we could split up the fragments

at module level and execute sampling based instrumentation for each of these modules. This

granularity could be varied to work at the level methods or applications.

• Another option is to group fragments in the population by length, providing user better control

over the amount of instrumentation.

If some statements are common to a large number of slice fragments, they are likely to be selected

15

more often than others, leading to repeated profile of such points. Also, if the statements in a sample

of fragments are parts of loops or recursion, the monitoring overhead is likely to be huge. To alleviate

this problem, we could have a code check to collect no more than x profiles over a period of y samples.

16

Figure 3.1 Slice-pruned CFG for program in Figure 2.2 with respect to slicing
criterion <5, userName>. The numbers on the nodes correspond to
the program line numbers.

17

(#1) (#2) (#3) (#4) (#5) (#6)

Figure 3.2 Slice fragments for the slice-pruned control-flow graph shown in Fig-
ure 3.1.

18

CHAPTER 4. EVALUATION

In this chapter, we discuss the details of the experiment which depict the properties of our approach.

First we look into the experimental setup and tools used for the evaluation. The rest of the chapter

sections present the potential utility of the approach. To that end, we analyze two properties. The first

property of interest is whether, for a representative set of programs, our slice decomposition technique

produces a statistically significant population of slice fragments. Here, statically significant implies

that the population of constituent elements - the slice fragments, is large in number and average length

of a fragment is a small subset of program points for the property of interest. This is important to

keep the cost of instrumentation per sample to be low, but at the same time each of the samples should

be able to capture relevant information. In our approach, as fragments tend to share a lot program

points among them, a lower statistical significance may result in negligible gains at runtime. This

property is a necessary pre-condition for applying any random sampling technique that we mentioned

in Section 3.2.3. The empirical assessment of this property is described in Section 4.3. Second, we are

also interested in exploring the reduction in scope that our approach helps achieve for typical programs.

The empirical assessment of this property is also presented in Section 4.3. To study the properties of

our technique, we simulated a random sampling process on the reduced population to determine the

number of samples necessary to cover the population. This study is discussed in Section 4.4. In the last

section of the chapter, Section 4.5, we detail the typical runtime and space overhead of our approach

when compared to the full-slice instrumented version of the program.

4.1 Environment and Tools

To show the feasibility of our technique, we implemented our slice fragment computation and

reduced cover construction algorithms as a stand-alone tool. Our tool is implemented using the slicing

19

functionalities provided by the IBM T. J. Watson Libraries for Analysis (WALA) [44]. WALA is a

static analysis framework for Java bytecode, and provides a rich set of APIs for static analyses.

All experiments were conducted on a Dell Precision workstation with a 3.20GHz Intel Pentium D

Processor and 2 GB of RAM using Sun JDK version 1.5_06 that was limited to use at most 1.5GB of

heap space. WALA requires the input classes to be Java 5 bytecode compliant, therefore, all candidate

projects were compiled under Sun JDK 1.5.0_06. In all the experiments, core Java libraries were

excluded from the analysis.

Table 4.1 Static characteristics of subjects

Subjects Number of Classes Number of Methods Bytecode size (in KB)
jaxen 217 1153 389

xstream 331 1519 774

nanoxml 24 541 35

jlex 27 133 88

spec/compress 12 33 18

spec/mtrt 25 470 32

spec/jess 192 1061 67

4.2 Subject Programs

For the experiments, a variety of subject programs were selected from different sources. We se-

lected some open source programs, namely: jaxen - a XPath engine for Java [41], xstream - a library

to serialize objects to XML [45]. jlex - a lexical generator for Java [42], Another program, namely

nanoxml was sourced from the software-artifact infrastructure repository (SIR) [22] maintained by re-

searchers at University of Nebraska, Lincoln. Nanoxml is a simple SAX parser. In addition, mtrt,

compress and jess benchmarks from SPECjvm98 benchmarks [43] were also chosen. Table 4.1 shows

some static properties of these programs.

20

Ta
bl

e
4.

2
R

es
ul

ts
of

sl
ic

e
de

co
m

po
si

tio
n

an
d

re
du

ct
io

n
al

go
ri

th
m

(A
lg

or
ith

m
1)

on
su

bj
ec

tp
ro

gr
am

s

Su
bj

ec
ts

Sl
ic

in
g

cr
ite

ri
a

Sl
ic

e
si

ze
(S

)
R

aw
Sl

ic
e

Fr
ag

m
en

ts
R

ed
uc

ed
Sl

ic
e

Fr
ag

m
en

ts

PO
P

Fr
ag

m
en

t
le

ng
th

(a
ve

ra
ge

)

Fr
ag

m
en

t
le

ng
th

(%
of

S)

PO
P

R
ed

uc
tio

n
(%

of
R

aw
PO

P)

Fr
ag

m
en

t
le

ng
th

(a
ve

ra
ge

)

Fr
ag

m
en

t
le

ng
th

(%
of

S)

ja
xe

n-
1

X
Pa

th
ex

pr
es

si
on

23
2

79
12

5.
17

50
41

.4
2

13
5.

60

ja
xe

n-
2

X
Pa

th
ex

pr
es

si
on

11
1

41
16

14
.4

1
23

43
.9

0
16

14
.4

1

xs
tr

ea
m

<O
bj

ec
t>

fo
r

X
M

L
co

nv
er

si
on

17
3

94
82

31
17

.9
1

32
2

96
.6

26
15

.0
2

na
no

xm
l

<X
M

L
>

to
be

pr
o-

ce
ss

ed
14

0
14

17
43

30
.7

1
97

93
.1

5
42

30

jle
x

<F
ile

>
fo

r
le

xi
ca

l
an

al
ys

is
67

28
16

23
.8

8
14

50
18

26
.8

6

sp
ec

/c
om

pr
es

s
be

nc
hm

ar
k

39
7

32
67

94
23

.6
7

46
98

.5
9

79
19

.8
99

sp
ec

/m
tr

t
be

nc
hm

ar
k

13
0

26
9

50
38

.4
6

37
86

.2
4

56
43

.0
7

sp
ec

/je
ss

be
nc

hm
ar

k
42

53
15

35
.7

1
13

71
.6

9
15

35
.7

1

21

4.3 Assessment of statistical significance

The prototype tool was used to generate slice fragments for subject programs mentioned in the

previous section. The tool first computed the entire set of fragments and then applied the reduced cover

algorithm (Algorithm 1) discussed in Appendix A. to create a reduced population of fragments. For

this empirical study, we did not consider the algorithm discussed in Appendix A.1.1 for population

reduction as our simpler algorithm was able to handle the number of generated fragments.

Table 4.2 shows the results of the slice decomposition process to generate raw population and

its subsequent reduction. For each program, the slicing criteria selected is mentioned in the second

column. The slicing criterion was selected to be representative of its typical usage.

The size of the generated slice is shown in the third column of the figure. All subject programs,

when decomposed, showed a statistically significant population of slice fragments. In the Table 4.2,

jaxen-1 and jaxen-2 refer to the same program but differ in the way slice was instantiated, that is, the

slicing criteria was different in each case. It was observed that program slice of programs which were

almost of the same size, showed huge disparity in corresponding raw populations (as seen in case of

xstream vs. nanoxml, nanoxml vs spec/mtrt), primarily because of different control structures.

The reduced population computed was also found to be statistically significant, except in the case

of spec/jess and jlex. spec/compress showed the largest drop in fragment population on application of

the reduced cover algorithm. This benchmark implements a compression algorithm as a straight line

code in two methods with very few method calls and large number of small branches. The large number

of branches led to significant drop in population as most of them were subsumed. As there were no

significant bifurcation in the program’s control structure, number of resulting fragments remained low.

The least reduction was observed in jaxen-1. To begin with, jaxen-1 had a relatively lower number

of slice fragments. In addition, the implicit control structures within the program did not share much

common code for them to be eliminated during computation of reduced cover.

With the exception of the benchmark programs spec/mtrt and spec/jess, the average fragment length

was a small percentage of the slice (well within 30%). In mtrt benchmark, the control flow is within a

long method RenderScene with a number of small branches, leading to longer slice fragments.

We also observed that slice size was determined mostly by the slicing criteria and slice configuration

22

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

C

S

(a)

Sample Size: 2
Sample Size: 3
Sample Size: 5

0

20

40

60

80

100

0 10 20 30 40 50

C

S

(b)

Sample Size: 2 (22)
Sample Size: 3 (30)
Sample Size: 5 (43)

Figure 4.1 jaxen-1 statistical analysis (C = coverage, S = samples): a) slice
statement coverage b) slice fragment coverage

options and not by the size of the program, which was in line with our intuition.

4.4 Assessment of sampling and coverage

In this section, we empirically evaluate (i) the rate at which the slice fragments are covered during

random sampling - slice fragment coverage, (ii) the rate at which slice statements are covered by the

samples from reduced population - slice statement coverage, and (iii) the average number of unique

statements per sample. To this end, we simulated simple random sampling on the reduced population.

The results of these are presented in Figures 4.1-4.6 for most of the subject programs. The part (a)

of these figures depicts slice statement coverage, while part (b) shows slice fragment coverage of the

corresponding subject program.

Across all programs, it was observed that slice statements were covered in less number of sampling

iterations when compared to slice fragments. Slice fragments tend to share a lot of common statements

between them and therefore coverage of statements during sampling need not lead to coverage of

fragments. Moreover, the random selection process is on population of slice fragments and not on

slice statements. Due to this, it can also be observed that in most cases, the graph of statment coverage

appears slightly skewed when compared to that of fragment coverage. The results obtained were in

23

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20

C

S

(a)

Sample Size: 2
Sample Size: 3
Sample Size: 5

0

20

40

60

80

100

0 5 10 15 20 25

C

S

(b)

Sample Size: 2 (28)
Sample Size: 3 (35)
Sample Size: 5 (49)

Figure 4.2 jaxen-2 statistical analysis (C = coverage, S = samples): a) slice
statement coverage b) slice fragment coverage

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25

C

S

(a)

Sample Size: 5
Sample Size: 10
Sample Size: 15

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

C

S

(b)

Sample Size: 5 (57)
Sample Size: 10 (79)
Sample Size: 15 (90)

Figure 4.3 xstream statistical analysis (C = coverage, S = samples): a) slice
statement coverage b) slice fragment coverage

24

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25

C

S

(a)

Sample Size: 3
Sample Size: 5

Sample Size: 10
0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

C

S

(b)

Sample Size: 3 (66)
Sample Size: 5 (84)

Sample Size: 10 (102)

Figure 4.4 nanoxml statistical analysis (C = coverage, S = samples): a) slice
statement coverage b) slice fragment coverage

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30

C

S

(a)

Sample Size: 3
Sample Size: 5
Sample Size: 8

0

20

40

60

80

100

0 5 10 15 20 25 30

C

S

(b)

Sample Size: 3 (101)
Sample Size: 5 (156)
Sample Size: 8 (183)

Figure 4.5 spec/compress statistical analysis (C = coverage, S = samples): a)
slice statement coverage b) slice fragment coverage

25

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30

C

S

(a)

Sample Size: 2
Sample Size: 5
Sample Size: 8

0

20

40

60

80

100

0 5 10 15 20 25 30

C

S

(b)

Sample Size: 2 (66)
Sample Size: 5 (86)
Sample Size: 8 (96)

Figure 4.6 spec/mtrt statistical analysis (C = coverage, S = samples): a) slice
statement coverage b) slice fragment coverage

line with this intuition. The disparity in coverage of statements and fragments over sample iterations

was most pronounced in case of xstream. It showed that under different sample sizes, sampling 25

times was sufficient to reach near optimal statement coverage, whereas 120 samples were required to

observe the same in case of slice fragments. jaxen-2 showed skewed fragment coverage, due to small

population. In part (a) of the Figures 4.1-4.6, the numbers beside the sample sizes in the labels (with

round brackets) indicate the corresponding average number of unique statements per sample. When

the sample size chosen was relatively lower, these unique statements were observed to be significantly

small subsets of their corresponding program slices.

4.5 Runtime behavior

In this section, we record the observed runtime behavior for a few of the subject programs. The

purpose of this experiment was to study the overhead of our approach, by recording the runtime and

space overhead values for each of the programs over sample iterations when compared to the full-slice

instrumented version of the program.

During every iteration, we first randomly select a sample of slice fragments from pre-computed

reduced population of slice fragments. The statements from these fragments are then collected, nor-

26

All slice statements instrumented (FULL)
Runtime statement execution Increase in size (KB)
Input 1 Input 2 Input 3

104 170 117 260

(A)

Iteration Sample size = 2 Sample size = 3 Sample size = 5
Input
1

Input
2

Input
3

Input
1

Input
2

Input
3

Input
1

Input
2

Input
3

5 11 51 1 22 26 14 13 16 3
10 5 5 57 5 5 1 11 15 3
15 7 7 15 15 17 12 22 29 24
20 1 1 4 18 58 6 15 19 9
25 7 10 1 11 13 13 15 19 7
30 1 1 46 5 15 15 1 1 5
35 13 13 1 8 8 17 15 27 3
40 7 7 1 12 12 51 11 13 24
45 11 24 1 5 5 7 17 19 13
50 17 22 17 1 1 1 3 3 3

Avg. 7.12 10.26 8.98 9.82 13.7 14.22 15.7 24.18 18.82
% FULL 93.15 93.96 92.32 90.55 91.94 87.84 87.90 85.77 83.91

(B)

Iteration Increase in size (KB)
2 3 5

5 24 72 52
10 40 24 72
15 24 48 88
20 24 44 56
25 24 68 52
30 24 32 44
35 20 44 52
40 24 44 88
45 20 28 108
50 76 28 56

Avg. 33.36 49.68 66.32
% FULL 87.1 80.89 74.49

(C)

Figure 4.7 jaxen-1 runtime analysis: Runtime statement execution (B) and space
overhead (C) under various sample sizes for selected inputs. (A) has
these details for full-slice instrumented version of the program.

malized and then a simple instrumentation was performed - at the beginning of each statement, a log

statement was added to record the execution of the original statement. After this instrumentation, the

updated application classes are put on priority on classpath, so as to give them precedence during class

loading/ execution. The program is then run with the new classpath set, on different inputs (valid/

exception cases). The actual log printed for each of the inputs is recorded. It has to be noted that the

number of statement logs may be well over the number of statements selected for instrumentation for

a given iteration. This is because statements may be executed more that once, for example, due to loop

constructs and multiple invocations of a method which has some of its statements instrumented. The

above operation is repeated for various inputs under various sample sizes of slice fragments. In addi-

tion, at the end of each iteration, the space overhead added by the instrumentation is also noted. The

space overhead is computed for during each iteration of sampling and is not dependent on the actual

input to the program.

27

All slice statements instrumented (FULL)
Runtime statement execution Increase in size (KB)
Input 1 Input 2 Input 3

26 26 99 140

(A)

Iteration Sample size = 2 Sample size = 3 Sample size = 5
Input
1

Input
2

Input
3

Input
1

Input
2

Input
3

Input
1

Input
2

Input
3

5 14 14 14 5 5 13 21 21 35
10 5 5 26 5 5 55 5 5 26
15 1 1 15 5 5 26 16 16 64
20 1 1 7 8 8 16 14 14 67
25 4 4 12 5 5 14 19 19 72
30 4 4 6 1 1 13 5 5 56
35 14 14 22 5 5 58 1 1 4
40 5 5 14 21 21 26 8 8 24
45 1 1 48 4 4 24 7 7 19
50 4 4 7 5 5 15 4 4 58

Avg. 4.56 4.56 13.6 8.68 8.68 24. 10.42 10.42 33.94
% FULL 82.4 82.4 86.26 66.61 66.61 75.75 59.92 59.92 65.71

(B)

Iteration Increase in size (KB)
2 3 5

5 60 52 88
10 44 44 48
15 16 48 96
20 16 48 68
25 48 44 96
30 48 28 48
35 60 40 28
40 44 72 48
45 28 56 80
50 48 44 56
Avg. 36 50 64.72
% FULL 74.28 64.28 53.77

(C)

Figure 4.8 jaxen-2 runtime analysis: Runtime statement execution (B) and space
overhead (C) under various sample sizes for selected inputs. (A) has
these details for full-slice instrumented version of the program.

28

All slice statements instrumented (FULL)
Runtime statement execution Increase in size (KB)
Input 1 Input 2

238 262 532

(A)

Iteration Sample size = 5 Sample size = 10 Sample size = 15
Input
1

Input
2

Input
1

Input
2

Input
1

Input
2

5 92 110 98 110 104 119
10 77 86 101 113 144 162
15 65 77 138 156 129 141
20 117 126 107 125 110 128
25 86 98 101 113 144 162
30 122 146 156 174 107 125
35 89 104 86 104 138 156
40 101 113 122 140 122 146
45 86 98 113 137 116 134
50 92 104 116 134 113 131
55 80 92 129 141 113 131
60 74 83 159 183 137 161
65 129 141 98 110 141 159
70 110 128 144 162 174 198
75 80 86 119 137 119 137
80 68 80 147 165 116 134
85 126 138 110 128 156 174
90 122 146 113 131 128 146
95 104 122 113 131 122 146
100 128 152 122 146 150 168
105 98 116 131 152 138 156
110 89 104 110 128 144 162
115 95 107 98 116 171 195
120 92 104 86 104 171 195
Avg. 103.21 118.71 120.86 138.69 135.7 155.12
% FULL 56.63 54.69 49.21 47.06 42.98 40.79

(B)

Iteration Increase in size (KB)
5 10 15

5 192 236 292
10 204 252 264
15 164 256 300
20 184 252 292
25 172 248 304
30 188 268 264
35 224 192 296
40 180 212 288
45 200 236 300
50 200 264 268
55 216 240 280
60 188 252 296
65 192 212 312
70 196 268 312
75 184 256 288
80 180 224 284
85 216 232 264
90 164 252 300
95 192 240 276
100 164 260 288
105 156 244 252
110 176 244 300
115 180 280 300
120 184 168 292

Avg. 188.46 241.23 281.24
% FULL 64.57 54.65 47.13

(C)

Figure 4.9 xstream runtime analysis: Runtime statement execution (B) and
space overhead (C) under various sample sizes for selected inputs. (A)
has these details for full-slice instrumented version of the program.

29

All slice statements instrumented (FS)
Runtime statement execution Increase in size (KB)
Input 1 Input 2 Input 3
10878 51803 2349 112

(A)

Iteration Sample size = 3 Sample size = 5 Sample size = 10
Input
1

Input
2

Input
3

Input
1

Input
2

Input
3

Input
1

Input
2

Input
3

5 2343 1359 584 9974 4848 2066 10305 5067 2168
10 2445 1490 643 9703 4701 2000 5019 3266 1405
15 8928 4079 1740 9693 4686 2003 8851 4103 1751
20 8905 4082 1743 8993 4095 1756 10866 5488 2345
25 8905 4058 1731 2572 1525 664 8912 4114 1762
30 2543 1531 670 8527 3838 1637 4534 2906 1254
35 8286 3653 1556 3820 2421 1039 9694 4687 2004
40 9435 4515 1918 3920 2523 1088 9660 4662 1993

Avg. 4514.6 2235.5 957.7 5794.6 2874.2 1230.8 7153.6 3533.3 1512.1
% FS 58.49 95.68 59.22 46.73 94.45 47.60 34.23 93.17 35.62

(B)

Iteration Increase in size (KB)
3 5 10

5 76 88 96
10 76 80 96
15 68 84 92
20 84 96 96
25 80 84 96
30 84 84 100
35 68 80 88
40 60 84 92

Avg. 75.6 84.5 92.9
% FS 32.5 24.55 17.05

(C)

Figure 4.10 nanoxml runtime analysis: Runtime statement execution (B) and
space overhead (C) under various sample sizes for selected inputs.
(A) has these details for full-slice instrumented version of the pro-
gram.

30

Figures 4.7- 4.10, provide details of execution and space overhead for the select programs. Each

of these figures have three parts. Part A) provides the execution data obtained when the all of the slice

statements were instrumented. Part B) provides execution overhead is measured in terms of number of

instrumented logs recorded. (it is assumed that the overhead per instrument statement is constant) Part

C) provides space overhead recorded during sampling process. The measurement of execution data

in terms of statements as we will see, has the potential to reveal more information about behavior of

program for a given input.

In all cases, it was observed that as the sample size was increased, the corresponding logging of

instrumented slice statements also increased. If more fragments are selected during sampling, more

statements are likely to be instrumented. It was also observed that in certain iterations, for certain

inputs, there was hardly any logging. In case of jaxen-1 and jaxen-2, as seen in Part B) of Figure 4.7

and Figure 4.8 there are a lot of entries which have 1 in them. This is most probably due to logging of

just the instrumented root slice statement). This also implies, there was either insignificant overhead in

the above case.

In addition, in these above two cases, the statement execution overhead when compared to the full-

slice instrumented versions of the respective programs was significant (well above 60%). The runtime

gains obtained in case of xstream (Figure 4.9) were not too significant, but it was observed that it did

not change too much based on the sample sizes. On the other hand, nanoxml (Figure 4.10) showed

noticeable variation in execution overhead obtained based on the sample sizes.

The space overhead was observed to increase with increasing sample sizes, which was in line with

our intuition. Though space overhead is not important aspect of out approach, it provides an indication

of amount of instrumentation happening during sampling iterations.

It was also observed that at runtime the slice fragments were part of the execution flow. It is to

be noted here that he computation of slice fragments which is done statically is conservative. As a

result, the some fragments of the population may never actually be detected during program runtime.

In Figure 4.11 we see that captured fragments, increased with increasing sample size, except in case

of jaxen-2. As its slice fragment population was small, the increase in sample size did not reflect any

changes between sample sizes.

31

Iteration Sample size = 2 Sample size = 5 Sample size = 8
Input 1 Input 2 Input 3 Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

40 11 8 9 20 14 10 16 18 16

jaxen-1

Iteration Sample size = 2 Sample size = 3 Sample size = 5
Input 1 Input 2 Input 3 Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

40 30 25 25 30 25 25 30 25 25

jaxen-2

Iteration Sample size = 5 Sample size = 10 Sample size = 15
Input 1 Input 2 Input 1 Input 2 Input 1 Input 2

60 9 9 26 26 34 34

xstream

Figure 4.11 Slice fragments captured: The tables show the slice fragments cap-
tured at runtime over sampling iterations for some inputs

32

CHAPTER 5. USE CASES

In this chapter, we present a couple of use cases in which our approach would be appropriate to be

applied.

5.1 Selective Call Path Monitoring

Figure 5.1 Slice-pruned call graph of a program

Previous work have found the call path profiles, among other things, to be useful in performance

analysis [30, 17]. A call path profile captures nested sequence of call encountered at execution time.

This in turn can be used to capture those nested sequence of calls which consume most program exe-

cution. It can help us identify opportunities for future program enhancements.

Using our approach, it is possible to get a more selective version of such a call path profile. A

call path profile in the context of a program slice helps the analysis focus better on the context(slicing

33

criteria) at hand and eliminate irrelevant call nodes during analysis.

We illustrate the application with an example. Figure 5.1 shows a example call graph of a program.

Consider it to have been pruned to contain statement from the slice. Also, the arrow-dotted lines

indicate non-method invocation statements to have been scoped out for this application.

When we generate slice fragment population on the graph in the figure, we have the following

fragaments:

• (1), (2), (3), (4)

• (1), (2), (3), (5)

• (1), (2), (6), (7)

• (1), (2), (6), (8), (9)

• (1), (2), (6), (8), (10)

These fragments represent the partial order of call paths that can occur in the program. Applying

our approach further, one should be able to get performance analysis on partial order of call sequences.

This in turn can help us zero in on set of call sequences having possible performance issues.

5.2 Distributed Program Monitoring

Figure 5.2 Distribution of monitoring tasks across different instances of a pro-
gram may be possible based on different dimensions - simple grouping
of fragments, program input, frequency of execution

Another potential application of our approach could be in the context of GAMMA system based on

Software Tomography. An adaptation of this approach that utilizes our technique could be to distribute

34

slice fragments of the population into N groups. Ideally, there should be equal distribution of the

fragments among these N groups. Like in the GAMMA system, N instances of software can then be

created, where each instance is assigned to a particular group of slice fragments. Such instances could

then be instrumented at program points corresponding to the slice fragments in the assigned group.

There may be many different ways in which the above N groups can be constructed. Following are

possible options which may be used, based on, which is also illustrated in Figure 5.2.

• simple distribution of slice fragments

• predicted frequency of slice fragments which will be executed

• length of the slice fragments

35

CHAPTER 6. RELATED WORK

This work primarily proposes using program slicing along with statistical sampling to monitor and

profile programs. Specifically, we propose selecting subset of program slice entities for monitoring

and profiling software, using random sampling based schemes. This chapter discusses the work most

relevant to our own.

We share a similar goal with software tomography [8] as realized in the GAMMA system [31];

that is, a reduction of monitoring overhead in deployed software instances. The main idea in software

tomography is to divide and allot the monitoring tasks across several instances of the software. It then

collects the data from these instances to compute monitoring information for the complete application.

MOP [9] is a runtime verification framework, which generates monitors from the specified properties

and integrates it with the application. It uses decentralized indexing to reduce the overhead of moni-

toring at execution time. In contrast, we apply program slicing and statistical sampling to reduce the

scope of similar tasks.

Arnold and Ryder [4] use a profiling framework combined with code duplication to reduce the

instrumentation overhead. This framework samples the instrumented version of the code for bounded

amounts of time to collect the required profiles from the program. On the other hand, our approach

samples on the decomposed slice fragments, restricted to a property of interest, to compute the software

profile.

We share the same objective as that of Santelices et al. [35] and Apiwattanapong et al. [3] which

proposes to reduce the set of program entities to a smaller subset to decrease the monitoring overhead.

Our approach differs in that it uses random sampling to obtain similar results.

Thin Slicing [36] proposes a selective notion of relevance based on a seed computation to reduce the

scope of debugging and program understanding tasks. Though we share a similar goal, our approach is

36

oriented towards profiling and monitoring software.

Liblit et al. [26] propose a sampling infrastructure based on a Bernoulli process to gather informa-

tion about a software from user executions with low overhead. Their main focus is on bug isolation

using statistical analysis. Our primary focus is on low overhead monitoring of software using statistical

sampling of fragments.

Leveraging recent advances in run-time systems, Dwyer et al. [13] propose adaptive online program

analysis (AOPA) to reduce overhead of dynamic analyses. AOPA adaptively varies instrumentation to

observe program behavior, assuming a reduced scope for analyses. In contrast, we use sampling on

precomputed fragments for profiling.

Dynamic program slicing [1] proposes the concept of computing statements which actually affect

the value of given variable for a specific input. These slices likely to vary depending on the program

input. Our approach attempts to capture the profile corresponding to the set of fragments in a sample

for various program inputs.

Younes and Simmons [40] propose a probabilistic method for verifying properties of discrete event

systems. The key idea behind their work is that probabilistic models are used to reduce the verifi-

cation efforts. They use probabilistic models to select a subset of the state space. While we share a

similar insight, this work proposes sampling of decomposed slice fragments to reduce the number of

instrumentation points to gather monitoring and profile information.

Luk et al. [28] propose Pin, as software system that performs runtime instrumentation of Linux ap-

plications. Pin performs instrumentation using a JIT (just-in-time) compiler. The input to this compiler

is a native executable and not Java bytecode. Pin instruments the system-level programs irrespective

of the underlying architecture of the system. Our work is in the direction of segregating the relevant

portion of the program with the goal of avoiding instrumenting irrelevant portions of the program.

Hiniker et al. [21] study the problem of code selection for dynamic optimization of systems. They

mainly address the problems of trace selection and excessive code duplication. They implement region-

selection algorithms which rely on the Pin system to report the sequence of basic blocks executed by

the program. The trace-combination algorithm incrementally builds the CFG for the program as it

executes. Our approach uses slice decomposition to reduce the overhead of instrumentation.

37

CHAPTER 7. CONCLUSION

The main goal of this paper was to present program slicing as an instrument for monitoring and

profiling tasks. In this regard, I have made following key technical contributions:

• the notion of slice fragments,

• computation of slice fragments,

• a use case of slice fragments for a statistical sampling-based instrumentation technique.

Our technique first uses slicing to narrow down the scope of the instrumentation to that of interest

with respect to a property (expressed as slicing criterion). We then provide a method to further de-

compose the slice into (smaller) slice fragments. A subset of slice fragments are then instrumented for

monitoring or profiling tasks. We also presented empirical results to validate that our technique can

collect profiles at high assurance levels, at a significantly lower overhead.

There are certain obvious limitation of the current study. Not all monitoring problems can be

reduced to monitoring of a program slice. It does not look into the details of instrumentation mechanism

to collect the profiles from slice fragments.

Several interesting avenues remain to be explored, especially on various instrumentation techniques

to collect the profile data. If correlation between slice fragments of the population and profile informa-

tion gathered can be established, then it can be used to guide future instrumentation sampling.

An empirical study could be conducted for larger programs (perhaps with millions of line of code)

to revalidate our current results on a representative subset of Java programs. An automated technique

for determining an optimal sample size for programs would also complement our approach.

With the growing size, complexity, and adaptability of software systems both the instrumentation

overhead as well as the need for monitoring and profiling is likely to increase. Our approach thus

38

provides a timely advance towards enhancing the scalability of monitoring and profiling processes to

cope with these challenges.

39

APPENDIX A. Reduced cover

The appendix here discusses some algorithms for computation of reduced cover of slice fragments.

The following work is the contribution of Mukul Bansal(bansal@cs.iastate.edu) and Dr. Hridesh Ra-

jan(hridesh@cs.iastate.edu) and has been included here for the sake of completeness.

A.1 Reduced Cover Construction

A brute-force way to construct a reduced cover is to first compute all possible slice fragments for

the slice, and then to delete, one at a time, those slice fragments in which all the vertices also appear in

some other slice fragment. We now show how a much more elegant and efficient algorithm can be used

to achieve the same result. One of the other desirable properties of this method is that it produces a

reduced cover which is not much larger than the smallest possible (because it is based on a well-known

approximation algorithm for the set cover problem [16]).

Let Θ denote the set of slice fragments generated. We now apply Algorithm 1 on Θ. The main idea

here is to repeatedly identify a slice fragment from Θ that contains the largest number of uncovered

vertices in the slice and add it to the set Θ′, until all the vertices of the slice have been covered.

Algorithm 1 is in fact a well known heuristic (and approximation algorithm) for the set cover

problem [23]. Here, the vertices of the slice form the elements of the universe, and each slice fragment

in Θ can be viewed as a subset of this universe. It is possible to implement Algorithm 1 such that its

time complexity is O(
∑

δ∈Θ |δ|), i.e. it is linear in the size of all the slice fragments in Θ (see [11]).

Let Θ∗ denote the set of slice fragments returned by Algorithm 1. We claim that Θ∗ must be a

reduced cover for the slice.

Lemma A.1.1 Θ∗ is a cover of the slice.

40

Algorithm 1 Generating a reduced cover for the slice

Require: The set of slice fragments Θ

1: Let Θ′ ⇐ ∅
2: Let V be the set of all vertices in the flow graph corresponding to the slice.
3: for each v ∈ V do
4: Set label(v) = false

5: end for
6: repeat
7: α ∈ arg maxs∈Θ |{v ∈ s : label(v) = false}|
8: Add α to Θ′

9: for each vertex v in α do
10: Set label(v) = true

11: end for
12: until label(v) = true for each v ∈ V
13: Return Θ′

Proof: Consider the set Θ. Since Θ consists of all possible slice fragments of the slice, Θ must be a

cover of the slice. Algorithm 1 does not terminate until all vertices of the slice have been covered. In

the worst case, this might entail adding all the slice fragments in Θ to Θ∗. Therefore, Θ∗ will always

be a cover of the slice.

Proposition A.1.1 Θ∗ is a reduced cover of the slice.

Proof: By Lemma A.1.1 we already know that Θ∗ is a cover of the slice. Therefore, for the sake of

contradiction, let us assume that the cover Θ∗ is not reduced. Then, there must exist δ, δ′ ∈ Θ∗ such

that v ∈ δ ⇒ v ∈ δ′. There are two possible cases: (i) Algorithm 1 adds δ to Θ∗ before it adds δ′, or

(ii) Algorithm 1 adds δ′ to Θ∗ before it adds δ. We analyze each of these cases separately.

Case (i): Let Θ̂ denote the set Θ′ in Algorithm 1 immediately before the addition of δ. Since Algorithm

1 adds δ before adding δ′, all the vertices in δ′ \ δ must already be covered by Θ̂. This implies that as

soon as δ is added to Θ̂, all the elements of δ′ are also covered. Hence, Algorithm 1 would not add δ′

to Θ∗. This case is therefore infeasible.

Case (ii): After the addition of δ′ to Θ∗, all the elements of δ have already been covered. Therefore,

Algorithm 1 would not add δ to Θ∗. This case is therefore infeasible.

Since neither of these two cases is possible, we have arrived at a contradiction. Hence, Θ∗ must be

a reduced cover.

41

We illustrate this algorithm using an example. Consider the slice fragments depicted in Figure 3.2.

Algorithm 1 takes these as input, and produces a reduced cover for the slice. At each step the

algorithm chooses a slice fragment that covers the largest number of uncovered nodes. Thus, the

algorithm first chooses the slice fragment 5 which is 〈entry, 5, 6, 8, 14, 34, 35, 38, 42〉. In the next

step, fragment 3 encompassing 〈entry, 5, 6, 8, 14, 16, 22, 23, 30〉 is chosen. Similarly, fragment 2 gets

picked up next. In the end, node 10 is the one not covered so far, resulting in fragment 1 being picked.

It is easy to see that they form a reduced cover of the program slice.

A.1.1 Alternate Reduced Cover Construction

Observe that the algorithm seen above requires us to first compute the set of all slice fragments

for the slice. In cases where the number of slice fragments is prohibitively large, we can use an add-

on algorithm to reduce the number of slice fragments that need to be generated. Such an algorithm

would begin with the slice-pruned control flow graph, and modify it by deleting edges. This produces

a smaller graph, which will have fewer slice fragments.

The above algorithm may be more efficient but is effective in problems where monitoring “class

of flows” in a program. The reduced population of slice fragments would be helpful in answering

questions like:

Consider the following problem: Given a directed graph, find a smallest subset of edges in the graph

that maintains all reachability relations between the vertices. This problem is known as the minimum

equivalent graph (MEG) [29] problem1. As shown in the following proposition, solving the MEG

problem provides a way to reduce the size of the slice-pruned control flow graph while still preserving

the required coverage and connectivity properties.

Proposition A.1.2 Given a slice-pruned control flow graph Gs = (V ′, E′, v0,S), let G′ =

(V ′, E′′, v0,S) be a minimum equivalent graph of Gs. Then, the set of all slice fragments of G′ forms

a cover of the slice Gs.

Proof: Let Θ and Θ′ denote the set of all slice fragments of G and G′ respectively. We know that Θ is

a cover of the slice. We will show that for any slice fragment δ ∈ Θ, there exists some slice fragment
1Also known as the minimum equivalent digraph problem.

42

δ′ ∈ Θ′ such that v ∈ δ ⇒ v ∈ δ′. Given any δ ∈ Θ, let u, v be any two consecutive vertices in δ.

Since G contains a path from u to v, by definition, G′ must also contain a path from u to v. This is true

for every consecutive pair of nodes u, v in δ; which implies that there must be a path, not necessarily

simple, in Θ′ with the same start and end vertices as δ, and which passes through all the nodes of δ. If

we let δ′ be the slice fragment corresponding to such a path, then v ∈ δ ⇒ v ∈ δ′.

The MEG problem is known to be NP-hard [15], however, several constant factor approximation

algorithms exist for it (cf. [25]). These algorithms are guaranteed to produce, within polynomial time,

a solution that is within some fixed percentage of an optimum solution. Note that the property stated in

Proposition A.1.2 is monotone. Proposition A.1.2 therefore implies that any approximation algorithm

for the MEG problem can be used to reduce the size of the flow graph, without adversely affecting our

construction of a reduced cover for the slice.

43

BIBLIOGRAPHY

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In PLDI ’90, pages 246–256, 1990.

[2] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A. Leung, R. L. Sites,

M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Continuous profiling: where have all

the cycles gone? ACM Trans. Comput. Syst., 15(4):357–390, 1997.

[3] T. Apiwattanapong and M. J. Harrold. Selective path profiling. In PASTE ’02: Proceedings

of the 2002 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, pages 35–42, New York, NY, USA, 2002. ACM.

[4] M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented code. In PLDI

’01, pages 168–179.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization system.

In PLDI ’00, pages 1–12.

[6] V. Barnett. Sampling techniques: Principles and methods, 3rd edition. Wiley, New York, 1977.

[7] V. Barnett. Sample surveys: Principles and methods. Oxford University Press, 1991.

[8] J. Bowring, A. Orso, and M. J. Harrold. Monitoring deployed software using software tomogra-

phy. In PASTE ’02,pp. 2–9.

[9] F. Chen and G. Roşu. Mop: an efficient and generic runtime verification framework. In OOPSLA

’07, pages 569–588.

[10] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and H. Zheng.

Bandera: extracting finite-state models from java source code. In ICSE ’00, pages 439–448.

44

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second

Edition. The MIT Press and McGraw-Hill Book Company, 2001.

[12] S. Debray and W. Evans. Profile-guided code compression. In PLDI ’02: Proceedings of the

ACM SIGPLAN 2002 Conference on Programming language design and implementation, pages

95–105, New York, NY, USA, 2002. ACM.

[13] M. B. Dwyer, A. Kinneer, and S. Elbaum. Adaptive online program analysis. In ICSE ’07, pages

220–229.

[14] S. Elbaum and M. Diep. Profiling deployed software: Assessing strategies and testing opportuni-

ties. IEEE Trans. Softw. Eng., 31(4):312–327, 2005.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the Theory of NP-

Completeness. W. H. Freeman, January 1979.

[16] R. S. Garfinkel and G. L. Nemhauser. Integer Programming. John Wiley & Sons, New York,

1972.

[17] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph execution profiler. In

SIGPLAN ’82: Proceedings of the 1982 SIGPLAN symposium on Compiler construction, pages

120–126, New York, NY, USA, 1982. ACM.

[18] B. Guo, N. Vachharajani, and D. I. August. Shape analysis with inductive recursion synthesis. In

PLDI ’07,pp. 256–265.

[19] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construction. Higher Order

Symbol. Comput., 13(4):315–353, 2000.

[20] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using adaptive statistical

profiling. In ASPLOS-XI, pages 156–164, 2004.

[21] D. Hiniker, K. Hazelwood, and M. D. Smith. Improving region selection in dynamic optimization

systems. In MICRO ’05), 2005.

45

[22] S. E. Hyunsook Do and G. Rothermel. Supporting controlled experimentation with testing tech-

niques: An infrastructure and its potential impact. Empirical Software Engineering, 10:405–435,

2005.

[23] D. S. Johnson. Approximation algorithms for combinatorial problems. In STOC ’73: Proceedings

of the fifth annual symposium on Theory of computing, pages 38–49, 1973.

[24] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault localiza-

tion. In ICSE ’02: Proceedings of the 24th International Conference on Software Engineering,

pages 467–477, New York, NY, USA, 2002. ACM.

[25] S. Khuller, B. Raghavachari, and N. Young. Approximating the minimum equivalent digraph.

SIAM J. Comput., 24(4):859–872, 1995.

[26] B. Liblit, A. Aiken, and A. Zheng. Distributed program sampling. In PLDI ’03, pages 141–154.

[27] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote program sampling.

In PLDI ’03, pages 141–154.

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: building customized program analysis tools with dynamic instrumentation.

In PLDI ’05, pages 190–200.

[29] D. M. Moyles and G. L. Thompson. An algorithm for finding a minimum equivalent graph of a

digraph. J. ACM, 16(3):455–460, 1969.

[30] T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred call path profiling. SIGPLAN Not.,

44(10):175–190, 2009.

[31] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma system: continuous evolution of soft-

ware after deployment. In ISSTA ’02, pages 65–69, 2002.

[32] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a software development

environment. In Symposium on Practical software development environments, pages 177–184,

1984.

46

[33] T. Reps and T. Bricker. Illustrating interference in interfering versions of programs. In 2nd

International Workshop on Software configuration management, pages 46–55, 1989.

[34] T. W. Reps and W. Yang. The semantics of program slicing and program integration. In TAPSOFT

’89, pages 360–374.

[35] R. Santelices, S. Sinha, and M. J. Harrold. Subsumption of program entities for efficient coverage

and monitoring. In SOQUA ’06, pages 2–5.

[36] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In PLDI ’07, pages 112–122.

[37] F. Tip. A survey of program slicing techniques. Journal of programming languages, 3:121–189,

1995.

[38] M. Weiser. Program slicing. In ICSE ’81, pages 439–449.

[39] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing. SIGSOFT

Softw. Eng. Notes, 30(2):1–36, 2005.

[40] H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event systems using

acceptance sampling. In CAV ’02, pages 223–235.

[41] Jaxen: Universal Java XPath engine. http://jaxen.org/. last accessed on 06/2009, used

ver 1.1.1 source code (04,2008).

[42] JLex: A lexical analyzer generator for Java. http://www.cs.princeton.edu/~appel/

modern/java/JLex/. last accessed on 06/2009, used ver 1.2.6 source code (02/2003).

[43] Spec jvm 98 benchmarks. http://www.spec.org/jvm98/. last accessed on 06/2009, used

JVM client suite benchmarks (11/1998).

[44] T.J. Watson libraries for analysis. http://wala.sourceforge.net. last accessed on

07/2009, used source code of ver 1.1 (01/2009) and 1.2 (07/2009).

[45] XStream: Serialization library from objects to XML. http://xstream.codehaus.org/.

last accessed on 06/2009, used ver 1.3 source code (02/2008).

	2010
	Monitoring software using property-aware program sampling
	Harish Narayanappa
	Recommended Citation

	tmp.1335711608.pdf.YvaqD

