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ABSTRACT

Bayesian networks are being widely used in various data mining tasks for probabilistic

inference and causual modeling [Pearl (2000), Spirtes et al. (2001)]. Learning the best Bayesian

network structure is known to be NP-hard [Chickering (1996)]. Also, learning the single best

Bayesian network structure does not always give a good approximation of the actual underlying

structure. This is because in many domains, the number of high-scoring models is usually large.

In this thesis, we propose that learning the top-k Bayesian network structures and model

averaging over these k networks gives a better approximation of the underlying model. The

posterior probability of any hypotheses of interest is computed by averaging over the top-

k Bayesian network models. The proposed techniques are applied to flow cytometric data to

make causal inferences in human cellular signaling networks. The causal inferences made about

the human T-cell protein signaling model by this method is compared with inferences made

by various other learning techniques which were proposed earlier [Sachs et al. (2005), Koch et

al. (2009)]. We also study and compare the classification accuracy of the top-k networks to

that of the single MAP network.

In summary, this thesis describes:

1. Algorithm for learning the top-k Bayesian network structures.

2. Model averaging based on the top-k networks.

3. Experimental results on the posterior probabilities of the top-k networks.

4. How the top-k Bayesian networks can be applied to learn protein signaling networks with

Results of top-k model averaging on the CYTO data.

5. Results of Classification Accuracy of the top-k networks.
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CHAPTER 1. OVERVIEW AND MOTIVATION

This chapter provides an introduction to the basics and the motivation behind the thesis.

A brief overview of the contributions and an outline of the overall structure of the thesis is

also provided.

1.1 Introduction

There are many data mining tasks in which we would like to study the influence of one

feature on another feature in a data domain. For example, suppose that there are two events

which could cause grass to be wet: either the sprinkler is on, or it is raining. Also, suppose

that the rain has a direct effect on the use of the sprinkler (namely that when it rains, the

sprinkler is usually not turned on)[Russell and Norvig (2003)]. Probabilistic inferences in these

situations have been made using the Bayes theorem.

1.1.1 Bayes’ Theorem

Bayes’ theorem relates the conditional and prior probabilities of two events A and B,

provided that the probability of B does not equal zero:

P (A|B) =
P (B|A)P (A)

P (B)
(1.1)

where:

• P (A) is the prior probability of A. It is ”prior” in the sense that it does not take into

account any information about B.
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• P (A|B) is the conditional probability of A, given B. It is also called the posterior prob-

ability because it is derived from or depends upon the specified value of B.

• P (B|A) is the conditional probability of B given A. It is also called the likelihood.

• P (B) is the prior or marginal probability of B, and acts as a normalizing constant.

Bayes’ theorem gives a mathematical representation of how P (A|B) is related to the con-

verse conditional probability P (B|A).

1.1.2 Conditional Independence

Two events A and B are conditionally independent given a third event C precisely if the

occurrence or non-occurrence of A and B are independent events in their conditional probability

distribution given C. In the standard notation of probability theory,

If A is conditionally independent of B given C:

P (A|B,C) = P (A|C) (1.2)

This conditional independence can be represented as:

IP (A,B|C) (1.3)

1.1.3 Computing Joint Probability Distribution using Bayes’ Rule

The joint ptobability distribution of two events A and B is given by P(A,B). Based on the

Bayes’ Rule this can be computed as:

P (A ∩B) = P (A) ∗ P (B|A) (1.4)

In situations where we need to make inferences with only two variables in our domain, Bayes

rule can be easily used along with the rules of probability to make probabilistic inferences.

However, when the number of variables in the domain increases, the probabilistic inferences

become less straightforward owing to the complexity of the probabilistic relationships between

the various events and the number of terms that need to be summed to calculate the joint

probabilities. The model starts becoming less intuitive and very complex.
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1.2 Bayesian Networks as a Modeling Framework for Large Instances

Bayesian networks address the problems of 1) representing the joint probability distribution

of a large number of random variables and 2) doing Bayesian inference with these variables.

The probabilistic relationships can be modeled easily and more intuitively using a Bayesian

network as shown in Figure 1.1 for the sprinkler example we discussed above.

Figure 1.1 A Bayesian network with conditional probability tables

The three variables in our case are: R (for Rain), S(for Sprinkler) and G(for Grass Wet).

Each of the three variables have two possible values - T (for true) and F (for false).

Before we formally define a Bayesian network, it is useful to define the terminology we will

be using for graphs. We will do this in the following subsection.

1.2.1 Graph Theory Basics

Definition 1 [Neapolitan (2003)] defines a Directed Graph as follows:

A Directed graph is a pair (V,E), where V is a finite nonempty set whose elements are

called nodes (or vertices), and E is a set of ordered pairs of distinct elements of V . Elements

of E are called edges (or arcs), and if (X,Y ) ∈ E, we say there is an edge from X to Y and

that X and Y are each incident to the edge. If there is an edge from X to Y or from Y to

X, we say X and Y are adjacent.
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Definition 2 [Neapolitan (2003)] defines a Path in a Directed graph as follows:

Suppose we have a set of nodes [X1, X2, ...Xk], where k ≥ 2, such that (Xi1, Xi) ∈ E

for 2 ≤ i ≤ k. We call the set of edges connecting the k nodes as a path from X1 to Xk .

The nodes X2, ...Xk1 are called interior nodes on path [X1, X2, ...Xk]. The subpath of path

[X1, X2, ...Xk] from Xi to Xj is the path [Xi, Xi+1, ...Xj ] where 1 ≤ i < j ≤ k.

Definition 3 [Neapolitan (2003)] defines a directed cycle as a path from a node to itself.

Definition 4 [Neapolitan (2003)] defines a simple path as a path containing no subpaths

which are directed cycles.

Definition 5 [Neapolitan (2003)] defines a DAG as follows:

A directed graph G is called a directed acyclic graph (DAG) if it contains no directed

cycles. Given a DAG G = (V,E) and nodes X and Y in V , Y is called a parent of X if there

is an edge from Y to X, Y is called a descendent of X and X is called an ancestor of Y if

there is a path from X to Y , and Y is called a nondescendent of X if Y is not a descendent

of X.

Definition 6 [Neapolitan (2003)] Suppose we have a joint probability distribution P of the

random variables in some set V and a DAG G = (V,E). We say that (G,P ) satisfies the

Markov condition if for each variable X ∈ V, {X} is conditionally independent of the set

of all its nondescendents given the set of all its parents. This means if we denote the sets of

parents and nondescendents of X by PAX and NDX respectively, then IP ({X}, NDX |PAX).

When (G,P ) satisfies the Markov condition, we say G and P satisfy the Markov condition with

each other.

If X is a root, then its parent set PAX is empty. So in this case the Markov condition

means {X} is independent of NDX . That is, IP ({X}, NDX). Also, IP ({X}, NDX |PAX)

implies IP ({X}, B|PAX) for any B ⊆ NDX . For example, the independence relations in the

DAG in Figure 1.2 are:

1. IP ({C}, {H,B, F}|{L})
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2. IP ({B}, {L,C}|{H})

3. IP ({F}, {H,C}|{B,L})

4. IP ({L}, {B}|{H})

Figure 1.2 A DAG illustrating the Markov condition

If (G,P ) satisfies the Markov condition, then P is equal to the product of its conditional

distributions of all nodes given values of their parents, whenever these conditional distributions

exist.

Now, based on Markov’s joint probability distribution, we can revisit the example in Fig-

ure 1.1. The joint probability function can be represented as:

P (G,S,R) = P (G|S,R)P (S|R)P (R) (1.5)

Definition 7 [Neapolitan (2003)] defines a Bayesian Network as follows:

Let P be a joint probability distribution of the random variables in some set V , and G =

(V,E) be a DAG. We call (G,P ) a Bayesian network if (G,P ) satisfies the Markov condition.
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1.3 Bayesian Networks in Data Mining

Bayesian networks are being widely used in various data mining tasks for probabilistic

inference and causal modeling [Pearl (2000), Spirtes et al. (2001)]. In the Bayesian approach,

we provide a prior probability distribution over the space of possible Bayesian networks and

then compute the posterior distributions P (G|D) of the network structure G given data D. We

can then compute the posterior probability of any hypotheses of interest by averaging over all

possible networks. In some applications, we are interested in structural features. For example,

in causal discovery, we are interested in the causal relations among variables, represented

by the edges in the network structure [Heckerman et al. (1999)]. In other applications, we

are interested in predicting the posterior probabilities of new observations, for example, in

classification problems.

1.4 Inherent problems in the application of Bayesian networks

Bayesian networks have been known to model noisy and unequally distributed data with

good confidence. However, One major challenge in the practical application of Bayesian net-

works is the learning of the Bayesian network structures from data. The number of possible

network structures is superexponential O(n!2n(n−1)/2) in the number of variables n. For ex-

ample, there are about 104 directed acyclic graphs (DAGs) on 5 nodes, and 1018 DAGs on 10

nodes. As a result, it is impractical to sum over all the possible structures other than for tiny

domains (less than 7 variables).

1.5 Motivation behind the Thesis

The most common solution to overcome some of the problems discussed above is to use

model selection approach in which we use the relative posterior probability P (D,G) (or other

measures) as a scoring metric and then attempt to find a single network with the best score,

the MAP network. We then use that model (or its Markov equivalence class) to make future

predictions. This may be a good approximation if the amount of data is large relative to the
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size of the model such that the posterior is sharply peaked around the MAP model. However, in

domains where the amount of data is small relative to the size of the model there are often many

high-scoring models with non-negligible posterior. In this situation, using a single model could

lead to unwarranted conclusions about the structure features and also poor predictions about

new observations. For example, the edges that appear in the MAP model do not necessarily

appear in other approximately equally likely models.

top-left-square

top-middle-square

bottom-left-square

top-right-square

middle-middle-square

bottom-middle-square

middle-left-square

middle-right-square Class

bottom-right-square

Figure 1.3 Top1 : Top network for the Tic-tac-toe Dataset with P (G|D)

= 0.011193

Consider two of the 76 highest scoring Bayesian networks for the tic-tac-toe Dataset [Asun-

cion and Newman (2007)] shown in Figure 1.3, 1.4. The Top1 network and the Top63 network
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both have a BDe metric score of −9423.068333 and posterior probabilities of 0.011193. Details

about the BDe metric can be found in [Heckerman et al. (1995)]. It can be observed that the

two structures differ in their skeleton structures and are therefore from different equivalence

classes although they have the same BDe score. If only the single top network were considered

in making inferences, we might make unwarranted conclusions during structure learning and

also poor predictions in classification. In the tic-tac-toe dataset case, there are 76 high scoring

models. However, there are various datasets where the number of high scoring models is large.

In such a case, the impact of choosing the single best model over model averaging to make

inferences could be more substantial. This is the main motivation behind this thesis.

Also, the model selection may be sensitive to the data samples given in the sense that a

different set of data (from the same distribution) might well lead to a different MAP model.

In such cases, using Bayesian model averaging is preferred.

1.5.1 Bayesian Model Averaging for Protein Signaling Networks

Cell signaling is part of a complex system of communication that governs basic cellular

activities and coordinates cell actions [Günther Witzany (2010)]. The ability of cells to perceive

and correctly respond to their microenvironment is the basis of development, tissue repair, and

immunity as well as normal tissue homeostasis. Errors in cellular information processing are

responsible for diseases such as cancer, autoimmunity, and diabetes. By understanding cell

signaling, diseases may be treated effectively and, theoretically, artificial tissues may be yielded.

Due to the noisy and probabilistic nature of biological signaling data, Bayesian networks

have often been considered a good means to learn the causal network behind them. We will

study the results of the model averaging of the top-k Bayesian network structures on the CYTO

dataset [Sachs et al. (2005)] in the Experiments and Results chapter.

1.6 Organization of the Thesis

The following chapters in this thesis are organized as follows:
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• In Chapter 2, a study of some of the challenges in Bayesian network learning is presented.

An overview of related work in the area is also provided.

• In Chapter 3, the algorithm for finding the top-k networks is presented along with the

equations showing how feature probability can be calculated based on the top-k struc-

tures.

• In Chapter 4, we study the trend of the Posterior probability of the top-k networks

P (G|D) with increase in k-value.

• In Chapter 5, we study how the top-k averaging can be used to predict the protein-

signaling network from the CYTO dataset and compares it to previous work in that

area.

• In Chapter 6, we study the classification accuracy of the top-k networks.

• In Chapter 7, we conclude the thesis work by summarizing the work done in the thesis.
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top-left-square
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Figure 1.4 Top63: Another top network for the Nursery Dataset with same

P (G|D) = 0.011193
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CHAPTER 2. REVIEW OF LITERATURE

The problem of learning Bayesian network structures from data has been widely studied

in the past. In the following sections, we study the major challenges in Bayesian structure

learning and summarize some of the earlier work in this area stating areas for improvement in

each idea.

2.1 Major challenges in Bayesian networks learning

As we saw earlier, the main problem in the application of Bayesian networks for various data

mining tasks is that the finding of the MAP network is NP-hard [Chickering (1996)] and hence

a typical approach to search for the MAP structure is to use some sort of heuristic algorithms

which may get stuck in a local maxima leading to unwarranted conclusions about the data

domain. Also, making inferences based on the single MAP structures also has problems in

domains where the amount of data is small relative to the size of the model. In such domains,

the posterior may not be sharply peaked around the MAP model. There are usually many high-

scoring models with non-negligible posterior. Therefore, relying on the single MAP structure

may also lead to unwarranted conclusions about the structure features and poor predictions

about new observations. In the following sections, we examine some of the MAP learning and

model averaging approaches devised in the past to learn Bayesian network structures and some

applications of Bayesian networks to cell signaling networks.

2.2 Computation of exact posterior probabilities

Recently there has been progress on computing exact posterior probabilities of structural

features such as edges or subnetworks using dynamic programming techniques [Koivisto and
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Sood (2004), Koivisto (2006), Tian and He (2009)]. These techniques have exponential time

and memory complexity and are capable of handling datasets with upto around 20 variables.

One problem with these algorithms is that they can only compute posteriors over modular

features such as directed edges but can not compute non-modular features such as Markov

blankets or paths (”is there a path between nodes X and Y”).

Another problem is that it is very expensive to perform data prediction tasks. They can

compute the exact posterior of new observational data P (X|D) but the algorithms have to be

re-run for each new data case x.

2.3 Model averaging techniques in the past

When computing exact posterior probabilities of features is not feasible, one approach

that has been proposed is to approximate full Bayesian model averaging by finding a set of

high-scoring networks and make prediction using these models [Madigan and Raftery (1994),

Heckerman et al. (1997)]. This leaves open the question of how to construct the set of repre-

sentative models. Suggestions were made to use the high scoring models encountered in greedy

or beam search as the representative models and make posterior probability calculations based

on these models. However, the results of the inference may be biased towards the networks

favored by the particular search strategy adopted and may not be representative of the real

data. [Madigan and Raftery (1994)] suggests using a set of opening models based on expert

knowledge and then follow a greedy search based on the Posterior model probabilities. This

technique again requires prior knowledge about the domain and could get stuck in a local

maxima during the greedy search resulting in biased inferences. One possible approach is to

use the bootstrap technique which has been studied in [Friedman et al. (1999)]. However, there

are still many questions that need further study on how to use the bootstrap to approximate

the Bayesian posterior over features.

One theoretically well-founded approach is to use Markov Chain Monte Carlo (MCMC)

techniques. [Madigan and York (1995)] used MCMC algorithm in the space of network struc-

tures(i.e., DAGs). [Friedman and Koller (2003)] developed a MCMC procedure in the space
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of node orderings which was shown to be more efficient than MCMC in the space of DAGs

and to outperform the bootstrap approach in [Friedman et al. (1999)] as well. [Eaton and

Murphy (2007)] developed a hybrid MCMC method (DP+MCMC) that first uses the dynamic

programming technique in [Koivisto (2006)] to develop a global proposal distribution and then

runs MCMC in the DAG space. Their experiments showed that DP+MCMC algorithm con-

verged faster than previous two methods [Friedman and Koller (2003), Madigan and York

(1995)] and resulted in more accurate structure learning. One common problem to the MCMC

and bootstrap approach is that there is no guarantee on the quality of the approximation in

finite runs.

[Madigan and Raftery (1994)] has proposed to discard the models whose posterior proba-

bility is much lower than the best ones (as well as complex models whose posterior probability

is lower than some simpler one). In this thesis, we study the approach of approximating

Bayesian model averaging using a set of Bayesian networks. It is intuitive to make predic-

tions using a set of the best models, and we believe it is due to the computational difficulties

of actually finding the best networks that this idea has not been systematically studied. In

this thesis, an algorithm for finding the k-best network structures is studied by generalizing

the dynamic programming algorithm for finding the optimal Bayesian network structures in

[Silander and Myllymaki (2006), Singh and Moore (2005)]. We demonstrate the algorithm on

several datasets from the UCI Machine Learning Repository [Asuncion and Newman (2007)].

An empirical study is then presented on the quality of Bayesian model averaging using the

k-best networks in classification.
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CHAPTER 3. MODEL AVERAGING USING TOP-k BAYESIAN

NETWORK STRUCTURES

We study the problem of learning bayesian network structures from data. In this Chapter,

we study the algorithm for finding the k-best Bayesian network structures using a dynamic

programming approach. We propose to compute the posterior probability of any hypotheses

of interest by Bayesian model averaging over the k-best Bayesian network structures.

In particular, it is reasonable to use the k-best networks. However, this idea has not

been systematically studied due to the computational difficulties of actually finding the k-best

networks. In this thesis, we will explore this idea. We developed an algorithm for finding

the k-best network structures by generalizing the dynamic programming algorithm for finding

the optimal Bayesian network structures in [Singh and Moore (2005), Silander and Myllymaki

(2006)].

We applied our algorithm to several data sets from the UCI Machine Learning Repository

[Asuncion and Newman, 2007]. We then make some observations on Bayesian averaging using

the k-best networks.

3.1 Bayesian Learning of Bayesian Networks

A Bayesian network is a DAG G that encodes a joint probability distribution over a set

X = {X1, ..., Xn} of random variables with each node of the graph representing a variable in

X. For convenience, we will typically work on the index set V = {1, ..., n} and represent a

variable Xi by its index i. We use XPai ⊆ X to represent the set of parents of Xi in a DAG

G and use Pai ⊆ V to represent the corresponding index set.

In the problem of learning BNs from data, we are given a training data setD = {x1, x2, ..., xN},



15

where each xi is a particular instantiation over the set of variables X. In this paper we only

consider situations where the data are complete, that is, every variable in X is assigned a

value. In the Bayesian approach to learning Bayesian networks from the training data D, we

compute the posterior probability of a network G as

P (G|D) =
P (D|G)P (G)

P (D)
(3.1)

Assuming global / local parameter independence, and parameter / structure modularity,

lnP (D|G)P (G) can be decomposed into a summation of so-called local scores as [Cooper and

Herskovits (1992), Heckerman et al. (1995)]

lnP (G,D) =
n∑

i=1

scorei(Pai : D) ≡ score(G : D), (3.2)

where, with appropriate parameter priors, scorei(Pai : D) has a closed form solution. In

this thesis, we will focus on discrete random variables assuming that each variable Xi can take

values from a finite domain. We will use the popular BDe score for scorei(Pai : D) and we

refer to [Heckerman et al. (1995)] for its detailed expression. Often for convenience we will

omit mentioning D explicitly and use scorei(Pai) and score(G).

In the Bayesian framework, we compute the posterior probability of any hypothesis of

interest h by averaging over all possible networks.

P (h|D) =
∑
G

P (h|G,D)P (G|D). (3.3)

Since the number of possible DAGs is superexponential in the number of variables n,

it is impractical to sum over all DAGs unless for very small networks. One solution is to

approximate this exhaustive enumeration by using a selected set of models in G.

P̂ (h|D) =

∑
G∈G

P (h|G,D)P (G|D)∑
G∈G

P (G|D)
(3.4)

=

∑
G∈G

P (h|G,D)P (G,D)∑
G∈G

P (G,D)
(3.5)
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where P̂ (.) denotes approximated probabilities. In the model selection approach, we find

a high-scoring model Gs and use it to make predictions:

P̂ (h|D) = P (h|Gs, D) (3.6)

In this thesis, we will perform model averaging using the set G of k-best networks.

We can estimate the posterior probabilities of a network G ∈ G as

P̂ (G|D) =
P (G,D)∑

G∈G
P (G,D)

(3.7)

We can then estimate the posterior probability of hypothesis h by

P̂ (h|D) =
∑
G∈G

P (h|G,D)P̂ (G|D) (3.8)

If we are interested in computing the posteriors of structural features such as edges, paths,

Markov Blankets, etc., let F be a structural feature represented by an indicator function such

that F(G) is 1 if the feature is present in G and 0 otherwise. We have P (F|G,D) = F(G) and

P̂ (F|D) =
∑
G∈G
F(G)P̂ (G|D) (3.9)

If we are interested in predicting the posteriors of future observations, let DT be a set of

new data examples independent of D. Then

P̂ (DT |D) =
∑
G∈G

P (DT |G,D)P̂ (G|D) (3.10)

where

lnP (DT |G,D) =
lnP (DT , D|G)

P (D|G)
(3.11)

= score(G : DT , D)− score(G : D) (3.12)
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3.2 Learning the top-k structures

We find the k-best structures using the dynamic programming techniques extending the

algorithm for finding the optimal Bayesian network structures in [Silander and Myllymaki

(2006)]. Our algorithm consists of three steps:

1. Compute the local scores for all possible n2n−1(i, Pai) pairs.

2. For each variable i ∈ V , find the k-best parent sets in parent candidate set C for all

C ⊆ V \{i}.

3. Find the k-best networks.

3.2.1 Computing Local Scores

Computing local scores is exactly the same as in [Silander and Myllymaki (2006)] and we

will use their algorithm. Assuming that we have calculated all the local scores, next we describe

how to accomplish Steps 2 and 3 using dynamic programming technique.

3.2.2 Finding the k-best parent sets

We can find the k-best parent sets for a variable v from a candidate set C recursively. The

k-best parent sets in C for v are the k-best sets among the whole candidate set C itself, and

the k-best parent sets for v from each of the smaller candidate sets {C\{c}|c ∈ C}. Therefore,

to compute the k-best parent sets for v for every candidate set C ⊆ V \{v}, we start with sets

of size |C| = 1, then consider sets of |C| = 2, and so on, until the set C = V \{v}.

The skeleton algorithm for finding the k-best parent sets for v from a candidate set C

is given in Algorithm 1, where we use bestParentsv[S] to denote the k best parent sets for

variable v from candidate set S stored in a priority queue, and the operation Merge(., .)

outputs a priority queue of the k best parents among the input two priority queues of k

elements. Assuming that the merge operation takes time T (k), finding the k-best parent sets

for v from a candidate set C takes time O(T (k) ∗ |C|), and computing for all C ⊆ V \{v} takes

time:
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n−1∑
|C|=1

T (k) ∗ |C| ∗
( n−1
|C|
)

=

O(T (k)(n− 1)2n−2).

Algorithm 1 Finding the k-best parent sets for variable v from a candidate set C

Input:

scorev(C): Local scores

bestParentsv[S]: priority queues of the k-best parent sets for variable v from candidate set

S for all S ⊆ C with |S| = |C| − 1

Output:

bestParentsv[C]: a priority queue of the k-best parents of v from the candidate set C

for all S ⊆ C such that |S| = |C| − 1 do

{
bestParentsv[C]←Merge(bestParentsv[C], bestParentsv[S])

}
Insert C into bestParentsv[C] if scorev(C) is larger than the minimum score in

bestParentsv[C]

end for

3.2.3 Finding the k-best network structures

Having calculated the k-best parent sets for each variable v from any set C, finding the

k-best network structures over a variable set W can be done recursively. We will exploit the

fact that every DAG has a sink, a node that has no outgoing edges. First for each variable

s ∈ W , we can find the k-best networks over W with s as a sink. Then the k-best networks

over W are the k-best networks among {the k-best networks over W with s as a sink : s ∈W}.

The k-best networks over W with s as a sink can be identified by looking at the k-best

parent sets for s from the set W\{s} and the k-best networks over W\{s}.

More formally, let bestParentss[C][i] denote the ith best parent set for variable s in the

candidate parent set C. Let bestNets[W ][j] denote the jth best network over W . Then the

k-best networks over W with s as a sink can be identified by finding the k-best scores among
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{scores(bestParentss[W\{s}][i]) + score(bestNets[W\{s}][j]) : i = 1, ..., k, j = 1, ..., k}.

This can be done by using a standard best-first graph search algorithm.

The skeleton algorithm for finding the k-best network structures over a set W is given in

Algorithm 2. Let the time spent on the best-first search be T ′(k). In the worst case, all k2

nodes may need to be visited. The complexity of finding the k-best network structures is

n∑
|W |=1

T ′(k) ∗ |W | ∗
( n
|W |
)

= O(T ′(k)n2n−1).

Algorithm 2 Finding the k-best network structures over set W

Input:

bestParentsi[S]: priority queues of the k-best parent sets for each variable i ∈ V from any

candidate set S ⊆ V − {i}
bestNets[S]: priority queues of the k-best network structures over all S ⊆ W with |S| =

|W | − 1

Output:

bestNets[W ]: a priority queue of the k-best networks over W

for all s ∈W do

{
Consider search space {(i, j) : i = 1, ..., k, j = 1, ..., k} with root node (1,1), children of

(i, j) being (i+ 1, j) and (i, j + 1), and the value of each node given by

value(i, j) = scores(bestParentss[W\{s}][i]) + score(bestNets[W\{s}][j])
repeat

a best-first graph search over the space {(i, j)}
until value(i, j) < score(bestNets[W ][k]) {
Construct a BN G from the network bestNets[W\{s}][j] and setting the set

bestParentss[W\{s}][i] as the parents of s

Insert the network G into bestNets[W ] if G is not in the queue already

} }
end for
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3.3 Computing posterior probability of structural features

After learning the top-k structures, we are interested in knowing the posterior probabilities

of the structural features in the DAGs to make causal inferences. Here, we are interested in

finding two posterior quantities:

1. Posterior probability of a particular DAG given the data P (G|D)

2. Posterior probability of a feature in the graph given the data (say, for example, an edge)

P (f |D)

Since we are using Bayesian score to score our networks, we have

score(G : D) = lnP (G,D) (3.13)

We are interested in the calculation of P (G|D) which is given by the following equation:

P (G|D) =
P (G,D)∑
G P (G,D)

(3.14)

Let f be a structural feature such that f(G) is 1 if the feature is present in G and 0

otherwise. Given a dataset D, we are interested in computing the posterior P (f |D) which is

given by:

P (f |D) =
∑
G

f(G)P (G|D) (3.15)

3.3.1 Computing approximate posteriors of structural features from top-k net-

works

In this section, we examine how we can approximately calculate the posteriors of the

structural features from the top-k networks. Let us denote the top-k best scored networks

we computed by F = {G|score(G : D) is among top-k best}. Let F ′ denote the rest of the

possible DAGs. We approximate the posterior distributions using only the top-k best scored

networks as:
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P̂ (G|D) =
P (G,D)∑

G∈F P (G,D)
(3.16)

P̂ (f |D) =
∑
G∈F

f(G)P̂ (G|D) (3.17)

3.3.1.1 Approximation accuracy δ and the effect of k on δ

LetGMAP denote a network with the best score (a MAP network). To measure the accuracy

of the approximation, we consider the following quantity:

δ =
∑
G∈F ′

P (G,D)

P (GMAP , D)
(3.18)

Proposition 1 :

0 ≤ P̂ (G|D)− P (G|D)

P (G|D)
≤ δ (3.19)

|P̂ (f |D)− P (f |D)| ≤ (1 + P̂ (f |D))δ ≤ 2δ (3.20)

We can give an upper bound to δ. Let Gmin be a network with the minimum score among

the top-k best networks in F . A good upper bound to the number of possible DAGs is

C(n) = n!2
1
2
n(n−1)

Proposition 2 :

δ < C(n)e−(score(GMAP :D)−score(Gmin:D)) (3.21)

To achieve certain accuracy δ, we should compute the top-k best networks until

score(GMAP : D)− score(Gmin : D) ≥ lnC(n)− lnδ (3.22)

For example, to achieve an accuracy of δ = 1%, the score difference should be atleast 50.90 for

10 variables, and atleast 178.64 for 20 variables.
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CHAPTER 4. EXPERIMENTS AND RESULTS - SCORES AND

POSTERIOR PROBABILITIES

In this Chapter, we find the top-k Bayesian networks for different datasets in the UCI

Machine Learning Repository [Asuncion and Newman (2007)] for different k-values and make

some observations about the Posterior probability and the BDe scores of the top-k networks.

4.1 Experiments Platform and Parameters

The algorithms have all been implemented in the C++ language and the experiments are

run under Ubuntu on a laptop PC with 2.0GHz AMD Turion 64 X2 Mobile Technology TL-60

processor and 3.0GB memory.

The BDe score for scorei(Pai : D) with a uniform structure prior P (G) and equivalent

sample size 1 was used. The Experiments were conducted on various datasets from the UCI

Machine Learning Repository [Asuncion and Newman (2007)]: Iris, Balance, Nursery, Tic-

Tac-Toe, Zoo, Letter Recognition and a synthetic dataset from a gold-standard 10-variable

Bayesian network. All the datasets contain discretized variables (or are discretized) and have

no missing values.

Table 4.1 Datasets used

Name n m

Iris 5 150

Balance 5 625

Nursery 9 12960

Tic-Tac-Toe 10 958

Zoo 17 101

Synthetic 10 1000

Letter Recognition 17 20000
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4.2 Experimental Results

For each of the datasets in the Table 4.1, we run the algorithm to find the k-best networks

for different k and then estimate the posterior probabilities of any hypotheses of interest P̂ (h|D)

as shown in Eqns 3.15.

We introduce a measure for the quality of the posterior estimation, the relative ratio of

the posterior probability of the MAP network Gmap to the posterior probability of the worst

network Gmin in the top-k networks. (i.e. the ratio of the score of the first top network to the

score of the top-kth network):

λ ≡ P̂ (Gmap|D)

P̂ (Gmin|D)
≡ P (Gmap|D)

P (Gmin|D)
(4.1)

It has been argued in [Madigan and Raftery (1994)] that we should make predictions using

a set of the best models discarding those models which predict the data far less well even

though the very many models with small posterior probabilities may contribute substantially

to the sum. A cutoff value of λ = 20 is suggested in [Madigan and Raftery (1994)] by analogy

with the 0.05 cutoff for P-values.

It can be noticed from Table 4.2 that the value of the quality measure λ increases as k

value increases. Figure 4.1 and Figure 4.2 also show the value of P̂ (G|D) for the top-k values

plotted along the X-axis.

1. For the Iris case, the top − 32 networks (with λ = 103.122) give a more reasonable

approximation than the top − 10 networks (with λ = 2.446). The MAP network has a

posterior probability of 29.01% and the second one has a posterior probability of 19.32%

as can be seen in Figure 4.1.

2. For the Balance case, it can be observed from Table 4.2 and Figure 4.1 that all the top−5

networks have the same P̂ (G|D) with equal scores.

3. For the Nursery case, the top−5 networks itself give a reasonable approximation with a λ

value of 360314.74. The top-2 networks have the same posterior probability of 0.469364.
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4. For the Tic-tac-toe case, the top 150 networks seem to give a good approximation (λ

= 277.4). In this case again, the top − 76 networks are equally probable and have the

same BDe score. The top-76 networks are from two different equivalence classes but

still have the same BDe score and the same posterior probability. Two of the top − 76

networks for tic-tac-toe are shown in Figure 4.2. This is a good example of a case where

making inferences using just one of the networks (the MAP network) may lead to a poor

approximation.

5. For the Zoo case, the graph in Figure 4.2 gives a good trend of the posteriors of the

top-k networks with increase in k. Although there is only one network with the highest

posterior probability, the other best networks have posteriors very close to that of the

MAP network. This can be seen in the Figure 4.2. It can be observed that even for the

top-100 networks, λ is only 1.52. Hence, the top 100 networks are also not enough to get

a reliable estimation for Zoo.

6. For the Synthetic case, for k=100, λ is 27.158. The top-3 networks have the same

maximum Posterior probability as shown in the Figure 4.2.

7. For the Letter Recognition case, k=50 gives a λ value of 52.32. Out of these 50 top

networks, the top 18 networks are the most significantly contributing networks with the

same posterior probability as seen in Figure 4.2.

We observed above that many networks may share the same posterior probability. This is

because the BDe scoring criterion has the likelihood equivalence property, i.e., it assigns the

same score to the Bayesian networks within the same independence equivalence class. However,

it is also interesting to note that not all the networks that share the best posterior probability

are in the same equivalence class. For example, in the Tic-tac-toe case, the top-76 networks

share the same best posterior probability networks. This is shown in Figure 4.2. Hence,

bayesian network structures with the same posterior probability may also be from different

equivalent classes.
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Figure 4.1 The Exact Posterior Probabilities of the k-best Networks.
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Table 4.2 Experimental Results

Dataset Name n m

Iris 5 150

k-value PosteriorProbabilityoffirstnetwork PosteriorProbabilityofkthnetwork λ

k=1 1.00000000 1 1.000

k=10 0.20870300 0.08531640 2.446

k=32 0.13405900 0.001300000 103.122

k=100 0.12574600 0.000719971 174.654

k=325 0.11751700 0.000097834 1201.189

k=900 0.11652200 4.24E-006 27467.417

Dataset Name n m

Balance 5 625

k-value PosteriorProbabilityoffirstnetwork PosteriorProbabilityofkthnetwork λ

k=1 1.00000000 1 1.000

k=5 0.20000000 0.2 1.000

k=7 0.20000000 2.24E-013 8.92E+11

Dataset Name n m

Nursery 9 12960

k-value PosteriorProbabilityoffirstnetwork PosteriorProbabilityofkthnetwork λ

k=1 1.00000000 1 1

k=5 0.46936400 1.30E-006 3.60E+05

Dataset Name n m

Tic tac toe 10 958

k-value PosteriorProbabilityoffirstnetwork PosteriorProbabilityofkthnetwork λ

k=1 1.00000000 1 1

k=150 0.01119300 4.03E-005 277.4

Dataset Name n m

Zoo 17 101

k-value PosteriorProbabilityoffirstnetwork PosteriorProbabilityofkthnetwork λ

k=1 1.00000000 1 1.00

k=10 0.10521800 0.1 1.09

k=100 0.01291770 8.52E-003 1.52

Dataset Name n m

Synthetic dataset 10 1000

k-value PosteriorProbabilityoffirstnetwork PosteriorProbabilityofkthnetwork λ

k=1 1.00000000 1 1.000

k=100 0.07847200 0.00288948 27.158

k=1000 0.05282200 7.44E-005 709.629

Dataset Name n m

Letter Recognition 17 20000

k-value PosteriorProbabilityoffirstnetwork PosteriorProbabilityofkthnetwork λ

k=1 1.00000000 1.000 1

k=10 1.00000000 1.000 1

k=50 0.05296510 .001 52.32

k=100 0.05041360 .001 52.32
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Figure 4.2 The Exact Posterior Probabilities of the k-best Networks (con-

tinued).
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Figure 4.3 Two of the 76 top networks for the Tic-tac-toe dataset. These

two networks share the same best posterior probability but have

different skeletons
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CHAPTER 5. EXPERIMENTS AND RESULTS - LEARNING THE

HUMAN T-CELL SIGNALING CAUSAL MAP

In this chapter, we study the biological dataset CYTO and use the top-k model averaging

method to learn the protein signaling network.

5.1 Introduction

In this section, we learn a protein signaling network from multicolor flow cytometry data

that recorded the molecular activity of 11 proteins under various experimental conditions us-

ing the top-k Bayesian network structures. [Sachs et al. (2005)] modeled the protein signaling

networks as causal Bayesian networks and inferred the network structure from the data using

a Bayesian approach. More specifically, a random restart simulated annealing search is applied

in the space of DAGs to find the networks with high posterior probabilities and a bootstrap

method is used to find edges with high posteriors. The CYTO data was also analyzed by

[Ellis and Wong (200)] using MCMC in the space of node orderings, and by [Eaton and Mur-

phy (2007)] using a dynamic programming algorithm that computes the exact edge posterior

probabilities under a special graph prior.

5.2 Revisiting the Bayesian Score

If the dataset D is drawn from a static distribution, closed form expressions for P (D|G)

have been derived [Cooper and Herskovits (1992), Heckerman et al. (1995)]. Assuming global

and local parameter independence, and parameter modularity, the Bayesian score can be de-

composed into the summation of local scores
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score(G : D) =
n∑

i=1

scorei(Vi, Pai : D) (5.1)

Further assuming Dirichlet parameter priors, we have

scorei(Vi, Pai : D) = aScorei(A,D) (5.2)

where

aScorei(A,D) = ln
∏
pai

Γ(αpai)

Γ(αpai +Npai)

∏
vi

Γ(αvi;pai +Nvi;pai)

Γ(αvi;pai)
(5.3)

where Γ(.) is the Gamma function

Nvi,pai is the number of cases in data set D for which Vi takes the value vi and its parents

Pai take the value pai

αvi,pai are Dirichlet hyper parameters

A = {αvi,pai : vi ∈ Dm(Vi), pai ∈ Dm(Pai)}

αpai =
∑
vi

αvi,pai

Npai =
∑
vi

Nvi,pai

We use
∏
vi

as a shorthand for
∏

vi∈Dm(Vi)

and
∏
pai

for
∏

pai∈Dm(Pai)

. Here, we will use the BDe

score and assume the following hyperparameters

αvi,pai = 1/(riqi) (5.4)

where ri is the number of states of Vi and qi is the number of states of Pai.

5.2.1 Bayesian score with interventions

The Bayesian score described above assumes that the dataset D is drawn from a static

distribution. We can adapt the score to deal with the situation where we have a number of

data sets D1, D2, ..., generated from the same causal structure but under different experimental

conditions [Tian and Pearl (2001b)].

For example, assume that we have two data sets D1 and D2 , where D1 is generated

from the causal model M =< G, θG >. Assume that D2 is generated from M under an ideal
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intervention on variable Vk that set Vk to a fixed value. Then the Bayesian score is given by

[Cooper and Yoo (1999)]:

scorei(Vi, Pai : D1, D2) =


aScorei(A,D

1 +D2), i 6= k

aScorei(A,D
1), i = k

(5.5)

If D2 is generated from the same causal structure G but with different parameters θ′G , and

we have no knowledge about how the two sets of parameters θG and θ′G differ, we may assume

that they are independent and we use the following Bayesian score [Tian and Pearl (2001b)]:

scorei(Vi, Pai : D1, D2) = aScorei(A,D
1) + aScorei(A,D

2) (5.6)

5.3 Data Preparation

The CYTO data consists of 9 data sets under different conditions as shown in Table 5.1.

It has roughly 700 to 900 samples per experimental condition, corresponding to various inter-

ventions on the system of interest. The variables in each dataset are listed in Table 5.2.

Table 5.1 Datasets in CYTO

Dataset Name

cd3cd28

cd3cd28icam2

cd3cd28 + aktinhib

cd3cd28 + g0076

cd3cd28 + psitect

cd3cd28 + u0126

cd3cd28 + ly

pma

b2camp

Assume that the data set cd3cd28 is generated from the causal model M =< G, θG >. Then

we assume that each of the data sets cd3cd28+aktinhib, cd3cd28+g0076, cd3cd28+psitect, and

cd3cd28+u0126 is generated from M under some ideal intervention. We will consider the data

set cd3cd28+ly as generated from a general perturbation rather than an ideal intervention on
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Table 5.2 Variables in CYTO datasets

Variable name

praf

pmek

plcg

PIP2

PIP3

p44/42 (erk)

pakts473

PKA

PKC

P38

pjnk

akt as the actual intervention is not directly on akt. We assume that each of the data sets

cd3cd28icam2, cd3cd28+ly, pma, and b2camp is generated from the same causal structure G

but with different parameters.

In summary, we use the following Bayesian score. For those variables on which no inter-

vention is performed, i.e., for Vi ∈ {praf, plcg, PIP3, erk, P38, pjnk}

scorei(Vi, Pai : D) = aScorei(A,D
cd3cd28 +Du0126 +Dg0076 +Dpsitect +Daktinhib)

+aScorei(A,D
icam2)

+aScorei(A,D
ly)

+aScorei(A,D
pma +Db2camp)

(5.7)

where

M cd3cd28 = Dcd3cd28 +Du0126 +Dg0076 +Dpsitect +Daktinhib

= Dcd3cd28+u0126+g0076+psitect+aktinhib
(5.8)

If a variable Vj is set by intervention in data set Dj , to compute the local score of Vj we

will assume ideal intervention and simply drop the data set Dj from Equation 5.7.

Hence for the variables Vi /∈ {praf, plcg, PIP3, erk, P38, pjnk}, we have
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For Vi = pmek,

scorei(Vi, Pai) = aScorei(A,D
cd3cd28+g0076+psitect+aktinhib)

+aScorei(A,D
icam2)

+aScorei(A,D
ly)

+aScorei(A,D
pma +Db2camp)

(5.9)

For Vi = PIP2,

scorei(Vi, Pai) = aScorei(A,D
cd3cd28+u0126+g0076+aktinhib)

+aScorei(A,D
icam2)

+aScorei(A,D
ly)

+aScorei(A,D
pma +Db2camp)

(5.10)

For Vi = pakts473,

scorei(Vi, Pai) = aScorei(A,D
cd3cd28+u0126+g0076+psitect)

+aScorei(A,D
icam2)

+aScorei(A,D
ly)

+aScorei(A,D
pma +Db2camp)

(5.11)

For Vi = PKA,

scorei(Vi, Pai) = aScorei(A,M
cd3cd28)

+aScorei(A,D
icam2)

+aScorei(A,D
ly)

+aScorei(A,D
pma)

(5.12)

For Vi = PKC,

scorei(Vi, Pai) = aScorei(A,D
cd3cd28+u0126+psitect+aktinhib)

+aScorei(A,D
icam2)

+aScorei(A,D
ly)

+aScorei(A,D
b2camp)

(5.13)
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After the local scores for each variable was calculated using the equations above, we run

the top-k algorithm to find the top-100

5.4 Results and Discussion

Table 5.3 Posterior probability of top 10 networks based on calculation

using k=500

Posterior probability

0.917081

0.053157

0.0297582

3.17847e-06

3.37237e-07

1.84235e-07

1.03138e-07

4.31118e-08

3.1489e-08

1.82521e-09

The k-value was chosen based on the λ value for different k. A cutoff of λ = 20 as discussed

before was considered in choosing the k value. For k=500, the λ value is 1.15e+29. The

posterior probability of the top-10 networks when we compute top-k with k=500 are shown in

Table 5.3. The MAP network as shown in Figure 5.3 has a posterior probability of 91.70%. This

network is unique and has the best score among all the top networks. The network obtained

is very similar to the one obtained in [Sachs et al. (2005)]. Our method has 3 edge reversals

and 4 new edges that were not present from the results in [Sachs et al. (2005)]. The biological

significance of these discoveries could be an area of future study. By using the top-k model

averaging, we were also able to find the posterior probabilities of the edges in the network as

shown in Figure 5.1]. Most of the edges have a posterior probability of 1. The reversed edges

could be due to the cyclic nature of causal relations in protein signaling networks.
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praf

pmek

1

pka

1

plcg

1

p4442

1

1

pjnk

1

pip2

1

pip3

1

1

pakts473

1

1

1

p38

1

1

pkc

1

1

1

1

1

0.917084 1

Figure 5.1 CYTO network obtained by averaging over top-500 Bayesian

network structures. The edges are labeled with their edge pos-

terior probabilities with only the most significant edges (with

posterior > 0.70).
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praf

pmek

pka

plcg

p44/42pjnk

pip2

pip3

pakts473 p38

pkc

Figure 5.2 The MAP CYTO network obtained which has a posterior prob-

ability of 0.917081.
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Figure 5.3 The network obtained by model averaging over top-500 net-

works compared with those in [Sachs et al. (2005)]. Edges

marked ’Same’ are same as in [Sachs et al. (2005)]. Edges

marked ’Added’ are found by our method but were not present

in [Sachs et al. (2005)]. Edges marked ’Reversed’ were reversed

from [Sachs et al. (2005)]
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Figure 5.4 CYTO network obtained by [Sachs et al. (2005)] compared with

those in the literature.
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CHAPTER 6. EXPERIMENTS AND RESULTS - CLASSIFICATION

PERFORMANCE OF TOP-k BAYESIAN NETWORKS

In this Chapter, we study the classification performance of the top-k Bayesian network

structures.

6.1 Experiments Idea and Datasets

The idea behind using the top-k networks for prediction tasks is an intuition that a better

estimation of the posterior P (G|D) will also perform better in terms of prediction. Hence, if

we are able to do a model averaging over all the best-k networks which may have a significant

contribution towards the posterior, we hope to approximate the value P (G|D) more closely.

The Experiments were conducted on various datasets from the UCI Machine Learning

Repository [Asuncion and Newman (2007)]: Balance, Nursery, Tic-Tac-Toe, Zoo and a syn-

thetic dataset from a gold-standard 10-variable Bayesian network as shown in Table 6.1. All

the datasets contain discretized variables (or are discretized) and have no missing values.

The Figure 6.1 shows the percentage split of the dataset into training and test sets.

We use a simple metric, Match Ratio to evaluate the classification accuracy:

Matchratio =
Numberofcorrectpredictions

Totalnumberofpredictions
(6.1)

6.2 Results and Discussion

The classification results are shown in Figure 6.1. The k-value is chosen based on a cutoff

of the λ value to be 20. We see that for the datasets Balance and Nursery we see a small

improvement in the classification match ratio. However, for the tic-tac-toe dataset we see a



40

Table 6.1 Datasets used

Name n m

Balance 5 625

Nursery 9 12960

Tic-Tac-Toe 10 958

Zoo 17 101

Synthetic 10 1000

significant improvement in the classification accuracy. This might be because of the observation

made in Figure 4.2 that there are multiple networks sharing the same best posterior probability

that may have different skeletons and are from multiple equivalence classes. When we average

over all the top-k networks, this may lead to a better fitting of all the models during prediction.

We also observed that the Zoo and the synthetic dataset did not show any improvement in

prediction accuracy because of using the top-k models over the best MAP network alone. For

the zoo dataset, this could be because even the top-100 networks had a λ value of only 1.52.
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Figure 6.1 Classification Results of top-k Bayesian model averaging. The

k-value is chosen based on a cutoff value for λ to be 20
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CHAPTER 7. SUMMARY AND DISCUSSION

We develop an algorithm for finding the k-best Bayesian network structures. We make some

observations about the posterior probability P (G|D) and its value for different k-values. As

we studied, there may be many structures which have the same best posterior probability and

making conclusions based on just one MAP network will not always give a good approximation

of the underlying network. A value of λ = 20 was considered a reasonable threshold to consider

the top-k approximation to be a close one.

As the results show, many networks in the set of best networks may be in the same equiv-

alent class. The algorithm searches for the top-k networks irrespective of their inclusion in the

same equivalence class or not. Extension of the dynamic programming idea to search for best

networks in the space of equivalence classes rather than in the space of all networks could be

an area of future study.

We also show the results of the top-k model averaging on the CYTO protein signaling

network. We observed that the network found by our method is very close to the results from

[Sachs et al. (2005)]. We were also able to find the posterior probability of each edge in the

protein signaling network. However, using techniques to study cyclic network structures may

give a better inference about the protein signaling networks owing to their highly feedbacking

network structure.

We also study the classification performance of the top-k model averaging technique and

observe that the averaging over the top-k networks is more useful in some cases than others.

From the results, it seems like networks with many best networks which may belong to mul-

tiple equivalence classes may benefit from the top-k averaging over the single MAP network’s

prediction owing to the diversity in the network structures that fit the data.
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