
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

Implicit Invocation Meets Safe, Implicit
Concurrency
Yuheng Long
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Long, Yuheng, "Implicit Invocation Meets Safe, Implicit Concurrency" (2010). Graduate Theses and Dissertations. 11853.
https://lib.dr.iastate.edu/etd/11853

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11853?utm_source=lib.dr.iastate.edu%2Fetd%2F11853&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Implicit invocation meets safe, implicit concurrency

by

Yuheng Long

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Hridesh Rajan, Major Professor

Gurpur M. Prabhu
Steve Kautz

Iowa State University

Ames, Iowa

2010

Copyright c© Yuheng Long, 2010. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF FIGURES . iv

ACKNOWLEDGEMENTS . vii

CHAPTER 1. Introduction . 1

1.1 Explicit Concurrency Features . 1

1.2 Problems with Explicit Concurrency Features 2

1.3 Contributions . 3

1.4 Thesis Outline . 7

CHAPTER 2. Related Work . 9

2.1 Implicit Invocation Languages . 9

2.2 Implicitly Concurrent Languages . 10

2.3 Explicitly Concurrent Languages . 10

2.4 Types, Regions and Effects . 11

CHAPTER 3. Pān̄ini’s Design . 13

3.1 Pān̄ini’s Syntax . 13

3.2 Concurrency in Pān̄ini . 15

3.3 Pān̄ini’s Handler Conflict Detection Scheme . 15

3.4 Properties of Pān̄ini’s Design . 18

CHAPTER 4. Pān̄ini’s Static Semantics and Effect System 19

4.1 Type and Effect Attributes . 19

4.2 Effect Interference . 20

4.3 Type Checking Rules . 21

iii

4.3.1 Rules for Declarations . 21

4.3.2 Rules for Expressions . 23

CHAPTER 5. Pān̄ini’s Operational Semantics 29

5.1 Added syntax, domains, and evaluation contexts 29

5.2 Semantics for Object-oriented Expressions . 31

5.3 Semantics for Yielding Control . 32

5.4 Semantics for Event registration . 33

5.5 Semantics for announcing an event . 34

CHAPTER 6. Properties of Pān̄ini’s Design 37

6.1 Deadlock Freedom . 37

6.2 Proof of Type Soundness . 38

CHAPTER 7. Pān̄ini’s Compiler and Runtime System 43

CHAPTER 8. Evaluation . 47

8.1 Analysis of Modularity and Concurrency Synergy 47

8.2 Performance Evaluation . 49

8.2.1 Concurrency Benchmark Selection . 49

8.2.2 Speedup over Sequential Implementation 50

8.2.3 Overhead over the Sequential Implementation 51

8.3 Summary of Results . 52

8.4 Other Examples in Pān̄ini . 52

CHAPTER 9. Conclusion and Future Work 61

9.1 Conclusion . 61

9.2 Future Work . 62

BIBLIOGRAPHY . 64

iv

LIST OF FIGURES

1.1 Genetic algorithm with Java concurrency utilities 3

1.2 Pān̄ini’s version of the Genetic algorithm 4

3.1 Pān̄ini’s abstract syntax, based on [50, 13]. 14

3.2 Initial effects of three handlers . 16

3.3 Effects after handler A and handler B have registered. 17

3.4 Effects after all three handlers have registered. 17

4.1 Type and Effect Attributes. 19

4.2 Effect Interference.
√

: conflicts, ×: no conflicts 20

4.3 Type and Effect rules for declarations [13, 14, 50]. 22

4.4 Auxiliary functions used in type rules[49]. 22

4.5 Auxiliary functions used in type rules[13, 14]. 23

4.6 Type and Effect rules for expressions[13, 14, 50]. 23

4.7 Type and Effect rules for expressions that generate new effects. 24

4.8 An Pān̄ini program . 25

4.9 Type System Example: checking event GenAvailable and

class Generation. 26

4.10 Type System Example: checking method init. 26

4.11 Type System Example: checking method record. 27

4.12 Type System Example: checking class Generation. 27

4.13 Type System Example: checking the main expression. 28

5.1 Added syntax based on [13, 50]. 29

v

5.2 Operational semantics of expressions that produce exceptions. 30

5.3 Domains used in the semantics, based on [13, 50]. 30

5.4 Evaluation contexts used in the semantics, based on [13, 50]. 31

5.5 Semantics of object-oriented expressions in Pān̄ini, based in part on

[50, 13, 14] . 31

5.6 Semantics of yielding control in Pān̄ini 33

5.7 Auxiliary functions for returning a nonblock configuration. 33

5.8 Semantics of Registration . 34

5.9 Semantics of Announcement . 34

5.10 Functions for Creating Task Configurations. 35

5.11 Miscellaneous helper functions. 35

5.12 Functions for building handler configurations. 36

7.1 An event type is translated into an interface. Snippets from translation

of event GenAvailable in Figure 1.2. 44

7.2 Full code of the announce methods . 44

7.3 Pseudo code of the register methods 45

7.4 A handler is translated to extend the EventHandler interface. Snippets

from translation of CrossOver in Figure 1.2. 46

8.1 Speedup over sequential OO code (black bar: Pān̄ini; Gray bars: hand

tune fork/join code). 48

8.2 Average speedup over sequential version (Line: perfect scaling). . . . 50

8.3 Average overhead over sequential version for each technique. 51

8.4 Average overhead for Fibonacci benchmark for varying input size and

each scheduling strategy. 52

8.5 Snippets of an AST with an Effects System 53

8.6 Pān̄ini’s version of visiting an abstract syntax tree. 54

8.7 An Image and Threshold Computation in Pān̄ini. 56

vi

8.8 Accessing service providers in handlers. 57

8.9 Refactoring Detection with Java concurrency utilities. 58

8.10 Pān̄ini’s version of Refactoring Detection. 59

8.11 Refactoring Crawler: Average speedup over sequential version. 59

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. I would like to thank

Hridesh Rajan for his guidance, patience and support throughout this research and the writing

of this thesis. Thanks are due to the US National Science Foundation for financially supporting

this project under grant CCF-08-46059.

I would like to thank my committee members Gurpur M. Prabhu and Steve Kautz for their

efforts and contributions to this work. Also, I would like to thank the reviewers of GPCE 2010

conference for their insightful feedback. I would like to extend my thanks to all the members of

Laboratory of Software Design for offering constructive criticism and timely suggestions during

research. Additionally, I would like to thank Sean L. Mooney for his help on implementing the

compiler and Tyler Sondag for writing examples and analyzing experimental data.

I am very grateful to my parents for their moral support and encouragement throughout

the duration of my studies.

1

CHAPTER 1. Introduction

The idea behind Pān̄ini’s design is that if programmers structure their system to improve

modularity in its design, they should get concurrency for free.

1.1 Explicit Concurrency Features

It is widely accepted that multicore computing is becoming the norm. However, writing

correct and efficient concurrent programs using concurrency-unsafe features remains a chal-

lenge [6, 44, 46, 62]. A language feature is concurrency-unsafe if its usage may give rise to

program execution sequences containing two or more memory accesses to the same location

that are not ordered by a happens-before relation [32]. Several such language features exist in

common language libraries. For example, threads, Futures, and FutureTasks are all included

in the Java programming language’s standard library [46, 62]. Using such libraries has advan-

tages, e.g. they can encapsulate complex synchronization code and allow its reuse. However,

their main disadvantage is that today they do not provide guarantees such as race freedom,

deadlock freedom and sequential semantics. This makes it much harder and error prone to

write correct concurrent programs.

To illustrate, consider the implementation of a genetic algorithm in Java presented in Fig-

ure 1.1. The idea behind a genetic algorithm is to mimic the process of natural selection.

Genetic algorithms are computationally intensive and are useful for many optimization prob-

lems [55]. The main concept is that searching for a desirable state is done by combining two

parent states instead of modifying a single state [55]. An initial generation with n members

is given to the algorithm. Next, a crossover function is used to combine different members of

the generation in order to develop the next generation (lines 10–16 in Figure 1.1). Optionally,

2

members of the offspring may randomly be mutated slightly (lines 18–23 in Figure 1.1). Fi-

nally, members of the generation (or an entire generation) are ranked using a fitness function

(lines 25–29 in Figure 1.1).

Multiple Concerns of the Genetic Algorithm. In the OO implementation of the

genetic algorithm in Figure 1.1, there are three concerns standard to the genetic algorithm:

crossover (creating a new generation), mutation (random changes to children), and fitness

calculation (how good is the new generation). Logging of each generation is another concern

added here, since it may be desirable to observe the space searched by the algorithm (lines

17 and 24). The final concern in the example is concurrency (lines 4, 7–9, and 30–33). In

this example, production of a generation is run as a FutureTask, but other solutions are also

possible. The shading represents different concerns as illustrated in the legend.

1.2 Problems with Explicit Concurrency Features

Explicit concurrency. With explicit concurrency, programmers must divide the pro-

gram into independent tasks. Next, they must handle creating and managing threads. A

problem with the concurrency-unsafe language features described above and illustrated in Fig-

ure 1.1 is that correctness is difficult to ensure since it relies on all objects obeying a usage pol-

icy [33]. Since such policies cannot automatically be enforced by a library based approach [33],

the burden on the programmers is increased and errors arise (e.g., deadlock, races, etc.). Also,

the non-determinism introduced by such mechanisms makes debugging hard since errors are

difficult to reproduce [59]. Furthermore, this style of explicit parallelism can hurt the design

and maintainability of the resulting code [53].

Separation of modular and concurrent design. Another shortcoming of these lan-

guage features, or perhaps the discipline that they promote, is that they treat modular program

design and concurrent program design as two separate and orthogonal goals.

From a quick glance at Figure 1.1, it is quite clear that the five concerns are tangled. For

example, the code for concurrency (lines 4, 7-9, and 30-33) is interleaved with the logic of the

3

Legend Concurrency Logging Mutation Crossover Fitness

1 class GeneticAlgorithm {

2 float crossOverProbability , mutationProbability;

3 int max;

4 ExecutorService executor;

5 // Constructor elided (Initializes fields above).

6 public Generation compute(final Generation g) {

7 FutureTask <Generation > t = new FutureTask <Generation >(

8 new Callable <Generation >(){

9 Generation call (){

10 int genSize = g.size ();

11 Generation g1 = new Generation(g);

12 for (int i = 0; i < genSize; i += 2) {

13 Parents p = g.pickParents ();

14 g1.add(p.tryCrossOver(crossOverProbability));

15 }

16 if(g1.getDepth () < max) g1 = compute(g1);

17 logGeneration(g1);

18 Generation g2 = new Generation(g);

19 for (int i = 0; i < genSize; i += 2) {

20 Parents p = g.pickParents ();

21 g2.add(p.tryMutation(mutationProbability));

22 }

23 if(g2.getDepth () < max) g2 = compute(g2);

24 logGeneration(g2);

25 Fitness f1 = g1.getFitness ();

26 Fitness f2 = g2.getFitness ();

27 if(f1.average()>f2.average ()) return g1;

28 else return g2;

29 }});

30 executor.execute(t);

31 try { return t.get (); }

32 catch (InterruptedException e) { return g; }

33 catch (ExecutionException e) { return g; }

34 }

35 }

Figure 1.1 Genetic algorithm with Java concurrency utilities

algorithm (the other four concerns). Also, the code for logging occurs in two separate places

(lines 17 and 24). This arises from implementing a standard well understood sequential ap-

proach and then afterward attempting to expose concurrency rather than pursuing modularity

and concurrency simultaneously. Aside from this code having poor modularity, it is not imme-

diately clear if there is any potential concurrency between the individual concerns (crossover,

mutation, logging, and fitness calculation).

1.3 Contributions

Our language, Pān̄ini, addresses these problems. The key idea behind Pān̄ini’s design

is to provide programmers with mechanisms to utilize prevalent idioms in modular program

4

1 event GenAvailable {

2 Generation g; // Reflective information available at events

3 }

4 class CrossOver {

5 int probability; int max;

6 CrossOver(...){

7 register(this);

8 // initialization elided (initializes fields above).

9 }

10 when GenAvailable do cross;

11 void cross(Generation g) {

12 int gSize = g.size ();

13 Generation g1 = new Generation(g);

14 for(int i = 0; i< gSize; i+=2){

15 Parents p = g.pickParents ();

16 g1.add(p.tryCrossOver(probability));

17 }

18 if(g1.getDepth () < max) announce GenAvailable(g1);

19 }}

20 class Mutation {

21 int probability; int max;

22 Mutation(...){

23 register(this);

24 // initialization elided (initializes fields above).

25 }

26 when GenAvailable do mutate;

27 void mutate(Generation g) {

28 int gSize = g.size ();

29 Generation g2 = new Generation(g);

30 for(int i = 0; i< gSize; i+=2){

31 Parents p = g.pickParents ();

32 g2.add(p.tryMutation(probability));

33 }

34 if(g2.getDepth () < max) announce GenAvailable(g2);

35 }}

36 class Logger {

37 when GenAvailable do logit;

38 Logger (){ register(this); }

39 void logit(Generation g) { logGeneration(g); }

40 }

41 class Fittest {

42 Generation last;

43 when GenAvailable do check;

44 Fittest (){ register(this); }

45 void check(Generation g) {

46 if(last == null) last = g;

47 else {

48 Fitness f1 = g.getFitness ();

49 Fitness f2 = last.getFitness ();

50 if(f1.average () > f2.average ()) last = g;

51 }

52 }

53 }

Figure 1.2 Pān̄ini’s version of the Genetic algorithm

design. These mechanisms for modularity in turn automatically provide concurrency in a

safe, predictable manner. This paper discusses the notion of asynchronous, typed events in

Pān̄ini. An asynchronous, typed event exposes potential concurrency in programs which use

behavioral design patterns for object-oriented languages, e.g., the observer pattern [24]. These

5

patterns are widely adopted in software systems such as graphical user interface frameworks,

middleware, databases, and Internet-scale distribution frameworks.

In Pān̄ini, an event type is seen as a decoupling mechanism that is used to interface two

sets of modules, so that they can be independent of each other. Below we briefly describe the

syntax in the context of the genetic algorithm implementation in Pān̄ini shown in Figure 1.2 (a

more detailed description appears in Chapter 3). In the listing we have omitted initializations

for brevity. In this listing an example of an event type appears on lines 1–3, whose name is

GenAvailable and that declares one context variable g of type Generation on line 2. Context

variables define the reflective information available at events of that type.

Certain classes, which we refer to as subjects from here onward, declaratively and explicitly

announce events. The class CrossOver (lines 4-19) is an example of such a subject. This

class contains a probability for the crossover operation and a maximum depth at which the

algorithm will quit producing offspring. The method cross for this class computes the new

generation based on the current generation (lines 11-19). After the cross method creates

a new generation, it announces an event of type GenAvailable (line 18) denoted by code

announce GenAvailable(g1).

Another set of classes, which we refer to as observers from here onward, can provide meth-

ods, called handlers that are invoked (implicitly and potentially concurrently) when events are

announced. The listing in Figure 1.2 has several examples of observers: CrossOver, Mutation,

Logger and Fittest. A class can act as both subject and observer. For example, the classes

CrossOver and Mutation are both subjects and observers for events of type GenAvailable.

In Pān̄ini classes statically express (potential) interest in an event by providing a binding

declaration. For example, the Mutate concern (lines 20-35) wants to randomly change some

of the population after it is created. So in the implementation of class Mutation there is a

binding declaration (line 26) that says to run the method mutate (lines 27-35) when events of

type GenAvailable are announced.

At runtime, these interests in events can be made concrete using the register statements.

The class Mutation has a constructor on lines 22–25 that, when called, registers the current

6

instance this to listen for events. After registration, when any event of type GenAvailable

is announced, the method mutate (lines 27-35) is run with the registered instance this as the

receiver object.

Concurrently, the method logit (line 39) in class Logger will log each generation and the

method check in class Fittest (lines 41-51) will determine the better fitness between the

announced generation and the previously optimal generation.

Benefits of Pān̄ini’s Implementation. At a quick glance, we can see from the shading

that the four remaining concerns are no longer tangled and they are separated into individual

modules. This separation not only makes reasoning about their behavior simple but also allows

us to expose potential concurrency between them.

Furthermore, the concurrency concern has been removed entirely since Pān̄ini’s implemen-

tation encapsulates concurrency management code. By not requiring users to write this code,

Pān̄ini avoids any threat of incorrect or non-deterministic concurrency, thus easing the burden

on programmers. This allows them to focus on creating a good, maintainable modular design.

Finally, additional concurrency between these four modules is now automatically exposed.

Thus, Pān̄ini reconciles modular program design and concurrent program design.

Advantages of Pān̄ini’s Design over Related Ideas. Pān̄ini is most similar to our

previous work on Ptolemy [50], but Pān̄ini’s event types also have concurrency advantages.

Compared to similar ideas for aspect-oriented advice presented by Ansaloni et al. [4], Pān̄ini

only exposes concurrency safely.

It is also similar to implicit invocation (II) languages [16, 42] that also see events as a de-

coupling mechanism. The advantage of using Pān̄ini over an II language is that asynchronous,

typed events in Pān̄ini allow developers to take advantage of the decoupling of subjects and

observers to expose potential concurrency between their executions. A detailed comparison is

presented in Chapter 2.

Pān̄ini also relieves programmers from the burden of explicitly creating and maintaining

threads, managing locks and shared memory. Thus it avoids the burden of reasoning about

7

the usage of locks, which has several benefits. First, incorrect use of locks may have safety

problems. Second, locks may degrade performance since acquiring and releasing a lock has

overhead. Third, threads are cooperatively managed by Pān̄ini’s runtime, thus thrashing due

to excessive threading is avoided. These benefits make Pān̄ini an interesting point in the design

space of concurrent languages.

In summary, this work makes the following contributions:

1. Pān̄ini’s language design that reconciles implicit-invocation design style and implicit

concurrency and provides a simple and flexible concurrency model such that Pān̄ini

programs are

• free of data races,

• free of deadlocks, and

• have a guaranteed deterministic semantics(a given input is always expected to pro-

duce the same output.[47]);

2. an efficient implementation of Pān̄ini’s design as an extension of the JastAdd compiler[18]

that relies on:

• an algorithm for finding inter-handler dependence at registration time to maximize

concurrency,

• a simple and efficient algorithm for scheduling concurrent tasks that builds on the

fork/join framework [34];

3. a detailed analysis of Pān̄ini and closely related ideas;

4. and, an empirical performance analysis using canonical concurrency examples imple-

mented using Pān̄ini and using standard techniques which shows that the performance

and scalability of the implementations are comparable.

1.4 Thesis Outline

The rest of this thesis is organized as follows:

8

Chapter 2: This chapter surveys related work of observer pattern, implicit concurrency

and explicit concurrency. Chapter 3: This chapter gives the formal definition of Pān̄ini’s syn-

tax and the design. Chapter 4: This chapter provides the type system for Pān̄ini. Chapter

5: The detail operational semantics are presented. Chapter 6: Proofs of Pān̄ini’s soundness

is given that any valid Pān̄ini program is free of data races and dead lock. At the same time,

it provides programmers with deterministic semantics. Chapter 7: We will describe Pān̄ini’s

compiler and runtime system. JastAdd compiler was extended to compile Pān̄ini’s programs.

Also, we will explain how Pān̄ini programs make use of the underlying fork/join framework [34].

Chapter 8: This chapter describes our performance evaluation and experimental results. As

is shown, the implementation of this language has low overhead and exposes useful concur-

rency as expected. Also, more examples in Pān̄ini are presented. It offers some ideas as the

expressiveness of the proposed language. Chapter 9: This chapter concludes the thesis. Also,

it will briefly describes future directions.

9

CHAPTER 2. Related Work

In this chapter, we discuss previous and current work in the field of implicit invocation and

concurrent programming.

2.1 Implicit Invocation Languages

Events have a long history in both the software design [58, 42, 22, 37, 15] and distributed

systems communities [21]. Pān̄ini’s notion of asynchronous, typed events build on these notions,

in particular recent work in programming languages focusing on event-driven design [19, 20, 50].

In software design, events and implicit-invocation have been seen as a decoupling mechanism for

modules [58, 42], whereas in distributed systems, events are seen as a mechanism of decoupling

component execution for location transparent deployment and extensibility [43, 56].

A key difference between the programming models developed for event-based

systems/message-passing systems/actor-based languages and that of Pān̄ini is that the for-

mer assume that components in the system do not share state and only communicate by

passing value types or record of value types [43, 21, 31, 5], whereas the latter allows shared

states (similar to mainstream languages like Java, C#) that is useful for many computation

patterns. This means that if features from the former are adopted to mainstream languages as

it is to decouple execution of components participating in an implicit-invocation design style,

programmers will be directly responsible for ensuring that concurrent components do not have

data races and deadlocks. Furthermore, reasoning about such systems will also be difficult due

to concurrency [6, 44]. In Pān̄ini, programmers get concurrency benefits as a direct result of

good design. Previous work on message-passing, publish/subscribe and actor-based languages

either require programmers to manually account for data races, or have a sequential model or

10

assume disjoint address space between concurrent processes [56, 5].

2.2 Implicitly Concurrent Languages

Like Jade [53], Pān̄ini is an implicit concurrency language. Programmers in Jade supply

information about the effect of tasks so that the compiler may discover concurrency. Pān̄ini

is different in that it automates the process and removes the burden on the programmer to

supply these effects by hand. Pān̄ini also removes any errors which could be introduced by

incorrect specification of effects. Pān̄ini detects conflict when handlers register.

In POOL [3], ABCL [64], Concurrent Smalltalk [65] and BETA [57], objects implicitly

execute in the context of a local process. This is different from Pān̄ini where only handler

instances are run implicitly and concurrently. This allows smoother integration with main-

stream programming languages such as Java. This also permits an easier integration of our

event-based model with the thread-based explicit concurrency models as promoted by Li and

Zdancewic [37]. In this work, we do not discuss the semantic issues with this integration,

however.

2.3 Explicitly Concurrent Languages

Pān̄ini is different from Grace [7] which is an explicit threading language. Grace executes

threads speculatively. If a conflict is detected, it rolls back the changes. Otherwise it commits

the changes. Like X10 [45], Pān̄ini does not feature any construct for explicit locking. However,

X10 is an explicit concurrency language and it uses atomic blocks for lock-free synchronization

and uses the concept clocks as synchronization between activities. The Task Parallel Library

(TPL) [35], wraps computation into tasks and uses thread stealing as the underlying imple-

mentation. This is similar to Pān̄ini’s runtime, but programmers in TPL have to explicitly

account for races, whereas Pān̄ini automatically avoids all races.

Similar to the effect sets of Pān̄ini, deterministic parallel Java (DPJ/DPJizer) [47, 41] uses

effect sets to provide deterministic semantics for programs. For DPJ/DPJizer, programmers

explicitly write annotations on object fields, which ensure that fields are in separate regions.

11

Then the tool infers summary for methods. Pān̄ini does not require any specification. DPJ

provides programmers with two concurrent constructs to parallelize their programs. This is

unlike Pān̄ini, which does not require programmers to construct explicitly parallel programs.

Instead, Pān̄ini promotes the goal of writing programs with good modular designs.

Unlike Multilisp [54], which has the future construct, Pān̄ini uses different expressions

as synchronization points. Moreover, unlike Java’s current adoption of Futures, which is

unsafe [62], heap access expressions in Pān̄ini are sound. Furthermore, unlike previous

work [46, 62], our implementation doesn’t require modifications to the virtual machine.

Other recent work such as TaskJava [22] and Tame [31], have promoted similar integration

with existing languages. For TaskJava, an asynchronous method is marked with async,

indicating that it could block. This method may use a primitive wait to express its interests

in a set of events and this expression will block until one of them fires. Similarly, Tame uses a

primitive twait to block on events. In both these approaches, running of the concurrent task

is explicitly managed by the programmer. In Pān̄ini, however, handlers are implicitly spawned

and managed by the language runtime. As a result, programmers are relieved of reasoning

about locking and data race problems. Such software engineering properties are becoming

very important with the increasing presence of concurrent software, increasing interleaving of

threads in concurrent software, and increasing number of under-prepared software developers

writing code using concurrency unsafe features.

2.4 Types, Regions and Effects

FX [28, 38] is a Scheme-like, implicitly parallel language. Unlike Pān̄ini, it used region-

based types and effects for concurrency. Effects for object-oriented language was first studied

by Greenhouse and Boyland [27]. However, they did not apply their work to concurrency.

Also, unlike Greenhouse and Boyland’s work Pān̄ini does not rely entirly on objects located in

different regions.

Ownership system has been studied for more than ten years [11]. Clarke and Drossopoulou

in their work [12] described an effect system and use it to reason about the absence of alias-

12

ing. Multiple Ownership for Java-like Objects (MOJO) [11] introduced the notion of multiple

ownership and enforced the ”objects in boxed” model. All of these works require that objects

have some relationship with others, i.e. certain objects belong solely to some other objects.

Because of this, region creation is couple with object creation. Unlike any of the above works,

Pān̄ini does not require programmers to write any effect annotation/type or ownership relation

on the programs. Rather, effects summaries of methods are automatically inferred.

Effects systems [1, 9, 30] are also used in explicit concurrent languages to eliminate data

races and deadlocks. Unlike any of the above systems, which made use of the effects system to

enforce certain locking discipline, Pān̄ini is an implicit concurrent language and has no syntax

for locks. What is more, Pān̄ini provides a deterministic semantics.

Many explicit concurrent languages benefit from using sophisticated type systems. AJ [61]

lets programmers to specify that a set of fields must be accessed atomically, but does not guar-

antee a deterministic semantics. Concurrent Revisions [10] provided users with a syntax that

says each thread accesses its own version of certain objects to eliminate interferences. However,

the underlying implementation only does a shallow copy, which means that programmers have

to explicitly put every object that could produce interferences into the revisions. Pān̄ini tries

to relieve programmers from concurrency bugs and is also an implicit concurrent language.

13

CHAPTER 3. Pān̄ini’s Design

In this chapter, we describe Pān̄ini’s design. Pān̄ini’s design builds on our previous work

on the Ptolemy [50] and Eos [52] languages as well as implicitly parallel languages such as

Jade [53]. Pān̄ini achieves concurrent speedup by executing handler methods concurrently.

The novel features of Pān̄ini are found in its concurrency model and conflict-detection scheme.

3.1 Pān̄ini’s Syntax

Pān̄ini extends Java [26] with new mechanisms for declaring events and for announcing these

events. These features are inspired by implicit invocation (II) languages such as Rapide [16]

and our previous work on Ptolemy [50]. These syntax extensions are shown in Figure 3.1.

In this syntax, the novel features are: event type declarations (event), event announcement

statements (announce), and handler registration statements (register). Since Pān̄ini is an

implicitly concurrent language, it does not feature any construct for spawning threads or for

mutually exclusive access to shared memory. Rather, concurrent execution is facilitated by an-

nouncing events, using the announce statement, which may cause handlers to run concurrently.

Examples of the syntax can be seen in Figure 1.2 and described in Section 1.3.

Top-level Declarations. The object-oriented part of Pān̄ini has classes, objects, in-

heritance, and subtyping, but it does not have super, interfaces, exception handling, built-in

value types, privacy modifiers, or abstract methods Figure 3.1. A Pān̄ini program consists of

a sequence of declarations followed by an expression, which can be thought of as the body of a

“main” method. We add a new declaration for events. An event type declaration (EventDecl)

has a name (Identifier), and zero or more context variable declarations (ContextVariable*).

14

prog ::= decl* e

decl ::= class c extends d { field meth binding } | event p { form }
field ::= c f ;

meth ::= c m (form){ e }
t ::= c | void
binding ::= when p do m ;

form ::= c var , where var 6= this

e ::= new c() | var | null | e.m(e) | e.f | e.f = e | cast c e | form = e ; e | e ; e
| register(e) | announce p (e) ; e

where
c, d ∈ C, the set of class names
p ∈ P, the set of event type names
f ∈ F , the set of field names
m ∈ M, the set of method names
var ∈ {this} ∪ V,V is the set of variable names

Figure 3.1 Pān̄ini’s abstract syntax, based on [50, 13].

These context declarations specify the types and names of reflective information exposed by

conforming events. An example is given in Figure 1.2 on lines 1-3 where event GenAvailable

has one context variable Generation g that denotes the generation which is now available.

The intention of this event type declaration is to provide a named abstraction for a set of

events that result from a generation being ready. The two top-level declaration forms, classes

and event type declarations, may not be nested.

Like Eos [51], classes in Pān̄ini may also contain binding declarations. A binding declaration

(BindingDecl) mainly consists of two parts: an event type name (Type) and a method name

(Identifier). For example, in Figure 1.2 on line 10 the class CrossOver declares a binding such

that the cross method is invoked whenever an event of type GenAvailable is announced. We

call such methods handler methods and they may run concurrently with other handler methods

for the same event.

Pān̄ini’s New Statements. Pān̄ini has all the standard object-oriented expressions

and statements as in Java. New to Pān̄ini is the registration statement (RegisterStmt) and

(AnnounceStmt). Like II languages and Ptolemy [50], a module in Pān̄ini can express interest

in events, e.g., to implement the observer design pattern [24]. Just like II languages, where

one has to write a statement for registering a handler with each event in a set, and similar to

Ptolemy [50], such modules run registration statements. Examples are shown on lines 7, 23,

15

38 and 44 in Figure 1.2. The example on line 7 registers the this object to receive notification

when events of type GenAvailable are signaled.

3.2 Concurrency in Pān̄ini

The announce statement enables concurrency in Pān̄ini. The statement announce p (

Expr*) ; signals an event of type p, which may run any handler methods that are applicable

to p asynchronously, and waits for the handlers to finish. In Figure 1.2, the body of the cross

method contains an announce statement on line 18. On evaluation of the announce state-

ment, Pān̄ini first looks for any applicable handlers. Here, the handlers CrossOver, Mutation,

Logger, and Fittest, are declared to handle the events of type GenAvailable. Such handlers

may run concurrently, depending on whether they interfere with each other.

The evaluation of the announce statement then continues with evaluating the sequence on

line 18, which returns from the method. The announcement of the event allows for potential

concurrent execution of the bodies of the cross (lines 11–19), mutate (lines 27–35), logit

(line 38), and check (lines 45–51) methods.

The announce statement also binds values to the event type declaration’s context variables.

For example, when announcing event GenAvailable on line 18, g1 is bound to the context

variable g on line 2. This binding makes the new generation available in the context variable

g, which is needed by the context declared for the event type GenAvailable.

3.3 Pān̄ini’s Handler Conflict Detection Scheme

Pān̄ini uses static effect computation [60] and a dynamic conflict detection scheme to com-

pute a schedule for execution of handlers that maximizes concurrency while ensuring a deter-

ministic semantics of programs. This is similar to Jade [53], where the implementation tries to

discover concurrency. But unlike Jade, we do not require effect annotations. Pān̄ini’s compiler

generates code to compute the potential effect of all handlers. At runtime, when a handler

registers with an event, Pān̄ini’s runtime uses these statically computed effects to decide the

execution schedule of handlers.

16

Effects of a Method. The effects of a method are modeled as a set that may contain

four kinds of effects: 1) read effect: a class and its field that may be read; 2) write effect: a

class and its field that may be written; 3) announce effect: an event that may be announced

by the method; 4) register effect: whether this method may evaluate a register statement.

These sets are generated for each method in the program and inserted in the generated code as

synthetic methods. For library methods, their effects are computed by analyzing their bytecode

and inserted directly at call-sites.

Detecting Dependencies between Handlers. When a register statement is run

with a handler as argument, dependence between this handler and already registered handlers

for that event is computed by comparing their effects. Two handlers may have read-write,

write-write or register-announce dependencies.

Suppose the currently registering handler is hr and hi is in the sequence of already registered

handlers. Handlers hr and hi may be register-announce dependent if hi announces an event for

which hr registers a handler or vice versa. The handler hr is read-write dependent on hi if hr’s

reads conflict with hi’s writes, or hr’s writes conflict with hi’s reads or writes. Two effect sets

conflict, if they share an element. That is because, in the deterministic semantics, hr should

view the changes by hi, while hr’s changes are invisible to hi, neither should the changes of hr

be overwritten by the changes of hi. We illustrate via an example in Figures 3.2-3.4.

Handlers Reads Writes Registers Announces
A {Account.balance} ∅ ∅ {Ev}
B {Account.id} ∅ ∅ ∅
C ∅ {Account.balance} ∅ ∅

Figure 3.2 Initial effects of three handlers

Assume that there are three handlers A, B and C, with their initial effects shown in

Figure 3.2. Handler A reads the field balance of the class Account and handler C may write

to the field balance. Since handler A registers earlier than handler C, handler C’s writes

conflict with handler A’s reads, as discussed above.

Notice that a handler h could also announce an event, say p. Then the read/write set of

h could be enlarged over time, because new handlers for p may register later and the effects

of these new handlers should propagate to h. Pān̄ini does these updates automatically when

17

new handlers register for a certain event. To enable this, subjects are formed into a list for

an event. Thus, when a handler registers, its changes are passed to these subjects, and these

subjects merge the changes and recursively pass changes to other events when necessary. This

continues until a fixpoint is reached (no more effects are added to the subjects). For example,

in Figure 3.3 notice that handler A may announce events of type Ev. Thus after handler B

registers, the effect set of handler A becomes the union of effect sets of handlers A and B.

Handlers Reads Writes Registers Announces
A {Account.balance, ∅ ∅ {Ev}

Account.id}
B {Account.id} ∅ ∅ ∅
C ∅ {Account.balance} ∅ ∅

Figure 3.3 Effects after handler A and handler B have registered.

Finally, in Figure 3.4, the effect set of handler A becomes the union of effect sets of all the

three handlers.

Handlers Reads Writes Registers Announces
A {Account.balance, ∅ {Ev}

Account.id} {Account.balance}
B {Account.id} ∅ ∅ ∅
C ∅ {Account.balance} ∅ ∅

Figure 3.4 Effects after all three handlers have registered.

Handlers’ Hierarchy. Pān̄ini groups handlers into hierarchies, based on handler de-

pendencies. In the first level of the hierarchy, none of the handlers have a dependency on any

other handlers, while any handler in the second level depends on a subset of the handlers in the

first level and no other handlers. For example, handler C conflicts with handler A (discussed

previously). Similarly, handlers in the third level may depend on handlers in the first two

levels, but no handlers in any other level. It is possible that the effects of one handler will

become larger (mentioned above) and in response to this, Pān̄ini will reorder the hierarchy

dynamically. Thus, the example above will have a two level hierarchy, with handlers A and B

in the first level, while, handler C in the second.

Event Registration. When a handler, say h, registers with event p, we first propagate

its effects to the subjects of p. Then the dependencies between h and the previous registered

18

handlers are computed based on the effect set. After dependencies are calculated, the handler

is put into a proper level of the hierarchy. In Figure 3.3 and Figure 3.4, since, handler A may

announce event type Ev, the effect sets of handler B and handler C are propagated to handler

A (as a subject). Because handler B does not depend on handler A (notice that read effects

of the same field have no conflict), it is put in the first level. Since handler C’s writes conflict

with handler A’s reads, it is put in the second level.

Event Announcement and Task Scheduling Algorithm. When a subject signals

an event, Pān̄ini executes the handlers in the first level concurrently (the subject itself blocks

until all handlers are finished). After all the handlers in this level are done, handlers in the

next level are released and run in parallel until all the handlers are finished. For example,

since handlers A and B are both in the first level, they will run in parallel. Once they are

completed, handler C will run. If any of the handlers also announce an event, the handlers

for that event will be scheduled, according to their conflict sets. Announce statements do not

return until after all the handlers associated with the event are finished. This ensures correct

synchronization for any state changes made by the handlers.

The computation of the dependency and the effect propagation is done when handlers reg-

ister, based on the assumption that in a program, the number of announcements considerably

outweighs the number of registrations. Therefore, the overhead of effect analysis is amortized

over event announcements.

3.4 Properties of Pān̄ini’s Design

Pān̄ini does not have locks so it is deadlock free. It uses automatic conflict detection that

ensures race freedom and guaranteed deterministic semantics. Chapter 6 has formal details

and proofs of these properties. Its design, does not offer these guarantees if programmers use

explicit locking and threads in the underlying Java language in a manner that creates deadlocks

and data races.

19

CHAPTER 4. Pān̄ini’s Static Semantics and Effect System

In this chapter, we present Pān̄ini’s type system. It is builds on our previous work on the

Ptolemy [50] and Eos [52] languages. The Ptolemy language did not use the effect system [39]

to facilitate concurrency. Other type systems, for example [40], which studied the effects of

computations, do not provide a static semantics for event-based concurrent programs. Thus,

addressing these problems is necessary to formalize Pān̄ini’s static semantics.

4.1 Type and Effect Attributes

Type checking uses the attributes defined in Figure 4.1. Compared to Ptolemy [50] new to

Pān̄ini is its effect system. For example, the type attributes for expressions are represented as

(t, ρ), the type of the expression (t) and its effect set (ρ).

θ ::= OK “program/top-level decl/body types”
| (t1 × . . .× tn → t, ρ) in c “method types”
| (t, ρ) “expression types”

ρ ::= ε+ ρ | • “program effects”
ε ::= read c f “read effect”

| write c f “write effect”
| ann p “announce effect”
| reg “register effect”
| create c “new object effect”

π,Π ::= {I : θI}I∈K , “type environments”
where K is finite, K ⊆ (L ∪ {this} ∪ V)

Figure 4.1 Type and Effect Attributes.

The effects are used to compute the potential conflicts between handlers. These effects

include: 1) read effect: a class and a field to be read; 2) write effect, content is similar to read

effect; 3) announce effect: an event that a certain expression may announce; 4) register effect

and 5) new object. The interference between the effects is shown in Figure 4.2.

20

Effects read write ann reg create

read ×
√

×
√

×
write

√ √
×

√
×

ann × × ×
√

×
reg

√ √ √ √
×

create × × × × ×

Figure 4.2 Effect Interference.
√

: conflicts, ×: no conflicts

4.2 Effect Interference

Read effects do not interfere with any other read effects. Write effects conflict with either

another read or write effect accessing the same field of the same object. Announce effects will

interfere with register effects, because the order of registration affects the set of handlers run

during announcement.

Announce effect is also used later in the semantics because handlers could also act as

publishers (refer to as handler/publisher) and announce events (e). Pān̄ini updates the effects

of these handler/publisher(s) every time a handler registers the event e. Thus Pān̄ini will get

more accurate information about the effects of the handlers/publishers when scheduling and

reduce false interferences. In Pān̄ini, register effects will interfere with read/write effects as

well, due to the fact that after registration, a handler could introduce unforeseen read and

write effects and thus complicate the interference.

New object effect will not interfere with any other effects. The new object effect is used

to reduce false interference. Certain variables are marked as create if type checking detects

that these variables point to newly created objects. We observe that new objects are not the

sources for interference for the following reasons:

1. if a newly created object does not escape from the handler, the object cannot be accessed

by any other handlers, thus there will not be any race;

2. otherwise, assume that a newly created object (on) escapes the handler(h1) and is ref-

erenced by another handler (h2), then the program will first have to change a field of

another object (referred to as oa) to point to on to make it escape. On the other hand,

h2 will have to read the field of oa, which will be detected by Pān̄ini and reported as an

interference (because h1 changes the field of oa and h2 reads the field of oa). That is to

21

say, it will not be the newly created object that causes data races.

Thanks to this observation, Pān̄ini could safely remove the read/write effect of any newly

created object and thus reduce false interferences to a considerable extent.

4.3 Type Checking Rules

The type checking rules are shown in Figures 4.3, 4.6 and 4.7. The notation ν ′ <: ν means ν ′

is a subtype of ν. It is the reflexive-transitive closure of the declared subclass relationships [50].

We state the type checking rules, using a fixed class table (list of declarations CT) as in Clifton’s

work [13, 14]. The class table can be thought of as an implicit inherited attribute used by the

rules and auxiliary functions. We require that top-level names in the program are distinct and

that the inheritance relation on classes is acyclic. The typing rules for expressions use a simple

type environment, Π, which is a finite partial mapping from locations loc or variable names

var to a type.

4.3.1 Rules for Declarations

The rules for top-level declarations are fairly standard and are shown in Figures 4.3.

The (T-Program) rule says that the entire program type checks if all the declarations type

check and the expression e has any type t and any effect ρ.

The (T-Event) rule says that an event declaration type checks, if all the types of all the

fields are declared properly. The auxiliary function isType (shown in Figure 4.4), looks at the

class table to check if a type has been defined or not.

The (T-Class) rule says that a class declaration type checks if all the following constraints

are satisfied. First, all the newly declared fields are not fields of its super class (this is checked

by the omitted auxiliary function validF). Next, its super class d is defined in the Class Table.

Finally, all the declared methods and bindings type check.

The (T-Method) rule says that a method declaration type checks if all the following con-

straints are satisfied. First, the return type is a class type. Next, if all the parameters have

their corresponding declared types, the body of the method has type u and effect ρ. Also u

22

(T-Program)
(∀decli ∈ decl :: ` decli : OK)

decl ` e : (t, ρ)

` decl e : (t, ρ)

(T-Event)
(∀(ti var i) ∈ t var; :: isType(ti))

` event p {t var;} : OK

(T-Class)
validF (t f, d)

isClass(d) (∀methj ∈ meth :: ` methj : (θj , ρj) in C) (∀b ∈ binding :: ` b : OK in C)

` class c extends d{t f ; meth binding} : OK

(T-Method)
isClass(t) (∀i ∈ {1..n} :: isClass(ti))

var1 : t1, . . . , varn : tn, this : c ` e : (u, ρ) u <: t override(m, c, (t1 × . . .× tn → t, ρ))

` t m(t1 var1, . . . , tn varn){e} : (t1 × . . .× tn → t, ρ) in c

(T-Binding)
CT (p) = event p {t′1 var ′1, . . . , t

′
m var ′m} (c1, t m(t var){e}, ρ) = findMeth(c,m)

π = {var ′1 : t′1 , . . . , var ′m : t′m} (∀ ti var i ∈ t var :: π(vari) <: ti)

` when p do m : OK in c

Figure 4.3 Type and Effect rules for declarations [13, 14, 50].

isType(t) = (t ∈ dom(CT) ∧ CT (t) = class t . . .)

fieldsOf (c) = {ti} ∪ fieldsOf (c′)
where CT (c) = class c extends c′{t1 f1; . . . tn fn; . . .}

validF (t f, c) = ∀i ∈ {1..n} :: isType(ti) ∧ fi /∈ dom(fieldsOf (c))

Figure 4.4 Auxiliary functions used in type rules[49].

is a subtype of t. This rule also uses an auxiliary function override, defined in Figure 4.5. In

addition to standard conditions, this function enforces that the effect of an overriding method

is the subset of the effect of overridden method1.

The (T-Binding) rule says that a binding declaration type checks, if the named method is

properly defined; all the context variables are subtypes of their corresponding declared types

in the method; and the named event type is declared.

1In practice, we enlarge the effect set of the method in the super class such that the effect of the overriding
method is a subset of its super class.

23

Valid method overriding:

CT (c) = class c extends d {field∗ meth1 . . .methp bind1 . . . bindq}
@i ∈ {1..p} ·methi = t m(t1 var1, . . . , tn varn){e} override(m, d, (t1 × . . .× tn → t, ρ))

override(m, c, t1 × . . .× tn → t, ρ)

methodType(d,m) = (t1 × . . .× tn → t, ρ′) ρ ⊆ ρ′

override(m, d, (t1 × . . .× tn → t, ρ))

override(m,Object, t1 × . . .× tn → t, ρ)

Figure 4.5 Auxiliary functions used in type rules[13, 14].

4.3.2 Rules for Expressions

The type rules for the expressions are shown in Figure 4.6 and Figure 4.7. Most rules for

typing expressions are straightforward.

(T-new)
isClass(c)

Π ` new c() : (c, {create c})

(T-cast)
isType(t) Π ` e : (u, ρ)

Π ` cast t e : (t, ρ)

(T-sequence)
Π ` e1 : (t1, ρ) Π ` e2 : (t2, ρ

′)

Π ` e1; e2 : (t2, ρ ∪ ρ′)

(T-var)
Π(var) = (t, ρ)

Π ` var : (t, ρ)

(T-null)
isClass(c)

Π ` null : (c, ∅)

(T-Call)
(c1, t m(t1 var1, . . . , tn varn){en+1}, ρ) = findMeth(c0,m)

c0 <: c1 Π ` e0 : (c0, ρ0) (∀ i ∈ {1..n} :: Π ` ei : (ui, ρi) ∧ ui <: ti)

Π ` e0.m(e1, . . . , en) : (t, ρ ∪
n⋃

i=1

ρi ∪ ρ0)

Figure 4.6 Type and Effect rules for expressions[13, 14, 50].

The (T-New) rule says that a new expression has the type of the class being declared if

the class c has been properly declared and has a single effect create to denote that this is a

newly created object as mentioned previously to reduce false interferences.

The (T-Cast) rule says that for a cast expression, the cast type must be a class type, and

its effect is the same as the expression’s.

The (T-Sequence) rule states that the sequence expression has same type as the last

expression and its effects are the union of the two expressions.

The (T-Var) rule checks that var is in the environment.

The (T-Null) rule says that the null expression will type check and has no effect.

The (T-Call) is similar to the announce expression. This rule says that for a method call

24

expression it finds the method in the CT using the auxiliary function findMeth (not shown

here) and this method is declared either in its own class or its super class. Each actual argument

expression is of subtype of corresponding parameter type. This method call expression has the

same type as the return type of the method. The auxiliary function findMeth works similar

to the methodBody in Clifton’s work [13, 14], except that here it also returns the effect set of

the method.

(T-get)
Π ` e : (c, ρ) ρ 6= {create c}

fieldsOf (c)(f) = t

Π ` e.f : (t, ρ ∪ {read c f})

(T-get-local)
Π ` e : (c, {create c})

fieldsOf (c)(f) = t

Π ` e.f : (t, {})

(T-yield)
Π ` e : (t, ρ)

Π ` yield e : (t, ρ)

(T-define)
isType(t) Π ` e1 : (t1, ρ)

Π, var : (t, ρ) ` e2 : (t2, ρ
′) t1 <: t

Π ` t var = e1; e2 : (t2, ρ ∪ ρ′)

(T-Register)
Π ` e : (t, ρ) isClass(t)

Π ` register(e) : (t, ρ ∪ {reg })

(T-set)
Π ` e : (c, ρ) ρ 6= {create c}

fieldsOf (c)(f) = t Π ` e′ : (t′, ρ′) t′ <: t

Π ` e.f = e′ : (t′, ρ ∪ ρ′ ∪ {write c f})

(T-Set-local)
Π ` e : (c, {create c}) fieldsOf (c)(f) = t Π ` e′ : (t′, ρ′)

t′ <: t

Π ` e.f = e′ : (t′, ρ ∪ ρ′)

(T-Announce)
CT (p) = event p {t1 var1; . . . tn varn;} (∀ i ∈ {1..n} :: Π ` ei : (ui, ρi) ∧ ui <: ti) Π ` e : (t, ρ)

Π ` announce p (e1, . . . , en);e : (t, {ann p} ∪
n⋃

i=1

ρi ∪ ρ)

Figure 4.7 Type and Effect rules for expressions that generate new effects.

The (T-Get) rule says that a field access expression returns the type of the field of the

class, the effects of it will be the effect of the object expression plus a read effect.

The (T-Get-Local) rule is similar to the previous rule, except that Pān̄ini knows that the

object expression is pointing to a newly created object and thus the read effect is redundant

and deleted.

The (T-Yield) rule says that a yield expression has the same type and same effect as the

expression e.

The (T-Define) rule for declaration expressions is similar to the sequence expression except

that the initial expression should be a subtype of the type of the new variable. Also, the type

of the variable is placed in the environment. Finally, the sequence expression type checks

25

properly.

The (T-Register) rule says that a register expression has the same type as the object

expression and the effects will be the effects of the object expression plus one register effect.

The (T-Set) rule says that a field assignment expression type checks if the object expression

is of a class type and the type of the assignment expression e2 is a subtype of the type of the

field of the class. The effects will be the union of the effects of its two subexpressions plus one

write effect, since this expression is to modify a field of an object.

The (T-Set-Local) rule is similar to (T-Set) except that the type system can detect that

it is changing a field of a new object thus the single write is not needed.

The (T-Announce) rule says that an announcement expression type checks if the event

was declared and the actual parameters are a subtype of the declared field’s type in the event

declaration. The entire expression has the type of the subsequent expression e. The effects of

the announce expression will be the union of all the parameters’ effects and the subsequent

expression plus an announcement effect.

1 event GenAvailable {

2 Generation g;

3 }

4 class Generation {}

5 class LastGen {

6 Generation g;

7 LastGen init (){

8 register(this);

9 this.g = new Generation ();

10 this

11 }

12 when GenAvailable do record;

13 Generation record(Generation g) {

14 this.g = g; this.g

15 }

16 }

17 LastGen ng = new LastGen (). init ();

18 announce GenAvailable(new Generation ());

19 ng.g

Figure 4.8 An Pān̄ini program

Figure 4.8 shows an example program. The program defines one event type GenAvailable,

which has a context variable g of type Generation. There are two classes defined, namely

Generation and LastGen. The class has two methods (init and record) and one event

binding, which says that when event of type GenAvailable is fired, it will execute the method

26

record. Following the declarations, there is an expression, which could be thought of as a

main method of a Java program.

(T-Event)
isType(Generation)

` event GenAvailable {Generation g;} : OK

(T-Class)
isClass(Object)

` class Generation extends Object{} : OK

Figure 4.9 Type System Example: checking event GenAvailable and
class Generation.

Clearly, the event type GenAvailable and the class Generation type checks, following

from Figure 4.9.

(T-Register)

this : LastGen `
register(this) :
(LastGen, {reg })

(T-set)
this : LastGen ` this : (LastGen, {})

fieldsOf (LastGen)(g) = Generation isClass(Generation)
this : LastGen ` new Generation() : (Generation, {create LastGen})

this : LastGen ` this.g = new Generation() :
(Generation, {write LastGen g, create LastGen})

(T-sequence)
Π ` register(this) : (LastGen, {reg })

Π ` this.g = new Generation() : (Generation, {write LastGen g, create Generation})
this : LastGen ` register(this); this.g = new Generation(); this :

(LastGen, {write LastGen g, create Generation, reg })

(T-Method)
isClass(Generation) this : LastGen ` e : (LastGen, {write LastGen g, create Generation, reg })

override(init, LastGen, (→ LastGen, {write LastGen g, create Generation, reg }))
` Generation init(){e} : (→ LastGen, {write LastGen g, create Generation, reg }) inLastGen

Figure 4.10 Type System Example: checking method init.

The method init in the class Last type checks, following from the last rule in Figure 4.10.

This method consists of three expressions: a register expression, a set expression and a var

expression.

The method record in Figure 4.11 type checks similarly.

The class LastGen in Figure 4.12 type check, because all the two of its methods type

checks in the previous discussion, its field has a proper type and finally the only event binding

declaration type checks. The event binding type checks, because the event type was properly

27

(T-set)
this : LastGen ` this : (LastGen, {}) isClass(Generation)

fieldsOf (LastGen)(g) = Generation

{this : LastGen, g : Generation} ` this.g = g : (Generation, {write LastGen g})

(T-sequence)
{this : LastGen, g : Generation} ` this.g = g : (Generation, {write LastGen g})

{this : LastGen, g : Generation} ` this.g : (Generation, {read c g})
{this : LastGen, g : Generation} ` this.g = g; this.g : (Generation, {write LastGen g, read c g})

(T-Method)
isClass(Generation) override(record, LastGen, (Generation→ Generation,Generation))
g : Generation, this : c ` this.g = g; this.g : (Generation, {write LastGen g, read c g})

` Generation record(Generation g){this.g = g; this.g} :
(Generation→ Generation, {write LastGen g, read c g}) in LastGen

Figure 4.11 Type System Example: checking method record.

(T-Binding)
CT (GenAvailable) = event GenAvailable {Generation g}

(LastGen,Generation record(Generation g){ . . . }, ρ) = findMeth(LastGen, record) Generation <: Generation

` when GenAvailable do record : OK in LastGen

(T-Class)
validF (Generation g,Object)

LastGen init(){. . .} : (→ Generation, {write LastGen g, create LastGen, reg }) ∈ LastGen
Generation record(Generation g){. . .} : (Generation→ Generation, {write LastGen g, read c g}) in LastGen

when GenAvailable do record : OK in LastGen

` class LastGen extends Object{Generation g;
LastGen init(){. . .} Generation record(Generation g){. . .}

when GenAvailable do record : OK

Figure 4.12 Type System Example: checking class Generation.

defined and the handler method record type checks and all the parameter types are subtypes

of the context variables.

Eventually, the program expression type checks as is shown in Figure 4.13. This expression

first defines a local variable ng, which is initiated to a newly created object. The object of the

class LastGen was properly declared. An event of type GenAvailable is fired after that. The

entire program type checks because all the declarations (classes and event type) and the main

expression type check, as discussed in the previous paragraphs.

28

(T-Call)
(LastGen, LastGen init(){e}, {write LastGen g, create Generation, reg })

= findMeth(LastGen, init) ` new LastGen() : (LastGen, {create LastGen})
` new LastGen().init() :

(LastGen, {write LastGen g, create Generation, reg , create LastGen})

(T-Announce)
CT (GenAvailable) = event GenAvailable {Generation g;}
ng : (LastGen, . . .) ` ng.g : (Generation, {read LastGen g})

ng : (LastGen, . . .) ` new Generation() : (Generation, {create })
ng : (LastGen, . . .) ` announce GenAvailable (new Generation());ng.g :

(Generation, {ann p, read LastGen g, create })

(T-define)
` new LastGen().init() : (LastGen, {write LastGen g, create Generation, reg , create LastGen})

ng : (LastGen, {write LastGen g, create Generation, reg , create LastGen}) `
announce . . . : (Generation, {ann p, read LastGen g, create Generation})

` LastGen ng = new LastGen().init(); announce . . . : (t2,
{write LastGen g, create Generation, reg , create LastGen, ann p, read LastGen g})

Figure 4.13 Type System Example: checking the main expression.

29

CHAPTER 5. Pān̄ini’s Operational Semantics

Here we give a small-step operational semantics for Pān̄ini. Reactor [56] and other works

have studied the concurrent pattern for distributed event-based systems. These works [21, 31]

did not provide a formal semantics for their system, were sequential, or only assumed disjoint

address space between concurrent tasks. Addressing these problems is necessary to formalize

Pān̄ini’s operational semantics. On the other hand, Pān̄ini provides a dynamic effect system,

with which Pān̄ini could more accurately detect conflict between concurrent tasks.

5.1 Added syntax, domains, and evaluation contexts

Added Syntax:

e ::= loc | yield e | NullPointerException | ClassCastException

where loc ∈ L, a set of locations

Figure 5.1 Added syntax based on [13, 50].

Intermediate Expressions. The expression semantics rely on four expressions that

are not part of Pān̄ini’s surface syntax as shown in Figure 5.1. The loc expression repre-

sents locations in the store. Following Abadi and Plotkin [2], we use the yield expression

to model concurrency. The yield expression allows other tasks to run. The rules and aux-

iliary functions all make implicit use of a (global) list: CT , the program’s declarations. The

NullPointerException and ClassCastException (shown in Figure 5.2) are two final states

reached: 1) when trying to access a field or a method from a null pointer object or 2) an

object that is not of subtype of the casting type.

30

(NCall)
〈〈E[null.m(v1, . . . , vn)], τ〉+ ψ, µ, γ〉

↪→ 〈〈NullPointerException, τ〉+ ψ, µ, γ〉

(NGet)
〈〈E[null.f], τ〉+ ψ, µ, γ〉

↪→ 〈〈NullPointerException, τ〉+ ψ, µ, γ〉

(NSet)
〈〈E[null.f = v], τ〉+ ψ, µ, γ〉

↪→
〈
〈NullPointerException, τ〉+ ψ, µ′, γ

〉
(XCast)

[c′.F] = µ(loc) c′ 6<: c

〈〈E[cast c loc], τ〉+ ψ, µ, γ〉 ↪→ 〈〈ClassCastException, τ〉+ ψ, µ, γ〉

Figure 5.2 Operational semantics of expressions that produce exceptions.

Domains. The small steps taken in the semantics are defined as transitions from one

configuration to another. These configurations are shown in Figure 5.3.

Evaluation relation: ↪→: Σ→ Σ
Domains:

Σ ::= 〈ψ, µ, γ〉 “Program Configurations”
ψ ::= 〈e, τ〉 + ψ | • “Task Configurations”
τ ::= 〈n, {nk}k∈K〉 “Task Local Data”

where nk ∈ N and K is finite
µ ::= {loc 7→ o} + µ | • “Stores”
v ::= null| loc “Values”
o ::= [c.F] “Object Records”
F ::= {fk 7→ vk}k∈K , “Field Maps”

where K is finite
γ ::= loc + γ | • “Subscriber List”

Figure 5.3 Domains used in the semantics, based on [13, 50].

A configuration consists of a task queue ψ, a global store µ, and a global subscriber list γ.

The store µ is a mapping from locations (loc) to objects (o). The subscriber list γ consists of

a set of receiver objects for handler methods.

The task queue ψ consists of an ordered list of task configurations 〈e, τ〉. This configuration

consists of an expression e running in that task and the corresponding task local data (τ). The

task local data is used to record the identity of the current task (n) and a set of identities for

other tasks on which this task depends on. A task t depends on another task t′ if t’s read/write

set conflicts with the read/write set of t′. Pān̄ini will never schedule a task to run unless all

the tasks it depends on are finished.

An object record o consists of a class name c and a field record F . A field record is a

mapping from field names f to values v. A value v may either be null or a reference loc,

31

which have standard meanings.

Evaluation contexts:

E ::= − | E .m(e . . .) | v.m(v . . .E e . . .) | t var=E; e | cast t E | E .f
| E .f=e | v.f=E | E; e | announce(v . . .E e . . .); e | E .register()

Figure 5.4 Evaluation contexts used in the semantics, based on [13, 50].

Evaluation Contexts. We present the semantics as a set of evaluation contexts E

(Figure 5.4) and a one-step reduction relation that acts on the position in the overall expres-

sion identified by the evaluation context [63]. This avoids the need for writing out standard

recursive rules and clearly presents the order of evaluation. The language uses the call-by-

value evaluation strategy. The initial configuration of a program with a main expression e is

〈〈e, 〈0, ∅〉〉 , •, •〉.

5.2 Semantics for Object-oriented Expressions

The rules for OO expressions are given in Figure 5.5. These are mostly standard and

adopted from the work of Rajan and Leavens [50], and Clifton’s work [13, 14].

(New)
loc /∈ dom(µ)

µ′ = {loc 7→ [c.{f 7→ null | (t f) ∈ fieldsOf (c)}]} ⊕ µ
〈〈E[new c()], τ〉+ ψ, µ, γ〉 ↪→

〈
〈E[loc], τ〉+ ψ, µ′, γ

〉
(Get)

µ(loc) = [c.F] v = F (f)

〈〈E[loc.f], τ〉+ ψ, µ, γ〉 ↪→ 〈〈E[v], τ〉+ ψ, µ, γ〉

(Set)
[c.F] = µ(loc)

µ′ = µ⊕ (loc 7→ [c.F ⊕ (f 7→ v)])

〈〈E[loc.f = v], τ〉+ ψ, µ, γ〉 ↪→
〈
〈E[v], τ〉+ ψ, µ′, γ

〉
(Cast)
[c′.F] = µ(loc) c′ <: c

〈〈E[cast c loc], τ〉+ ψ, µ, γ〉
↪→ 〈〈E[loc], τ〉+ ψ, µ, γ〉

(Define)
e′ = [var/v]e

〈〈E[t var = v; e], τ〉+ ψ, µ, γ〉
↪→
〈〈

E[yield e′], τ
〉

+ ψ, µ, γ
〉

(Call)
(c′, t,m(t1 var1, . . . , tn varn){e}, ρ) = findMeth(c,m)

[c.F] = µ(loc) e′ = [this/loc, var1/v1, . . . , varn/vn]e

〈〈E[loc.m(v1, . . . , vn)], τ〉+ ψ, µ, γ〉 ↪→
〈〈

E[yield e′], τ
〉

+ ψ, µ, γ
〉

(Sequence)
〈〈E[v; e], τ〉+ ψ, µ, γ〉

↪→ 〈〈E[yield e], τ〉+ ψ, µ, γ〉

Figure 5.5 Semantics of object-oriented expressions in Pān̄ini, based in
part on [50, 13, 14]

32

One difference stems from the concurrency and store models in Pān̄ini. The use of the

intermediate expression yield in the (CALL), (SEQUENCE), and (DEFINE) rules serves to

allow other tasks to run. There are not any specific reasons for inserting the intermediate

expression yield into the three above expressions and not the other, except that since thread

interleaving is nondeterministic and thus Pān̄ini models this by nondeterministically inserting

the intermediate expression yield into different semantics rules.

The (New) rule creates a new object and initializes its fields to null. It then creates a

record with a mapping from a reference to this newly created object.

The (Call) rule acquires the method signature using the auxiliary function findMeth (as

methodBody in in Clifton’s work [13, 14]). It uses dynamic dispatch, which starts from the

dynamic class (c) of the record, and may look up the super class of the object if needed. The

method body is to be evaluated with the arguments replaced by the actual values as well as

the this variable by loc. It then yields control by calling (yield) to model concurrency, which

will be discussed later.

The (Sequence) rule says that the current task may yield control after the evaluation of

the first expression. The (Cast) rule is used only when the loc is a valid record in the store

and when the type of object record pointed to by loc is subtype of the cast type. The (Define)

rule allows for local definitions. It binds the variable given to the value and evaluates the

subsequent expressions with the new binding.

The (Get) or get field read rule gets an object record from the store and retrieves the

corresponding field value as the result. The semantics for (Set) uses ⊕ as an overriding

operator for finite functions. That is, if µ′ = µ⊕ (loc 7→ v), then µ′(loc′) = v if loc′ = loc and

otherwise µ′(loc′) = µ(loc′). The operation first fetches the object from the store and overrides

the field.

5.3 Semantics for Yielding Control

In Pān̄ini’s semantics, like Abadi and Plotkin [2], the running task may implicitly relinquish

control to other tasks. The rules for yielding control are given in Figure 5.6.

33

(Yield)〈
e′, τ ′

〉
+ ψ′ = active(ψ + 〈E[yield e], τ〉)

〈〈E[yield e], τ〉+ ψ, µ, γ〉 ↪→
〈〈
e′, τ ′

〉
+ ψ′, µ, γ

〉
(Yield-Done)
〈〈E[yield e], τ〉+ •, µ, γ〉
↪→ 〈〈E[e], τ〉+ •, µ, γ〉

(Task-End)〈
e′, τ ′

〉
+ ψ′ = active(ψ) ψ 6= •
〈〈v, τ〉+ ψ, µ, γ〉

↪→
〈〈
e′, τ ′

〉
+ ψ′, µ, γ

〉

Figure 5.6 Semantics of yielding control in Pān̄ini

The (Yield) rule says to put the current task configuration in the end of the task-queue

and to start evaluating the next active task configuration from the current task queue. Finding

an active task is done by the auxiliary function active (shown in Figure 5.7). It searches the

items (task configuration) from the head of the queue until it finds the first item that could

be run and returns it. A task configuration is ready to run if the tasks in its dependence set

are done.

active(〈e, τ〉+ ψ) = 〈e, τ〉+ ψ
where intersect(τ, ψ) = false

active(〈e, τ〉+ ψ) = active(ψ + 〈e, τ〉)
where intersect(τ, ψ) = true

intersect(∅, ψ) = false
intersect({n} ∪ τ, ψ) = true

where inQueue(n, ψ) = true
intersect({n} ∪ τ, ψ) = intersect(τ, ψ)

where inQueue(n, ψ) = false

inQueue(n, •) = false
inQueue(n, 〈e, 〈n, {nk}〉〉+ ψ) = true
inQueue(n, 〈e, 〈n′, {nk}〉〉+ ψ) = inQueue(n, ψ)

where n 6= n′

Figure 5.7 Auxiliary functions for returning a nonblock configuration.

The (Yield-Done) rule is applied when there are no other task configurations in the queue.

Since there are no other tasks in the queue, it continues to evaluate the current task configura-

tion. The (Yield-End) rule says that the current running task is done (it evaluates to a single

value v), thus this task configuration is removed from the queue and next active task will be

scheduled.

5.4 Semantics for Event registration

We now describe the semantics for subscribing to an event (Figure 5.8).

34

(Multi-Register)
loc ∈ γ

〈〈E[register(loc)], τ〉+ ψ, µ, γ〉
↪→ 〈〈E[loc], τ〉+ ψ, µ, γ〉

(Register)
loc /∈ γ

〈〈E[register(loc)], τ〉+ ψ, µ, γ〉
↪→ 〈〈E[loc], τ〉+ ψ, µ, loc + γ〉

Figure 5.8 Semantics of Registration

The (Multi-Register) rule is applied when the handler has already registered previously

and thus the configuration does not change. Pān̄ini does not allow multiple registrations for a

same object because in many circumstances different handlers of the same class may change a

same field of their own handler objects and thus no conflict between them, unless the handler

objects are the same.

The (Register) rule finds out that this handler is not in the queue, so Pān̄ini safely puts

this record at the front of the queue.

5.5 Semantics for announcing an event

(Announce)
event p{t1 var1, . . . , tn varn} = CT (p)

ψ′ = ψ + ψ′′ τ =
〈
id, I′

〉
τ ′ = 〈id, I〉 ν = v1 + . . .+ vn

〈
ψ′′, I

〉
= spawn(p, ψ, γ, ν, µ)

〈〈E[announce p (v1, . . . , vn);e], τ〉+ ψ, µ, γ〉 ↪→
〈〈

E[yield e], τ ′
〉

+ ψ′, µ, γ
〉

Figure 5.9 Semantics of Announcement

The semantics for signaling events is shown in Figure 5.9.

The (Announce) rule takes the relevant event declaration from the program’s list of decla-

rations and creates a list of actual parameters (ν). This list of actual parameters (ν) is used by

the auxiliary function spawn shown in Figure 5.10 (with other helper functions in Figure 5.12

and Figure 5.11). This rule does not change the ordering in existing task configurations

The auxiliary function concat is used in several other auxiliary functions. It (defined

in Figure 5.11) combines the contents in the two lists, which are the inputs to this function.

The function spawn searches the program’s global list of subscribers (γ) for applicable han-

dlers (using auxiliary functions hfind , hmatch, and match). Auxiliary functions buildconfs (Fig-

35

spawn(p, ψ, γ, ν, µ) = buildconfs(H,ψ, ν, •, γ, µ)
where H = hfind(γ, p, µ) and CT is the program’s list of declarations

hfind(•, p, µ) = •
hfind(loc + γ, p, µ) = hfind(γ, p, µ)

where µ(loc) = [c.F] and hmatch(c, p, CT) = •
hfind(loc + γ, p, µ) = concat(hfind(γ, p, µ), 〈loc,m〉)

where µ(loc) = [c.F] and hmatch(c, p, CT) = m
and CT is the program’s list of declarations

hmatch(c, p, •) = •
hmatch(c, p, (event p{ . . . }) + CT ′) = hmatch(c, p, CT ′)
hmatch(c, p, (class c′ . . .) + CT ′) = hmatch(c, p, CT ′) where c 6= c′

hmatch(c, p, ((class c extends d . . . binding1 . . . bindingn) + CT ′))
= excl(match((bindingn + . . .+ binding1), p), hmatch(d, p, CT))

where excl(•, H) = H and excl(e,H) = e

match(•, p) = •
match((when p′ do m) +B, p) = match(H, p) where p′ 6= p
match((when p′ do m) +B, p) = m

Figure 5.10 Functions for Creating Task Configurations.

car(•) = 0
car(〈loc,m〉+H) = 1 + car(H)

max(•, id) = id
max(〈e′, 〈id′, I〉〉+ ψ, id) = max(ψ, id) where id′ < id
max(〈e′, 〈id′, I〉〉+ ψ, id) = max(ψ, id′) where id′ > id

getE(•, γ, µ) = •
getE(〈loc,m〉+H, γ, µ) = concat(update(ρ, γ, µ), getE(H, γ, µ))

where loc = [c.F] and (c′, t,m . . . , (. . . , ρ) in c′) = findMeth(c,m)

diff (•, ρ) = true
diff (ε+ ρ′, ρ) = diff (ρ′, ρ) where true = differ(ε, ρ)
diff (ε+ ρ′, ρ) = false where false = differ(ε, ρ)

differ(ε, •) = true
differ(ε, ε′ + ρ) = differ(ε, ρ) where ε and ε′ have no conflict
differ(ε, ε′ + ρ) = false where ε and ε′ have conflicts

concat(•, L′) = L′

concat(l + L,L′) = l + concat(L,L′)

Figure 5.11 Miscellaneous helper functions.

ure 5.12) and buildconf create task configurations for handlers. buildconf binds the context

variables (of the event type) with the values (ν), computes an unique id for each handler task,

and configures the dependent set of this handler (discussed in 3.3). These task configurations

are used to run the handler bodies and they are appended to the end of the queue ψ. The

auxiliary function max is used to give the newly-born task a global unique ID.

The auxiliary function pre is used to find all the tasks that this task depends on. It first calls

36

buildconfs(•, ψ, ν,H′, γ, µ) = (•, •)
buildconfs(〈loc,m〉+H,ψ, ν,H′, γ, µ)

= (〈e, 〈mid, I〉〉+ ψ′, concat(mid, I
′))

where 〈e, 〈mid, I〉〉 = buildconf (loc,m, ψ, ν,H′, γ, µ)
and H′′ = H′ + 〈loc,m〉
and (ψ′, I′) = buildconfs(H,ψ, ν,H′′, γ, µ)

buildconf (loc,m, ψ, ν,H, γ, µ) =
let e′ = [this/loc, var1/v1, . . . , varn/vn]e in 〈e′, 〈id, I〉〉

where loc = [c.F] and
(c′, t,m(t1 var1, . . . , tn varn){e}, . . .) = findMeth(c,m)
and ν = v1 + . . .+ vn and I = pre(loc,m,H, id′ + 1, γ, µ)
and id = 1 + car(H) + id′and id′ = max(ψ,−1)

pre(loc,m, •, n, γ, µ) = •
pre(loc,m, 〈loc1,m1〉+H,n, γ, µ) = pre(loc,m,H, n+ 1, γ, µ)

where loc = [c.F] and (c′, t,m . . . , ρ) = findMeth(c,m)
and loc1 = [c1.F] and (c′1, t1,m1 . . . , ρ′) = findMeth(c1,m1)
and true = diff (update(ρ, γ, µ), update(ρ′, γ, µ))

pre(loc,m, 〈loc1,m1〉+H,n) = concat(n, pre(loc,m,H, n+ 1))
where loc = [c.F] and (c′, t,m . . . , ρ) = findMeth(c,m)
and loc1 = [c1.F] and (c′1, t1,m1 . . . , ρ′) = findMeth(c1,m1)
and false = diff (update(ρ, γ, µ), update(ρ′, γ, µ))

update(•, γ, µ) = •
update(〈read c f〉+ ρ, γ, µ) = concat(〈read c f〉 , update(ρ, γ, µ))
update(〈write c f〉+ ρ, γ, µ) = concat(〈write c f〉 , update(ρ, γ, µ))
update(〈create 〉+ ρ, γ, µ) = concat(〈create 〉 , update(ρ, γ, µ))
update(〈reg 〉+ ρ, γ, µ) = concat(〈reg 〉 , update(ρ, γ, µ))
update(〈ann 〉+ ρ, γ, µ) = concat(

getE(hfind(γ, p, µ), γ, µ), update(ρ, γ, µ))

Figure 5.12 Functions for building handler configurations.

another auxiliary function update to update the effects of the task. The function update is used

because the handler may signal events, say e, thus this function searches the handler queue γ

to union their effect sets with the effect set of this task. Pān̄ini does this to get more accurate

information about the potential effect sets of a task to reduce false conflicts. The functions

diff and differ are used to actually compared the effects. A read effect will conflict with a

write effect if they access the same field of the same class or a subclass of another class. A

read effect also conflicts with the register effect. A write effect will conflict with another write

effect similar to the read effect discuss above. An announce effect conflicts with only register

effects and register effects will conflict with any effect except for the create effect.

37

CHAPTER 6. Properties of Pān̄ini’s Design

In this chapter, we study the key properties of Pān̄ini’s design. We show that our language

design has the following desirable properties. Well-typed Pān̄ini programs do not get stuck and

are free of races and deadlocks. The proof of this uses a standard preservation and progress

argument [63]. The key novelty in the proof is the observation is that in Panini programs,

there are not any data races between handlers. This is done mainly by the type system, as

well as the scheduling algorithm during the event announcement, mentioned in 3.3.

6.1 Deadlock Freedom

Definition 6.1.1 [Blocked Configurations.] A task configuration 〈〈e, τ〉+ ψ, µ, γ〉 may block

if any one of its predecessors 1 is still in execution.

Theorem 6.1.2 [Liveness.] Let 〈〈e, τ〉+ ψ, µ, γ〉 be an arbitrary program configuration, where

e is a well-typed expression ,τ is task local data, µ is the store, ψ is a task queue and γ is a

handler queue. Then either e is not blocked or there is some task configuration in ψ that is

not blocked.

Proof Sketch: We could construct a tree using the tasks, where any parent node, p, publishes

an event, E, and the handlers of E form the children of p. So, in this case, nodes in a lower

level will never depend on nodes in the above levels. A node may depend on its children

when it is publishing an event or it may depend on a sibling if its effect set conflicts with

the sibling’s. On any particular level of the tree, if siblings conflict with each other, then the

1a task t1 is a predecessor of another task t2, if either 1) t2 depends on t1, which means that the effect set
of t2 conflicts with the effect set of t1, as mentioned in section 3.3, or 2) if t2 announces an event and t1 is a
handler for the event (a task, which announces an event, has to wait for all the handlers to finish, as descripted
in Chapter 5).

38

initial registration order (Section 3.3) is used to create a non-blocking ordering for the handlers.

Finally, leaf nodes, which have no child dependencies, can always either be run concurrently or

in an ordering determined by registration time and by sibling dependency. Thus, in the lowest

level of the tree (leaves), there is at least one task (the handler in this level that registered

earlier than any of its siblings) that does not block.

Therefore, a well type Pān̄ini program does not deadlock.

6.2 Proof of Type Soundness

A standard preservation and progress argument [63] is used to prove the soundness of

Pān̄ini’s type system. The details are adapted from previous work [13, 14, 23]. Throughout this

section we assume a fixed, well-typed program with a fixed class table, CT. A type environment

Π ::= {I : {t, ρ}} maps variables and store locations to types and effect sets. The effect set

was used in the semantics to compute the dependency between handlers and will not be used

in the following section. For simplicity, we omit ρ in subsequent discussion. The key definition

of consistency is as follows.

Definition 6.2.1 [Environment-Store Consistency.] Suppose we have a type environment Π

and µ a store. Then µ is consistent with Π, written µ ≈ Π, if and only if all the followings

hold:

1. ∀loc · µ(loc) = [t.F] ⇒

(a) Π(loc) = t and

(b) dom(F) = dom(fieldsOf(t)) and

(c) rng(F) ⊆ dom(µ) ∪ {null} and

(d) ∀f ∈ dom(F) · F (f) = loc′, fieldOf(t)(f) = u and µ(loc′) = [t′.F ′]⇒ t′ <: u

2. ∀loc · loc ∈ dom(Π)⇒ loc ∈ dom(µ)

Lemma 6.2.2 [Substitution.] If Π, var1 : t1, . . . , varn : tn ` e : t and ∀i ∈ {1..n} · Π ` ei : si

where si <: ti then Π ` [var1/e1, . . . , varn/en]e : s for some s <: t.

39

Proof Sketch: Let Π′ = Π, var1 : t1, . . . , varn : tn and [var′/e′] = [var1/e1, . . . , varn/en].

The proof proceeds by structural induction on the derivation of Π ` e : t and by cases based

on the last step in that derivation. The base cases are (T-New), (T-Null) and (T-Var),

which have no variables and s = t. Other cases can be proved by adaptations of Mini-

MAO0 [13]. The induction hypothesis (IH) is that the lemma holds for all sub-derivations of

the derivation. The cases for (T-Cast), (T-Sequence), (T-Set), (T-Set-Local), (T-Call),

(T-Get) and (T-Get-Local) are similar to Clifton’s proofs. We now consider the case for

(T-Register), (T-Announce) and (T-Yield).

For announce p (e1, . . . , en); en+1, we do the same substitution for each argument ei, 1 ≤

i ≤ n. By IH, each of these has a subtype of the argument. Also, by IH, the substitution

of en+1, [var′/e′]en+1 has the subtype of en+1. Therefore, since the whole expression has the

same type as en+1, consistency holds.

The cases for yield e and register(e) are straightforward, because the type of yield e

and register(e) is the same as e.

We now state standard lemmas for environment contraction, replacement and replacement

with subtyping. These lemmas can be proved by adaptations of Clifton’s proofs for MiniMAO0

[13]. We omit them here.

Lemma 6.2.3 [Environment Extension.] If Π ` e : t and a /∈ dom(Π), then Π, a : t′ ` e : t.

Lemma 6.2.4 [Environment Contraction.] If Π, a : t′ ` e : t and a is not free in e, then

Π ` e : t.

Lemma 6.2.5 [Replacement.] If Π ` E[e] : t,Π ` e : t′, and Π ` e′ : t′, then Π ` E[e′] : t.

Lemma 6.2.6 [Replacement with Subtyping.] If Π ` E[e] : t,Π ` e : u, and Π ` e′ : u′ where

u′ <: u, then Π ` E[e′] : t′ where t′ <: t.

Theorem 6.2.7 [Progress.] For a well-typed expression e, a task local data τ , a task queue ψ,

a store µ, and a handler queue γ. If Π ` e : t and µ ≈ Π, then either

• e = loc or

40

• e = null or e = NullPointerException or e = ClassCastException or

• 〈〈e, τ〉+ ψ, µ, γ〉 ↪→ 〈〈e′, τ ′〉+ ψ′, µ′, γ′〉.

Proof Sketch:

(a) If e = v or e = null, it is trivial.

(b) Cases e = NullPointerException or

e = ClassCastException result from the semantics rules null.f , null.f = v,

null.m(v1, . . . , vn), register(null) and cast e (shown in Figure 5.2). These values serve

as the base cases.

(c) In the case where the expression e is not a value, evaluation rules are considered case

by case for the proof. We proceed with the induction of derivation of expression e. Induction

hypothesis (IH) assumes that all sub-terms of e progress and are well-typed.

Cases e = E[new c()], e = E[loc.m(v1, . . . , vn)], e = E[loc.f], e = E[loc.f = v], e =

E[cast t loc], e = E[t var = v; e] and e = E[v; e1] are similar to Clifton’s work [13, 14] and are

omitted.

Case e = E[register e]. Based on the IH, e is well typed. Thus, it evolves by

(Multi-Register) or (Register).

Case e = E[announce p (v1, . . . , vn); {e}]. Based on the IH, p is well typed and is defined.

Each parameter is well typed and is a subtype of the type of the field in event p. Thus, it

evolves by (Announce).

Case e = E[yield e]. This case has no constraint and evolves based on different rules.

Theorem 6.2.8 [Subject-reduction.] Let e be an expression and e 6= yield e1 for any e1, τ

task local, ψ a task queue, µ a store, and γ a handler queue. Let µ ≈ Π be a type environment

and t a type. If Π ` e : t and 〈〈e, τ〉+ ψ, µ, γ〉 ↪→ 〈〈e′, τ ′〉+ ψ′, µ′, γ′〉, then there is some

µ′ ≈ Π′ and t′ such that Π′ ` e′ : t′ and t′ <: t.

Proof Sketch: The proof is by cases on the definition of ↪→ separately. The cases for object

oriented parts (rules (New), (Null), (Cast), (Get), (Set), (Var) and (Call)) can be proved

by adaptations of Clifton’s proofs for MiniMAO0 [13, Section 3.1.4].

41

The rule for (Sequence) is similar to Clifton’s work, except that e′ = E[yield e] instead

of e′ = E[e]. Since the type of yield e has the same type as e, this case holds.

For (Define), e = E[t var = v; e1] and e′ = E[[var/v]e1]: let τ ′ = τ , µ′ = µ, ψ′ = ψ,

γ′ = γ and Π′ = Π. We now show that Π ` e′ : t′ for some t′ <: t. Π ` e : t implies that

t var = v; e1 and all its subterms are well typed in Π. Let Π ` (t var = v; e1) : u. By

(T-Define), Π, var : t ` e1 : u′. By Lemma 6.2.2, Π ` [var/v]e1 : u′′ for some u′′ <: u′ <: u.

Therefore, by lemma 6.2.6, Π ` e′ : t′ for some t′ <: t.

For the (Multi-Register) rule, e = E[register(v)] and e′ = E[v]. Let τ ′ = τ , µ′ = µ,

ψ′ = ψ, γ′ = γ and Π′ = Π. Obviously, t′ = t.

For the (Register) rule, e = E[register(v)] and e′ = E[v]. Let τ ′ = τ , µ′ = µ, ψ′ = ψ,

γ′ = v + γ and Π′ = Π. Clearly, t′ = t.

For the (Announce) rule, e′ = E[e2] and

e = E[announce p {v1, . . . , vn};e2]. Let µ′ = µ, γ′ = γ, Π′ = Π and t′ = t. Thus Π ` e2 : t,

has the same type as Π ` yield e2 : t.

Definition 6.2.9 [Thread-interleaving.] If

〈〈E[yield e], τ〉+ ψ, µ, γ〉 ↪→ 〈〈E1[e1], τ1〉+ ψ1, µ1, γ1〉 . . .

↪→ 〈〈En[en], τn〉+ ψn, µn, γn〉 ↪→ 〈〈E[e], τ〉+ ψ′, µ′, γ′〉 or

〈〈E[yield e], τ〉+ ψ, µ, γ〉 ↪→ 〈〈E[e], τ〉+ ψ′, µ′, γ′〉,

we denote this as 〈〈E[yield e], τ〉+ ψ, µ, γ〉 ↪→∗

〈〈E[e], τ〉+ ψ′, µ′, γ′〉, where ∀i{1 ≤ i ≤ n}Ei[ei] 6= E[e].

Theorem 6.2.10 [Subject-reduction-Thread-interleaving.] For an expression e =

E[yield e1] for any e1, τ task local data, and ψ a task queue, µ a store and γ a handler

queue. Let µ ≈ Π be a type environment and t a type. If Π ` e : t and 〈〈e, τ〉+ ψ, µ, γ〉 ↪→∗

〈〈e′, τ ′〉+ ψ′, µ′, γ′〉, then µ′ ≈ Π and Π ` e′ : t′ and t′ <: t.

Proof Sketch: The proof is based on the observation that Pān̄ini does not have any data

races (because when an event is announced, Pān̄ini schedules tasks to eliminate races and to

maximize concurrency, as discussed in 3.3) and thus, 1 of Definition 6.2.1 holds. Since the

42

store µ does not shrink, 2 of Definition 6.2.1 holds. Clearly, yield e1 and e1 have the same

type in Π, and therefore, by Lemma 6.2.5, if Π ` e : t, then Π ` e′ : t′.

Theorem 6.2.11 [Soundness.] Given a program

P = decl 1 . . . decl n e, if ` P : (t, ρ) for some t and ρ, then either the evaluation of e

diverges or else 〈〈e, 〈0, ∅〉〉 , •, •〉 ↪→∗ 〈〈e′, τ ′〉+ ψ′, µ′, γ′〉 where one of the following holds for v:

• e = loc or

• e = null or

• e = NullPointerException or

• e = ClassCastException.

Proof Sketch: If e diverges, then this case is trivial. Otherwise if e converges, it is true

because the empty environment is consistent with the empty store. This case is proved by

Theorem 6.2.7, Theorem 6.2.8 and Theorem 6.2.10.

43

CHAPTER 7. Pān̄ini’s Compiler and Runtime System

To a certain extent, implementing Pān̄ini as a library is feasible [48]. However, to get

deadlock and race freedom and a deterministic semantics, which is crucial for writing correct

and efficient concurrent programs, programmers will need to write extensive effect annotations

(like Jade [53]). This could be tedious and error prone so we implemented a compiler for Pān̄ini

using the JastAddJ extensible compiler system [18]. This compiler and associated examples

are available for download from http://paninij.org.

As its backend, Pān̄ini’s runtime system uses the fork/join framework [34], which is a fast

lightweight task framework built upon Java threads, and geared for parallel computation. This

framework uses the work stealing algorithm [8] and works well for recursive algorithms. We

observed that handlers usually also act as subjects and recursively announce events, thus Pān̄ini

was built based on this framework. When an event is announced by a publisher, all handlers

that are applicable are wrapped and put into the framework and may execute concurrently.

Below we describe key parts of our implementation strategy.

Event type. An event type declaration is transformed into an interface (an example

is shown in Figure 7.1). A getter method is generated for each context variable of the event

(Generation g() on line 2 in Figure 7.1) so that the handlers can use this method to access

the context variables. Two interfaces, namely EventHandler (lines 3–5) and EventPublisher

(line 6), are to be used by an inner class EventFrame (lines 7–20), which hosts the register and

announce methods for that event. Any class that has a binding declaration is instrumented to

implement the EventHandler interface, while any class that may announce is instrumented to

implement the EventPublisher interface.

44

1 public interface GenAvailable {

2 public Generation g(); //An accessor for each context variable

3 public interface EventHandler extends IEventHandler{

4 public void GenAvailableHandle(Generation g);

5 public AbstractReferenceSet genAvailableSet ();

6 }

7 public interface EventPublisher extends IEventPublisher{ }

8 public class EventFrame implements GenAvailable {

9 public static void register(IEventHandler handler) {

10 //1. check whether this handler has registered before ,

11 // if yes return (no duplicate registration)

12 //2. analyze the effects of the handler

13 //3. insert it into the handler hierarchy

14 }

15 public static void announce(GenAvailable ev) { /* explain later */ }

16 } // other helper methods elided

17 public static class GenAvailableTask extends PaniniTask { .. }

18 }

Figure 7.1 An event type is translated into an interface. Snippets from
translation of event GenAvailable in Figure 1.2.

Event Announcement. When a subject signals an event, the announce method (line 14

in Figure 7.1) is called (Figure 7.2). This method iterates over the handlers and executes all

non-conflicting handlers as discussed in Section 3.3. The class EventFrame uses a helper class

(here GenAvailableTask on line 21), to wrap the handlers (if any) before submitting them for

execution.

1 public static void announce(GenAvailable ev) {

2 /* iterate each level in the hierarchy */

3 for(int i = 0; i < levels; i++){ // number of levels in the hierarchy

4 GenAvailableTask [] ct;

5 final int tempSize = num_level[i]; // number of handlers in each level

6 ct = new GenAvailableTask[tempSize];

7 // for later used by the Fork/Join framework

8 /* elements: a two dimensional array holding all the handlers */

9 EventHandler [] ehs = elements[i];

10 /* wrap each handler , in each level , into a PaniniTask and

11 put it to the Fork/Join framework later */

12 for(int j = 0; j < tempSize; j++){

13 ct[j] = new GenAvailableTask(ehs[j], ev);

14 }

15 PaniniTask.coInvoke(ct); // handlers in the same level run concurrently

16 }

17 }

Figure 7.2 Full code of the announce methods

Handler Registration. A register method is added to every class that has event bind-

ings (Figure 7.3). For example, in Figure 7.4, the method _panini_register (on lines 5-7)

is added to the class CrossOver, since it has a corresponding binding as shown in Chapter 1.

45

This method in CrossOver will call the register method (Figure 7.1, line 8) in the event

frame.

18 public static void register(IEventHandler handler) {

19 if(elements == null){ // the first handler for this event

20 initialize the bookkeeping fields of this event

21 put the handler in the first level and return

22 }

23 /* more than one handlers */

24 for (i in each level){

25 if (handler == elements[i][j]) // for each element in level i

26 return; //if the handler is already in the list , do nothing

27 }

28 // get the effect of the handler

29 AbstractReferenceSet otherEffect = handler.genAvailableSet ();

30 if(otherEffect is not a subset of the current effect of the event){

31 enlarge the effect of all the publishers for this event

32 }

33 /* iterate each level reversely in the hierarchy to find

34 a level that has handler conflict with the subscriber */

35 for (i in each level){

36 if(otherEffect conflicts with effect of elements[i][j]){

37 put handler in level i+1 and return

38 }

39 }

40 }

Figure 7.3 Pseudo code of the register methods

First, this method computes the effects of the handler. Next, this method registers to the

named events in the class by calling the register method (lines 8–13 in Figure 7.1). This method

will first check whether the current registering handler is already in the handler hierarchy to

ensure no duplicate registration. Then the effects of the newly registered handler are compared

against other previously registered handlers to calculate the dependence set of this handler (as

discussed in Section 3.3). Finally, the handler is put into a proper level in the hierarchy.

Event Handler. Every handler is transformed as follow. An effect computing method,

which compute the effect of the original method, is inserted into the handler class. For example,

on lines 11-14, effect computing method _panini_effect_cross_LGeneration is generated

and will compute the effect representation for the original method cross. The getter method

(on lines 16-18) for the effect representation is used by the corresponding register method in

the event frame; in this example, it is used by the method in Figure 7.1 on lines 8-13.

46

1 class CrossOver {

2 /* unrelated fields , constructors and methods ,

3 which are the same as shown in previous sections ,

4 are elided */

5 void _panini_register(EventHandler subscriber){

6 GenAvailable.EventFrame.register(subscriber);

7 }

8 public void cross(Generation g){

9 /* method body is elided */ }

10 AbstractReferenceSet ars_GenAvailable = new AbstractReferenceSet ();

11 AbstractReferenceSet _panini_effect_cross_LGeneration (){

12 /* construct read , write , announce and register effects as

13 discussed in previous chapters */

14 return ars_GenAvailable;

15 }

16 public AbstractReferenceSet effectset_GenAvailable () {

17 return ars_GenAvailable;

18 }

19 }

Figure 7.4 A handler is translated to extend the EventHandler interface.
Snippets from translation of CrossOver in Figure 1.2.

47

CHAPTER 8. Evaluation

We now evaluate the design and performance benefits of Pān̄ini. All experiments were run

on a system with a total of 12 cores (two 6-core AMD Opteron 2431 chips) running Fedora

GNU/Linux.

8.1 Analysis of Modularity and Concurrency Synergy

Our goal is to analyze “if a program is modularized using Pān̄ini does that also expose

potential concurrency in its execution?”

We have already presented one such case in Chapter 1, where modularization of various

concerns in the implementation of a genetic algorithm exposed potential concurrency between

these concerns. We now analyze the speedup of the genetic algorithm implementations pre-

sented in Figure 1.1 and Figure 1.2. Recall that the first version is implemented by taking the

sequential version and retrofitting it with thread and synchronization primitives, whereas the

second version is implemented by modularizing the code. We first compared these implemen-

tations head-to-head. The results for this comparison are shown as black bars in Figure 8.1.

In this experiment, the average speedup over ten runs was taken with a generation (or

population) size of 3000 and a depth (number of generations) of 10. For a variety of generation

sizes (1000–3000) and depths (8–11), speedups were similar.

The results show that Pān̄ini’s implementation achieved between 1 and 4x speedup for

varying number of threads. This was quite surprising as we expected the concurrent version in

Figure 1.1 to match or exceed the performance of Pān̄ini’s version since the OO version does

not incur the overhead of implicit concurrency.

A careful analysis by a seasoned concurrent programmer revealed two problems with this

48

Figure 8.1 Speedup over sequential OO code (black bar: Pān̄ini; Gray bars:
hand tune fork/join code).

seemingly straightforward concurrent code in Figure 1.1. Our expert pointed that: “the entire

genetic algorithm code is wrapped in a future task. The method then submits the future task

on line 30 and immediately invokes the method get, which limits concurrency. Furthermore,

the compute() method calls (on line 16 and 23) are synchronous method calls, and thus, the

two subtasks could not be run concurrently. As a result, the algorithm execution proceeds as a

depth-first search tree (the right subtree will not be executed until the left subtree is done) but

the intention is to execute the branches of the search tree concurrently.”

This analysis was both shocking and pleasant. Shocking in the sense that even with a

relatively simple piece of concurrent code, correctness and efficiency were hard to get. Pleasant

in the sense that the Pān̄ini code automatically dealt with these problems.

Following our concurrency expert’s advice, we created a second version of the object-

oriented genetic algorithm using the fork/join framework [34]. The performance results of

this “expert version” is shown in Figure 8.1 as gray bars. This figure shows that the speedups

between the “expert version” and the Pān̄ini versions for this genetic algorithm are comparable.

In summary, our performance evaluation revealed correctness and efficiency problems with

49

a relatively straightforward OO parallelization of the genetic algorithm, whereas Pān̄ini’s im-

plementation didn’t have these problems. Fixing the problems with OO implementation by

an expert led to comparable performance between implicit concurrency exposed by Pān̄ini and

explicitly tuned concurrency exposed using the fork/join framework [34].

8.2 Performance Evaluation

The goal of this section is to analyze “how well do the Pān̄ini programs perform compared

to a hand-tuned concurrent implementation of equivalent functionality?” We first describe our

experimental setup and then analyze speedup realized by Pān̄ini’s implementation as well as

the overheads.

8.2.1 Concurrency Benchmark Selection

To avoid bias and subtle concurrency problems similar to Section 8.1, we picked already

implemented concurrent solutions of five computationally intensive kernels: Euler number,

FFT, Fibonacci, integrate, and merge sort. Hand-tuned implementations of these kernels were

already available [34].

Each program takes an input to vary the size of the workload (Euler: number of rows,

FFT: size of matrix 2x, Fibonacci: xth Fibonacci number, integrate: number of exponents,

and merge sort: array size 2x) For each example program, a sequential version was tested

as well as concurrent versions ranging from 1 to 14 threads. Furthermore, three concurrent

versions were tested:

1. an implementation using the fork/join framework [34],

2. a Pān̄ini version with no conflict between handlers, and

3. a second Pān̄ini’s implementation that was intentionally designed to have conflicts be-

tween handlers.

To introduce conflicts, we add another handler that aggregates the results of concurrently

executing handlers. Thus, the third handler must wait for the other handlers to complete

50

since it depends on them. For example, calculating a Fibonacci number, fib(n), is done

by recursively calculating two subproblems, fib(n − 1) and fib(n − 2). With the fork/join

framework, each of these subproblems is done by a separate task. When both of these tasks

are completed, the spawning task adds them together. For Pān̄ini, each of these subproblems is

handled in separate handlers. In the case with no conflicts, these are the only two handlers. In

the case with conflicts, a third handler takes the result of the two handlers for the subproblems

and adds them together.

8.2.2 Speedup over Sequential Implementation

Figure 8.2 shows a summary comparison of speedup between the three versions. In this

figure, the average speedup across all five benchmarks was taken. For each program, large

input sets were used (Euler: 39, FFT: 24, Fibonacci: 55, integrate: 7, and merge sort: 25).

The line in the figure represents optimal speedup.

Figure 8.2 Average speedup over sequential version (Line: perfect scaling).

This figure shows that the speedups between the three styles are comparable. Speedups

for fork/join and Pān̄ini without conflicts are nearly the same. A statistical analysis showed

51

that for all benchmarks, we do not see a statistically significant difference (p < 0.05) between

fork/join and Pān̄ini with no conflicts.

From the figure, we can also see that Pān̄ini with conflicts has slightly lower speedup than

both fork/join and Pān̄ini without conflicts, however, this decrease is rather small (average 6.5%

decrease from fork/join).Note that since we are using a machine with 12 cores, performance

levels drop off at 12 threads.

8.2.3 Overhead over the Sequential Implementation

We also measured the overhead involved with Pān̄ini as compared to the standard fork/join

model. We first consider the average overhead across all benchmarks as shown in Figure 8.3.

Overhead is computed by determining the increase in runtime from the sequential version to

the concurrent version with a single thread. For this experiment, we used large input sizes.

Figure 8.3 Average overhead over sequential version for each technique.

This figure shows us that while Pān̄ini increases the overhead over fork/join, it is not a

prohibitive amount. For example, for Pān̄ini with no conflicts, we only see a 7.7% increase in

overhead.

Figure 8.4 shows a summary comparison of overhead as program input size changes. In this

figure, the overhead for the Fibonacci program is shown with a variety of input sizes. Again,

overhead is calculated by determining the increase in runtime from the sequential version to

the concurrent version with a single thread.

This figure shows that as input size increases, overhead decreases. Here, overhead decreases

52

Figure 8.4 Average overhead for Fibonacci benchmark for varying input
size and each scheduling strategy.

to as low as 5.5% additional overhead for Pān̄ini with no conflicts. Pān̄ini with conflicts only

incurs an additional 1.2% overhead for larger input sizes. Each of the differences in overhead

(fork/join vs. Pān̄ini without conflicts, fork/join vs. Pān̄ini with conflicts, and Pān̄ini with vs.

Pān̄ini without conflicts) was always statistically significant (p < 0.05).

8.3 Summary of Results

In summary, Pān̄ini shows speedups which scale as well as expert code in the standard

fork/join model. Even though Pān̄ini has a higher overhead than fork/join, Pān̄ini performs

nearly as well as the fork/join model in terms of speedup for nearly all cases. This is all

achieved without requiring explicit concurrency and while encouraging good modular design

and ensuring that programs are free of deadlocks and have deterministic semantics.

8.4 Other Examples in Pān̄ini

To further assess Pān̄ini’s ability to achieve a synergy between modularity and concurrency

goals, we have implemented several representative examples and they worked out beautifully.

53

In the rest of this section, we present three examples.

Concurrency in Compiler Implementations. In the art of writing compilers, per-

formance often has higher priority than modularity. Compiler designers employ all kinds of

techniques to optimize their compilers. For example, merging transformation passes, which

perform different transformation tasks in the same traversal, is a common practice in writing

multi-pass compilers. However, the implementation of this technique usually suffers from the

problem of code-tangling: implementations of different concerns (i.e., transformation tasks)

are all mixed together.

1 class MethodDecl extends ASTNode {

2 Expression body; // the expression body of the method

3 /* other fields and method elided */

4 Effect computeEffect (){

5 return body.computeEffect (); }

6 }

7 class Expression extends ASTNode{

8 Effect computeEffect();

9 class Sequence extends Expression{

10 Expression left; Expression right;

11 Effect computeEffect (){

12 Effect effect = left.computeEffect ();

13 effect.add(right.getEffect ());

14 return effect; }

15 }

16 class FieldGet extends Expression{

17 Expression left; /* other fields elided */

18 Effect computeEffect (){

19 Effect effect = left.computeEffect ();

20 effect.add(new ReadField ());

21 return effect ;}

22 }

Figure 8.5 Snippets of an AST with an Effects System

Figure 8.5 illustrates this via snippets from an abstract syntax tree (AST). It shows concerns

for method declarations, expressions, and two concrete expressions: a sequence expression

(e; e) and a field get expression (e.f). As an example compiler pass, we show computation

of effects for these AST nodes. The effect computation concern is scattered and tangled with

the AST nodes. This is a common problem in compiler design where the abstract syntax tree

hierarchy imposes a modularization based on language features whereas compiler developers

may also want another modularization based on passes, e.g., type checking, error reporting,

code generation, etc [18]. The visitor design pattern solves this problem to a certain extent

54

but it has other problems [18].

1 event MethodVisited { MethodDecl md; }

2 event SequenceVisited { Sequence seq; }

3 event FieldGetVisited { FieldGet fg; }

4 class MethodDecl extends ASTNode{

5 Expression body; // the expression body of the method

6 /* other fields and method elided */

7 void visit (){

8 announce MethodVisited(this);

9 body.visit (); }

10 }

11 class Expression extends ASTNode { void visit (){ } }

12 class Sequence extends Expression{

13 Expression left; Expression right;

14 /* other fields and method elided */

15 void visit (){

16 announce SequenceVisited(this);

17 left.visit (); right.visit (); }

18 }

19 class FieldGet extends Expression{

20 Expression left; /* other fields and method elided */

21 void visit (){

22 announce FieldGetVisited(this);

23 left.visit (); }

24 }

25 class ComputeEffect {

26 ComputeEffect (){ register(this); h = new HashTable (); }

27 MethodDecl m; HashTable h;

28 when MethodVisited do start;

29 void start(MethodDecl md){

30 this.m = md;

31 h.add(m, new EffectSet ());

32 }

33 when FieldGetVisited do add;

34 void add(FieldGet fg) {

35 h.get(m).add(new ReadField ());

36 }}

Figure 8.6 Pān̄ini’s version of visiting an abstract syntax tree.

Pān̄ini handles this modularization problem readily as shown in Figure 8.6. In this imple-

mentation, we introduce a method visit in each AST node. This method recursively visits

the children of the node. At the same time, it announces events corresponding to the AST

node. For example, a method declaration announces an event of type MethodVisited declared

on line 1 and announced on line 8. Similarly, the AST node sequence expression and field get

expression announce events of type SequenceVisited and FieldGetVisited on lines 16 and

22 respectively.

The implementation of the effect concern is modularized as the class ComputeEffect. This

class has two bindings that say to run the method start when an event of type MethodVisited

is announced and add when an event of type FieldGetVisited is announced. The constructor

55

for this class registers itself to receive event announcements and initializes a hashtable to store

effects per method. The method add inserts a read effect in this hashtable corresponding to

the entry of the current method.

This Pān̄ini program manifests a few design advantages. First, the AST implementation is

completely separated from effect analysis. Also, unlike the visitor pattern, the ComputeEffect

class need not implement default functionality for all AST nodes. Furthermore, other passes

such as type checking, error reporting and code generation etc., can also reuse the AST events.

Last but not least, in Pān̄ini, the effect computation (by the class ComputeEffect) could

be processed in parallel with other compiler passes, like type checking. In case a compiler pass

does transformation of AST nodes, Pān̄ini’s type system will detect this as interference and

automatically generate a schedule of their execution that would be equivalent to sequential

execution. Thus, for this example Pān̄ini shows that it can reconcile the modularity and

concurrency goals such that modular design of compilers also improves their performance on

multi-core processors.

Modular and Concurrent Image Processing. This example is adapted from and

inspired by the ImageJ image processing toolkit [29]. For simplicity, assume that this library

uses a class List and Hashtable similar to the classes in the java.util package. We have also

omitted the irrelevant initializations of these classes. The class Image (lines 24–29) maintains

a list of pixels. The method set for this class (lines 27–29) sets the value of a pixel at a given

location to the specified integer value.

An example requirement for such a collection could be to signal changes of elements as

an event. Other components may be interested in such events, e.g., for implementing incre-

mental functionalities which rely on analyzing the increments. One such requirement for a list

of pixels is to incrementally compute the Nonparametric Histogram-Base Thresholding [25].

Thresholding is a method for image segmentation that is typically used to identify objects in

an image. The threshold functionality may not be useful for all applications that use the image

class, thus it would be sensible to keep its implementation separate from the image class to

maximize reuse of the image class. Figure 8.7 shows the implementation of two thresholding

56

1 event Changed{ Image pic; }
2 class Percentile {

3 Hashtable h; int p /* Percentile value */

4 Percentile(int percentile){

5 register(this); h = new Hashtable (); this.p = percentile;

6 }

7 when Changed do compute;

8 void compute(Image pic){

9 /* threshold is the intensity value for which cumulative

10 sum of pixel intensities is closest to the percentile p.*/

11 h.add(pic , threshold);

12 }}

13 class GlasbeyThreshold {

14 Hashtable h;

15 GlasbeyThreshold (){

16 register(this); h = new Hashtable ();

17 }

18 when Changed do compute;

19 void compute(Image pic){

20 /* threshold is the intensity value for which cumulative

21 sum of pixel intensities has the most dominant value. */

22 values.put(pic , threshold);

23 }}
24 class Image {

25 List pixels;

26 Image set(Integer i, Integer v){

27 pixels.setAt(i,v);

28 announce Changed(this);

29 }}

Figure 8.7 An Image and Threshold Computation in Pān̄ini.

methods in classes Percentile and GlasbeyThreshold. Pān̄ini’s implementation allows the

threshold computation concerns to remain independent of the image concerns, while allowing

their concurrent execution.

Overlapping Communication with Computation via Modularization of Con-

cerns. Our next example presents a simple application for planning a trip. Planning re-

quires finding available flights on the departure and return dates as well as a hotel and rental

car for the duration of the trip. To find each of these items the program must communicate

with services provided by other providers and each computation can be run independently.

In this example the context variable tripData is used to both provide the handlers with

information and to give the handlers a place to store their results. For example, class

CheckAirline extracts source and destination information from the trip data and stores the

flight results by calling the method setFlight. Similarly, the class CheckFlight computes

and stores the hotel results and CheckRentalCar computes and stores the car rental search

57

1 event PlanTrip{ TripData d; } // Event Type

2 class CheckAirline { // Searches for available flights.

3 List <Airline > alist;

4 CheckAirline(List <Airline > l){ register(this); this.alist = l;}

5 when PlanTrip do checkFlights;

6 //Find all the available flights during the trip

7 void checkFlights(TripData d){

8 for(Airline a : alist) {

9 Flight flight = a.getFlights(d.from(),d.to());

10 //add the results to the tripData

11 d.setFlight(flight);

12 }}}

13 class CheckHotel { // Searches for available hotels.

14 List <Provider > hlist;

15 CheckHotel(List <Provider > l){ register(this); this.hlist = l;}

16 when PlanTrip do checkHotels;

17 void checkHotels(TripData d){

18 for(Provider h: hlist) {

19 Hotels hotels = h.search(d.from(),d.to(),d.pricePref ());

20 d.setHotels(hotels);

21 }}}

22 class CheckRentalCar { // Searches for available cars.

23 List <Agency > clist;

24 CheckRentalCar(List <Agency > l){ register(this); this.clist = l;}

25 when PlanTrip do checkCarRentals;

26 void checkCarRentals(TripData d){

27 for(Agency c: clist){

28 Cars cars = c.getRentals(d.from(),d.to(),d.carPref ());

29 d.addRentalChoices(cars);

30 }}}

Figure 8.8 Accessing service providers in handlers.

results. In this example as well Pān̄ini’s design shows the potential of reconciling modularity

goals with concurrency goals. When an event of type PlanTrip is announced, each of the three

handler methods can execute concurrently.

Concurrent Refactoring Detection. Our next example presents tool for detecting

refactoring between softwares [17]. Currently, the tool detects refactorings like renaming and

changes of method signatures. These refactoring detection algorithms could be run indepen-

dently.

As we could see in Figure 8.9, different refactoring detection algorithms, namely rename

package, rename class, rename method, pullup method and push down method detection,

are scattered and seriously tangled with concurrency concerns in the original implementation.

Also, it may not be easy to dynamically introduce new detection algorithms.

Pān̄ini handles this modularization problem readily as shown in Figure 8.10. In this exam-

ple, different handlers are no longer tangled with each other, and more other handlers could

58

1 detectRefactoring (){

2 endGate = new CountDownLatch (4);

3 renamePackageThread = new Thread (){

4 run (){

5 try{

6 detectRenamePackage(utility , v1Graph , v2Graph);

7 } finally{

8 endGate.countDown ();

9 }}};

10 renamePackageThread.start ();

11 renameClassThread = new Thread (){

12 run (){/* detail omitted */};

13 renameClassThread.start ();

14 renameMethodThread = new Thread (){

15 run (){/* detail omitted */};

16 renameMethodThread.start ();

17 pullUpThread = new Thread (){

18 run (){/* detail omitted */};

19 pullUpThread.start ();

20 pushDownThread = new Thread (){

21 run (){/* detail omitted */};

22 pushDownThread.start ();

23 endGate.wait ();

24 }

Figure 8.9 Refactoring Detection with Java concurrency utilities.

be readily introduced.

When an event of type Detection is announced, these five strategies could execute concur-

rently. Each strategy checks appropriate pairs of entities and has access to the graphs v1Graph

and v2Graph, and the utility as input from the users. RenamePackage, RenameClass, and Re-

nameMethod strategies are quite similar. They do a few checks to eliminate false positives.

PullUpMethod and PushDownMethod are the opposite of each other. PullUpMethod pulls up

the declaration of a method from a subclass into the superclass such that it could be reused

by other subclasses. PushDownMethod pushes down the declaration of a method from a su-

perclass into a subclass that uses the method because this method is no not used by other

subclasses any more.

Figure 8.11 shows a summary speedup of the Pān̄ini version over the sequential versions.

In this figure, the average speedup was taken. For each program, Eclipse projects version 2.1.3

and version 3.0 were used as input.

Performance Results. Modularization of the effects analysis and image analysis re-

sulted in speedup of roughly 2x. The modularization of service requests gave speedups around

59

1 event Detection{ String v1Graph; String v2Graph; int utility; } //Event Type

2 class renamePackageHandler{

3 // detail elided

4 when Detection do detect;

5 void detect(String v1Graph , String v2Graph , int utility){

6 detectRenamePackage(utility , v1Graph , v2Graph); }

7 }

8 class renameClassHandler{

9 // detail elided

10 when Detection do detect;

11 void detect(String v1Graph , String v2Graph , int utility){

12 detectRenameClass(utility , v1Graph , v2Graph); }

13 }

14 class renameMethodHandler{

15 // detail elided

16 when Detection do detect;

17 void detect(String v1Graph , String v2Graph , int utility){

18 detectRenameMethod(utility , v1Graph , v2Graph); }

19 }

20 class pullUpMethodHandler{

21 // detail elided

22 when Detection do detect;

23 void detect(String v1Graph , String v2Graph , int utility){

24 detectPullUpMethod(utility , v1Graph , v2Graph); }

25 }

26 class pushDownMethodHandler{

27 // detail elided

28 when Detection do detect;

29 void detect(String v1Graph , String v2Graph , int utility){

30 detectPushDownMethod(utility , v1Graph , v2Graph); }

31 }

Figure 8.10 Pān̄ini’s version of Refactoring Detection.

1 2 3 4 5 6

Benchmark

A
ve

ra
ge

 s
pe

ed
up

 o
ve

r
se

qu
en

tia
l

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 thread
6 threads

Figure 8.11 Refactoring Crawler: Average speedup over sequential version.

60

3x. For refactoring detection, we observed speedups around 3x. These values were as expected,

based on the available concurrency in the problems. Moreover, this scalability is obtained with-

out requiring programmers to write a single line of explicitly concurrent code.

61

CHAPTER 9. Conclusion and Future Work

9.1 Conclusion

Language features that promote concurrency in program design have become important [6].

Explicit concurrency features such as threads are hard to reason about and building correct

software systems in their presence is difficult [44]. There have been several proposals for

concurrent language features, but none unifies program design for modularity with program

design for concurrency. In the design of Pān̄ini, we pursue this goal. In an effort to do

so, we have developed the notion of asynchronous, typed events that are especially helpful for

programs where modules are decoupled using implicit-invocation design style [42, 16, 58]. Event

announcements provide implicit concurrency in program designs when events are signaled and

consumed. We have tried out several examples, where Pān̄ini improves both program design

and potential available concurrency. Unlike message-passing languages such as Erlang [5] the

communication between implicitly concurrent handlers is not limited to value types or record

of value types.

An important property of Pān̄ini’s design is that, for systems utilizing implicit-invocation

design style, it makes scalability a by-product of modularity. For example, observe that in

genetic algorithm, AST analysis, image analysis, and trip planning addition of new modules in

a non-conflicting manner doesn’t affect the scalability of existing modules. For example, a new

observer for PlanTrip event (say sightseeing) would run concurrently with other observers.

Similarly, a new thresholding observer could also run concurrently with other observers for

Changed event.

62

9.2 Future Work

Future work includes extending Pān̄ini’s design, semantics and implementation in several

dimensions.

Library Based Approach. Pān̄ini requires changing the Java compiler in the current

implementation, which is not convenient in some sense. In the future, we are planning to offer

programmers with a set of libraries, such that, no changes to the compiler are necessary. In

the same time, these libraries have to ensure the safety of accessing the shared heap. Because

of this, Pān̄ini has to also present a set of libraries such that programmers could adhere to

certain protocol and eliminates concurrency errors.

Effect Set Detection. We have presented a conservative mechanism (effect sets for

handlers [27, 36]) for detecting conflicts between handlers, so it would be good to study and

improve its precision. Further analysis such as dynamic point to analysis may enhance the

precision of detecting false interference. On the other hand, the idea of region [11, 12] could

be applied and Pān̄ini could provide a better analysis of whether the handlers are accessing

disjoint regions.

Software Design Patterns. Also, we are planning to use the effect set detection scheme

presented in this work and would like further investigate whether it could be applied to other

software patterns [24]. For example, chains of responsibility [24, pp 223] and iterator pat-

terns [24, pp 257] have the same action commands for a certain period without changing.

Therefore, the dynamic effect set detection, which occupy a small portion of the lifetime of the

program could be amortized by concurrently applying the commands to the context.

Asynchronous Event Announcement. In the current implementation, handlers that

do not have conflict between each others could be run in concurrent. However, publishers have

to block and wait for the handlers. In the next step, we would like to study patterns that

could enable asynchronous announcement, in which the base code could advance to certain

63

point. Because of this, more concurrency could be exposed. Then, we have to change the

implementation to take into account, the effects of the continuation of the publishers.

64

BIBLIOGRAPHY

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race detection

for Java. ACM Trans. Program. Lang. Syst., 28(2):207–255, 2006.

[2] M. Abadi and G. Plotkin. A model of cooperative threads. In the 36th Symposium on

Principles of Programming Languages (POPL), pages 29–40, 2009.

[3] P. America. Issues in the design of a parallel object-oriented language. Formal Aspects of

Computing, 1(4):366–411, 1989.

[4] D. Ansaloni, W. Binder, A. Villazón, and P. Moret. Parallel dynamic analysis on multi-

cores with aspect-oriented programming. In AOSD, pages 1–12, 2010.

[5] J. Armstrong, R. Williams, M. Virding, and C. Wikstroem. Concurrent Programming in

ERLANG. Prentice-Hal, 1996.

[6] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#. ACM

Trans. Program. Lang. Syst., 26(5):769–804, 2004.

[7] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multithreaded programming

for C/C++. In the conference on Object oriented programming systems languages and

applications (OOPSLA), pages 81–96, 2009.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.

Cilk: an efficient multithreaded runtime system. In PPOPP, pages 207–216, 1995.

[9] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: preventing

data races and deadlocks. In Proceedings of the 17th ACM SIGPLAN conference on

65

Object-oriented programming, systems, languages, and applications, OOPSLA ’02, pages

211–230, New York, NY, USA, 2002. ACM.

[10] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent programming with revisions and

isolation types. In Proceedings of the ACM international conference on Object oriented

programming systems languages and applications, OOPSLA ’10, pages 691–707, New York,

NY, USA, 2010. ACM.

[11] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith. Multiple ownership. In

Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented program-

ming systems and applications, OOPSLA ’07, pages 441–460, New York, NY, USA, 2007.

ACM.

[12] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type

and effect. In Proceedings of the 17th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, OOPSLA ’02, pages 292–310, New

York, NY, USA, 2002. ACM.

[13] C. Clifton. A design discipline and language features for modular reasoning in aspect-

oriented programs. Technical Report 05-15, Iowa State University, Jul 2005.

[14] C. Clifton and G. T. Leavens. MiniMAO1: Investigating the semantics of proceed. Science

of Computer Programming, 63(3):321–374, 2006.

[15] R. Cunningham and E. Kohler. Making events less slippery with eel. In Conference on

Hot Topics in Operating Systems, Berkeley, CA, USA, 2005.

[16] David C. Luckham et al.. Specification and Analysis of System Architecture Using Rapide.

IEEE Transactions on Software Engineering, 21(4):336–54, 1995.

[17] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Automated detection of refactorings

in evolving components. In ECOOP, 2006.

66

[18] T. Ekman and G. Hedin. The JastAdd Extensible Java Compiler. In OOPSLA, pages

1–18, 2007.

[19] P. Eugster. Type-Based Publish/Subscribe: Concepts and Experiences. ACM Trans.

Program. Lang. Syst., 29(1):6, 2007.

[20] P. Eugster and K. R. Jayaram. EventJava: An Extension of Java for Event Correlation.

In ECOOP, pages 570–584, 2009.

[21] P. T. Eugster, R. Guerraoui, and C. H. Damm. On Objects and Events. In OOPSLA,

pages 254–269, 2001.

[22] J. Fischer, R. Majumdar, and T. Millstein. Tasks: language support for event-driven

programming. In PEPM, pages 134–143, 2007.

[23] M. Flatt, S. Krishnamurthi, and M. Felleisen. A Programmer’s Reduction Semantics for

Classes and Mixins. In Formal Syntax and Semantics of Java, chapter 7, pages 241–269.

1999.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., 1995.

[25] C. A. Glasbey. An analysis of histogram-based thresholding algorithms. CVGIP: Graphical

Models and Image Processing, 55(6):532 – 537, 1993.

[26] J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[27] A. Greenhouse and J. Boyland. An object-oriented effects system. In ECOOP’99 —

Object-Oriented Programming, 13th European Conference, number 1628 in Lecture Notes

in Computer Science, pages 205–229, Berlin, Heidelberg, New York, 1999. Springer.

[28] R. T. Hammel, R. T. Hammel, R. T. Hammel, D. K. Gifford, D. K. Gifford, and D. K.

Gifford. Fx-87 performance measurements: Dataflow implementation. Technical report,

1988.

67

[29] Image Processing and Analysis in Java. ImageJ. http://rsbweb.nih.gov/ij/.

[30] B. Jacobs, F. Piessens, J. Smans, K. R. M. Leino, and W. Schulte. A programming model

for concurrent object-oriented programs. ACM Trans. Program. Lang. Syst., 31:1:1–1:48,

December 2008.

[31] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can make sense. In USENIX, 2007.

[32] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun.

ACM, 21(7):558–565, 1978.

[33] D. Lea. Concurrent Programming in Java. Second Edition: Design Principles and Pat-

terns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[34] D. Lea. A Java Fork/Join Framework. In Java Grande, pages 36–43, 2000.

[35] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel library. In the con-

ference on Object oriented programming systems languages and applications (OOPSLA),

pages 227–242, 2009.

[36] K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify and check

side effects. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming

language design and implementation, PLDI ’02, pages 246–257, New York, NY, USA,

2002. ACM.

[37] P. Li and S. Zdancewic. Combining events and threads for scalable network services

implementation and evaluation of monadic, application-level concurrency primitives. In

PLDI, pages 189–199, 2007.

[38] Y. Lu and J. Potter. Protecting representation with effect encapsulation. In Conference

record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’06, pages 359–371, New York, NY, USA, 2006. ACM.

68

[39] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings of the 15th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL

’88, pages 47–57, New York, NY, USA, 1988. ACM.

[40] D. Marino and T. Millstein. A generic type-and-effect system. In Proceedings of the 4th

international workshop on Types in language design and implementation, TLDI ’09, pages

39–50, New York, NY, USA, 2009. ACM.

[41] Mohsen Vakilian and Danny Dig and Robert Bocchino and Jeffrey Overbey and Vikram

Adve and Ralph Johnson . Inferring method effect summaries for nested heap regions. In

IEEE/ACM International Conference on Automated Software Engineering (ASE), pages

421–432, 2009.

[42] D. Notkin, D. Garlan, W. G. Griswold, and K. J. Sullivan. Adding Implicit Invocation to

Languages: Three Approaches. In JSSST International Symposium on Object Technologies

for Advanced Software, pages 489–510, 1993.

[43] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus: An Architecture for

Extensible Distributed Systems. In SOSP, pages 58–68, 1993.

[44] J. Ousterhout. Why threads are a bad idea (for most purposes). In ATEC, January 1996.

[45] P. Charles et al.. X10: an object-oriented approach to non-uniform cluster computing.

In the conference on Object-oriented programming, systems, languages, and applications

(OOPSLA), pages 519–538, 2005.

[46] P. Pratikakis, J. Spacco, and M. Hicks. Transparent Proxies for Java Futures. In OOPSLA,

pages 206–223, 2004.

[47] R. Bocchino et al.. A type and effect system for deterministic parallel java. In the con-

ference on Object oriented programming systems languages and applications (OOPSLA),

pages 97–116, 2009.

69

[48] H. Rajan, S. M. Kautz, and W. Rowcliffe. Concurrency by modularity: Design patterns,

a case in point. In 2010 Onward! Conference, October 2010.

[49] H. Rajan and G. T. Leavens. Quantified, typed events for improved separation of concerns.

Technical Report 07-14, Iowa State University, Department of Computer Science, July

2007. In submission.

[50] H. Rajan and G. T. Leavens. Ptolemy: A language with quantified, typed events. In

ECOOP, pages 155–179, 2008.

[51] H. Rajan and K. Sullivan. Eos: instance-level aspects for integrated system design. In the

European software engineering conference and international symposium on Foundations

of software engineering (ESEC/FSE), pages 297–306, 2003.

[52] H. Rajan and K. Sullivan. Need for instance level aspect language with rich pointcut

language. In L. Bergmans, J. Brichau, P. Tarr, and E. Ernst, editors, SPLAT: Software

engineering Properties of Languages for Aspect Technologies, mar 2003.

[53] M. C. Rinard and M. S. Lam. The design, implementation, and evaluation of Jade. ACM

Trans. Program. Lang. Syst., 20(3):483–545, 1998.

[54] J. Robert H. Halstead. Multilisp: A Language for Concurrent Symbolic Computation.

ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

[55] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd

edition, 2003.

[56] D. C. Schmidt. Reactor: an object behavioral pattern for concurrent event demultiplexing

and event handler dispatching. Pattern languages of program design, pages 529–545, 1995.

[57] B. Shriver and P. Wegner. Research directions in object-oriented programming, 1987.

[58] K. J. Sullivan and D. Notkin. Reconciling Environment Integration and Component

Independence. SIGSOFT Software Engineering Notes, 15(6):22–33, December 1990.

70

[59] H. Sutter and J. Larus. Software and the concurrency revolution. Queue, 3(7):54–62,

2005.

[60] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Inf. Comput., 111(2):245–296,

1994.

[61] M. Vaziri, F. Tip, J. Dolby, C. Hammer, and J. Vitek. A type system for data-centric

synchronization. In ECOOP, pages 304–328, 2010.

[62] A. Welc, S. Jagannathan, and A. Hosking. Safe Futures for Java. In OOPSLA, pages

439–453, 2005.

[63] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and

Computation, 115(1):38–94, Nov 1994.

[64] A. Yonezawa. ABCL: An object-oriented concurrent system, 1990.

[65] A. Yonezawa and M. Tokoro. Object-oriented concurrent programming, 1990.

	2010
	Implicit Invocation Meets Safe, Implicit Concurrency
	Yuheng Long
	Recommended Citation

	tmp.1335711608.pdf.2cNIg

