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ABSTRACT

The spread of infections (disease, ideas, fires, etc.) in a network (group of people, electronic

network, forest, etc.) can be modeled by the evolution of states of nodes in a graph defined

as a function of the states of the other nodes in the graph. Given an initial configuration of

the graph with a subset of the nodes infected, a propagation function that specifies how the

states of the nodes change over time, and a quarantine function that specifies the generation

of regions centered on the infected nodes, from which the infection cannot spread; we identify

and verify intervention policies designed to contain the propagation of the infection over the

network. The approach can be used to determine an effective policy in such a scenario.
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CHAPTER 1. INTRODUCTION

The spread of infections such as diseases, rumors, computer viruses, and fires through

networks of people, computers, and forests pose significant risks in the modern sociological,

technological, and environmental world. Intervention policies are essential for reacting to, and

mitigating, the effects of infections.

The spread of viruses and worms through computer networks is a great concern. The

danger viruses and worms pose continues to rise as more and more devices become connected

to the world wide web. Many computers are vulnerable due to lax security measures (virus

scanners, firewalls, etc.) and due to newly discovered vulnerabilities for which patches are not

yet available. Such infections are not only widespread, but can have far reaching consequences.

The Conficker worm infected an estimated 15 million computers, including computers belonging

to the French military. The French military was forced to resort to using ”‘telephone, fax, and

post”’ for communication because they had ignored the threat Conficker posed and did not

update their systems (UPI (2009); Willsher (2009)).

These problems are relevant in areas beyond computing. Due to the highly mobile nature

of modern society, diseases pose a greater threat than ever before. In 2006 alone, there were

2.1 billion airline passengers. Such mobility allows for rapid spread of disease from the initial

infection point to locations many thousands of miles away. In addition to the highly mobile

society, there has been an increase in the emergence of new diseases, with almost 40 appearing

in the last generation alone. The number of epidemics in the span from 2002 to 2007 is over

1100 (WHO (2007)).

During outbreaks of these diseases [Severe Acute Respiratory Syndrome (SARS),

Ebola, Marburg hemorrhagic fever, Nipah virus], rapid assessment and response, of-

ten needing international assistance, has been required to limit local spread. (WHO
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(2007))

With potentially millions of people at risk from a disease, automated decision support is re-

quired for policymakers to rapidly and accurately respond to emerging diseases and epidemics.

Communication plays an essential role in the organization of people. The spread of ideas

can be seen either in a positive light or a negative one. Presidential candidates use the mass

media to spread their messages to garner votes. Yet, in January, the Egyptian government cut

off its people from the internet in an effort to prevent a populous uprising (Cowie (2011)). To

counteract such measures, the US government is funding development of ”‘shadow internet”’

devices to counteract government shutdowns of information networks (Simao (2011)). Clearly

the spread of information is vital and, as such, identifying the elements of a network with the

greatest ability to spread information is esseintial. Automated decision support is necessary for

identification of such elements and the analysis of how information will spread in the network.

The above are all examples of network propagation problems.

1.1 Modeling Network Propagation

The dynamics of the spread of infections in networks can be modeled in terms of the evo-

lution of the states of nodes in graphs. In such graphs, nodes represent individuals (people,

computers, parts of a forest) and edges represent possible transmission vectors. Two people

coming in contact with each other would have an edge between their respective nodes. Similarly

connections between computers and topographic adjacency in a forest would be represented

by edges. Previous work in this area (Dreyer and Roberts (2009); Finbow and MacGillivray

(2009); Anshelevich et al. (2010)) has examined the existence of effective policies that prevent

the dynamics of such graphs from violating some desired property. The problem of finding an

effective policy to control the spread of an infection in a network is NP-hard even for graphs with

a maximum degree of three (Dreyer and Roberts (2009); Finbow and MacGillivray (2009); An-

shelevich et al. (2010)). Against this background, practical solutions to the problem of infection

spread in a network are of significant interest. Our approach involves two techniques: locating

policies and analyzing policies in response to, or prevention of, outbreaks and subdividing the
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network into smaller regions for efficient application of the aforementioned policies.

1.1.1 Finding and Analyzing Policies

We consider a simple model of infection spread representing a discrete population evolving

in discrete time steps. The state of a node in the network in each time step is determined by

(a) the previous states of the node and (b) the states of other nodes in the network. A node

may be open (susceptible to infection), infected, or protected (cannot be infected nor spread

the infection). The evolution of the states of nodes in the network is encoded using Kripke

structures. We focus on two kinds of policies: intervention policies and preventive policies.

Intervention policies are designed to contain an infection by designating certain nodes as

protected to stop the spread of an existing infection. Preventive policies protect a certain

subset of nodes such that the spread of an infection in the network is limited. We consider

a policy to be effective if in every time step, the number of infected nodes does not exceed

l. Other definitions of effectiveness can be accommodated by our model. The satisfiability of

temporal formulas is used to answer the following questions: (a) Given a network with a set

of initially infected nodes, is there an effective intervention policy (marking of open nodes as

protected)? (b) Given a network and a set of protected nodes, is the given preventive policy

effective? Our approach automatically finds an intervention policy if a such a policy exists,

and identifies conditions under which a preventive policy is ineffective. We first introduced the

model checking approach to verifying and analyzing policies in Santhanam et al. (2011).

1.1.2 Region Computation

In practical settings, policymakers are likely to divide a network into regions. Such a

division allows for independent policies for each region. If an infection struck the United

States, it is likely that different policies would be applied to individual states, or even cities. A

city with an international airport requires a very different strategy of containing an infection

than a rural town. In the computer realm, a critical region in a network could center on a hub

node servicing a large cluster of nodes. Thus, given a network graph, for every infected node

a subgraph, region, is computed from which the infection cannot spread. Regions allow for
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efficient scaling of our approach and represent the quarantining, or isolation, of the portion of

the network under attack. Once the infection has been isolated to a part of the network, finer

grained policies are found to further reduce the effects of the infection.

We have developed techniques for locating intervention policies within a region of a network

and verifying prevention policies utilizing the specialized algorithms used by model checkers

to compute reachability in a Kripke structure model. Our preliminary experimental results

demonstrate the feasibility of our graph-theoretic, deterministic discrete time, approach for

finding and verifying effective policies. Our approach can be used to counter the spread of

diseases (WHO (2007)), fire (MacGillivray and Wang (2003)), opinions (Zanette (2002)), and

computer viruses (Serazzi and Zanero (2004)), where similar deterministic, discrete-time models

of infection spread have been considered (Dreyer and Roberts (2009); Finbow and MacGillivray

(2009); Anshelevich et al. (2010)).

1.2 Contributions

We provide a method for verifying and analyzing policies in a graph-theoretic model of

infection spread. By demonstrating the feasibility of our approach, we pave the way for the

development of tools, utilizing our approach, to aid policymakers in containing infection spread

in various networks. The generic nature of our approach makes it equally viable for containing

disease spread in humans, opinions/rumors in social networks, computer viruses in computer

networks, and fires in forests.

The rest of the thesis is as follows. In Chapter 2 we introduce the graph-theoretic model

of infection spread. Following in Chapter 3, we encode the evolution of the infection spread

in a graph in a Kripke structure and define policies designed to contain the spread of an

infection. Chapter 4 provides a method for the division of a graph in to regions for better

handling of infection spread. Chapter 5 presents our preliminary experimental results and the

optimizations required in scaling our approach. In Chapter 6 we explore other approaches to

modeling infection spread and future improvements to our approach. Finally, in Chapter 7 we

summarize our contributions to network propagation problems.
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CHAPTER 2. GRAPH-THEORETIC MODELS OF SPREAD

The following was initially presented in Santhanam et al. (2011). Let G(V,E) be a directed

graph, whose nodes V represent entities (people, computers, etc.) of the network that can

potentially be infected. The edges E are ordered 2-tuples of nodes representing the medium

over which an infection can potentially be transmitted from one node to another. Thus, if

(vi, vj) ∈ E, then vu can transmit the infection from itself to vj . An undirected graph can be

represented by having two edges ((vi, vj) and (vj , vi)) between any connected nodes vi and vj .

The methods in this paper are equally valid for directed and undirected graphs, however for

simplicity, unless otherwise noted, the graphs mentioned in this paper are undirected. Each

node vi ∈ V in the graph is associated with a state σ(vi) ∈ Σ, the domain of possible states (e.g.

infected, uninfected). The set of neighbors of a node vi ∈ V is ρ(vi) = {vj ∈ V : (vi, vj) ∈ E}.

Thus, the neighbors of the node vi are those nodes in V that vi has an edge to.

We denote the tuple of all states of the nodes in the graph as the configuration of the graph

at the discrete time step t. At every discrete time step t, each node vi in the graph changes

its state as a function of (a) the current state of the other nodes in the graph and (b) the

current and previous states of vi, itself. Let f be the transmission function representing the

state transitions described by (a). The function f determines the state of a node with respect

to the states of the other nodes in the graph. Let g be the local update function representing

the state transitions described by (b). The function g determines the state of a node with

respect to the history of states of the node. Collectively, f and g are the infection propagation

functions. The new state of node vi in the next time step is the composition of the functions f

and g applied on σ(vi). Thus, the configuration of the graph evolves with every discrete time

step.

The above specified model of infection spread over a graph G(V,E) is generic. Different
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definitions of Σ, f , g, as well as the order of composition of f and g, can be used to model

the spread of infections in various applications such as diseases in human populations, viruses

in computer networks, opinions in social network,s or fires in forest regions. If, in a given

application, the spread of an infection is independent of either (a) or (b) above, the respective

function f or g becomes the identity function.

2.1 Local Transmission Model

In this thesis we focus on a model of infection spread of a graph G(V,E) where Σ =

{open, infected, protected}. Thus a node can be in one of three states:

open – the node is vulnerable to infection

infected – the node is infected and can spread the infection to other nodes

protected – the node can never be infected

The state of node vi in the graph is denoted by σ(vi). In this paper we focus on the r-reversible

and irreversible k-threshold processes described in (Dreyer and Roberts (2009)). These pro-

cesses define the transmission functions f and g in the graph.

2.1.1 Irreversible k-Threshold Process

In this model of infection spread, a node vi becomes infected in time step t + 1 if at time

step t at least k of its neighbors are infected. A node in the infected state remains in the

infected state throughout the evolution of the graph. Thus the local update function g is

g(σ(vi)) = σ(vi), the identity function. The transmission function f is defined as follows:

f(σ(vi)) =



infected if σ(vi) = open and

∃u1, u2 . . . uk ∈ ρ(vi) :

∀j ∈ [1, k]

σ(uj) = infected

σ(vi) otherwise
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It can be noted that number of infected nodes forms a monotonic nondecreasing function

with respect to time.

2.1.2 r-Reversible k-Threshold Process

As in the previous model, a node enters the infected state if at least k of its neighbors were

in the infected state in the previous time step. A node in the infected state returns to the open

state r time steps after it was infected. To accommodate this, the set of states is expanded

to Σ = {open, protected, infected1, . . . , infectedr} to track the intermediate states of the

infected nodes. The infection propagation functions f and g are defined as follows:

f(σ(vi)) =



infected1 if σ(vi) = open and

∃u1, u2 . . . uk ∈ ρ(vi) :

∀j ∈ [1, k]

σ(uj) = infected

σ(vi) otherwise

g(σ(vi)) =



open if σ(vi) = infectedr

infectedq+1 if σ(vi) = infectedq

and q < r

σ(vi) otherwise

Reversible processes are useful for modeling the spread of infections from which the individ-

ual (person, computer, etc.) eventually recovers. This is the case for diseases like the common

cold and computer viruses when a virus scan is run.

The following example illustrates the basics of infection transmission functions.

Example 1 Consider a 2-dimensional grid of size 3 representing a forest as show in Figure 2.1.

The figure shows the evolution of the graph for three time steps under two different infection

transmission functions described below.

Suppose that nodes 2, 4, and 9 are on fire/infected (colored black) initially at t = 0. In

the top row the infection transmission function is the irreversible 2-threshold function. A part
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Figure 2.1 Infection Spread in a 3 x 3 Grid

of the forest remains on fire if it was on fire before, and the fire can spread to a new node if

the node has two neighbors on fire. Thus the local update function g is the identity function,

i.e., g(σ(vi)) = σ(vi). The transmission function f returns infected if the node has at least two

on-fire neighbors. Formally f is defined as follows:

f(σ(vi)) =



infected1 if σ(vi) = open and

∃u1, u2 ∈ ρ(vi) :

∀j ∈ {1, 2}

σ(uj) = infected

σ(vi) otherwise

The figure shows that at time step t = 1 the infection spreads to nodes 1 and 5, as these are

the only nodes with two infected neighbors. At time step t = 2, the infection spreads to nodes

6 and 8. At time step t = 3, not shown, the fire spreads to the final two open nodes, 3 and 7.

Thus, in this scenario, the entire forest is consumed by the fire.

Alternatively, the bottom row demonstrates the 1-reversible 2-threshold infection propagation

function. The functions f and g are as follows:
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f(σ(vi)) =



infected if σ(vi) = open and

∃v1, v2 ∈ ρ(vi) :

∀j ∈ {1, 2}

σ(vj) = infected

σ(vi) otherwise

g(σ(vi)) =


open if σ(vi) = infected

σ(vi) otherwise

Thus, a node catches fire if at least two neighboring nodes are on fire and a node on fire is

extinguished in one time step.

As with the top row, initially nodes 2, 4, and 9 are on fire at t = 0. At time step t = 1,

by the transmission function f , the fire spreads to nodes 1 and 5. During the same time step,

by the local update function g, the nodes 2, 4, 9 are no longer on fire and return to the open

state. In time step t = 2 nodes 2 and 4 return to being on fire, while the fire dies out at nodes

1 and 5. Thus, the number of nodes on fire will remains constant at two ∀t > 0. The fire

merely oscillates between two sets of nodes. This example illustrates both the irreversible and

reversible k-threshold infection propagation functions.

2.2 Policies

One of the ways of controlling the spread of an infection in a graph is by protecting (e.g.,

vaccinating) some of the nodes from infection with the goal of preventing the infection from

spreading to some of the other open nodes. The strategy by which a subset of the open nodes

is marked protected (vaccinated) is a policy.

Definition 1 (Policy) A policy π in graph G(V,E) is a function from time steps t to a set

of nodes ⊆ V .

Informally a policy dictates what nodes are to be protected at a given time step. In

this paper we consider two types of policies: (1) prevention policies that are deployed before

any nodes in the graph are infected; and (2) intervention policies that are deployed after an
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Figure 2.2 Infection Spread in a 4 x 4 Grid

infection outbreak occurs at set of nodes in the graph. Prevention policies are those that

designate nodes protected only in the first time step t = 0. Formally, a prevention policy π is

such that ∀t > 0, π(t) = ∅. Prevention policies seek to prevent a potential infection outbreak

from becoming an epidemic. Intervention policies seek to contain the spread of an infection

outbreak that is already in progress. The objective of both types of policies is to limit the

spread of the infection to at most l nodes in the graph. Such policies are of particular interest

to policymakers and public health officials tasked with preventing outbreaks of infections or

containing infection outbreaks that occur, using prevention policies or intervention policies

respectively. The following examples illustrate the use of policies in combating infections.

Example 2 Consider a 2-dimensional grid of size 4 representing a social network as show in

Figure 2.2. Suppose that, initially, at time t = 0 nodes 3 and 6 are infected. Let the infection

transmission function be the irreversible 1-threshold function. Thus, once a node is infected it

remains infected throughout the evolution of the graph and a node become infected if it has at

least one infected neighbor.

The figure shows the spread of the infection, i.e. the evolution of states in the graph over

three time steps. The top row shows the configurations of the graph if the prevention policy π1

was implemented. The policy initially vaccinates the nodes (colored gray) 4, 7, 9, and 10. With

the policy π1, the infection is restricted to nodes 1, 2, and 5, thus protecting nodes 8, 11−16 from

infection. The bottom row shows an alternative prevention policy π2 which initially vaccinates
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Figure 2.3 Infection Spread in a ring of 7 nodes

the nodes 4, 5, 7, and 10. With policy π2, the infection is restricted to nodes 1 and 2 while

preventing the infection from spreading to node 5 as well as the nodes protected by π1.

Example 3 Consider a social network of seven people in a ring topology as show in Figure 2.3.

Suppose that at t = 0 nodes 1 and 4 are infected with a virus whose spread is governed by the

1-reversible 1-threshold infection transmission function. Thus a node become infected at t + 1

if at least one of its two neighbors is infected at time t. The transmission function f and the

local update function g are as follows:

f(σ(vi)) =



infected if σ(vi) = open and

∃vj ∈ ρ(vi) :

σ(vj) = infected

σ(vi) otherwise

g(σ(vi)) =


open if σ(vi) = infected

σ(vi) otherwise

Suppose there is a medicine available that can cure a node if it is infected and prevent the

node from being infected in the future (the node is protected). Due to supply constraints, only

two such medicines are available to be administrated and at most one medicine can be used

per time step. Figure 2.3 shows the evolution of the graph over three times steps with the

application of two different intervention policies, π1 and π2. Policy π1 administers the first
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medicine to node 2 at t = 0 and the second medicine to node 4 at time step t = 1. Policy π2

also administers the first medicine to node 2 at t = 0, but administers the second medicine to

node 3 in time step t = 1.

The difference in policies leads to different infection behaviors. With policy π1, ∀t ≥ 2, the

infection is confined to two nodes in every time step. Specifically, at even time steps, nodes 1

and 6 are infected. At odd time steps, nodes 5 and 7 are infected. For policy π2, the number of

infected nodes oscillates between two and three for any time step t ≥ 2. Nodes 1, 4, and 6 are

infected at even time steps while nodes 5 and 7 are infected at odd time steps. If, in this case,

the criteria for the effectiveness of policies is minimizing the number of infected nodes in each

time step, we can conclude that policy π1 is more effective than policy π2.

In all of the above examples, the initially infected nodes were all known. In other situations,

only an approximation may be known for the total number of infected nodes, or the number of

vaccines available at any time may vary at each time step. Even the total number of vaccines

may be unknown as vaccine production is not a process with guaranteed yields (Falco (2009)).

Thus, a policymaker must consider all possibilities for the set of initially infected nodes (and

in the case of prevention policies, the set of protected nodes) in order to determine an effective

intervention strategy. Moreover, among alternative policies, some may be more effective than

others at controlling the spread of the infection in terms of the number of nodes in the graph

that are protected from the infection. Yet measures of the effectiveness of policies to control

the spread of the infection may also include such metrics as: the number of vaccines needed

for the policy, the number of nodes saved per unit of vaccine administered at the beginning

of the infection, the maximum number of nodes that become infected at each time step, and

the number of critical nodes infected (nodes deemed to have a higher weight than others, i.e.

the root DNS server versus a personal computer). All of the above considerations make it

impossible for a policymaker to arrive at an effective policy without the aid of specialized

computational techniques.

Given a graph G(V,E), the infection propagation functions f and g, which together specify

the evolution of the states in the graph G, we ask the following types of questions to control
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the spread of an infection:

Q1 Finding an intervention policy Given an initial configuration of the graph where a set

I ⊆ V nodes is infected and a fixed number m, the number of nodes that can be protected

initially, is there an intervention policy π, such that the infection does not spread to more

than l nodes?

Q2 Verifying a preventive policy Given a preventive policy π specifying a set P ⊆ V of

protected nodes and a fixed number m, the number of initially infected nodes, does the

policy π prevent the infection from spreading to more than l nodes?

Questions such as the ones above can be answered by modeling the spread of the infection

over an arbitrary graph using Kripke structures and verification of the satisfiability of appro-

priate temporal logic properties using model checking techniques. We proceed to do so in the

next chapter.
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CHAPTER 3. ANALYZING POLICIES USING MODEL CHECKING

A common element of the questions at the end of the previous chapter is that they can

all be answered by computing the reachability of a desired configuration of the graph or the

non-reachability of any undesired configuration of the graph from all the possible initial con-

figurations. We take advantage of the state-of-the-art approaches in model checking to verify

the reachability or non-reachability of desired configurations of the graph. We first encode the

transitions between configurations of the original graph, through which the infection is spread-

ing, as input to a model checker (we use Spin (Spin (2010))). We then transform the queries

regarding the existence or verification of policies in to a test of reachability in the encoded

graph. We initially demonstrated this in (Santhanam et al. (2011)).

Given an initial configuration of a graph over which an infection is spreading, we construct

a model in a language that the model checker accepts (Promela, in the case of Spin (Spin

(2010))) as follows:

(1) The states of the nodes of the graph, over which the infection is spreading, are mapped to

state variables of the model in the model checker.

(2) The allowed transitions between configurations, as dictated by the infection propagation

functions f and g, are directly encoded as transitions in the model.

By (1), the configurations of the original graph correspond to states of the input model passed

to the model checker. By (2), there is a one-to-one relation of the transitions between config-

urations in the original graph and the transitions between states of the input model passed to

the model checker. This ensures that the model checker explores all possible evolutions of the

graph with respect to the initial configurations. This corresponds to the simulation of all pos-

sible ways that the infection can spread over the nodes of the original graph. Such an approach
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leads to a sound answer to the queries, as the model checker explorers all possible evolutions

of the graph. Either an undesired configuration is reached or all reached configurations are

desired.

Queries regarding the identification and verification of policies are formulated as linear

temporal logic, LTL, formulas (Vardi (1996)) over the state-space of the model. We thus

leverage the highly optimized algorithms for LTL model checking utilized by modern model

checkers to efficiently verify the satisfiability of the corresponding LTL formulas.

3.1 Encoding Infection Spread in Kripke Structures

We use a Kripke structure (Clarke et al. (2000)) to model the transitions between the

configurations of a graph.

Definition 2 (Kripke Structure) A Kripke structure is a tuple 〈S, S0, T, L〉 where S is a

set of states described by the valuations of a set of propositional variables P , S0 ⊆ S is a set

of initial states, T ⊆ S × S is a transition relation inducing directed edges between states such

that ∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ T , and L : S → 2P is a labeling function such that ∀s ∈ S : L(s)

is set of propositions that are true in s.

Given a graph G(V,E) with a set V = {v1, . . . , vn} of nodes, a set of states Σ of the nodes

of the graph, and the infection propagation functions f and g, a Kripke structure KG that

captures all the possible transitions between the configurations of the graph G (with respect

to f and g) is constructed as follows:

(1) The states S ofKG are defined by the valuations of propositions P = {σ(vi) | vi ∈ V }, where

each σ(vi) ∈ Σ indicates the state (e.g., open, infected or protected) of the corresponding

node vi ∈ V in the graphG. A state s ∈ S is represented by the tuple s = 〈σ(v1), . . . , σ(vn)〉.

Thus, each state in the Kripke structure corresponds to a unique configuration of the graph

G.

(2) The transition relation T is defined as follows. For any two states s, s′ ∈ S, define (s, s′) ∈ T

(denoted s→ s′) if s = 〈σ(v1), . . . , σ(vn)〉 and s′ = 〈f(g(v1)), . . . f(g(vn))〉.
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(3) The set of start states S0 of KG correspond to the initial configurations of the graph G,

based on the type of query that is posed to the model checker. For example, if the query

is of the type Q1 is posed, then each initially infected node vi ∈ I is set to the state

σ(vi) = infected in every state of S0. In the case of Q2, each initially protected node

vi ∈ P is set to the state σ(vi) = protected in every state of S0. This restricts the state-

space explored by the model checker to only consider the required initial configurations.

(4) The labeling function in this construction is simply the tuple of valuations of the state

variables: L(s) = 〈σ(v1), . . . , σ(vn)〉, i.e., we identify the states of the Kripke structure

precisely by the states of the nodes in the graph G.

The definition of the transition function prevents the creation of ”‘dead-end”’ states in

the Kripke structure. This does not effect the use of Kripke structures for encoding infection

spread in the graph because, by (2), a transition in the Kripke structure is constructed by the

application of the infection propagation functions f and g to every node vi ∈ V . Since f and g

are total functions, the construction of T does not violate the definition of a Kripke structure.

In the above encoding of the Kripke structure, the transition function rule ensures that the

infection spreads exactly as defined by the infection propagation functions f and g. There is

a bijection between the transitions in KG and the change of configurations in the graph G in

a single time step. The set of initial states S0 consists of the set of configurations in which

the state of a set of nodes is set to infected (e.g., for finding intervention policies) and/or

the set of nodes whose state are set to protected (e.g., for verifying a prevention policy).

It is possible to also to set the state of certain nodes to open in the initial configuration to

explore scenarios in which these nodes must remain free of infection but cannot themselves

be in the state protected. The model checker checker considers every possible instantiation

of the Kripke structure corresponding to the set of initial start states S0 in order to verify a

desired property. Note that for the types of infection spread problems considered in this paper

the corresponding infection propagation functions are deterministic. Given a configuration of

the graph G and the infection propagation functions f and g, there is a unique configuration

to which the graph will transition to in a single time step. Thus, given a state in S0 (an initial
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configuration in the graph), there is exactly one possible evolution of the graph (a path in the

Kripke structure). A path in a Kripke structure is defined as follows:

Definition 3 (Path) A path δ in a Kripke structure 〈S, S0, T, L〉 is an infinite sequence of

states δ = s0 → s1 → s2 → . . . such that ∀si in δ : ∃(si, si+1) ∈ T

Thus a path in a Kripke structure encoding of a graph G corresponds to an evolution of the

graph G from the given initial configuration.

Example 4 The Kripke structure corresponding to the graph in Example 2 is given by KG =

〈S, S0, T, L〉 as follows. Each state in S is a tuple s = 〈σ(v1), . . . , σ(vn)〉 where σ(vi) ∈ Σ

represents the state of the node vi in the graph (Σ = {open, infected, protected}). Note that in

Example 2, the irreversible 1-threshold process is used for the infection propagation functions.

Thus, if at least one of the neighbors of node vi is the infected state in state s, in any state

s′ where ∃(s, s′) ∈ T , the state of node vi must be infected (σ(vi) = infected). Hence,

transitions in the Kripke structure correspond to changes in the configuration of the graph. For

the top row of Figure 2.2 the transition from the configuration in t = 0 to the configuration

in t = 1 is 0012012022000000 → 0112112022000000 (where 0,1,2 represent the states open,

infected, and protected respectively). Similarly, in the bottom row, the transition from the

configuration in t = 1 to the configuration in t = 2 is 0112212002000000→ 1112212002000000.

The above Kripke structure can be encoded in Promela, the model language of Spin (Spin

(2010)). We now show how model checking algorithms, through the use of linear temporal

logic, can be used to find and verify policies in response to an infection spread.

3.2 Finding & Verifying Policies using LTL

Given a Kripke structure KG that encodes the spread of an infection in a graph G(V,E),

finding and verifying policies can be reduced to verifying corresponding temporal properties

in linear temporal logic (LTL, see (Vardi (1996))). The syntax of LTL is defined over a set of

propositions Prop; boolean true, negation (¬) and OR (∨); and temporal operators X and U
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as follows:

ϕ→ true | Prop | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

The semantics of LTL are defined in terms of the set of paths that satisfy the given formula.

Let δ be a path where δ[i] denotes the i-th state in the path and δi denotes the suffix of the path

starting from δ[i] (δ0 = δ). For example, if δ = s0 → s1 → s2 → . . . then δ1 = s1 → s2 → . . . .

The following are the rules for the evaluation of whether a path satisfies a given LTL formula.

Included are the rules for the convenience temporal operators F and G.

true – Any path satisfies true

Prop – A path δ satisfies Prop if and only if δ[0] satisfies Prop

¬ϕ – A path satisfies ¬ϕ if the path does not satisfy ϕ

ϕ1 ∨ ϕ2 – A path satisfies ϕ1 ∨ ϕ2 if the path satisfies either ϕ1 or ϕ2

Xϕ – A path δ satisfies Xϕ if δ[1] satisfies ϕ

ϕ1Uϕ2 – A path satisfies ϕ1Uϕ2 if ∃j ≥ 0 : δ[j] satisfies ϕ2 and for all i < j : δi satisfies ϕ1

Fϕ – A path δ satisfies Fϕ if ∃j : δj satisfies ϕ. Fϕ equivalent to trueUϕ.

Gϕ – A path δ satisfies Gϕ if ∀j ≥ 0 : δj satisfies ϕ. Gϕ = ¬F(¬ϕ)

F and G are duels of each other. Specifically, Fϕ = ¬G(¬ϕ) and Gϕ = ¬F(¬ϕ).

A Kripke structure satisfies an LTL formula ϕ if and only if all paths starting from all its

start states satisfy ϕ (KG satisfies ϕ if ∀δ such that δ[0] ∈ S0 : δ satisfies ϕ).

In the next section we will consider the LTL formulas that correspond to queries of types

Q1 and Q2 (see Section 2.2). For each of the query types, the initial states (e.g., infected

or protected) of some of the nodes in the graph are pre-specified. In queries of type Q1, the

set I ⊆ V specifies the set of nodes which are in the infected state in all initial configura-

tions. Similarly, queries of type Q2 define a set P ⊆ V which specifies which nodes are in the

protected state in all initial configurations. This information is encoded in the states of S0 in

the Kripke structure KG. Thus, the model checker is guided to only consider initial states that

correspond to initial configurations of the graph G. Furthermore, in some query types, exact
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nodes are not specified as infected or protected. Rather, the maximum number of infected or

protected nodes is given. This implies that different combinations of nodes in the graph can

be infected or protected at the start of the infection spread. We encode this information by

allowing the model checker to non-deterministically initialize the states of the nodes at the

beginning of the infection spread. The model checker thus checks every initial configuration

that respects the imposed constraints. We now look at the specifics of the query types Q1 and

Q2.

3.2.1 Q1: Finding an intervention policy

In this query type, the set I ⊆ V of initially infected nodes and a fixed number m of nodes

that can initially be protected are pre-specified. From this we derive the following set of start

states:

S0 = {〈σ(v1), . . . , σ(vn)〉 | ∀vi ∈ I : σ(vi) = infected ∧ |{vi | σ(vi) = protected}| = m}

The first term of the condition precisely defines the initially infected nodes as the ones

belonging to the set I. The second term, |{vi | σ(vi) = protected}| = m} specifies the number

of nodes to be protected rather than specifying the specific nodes. This gives rise to multiple

combinations of nodes that can be set to protected. Specifically, if there are n nodes in the

graph G and initially i nodes are designated as infected, there will be(
n− i
m

)
states in the set S0. The model checker is able non-deterministically initialize the start states

in accordance with these conditions.

Let totalI be the total number of infected nodes at any given time step. Since we are

looking for a policy π such that at most l nodes are infected at any given time step, we use the

LTL formula ϕ : F(totalI > l). The Kripke structure satisfies the formula ϕ if in every path

starting from every start state (i.e. every state in S0) there exists a state where (totalI > l)

holds. Note that the satisfaction of this LTL formula implies that there does not exist a policy

π which restricts the infection to no more than l nodes in any time step. Any combination of
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m protected nodes leads to a state of the Kripke structure where the number of infected nodes

is at least l + 1. On the other hand, if the formula ϕ is not satisfied, this implies that there is

an initial state s0 ∈ S0 such that in every state of every path beginning from state s0, there are

no more than l infected nodes. As a counterexample, the model checker will output an initial

state s0 = 〈σ(v1), . . . , σ(vn)〉 and the paths from this state for which totalI ≤ l held in every

state. The desired policy π can be constructed from this counter example by assigning to the

node vi the state protected, if σ(vi) = protected in s0.

The specified formula ϕ can be used to find the intervention policy π if the infection prop-

agation functions f and g are monotonic, i.e. a node cannot change its state from infected

to open. Under such a constraint, the number of infected nodes, totalI , can never decrease

(see Example 2). However, in the case of r-Reversible k-Threshold processes a node changes its

state from infected to open after it had been infected for r time steps (see Example 1). This is

the case because the local update function g is not monotonic. As a result, totalI may increase

or decrease at each time step, as seen in Figures 2.1 and 2.3. In the bottom row of Figure 2.1

the 1-reversible 2-threshold process is illustrated and the number of infected nodes decreases

from the time step t = 0 to t = 1 . Similarly in the bottom row of Figure 2.3 the 1-reversible

1-threshold process is illustrated and the number of infected nodes oscillates between two and

three in every time step after t = 0.

In such a scenario the policymaker, instead of looking for a policy π in which the number

of infected nodes never exceeds l, may choose to look for a policy where the number of infected

nodes stabilizes. Specifically, the query ”‘Is there a policy π such that the number of infected

nodes is always at most l, after a certain number of time steps?”’. To answer this query, we

use the LTL formula ϕ′ = GF(totalI > l). The Kripke structure satisfies the formula ϕ′ if for

every path beginning from a start state (all states in S0), totalI > l holds an infinite number of

times. As with the formula ϕ above, the satisfaction of the formula ϕ′ implies that no policy

π satisfies the query. The non-satisfaction of formula ϕ′ implies that there exists a start state

s0 ∈ S0 whose path (recall that exactly one path from every start state) does not satisfy ϕ′,

i.e., the path satisfies the formula ¬ϕ′. ¬ϕ′ = FG(totalI ≤ l) meaning that the path from

state s0 eventually reaches a state after which totalI ≤ l holds in every state. The policy can
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be obtained from the counterexample produced by the model checker as in the case of the

irreversible k-threshold process.

3.2.2 Q2: Verifying a preventive policy

In this query, a policy π specifying the set P ⊆ V of initially protected nodes along with a

fixed number m of initially infected nodes are pre-specified. We encode the set of start state

S0 in a similar fashion to the query Q1.

S0 = {〈σ(v1), . . . , σ(vn)〉 | ∀vi ∈ P : σ(vi) = protected ∧ |{vi | σ(vi) = infected}| = m}

As in the query Q1, the condition |{vi | σ(vi) = infected}| = m allows the model checker

to non-deterministically explore all possible combinations of m initially infected nodes. Thus

the model checker tests the policy against every possible infection scenario.

Verification of a given policy π is achieved through the LTL formula ψ : G(totalI ≤ l). The

formula ψ is satisfied if and only if in every path beginning from every initial state (all state

in S0), totalI ≤ l holds. If the formula ψ is satisfied, then the policy π is successfully able to

contain any infection outbreak of m nodes, such that no more than l nodes are infected at a

given time. If, on the other hand, the formula ψ is not satisfied, this implies that there is a

start state s0 ∈ S0 in the Kripke structure, in which m nodes were initially infected, for which

the policy fails. At least l + 1 nodes become infected in some state of the path originating

from s0. The model checker provided counterexample specifies an initial infection outbreak for

which the policy is ineffective, allowing the policymaker to change the policy.

Similar to the case of Q1, queries of type Q2 posed against models in which the infec-

tion propagation functions are non-monotonic (e.g for infection spread using the r-Reversible

k-threshold processes), may cause the policymaker to verify if the given policy satisfies the

stability condition: the total number of infected nodes is at most l nodes, after a certain num-

ber of time steps. The policy can be verified against the new criteria using the LTL formula

ψ′ = FG(totalI ≤ l). If ψ′ is satisfied, that means the policy π is successful at containing the

infection to at most l nodes after a certain amount of time steps. If ψ′ is not satisfied, there

exists a path beginning from a state s0 ∈ S0 for which the formula does not hold. The model
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checker provides the initial state s0 as a counterexample in which, with the initially infected m

nodes, there is a path in which the total number of infected nodes is greater than l infinitely

often (the path satisfies the formula ¬ψ′ = GF(totalI > l)). The counterexample provides

the policymaker with precise information as to the reason the policy failed. This allows the

policymaker to make adjustments to the policy or develop alternative policies.
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CHAPTER 4. REGION-BASED PROPAGATION ANALYSIS

The model checking approach to policy identification and verification allows the policymaker

to accurately and easily find and test infection prevention policies. However, the model checking

approach is not feasible in all situations. For example, suppose an outbreak occurs in a network

of 10,000 people. Initially 50 (0.5% of the population) people are infected with a new disease

and vaccine yields allow the vaccination of up to 250 people (2.5% of the population). Let

G(V,E) be the graph modeling this scenario and KG the Kripke structure encoding of G.

The policymaker is tasked with implementing an intervention policy (a query of type Q1, see

Section 2.2). In such a scenario there are several reasons for which the model checking approach

fails.

(1) It is not feasible for the policymaker to deal with the entire network of people as a whole.

Even a graph of a thousand nodes is nearly impossible to display on a computer moni-

tor. Automated techniques such as the ones in this paper help reduce the strain on the

policymaker, however even such techniques cannot completely negate the impact of large

graphs.

(2) While modern checking algorithms are extremely efficient, they cannot deal with 10,000

variables. Since the exact people infected are pre-specified, there are(
10, 000− 50

250

)
initial configurations of the graph G. This translates to 3.7 × 10505 initial states in S0

of KG! While there are techniques for reducing the number of nodes in the graph (see

optimizations in Section 5.1.1), they cannot completely alleviate the problem.
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(3) The model checking approach does not allow the policymaker to make a distinction between

the infected nodes. Even if an intervention policy does not exist, the policymaker may be

interested in at least curbing the spread of the infection around some subset of the infected

nodes.

For these reasons, the policymaker is likely to subdivide the network into smaller regions.

Division of the network in to regions resolves the aforementioned concerns. By creating regions,

the policymaker is able to focus his attention on only portions of the network, thus eliminating

concern (1). Model checking each individual region reduces state-space significantly. For exam-

ple, if a region of the network contains 300 nodes, 2 of which are infected, and the policymaker

applies 10 vaccines to the region (if, for example, the policymaker chooses to distribute vaccines

based on the number of infections in the region), then there are only(
300− 2

10

)
= 1.3× 1018

possible initial configurations. This is over 480 magnitudes better than model checking the

entire graph and mitigates the concern of (2). Finally the policymaker is free to allocate the

portion of available vaccines as he sees fit to each region. Thus a region with more critical

nodes (for example a hospital where an infection epidemic would be particularly devastating)

may receive a larger portion of the vaccines. Fine grained control over vaccine distribution

allows the policymaker to make better informed decisions and addresses point (3).

4.1 Region Generation for Intervention Policies

The central problem of applying regions to the control of infection spread is defining a

suitable region generation algorithm. While the policymaker will always have the final say

in the construction of regions, automated region generation would be an invaluable tool for

simplifying the process of combating infection spread.

In the case where the query is of the type Q1 and the policymaker is seeking an intervention

policy, the regions of a network take on an additional role, identifying the nodes that must be

quarantined. In an outbreak of an infection, whether it is a fire, opinion, computer virus, or
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disease, the first step is a quarantine of the affected entities. A quarantine guarantees that

even if the localized intervention policies are ineffective, the entire network does not succumb

to the infection. For example, in the case of an outbreak of a disease that poses significant

risk to human health, the infected and those they have come in contact with may have travel

restrictions imposed.

The effectiveness of quarantine depends on the ability to completely isolate the infection

spread to a region. In practice it takes a certain amount of time to cordon off a region of a

network. The more time spent in establishing a quarantine, the further the infection has time

to spread. Thus the quarantine must encompass more entities. Conversely, the more time

passes since the initial outbreak, the more resources a policymaker may gather in affecting the

quarantine. Thus, the policymaker can protect more entities from getting infected.

Based on these observations, a region is defined to be a set of entities directly or indi-

rectly connected to infected entities such that the infection spread can be controlled to remain

within this set of entities. In other words, a region provides some insight on the entities to be

quarantined.

4.1.1 Region Generation Algorithm

Our approach to region generation is an iterative one. As input we take a node v, for which

the region is computed grown. The containment function h represents the resources that a

policymaker has to enforce a containment of the region. Thus, with every iteration we increase

the the size of the region as long as the region fails to satisfy the containment function.

Given a graph G(V,E), a containment function h, and a node v, the region centered at v

is generated as follows:

At every iteration, the algorithm computes the set of nodes R′. R′ is the set of all neighbors

of the nodes in R, excluding themselves. If the size of R′ is less than or equal to the value of

the containment function at this iteration, the algorithm terminates and returns the set R, the

region centered at node v. Otherwise, the nodes in R′ are added to R and the counter variable

for the containment function is incremented.

In each iteration, the region effectively grows to encompass all its neighbors. From the
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1: R← {v}
2: count← 1

3: while true do

4: R′ ← ∅
5: for all v1 ∈ R do

6: for all v2 neighbors of v1 do

7: R′ ← R′ ∪ {v2}
8: end for

9: end for

10: R′ ← R′ −R
11: if |R′| ≤ h(count) then

12: return R

13: else

14: R← R ∪R′
15: count← count+ 1

16: end if

17: end while

aspect of a containment / quarantine policy, this is the maximum achievable spread of the

disease in a single time unit. A quarantine must encompass at least all these nodes, thus

preventing the infection from escaping the quarantine. Effectively, the region growth assumes

worst case infection spread. With each time step, the number of outside connections the

containment function can handle varies. For monotonically increasing functions, with each

time step the containment function is able to handle more outside connections. The choice of

containment function has a large influence on the resulting region. A faster growing function,

such as h(x) = 22
x
, will generate a smaller region around the node v than a slower growing

function such as h(x) = x2. A fast growing function represents a higher quarantine priority and

higher resource allocation for the infected node than a slower growing containment function.

The correct choice of the containment function is crucial for the creation of manageable

regions. A highly connected network, such as a social network, requires a rapid response

to contain an infection spread. On the other hand, a road network where nodes represent

intersections of roads and edges are the roads connecting intersections, achieves manageable

region sizes with a slower growing containment function. This is from the simple fact that most

intersections have four or less outgoing roads.
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CHAPTER 5. EXPERIMENTS & RESULTS

We now describe the results of our preliminary experiments for identifying intervention

policies and the computation of regions. We first present the results for the identification of

intervention policies, as well as the optimizations that make this approach feasible.

5.1 Results of Identifying Intervention Policies

We have developed a Java preprocessor that takes as input the network, the initial configu-

ration, and optionally the policy to be verified. Outputted is a Kripke structure encoding of the

model in Promela, the language of Spin (Spin (2010)). The model is generated such that the

model checker explores only those states where the condition totalI ≤ l holds. This is sufficient

for the model checker to output a correct solution because the reachability of a state where

totalI ≤ l does not hold along a path, indicates the non-existence of an intervention policy.

Table 5.11 shows the results of our implementation for networks of 40 nodes with 40, 60, 70

and 80 edges (E) randomly generated such that the degree of each node is ≤ 5. In each network,

10 nodes were randomly selected and set to the infected state. We tested each network with

a query of type Q1 (see Section 2.2): F(totalI > l) with l = 10 and l = 20. The number of

protected nodes, m, was 20 in all cases. The experiment was repeated ten times for each

combination of inputs and the results were averaged.

The results show that the model checker is able to identify intervention policies, if they

exist, within a minute for most test cases. A longer time indicates the traversal of more initial

states and paths of the Kripke structure in search of an intervention policy. For fixed l, the

number of states explored by the model checker increases as the number of edges in the network

1All experiments were conducted using Intel i7 3.528 GHz processor with 6GB memory on 64 bit Kubuntu
10.10 OS.
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E
States (×106) Time (secs.) Memory (GB)

10 20 10 20 10 20

40 0.82 (10−5) 10−4 (10−5) 2.54 (10−3) 10−3 (10−3) 0.07 (10−3) 10−3 (10−3)
50 12.24 (10−3) 10−3 (10−2) 52.20 (10−3) 0.02 (0.02) 1.08 (10−3) 10−3 (10−3)
60 42.01 (6.14) 0.10 (0.12) 201.98 (12.76) 0.43 (0.23) 3.68 (0.51) 0.01 (0.01)
70 59.17 (30.73) 0.62 (0.02) 270.20 (87.38) 2.75 (0.05) 5.18 (2.53) 0.05 (10−3)
80 56.33 (25.93) 45.66 (23.46) 272.00 (65.00) 193.04 (49.47) 4.99 (2.14) 4.05 (1.93)

Table 5.1 Results for random networks with 40 nodes. Numbers in parentheses denote results
with optimizations.

increases. This is because increasing the number of edges in a network increases the ways an

infection can spread. The more connected a network, the faster an infection is able to spread

to new nodes. On the other hand, as l increases from 10 to 20, for fixed number of edges,

the number of traversed states decreases. This is because, with an increased value for l, more

intervention policies become valid. Since the model checker terminates once it locates a single

valid intervention policy, an increase in valid policies leads to a decrease in the number of states

searched.

The amount of time spent and the amount of memory used is proportional to the number

of states traversed. This is the case for time because the search for an intervention policy is a

search over the state-space of the model. In the case of memory, it is because Spin stores every

traversed state without discarding any states (Spinroot (2011)). For most test cases memory

use remains under one gigabyte.

5.1.1 Optimizations to Improve Scalability

We developed several optimizations that can be incorporated into the preprocessing step.

These optimizations are specifically designed to allow a faster search for intervention policies

in scenarios where infections are irreversible, such as the irreversible k-threshold process.

Single-Step Search to Detect Non-existence of Policy : If the number of nodes that can be

be in the infected state in the first time step (t = 1) exceeds the number of nodes that

can be protected at the outset by more than a specified threshold for the intervention policy,

then we can infer the non-existence of any intervention policy (without deploying the model

checker). Formally, if the number of initially infected nodes is i, the number of nodes infected

in the first time step if there are no protected nodes is Imax, the number of initially protected
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nodes m, and the threshold for the intervention policy l; then no intervention policy exists if

i+ Imax−m > l. This is the case because in a single time step, a node in the protected state

cannot influence the state of any other node. Thus in the first time step there would be, at

minimum, i+ Imax −m infected nodes.

Iterative Bounded Search: The main idea with this optimization is to guide the model

checker’s traversal of the initial states in the search of an intervention policy. We do this by

restricting, in each iteration, the nodes which the model checker can set to protected. In

iteration i, we consider all the non-infected nodes that are ≤ i edges away from any infected

node as candidates to be protected (as opposed to all nodes in the network). This strategy

yields a trivial policy in the first iteration, if the number of candidate nodes is less than or

equal to the number of nodes that can be protected at the outset (Protecting every neighbor of

every infected nodes guarantees the infection cannot spread to any new node). The iteration is

continued (for i = 1, 2, . . . ) until an intervention policy is obtained or the i is larger than the

maximum distance between any two nodes in the network (if at this point no intervention policy

has been found, the non-existence of the intervention policy is proven). This strategy guides

the model checker’s model exploration in a manner that ensures an intervention policy, if one

exists, is obtained (faster) with minimum exploration of the parts of the model state-space that

do not contribute to the finding of an intervention policy. Note that in the worst case scenario,

when the maximum iteration is reached, the model checker treats all non-infected nodes as

candidates. Thus this strategy is guaranteed to find an intervention policy if one exists.

Node Merging : This optimization is based on the simple observation that when two adjacent

nodes v1 and v2 in G are uninfected and unprotected, and of the nodes (say v2) has no neighbors

other than v1, then v2 can be merged with v1 without affecting the answer to the query. When

i nodes adjacent to v1 are thus merged, we annotate the node v1 with i indicating that if v1

become infected in time step t, then each of the i nodes adjacent to v1 in G are infected at time

step t+1. If v1 or one of the i adjacent nodes is to be protected, the optimal strategy is marking

v1 as protected as opposed to one of its neighbors. This prevents the spread to the adjacent

i nodes since they only have one neighbor. By treating v1 and its neighbors as one state in

the model checker, we insure that the model checker chooses the most efficient intervention
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policy (in such situations) and reduce the number of states the model checker must explore

(the model checker no longer needs to traverse states where it designates the neighbors of v1

as protected). While the optimization reduces the number of states in the model, any solution

obtained for the optimized model remains a valid for the original model. Note this strategy

cannot be applied in settings where nodes can be protected after the spread of the infection is

already underway.

Removal of Non-Infectable Nodes: This optimization is valid for any k-threshold process. If

a non-infected node has less than k neighbors, the node can be removed from the model since

the node cannot be infected. A non-infectable has no effect on the spread of an infection since

it can neither be infected nor spread the infection. Note that any node with no neighbors can

be removed from the model.

Removla of Distant Nodes: This optimization is derived from the observation that when

dealing with irreversible infections, if the number of infected nodes does not change between

two time steps on a given path, the number of infected nodes will remain constant for the rest of

the states in the path. Thus, the slowest infection must spread to one non-infected node in each

time step. If the infection threshold of the intervention policy is l, then any non-infected node

whose distance from any infected node > l + 1 need not be considered by the model checker.

This is because the model checker terminates looking at a path if at any state the number of

infected nodes exceeds l, thus it will never look at a node v which requires at least l+ 1 nodes

to be infected before v can become infected. More accurately, the maximum distance to be

considered is not l+ 1, but l− i+ 1 if i is the number of initially infected nodes. By removing

any nodes whose minimum distance to an infected node exceeds l− i+ 1, we are able to reduce

the state-space without affecting the validity of the solution.

Removal of Infected Nodes: When dealing with a model of infection spread where the

infection is irreversible, it is not necessary to maintain state variables for initially infected

nodes in the model. That information is encoded in the transition rules of the neighbors of

the infected nodes. This reduces the number of state variables, thus leading to better memory

performance in the model checker.
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V E
States (×106) Time (secs.) Memory (GB)
30 40 30 40 30 40

10 Infected nodes, 20 protected nodes
80 119.5 0.07 10−4 0.18 10−3 10−2 10−3

90 138.0 3.46 6.76 0.83 27.98 10−2 0.63
100 149.4 5.46 10−3 29.00 10−3 0.51 10−3

20 Infected nodes, 10 protected nodes
80 120.9 12.29 29.33 26.59 112.66 1.01 2.46
90 133.6 6.14 30.04 13.61 149.10 0.51 2.53
100 151.5 10−6 27.99 0.00 146.67 10−3 2.53

Table 5.2 Results for scale-free networks.

5.1.2 Effectiveness of Optimizations

We performed a new set of experiments by applying the above optimizations on random

graphs with the same parameters as shown in Table 5.1. The new results (for states explored,

time spent, and memory used) are shown in parenthesis in Table 5.1. The optimizations led to

a decrease in the states explored, time spent, and memory used by the model checker of about

50%. The optimizations made it possible to scale our approach to random networks with 40 to

100 nodes, which was not possible without the optimizations.

It should be noted that networks in the real world (e.g., social networks, the Internet,

the power grid), tend to exhibit scale-free topologies and hierarchical modularity (Ravasz and

Barabási (2003)). Scale-free networks are characterized by having a few highly connected hub

nodes and the rest of the nodes with a lower degree of connectivity. The degree distributions

in such networks generally follow a power law distribution (Ravasz and Barabási (2003)).

We have done some preliminary experiments to assess the effectiveness of our approach to

finding policies in scale-free networks. In our experiments we used randomly generated scale-free

networks with 80 to 100 nodes (V ), with two combinations of initial configurations (10 infected

nodes, 20 protected nodes; and 20 infected nodes, 10 protected nodes), and threshold values,

l, of 30 and 40. We used the freely available Java library, JGraphT for scale-free network

generation (Naveh (2005)). As with the previous experiment, each initial configuration was

run ten times and the average of the results taken. The corresponding results are presented

in Table 5.2. The reason the number of edges (E) in each graph is not a whole number is

because randomly generated scale-free networks do not necessarily have the same number of

edges. Thus, the number of edges shown, is the average number of edges over the ten runs for
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each graph size.

We note that the time and space use for some of the experiments is extremely low (see

Table 5.2, 100 nodes with 20 initially infected nodes and a threshold l of 30). This is the result

of the aforementioned Single-Step Search to Detect Non-existence of Policy optimization. The

Java preprocessor detected the non-existence of an intervention policy and thus terminated the

experiment run without invoking the model checker. Also, it can be seen that in the case of

20 infected nodes (and 10 protected nodes) that for any given network size, more resources are

utilized when the threshold is l = 40 than when it is l = 30. Since the threshold is higher, it

takes more time steps for the infection to spread beyond the maximum threshold. This causes

the model checker to travele further along each path from an initial state in the model before

discarding the path. The above results were originally published in Santhanam et al. (2011).

We have expanded on the list optimizations we implemented to achieve these results.

5.2 Results of Region Generation

We now proceed to describe the results of our preliminary experiments on region generation.

The purpose of our experiments was to observe the properties of the regions generated by various

containment functions. To this end, we implemented the algorithm in Section 4.1.1. A loader

program was written to take a graph as input from a file where each line contained two nodes

separated by a tab character denoting a single edge of the graph. The region algorithm was then

run on every node of the graph and aggregate results taken. To facilitate region computation

on every node in a graph, the neighbors of every node v ∈ V were precomputed and stored in

a map (where the key is a node v and the corresponding value is the set of neighbors of v),

thus eliminating a costly search over all the edges of the graph in every iteration of the region

generation algorithm.

Four real word networks were analyzed in our experiment. Networks CA-GrQc and CA-

CondMat represent the author collaborations in two categories of the arVix publication. In

both networks authors represent nodes, and undirected edges are formed if an author a co-

authored a paper with author b. Network email-Enron contains nodes which represent email

addresses of the Enron corporation and the undirected edges represent email communication
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Graph Nodes Edges Memory without Map (MB) Memory with Map (MB)
CA-GrQc 5242 28980 32.79 39.82

CA-CondMat 23133 186936 101.44 112.49
email-Enron 36692 367662 155.81 171.83
roadNet-CA 1965206 5533214 1777.81 2678.42

Table 5.3 Region Storage Requirements.

Average Region Size

Graph Nodes Edges x2 x3 2x 3x 4x 22
x

CA-GrQc 5242 28980 2718 2097 2638 1675 828 76
CA-CondMat 23133 186936 18425 16883 18342 15860 12894 903
email-Enron 36692 367662 29725 28869 29717 28467 27129 8509
roadNet-CA 1965206 5533214 104 4.4 18 4.0 3.8 3.8

Table 5.4 Average region sizes for various containment functions.

between email addresses. Finally, roadNet-CA is a network of the California road map with

nodes representing intersections (or road end-points) and undirected edges representing roads

connecting the intersections. All networks were obtained through the Standford Network Anal-

ysis Project (Leskovec (2011)).

Table 5.32 shows the memory storage requirements of the four networks. To distinguish

between the amount of memory required to load the network in to memory (for the computation

of a single region) and the amount of memory required to store the network plus the map

of neighbors of each node (when computation of many regions is desired), two columns are

provided. Memory use data was collected by pausing the execution of the Java program at the

point the entire network was loaded in to memory and observing java.exe memory usage in the

Windows Task Manager. Memory usage may vary based on the JVM and operating system

used. As expected, the amount of memory required to store a network increases with the

increase in the number of nodes and edges in the network. Similarly, the amount of additional

memory required to store the mapping between nodes and their neighbors is directly related

to the number of edges in the network. The memory usage results demonstrate that region

generation is feasible on modern computers. Even a network with almost two million nodes

and five and a half million edges requires about 1.8 gigabytes of memory for the computation

of individual regions.

We chose six different containment functions to explore: x2, x3, 2x, 3x, 4x and 22
x
. The

2All region experiments were conducted using Intel i7 3.528 GHz processor with 6GB memory on Windows
XP 64 OS.
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results of the mean region sizes are shown in Table 5.4. As expected, the faster growing

containment functions generate regions of progressively smaller sizes. A special note on the

results of the functions x3 and 2x needs to be made. The results for all networks show larger

regions generated with the function 2x than with the function x3. This follows from the fact

that it is not until x = 10 that 2x > x3.

From the region sizes, it is possible to infer information about the underlying network,

specifically the level of connectivity amongst nodes. The more connected the network is the

faster the region grows. It is not until the containment function is able to catch up the region

growth that the region algorithm terminates. Thus networks that demonstrate large region

sizes despite rapidly growing containment functions have a higher degree of connectivity than

other networks. For example, the connectivity of the California road map network is much

smaller than the other networks. This stems from the fact electronic networks allow for much

larger connectivity than physical networks and the fact most intersections do not connect more

than four roads. The more connected a network is, the faster a quarantine response must be

to restrict the infection spread to a small region.

The amount of time region computation takes is dependent on the size of the network and

the final size of the region. However, in all cases, the computation of individual regions did not

take more than one second. Thus, a policymaker can try multiple containment functions for

various region growth within a reasonable amount of time.
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CHAPTER 6. RELATED WORK

In this chapter we explore related work in the field of modeling infection propagation. We

use a discrete model of infection spread in the network with k-threshold processes to model the

spread of infections in networks of computers, people, and trees (Dreyer and Roberts (2009)).

Gary MacGillivray and Ping Wang modeled fire spread in a graph with a tree topology uti-

lizing the irreversible 1-threshold process for the infection propagation functions (MacGillivray

and Wang (2003)). Similarly, Ping Wang and Stephanie A. Moeller looked at the spread of a

fire in two dimensional and three dimensional grid topologies (Wang and Moeller (2002)). In

both cases, the policy considered is a variation of the intervention policy, such that only one

node could be marked protected in each time step. The papers do not provide experimental

results for the location of an effective intervention policy. However, with only a small modifi-

cation to our approach, allowing the placement of vaccines at any time step, we can provide

experimental results for their work.

Much work has been done on the spread of diseases in human networks (Dreyer and Roberts

(2009), Newman (2002), Arino and van den Driessche (2003), Hethcote and Driessche (1995)).

The main focus of this work is usually on continuous model pioneered by Kermack and McK-

endrick (1927). In such models, the population is divided in to categories such as susceptible,

infected, and recovered and functions are defined to model the transfer of people from one group

to another. Unlike our approach, this model does not simulate interactions at the individual

node level, for example ”‘10% of the members move from susceptible to infected in a time step”’

as opposed to ”‘persons 1, 7, 21 move to the infected state in this time step”’.

Barrett et al. (2009a) have developed techniques for generating networks based on real

life social interaction networks. The networks thus generated treat individuals as nodes and

interactions as edges, however the edges are labeled with the time of the interaction. Thus the
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network generated has a temporal element. These synthetic networks will be good inputs for

testing our methods, once we modify our approach to account for temporal changes in networks

(see the Future Work Section 7.1).

The SimDemics simulator described Barrett et al. (2008) and Barrett et al. (2009b) allows

the simulation of probabilistic infection spread (a node is infected with a certain probability

p) in large networks containing temporal data. While Barrett et al. (2008) provides a game-

theoretical approach to locating policies, the game itself is not implemented within SimDemics.

Thus, SimDemics is able to simulate the spread of an infection and the effectiveness of a policy,

but is unable to itself locate an effective policy.

Our approach provides a framework by which we are able to locate intervention policies

and verify prevention policies in discrete networks instead of treating populations as continuous

variables (Kermack and McKendrick (1927)). Our approach for modeling infection propaga-

tion in discrete networks can be used to model fire outbreaks as described in works by Wang et

al ((MacGillivray and Wang (2003)), Wang and Moeller (2002)). Furthermore, by augmenting

Kripke model for infection spread with real-time constraints and probabilistic choices, our ap-

proach can be extended to incorporate both temporal discrete networks (Barrett et al. (2009a))

and probabilistic infection propagation. As part of future work, we plan to investigating such

extensions and their applicability in practice.
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CHAPTER 7. CONCLUSION

We have presented a practical solution to the problem of finding and verifying policies for

controlling the spread of infections (diseases, computer viruses, opinions, fires) in networks.

Our approach encodes the spread of an infection in a network. The spread of infection is

encoded in a Kripke structure where each change in the configuration (a tuple of the states of

every node in the network) corresponds to a transition in the Kripke structure. This allows us

to reduce the problem of identifying intervention policies and verifying prevention polices to

the problem of model checking temporal properties, such as the number of infections at each

time step is less than the threshold, on a Kripke structure. Furthermore, by taking advantage

of the model checker’s ability to identify counterexamples that demonstrate exactly why the

given temporal property is not satisfied by the model, we are able to derive the desired policies.

This is achieved by verifying a temporal property for which our desired condition, that the

number of infected entities is always less than the threshold, is violated. The counterexample

to this property, is in fact the policy we are seeking.

We have used the LTL model checker Spin (Spin (2010)), we (a) find an intervention policy

(if one exists) for containing an infection spread; and (b) verify a prevention policy (i.e., a

strategy to contain the outbreak of any infection within a specified threshold regardless of the

location of the outbreak) where policies are required to contain the spread of the infection to

at most l nodes in the network. The model of spread we considered is very general. The details

of how the infection spreads between nodes of the network is specified through the infection

propagation functions f and g. The functions f and g can be appropriately defined to model

the spread of disease in humans, the spread of opinions in a social network, the spread of

computer viruses in a computer network, or the spread of a fire in a forest.

Finally, we have introduced a method for subdividing a network for easier management of
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the spread of the infection. The central theme of our method is to identify regions around

infection outbreaks such that the policymaker has the resources to contain the infection to the

regions. We are thus able to use the above mentioned model checking techniques to identify and

verify policies in networks with tens of thousands of nodes. Additionally, individually tailored

policies may be applied to each region, thus improving the flexibility of our approach.

7.1 Future Work

Our work opens several avenues for further research. We have developed several optimiza-

tions such as single-step search to detect non-existence of policies, iterative bounded searches,

node merging, and removal of non-infectable nodes. However, further optimizations to the

algorithms in this thesis can be developed. Alternate definitions for the construction of regions

can be considered. Such constructions could provide the policymaker with further flexibility

in responding to an infection outbreak. The policymaker would be able to automate the con-

struction of regions based on criteria such as the sum of the degrees of the nodes in the region.

Further optimizations are also possible to the model checking algorithms. For example, it may

be possible to further reduce the size of the graph explored by the model checker by collapsing

triangles (strongly connected components consisting of three nodes). By reducing the graph

size, it will be possible to model check larger graphs, and increase the speed of model checking

current graphs. A similar approach is the identification of clusters within the graph. Leveraging

the work done in this area could lead to further improvements (Moody (2001); Clauset et al.

(2004)). Additionally, other propagation functions beyond the ones addressed in this thesis can

be addressed, along with optimizations for them. For example, propagation functions to model

the spread of an infection where an infected entity is first a carrier before developing symptoms

of the infection.

Due to the large state-space a model checker must explore, there is a limit to the size of

models that can be verified. However, it is possible alternatives approaches can be used to

avoid the limitations of model checkers. The identification and verification of policies can be

done by encoding the original graph as a set of relations in a logical programming language such

as Teyjus or XSB (λProlog (2011); XSB (2011)). With correctly formulated queries, logical



39

programming can perform the same exhaustive searches of the state-space as model checkers.

Thus, logical programming languages can be explored as alternatives to model checkers.

Most infections are not spread between individuals at a one hundred percent probability.

Thus a deterministic model may not always provide the most accurate model for the spread

of infections. Thus, another avenue of research is extending the framework to handle proba-

bilistic infection propagation functions. In such models, infection propagation is expressed as

a probability that a node n will become infected in the next time step. Such a model would

require a different formulation for the effectiveness of a policy, such as: A policy is effective if

at every time step there is a 95% probability that no more than l nodes are infected.

Modifications can also be made to the definition of the graph. In our work, the graph

G(V,E) has been held constant, neither V nor E vary with time. An alternative is to introduce

variance in the structure of the graph with respect to the flow of time. Computer networks

are not static. Computers are added and removed, and the connections between computer

are made and lost. To more accurately simulate such a network, the graph G must evolve

with time. Similarly, outside of the computing world, people come in contact with others in

a specific order. If in the course of my day I go to the store, then the barber (where I am

infected), and finally the gym, I cannot spread the infection to the shoppers I interacted with

in the store. Thus in the graph representation of this network, the list of my neighboring nodes

will vary as a function of time. A model for such interactions requires that edges be added

and deleted from the model over the course of the simulation. Our framework is capable of

handling such graphs, requiring only changes to the Java preprocessor model generation code

to output different node adjacency matrices for each time step.

Finally, we plan to develop a framework that will allow users to perform (semi-)automatic

propagation analysis by considering different types of propagation functions and network models

(as described above). The primary challenge in developing such a framework is to provide an

intuitive user-interface that will allow easy input of propagation functions and network models

by the user.
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