
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Fractals in complexity and geometry
Xiaoyang Gu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Gu, Xiaoyang, "Fractals in complexity and geometry" (2009). Graduate Theses and Dissertations. 11026.
https://lib.dr.iastate.edu/etd/11026

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11026?utm_source=lib.dr.iastate.edu%2Fetd%2F11026&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Fractals in complexity and geometry

by

Xiaoyang Gu

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Jack H. Lutz, Major Professor

Pavan Aduri
Soumendra N. Lahiri
Roger D. Maddux
Elvira Mayordomo

Giora Slutzki

Iowa State University

Ames, Iowa

2009

Copyright c⃝ Xiaoyang Gu, 2009. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF FIGURES . iv

1 INTRODUCTION . 1

1.1 Fractals in Complexity Classes . 2

1.1.1 Dimensions of Polynomial-Size Circuits 2

1.1.2 Fractals and Derandomization . 4

1.2 Fractals in Individual Sequences and Saturated Sets 6

1.2.1 Saturated Sets with Prescribed Limit Frequencies of Digits 7

1.2.2 The Copeland-Erdős Sequences . 8

1.3 Effective Fractals in Geometry . 10

1.3.1 Points on Computable Curves . 11

1.3.2 Computable Curves and Their Lengths 12

2 PRELIMINARIES . 14

2.1 Languages, Complexity Classes, Resource Bounds 14

2.2 Measure, Dimension and Category . 16

3 FRACTALS IN COMPLEXITY CLASSES 21

3.1 Dimensions of Polynomial-Size Circuits . 21

3.2 Fractals and Derandomization . 31

3.2.1 Resource-Bounded Dimension and Relativized Circuit Complexity . . . 31

3.2.2 Probabilistic Promise Problems . 34

3.2.3 Positive-Dimension Derandomization . 35

iii

4 Fractals in Individual Sequences and Saturated Sets 41

4.1 Finite-State Dimensions . 41

4.2 Zeta-dimension . 45

4.3 Dimensions of Copeland-Erdős Sequences . 48

4.4 Saturated Sets with Prescribed Limit Frequencies of Digits 59

4.4.1 Relative Frequencies of Digits . 59

4.4.2 Saturated Sets and the Maximum Entropy Principle 67

5 FRACTALS IN GEOMETRY . 79

5.1 Curves and Computability . 79

5.2 The Computable Transit Network . 80

5.3 Points on Rectifiable Computable Curves . 86

5.3.1 The Computable Analyst’s Traveling Salesman Theorem 87

5.3.2 The Construction Of The Tour . 93

5.3.3 The Amortized Analysis Of The Construction 98

5.4 Computable Curves and Their Lengths . 108

5.4.1 An Efficiently Computable Curve That Must Be Retraced 108

5.4.2 Lower Semicomputability of Length . 117

5.4.3 Δ0
2-Computability of the Constant-Speed Parametrization 128

BIBLIOGRAPHY . 140

iv

LIST OF FIGURES

Figure 4.4.1 Domination relationships . 70

Figure 5.3.1 Pythagorean Theorem . 90

Figure 5.4.1 0,5,1 . 109

Figure 5.4.2 Example of s⃗(t) from t0 to t2 . 112

Figure 5.4.3 Algorithm for MOg(n) in the proof of Lemma 5.4.12. 118

v

ACKNOWLEDGEMENTS

9AM, November 19, 2009, I was walking from the Memorial Union to Atanasoff Hall across

the lawn at the central campus. Breathing the lightly chilly morning breeze filled with the

familiar scent of fresh grass, I could not hold back the joy inside me. There are only a a few

places in the world I would call home, and this is one of them. Iowa State, I am back. An

hour ahead was my final exam. By noon, the good news came out as the sun broke the cloud.

Nine years at Iowa State and six years on my dissertation research, I could not have gone

through without the people around me. First and foremost, I would like to thank my advisor

Jack Lutz for his invaluable help during my graduate study. He never told me what I should

do, but he always steered me in the right direction when I was lost. Without his encouragement

and guidance, I could not have persevered through all those years.

I would also like to thank Pavan Aduri, Dave Doty, John Hitchcock, James Lathrop, Elvira

Mayordomo, Philippe Moser, Satyadev Nandakumar, Fengming Wang, and other colleagues

for their company. They made the entire journey so much more fun.

I thank my friends Xiaofei Fan, Fei He, Wei Huang, Xia Li, Shanying Liang, Chunhui Shen,

Xiaofei Wu, Jinchun Xia, Dongping Xu, Cui Ye, Xuanwei Zhu for their friendship and care.

The national science foundation partially supported this dissertation through grants: 9988483,

0344187, 0652569, 0728806, 0430807, and 0830479.

Last but most importantly, I owe the most to my parents. It is their guidance in many

pivotal times during my earlier years that made it all possible.

By the time this is written, I had already left Iowa State to start my new adventures in

California. The California sun might provide some warmth when Iowa is chilled by the winter

freeze. But what warms my heart is feeling at home. I hope I have found a new one.

1

1 INTRODUCTION

Fractal phenomena exist everywhere in the physical world. The British coast line, the

shape snow flake crystals, the shape of tree leaves, etc [9]. In computer science, people have

investigated phenomena of similar nature in terms of dimensionality [19]. For these works,

classical dimensions were used to study the fractal structure of complexity classes. Due to the

restrictions of classical dimensions (or more precisely the lack of computational restrictions on

classical dimensions) the usefulness of dimension-theoretic techniques was very limited, since

most of the complexity classes are themselves countable sets, which has dimension 0 for all the

classical dimensions we are concerned with.

This situation changed dramatically when Lutz [62, 63] first characterized Hausdorff dimen-

sion using gales and extended this most famous fractal dimension notion to resource-bounded

dimensions for computational complexity classes and investigated the fractal phenomena there-

within. For example, he proved that the class of languages decidable by using boolean circuit

of size at most �2n/n for each input size n has dimension � in ESPACE, i.e.,

dim(SIZE(�2n

n)∣ESPACE) = �.

Note that dimH(ESPACE) = 0, as ESPACE is the set of languages that can be decided by de-

terministic Turing machines using tape space that is polynomial in the size of input encoded in

binary and it is thus a countable set. Therefore resource-bounded dimensions are stronger than

their classical counterparts in the sense that resource-bounded dimensions are meaningful in

spaces that have classical dimension 0 themselves. Due to the strength of the resource-bounded

dimensions, it is even meaningful for individual languages (singleton sets) now. With resource-

bounded dimension, more quantitative analysis have been done for the structure of complexity

classes and close connections have been identified among dimensionality, Kolmogorov complex-

2

ity, and compressibility for both complexity classes [63, 7] and individual languages [64, 26].

We further investigate the relationship between dimensionality and computational complexity

and compressibility using resource-bounded dimension in chapters 3 and 4.

Besides dimensionality, another well-known aspect of fractal phenomena is geometry. With

the tools of resource-bounded dimensions, we are able to investigate the dimensionality of

individual sequences in Canter spaces, which, through simple encoding, makes it possible to

study the individual points in Euclidean spaces. Questions about the roles of dimensionality

of individual points in geometry becomes valid. In chapter 5, we investigate questions of this

kind and the relationship between individual points and computable curves of finite length.

Although many curves of interests are not fractals in terms of dimensionality, they do have

many geometric features that a true fractal geometric construct exhibits.

In the following, we give a summary of technical contributions in chapters 3, 4, and 5.

1.1 Fractals in Complexity Classes

In chapter 3, we investigate fractals in complexity classes by extending some results in

resource-bounded measure to resource-bounded dimension. We focus on two aspects of fractals

related to computational complexity. One is the measurement of the relative size of complexity

classes. The other is power of fractals in the sense of derandomization.

1.1.1 Dimensions of Polynomial-Size Circuits

Circuit-size complexity is one of the most investigated topics in computer science. In

particular, much effort has been centered on the relationship between polynomial size circuits

and uniform complexity classes. Since the 1970s, it has been known that ESPACE ⊈ P/polyi.o.

[92, 89, 52, 93], i.e., that there exists a language in ESPACE that does not have polynomial

size circuits, even on only infinitely many lengths.

When Lutz invented resource-bounded measure [60], one of his first resource-bounded mea-

sure result was the quantitative separation that

�(P/polyi.o.∣ESPACE) = 0,

3

which means that it is typical for a language in ESPACE not to have polynomial size circuits

even on only infinitely many lengths. Lutz also showed that for all c > 0,

�(SIZEi.o.(nc)∣EXP) = �p2 (SIZE
i.o.(nc)) = 0 (1.1.1)

and

�(P/polyi.o.∣E3) = �p3 (P/poly
i.o.) = 0, (1.1.2)

where E3 = DTIME(22
poly log n

).

Measure theory does not distinguish among measure 0 sets. In classical analysis, Hausdorff

dimension [42] and packing dimension [95, 94] serve as refined measurements that complement

this limitation of measure. In computational complexity, Lutz et al. effectivized these two

dimension notions as the resource-bounded dimension and strong dimension to examine the

structure inside resource-bounded measure 0 sets [63, 7]. Very soon after the effectivization,

Hitchcock, Lutz and Mayordomo [47] further generalized these dimensions to scaled dimensions

to reveal subtle relationships that cannot be addressed without scaling [47]. At the same time,

resource-bounded dimension and strong dimension for individual sequences were defined to

measure the “level of randomness” for individual sequences [64].

Hitchcock and Vinodchandran [48] recently extended Lutz’s measure results (1.1.1) and

(1.1.2) with dimension measurements of P/poly. They proved that, for all c > 0,

dim(SIZE(nc)∣EXP) = dimp2
(SIZE(nc)) = 0 (1.1.3)

and

dim(P/poly∣E3) = dimp3
(P/poly) = 0. (1.1.4)

Recent results by Allender et al. [1, 2] regarding time-bounded Kolmogorov complexity KT

and circuit size complexity of strings enable us to measure the class of polynomial size circuits

even more precisely. In section 3.1, we take advantage of their results to prove that

dim(SIZEi.o.(nc)∣EXP) = dimp2
(SIZEi.o.(nc)) =

1

2
(1.1.5)

and

dim(P/polyi.o.∣E3) = dimp3
(P/polyi.o.) =

1

2
. (1.1.6)

4

Note that (1.1.5) and (1.1.6) strengthen (1.1.1) and (1.1.2), respectively. They also show that

(1.1.3) and (1.1.4) cannot be extended to the corresponding i.o.-classes.

Additionally, we prove the strong dimension result

Dim(P/polyi.o.∣E3) = Dimp3
(P/polyi.o.) = 1. (1.1.7)

In order to prove the lower bound on the dimension and strong dimension of P/polyi.o., we

establish a Supergale Dilation Theorem, which extends to dimension theory the measure theo-

retic martingale dilation technique introduced by Ambos-Spies, Terwijn, and Zheng implicitly

in [4] and made explicit by Juedes and Lutz in [51].

We also improve Hitchcock and Vinodchandran’s recent results (1.1.3) and (1.1.4) from

dimension to scaled strong dimension by showing that, for all c > 0 and all i ∈ ℕ,

Dim(i)(SIZE(nc)∣E2) = Dim(i)
p2
(SIZE(nc)) = 0 (1.1.8)

and

Dim(i)(P/poly∣E3) = Dim(i)
p3
(P/poly) = 0. (1.1.9)

1.1.2 Fractals and Derandomization

One of the most used formulation of randomized algorithms is to have a time-bounded

Turing machine with access to some random input bits in addition to the given input of the

computation. In such formulation, the distribution of the random inputs bit sequence induces

a distribution on the outcome of the computation on the given input. When the space of the

outcomes is binary, the outcome that carries higher probability is typically identified as the

outcome of the randomized algorithm. (Typically, we require the probability of the outcome

to be higher than 2
3 , which is difficult to guarantee syntactically if possible at all. This is why

such problems are called promise problems. General promise problems were introduced by

Grollman and Selman [37].)

Many important randomized complexity classes are defined in this way, e.g., BPP, AM,

etc. Given a randomized complexity class C defined in this manner, one can defined a non-

randomized version CS
0 of C by forcing the distribution of the random bit sequence to have a

5

singleton support {S}. This, in effect, replaces the random input with a fixed sequence of bits.

Namely, the randomness of the computation is replaced with access to a fixed oracle. One can

ask the question whether C ⊆ CS
0 or more quantitatively, how weak an assumption we can place

on an oracle S and still be assured that C ⊆ CS
0 . For example, how weak an assumption can we

place on an oracle S and still be assured that BPP ⊆ PS? For this particular question, it was

a result of folklore that BPP ⊆ PS holds for every oracle S that is algorithmically random in

the sense of Martin-Löf [67]; it was shown by Lutz [61] that BPP ⊆ PS holds for every oracle

S that is pspace-random; and it was shown by Allender and Strauss [3] that BPP ⊆ PS holds

for every oracle S that is p-random, or even random relative to a particular sublinear-time

complexity class.

In the results mentioned above, the oracle S is required to be random with respect to

some resource bound. Such oracles have full resource-bounded dimensions and therefore are

not fractals. We extend this line of inquiry by considering oracles S that are proper fractals,

i.e, oracles that have positive dimension with respect to various resource bounds. Specifically,

we prove that every oracle S that has positive Δp
3-dimension (hence every oracle S that has

positive pspace-dimension) satisfies BPP ⊆ PS .

This result is a generalization of this fact that applies to randomized promise classes at

various levels of the polynomial-time hierarchy. The randomized promise class Promise-BPP

was introduced by Buhrman and Fortnow [17] and shown by Fortnow [33] to characterize a

“strength level” of derandomization hypotheses. The randomized promise class Promise-AM

was introduced by Moser [74].) For every integer k ≥ 0, we show that, for every oracle S with

positive Δp
k+3-dimension, every BP ⋅ ΣP

k promise problem is ΣP,S
k -separable. In particular, if

S has positive Δp
3-dimension, then every BPP promise problem is PS-separable, and, if S has

positive Δp
4-dimension, then every AM promise problem is NPS-separable.

We use our results to investigate classes of the form

dimalmost-C =
{

A
∣

∣ dimH(
{

B
∣

∣ A /∈ CB
}

) = 0
}

for various complexity classes C. It is clear that dimalmost-C is contained in the extensively

6

investigated class

almost-C =
{

A
∣

∣ Prob[A /∈ CB] = 0
}

,

where the probability is computed according to the uniform distribution (Lebesgue measure)

on the set of all oracles B. We show that

dimalmost-ΣP
k -Sep = almost-ΣP

k -Sep = Promise-BP ⋅ ΣP
k

holds for every integer k ≥ 0, where ΣP
k -Sep is the set of all ΣP

k -separable pairs of languages.

This implies that

dimalmost-P = BPP,

refining the proof by Bennett and Gill [11] that almost-P = BPP. Also, for all k ≥ 1,

dimalmost-ΣP
k = BP ⋅ ΣP

k ,

refining the proof by Nisan and Wigderson [76] that almost-ΣP
k = BP ⋅ ΣP

k .

It is worth noting that Bennet and Gill’s technique cannot be extended to obtain these

characterizations and that derandomization plays a more significant role in the proof of our

results than in that of their almost-classes counterparts. The 1997 derandomization method of

Impagliazzo and Wigderson [49] is central to our arguments. Moreover, Nisan and Wigderson’s

proof that AM ⊆ almost-NP is elementary, while we prove the inclusion AM ⊆ dimalmost-NP

relies on Impagliazzo and Wigderson’s derandomization.

1.2 Fractals in Individual Sequences and Saturated Sets

In chapter 4, we study the the fractal structures of sets of sequences with respect to certain

structures in terms of digits. We will focus on two kinds of sets. One is a kind of sets that

are saturated, i.e., they contain all the sequences satisfying certain asymptotic properties of

distribution of digits. The other is singleton sets of sequences formed by concatenating digits

of numbers from a subset of natural numbers. The former is inspired by the study of the

collective properties of the set of all Borel normal numbers and the latter is inspired by the

study of Borel normal numbers as individual objects.

7

1.2.1 Saturated Sets with Prescribed Limit Frequencies of Digits

Borel, in search for a good definition of intrinsic randomness, defined normal numbers as

real numbers that have base-k extensions in which all finite strings have a fair asymptotic

distribution [13]. He proved that such numbers are very abundant, namely, the set of all such

real numbers have Lebesgue measure 1, or

�({normal numbers}) = 1.

The invention of fractal dimension allowed the similar investigations into sets that contain

all real numbers whose base-k (k ∈ ℕ) extensions have prescribed frequencies of digits [12, 36,

30]. For example, Besicovitch [12] proved that for each � ∈ [0, 12],

dimH(FREQ
≤�) = ℋ(�),

where FREQ≤� is the set of all infinite binary sequences that has fewer than � fraction of 0’s

in its finite prefixes asymptotically. Good and Eggleston [36, 30] also proved similar results.

Their results share a common feature, namely, the Hausdorff dimensions of the sets are all the

maximum of the entropies of the limit distributions of digits. (The limit of the distributions

of digits or their entropies need not exist.) Volkmann [97] made such observations in a kind

of fractal dimension that is defined in probability spaces, which is now called the Billingsley

dimension. Volkmann’s student Cajar studied such phenomena systematically in his Ph.D.

thesis [20]. The key observation they made was that this kind of sets share the property

that they are saturated in the sense that they contain all real numbers with some prescribed

restrictions on the asymptotic behavior of the distributions of digits in their base-k extensions.

Cajar realized that such sets have a very natural decomposition into an uncountable collection

of subsets, each of which has a dimension that is relatively easy to calculate and the whole

set takes as the dimension the supremum of the dimensions of all the subsets in the collection.

He also noted that the Hausdorff dimension only has such property over a union of countable

collection in general.

Some recent works on Hausdorff and packing dimensions of saturated sets used sophisticated

multifractal and ergodic theoretic techniques [10, 78, 79, 80, 81, 82, 83]. We extend this line

8

of research to finite-state dimensions [26]. We calculate the finite-state dimensions of some

saturated sets with partial constraints on the asymptotic distributions of digits. We prove in

Theorem 4.4.13 that for any X ⊆ Cm that is saturated,

dimFS(X) = H and DimFS(X) = P (1.2.1)

and

dimFS(X) = dimH(X) and DimFS(X) = dimP(X), (1.2.2)

where H = supS∈X lim inf
n→∞

ℋm(�⃗(S, n)) and P = supS∈X lim sup
n→∞

ℋm(�⃗(S, n)), ℋm is the m-ary

entropy, and �(S, n) is the empirical distribution of digits in the length n prefix of S.

With (1.2.1), we affirm the maximum entropy principle for the finite-state dimensions of

saturated sets. With (1.2.2), we obtain a correspondence principle for the finite-state dimen-

sions of saturated sets, namely, the finite-state dimension and strong dimension of saturated

sets corresponds to their Hausdorff dimension and packing dimension.

It is also worth noting that (1.2.1) also gives us a point-wise characterization of the finite-

state dimensions of saturated sets in terms of the maximum entropy of the empirical distribu-

tion of digits of the individual sequences rather than the finite-state dimensions of the individual

sequences. Last but not the least, with finite-state dimensions, the state of the union is less

fortunate, as, in general, finite-state dimensions are only stable under finite unions [26, 7].

Nevertheless, our point-wise results tell us that the uncountable stability observed by Cajar

for the Hausdorff dimension of saturated sets remains true for finite-state dimensions.

1.2.2 The Copeland-Erdős Sequences

Knowing that normal numbers are very abundant did not make it easy to give us examples

of such numbers. It was not until 1933, Champernowne [21] gave first example of a normal

number. His number is simply

S1 = 0.123456789101112 . . . (1.2.3)

formed by concatenating the decimal expansions of the positive integers in order. Champer-

nowne’s argument is not specific to decimal numbers. What he proved was that for any k ≥ 2,

9

the sequence formed by concatenating the base-k expansions of the positive integers in order

is normal over the alphabet Σk = {0, 1, . . . , k − 1}. Champernowne conjectured that instead

of concatenating all the positive integers, concatenating the base-k expansions of the essence

of all the positive integers, i.e., of all the prime numbers, would give rise to a normal number

too. In 1946, Copeland and Erdős [24] proved that this number

S2 = 0.235711131719232931 . . . (1.2.4)

is indeed normal. What is curious about this new example of a specific normal number is

not the fact that it is a normal number but the proof Copeland and Erdős used to show the

normality.

Let A be an infinite set of positive integers and an integer k ≥ 2, the base-k Copeland-

Erdős sequence CEk(A) of A over the alphabet Σk = {0, 1, . . . , k − 1} is the sequence formed

by concatenating the base-k expansions of the numbers in A in order. With this notation,

S1 = CEk(ℤ+) and S2 = CEk(PRIMES). What Copeland and Erdős proved was that for

any A that is sufficiently dense, CEk(A) is normal. More specifically, if A ⊆ ℤ+ satisfies the

condition that for every � < 1 and all sufficiently large n ∈ ℤ+ ∣A ∩ {1, 2, . . . , n}∣ > n�, then

CEk(A) is normal for all k ≥ 2. The normality of S2 follows by the Prime Number Theorem

saying that

lim
n→∞

∣PRIMES ∩ {1, 2 . . . , n}∣ ln n
n

= 1.

The condition used by Copeland and Erdős stated in terms of zeta-dimension is that

dim�(A) > � for all � < 1, which is equivalent to saying that dim�(A) = 1. Therefore,

Copeland-Erdős’s result. As it is already known now that normality is equivalent to finite-

state dimension 1 [86, 14], what they proved is really the fact that

dim�(A) = 1 =⇒ dimFS(CEk(A)) = 1.

What we are able to achieve is a general relationship between zeta-dimensions and finite-state

dimensions, namely, we prove that for all infinite A ⊆ ℤ+ and k ≥ 2,

dimFS(CEk(A)) ≥ dim�(A), (1.2.5)

10

and

DimFS(CEk(A)) ≥ Dim�(A). (1.2.6)

Moreover, we also prove that these bounds are tight in the following strong sense. Let A ⊆

ℤ+ be infinite, let k ≥ 2, and let � = dim�(A), � = Dim�(A), = dimFS(CEk(A)), � =

DimFS(CEk(A)). Then, by (1.2.5), (1.2.6), and elementary properties of these dimensions, we

must have the inequalities

 ≤ � ≤ 1

≤ ≤

0 ≤ � ≤ �.

(1.2.7)

Our main theorem also shows that, for any �, �, , � satisfying (1.2.7) and any k ≥ 2, there

is an infinite set A ⊆ ℤ+ such that dim�(A) = �, Dim�(A) = �, dimFS(CEk(A)) = , and

DimFS(CEk(A)) = �. Thus the inequalities

dimFS(CEk(A)) ≤ DimFS(CEk(A)) ≤ 1

≤ ≤

0 ≤ dim�(A) ≤ Dim�(A).

(1.2.8)

are the only constraints that these four quantities obey in general.

1.3 Effective Fractals in Geometry

In chapter 5, we shift out attention to curves in Euclidean spaces. We investigate what kind

of points can be on a curve. In a Euclidean space ℝn, a curve is the range Γ of a continuous

function f : [a, b] → ℝn for some a < b. As any bounded Euclidean space can be filled by some

infinite curve, for the subject to be interesting, we only consider curves of finite length (recti-

fiable) with finite parametrizations that are computable, namely, computable curves of finite

length. In Section 5.3, we characterize exactly those points that can be on computable curves

of finite length by extending Jones and Okikiolu’s results regarding the “analyst’s traveling

salesman problem” [50, 77]. (See also the monographs [68, 35].) In the proof of our result and

Jones and Okikiolu’s, the constructed parametrization of a curve may not avoid crossing itself

(retracing), even when the curve is simple. We also explore the dimensionality of points in

11

connection to this question. We investigate this phenomenon in Section 5.4 in the settings of

computable curves. We also explore the relation between parametrization of curves and their

length. Since any non-degenerate curve has one-dimensional Hausdorff measure 1, they are

not fractal in terms of dimension. Nevertheless, in terms of their shape, they do share many

characteristics with fractals.

1.3.1 Points on Computable Curves

The “analyst’s traveling salesman problem” of geometric measure theory is the problem of

characterizing those setsK ⊆ ℝn that can be traversed by curves of finite length. In 1990, Jones

solved this problem for ℝ2 [50]. In 1992, Okikiolu solved this problem for higher-dimensional

Euclidean spaces [77]. Their result – the “analyst’s traveling salesman theorem”, says that a

bounded set K is contained in some curve of finite length if and only if a certain “square beta

sum” �2(K), involving the “width of K” in each element of an infinite system of overlapping

“tiles” of descending size, is finite. Formally, let K ⊆ ℝn be bounded. Then K is contained in

some rectifiable curve if and only if �2(K) <∞ [50, 77].

The question we want to answer here is the following: What are the points that lie on

computable curves of finite length? The classical analogy of this question that has a completely

trivial answer, since every point is a degenerate curve of length 0. This is indeed an interesting

question when we restrict ourselves to computable curves of finite length, as we know that an

algorithmic random point in the plane is not on any computable curve of finite length, though

the proof is not trivial.

We characterize those points of Euclidean space that lie on computable curves of finite

length by formulating and proving a computable extension of the analyst’s traveling salesman

theorem. Our extension, the computable analyst’s traveling salesman theorem, says that a

point in Euclidean space lies on some computable curve of finite length if and only if it is

“permitted” by some computable “Jones constriction”. A Jones constriction here is an explicit

assignment of a rational cylinder to each of the above-mentioned tiles in such a way that, when

the radius of the cylinder corresponding to a tile is used in place of the “width of K” in each

12

tile, the square beta sum is finite. A point is permitted by a Jones constriction if it is contained

in the cylinder assigned to each tile containing the point. The main part of our proof is the

construction of a computable curve of finite length traversing all the points permitted by a

given Jones constriction. Our construction uses the main ideas of Jones’s “farthest insertion”

construction, but takes a very different form, because, having no direct access to the points

permitted by the Jones constriction, our algorithm must work exclusively with the constriction

itself.

We also study some other properties of the points on computable rectifiable curves relating

to constructive dimension. We show that any point on a computable rectifiable curve has

dimension at most 1, while points that are not on any computable rectifiable curve can have

dimension 0.

1.3.2 Computable Curves and Their Lengths

The proof of the computable analyst’s traveling salesman theorem constructs a computable

curve that a set of points permitted by a computable Jones constriction. As we mentioned

earlier, the constructed parametrization is not guaranteed to be one-one even if the given set

is the subset a simple curve. In the classical case, we know that this is an artifact of the con-

struction, since every simple curve has a one-one parametrization. When we are restricted to

the computable parametrizations, things are more interesting. We prove that there are simple

curves can have a geometry that is complex enough that none of the computable parametriza-

tion is one-one. We do so by exhibiting a polynomial-time computable, rectifiable, and simple

(i.e., it has a one-one parametrization) plane curve Γ that must be retraced in the sense that

every computable parametrization f : [a, b] → ℝ2 of Γ is not one-one. In fact, for every m > 0,

there are points on Γ that has to be retraced at least m times by f . More precisely, for every

positive integer m, there exist disjoint, closed subintervals I0, . . . , Im of [a, b] such that the

curve Γ0 = f(I0) has positive length and f(Ii) = Γ0 for all 1 ≤ i ≤ m.

A fundamental and useful theorem of classical analysis states that every simple, rectifiable

curve Γ has a normalized constant-speed parametrization, which is a one-to-one parametrization

13

f : [0, 1] → ℝn of Γ with the property that f([0, t]) has arclength tL for all 0 ≤ t ≤ 1, where

L is the length of Γ. (A simple, rectifiable curve Γ has exactly two such parametrizations,

one in each direction, and standard terminology calls either of these the normalized constant-

speed parametrization f : [0, 1] → ℝn of Γ. The constant-speed parametrization is also called

the parametrization by arclength when it is reformulated as a function f : [0, L] → ℝn that

moves with constant speed 1 along Γ.) Since the constant-speed parametrization does not

retrace any part of the curve, our main theorem implies that this classical theorem is not

entirely constructive. Even when a simple, rectifiable curve has an efficiently computable

parametrization, the constant-speed parametrization need not be computable. Yet, we do

prove that every simple, rectifiable curve Γ in ℝn with a computable parametrization has the

following two properties.

I. The length of Γ is lower semicomputable.

II. The constant-speed parametrization of Γ is computable relative to the length of Γ.

These two things are not hard to prove if the computable parametrization is one-to-one,

(in fact, they follow from results of Müller and Zhao [75] in this case) but our results hold even

when the computable parametrization retraces portions of the curve many times.

Taken together, I and II have the following two consequences.

1. The curve Γ of our main theorem has a finite length that is lower semi-computable but

not computable. (The existence of polynomial-time computable curves with this property

was first proven by Ko [55].)

2. Every simple, rectifiable curve Γ in ℝn with a computable parametrization has a constant-

speed parametrization that is Δ0
2-computable, i.e., computable relative to the halting

problem. Hence, the existence of a constant-speed parametrization for computable rec-

tifiable curves, while not entirely constructive, is constructive relative to the halting

problem.

14

2 PRELIMINARIES

2.1 Languages, Complexity Classes, Resource Bounds

An alphabet is a finite set of symbols. A string is a finite sequence of symbols. a sequence

is an infinite sequence of symbols. Given an alphabet Σ, Σ∗ denotes the set of all strings using

symbols from Σ and Σ∞ is the set of all infinite sequences of symbols from Σ. For m ∈ ℤ+,

we use Σm for the m-symbol alphabet – {0, . . . ,m − 1}. The empty string is denoted by �.

A language is a set of finite binary strings, i.e., subsets of {0, 1}∗. The length ∣w∣ of a string

w is the number of occurrences of symbols in w and in particular ∣�∣ = 0. We fix a standard

enumeration of all binary strings as s0 = �, s1 = 0, s2 = 1, s3 = 00, etc. Cm = Σ∞
m and

C = C2 is the Cantor space, i.e., {0, 1}∞.

For a language A, we also identify it with its characteristic sequence �A ∈ C such that

�A = [[s0 ∈ A]][[s1 ∈ A]][[s2 ∈ A]] ⋅ ⋅ ⋅ , where [[⋅]] is the boolean evaluation function. We use A

for �A whenever the meaning is clear from the context. We also call such A an oracle when

it is given to a Turing machine or a boolean circuit so that the membership of strings in A

can be queried for free. With this interpretation, C is the set of all languages. For integers

0 ≤ i, j < ∣w∣, w[i..j] = w[i]w[i + 1] ⋅ ⋅ ⋅w[j] and � if j < i. We use the same convention

to identify a finite consecutive part of a sequence also. If string x is prefix of string y, we

write x ⊑ y. If a string w is a prefix of a sequence S, we write w ⊑ S. For any language A,

An = A ∩ {0, 1}n. For any class C ⊆ C, Ci.o. = {A ∣ (∃L ∈ C)(∃∞n)An = Ln}. Δ(Σm) is the

set of all probability measures on Σm.

Regarding circuit-size complexity, SIZE(f(n)) = {A ∈ C∣(∀∞n)CSA(n) ≤ f(n)}, where

CSA(n) is the number of wires in the smallest n-input Boolean circuit that decides An. For

x ∈ {0, 1}∗, if ∣x∣ = 2k for some k ∈ ℕ, then define SIZE(x) as the size of the smallest k-input

15

circuit whose truth table is x. P/poly =
∪

c∈ℕ SIZE(nc).

Let s be a time-constructible function. DTIME(s) is the class of languages decidable in time

O(s) by deterministic Turing machines and DTIMEF(s) is the class of functions computable

in time O(s) by deterministic Turing transducers. DSPACE(s) and DSPACEF(s) are defined

similarly.

We use Δ to represent a function class that serves as a resource bound. (To be precise, a

resource bound is a class of type-2 functional in order to have a complete theory of resource-

bounded measure and measurability [40]. In here, we take the measurability for granted and

only discuss measure, in particular, measure 0 and avoid type-2 computation by doing so.)

In our discussion, Δ may be one of the following:

all = {f ∣ f : {0, 1}∗ → {0, 1}∗ }.

p =
{

f ∈ all
∣

∣ f is computable in nO(1) time
}

.

p2 = DTIMEF(2(log n)
O(1)

) = DTIMEF(n(logn)
O(1)

).

p3 = DTIMEF(22
(log logn)O(1)

).

Δp
k = pΣ

P
k−1 for k ≥ 2.

pspace =
{

f ∈ all
∣

∣ f is computable in nO(1) space
}

= DSPACEF(nO(1)).

comp = {f ∈ all ∣ f is computable}.

Lutz defined resource-bounded constructors [59, 60, 63] that generate complexity classes.

For a resource bound Δ, the corresponding result class is denoted as R(Δ). The correspon-

dences between resource bounds and complexity classes that we use are:

R(all) = C.

R(p) = E = DTIME(2linear).

R(p2)=E2 = EXP = DTIME(2n
O(1)

).

R(p3)=E3 = DTIME(22
(log n)O(1)

).

R(Δp
k) = ΔE

k = EΣP
k−1 .

R(pspace) = ESPACE = DSPACE(2O(n)) = DSPACE(2linear).

R(comp) = DEC.

When using these resource bounds on the computation of real-valued functions, there are

16

specific semantics.

A real-valued function f : {0, 1}∗ → [0,∞) is Δ-computable if there is a function f̂ :

{0, 1}∗ × ℕ → ℚ such that f̂ ∈ Δ (where the input (w, r) ∈ {0, 1}∗ × ℕ is suitably encoded

with r in unary) and, for all w ∈ {0, 1}∗ and r ∈ ℕ, ∣f̂(w, r)− f(w)∣ ≤ 2−r.

A slightly differently defined class of real-valued functions is the lower semicomputable

functions. A real-valued function f : {0, 1}∗ → [0,∞) is lower semicomputable (a.k.a. con-

structive) if there is a function f̂ : {0, 1}∗ ×ℕ → ℚ such that f̂ ∈ comp for all w ∈ {0, 1}∗ and

r ∈ ℕ,

f̂(w, r) ≤ f̂(w, r + 1) ≤ f(w)

and

lim
r→∞

f̂(w, r) = f(w).

2.2 Measure, Dimension and Category

In this section, we summarize some concepts and theorems about measures and dimensions

that we will use in the development of our results.

Definition. Let Σ = Σm be an alphabet. Let s ∈ [0,∞). An s-supergale is a function

d : Σ∗ → [0,∞) such that d(�) ∈ (0,∞) and for all w ∈ Σ∗

d(w) ≥ 1

∣Σ∣s
∑

a∈Σ
d(wa). (2.2.1)

An s-gale is an s-supergale with equality in (2.2.1). A supermartingale is a 1-supergale and a

martingale is a 1-gale. The success set of an s-supergale d is

S∞[d] =

{

S ∈ Cm

∣

∣

∣

∣

lim sup
n→∞

d(S[0..n − 1]) = ∞
}

.

We say that d succeeds on S ∈ Cm if S ∈ S∞[d]. The strong success set of d is

S∞
str[d] =

{

S ∈ Cm

∣

∣

∣ lim inf
n→∞

d(S[0..n − 1]) = ∞
}

.

We say that d succeeds strongly on S ∈ C if S ∈ S∞
str[d].

17

An s-supergale can be regarded as a betting strategy over sequences in Cm. It starts with

d(�), a finite amount of initial capital, and bets on the successive bits of a string w. The

payoff of the betting is defined by the d(w). The parameter s gauges the fairness of the betting

environment. When s = 1, the betting environment is fair. We can then see from (2.2.1) that

for any martingale d, if the house uniformly at random pick a string w ∈ Σn, the expected

amount of payoff we can get from betting according to d is d(�). By the Markov inequality,

the probability that we can make k ⋅ d(�) amount of money is at most 1
k . Then, intuitively,

the probability that we can make unbounded amount of money is thus 0. This intuition gives

rise to the definition of measure 0. And if we impose resource bound on the computation of

martingales, we have resource-bounded measure.

Definition (Lutz [60]). Let X ⊆ C. X has Δ-measure 0, and we write �Δ(X) = 0 if there

exists a Δ-computable supermartingale d such that X ⊆ S∞[d]. X has Δ-measure 1 if Xc has

Δ-measure 0. X has measure 0 in R(Δ) if �Δ(X ∩ R(Δ)) = 0. X has measure 1 in R(Δ) if

�Δ(X
c ∩R(Δ)) = 0.

For all these definition to make sense, it is essential that R(Δ) does not have measure 0.

It is indeed so as affirmed by the following measure conservation theorem.

Theorem 2.2.1 (Lutz [60]). R(Δ) does not have measure 0 in R(Δ).

When Δ = all, the measure defined by all Δ computable martingales coincides with the

classical Lebesgue measure on C [60].

It turns out that the fairness parameter s of gales can be used to characterize the clas-

sical Hausdorff and packing dimensions [63, 7]. In here, we use the gale characterizations as

definitions, since this provides us with unified definitions of resource-bounded dimensions and

classical dimensions.

Definition (Lutz [63], Athreya, Hitchcock, Lutz, and Mayordomo [7]). Let X ⊆ C. The

Δ-dimension of X is

dimΔ(X) = inf{s ∈ [0,∞)∣X ⊆ S∞[d] for some Δ-computable s-supergale d}.

18

The Δ-strong dimension of X, denoted DimΔ(X), is defined similarly with respect to strong

success. The dimension of X in R(Δ) is dim(X∣R(Δ)) = dimΔ(X ∩ R(Δ)). The strong

dimension of X in R(Δ) is Dim(X∣R(Δ)) = DimΔ(X ∩R(Δ)).

When Δ is the set of all functions (with no computational restriction), the above definitions

of dimension and strong dimension give us the classical Hausdorff dimension dimH and packing

dimension dimP, respectively. When Δ is the set of all lower semi-computable functions, we

get the notions of constructive dimension cdim(X) and strong dimension cDim(X).

Observation 2.2.2 (Lutz [63], Athreya, Hitchcock, Lutz, and Mayordomo [7]). 1. For all X ⊆

C and all resource bounds Δ, if dimΔ(X) < 1 then �Δ(X) = 0.

2. For all X ⊆ C and all resource bounds Δ, dimΔ(X) ≤ DimΔ(X).

3. For all X ⊆ Y and all resource bounds Δ, dimΔ(X) ≤ dimΔ(Y).

4. Let Δ, Δ′ be resource bounds such that Δ ⊆ Δ′. Then for all X ⊆ C, dimΔ′(X) ≤ dimΔ(X),

and DimΔ′(X) ≤ DimΔ(X).

In contrast to classical measure and dimension theory, when resource bounds are enforced

on the computation of gales, dimensions of individual sequences become meaningful.

Definition. Let S ∈ C be an infinite binary sequence. The Δ-dimension of S is dimΔ(S) =

dimΔ({S}). The Δ-strong dimension of S is DimΔ(S) = DimΔ({S}).

Hitchcock, Lutz, and Mayordomo also introduced a theory of resource-bounded scaled

dimension that has more distinguishing power for some problems in complexity theory.

Definition (Hitchcock, Lutz, and Mayordomo [47]). A scale is a continuous function g : H ×

[0,∞) → ℝ such thatH = (a,∞) for some a ∈ ℝ∪{−∞}; g(m, 1) = m for allm ∈ H; g(m, 0) =

g(m′, 0) ≥ 0 for all m,m′ ∈ H; for every sufficiently large m ∈ H, the function s 7→ g(m, s) is

nonnegative and strictly increasing; and for all s′ > s ≥ 0, limm→∞[g(m, s′)− g(m, s)] = ∞.

Definition (Hitchcock, Lutz, and Mayordomo [47]). Let g : H × [0,∞) → ℝ be a scale, and

let s ∈ [0,∞). A g-scaled s-supergale (s(g)-supergale) is a function d : {0, 1}∗ → [0,∞) such

19

that for all w ∈ {0, 1}∗ with ∣w∣ ∈ H,

d(w) ≥ d(w0) + d(w1)

2Δg(∣w∣,s) , (2.2.2)

where Δg(m, s) = g(m+ 1, s)− g(m, s).

The definitions for scaled dimensions are identical to those of regular dimensions except

that they use scaled supergales. In corresponding notations, we use superscript (g) to indicate

the scale as in dim
(g)
Δ (⋅), Dim

(g)
Δ (⋅).

Some commonly used scales are defined as follows.

Definition (Hitchcock, Lutz, and Mayordomo[47]). Let g : H × [0,∞) → ℝ be a scale.

1. The first rescaling of g is the scale g# : H# × [0,∞) → ℝ defined by

H# = {2m∣m ∈ H},

g#(m, s) = 2g(logm,s).

2. For each i ∈ ℕ, a0 = −∞, ai+1 = 2ai .

3. For each i ∈ ℕ, the ith scale gi : (ai,∞)× [0,∞) → ℝ is defined such that

(a) g0(m, s) = sm.

(b) For i ≥ 0, gi+1 = g#i .

When these scales are used, we use superscript (i) instead of (gi). We call dim(i) and

Dim(i) the ith-order scaled dimension and the ith-order scaled strong dimension, respectively.

Resource-bounded 0th scaled dimensions and strong dimensions coincide with the regular di-

mensions and strong dimensions. With the scales defined above, it was shown that the scaled

dimensions exhibit the following monotonicity with respect to the order of the scale.

Theorem 2.2.3 (Hitchcock, Lutz, and Mayordomo [47]). Let i ∈ ℕ and let X ⊆ C. If

dim
(i+1)
Δ (X) < 1, then dim

(i)
Δ (X) = 0.

When we study the fractals in Euclidean spaces ℝn, we need to be able to properly encode

points in Euclidean spaces using infinite sequences. One of several equivalent ways to achieve

20

this is to expand the coordinates of each point x = (x1, ..., xn) ∈ ℝn in base 2. If the expansions

of the fractional parts of these coordinates are S1, ..., Sn ∈ C, respectively, then S(x) is the

interleaving of these sequences, i.e.,

S(x) = S1[0]S2[0]...Sn[0]S1[1]S2[1]...Sn[1]S1[2]S2[2]....

For each X ⊆ ℝn, S(X) = {S(x) ∣ x ∈ X }. Then the (Hausdorff, computable, constructive)

dimension of S(X) is n times the (Hausdorff, computable, constructive) dimension of S(X)

[65].

For each � ∈ [0, n] we denote as DIM=� the set {x ∣ {x} has constructive dimension �}.

Note that Hausdorff dimension of any countable set is 0, while effective dimension of a singleton

set may be as large as the dimension of the space.

The following fact is easily verified: if Δ is any of the countable resource bounds above,

then

dimH({S ∣ dimΔ(S) = 0}) = 0. (2.2.3)

Next we define category in Cantor space in terms of the Banach-Mazur game, more infor-

mation can be found in [84].

Definition. 1. A constructor is a function ℎ : {0, 1}∗ → {0, 1}∗ such that for every w ∈

{0, 1}∗, w ⊏
∕=
ℎ(w).

2. If ℎ is a constructor, R(ℎ) is the only element in C such that ℎi(�) ⊑ R(ℎ) for all i ∈ ℕ.

3. If g and ℎ are constructors then R(g, ℎ) = R(ℎ ∘ g)

4. X ⊆ C is meager if for every constructor g there is a constructor ℎ such that R(g, ℎ) ∕∈ X.

5. X ⊆ C is co-meager if Xc is meager.

A useful property is that a countable union of meager sets is meager. Equivalently, if a

∪Xi is co-meager then at least one of the Xi is co-meager.

Category in Euclidean space can be defined through the above identification of X ⊆ ℝn,

with S(X) ⊆ C. Notice that in this case co-meager sets are dense in some interval.

21

3 FRACTALS IN COMPLEXITY CLASSES

In this chapter, we examine some fractals in complexity classes from two aspects. In Section

3.1, we examine the dimensions of some circuit complexity classes. In Section 3.2, we look at

the power of fractals, in particular, the derandomization power of non-trivial fractals and use

such power to characterize some important complexity classes.

3.1 Dimensions of Polynomial-Size Circuits

Our starting point is the following theorem regarding polynomial size circuits.

Theorem 3.1.1 (Lutz[60]). For all c > 0,

�(SIZEi.o.(nc)∣EXP) = �p2 (SIZE
i.o.(nc)) = 0

and

�(P/polyi.o.∣E3) = �p3 (P/poly
i.o.) = 0.

This result was improved to dimension as follows by Hitchcock and Vinodchandran.

Theorem 3.1.2 ([48]). For all c ≥ 1,

dim(SIZE(nc)∣EXP) = dimp2
(SIZE(nc)) = 0

and

dim(P/poly∣E3) = dimp3
(P/poly) = 0.

We use the relationship between the following time bounded Kolmogorov complexity and

circuit complexity to give a more thorough analysis of the dimensions of polynomial size cir-

cuits.

22

Definition (Allender [1]). Let U be a universal Turing machine. Define KT(x) to be

min{∣p∣+ t∣ for all i ≤ ∣x∣, U(p, i) = xi in at most t steps}.

Theorem 3.1.3 (Allender [1], Allender, Buhrman, Koucký, van Melkebeek, and Ronneburger

[2]). SIZE(x) = O((KT(x))4), and KT(x) = O((SIZE(x))2 ⋅ (log(SIZE(x))2 + log ∣x∣)).

Lemma 3.1.4. Let A ⊆ {0, 1}∗.

1. A ∈ P/polyi.o. if and only if for some integer c ∈ ℕ, KT(A[2n − 1..2n+1 − 2]) ≤ nc for

infinitely many n ∈ ℕ.

2. A ∈ P/poly if and only if for some integer c ∈ ℕ, KT(A[2n − 1..2n+1 − 2]) ≤ nc for all

but finitely many n ∈ ℕ.

Proof. Both follow from Theorem 3.1.3.

Using this lemma, we first establish the following two theorems for individual languages

concerning P/polyi.o. and P/poly.

Theorem 3.1.5. Let A ⊆ {0, 1}∗ be a language such that dimp2
(A) > 1

2 . Then A /∈ P/polyi.o..

Proof. We prove the contrapositive. Assume that A ∈ P/polyi.o.. Then by Lemma 3.1.4,

KT(A[2n − 1..2n+1 − 2]) < nc for infinitely many n and some fixed constant c. It suffices to

show that dimp2
(A) ≤ 1

2 .

Let r > 1
2 be a polynomial-time computable real number. It suffices to show that there

exists a p2-computable r-supergale d that succeeds on A.

For i ≥ 1 and w ∈ {0, 1}∗, let

Ci = {x ∈ {0, 1}2i ∣ KT(x) < ic}

Cw
i = {x ∈ Ci ∣ w[2i − 1..∣w∣ − 1] ⊑ x},

and let di be such that

di(w) =

⎧

⎨

⎩

2(r−1)∣w∣ if ∣w∣ < 2i

di(w[0..2
i − 2])2r(∣w∣−(2i−1)) ∣Cw

i ∣
∣Ci∣ if 2i ≤ ∣w∣ ≤ 2i+1 − 1

2(r−1)(∣w∣−(2i+1−1))di(w[0..2
i+1 − 2]) if ∣w∣ > 2i+1 − 1.

23

We compute di by simulating the universal Turing machine U to enumerate Ci by cycling

all programs of length up to ic and all bit indices less than or equal to 2i within running time

less than ic. For every such program, a valid simulation generates 2i bits and by concatenating

them, we get an output string of length 2i in Ci. During the enumeration, di counts the number

of strings in Ci and in Cw
i to get ∣Ci∣ and ∣Cw

i ∣. Note that ∣Ci∣ ≤ 2i
c
.

Let d =
∑∞

i=1
1
2i
di. It is easy to verify that d is a p2-computable r-supergale.

For any n ≥ 1 such that KT(A[2n − 1..2n+1 − 2]) < nc, we have

d(A[0..2n+1 − 2]) ≥ 1

2n
dn(A[0..2

n+1 − 2])

=
1

2n
dn(A[0..2

n − 2])2r2
n

∣

∣

∣
C

A[0..2n+1−2]
n

∣

∣

∣

∣Cn∣

≥ 1

2n
2(r−1)(2n−1)2r2

n 1

2nc

=
2(2r−1)2n−r+1

2n ⋅ 2nc .

Since r > 1
2 and KT(A[2n − 1..2n+1 − 2]) < nc for infinitely many n, it follows that the

value that the r-supergale d can obtain along A is unbounded, and thus dimp2
(A) ≤ r. Since

polynomial-time computable real numbers are dense in ℝ, it follows that dimp2
(A) ≤ 1

2 .

Corollary 3.1.6. For c > 0,

dim(SIZEi.o.(nc)∣EXP) ≤ 1

2
and dimp2

(SIZEi.o.(nc)) ≤ 1

2

and

dim(P/polyi.o.∣E3) ≤
1

2
and dimp3

(P/polyi.o.) ≤ 1

2
.

Proof. By Theorem 3.1.5 and standard universal simulation techniques, SIZEi.o.(nc) is a p2-

union of sets of p2-dimension at most 1
2 , and P/polyi.o. is a p3-union of sets of p2-dimension

(hence p3-dimension) at most 1
2 . The corollary then follows by the effective stability of resource-

bounded dimension (Lemma 4.11 of [63]).

By changing the simulation in the proof of Theorem 3.1.5 from cycling programs of length

exactly i to cycling programs of length at most i, we can establish an analogous result regarding

P/poly, but now with strong dimension.

24

Theorem 3.1.7. Let A ⊆ {0, 1}∗ be a language such that Dimp2
(A) > 0. Then A /∈ P/poly.

Proof. We prove the contrapositive. Assume that A ∈ P/poly. Then by Lemma 3.1.4,

KT(A[2n − 1..2n+1 − 2]) < nc for all but finitely many n ∈ ℕ and some fixed constant c. It

suffices to show that Dimp2
(A) = 0.

Let r > 0 be a polynomial-time computable real number. It suffices to show that there

exists a p2-computable r-supergale d that succeeds on A.

For i ≥ 1 and w ∈ {0, 1}∗, let

C≤i = {x ∈ {0, 1}2i+1−1 ∣ KT(x[2k − 1..2k+1 − 2]) < kc, 0 < k ≤ i}

Cw
≤i = {x ∈ C≤i ∣ w ⊑ x},

and let di be such that

di(w) =

⎧

⎨

⎩

2r∣w∣ ∣C
w
≤i

∣
∣C≤i∣ if ∣w∣ ≤ 2i+1 − 1

2(r−1)(∣w∣−(2i+1−1))di(w[0..2
i+1 − 2]) if ∣w∣ > 2i+1 − 1.

We compute di by simulating the universal Turing machine U to enumerate C≤i by cycling

all programs of length at most kc and all bit indices less than or equal to 2k within running

time less than kc for k = 0, 1, . . . , i in a depth first fashion. For every such k and a particular

program, a valid simulation generates 2k bits and by concatenating them, we get an output

string of length 2k. By concatenating the outputs for k from 0 to i, we get a string of length

2i+1 − 1 in C≤i. ∣C≤i∣ and ∣Cw
≤i∣ are obtained respectively by counting the number of strings

in C≤i and the number of those strings with w as a prefix. Note that ∣C≤i∣ ≤ 2i
c+1

.

Let d =
∑∞

i=1
1
2i
di. It is easy to verify that d is a p2-computable r-supergale.

For any n > 1 and 0 < k ≤ 2n, we have

d(A[0..2n − 2 + k]) ≥ 1

2n
dn(A[0..2

n − 2 + k])

=
1

2n
2r(2

n−1+k)

∣

∣

∣
C

A[0..2n−2+k]
≤n

∣

∣

∣

∣C≤n∣

≥ 1

2n
2r(2

n−1+k) 1

2nc+1 .

25

Since r > 0 and k > 0, it follows that the value that the r-supergale d can obtain along A goes

to infinity, i.e.,

lim inf
n→∞

d(A[0..n − 1]) = ∞.

So the r-supergale d succeeds strongly on A, and hence the Dimp2
(A) ≤ r. By the density of

polynomial-time computable real numbers, Dimp2
(A) = 0.

Our next theorem shows that scaled dimension can be used to significantly relax the hy-

pothesis of Theorem 3.1.7. We first give an observation about the transformation between

different scaled supergales that simplifies the calculation of scaled dimensions.

Observation 3.1.8. Let g1, g2 be two scales and s1, s2 ∈ [0,∞). Let d : {0, 1}∗ → [0,∞) be a

g1-scaled s1-supergale (s
(g1)
1 -supergale), i.e.,

d(w) ≥ d(w0) + d(w1)

2Δg1(∣w∣,s1) .

Then the function d′ : {0, 1}∗ → [0,∞) defined by d′(w) = d(w)2g2(∣w∣,s2)−g1(∣w∣,s1) is an s
(g2)
2 -

supergale.

Proof. This follows from easy verification of the s
(g2)
2 -supergale condition (2.2.2).

Now we use Observation 3.1.8 to extend Theorem 3.1.7 to scales of arbitrary nonnegative

order.

Theorem 3.1.9. Let j ∈ ℕ and A ⊆ {0, 1}∗ be a language such that Dim
(j)
p2

(A) > 0. Then

A /∈ P/poly.

Proof. We prove the contrapositive. Assume that A ∈ P/poly. Then by Lemma 3.1.4,

KT(A[2n − 1..2n+1 − 2]) < nc for all but finitely many n ∈ ℕ and some fixed constant c. It

suffices to show that Dim
(j)
p2

(A) = 0.

Let s > 0 be a polynomial-time computable real number. It suffices to show that there

exists a p2-computable s(j)-supergale that succeeds on A.

Let r > 0 be a polynomial-time computable real number. For all i ∈ ℕ, let di be defined

as in the proof of Theorem 3.1.7 and similarly let d =
∑∞

i=1
1
2i
di. It is clear that d is a

p2-computable r-supergale.

26

Define d′ such that

d′(w) = d(w)2gj (∣w∣,s)−g0(∣w∣,r).

By Observation 3.1.8, d′ is a p2-computable s(j)-supergale and

d′(A[0..2n − 2 + k]) ≥ 1

2n
dn(A[0..2

n − 2 + k])
2gj(2

n−1+k,s)

2r(2
n−1+k)

≥ 1

2n
2r(2

n−1+k)

2nc+1

2gj(2
n−1+k,s)

2r(2n−1+k)

=
2gj(2

n−1+k,s)

2n ⋅ 2nc+1 .

Since s > 0, c ∈ ℕ, k > 0, the growth rate of the function gj(2
n − 1 + k, s) is higher than that

of the function nc+1. It follows that lim inf
n→∞

d′(A[0..2n − 2 + k]) = ∞, i.e., Dim
(j)
p2

(A) = 0.

By using Theorem 3.1.7 and Theorem 3.1.9 together with the same techniques used in the

proof of Corollary 3.1.6, we obtain the following theorem.

Theorem 3.1.10. For all c > 0 and all i ∈ ℕ,

Dim(i)(SIZE(nc)∣EXP) = Dim(i)
p2
(SIZE(nc)) = 0

and

Dim(i)(P/poly∣E3) = Dim(i)
p3
(P/poly) = 0.

Jack Lutz suggested that the upper bounds for dimensions in Corollary 3.1.6 are tight. We

prove a general theorem on dimension lower bound of infinitely-often classes, which is then used

to show that the inequalities in Corollary 3.1.6 may be replaced by equalities. In the proof,

we will use the supergale dilation technique, which is an extension of the martingale dilation

technique introduced by Ambos-Spies, Terwijn, and Zheng implicitly [4] and made explicit

by Juedes and Lutz [51]. In the following, we only state and prove the case for nonnegative

scales of dimensions and strong dimensions. Both the theorem and the corollary generalize to

negative scales.

Definition. Let f : {0, 1}∗ → {0, 1}∗. We call f a dilation if for all x, y ∈ {0, 1}∗ with x ⊑ y,

f(x) ⊑ f(y), and for all x, there exists x ⊑ x′ such that f(x) ⊏
∕=
f(x′), and ∣f(x0)∣ = ∣f(x1)∣ ≤

∣f(x)∣+ 1 for all x ∈ {0, 1}∗.

27

Let f be a dilation. For A ∈ C, let f(A) = S ∈ C such that f(A[0..n − 1]) ⊑ S for all

n ∈ ℕ. We call f(A) the f -dilation of A. For x ∈ {0, 1}∗, define the collision set of f on x as

Col(f, x) =
{

0 ≤ n < ∣x∣
∣

∣ f(x[0..n− 1]0) = f(x[0..n− 1]1) ∕= f(x[0..n − 1])
}

.

Theorem 3.1.11 (Supergale Dilation Theorem). Let C ⊆ C, Δ be a resource bound, i, j ∈ ℕ

and s, s′ ∈ [0, 1]. Let f be a Δ-computable dilation.

1. If dim
(i)
Δ (f(C)) < s and for every A ∈ C,

gi(∣f(A[0..n − 1])∣, s) + ∣Col(f,A[0..n − 1])∣ ≤ gj(n, s
′)− n+ ∣f(A[0..n − 1])∣ (3.1.1)

for all but finitely many n, then

dim
(j)
Δ (C) ≤ s′.

2. If Dim
(i)
Δ (f(C)) < s and for every A ∈ C, (3.1.1) holds for infinitely many n, then

dim
(j)
Δ (C) ≤ s′.

3. If Dim
(i)
Δ (f(C)) < s and for every A ∈ C, (3.1.1) holds for all but finitely many n, then

Dim
(j)
Δ (C) ≤ s′.

Note that in contrast to [4] and [51], we are looking at the dilation from a different per-

spective. In [4] and [51], the dilation is defined in terms of strings (in languages). Here, the

dilation is defined in terms of the prefixes of characteristic sequences of languages. It is easy to

verify that every dilation that is consistent with [51] can be written in a way that is consistent

with the definition we have here. But the converse is not true.

Proof. We prove 1; the proofs of 2 and 3 are similar. Since dim
(j)
Δ (C) ≤ 1, the theorem is true

when s′ ≥ 1. Assume s′ < 1, dim
(i)
Δ (f(C)) < s and (3.1.1). Then, by Observation 3.1.8, there

exists a Δ-computable supermartingale d such that for every A ∈ C and some � > 0,

d(f(A[0..n − 1])) ≥ 2∣f(A[0..n−1])∣−gi(∣f(A[0..n−1])∣,s−�) (3.1.2)

28

for infinitely many n. Define d′ with the following recursion.
⎧

⎨

⎩

d′(�) = d(f(�))

d′(wb) = 2d′(w) d(f(wb))
d(f(w0))+d(f(w1)) .

Since f is Δ-computable, it is clear that d′ is a Δ-computable martingale. Note that

d′(A[0..n − 1]) = d(f(A[0..n − 1]))

n−2
∏

i=0

d(f(A[0..i])) ⋅ 2
d(f(A[0..i]0)) + d(f(A[0..i]1))

.

Since d is a martingale, for each i /∈ Col(f,A[0..n − 1])

d(f(A[0..i])) ⋅ 2
d(f(A[0..i]0)) + d(f(A[0..i]1))

= 1

and i ∈ Col(f,A[0..n − 1])

d(f(A[0..i])) ⋅ 2
d(f(A[0..i]0)) + d(f(A[0..i]1))

≥ 1

2
.

Therefore

d′(A[0..n − 1]) ≥ d(f(A[0..n − 1]))

2∣Col(f,A[0..n−1])∣ .

Since (3.1.2) holds for infinitely many n, and (3.1.1) holds for all but finitely many n, we have

that, for infinitely many n,

d′(A[0..n − 1]) ≥ 2∣f(A[0..n−1])∣−gi(∣f(A[0..n−1])∣,s−�)

2gj(n,s
′)−n+∣f(A[0..n−1])∣−gi(∣f(A[0..n−1])∣,s)

> 2n−gj(n,s′).

Since lim
n→∞

2n−gj(n,s
′) = ∞ for s′ < 1, dim

(j)
Δ (C) ≤ s′.

Corollary 3.1.12. Let C ⊆ C, Δ be a resource bound, i, j ∈ ℕ and s, s′ ∈ [0, 1]. Let f be a

Δ-computable dilation.

1. If dim(i)(f(C)∣R(Δ)) < s and for every A ∈ C, (3.1.1) holds for all but finitely many n,

then

dim(j)(C∣R(Δ)) ≤ s′.

2. If Dim(i)(f(C)∣R(Δ)) < s and for every A ∈ C, (3.1.1) holds for infinitely many n, then

dim(j)(C∣R(Δ)) ≤ s′.

29

3. If Dim(i)(f(C)∣R(Δ)) < s and for every A ∈ C, (3.1.1) holds for all but finitely many n,

then

Dim(j)(C∣R(Δ)) ≤ s′.

Proof. We prove 1; the proofs of 2 and 3 are similar.

Note that f(C ∩ R(Δ)) ⊆ R(Δ) and f(C ∩ R(Δ)) ⊆ f(C). Therefore f(C ∩ R(Δ)) ⊆

f(C) ∩R(Δ).

Since dim
(i)
Δ (f(C) ∩ R(Δ)) = dim(i)(f(C)∣R(Δ)) < s, dim

(i)
Δ (f(C ∩ R(Δ))) < s. Now apply

Theorem 3.1.11 and we have

dim
(j)
Δ (C ∩R(Δ)) < s′,

i.e., dim(j)(C∣R(Δ)) ≤ s′.

Theorem 3.1.13. Let C be a language class that contains the trivial language ∅. Then for all

Δ ⊇ p, dim(Ci.o.∣R(Δ)) ≥ 1/2 and Dim(Ci.o.∣R(Δ)) = 1.

Proof. Let f : {0, 1}∗ → {0, 1}∗ be defined such that for all x ∈ {0, 1}∗, ∣f(x)∣ = ∣x∣ and for

all i < ∣x∣,

f(x)[i] =

⎧

⎨

⎩

0 ∣si∣ = 2k for some k

x[i] otherwise.

It is clear that f is a p-computable dilation.

By the construction of f , it is easy to see that f(R(Δ)) ⊆ Ci.o.. Also note that f(R(Δ)) ⊆

R(Δ).

Let

#n =
∣

∣

{

i < n
∣

∣ ∣si∣ = 2k for some k
}∣

∣.

Note that for all n ∈ ℕ and all A ∈ C,

∣Col(f,A[0..n − 1])∣ = #n

and

∣f(A[0..n − 1])∣ = n.

30

It is easy to verify that for every A ∈ R(Δ),

∣Col(f,A[0..n − 1])∣ ≤ n/2 + 2
√

n/2

for all but finitely many n and

∣Col(f,A[0..n − 1])∣ ≤
√
n

for infinitely many n. Let � > 0. Now we have that, for all but finitely many n,

(1/2 − 2�)n+ ∣Col(f,A[0..n − 1])∣ ≤ n/2− 2�n+ n/2 + 2
√

n/2

= (1− 2�)n + 2
√

n/2

≤ (1− �)n,

i.e.,

g0(n, 1/2 − 2�) + ∣Col(f,A[0..n − 1])∣ ≤ g0(n, 1− �) for all but finitely many n. (3.1.3)

And similarly

g0(n, 1− 2�) + ∣Col(f,A[0..n − 1])∣ ≤ g0(n, 1− �) for infinitely many n. (3.1.4)

Note that dim(Ci.o.∣R(Δ)) < 1/2 implies that dimΔ(f(R(Δ))) = dim(f(R(Δ))∣R(Δ)) < 1/2.

By Theorem 3.1.11 and (3.1.3), dim(Ci.o.∣R(Δ)) < 1/2 then implies that dimΔ(R(Δ)) < 1,

which by Observation 2.2.2, implies �Δ(R(Δ)) = 0. By the Measure Conservation Theorem,

we know that �Δ(R(Δ)) = 1. Thus dim(Ci.o.∣R(Δ)) ≥ 1/2.

Similarly, Dim(Ci.o.∣R(Δ)) < 1 implies that DimΔ(f(R(Δ))) = Dim(f(R(Δ))∣R(Δ)) < 1.

By Theorem 3.1.11 and (3.1.4), Dim(Ci.o.∣R(Δ)) < 1 then implies that dimΔ(R(Δ)) < 1 and

thus �Δ(R(Δ)) = 0. Again by the Measure Conservation Theorem, Dim(Ci.o.∣R(Δ)) = 1.

Corollary 3.1.14. Let C be a language class that contains the trivial language ∅. Then for

all Δ ⊇ p, dimΔ(Ci.o.) ≥ 1
2 and DimΔ(Ci.o.) = 1.

Corollary 3.1.15. Let C be a language class that contains the trivial language ∅. Then

Hausdorff dimension dimH(Ci.o.) ≥ 1
2 and packing dimension dimP(Ci.o.) = 1.

31

Proof. Let Δ be all functions from {0, 1}∗ → {0, 1}∗. This follows immediately.

Now by Observation 2.2.2 and Corollary 3.1.6, we obtain the following theorem.

Theorem 3.1.16. For all c > 0

dim(SIZEi.o.(nc)∣EXP) = dimp2
(SIZEi.o.(nc)) =

1

2
,

dim(P/polyi.o.∣E3) = dimp3
(P/polyi.o.) = 1

2

and

Dim(P/polyi.o.∣E3) = Dimp3
(P/polyi.o.) = 1.

By Theorem 2.2.3, the 0th scale is the best scale for evaluating scaled p3-dimension of

P/polyi.o.. We cannot obtain more informative strong dimension results about P/polyi.o. and

it is not hard to show that for any infinitely-often class, the scaled strong dimension is 1 for

every scale gi (even for i < 0, see [47]). The statement involving strong dimension of infinitely

often classes in Theorem 3.1.13 also generalizes to all scales.

3.2 Fractals and Derandomization

In last section, we calculated the some dimensions of the classes of polynomial-size circuits.

In this section, we will look at some complexity-theoretic consequences of sequences having

non-zero dimensions.

3.2.1 Resource-Bounded Dimension and Relativized Circuit Complexity

We first review and develop those aspects of resource-bounded dimension and its relation-

ship to relativized circuit-size complexity that are needed here. It is convenient to use entropy

rates as an intermediate step in this development.

We use a recent result of Hitchcock and Vinodchandran [48] relating entropy rates to

dimension. Entropy rates were studied by Chomsky and Miller [22], Kuich [56], Staiger [90, 91],

Hitchcock [44], and others.

32

Definition. The entropy rate of a language A ⊆ {0, 1}∗ is

HA = lim sup
n→∞

log ∣A=n∣
n

,

where A=n = A ∩ {0, 1}n.

Definition. Let C be a class of languages, and let X ⊆ C. The C-entropy rate of X is

ℋC(X) = inf
{

HA

∣

∣ A ∈ C and X ⊆ Ai.o.
}

,

where

Ai.o. = {S ∈ C ∣ (∃∞n)S[0..n − 1] ∈ A} .

The following result is a routine relativization of Theorem 5.5 of [48].

Theorem 3.2.1. (Hitchcock and Vinodchandran [48]). For all X ⊆ C and k ∈ ℤ+,

dimΔp
k+2

(X) ≤ ℋΣP
k
(X).

Definition. 1. ([99]) For f : {0, 1}n → {0, 1} and A ⊆ {0, 1}∗, sizeA(f) is the minimum

size of (i.e., number of wires in) an n-input oracle circuit such that A computes f .

2. For x ∈ {0, 1}∗ and A ⊆ {0, 1}∗, sizeA(x) = sizeA(fx), where fx : {0, 1}⌈log ∣x∣⌉ → {0, 1}

is defined by

fx(wi) =

⎧

⎨

⎩

x[i] if 0 ≤ i < ∣x∣

0 if i ≥ ∣x∣,

w0, . . . , w2⌈log ∣x∣⌉−1 lexicographically enumerate {0, 1}⌈log ∣x∣⌉, and x[i] is the ith bit of x.

Lemma 3.2.2. For all A,S ∈ C,

ℋNPA({S}) ≤ lim inf
n→∞

sizeA(S[0..n − 1]) log n

n
.

Proof. Assume that

� > � > lim inf
n→∞

sizeA(S[0..n − 1]) log n

n
.

Since � and � are arbitrary, it suffices to show that ℋNPA({S}) ≤ �.

33

Let B be the set of all strings x such that sizeA(x) < � ∣x∣
log ∣x∣ . By standard circuit-counting

arguments (e.g., see [66]), there is a constant c ∈ ℕ such that, for all sufficiently large n, if we

choose m ∈ ℕ with 2m−1 ≤ n < 2m and write = 2−mn, so that

�
n

log n
= �

2m

log(2m)
≤ �

2m

m− 1
,

then

∣B=n∣ ≤ c

(

4e�
2m

m− 1

)� 2m

m−1

,

so

log ∣B=n∣ ≤ log c+ �
2m

m− 1
log

(

4e�
2m

m− 1

)

= log c+ �2m
[

m

m− 1
+

log 4e� − log(m− 1)

m− 1

]

≤ �n,

whence

HB = lim sup
n→∞

log ∣B=n∣
n

≤ �.

By our choice of �, S ∈ Bi.o.. Since B ∈ NPA, it follows that ℋNPA({S}) ≤ �.

Notation. For k ∈ ℕ and x ∈ {0, 1}∗, we write

sizeΣ
P
k (x) = sizeK

k

(x),

where Kk is the canonical ΣP
k -complete language [8].

By Theorem 3.2.1 and Lemma 3.2.2, we have the following connection between a language’s

dimension and its circuit complexity.

Theorem 3.2.3. For all S ∈ C and k ∈ ℕ,

dimΔp
k+3

(S) ≤ lim inf
n→∞

sizeΣ
P
k (S[0..n − 1]) log n

n
.

34

3.2.2 Probabilistic Promise Problems

Definition. Given a class C of languages, an ordered pair A = (A+, A−) of (disjoint) languages

is C-separable if there exists a language C ∈ C such that A+ ⊆ C and A− ∩ C = ∅. We write

C-Sep =
{

(A+, A−)
∣

∣ (A+, A−) is C-separable
}

.

Definition. Fix a standard paring function ⟨, ⟩ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗.

1. A witness configuration is an ordered pair ℬ = (B, g) where B ⊆ {0, 1}∗ and g : ℕ → ℕ.

2. Given a witness configuration ℬ = (B, g), the ℬ-critical event for a string x ∈ {0, 1}∗ is the

set

ℬx =
{

w ∈ {0, 1}g(∣x∣) ∣ ⟨x,w⟩ ∈ B
}

,

interpreted as an event in the sample space {0, 1}g(∣x∣) with the uniform probability measure.

(That is, the probability of ℬx is Pr(ℬx) = 2−g(∣x∣)∣ℬx∣.)

3. Given a class C of languages, we define the class Promise-BP ⋅ C to be the set of all ordered

pairs A = (A+, A−) of languages for which there is a witness configuration ℬ = (B, q) with

the following four properties.

(i) B ∈ C.

(ii) q is a polynomial.

(iii) For all x ∈ A+, Pr(ℬx) ≥ 2
3 .

(iv) For all x ∈ A−, Pr(ℬx) ≤ 1
3 .

Note that Promise-BP is an operator that maps a class C of languages to a class Promise-BP⋅

C of disjoint pairs of languages. In particular,

Promise-BP ⋅ P = Promise-BPP

is the class of BPP promise problems investigated by Buhrman and Fortnow [17] and Moser

[73], and

Promise-BP ⋅ NP = Promise-AM

is the class of Arthur-Merlin promise problems investigated by Moser [74].

35

3.2.3 Positive-Dimension Derandomization

We first state the main theorem regarding the relationship between dimensionality and

derandomization.

Theorem 3.2.4. For every S ∈ C and k ∈ ℕ,

dimΔp
k+3

(S) > 0 =⇒ Promise-BP ⋅ ΣP
k ⊆ ΣP,S

k -Sep.

The proof of Theorem 3.2.4 uses the lower bound on the circuit complexity of S pro-

vided by Theorem 3.2.3, to derandomize the probabilistic computation via Impagliazzo and

Wigderson’s pseudorandom generator [49]. Before proving Theorem 3.2.4, we derive some of

its consequences. First, the cases k = 0 and k = 1 are of particular interest:

Corollary 3.2.5. For every S ∈ C,

dimΔp
3
(S) > 0 =⇒ Promise-BPP ⊆ PS-Sep

and

dimΔp
4
(S) > 0 =⇒ Promise-AM ⊆ NPS-Sep.

We next note that our results for promise problems imply the corresponding results for

decision problems. (Note, however, that the results of Fortnow [33] suggest that the results on

promise problems are in some sense stronger.)

Corollary 3.2.6. For every S ∈ C and k ∈ ℕ,

dimΔp
k+3

(S) > 0 =⇒ BP ⋅ ΣP
k ⊆ ΣP,S

k .

In particular,

dimΔp
3
(S) > 0 =⇒ BPP ⊆ PS (3.2.1)

and

dimΔp
4
(S) > 0 =⇒ AM ⊆ NPS . (3.2.2)

36

Intuitively, (3.2.1) says that even an oracle S with Δp
3-dimension 0.001 – which need not

be random relative to any reasonable distribution – “contains enough randomness” to carry

out a deterministic simulation of BPP. To put the matter differently, to prove that P = BPP,

we need “only” show how to dispense with such an oracle S.

For each relativizable complexity class C (of languages or pairs of languages), recall the

dimension-almost-class dimalmost-C and the almost-class almost-C defined in the introduction.

Theorem 3.2.7. For every k ∈ ℕ,

dimalmost-ΣP
k -Sep = almost-ΣP

k -Sep = Promise-BP ⋅ ΣP
k .

Nisan and Wigderson’s unconditional pseudorandom generator for constant depth circuits

is used in the proof for Theorem 3.2.7. We state it here.

Theorem 3.2.8 (Nisan and Wigderson [76]). Let d ∈ ℤ+. There exists a function GNW :

{0, 1}∗ → {0, 1}∗ defined by a collection {Gn : {0, 1}ln → {0, 1}n} such that ln = O((log n)2d+6),

Gn is computable by a logspace uniform family of circuits of polynomial size and depth d+ 4,

and for any circuit family {Cn : {0, 1}n → {0, 1}} of polynomial size and depth d,

∣Pr[Cn(x) = 1]− Pr[Cn(Gn(y))]∣ ≤ 1/n.

Proof of Theorem 3.2.7. We only prove this for k > 0; the proof is easier when k = 0.

Since every set of Hausdorff dimension less than 1 has Lebesgue measure 0, it is clear that

dimalmost-ΣP
k -Sep ⊆ almost-ΣP

k -Sep.

To see that almost-ΣP
k -Sep ⊆ Promise-BP ⋅ ΣP

k , we use Nisan and Wigderson’s proof that

almost-ΣP
k is contained in BP ⋅ΣP

k . Let A = (A+, A−) ∈ almost-ΣP
k -Sep. Then by the Lebesgue

density theorem, there exists a ΣP
k oracle machine N ′ with time bound nm such that

PrR[N
′R separates A] ≥ 3/4.

Note that when an input x is fixed and ∣x∣ = n, the computation of N ′(x) may be represented

as a depth k+2 circuit of size at most 2(k+1)nm
with at most 2(k+1)nm

oracle queries as input.

This is a linear size (with respect to oracle input length) depth k + 2 circuit. We will use

37

Theorem 3.2.8 to reduce the exponential number of queries on random oracle to n(2k+10)m

random oracle queries.

Let GNW be the Nisan-Wigderson pseudorandom generator. Let ln = n(2k+10)m. Let N be

the following Turing machine.

input x

n = ∣x∣

input s ∈ {0, 1}ln

let R̃ = GNW (s)

simulate N ′R̃(x)

output the output of the simulation

Note that in the above Turing machine, we do not compute R̃ as a whole. When a bit of

R̃ is queried, we compute that bit individually, which can be done in polynomial time. And

for each computation path of N ′R̃(x), there are only polynomially many queries to R̃.

For all x ∈ A+, PrR[N
′R(x) = 1] ≥ 3/4. By the pseudorandomness of GNW , then,

Prs∈{0,1}ln [N
′GNW (s)(x) = 1] ≥ 2/3. (3.2.3)

Similarly, for all x ∈ A−,

Prs∈{0,1}ln [N
′GNW (s)(x) = 1] ≤ 1/3. (3.2.4)

Let

B = {⟨x, s⟩ ∣ N(⟨x, s⟩) = 1} .

It is clear that B ∈ ΣP
k . Also by (3.2.3), for all x ∈ A+,

Pr(Bx) ≥ 2/3,

and, by (3.2.4), for all x ∈ A−,

Pr(Bx) ≤ 1/3.

38

Then (B,n(2k+10)m) is a witness configuration for A, so A ∈ Promise-BP ⋅ ΣP
k .

To see that Promise-BP ⋅ ΣP
k ⊆ dimalmost-ΣP

k -Sep, let A ∈ Promise-BP ⋅ ΣP
k . Let

X =
{

S
∣

∣

∣
A /∈ ΣPS

k -Sep
}

.

By Theorem 3.2.4, every element of X has Δp
k+3-dimension 0. By (2.2.3), this implies that

dimH(X) = 0, whence A ∈ dimalmost-ΣP
k -Sep.

Corollary 3.2.9. For every k ∈ ℕ,

dimalmost-ΣP
k = BP ⋅ ΣP

k .

In particular,

dimalmost-P = BPP (3.2.5)

and

dimalmost-NP = AM. (3.2.6)

We now turn to the proof of Theorem 3.2.4. We use the following well-known derandom-

ization theorem.

Theorem 3.2.10 (Impagliazzo and Wigderson [49]). For each � > 0, there exists constants

c′ > c > 0 such that, for every A ⊆ {0, 1}∗ and integer n > 1, the following holds. If

f : {0, 1}⌊c logn⌋ → {0, 1} is a Boolean function that cannot be computed by an oracle circuit

of size at most nc� relative to A, then the generator GIW97
f : {0, 1}⌊c′ logn⌋ → {0, 1}n has the

property that, for every oracle circuit with size at most n,

∣

∣

∣
Prr∈Un [

A(r) = 1]− Prx∈U⌊c′ log n⌋ [
A(GIW97

f (x)) = 1]
∣

∣

∣
< 1

n ,

where Um denotes {0, 1}m with the uniform probability measure.

Proof of Theorem 3.2.4. We prove the theorem for k > 0, since the proof is easier when

k = 0.

Assume that dimΔp
k+3

(S) = � > 0. It suffices to show that for every A ∈ Promise-BP ⋅ΣP
k ,

A ∈ ΣP,S
k -Sep. Note that Promise-BP ⋅ ΣP

k does not have oracle access to S. So we actually

prove A ∈ NPΣP
k−1,S-Sep.

39

By Theorem 3.2.3, we have that sizeΣ
P
k (S[0..n − 1]) > �n

2 logn for all but finitely many n.

Let A = (A+, A−) ∈ Promise-BP ⋅ Σp
k. There exist B ∈ ΣP

k and a polynomial q such that

(B, q) is a witness configuration for A. Therefore, there exist polynomial-time oracle Turing

machine M and a polynomial p such that, for all x ∈ A+,

Pr
r
[(∃w ∈ {0, 1}p(∣x∣))MKk−1

(x, r, w) = 1] ≥ 2/3 (3.2.7)

and, for all x ∈ A−,

Pr
r
[(∃w ∈ {0, 1}p(∣x∣))MKk−1

(x, r, w) = 1] ≤ 1/3. (3.2.8)

Let nd be the upper bound on the running time of M on x of length n with r and w of

corresponding lengths.

Let � = �/2, let c′, c be fixed in Theorem 3.2.10, and let f : {0, 1}⌊cd logn⌋ → {0, 1} be (the

Boolean function whose truth table is) given by the first 2⌊cd logn⌋ bits of S.

By Theorem 3.2.10, GIW97
f derandomizes linear size circuits with ΣP

k oracles and linear size

nondeterministic circuits with ΣP
k−1 oracles. Let NKk−1,S be the following nondeterministic

Turing machine with oracles Kk−1 and S.

input x

n = ∣x∣

guess w1, w2, . . . , w2⌊c′d log n⌋ ∈ {0, 1}p(n)

query the first 2⌊cd logn⌋ bits of S

Let f : {0, 1}⌊cd logn⌋ → {0, 1} be given by the first 2⌊cd logn⌋ bits of S

for each string si ∈ {0, 1}⌊c′d logn⌋ do

Let ri = GIW97
f (si)

end for

Let r = 0

for each ri

if MKk−1
(x, ri, wi) = 1 then r = r + 1

end for

40

if r

2⌊c′d log n⌋ ≥ 1/2 then output 1

else output 0.

By Theorem 3.2.10, (3.2.7), and (3.2.8), for all x ∈ A+, there exists a tuple of witnesses

⟨w1, w2, . . . , w2⌊c′d log n⌋⟩ such that NKk−1,S(x)= 1, and, for all x ∈ A−, such witnesses do not

exist. Therefore, the NPKk−1
machine we constructed above separates A with oracle S, and

hence A ∈ ΣP,S
k -Sep.

It should be noted that derandomization plays a significantly larger role in the proof of

Corollary 3.2.9 than in the proofs of the analogous results for almost-classes. For example,

the proof by Bennett and Gill [11] that almost-P = BPP uses the easily proven fact that

the set X =
{

S
∣

∣ PS ∕= BPPS
}

has Lebesgue measure 0. Hitchcock [46] has recently proven

that this set has Hausdorff dimension 1, so the Bennett-Gill argument does not extend to

a proof of (3.2.5). Instead, our proof of (3.2.5) relies, via (3.2.1), on Theorem 3.2.10 to

prove that the set Y =
{

S
∣

∣ BPP ⊈ PS
}

has Hausdorff dimension 0. Similarly, the proof

by Nisan and Wigderson [76] that almost-NP ⊆ AM uses derandomization, but their proof

that AM ⊆ almost-NP is elementary. In contrast, both directions of the proof of (3.2.6) use

derandomization: The inclusion dimalmost-NP ⊆ AM relies on the fact that almost-NP ⊆ AM

(hence on derandomization), and our proof that AM ⊆ dimalmost-NP relies, via (3.2.2), on

Theorem 3.2.10.

41

4 Fractals in Individual Sequences and Saturated Sets

In this chapter, we investigate the fractal phenomenon at the finite-state level. In particular,

we study two very different kinds of sets. One is singleton sets that contains exactly one

individual sequence that we call the Copeland-Erdős sequences and the other is sets with

certain saturation properties. We start with a review of the finite-state dimensions.

4.1 Finite-State Dimensions

Finite-state dimension and strong dimension are finite-state counterparts of classical Haus-

dorff dimension [42] and packing dimension [69, 94] introduced in early 2000s in the Cantor

space C [26, 7]. Finite-state dimensions are defined by using the gale characterizations of the

Hausdorff dimension [63] and the packing dimension [7] by restricting the gales to the ones

whose underlying betting strategies can be carried out by finite-state gamblers. In the follow-

ing, we give the definitions of the finite-state dimensions in space Cm and review their basic

properties. First, we define finite-state gamblers on alphabet Σm, which is the fundamen-

tal construct in defining finite-state dimensions. Finite-state gamblers were investigated by

Schnorr and Stimm [87], Feder [32], and others in connection to finite-state data compression

and normality. The definition here was given by Dai, Lathrop, Lutz, and Mayordomo [26].

Definition. A finite-state gambler (FSG) is a 5-tuple G = (Q,Σm, �, �⃗, q0) such that Q is a

non-empty finite set of states; Σm is the input alphabet; � : Q×Σm → Q is the state transition

function; �⃗ : Q→ Δ(Σm) is the betting function; q0 ∈ Q is the initial state.

42

The extended transition function �∗ : Q× Σ∗
m → Q is defined such that

�∗(q, wa) =

⎧

⎨

⎩

q if w = a = �,

�(�∗(q, w), a) if w ∕= �.

We use � for �∗ and �(w) for �(q0, w) for convenience.

The betting function �⃗ : Q→ Δ(Σm) specifies the bets �i(q) the FSG places on each input

symbol i in Σm with respect to a state q ∈ Q.

Definition. ([26]). Let G = (Q,Σm, �, �⃗, q0) be an FSG. The s-gale of G is the function

d
(s)
G : Σ∗

m → [0,∞) defined by the recursion

d
(s)
G (wb) =

⎧

⎨

⎩

1 if w = b = �,

msd
(s)
G (w)�i(�(w))(b) if b ∕= �,

for all w ∈ Σ∗
m and b ∈ Σm ∪ {�}. For s ∈ [0,∞), a function d : Σ∗

m → [0,∞) is a finite-state

s-gale if it is the s-gale of some finite-state gambler.

Note that in the original definition of a finite-state gambler the range of the betting function

�⃗ is Δ({0, 1}) ∩ ℚ2 [26, 7]. It was shown in [39] that allowing the range of �⃗ to have irra-

tional probability measures does not change the notions of finite-state dimension and strong

dimension.

The definitions of finite-state dimensions are straightforward.

Definition. ([26, 7]). Let X ⊆ Cm. The finite-state dimension of X is

dimFS(X) = inf {s ∈ [0,∞) ∣ X ⊆ S∞[d] for some finite-state s-gale d}

and the finite-state strong dimension of X is

DimFS(X) = inf {s ∈ [0,∞) ∣ X ⊆ S∞
str[d] for some finite-state s-gale d} .

We will use the following basic properties of the Hausdorff, packing, finite-state, and strong

finite-state dimensions.

Theorem 4.1.1 ([26, 7]). Let X,Y,Xi ⊆ Σ∞
m for i ∈ ℕ.

43

1. 0 ≤ dimH(X) ≤ dimFS(X) ≤ 1, 0 ≤ dimP(X) ≤ DimFS(X) ≤ 1.

2. dimH(X) ≤ dimP(X), dimFS(X) ≤ DimFS(X).

3. If X ⊆ Y , then the dimension of X is at most the dimension of Y .

4. dimFS(X ∪ Y) = max{dimFS(X),dimFS(Y)}.

5. DimFS(X ∪ Y) = max {DimFS(X),DimFS(Y)}.

6. dimH (
∪∞

i=0Xi) = supi∈ℕ dimH(Xi), dimP(
∪∞

i=0Xi) = supi∈ℕ dimP(Xi).

We repeatedly use the obvious fact that d
(s)
G (w) ≤ ks∣w∣ holds for all s and w.

We now develop a measure of the size of a finite-state gambler so that we can study the

limitation of finite-state gambler in the context of some lower bound arguments we use later.

This size notion depends on the alphabet size, the number of states, and the least common

denominator of the values of the betting function in the following way.

Definition. The size of an FSG G = (Q,Σk, �, �, q0) is

size(G) = (k + l)∣Q∣,

where l = min {l ∈ ℤ+ ∣ (∀q ∈ Q)(∀i ∈ Σk)l�(q)(i) ∈ ℤ}.

Observation 4.1.2. For each k ≥ 2 and t ∈ ℤ+, there are, up to renaming of states, fewer

than t2(2t)t finite-state gamblers G with size(G) ≤ t.

Proof. Given k, l,m ∈ ℤ+ with k ≥ 2, let Gk,l,m be the set of all FSGs G = (Σm,Σk, �, �, q0)

satisfying l�(q)(i) ∈ ℤ for all q ∈ Σm and i ∈ Σk. Equivalently, Gk,l,m is the set of all FSGs

G = (Q,Σk, �, �, q0) such that Q = {0, . . . ,m− 1} and � : Q → Δℚl
(Σk), where

Δℚl
(Σk) = {� ∈ Δℚ(Σk) ∣ (∀i ∈ Σk)l�(i) ∈ ℤ} .

Since ∣Δℚl
(Σk)∣ =

(k+l−1
k−1

)

, it is easy to see that

∣Gk,l,m∣ = mkm+1

(

k + l − 1

k − 1

)m

. (4.1.1)

44

Now fix k ≥ 2 and t ∈ ℤ+, and let Gt be the set of all FSGs G = (Σm,Σk, �, �, q0) with

size(G) ≤ t. Our objective is to show that ∣Gt∣ < t2(2t)t. For each 1 ≤ j ≤ t, there are at most

j pairs (l,m) such that (k + l)m = j, and, for each of these pairs (l,m), (4.1.1) tells us that

∣Gk,l,m∣ < (2j)j , so

∣Gt∣ <
t
∑

j=1

j(2j)j < t2(2t)t.

In general, an s-gale is a function d : Σ∗
k → [0,∞) satisfying

d(w) = k−s
k−1
∑

a=0

d(wa)

for all w ∈ Σ∗
k [63]. It is clear that d

(s)
G is an s-gale for every FSG G and every s ∈ [0,∞).

The case k = 2 of the following lemma was proven in [63]. The extension to arbitrary k ≥ 2 is

routine.

Theorem 4.1.3 (Lutz [63], Dai, Lathrop, Lutz, and Mayordomo [26]). Let d be an s-supergale,

where s ∈ [0,∞). Then for all w ∈ Σ∗
m, l ∈ ℕ, and 0 < � ∈ ℝ, there are fewer than msl

� strings

u ∈ Σl
m for which d(wu) > �d(w).

The following lemma is an extension of the above theorem that bound the number of

profitable strings when multiple gales are used together.

Lemma 4.1.4. For each s, � ∈ (0,∞) and k, n, t ∈ ℤ+ with k ≥ 2, there are fewer than

k2snst2(2t)t

�(ks − 1)

integers m ∈ {1, . . . , n} for which

max
size(G)≤t

d
(s)
G (�k(m)) ≥ �,

where the maximum is taken over all FSGs G = (Q,Σk, �, �, q0) with size(G) ≤ t.

Proof. Let s, �, k, n, and t be as given, and let Gt be the set of all FSGs G = (Σm,Σk, �, �, q0)

with size(G) ≤ t. For each j ∈ ℤ+ and G ∈ Gt, Theorem 4.1.3 tells us that there are fewer

45

than ksj

� strings u ∈ Σ∗
k of length j for which d

(s)
G (u) ≥ �. It follows by Observation 4.1.2 that,

for each j ∈ ℤ+, there are fewer than t2(2t)t k
sj

� strings u ∈ Σ∗
k of length j for which

max
G∈Gt

d
(s)
G (u) ≥ �

holds. Since
∣�k(n)∣
∑

j=1

t2(2t)t
ksj

�
=
t2(2t)t

�

1+⌊logk n⌋
∑

j=1

ksj ≤ k2snst2(2t)t

�(ks − 1)
,

the lemma follows.

4.2 Zeta-dimension

The Zeta-dimension is a quantitative measure of the logarithmic asymptotic density of a

set A of positive integers. It has been discovered several times by researchers in various areas

over the past few decades.

Definition. The zeta-dimension of a set A ⊆ ℤ+ is

Dim�(A) = inf {s ∣ �A(s) <∞} ,

where the A-zeta function �A : [0,∞) → [0,∞] is defined by

�A(s) =
∑

n∈A
n−s.

It is easy to see (and was proven by Cahen [18] in 1894; see also [6, 41]) that zeta-dimension

admits the “entropy characterization”

Dim�(A) = lim sup
n→∞

log∣A ∩ {1, . . . , n}∣
log n

. (4.2.1)

It is then natural to define the lower zeta-dimension of A to be

dim�(A) = lim inf
n→∞

log∣A ∩ {1, . . . , n}∣
log n

. (4.2.2)

Various properties of zeta-dimension and lower zeta-dimension, along with extensive historical

references, appear in the recent paper [27], but none of this material is needed to follow

46

our technical arguments here. In the following, we will develop some properties of the zeta-

dimensions that we will use here.

The following lemma gives useful characterizations of the zeta-dimensions in terms of the

increasing enumeration of A.

Lemma 4.2.1. Let A = {a1 < a2 < ⋅ ⋅ ⋅ } be an infinite set of positive integers.

1. dim�(A) = inf
{

t ≥ 0
∣

∣ (∃∞n)atn > n
}

= inf
{

t ≥ 0
∣

∣ (∃∞n)atn ≥ n
}

= sup
{

t ≥ 0
∣

∣ (∀∞n)atn < n
}

= sup
{

t ≥ 0
∣

∣ (∀∞n)atn ≤ n
}

.

2. Dim�(A) = inf
{

t ≥ 0
∣

∣ (∀∞n)atn > n
}

= inf
{

t ≥ 0
∣

∣ (∀∞n)atn ≥ n
}

= sup
{

t ≥ 0
∣

∣ (∃∞n)atn < n
}

= sup
{

t ≥ 0
∣

∣ (∃∞n)atn ≤ n
}

.

Proof. Let A be as given. For each R ∈ {<,≤, >,≥}, define the sets

IR =
{

t ≥ 0
∣

∣ (∃∞n)atn R n
}

,

JR =
{

t ≥ 0
∣

∣ (∀∞n)atn R n
}

.

Our task is then to prove that

dim�(A) = inf I> = inf I≥ = supJ< = supJ≤ (4.2.3)

and

Dim�(A) = inf J> = inf J≥ = sup I< = sup I≤. (4.2.4)

Note that each of the pairs (J<, I≥), (J≤, I>), (I<, J≥), (I≤, J>) partitions [0,∞) into two

nonempty subsets with every element of the left component less than every element of the

right component, the left components satisfying

0 ∈ J< ⊆ J≤ ∩ I< ⊆ J≤ ∪ I< ⊆ I≤,

and the right components satisfying

(1,∞) ⊆ J> ⊆ J≥ ∩ I> ⊆ J≥ ∪ I> ⊆ I≥.

47

It follows immediately from this that

supJ< = inf I≥ ≤ supJ≤ = inf I>

and

sup I< = inf J≥ ≤ sup I≤ = inf J>.

Hence, to prove (4.2.3) and (4.2.4), it suffices to show that

inf I> ≤ dim�(A) ≤ inf I≥ (4.2.5)

inf J> ≤ Dim�(A) ≤ inf J≥. (4.2.6)

To see that inf I> ≤ dim�(A), let t > dim�(A). Fix t
′ with t > t′ > dim�(A). Then, by the

definition of dim�(A), there exist infinitely many n ∈ ℤ+ such that

∣A ∩ {1, . . . , n}∣ < nt
′
. (4.2.7)

If n satisfies (4.2.7) and is large enough that nt ≥ nt
′
+1, fix k such that ak ≤ n < ak+1. Then

we have

atk+1 > nt ≥ nt
′
+ 1 > ∣A ∩ {1, . . . , n}∣+ 1 = k + 1.

It follows that there exist infinitely many k such that atk > k, i.e., that t ∈ I>, whence

inf I> ≤ t. Since this holds for all t > dim�(A), it follows that inf I> ≤ dim�(A).

To see that dim�(A) ≤ inf I≥, let t > inf I≥. Then there exist infinitely many n ∈ ℤ+ such

that atn ≥ n. For each of these n, we have

∣A ∩ {1, . . . , an}∣ = n ≤ atn,

so there exist infinitely many m ∈ ℤ+ such that

∣A ∩ {1, . . . , ,m}∣ ≤ mt.

This implies that

dim�(A) = lim inf
m→∞

log∣A ∩ {1, . . . ,m}∣
logm

≤ t.

Since this holds for all t > inf I≥, it follows that dim�(A) ≤ inf I≥. This completes the proof

that (4.2.5) holds.

The proof that (4.2.6) holds is similar.

48

4.3 Dimensions of Copeland-Erdős Sequences

Now we are ready to establish the connection between the zeta-dimensions of A and the

finite-state dimensions of CEk(A).

Theorem 4.3.1. Let k ≥ 2. For every infinite set A ⊆ ℤ+,

dimFS(CEk(A)) ≥ dim�(A) (4.3.1)

and

DimFS(CEk(A)) ≥ Dim�(A). (4.3.2)

Proof. Let A = {a1 < a2 < ⋅ ⋅ ⋅ } ⊆ ℤ+ be infinite. Fix 0 < s < t < 1, let

Jt =
{

n ∈ ℤ+
∣

∣ atn < n
}

,

and let G = (Q,Σk, �, �, q0) be an FSG. Let n ∈ ℤ+, and consider the quantity d
(s)
G (wn), where

wn = �k(a1) ⋅ ⋅ ⋅ �k(an).

There exist states q1, . . . , qn ∈ Q such that

d
(s)
G (wn) =

n
∏

i=1

d
(s)
Gqi

(�k(ai)),

whereGqi = (Q,Σk, �, �, qi). Let B =
{

1 ≤ i ≤ n
∣

∣

∣ d
(s)
Gqi

(�k(ai)) ≥ 1
k

}

, and let Bc = {1, . . . , n}−

B. Then

d
(s)
G (wn) =

(

∏

i∈B
d
(s)
Gqi

(�k(ai))

)(

∏

i∈Bc

d
(s)
Gqi

(�k(ai))

)

. (4.3.3)

By our choice of B,
∏

i∈Bc

d
(s)
Gqi

(�k(ai)) ≤ k∣B∣−n. (4.3.4)

By Lemma 4.1.4,

∣B∣ ≤ ck2s+1asn
ks − 1

, (4.3.5)

where c = size(G)2(2size(G))size(G). Since d
(s)
Gqi

(u) ≤ ks∣u∣ must hold in all cases, it follows that

∏

i∈B
d
(s)
Gqi

(�k(ai)) ≤ ks∣B∣∣�k(an)∣ ≤ ks∣B∣(1+logk an). (4.3.6)

49

By (4.3.3), (4.3.4), (4.3.5), and (4.3.6), we have

logk d
(s)
G (wn) ≤ �(1 + s+ s logk an)a

s
n − n, (4.3.7)

where � = ck2s+1

ks−1 . If n is sufficiently large, and if n+ 1 ∈ Jt, then (4.3.7) implies that

logk d
(s)
G (wn) ≤ �(1 + s+ s logk an)a

s
n − 2(n + 1)

s+t
2t

≤ �(1 + s+ s logk an)a
s
n − 2a

s+t
2

n+1

≤ �(1 + s+ s logk an)a
s
n − a

s+t
2

n − s(1 + logk an+1)

≤ −s(1 + logk an+1)

≤ −s∣�k(an+1)∣.

We have now shown that

d
(s)
G (wn) ≤ k−s∣�k(an+1)∣ (4.3.8)

holds for all sufficiently large n with n+ 1 ∈ Jt.

To prove (4.3.1), let s < t < dim�(A). It suffices to show that dimFS(CEk(A)) ≥ s. Since

t < dim�(A), Lemma 4.2.1 tells us that the set Jt is cofinite. Hence, for every sufficiently long

prefix w ⊑ CEk(A), there exist n and u ⊑ �k(an+1) such that w = wnu and (4.3.8) holds,

whence

d
(s)
G (w) ≤ k−s∣�k(an+1)∣ks∣u∣ ≤ 1.

This shows that the s-gale of G does not succeed on CEk(A), whence dimFS(CEk(A)) ≥ s.

To prove (4.3.2), let s < t < Dim�(A). It suffices to show that DimFS(CEk(A)) ≥ s. Since

t < Dim�(A), Lemma 4.2.1 tells us that the set Jt is infinite. For the infinitely many n for

which n + 1 ∈ Jt and (4.3.8) holds, we then have d
(s)
G (wn) < 1. This shows that the s-gale of

G does not strongly succeed on CEk(A), whence DimFS(CEk(A)) ≥ s.

The above theorem may also be proved using Ziv and Lempel’s result [100] and the equiv-

alence between finite-state compression ratios and finite-state dimension [26, 7].

In the following, we establish the tightness of the bounds in the above theorem. In order

to achieve this, we first establish the following relationship between entropy of a probability

distribution and the abundance of the strings whose symbols satisfy the distribution.

50

Lemma 4.3.2. For every n ≥ k ≥ 2 and every partition a⃗ = (a0, . . . , ak−1) of n, there are

more than

knℋk(
a⃗
n
)−(k+1) logk n

integers m with ∣�k(m)∣ = n and #(i, �k(m)) = ai for each i ∈ Σk.

Proof. Let n ≥ k ≥ 2, and let a⃗ = (a0, . . . , ak−1) be a partition of n. Define the sets

B = {u ∈ Σn
k ∣ (∀i ∈ Σk)#(i, u) = ai } ,

C =
{

m ∈ ℤ+ ∣ �k(m) ∈ B
}

.

Define an equivalence relation ∼ on B by

u ∼ v ⇐⇒ (∃x, y ∈ Σ∗
k)[u = xy and v = yx].

Then each ∼-equivalence class has at most n elements and contains �k(m) for at least one

m ∈ C, so

∣C∣ ≥ 1

n
∣B∣.

Using multinomial coefficients and the well-known estimate e(te)
t < t! < et(te)

t, valid for all

t ∈ ℤ+, we have

∣B∣ =
(

n

a0, . . . , ak−1

)

=
n!

∏k−1
i=0 ai!

>
1

ek−1
∏k−1

i=0 ai

k−1
∏

i=0

(

n

ai

)ai

.

Since the geometric mean is bounded by the arithmetic mean,

k−1
∏

i=0

ai ≤
(

1

k

k−1
∑

i=0

ai

)k

=
(n

k

)k
.

Putting this all together, we have

∣C∣ > kk

ek−1nk+1

k−1
∏

i=0

(

n

ai

)ai

≥ 1

nk+1

k−1
∏

i=0

(

n

ai

)ai

,

whence

logk∣C∣ >
(

logk

k−1
∏

i=0

(

n

ai

)ai
)

− (k + 1) logk n

= nℋk

(

a⃗

n

)

− (k + 1) logk n.

51

Theorem 4.3.3. Let k ≥ 2. For any four real numbers �, �, , � satisfying the inequalities

 ≤ � ≤ 1

≤ ≤

0 ≤ � ≤ �,

(4.3.9)

there exists an infinite set A ⊆ ℤ+ such that dim�(A) = �, Dim�(A) = �, dimFS(CEk(A)) = ,

and DimFS(CEk(A)) = �.

Proof. Let �, �, , and � be real numbers satisfying (4.3.9). We will explicitly construct

an infinite set A ⊆ ℤ+ with the indicated dimensions. Intuitively, the values of dim�(A) and

Dim�(A) will be achieved by controlling the density of A; the upper bounds on dimFS(CEk(A))

and DimFS(CEk(A)) will be achieved by constructing A from integers whose base-k expansions

have controlled frequencies of digits (such integers being abundant by Lemma 4.3.2); and the

lower bounds on dimFS(CEk(A)) and DimFS(CEk(A)) will be achieved by avoiding use of the

very few (by Lemma 4.1.4) integers on whose base-k expansions a finite-state gambler can win.

We first define some useful probability measures on Σk, all expressed as vectors. Let

�⃗ = (1k , . . . ,
1
k) ∈ Δ(Σk) be the uniform probability measure, and let �⃗ = (1, 0, . . . , 0) ∈ Δ(Σk)

be the degenerate probability measure that concentrates all probability on 0. Define the

function g : [0, 1] → Δ(Σk) by

g(r) = r�⃗+ (1− r)�⃗.

Then g defines a line segment from a corner g(0) = �⃗ to the centroid g(1) = �⃗ of the simplex

Δ(Σk). Also, ℋk ∘ g : [0, 1] → [0, 1] is strictly increasing and continuous, with ℋk(g(0)) = 0

and ℋk(g(1)) = 1. Let r = (ℋk ∘ g)−1(), r� = (ℋk ∘ g)−1(�), �⃗ = g(r), and �⃗ = g(r�), so

that

ℋk(�⃗) = ,ℋk(�⃗) = �.

Then let �⃗(k), �⃗(k+1), �⃗(k+2), . . . and �⃗ (k), �⃗ (k+1),�⃗ (k+2), . . . be sequences in Δℚ(Σk) with the

following properties.

(i) For each n ≥ k, n�⃗(n) and n�⃗ (n) are partitions of n, with each n�⃗(n)(i) ≥ √
n and

n�⃗ (n)(i) ≥ √
n for n ≥ k2.

52

(ii) lim
n→∞

�⃗(n) = �⃗ and lim
n→∞

�⃗ (n) = �⃗ .

Note that (i) ensures that

ℋk(�⃗
(n)) ≥ k − 1

2
√
n

logk n, ℋk(�⃗
(n)) ≥ k − 1

2
√
n

logk n (4.3.10)

hold for all n ≥ k2.

For each u ∈ Σ∗
k and s ∈ [0,∞), let Gu be the set of all FSGs G with size(G) ≤ logk logk∣u∣,

and let

d(s)max(u) = max
G∈Gu

d
(s)
G (u).

Define the sets

U =
{

a ≥ kk−1
∣

∣

∣
d(ℋk(�⃗

(∣�k(a)∣)))
max (�k(a)) > ∣�k(a)∣k+2

}

,

V =
{

a ≥ kk−1
∣

∣

∣
d(ℋk(�⃗

(∣�k(a)∣)))
max (�k(a)) > ∣�k(a)∣k+2

}

,

C =
{

a ≥ kk−1
∣

∣

∣
(∀i ∈ Σk)#(i, �k(a)) = ∣�k(a)∣�⃗(∣�k(a)∣)(i)

}

,

D =
{

a ≥ kk−1
∣

∣

∣
(∀i ∈ Σk)#(i, �k(a)) = ∣�k(a)∣�⃗ (∣�k(a)∣)(i)

}

,

C ′ = C − U,

D′ = D − V.

Then, for all n ≥ k, we have

∣U=n∣ =
{

a ∈ ℤ+
=n

∣

∣

∣ d(ℋk(�⃗
(n)))

max (�k(a)) > nk+2
}

,

so Lemma 4.1.4 tells us that

∣U=n∣ <
k2ℋk(�⃗

(n))+nℋk(�⃗
(n))t2(2t)t

nk+2(kℋk(�⃗(n)) − 1)

for all n ≥ k, where t = logk logk n. It follows easily from this that

∣U=n∣ = o(knℋk(�⃗
(n))−(k+1) logk n) (4.3.11)

as n→ ∞. By Lemma 4.3.2, we have

∣C=n∣ ≥ knℋk(�⃗
(n))−(k+1) logk n. (4.3.12)

53

(By (4.3.10), this is positive for all sufficiently large n.) Putting (4.3.11) and (4.3.12) together

with our choice of the �⃗(n) gives us

∣C ′
=n∣ ≥ max{1, k(�−o(1))n} (4.3.13)

as n→ ∞. A similar argument shows that

∣D′
=n∣ ≥ max{1, k(�−o(1))n} (4.3.14)

as n→ ∞. It follows that we can fix sets C ′′ ⊆ C ′ and D′′ ⊆ D′ such that

max{1, k(�−o(1))n} ≤ ∣C ′′
=n∣ ≤ k(�+o(1))n (4.3.15)

and

max{1, k(�−o(1))n} ≤ ∣D′′
=n∣ ≤ k(�+o(1))n (4.3.16)

as n→ ∞.

Now define T : ℤ+ → ℤ+ by the recursion

T (1) = k, T (l + 1) = kT (l),

so that T (l) is an “exponential tower” kk
⋅⋅
⋅k

of height l. For each n ≥ k, let T−1(n) be the

unique l such that T (l) ≤ n < T (l + 1). Let

C∗ =
∪

T−1(n) even

C ′′
=n, D∗ =

∪

T−1(n) odd

D′′
=n,

and let

A = C∗ ∪D∗.

This is our set A.

We now note the following.

54

1. By (4.3.15),

∣A ∩ {1, . . . , kT (2l+1)−1 − 1}∣

=

T (2l)−1
∑

n=1

∣A=n∣+
T (2l+1)−1
∑

n=T (2l)

∣A=n∣

≤
T (2l)−1
∑

n=0

kn +

T (2l+1)−1
∑

n=T (2l)

k(�+o(1))n

≤ kT (2l) + k(�+o(1))T (2l+1)

= k(�+o(1))T (2l+1)

as l → ∞, so (4.2.2) tells us that

dim�(A) ≤ lim inf
l→∞

logk∣A ∩ {1, . . . , kT (2l+1)−1 − 1}∣
logk k

T (2l+1)−2

≤ lim inf
l→∞

(�+ o(1))T (2l + 1)

T (2l + 1)− 2
= �.

2. By (4.3.15), (4.3.16), and the fact that � ≤ �,

∣A ∩ {1, . . . ,m}∣ ≥
∣�k(m)∣−1
∑

n=1

∣A=n∣

≥
∣�k(m)∣−1
∑

n=1

k(�−o(1))n

= k(�−o(1))∣�k(m)∣

= m�−o(1)

as m→ ∞, so (4.2.2) tells us that dim�(A) ≥ �.

3. By (4.3.15), (4.3.16), and the fact that � ≤ �,

∣A ∩ {1, . . . ,m}∣ ≤
∣�k(m)∣
∑

n=1

∣A=n∣

≤
∣�k(m)∣
∑

n=1

k(�+o(1))n

= k(�+o(1))∣�k(m)∣

= m�+o(1)

55

as m→ ∞, so (4.2.1) tells us that Dim�(A) ≤ �.

4. By (4.2.1) and (4.3.16),

Dim�(A) ≥ lim sup
n→∞

logk∣A=n∣
logk(k

n − 1)

≥ lim sup
n→∞

logk k
(�−o(1))n

logk(k
n − 1)

= �.

These four things together show that dim�(A) = � and Dim�(A) = �.

Our next objective is to prove that dimFS(CEk(A)) ≥ and DimFS(CEk(A)) ≥ �. For this,

let G = (Q,Σk, �, �, q0) be an FSG, and let s ∈ [0,∞). It suffices to prove that

s < ⇒ the s-gale of G does not succeed on CEk(A) (4.3.17)

and

s < � ⇒ the s-gale of G does not strongly succeed on CEk(A). (4.3.18)

Write A = {a1 < a2 < ⋅ ⋅ ⋅ }, so that

CEk(A) = �k(a1)�k(a2)�k(a3) ⋅ ⋅ ⋅ .

There is a sequence q1, q2, q3, . . . of states qi ∈ Q such that, for any m ≥ 0 and any proper

prefix u ⊏
∕=
�k(am+1),

d
(s)
G (�k(a1) ⋅ ⋅ ⋅ �k(am)u) =

(

m−1
∏

i=0

d
(s)
Gqi

(�k(ai+1))

)

d
(s)
Gqm

(u), (4.3.19)

where Gq = (Q,Σk, �, �, q). Let c = size(G). Note that, for all q ∈ Q, size(Gq) = c, so

a ≥ kk
kc ⇒ c ≤ logk logk logk a ≤ logk logk∣�k(a)∣

⇒ Gq ∈ G�k(a).

Since C∗ ∩ U = ∅, it follows that, for all q ∈ Q,

kk
kc ≤ a ∈ C∗

=n ⇒ d
(ℋk(�⃗

(n)))
Gq

(�k(a)) ≤ nk+2.

Using the identity d
(s)
Gq

(x) = k(s−s′)∣x∣d(s
′)

Gq
(x) and the facts that ℋk(�⃗

(n)) = + o(1) and

nk+2 = ko(n) as n→ ∞, we then have, for all q ∈ Q,

a ∈ C∗
=n ⇒ d

(s)
Gq

(�k(a)) ≤ k(s−+o(1))n (4.3.20)

56

as n→ ∞. A similar argument shows that, for all q ∈ Q,

a ∈ D∗
=n ⇒ d

(s)
Gq

(�k(a)) ≤ k(s−�+o(1))n (4.3.21)

as n→ ∞.

To verify (4.3.17), assume that s < . Then, since ≤ �, (4.3.20) and (4.3.21) tell us that

d
(s)
Gqi

(�k(ai+1)) ≤ k(s−+o(1))∣�k(ai+1)∣

as i → ∞. It follows by (4.3.19) that, for any prefix w ⊑ CEk(A), if we write w =

�k(a1) ⋅ ⋅ ⋅ �k(am)u, where u ⊏
∕=
�k(am+1), then ∣u∣ = o(∣w∣) as ∣w∣ → ∞, so

d
(s)
G (w) ≤

(

m−1
∏

i=0

k(s−+o(1))∣�k(ai+1)∣
)

ks∣u∣

= k(s−+o(1))(∣w∣−∣u∣)+s∣u∣

= k(s−+o(1))∣w∣

as ∣w∣ → ∞. Since s < , it follows that

lim sup
n→∞

d
(s)
G (CEk(A)[0..n − 1]) = 0,

affirming (4.3.17).

To verify (4.3.18), assume that s < �. For each l ∈ ℤ+, let

vl = �k(ail)�k(ail+1) ⋅ ⋅ ⋅ �k(ail+1−1),

where il is the least i such that ∣�k(ai)∣ = T (l), and let

wl = v1v2 ⋅ ⋅ ⋅ vl−1,

noting that each wl ⊑ CEk(A). Then ∣wl∣ = o(∣vl∣) as l → ∞, so

d
(s)
G (w2l) = d

(s)
G (w2l−1)

i2l−1
∏

i=i2l−1

d
(s)
Gqi−1

(�k(ai))

≤ ks∣w2l−1∣
i2l−1
∏

i=i2l−1

k(s−�+o(1))∣�k(ai)∣

= ks∣w2l−1∣+(s−�+o(1))∣v2l−1 ∣

= k(s−�+o(1))∣v2l−1 ∣

57

as l → ∞. Since s < �, this affirms (4.3.18) and concludes the proof that dimFS(CEk(A)) ≥

and DimFS(CEk(A)) ≥ �.

All that remains is to prove that dimFS(CEk(A)) ≤ and DimFS(CEk(A)) ≤ �. For

each rational r ∈ ℚ ∩ [0, 1], let Gr be the 1-state FSG whose bets are given by g(r), where

g : [0, 1] → Δ(Σk) is the function defined earlier in this proof. That is, for all s ∈ [0,∞),

w ∈ Σ∗
k, and a ∈ Σk, we have

d
(s)
Gr

(wa) = ksg(r)(a)d
(s)
Gr

(w).

If we write �w(a) =
#(a,w)
∣w∣ for all w ∈ Σ+

k and a ∈ Σk, then this implies that, for all w ∈ Σ+
k ,

d
(s)
Gr

(w) = ks∣w∣ ∏

a∈Σk

g(r)(a)#(a,w),

whence

logk d
(s)
Gr

(w) = s∣w∣+
∑

a∈Σk

#(a,w) logk g(r)(a)

= ∣w∣

⎛

⎝s−
∑

a∈Σk

�w(a) logk
1

g(r)(a)

⎞

⎠

= ∣w∣
(

s− E�w logk
1

g(r)(a)

)

= ∣w∣
(

s− E�w logk
1

�w(a)
− E�w logk

�w(a)

g(r)(a)

)

= ∣w∣ (s−ℋk(�w)−Dk(�w ∥ g(r))) .

We have thus shown that

d
(s)
Gr

(w) = k(s−ℋk(�w)−Dk(�w∥g(r)))∣w∣ (4.3.22)

holds for all r ∈ ℚ ∩ [0, 1], s ∈ [0,∞), and w ∈ Σ+
k .

We now note a useful property of the function g. If we fix r ∈ (0, 1], then

d

dx
[ℋk(g(x)) +Dk(g(x) ∥ g(r))] =

k − 1

k
logk

k + r − kr

r
≥ 0,

so

q ≤ r ⇒ ℋk(g(q)) +Dk(g(q) ∥ g(r)) ≤ ℋk(g(r)). (4.3.23)

58

For each n ∈ ℤ+, let �An = �wn , where wn = CEk(A)[0..n− 1] is the string consisting of the

first n symbols in CEk(A). Then �
A
1 , �

A
2 , . . . is an infinite sequence of probability vectors in the

simplex Δ(Σk). For every n such that T−1(n) is even, A=n = C∗
=n consists entirely of integers

a for which ��k(a) = �⃗(n), and for every n such that T−1(n) is odd, A=n = D∗
=n consists entirely

of integers a for which ��k(a) = �⃗ (n). Since �⃗(n) converges to g(r), �⃗
(n) converges to g(r�), and

T grows very rapidly, it follows easily that the set of limit points of the sequence �A1 , �
A
2 , . . . is

precisely the closed line segment g([r , r�]) (which is a point if = �).

To see that dimFS(CEk(A)) ≤ , assume that < s ≤ 1. It suffices to show that

dimFS(CEk(A)) ≤ s. For this, fix r ∈ ℚ ∩ (r , (ℋk ∘ g)−1(s)). Since g(r) is a limit point of

�A1 , �
A
2 , . . . , there is a sequence n1 < n2 < ⋅ ⋅ ⋅ of positive integers such that limi→∞ �Ani

= g(r).

By (4.3.22), (4.3.23), and the continuity of ℋk(x⃗) + Dk(x⃗ ∥ g(r)) as a function of x⃗, we then

have

d
(s)
Gr

(wni
) = k(s−ℋk(�

A
ni

)−Dk(�
A
ni

∥g(r)))ni

= k(s−ℋk(g(r))−Dk(g(r)∥g(r))−o(1))ni

≥ k(s−ℋk(g(r))−o(1))ni

as i → ∞. Since ℋk(g(r)) < s, it follows that the s-gale of Gr succeeds on CEk(A), whence

dimFS(CEk(A)) ≤ s.

To see that DimFS(CEk(A)) ≤ �, assume that � < s ≤ 1. It suffices to show that

DimFS(CEk(A)) ≤ s. For this, fix r ∈ ℚ ∩ (r�, (ℋk ∘ g)−1(s)). For each n ∈ ℤ+, let g(qn)

be the point on the line segment g([r , r�]) that is closest to �
A
n . Since g([r , r�]) contains every

limit point of �A1 , �
A
2 , . . . , Δ(Σk) is compact, and ℋk(x⃗)+Dk(x⃗ ∥ g(r)) is a continuous function

of x⃗, we have

ℋk(�
A
n) +Dk(�

A
n ∥ g(r)) = ℋk(g(qn)) +Dk(g(qn) ∥ g(r)) + o(1) (4.3.24)

59

as n→ ∞. By (4.3.22), (4.3.23), and (4.3.24),

d
(s)
Gr

(wn) = k(s−ℋk(�
A
n)−Dk(�

A
n ∥g(r)))n

= k(s−ℋk(g(qn))−Dk(g(qn)∥g(r))−o(1))n

≥ k(s−ℋk(g(r))−o(1))n

as n → ∞. Since ℋk(g(r)) < s, it follows that the s-gale of Gr strongly succeeds on CEk(A),

whence DimFS(CEk(A)) ≤ s.

The original Copeland-Erdős theorem is a special case of our Theorem 4.3.1.

Corollary 4.3.4. (Copeland and Erdős [24]). Let k ≥ 2 and A ⊆ ℤ+. If, for all � < 1, for

all sufficiently large n ∈ ℤ+, ∣A ∩ {1, . . . , n}∣ > n�, then the sequence CEk(A) is normal over

the alphabet Σk. In particular, the sequence CEk(PRIMES) is normal over the alphabet Σk.

Proof. The hypothesis implies that dim�(A) ≥ � for all � < 1, i.e., that dim�(A) = 1.

By Theorem 4.3.1, this implies that dimFS(CEk(A)) = 1, which is equivalent [87, 14] to the

normality of CEk(A).

4.4 Saturated Sets with Prescribed Limit Frequencies of Digits

In last section, we studied the finite-state dimensions of a particular kind of singleton sets.

In this section, we turn our attention to a very different kind of sets – sets that are saturated

with sequences with certain asymptotic properties in terms of relative frequencies of digits.

4.4.1 Relative Frequencies of Digits

Given a probability measure � on Σm, define the frequency class

FREQ� =
{

S ∈ Cm

∣

∣

∣ (∀i ∈ Σm) lim
n→∞

�i(S, n) = �(i)
}

.

In the particular case m = 2, we also write FREQ� as FREQ�, where � = �(0). For � ∈ [0, 12],

we also define the class

FREQ≤� =

{

S ∈ C

∣

∣

∣

∣

lim sup
n→∞

�0(S, n) ≤ �

}

.

60

The Hausdorff dimension has been used to study these sets.

Theorem 4.4.1 (Besicovitch[12]). For each � ∈ [0, 12],

dimH(FREQ
≤�) = ℋ(�).

Theorem 4.4.2 (Eggleston [30]). For each �Δ(Σm),

dimH(FREQ
�) = ℋm(�).

In particular, if m = 2, then, for each � ∈ [0, 1],

dimH(FREQ
�) = ℋ(�).

We now first calculate the finite-state dimension of some more exotic sets that contain

m-adic sequences that satisfy certain conditions placed on the frequencies of digits. These

calculations use straightforward constructions of finite-state gamblers. Both the constructions

and analysis use completely elementary techniques.

Let ℋ�,m(�) = −(� logm �+ �� logm ��+ (1− �− ��) logm
1−�−��
m−2). Let

�∗(x) =

⎧

⎨

⎩

1
m if x < 1

1

1+x+(m−2)x
x

x+1
otherwise.

Note that

ℋ�,m(�∗(�)) = sup
�∈[0, 1

1+�
]

ℋ�,m(�) =

⎧

⎨

⎩

1 if � < 1,

logm(m− 2 + 1+�

�
�

�+1

) otherwise.

Theorem 4.4.3. Let �′ ≥ � ≥ 0. Let

X =

{

S

∣

∣

∣

∣

lim inf
n→∞

�1(S, n)

�0(S, n)
≥ � and lim sup

n→∞

�1(S, n)

�0(S, n)
≥ �′

}

.

Then dimH(X) = dimFS(X) = ℋ�′,m(�∗(�′)) and dimP(X) = DimFS(X) = ℋ�,m(�∗(�)).

Proof. We assume that �′ ≥ � ≥ 1, since when either of these values is less than 1, the proof

is essentially looking at the subset of X where their values are replaced by 1. When S is clear

from the context, let �n = �0(S, n) and �n = �1(S, n). Let �
′ = �∗(�′) and let � = �∗(�).

61

First, we prove the lower bounds for the dimensions. For Hausdorff dimension and finite-

state dimension, let

Y =

{

S

∣

∣

∣

∣

lim
n→∞

�n = �′, lim
n→∞

�n = �′�′, and (∀i > 1) lim
n→∞

�i(S, n) =
1− �′ − �′�′

m− 2

}

.

By Eggleston’s theorem, we have dimH(Y) = ℋ�′,m(�∗(�′)). Since �′ ≥ � ≥ 1 and Y ⊆ X,

dimFS(X) ≥ dimH(X) ≥ dimH(Y) = ℋ�′,m(�∗(�′)).

For packing dimension and finite-state strong dimension, let

Z =

{

S

∣

∣

∣

∣

lim
n→∞

�n = �, lim
n→∞

�n = ��, and (∀i > 1) lim
n→∞

�i(S, n) =
1− �− ��

m− 2

}

.

Now we construct from Z a set Z ′ ⊆ X by interpolating the sequences in Z. First let

l0 = 2 and, for every i ∈ ℕ, li+1 = 2li . Define f0 : Σ∗
m → Σ∗

m be such that f0(w) = w for

all w ∈ Σ∗
m. Let � = 1

��′−��+1 . For each n > 0, define fn : Σ∗
m → Σ∗

m such that, for every

w ∈ Σ∗
m, ∣fn(w)∣ = ∣w∣ and for every i < ∣w∣,

fn(w)[i] =

⎧

⎨

⎩

fn−1(w)[i] if i ≤ ln−1

w[i] if i ≤ ⌈�ln⌉ and i > ln−1

1 if i > ⌈�ln⌉ and i ≤ ln

w[i] if i > ln.

Define f : Σ∗
m → Σ∗

m such that, for all w ∈ Σ∗
m,

f(w) = fn(w)(w),

where n(w) = min {n ∈ ℕ ∣ ln ≥ ∣w∣ }. Also, extend f to f : Σ∞
m → Σ∞

m such that, for all

S ∈ Σ∞
m ,

f(S) = lim
n→∞

f(S[0..n− 1]).

Let

Z ′ = f(Z).

62

By the construction of f and choice of �, it is clear that f is a dilation (see Theorem 3.1.11)

and, for all n ∈ ℕ, ∣Col(f, S[0.. ⌈�ln⌉ − 1])∣ ≤ log ln. Thus, for all � > 0, there are infinitely

many n such that

∣Col(f, S[0..n − 1])∣ < �n. (4.4.1)

Note that, by Eggleston’s theorem, dimH(Z) = ℋ�,m(�∗(�)). Then by Theorem 3.1.11 and

(4.4.1), dimP(Z
′) ≥ ℋ�,m(�∗(�)).

It is easy to verify that, for every S ∈ Z ′,

lim inf
n→∞

�n
�n

≥ � and lim sup
n→∞

�n
�n

≥ �′.

So Z ′ ⊆ X. Therefore,

DimFS(X) ≥ dimP(X) ≥ ℋ�,m(�∗(�)).

Now, we prove that ℋ�′,m(�∗(�′)) is an upper bound for dimH(X) and dimFS(X).

When �′ < 1, ℋ�′,m(�∗(�′)) = 1 and the upper bound holds trivially. So assume that

�′ ≥ 1.

Let � = �∗(�′). Let s > ℋ�′,m(�∗(�′)). Define

d(�) = 1

d(wb) =

⎧

⎨

⎩

ms�d(w) if b = 0

ms�′�d(w) if b = 1

ms 1−�−�′�
m−2 d(w) if b ≥ 2

.

It is clear that d is a finite-state s-gale.

Let

B = �
′ �′

�′+1 .

Let

� =
s−ℋ�′,m(�∗(�′))

2 logmB
.

Let S ∈ X and let � > 0 be such that � ≤ min(��′2/2, 1/2). Since

lim sup
n→∞

�n
�n

≥ �′,

63

there exists an infinite set J ⊆ ℕ such that for all n ∈ J

�n
�n

≥ �′ − �.

By the choice of �, for all n ∈ J

�n

�n
≤ 1

�′ − �
=

1

�′
+

�

(�′ − �)�′
≤ 1

�′
+ �;

i.e.,

�n + �n ≤ �′ + 1

�′
�n + �. (4.4.2)

Now note that

msB1−� = (1 + �′ + (m− 2)B)B�, (4.4.3)

since

msB1−� = msB
1− s−logm(m−2+

1+�′

B
)

2 logm B

= B
1+logB ms− logm ms−logm(m−2+

1+�′

B
)

2 logm B

= B
1+

2 logm ms−logm ms+logm(m−2+
1+�′

B
)

2 logm B

= B
1+

logm ms+logm(m−2+
1+�′

B
)

2 logm B

= B
1+

s−logm(m−2+
1+�′

B
)+2 logm(m−2+

1+�′

B
)

2 logm B

= B1+�+logB(m−2+ 1+�′

B
).

For all n ∈ J ,

d(S[0..n − 1]) = msn�n�n(�′�)n�n

(

1− �− �′�
m− 2

)n(1−�n−�n)

=

[

ms�′�nB1−�n−�n

1 + �′ + (m− 2)B

]n

≥(4.4.2)

⎡

⎣

ms�′�nB
1−�′+1

�′ �n−�

1 + �′ + (m− 2)B

⎤

⎦

n

=

[

msB1−�

1 + �′ + (m− 2)B

]n

=(4.4.3) B�n.

64

Since J is an infinite set,

lim sup
n→∞

d(S[0..n − 1]) = ∞;

i.e., S ∈ S∞[d]. Since s > ℋ�′,m(�∗(�′)) is arbitrary and d is finite-state s-gale, dimH(X) ≤

dimFS(X) ≤ ℋ�′,m(�∗(�′)).

An essentially identical argument gives us dimP(X) ≤ DimFS(X) ≤ ℋ�,m(�∗(�)).

Corollary 4.4.4 (Barreira, Saussol, and Schmeling [10]). Let � ≥ 0. Let

X =

{

S

∣

∣

∣

∣

lim
n→∞

�1(S, n)

�0(S, n)
= �

}

.

Let �′ = max{�, 1/�}. Then

dimH(X) = ℋ�,m(�∗(�′)) = logm

⎛

⎝m− 2 +
1 + �′

�
�′

�′+1

⎞

⎠ .

Proof. We prove the case where �′ = �. The other case is similar by switching 0’s and 1’s in

the sequences. Let Y =
{

S
∣

∣

∣
lim inf
n→∞

�1(S,n)
�0(S,n)

≥ �
}

. Let

Z =

⎧

⎨

⎩

S

∣

∣

∣

∣

∣

∣

∣

lim
n→∞

�0(S, n) = �∗(�), lim
n→∞

�1(S, n) = ��∗(�),

and (∀i > 1) lim
n→∞

�i(S, n) =
1−�∗(�)−��∗(�)

m−2

⎫

⎬

⎭

.

By Eggleston’s theorem, dimH(Z) = ℋ�,m(�∗(�)). Since Z ⊆ X ⊆ Y , it follows immediately

from Theorem 4.4.3 that dimH(X) = ℋ�,m(�∗(�)).

Note that Theorem 4.4.3 gives more than Corollary 4.4.4, since it also implies that dimP(X),

dimFS(X), and DimFS(X) have the value dimH(X).

Theorem 4.4.5. Let � ≥ 1/m. Let

X =
{

S
∣

∣

∣ lim
n→∞

�0(S, n) = �
}

and

Y =
{

S
∣

∣

∣
lim inf
n→∞

�0(S, n) ≥ �
}

.

Then

dimP(X) = dimH(X) = dimP(Y) = dimH(Y) = logm

[

�−�

(

1− �

m− 1

)�−1
]

.

65

Proof. The results are clear for � = 1/m, so we assume that � > 1/m. Let

H�,m = logm

[

�−�

(

1− �

m− 1

)�−1
]

.

We first show that dimP(Y) ≤ H�,m. For s > H�,m, define

d(�) = 1

d(wb) =

⎧

⎨

⎩

ms�d(w) if b = 0

ms 1−�
m−1d(w) if b ∕= 0.

It is clear that d is an s-gale. Let

� =
s−H�,m

2 logm
�(m−1)
1−�

. (4.4.4)

Note that �(m−1)
1−� > 1. Let S ∈ Y ; i.e., lim inf

n→∞
�0(S, n) ≥ �. So there exists J ⊆ ℕ such that J

is co-finite and, for every n ∈ J , �0(S, n) ≥ �− �. Now

d(S[0..n − 1]) =

[

ms��0(S,n)

(

1− �

m− 1

)1−�0(S,n)
]n

=(4.4.4)

[

(

�(m− 1)

1− �

)2�

�−�

(

1− �

m− 1

)�−1

��0(S,n)

(

1− �

m− 1

)1−�0(S,n)
]n

=

[

(

�(m− 1)

1− �

)2�

��0(S,n)−�

(

1− �

m− 1

)�−�0(S,n)
]n

=

[

(

�(m− 1)

1− �

)2�(�(m− 1)

1− �

)�0(S,n)−�
]n

=

[

(

�(m− 1)

1− �

)2�+�0(S,n)−�
]n

.

Then, for every n ∈ J ,

d(S[0..n − 1]) ≥
[

�(m− 1)

1− �

]�n

.

Since �(m−1)
1−� > 1, S ∈ S∞

str[d] and dimH(Y) ≤ dimP(Y) ≤ H�,m. Note that X ⊆ Y , so

dimH(X) ≤ dimP(X) ≤ H�,m.

Now it suffices to show that dimH(X) ≥ H�,m. Let

Z =

{

S

∣

∣

∣

∣

lim
n→∞

�0(S[0..n − 1]) = � and (∀i > 0) lim
n→∞

�i(S[0..n − 1]) =
1− �

m− 1

}

.

66

By Eggleston’s theorem, dimH(Z) = H�,m. Since Z ⊆ X ⊆ Y , dimH(Y) ≥ dimH(X) ≥

H�,m.

Theorem 4.4.6 (Barreira, Saussol, and Schmeling [10]). Let Σm be the m-ary alphabet. Let

k < m. Let �0, �1, . . . , �k−1 ∈ [0, 1] be such that � =
∑k−1

i=0 �i ≤ 1. Let

X =
{

S
∣

∣

∣
lim
n→∞

�i(S, n) = �i, 0 ≤ i ≤ k
}

.

Then dimH(X) is

ℋm

(

�0, . . . , �k−1,
1−�
m−k , . . . ,

1−�
m−k

)

= logm

[

�−�0
0 ⋅ ⋅ ⋅�−�k−1

k−1

(

1−�
m−k

)−(1−�)
]

and

dimFS(X) = DimFS(X) = dimP(X) = dimH(X).

Proof. We insist that 00 = 1 and 0/0 = 1 in this proof.

Let

H = ℋm

(

�0, �1, . . . , �k−1,
1− �

m− k
, . . . ,

1− �

m− k

)

.

For s > H, define

d(�) = 1

d(wb) =

⎧

⎨

⎩

msd(w)�b if b < k

msd(w) 1−�
m−k otherwise.

It is clear that d is a finite-state s-gale. Let

� =
s−H

−2 logm(�0 ⋅ ⋅ ⋅�k−1
1−�
m−k)

.

For S ∈ X,

lim
n→∞

�i(S, n) = �i, 0 ≤ i ≤ k.

So there exists n0 ∈ ℕ such that, for all n ≥ n0, ∣�i(S, n)− �i∣ < � for all i < k and that

∣

∣

∣

∣

∣

�−
k−1
∑

i=0

�i(S, n)

∣

∣

∣

∣

∣

< �.

67

Then, for all n ≥ n0,

d(S[0..n − 1]) =

[

ms

(

1− �

m− k

)1−∑k−1
i=0 �i(S,n) k−1

∏

i=0

�
�i(S,n)
i

]n

=

[

ms−HmH

(

1− �

m− k

)1−
∑k−1

i=0 �i(S,n) k−1
∏

i=0

�
�i(S,n)
i

]n

=

[

ms−H�−�0
0 ⋅ ⋅ ⋅�−�k−1

k−1

(

1− �

m− k

)−(1−�) (1− �

m− k

)1−
∑k−1

i=0 �i(S,n) k−1
∏

i=0

�
�i(S,n)
i

]n

=

[

ms−H

(

1− �

m− k

)�−
∑k−1

i=0 �i(S,n) k−1
∏

i=0

�
�i(S,n)−�i

i

]n

≥
[

ms−H

(

�0 ⋅ ⋅ ⋅�k−1
1− �

m− k

)�
]n

=
[

ms−Hm
H−s

2

]n

= m
s−H
2

n.

So S ∈ S∞
str[d], and thus dimFS(X) ≤ DimFS(X) ≤ H.

Let

Z =

{

S

∣

∣

∣

∣

(∀i < k) lim
n→∞

�i(S, n) = �i and (∀i ≥ k) lim
n→∞

�i(S, n) =
1− �

m− k

}

.

By Eggleston’s theorem, dimH(Z) = H. The theorem then follows from the monotonicity of

dimensions.

4.4.2 Saturated Sets and the Maximum Entropy Principle

In Section 4.4.1, we calculated the finite-state dimensions of many sets defined using prop-

erties on asymptotic frequencies of digits. They are all saturated sets. Now we formally define

saturated sets and investigate their collective properties.

Let Πn(S) = {�⃗(S, k) ∣ k ≥ n} for all n ∈ ℕ. Let Π̄n(S) = Πn(S); i.e., Π̄n(S) is the closure

of Πn(S). Define Π : Cm → P(Δ(Σm)) such that for all S ∈ Cm, Π(S) =
∩

n∈ℕ Π̄n(S).

Definition. Let X ⊆ Cm. We say that X is saturated if for all S, S′ ∈ Cm,

Π(S) = Π(S′) ⇒ [S ∈ X ⇐⇒ S′ ∈ X].

When we determine an upper bound on the finite-state dimensions of a set X ⊆ Cm, it is

in general not possible to use a single probability measure as the betting strategy, even when

68

X is saturated. However, when certain conditions are true, a simple 1-state gambler may win

on a huge set of sequences with different empirical digit distribution probability measures.

In the following, we formalize such a condition and reveal some relationships between

betting and the Kullback-Leibler distance (relative entropy) [25]. Note that the m-dimensional

Kullback-Leibler distance Dm(�⃗ ∥ �⃗) is defined as

Dm(�⃗ ∥ �⃗) = E
�⃗
logm

�⃗

�⃗
.

Definition. Let �⃗, �⃗ ∈ Δ(Σm). We say that �⃗ �-dominates �⃗, denoted as �⃗≫� �⃗, if ℋm(�⃗) ≥

ℋm(�⃗) +Dm(�⃗ ∥ �⃗)− �. We say that �⃗ dominates �⃗, denoted as �⃗≫ �⃗, if �⃗≫0 �⃗.

Note that ℋm(�⃗) + Dm(�⃗ ∥ �⃗) = E�⃗ logm
1
�⃗
+ E�⃗ logm

�⃗
�⃗ = E�⃗ logm

1
�⃗ , where E�⃗ logm

�⃗
�⃗ =

∑m−1
i=0 �i logm

�i

�i
. It is very easy to see that the uniform probability measure dominates all

probability measures.

Observation 4.4.7. If �⃗ = (1
m , . . . ,

1
m) and �⃗ ∈ Δ(Σm), then �⃗≫ �⃗.

Here, we give a few interesting properties of the domination relation.

Theorem 4.4.8. Let �⃗ = (�0, . . . , �m−1), �⃗ = (�0, . . . , �m−1) ∈ Δ(Σm). If �j = 1 for some

j ∈ Σm, then �⃗≫ �⃗ and ℋm(�⃗) = 0.

Proof. It is easy to see that ℋm(�⃗) = 0. It suffices to show that

ℋm(�⃗) ≥ E
�⃗
logm

1

�⃗
.

Fix j ∈ Σm such that �j = 1. Then

E
�⃗
logm

1

�⃗
=

m−1
∑

i=0

�i logm
1

�i
= �j logm

1

�j

= logm
1

�j
≤

m−1
∑

i=0

�i logm
1

�i

= ℋm(�⃗).

Theorem 4.4.9. Let �⃗, �⃗ ∈ Δ(Σm), � ≥ 0, and r ∈ [0, 1]. If �⃗≫� �⃗, then �⃗≫� r�⃗+(1− r)�⃗.

69

Proof. Assume �⃗≫� �⃗. It suffices to show that

ℋm(�⃗) ≥ E
r�⃗+(1−r)�⃗

logm
1

�⃗
− �.

This holds because

E
r�⃗+(1−r)�⃗

logm
1

�⃗
− � =

m−1
∑

i=0

(r�i + (1− r)�i) logm
1

�i
− �

=
m−1
∑

i=0

r�i logm
1

�i
+

m−1
∑

i=0

(1− r)�i logm
1

�i
− �

= rℋm(�⃗) + (1− r)E�⃗ logm
1

�⃗
− (1− r)�− r�

≤ ℋm(�⃗).

Theorem 4.4.10. Let �⃗ = (1
m , . . . ,

1
m) ∈ Δ(Σm) be the uniform probability measure. Let

�⃗ ∈ Δ(Σm). Let s ∈ [0, 1]. Let �⃗ = s�⃗+ (1− s)�⃗. Then �⃗≫ �⃗.

Proof. Let A = {i ∣ �i ≥ �i }, and let B = {i ∣ �i < �i }. Then A ∩ B = ∅ and A ∪ B =

[0..m − 1]. Note that, for any i ∈ A, �i = 1
m ≥ �i and logm

1
s�i+(1−s)�i

≥ 1, and, for

any i ∈ B, �i = 1
m < �i and logm

1
s�i+(1−s)�i

< 1. Since
∑m−1

i=0 s(�i − �i) = 0, we have

∑

i∈A s(�i − �i) = −
∑

i∈B s(�i − �i). It follows that

E�⃗ logm
1

�⃗
− E

�⃗
logm

1

�⃗

= E
s(�⃗−�⃗)

logm
1

s�⃗+ (1− s)�⃗

=

m−1
∑

i=0

s(�i − �i) logm
1

s�i + (1− s)�i

=
∑

i∈A
s(�i − �i) logm

1

s�i + (1− s)�i
+
∑

i∈B
s(�i − �i) logm

1

s�i + (1− s)�i

≥
∑

i∈A
s(�i − �i) ⋅ 1 +

∑

i∈B
s(�i − �i) ⋅ 1

≥ 0.

Therefore,

E�⃗ logm
1

�⃗
≥ E

�⃗
logm

1

�⃗
;

70

i.e., �⃗≫ �⃗.

y

z

x

(13 ,
1
3 ,

1
3)

�⃗ �⃗

ℒ�⃗

ℒ�⃗

Figure 4.4.1 Domination relationships

Theorem 4.4.11. The domination relation ≫ is not transitive.

Proof. We give a counterexample with m = 3, explaining the idea geometrically so that it

easily extends to higher dimensions.

Recall that Δ(Σ3) is a 2-dimensional simplex in ℝ3. (See Figure 4.4.1.) The centroid of this

simplex is the uniform probability measure (13 ,
1
3 ,

1
3). We first choose any probability measure

�⃗ = (�0, �1, �2) that is not the centroid and does not lie on the boundary of Δ(Σ3). For

definiteness, say that �⃗ = (14 ,
1
4 ,

1
2). Now, for any �⃗ = (�0, �1, �2) ∈ Δ(Σm),

�⃗≫ �⃗ ⇐⇒ ℋ3(�⃗)) ≥ ℋ3(�⃗) +D3(�⃗∣∣�⃗)

⇐⇒ �0 log3
1

�0
+ �1 log3

1

�1
+ �2 log3

1

�2
.

That is, if we define the line

ℒ�⃗ =
{

�⃗
∣

∣

∣
�0 log3

1
�0

+ �1 log3
1
�1

+ �2 log3
1
�2

= ℋ3(�⃗)
}

(which goes through �⃗), then �⃗ ≫ �⃗ holds if and only if �⃗ lies on ℒ�⃗ or on the far side of ℒ�⃗

from the centroid.

71

If we now let �⃗ = (�0, �1, �2) be any point on ℒ�⃗ that is not �⃗ and does not lie on the

boundary of Δ(Σ3), say, �⃗ = (16 ,
1
3 ,

1
2), then �⃗ similarly determines a line

ℒ
�⃗
=
{

�⃗
∣

∣

∣
�0 log3

1
�0

+ �1 log3
1
�1

+ �2 log3
1
�2

= ℋ3(�⃗)
}

through �⃗ such that �⃗ ≫ �⃗ holds if and only if �⃗ lies on ℒ
�⃗
or on the far side of ℒ

�⃗
from the

centroid.

Now ℒ�⃗ and ℒ�⃗ both go through �⃗; ℒ�⃗ and ℒ�⃗ have different slopes; and �⃗ is strictly

interior to the simplex Δ(Σ3). It follows from these three things that there is a nonempty

region of Δ(Σ3) (the shaded region in Figure 4.4.1) consisting of probability measures on the

far side of ℒ
�⃗
from the centroid and strictly on the near side of ℒ�⃗ from the centroid. If we

choose any ⃗ in this region, say, ⃗ = (0, 0.6, 0.4), then �⃗≫ �⃗ and �⃗ ≫ ⃗, but �⃗ ∕≫ ⃗.

The following theorem relates the domination relation to finite-state dimensions.

Theorem 4.4.12. Let �⃗ ∈ Δ(Σm) and X ⊆ Σ∞
m .

1. If �⃗≫� �⃗(S, n) for infinitely many n for every � > 0 and every S ∈ X, then dimFS(X) ≤

ℋm(�⃗).

2. If �⃗ ≫� �⃗(S, n) for all but finitely many n for every � > 0 and every S ∈ X, then

DimFS(X) ≤ ℋm(�⃗).

Proof. Let G = (Q,Σm, �, �⃗, q0) be an FSG such that Q = {q0}, �(q0, b) = q0 for all b ∈ Σm,

and �⃗(q0) = �⃗.

Let s > ℋm(�⃗) + �. The s-gale d
(s)
G of G is defined by the following recursion,

d
(s)
G (�) = 1,

d
(s)
G (wb) = msd

(s)
G (w)�b

for all w ∈ Σ∗
m and b ∈ Σm. Let S ∈ X. Then

d
(s)
G (S[0..n − 1]) = msn

m−1
∏

i=0

�
n�i(S,n)
i

= msnmn
∑m−1

i=0 �i(S,n) logm �i

=
(

ms−E�⃗(S,n) logm
1
�⃗

)n
.

72

Thus S ∈ S∞[d
(s)
G] and dimFS(S) ≤ s, when the domination condition holds for infinitely many

n. Similarly, S ∈ S∞
str[d

(s)
G] and DimFS(S) ≤ s, when the domination condition holds for all but

finitely many n. The theorem then follows, since � can be arbitrarily small.

Theorem 4.4.12 tells us that a probability measure �⃗ that dominates the empirical fre-

quencies of elements of a set X ⊆ Cm can be used to infer ℋm(�⃗) as an upper bound on the

finite-state dimension of X. If we insist on doing this with only a single �⃗, this upper bound

may not be a good approximation of the finite-state dimension. (For example, (13 ,
1
3 ,

1
3) is the

only probability measure dominating all of (1, 0, 0), (0, 1, 0), and (0, 0, 1), so this could give

the upper bound 1 on a set of dimension 0.) Nevertheless, the following theorem uses the

compactness of Δ(Σm) to give a general method for finding the dimensions of saturated sets.

It says that the dimension of a saturated set is the supremum of the asymptotic entropies of

the empirical frequencies of digits.

Theorem 4.4.13. Let X ⊆ Cm be saturated. Let

H = sup
S∈X

lim inf
n→∞

ℋm(�⃗(S, n))

and

P = sup
S∈X

lim sup
n→∞

ℋm(�⃗(S, n)).

Then

dimFS(X) = H and DimFS(X) = P

and

dimFS(X) = dimH(X) and DimFS(X) = dimP(X).

In order to prove this theorem, we need the following result, which is a restatement of

Lemma 4.3.2 in terms of strings instead of integers.

Lemma 4.4.14. For every n ≥ m ≥ 2 and every partition a⃗ = (a0, . . . , am−1) of n, there are

more than

mnℋm(a⃗
n
)−(m+1) logm n

strings u of length n with #(i, u) = ai for each i ∈ Σm.

73

Proof of Theorem 4.4.13. First we prove dimH(X) ≥ H. It suffices to show that, for all

s < H, dimH(X) ≥ s.

Let s < H. Let d be an arbitrary s-supergale. Let s′ = (H + s)/2. Let n0 ∈ ℕ be

such that
√
m < n0(H − s′) and ms′n0−(m+1) logm n0 > 2sn0+1. Fix an S ∈ X such that

lim inf
n→∞

ℋm(�⃗(S, n)) > s′.

For each i ≥ n0, let {�⃗i,1, . . . , �⃗i,ci} ⊆ Δ(Σm) be such that, for each j ∈ [1..ci], �⃗i,j =
a⃗
n for

some partition a⃗ ∈ ℤm of n and ℋm(�⃗i,j) > s′; for all �⃗ ∈ Π(S) there exists j ∈ [1..ci] such

that ∣�⃗i,j − �⃗∣ < 1/i; for all j ∈ [1..ci], there exists �⃗ ∈ Π(S) such that ∣�⃗i,j − �⃗∣ < 1/i; for all

j ∈ [1..ci − 1], ∣�⃗i,j − �⃗i,j+1∣ < 1
i ; for all i ≥ n0, ∣�⃗i+1,0 − �⃗i,ci ∣ < 1

i+1 . This is possible because

Π(S) is a compact set.

Now, we first construct a sequence S′ ∈ Σ∞
m by building its prefixes inductively. Let w0

be such that ∣w0∣ = 2n0 . Note that the choice of w0 does not affect the argument, since w0

does not change the asymptotic behavior of the sequence. Without loss of generality, assume

�⃗(w0, ∣w0∣) = �n0,1.

For all n > 0, assume that wn−1 is already constructed. Let wn,0 = wn−1. We construct

inductively wn,1, . . . , wn,cn and then let wn = wn,cn . For j > 0, assume that wn,j−1 is already

constructed. Let l = n0 + n− 1. For each l, j, let

Bl,j =
{

u ∈ Σl
m

∣

∣

∣
�⃗(u, l) = �⃗l,j

}

.

For each l ≥ n0 and w ∈ Σ∗
m, let

Wl,w =

{

u ∈ Σl
m

∣

∣

∣

∣

d(wu) ≤ 1

m
d(w)

}

.

Since d is an s-supergale, by Theorem 4.1.3, for all w ∈ Σ∗
m, there are fewer than msl+1

strings u ∈ Σl
m for which d(wu) > 1

md(w). By the choice of n0, �⃗l,j, and Lemma 4.4.14,

∣Bl,j∣ > msl+1;

i.e., Wl,w ∩Bl,j ∕= ∅.

Let u1 ∈ Wl,w ∩ Bl,j. For all i ∈ [2..2∣wn,j−1∣], let ui ∈ Wl,wu1...ui−1
∩ Bl,j. Let wn,j =

wn,j−1u1 . . . u2∣wn,j−1∣ . Let

S′ = lim
n→∞

wn.

74

Note that, when wn is being constructed, l ≤ ⌊logm∣wn,j−1∣⌋. It is then easy to verify that

S′ /∈ S∞[d].

Now we verify that Π(S) = Π(S′), from which we can conclude that S′ ∈ X, since X is

defined by asymptotic frequency.

Let �⃗ ∈ Π(S) be arbitrary. For each l = n0 + n − 1, there exists some jl such that

∣�⃗ − �⃗l,jl∣ < 1
l . Then, by the construction,

∣�⃗(wl,jl, ∣wl,jl ∣)− �⃗l,jl ∣ <
√
m

2

∣wl,jl ∣
<

1

l
.

So it is clear that

∣�⃗(wl,jl , ∣wl,jl ∣)− �⃗∣ < 2
√
m

l
.

Thus

lim
l→∞

�⃗(wl,jl , ∣wl,jl ∣) = �⃗.

Since wl,jl ⊑ S′ for all l = n0 + n− 1. So we have for all n ∈ ℕ, �⃗ ∈ Π̄n(S
′), hence �⃗ ∈ Π(S′).

Therefore Π(S) ⊆ Π(S′).

We prove Π(S′) ⊆ Π(S) by proving its contrapositive. Now, let �⃗ /∈ Π(S). Since Π(S)

is closed, there exists � > 0 such that, for all �⃗′ ∈ Π(S), ∣�⃗ − �⃗′∣ > �. Let n1 be such that

l1 = n0+n1−1 > 8m
� . By construction, for all l ≥ l1, all j ∈ [1..cl], and all ∣wl,j−1∣ ≤ k ≤ ∣wl,j∣,

∣�⃗(wl,j, ∣wl,j ∣)− �⃗(wl,j, k)∣ <
2
√
m

l
.

Also, for all l ≥ l1 and all j ∈ [1..cl], there exists �⃗′ ∈ Π(S) such that

∣�⃗(wl,j, ∣wl,j ∣)− �⃗′∣ < 2
√
m

l
.

Thus, for all k > ∣wl1,1∣, there exists �⃗′ ∈ Π(S) such that

∣�⃗(S, k)− �⃗′∣ < 4m

l
.

Therefore, for all k > ∣wl1,1∣,

∣�⃗(S, k) − �⃗′∣ < 4m

l1
<
�

2
.

Thus, for all sufficiently large k,

∣�⃗(S, k) − �⃗∣ > �

2
.

75

So there exists n2 ∈ ℕ such that for all n ≥ n2, �⃗ /∈ Π̄n, i.e., �⃗ /∈ Π(S′).

Now we have that S′ ∈ X. Since S′ /∈ S∞[d], s < H is arbitrary, and d is an arbitrary

s-supergale, it follows that

dimH(X) ≥ H.

By a similar construction, we may prove that

dimP(X) ≥ P.

In the following, we prove the finite-state dimension upper bounds. Given �⃗ ∈ Δ(Σm),

define B(�⃗, r) as

B(�⃗, r) = Δ(Σm) ∩
{

�⃗ ∈ ℝm
∣

∣ (∀i)[�i < �im
r and �i > �im

−r]
}

.

Let

F (X) = {�⃗ ∈ Δ(Σm) ∣ ℋm(�⃗) = H } .

Let � > 0. Let

C =
{

B(�⃗, �2) ∣ �⃗ ∈ F (X)
}

.

It is clear that C is an open cover of F (X). Since F (X) is compact, there exists C ⊆ Δ(Σm)

such that ∣C∣ <∞ and

F (X) ⊆
∪

�⃗∈C
B(�⃗, �2).

Let S ∈ X. Then lim inf
n→∞

ℋm(�⃗(S, n)) ≤ H. Since the entropy function is continuous in

its domain, there exists �⃗∗ ∈ F (X) that is a convex combination of the uniform probability

measure and �⃗(S, n). By Theorem 4.4.10, �⃗∗ ≫ �⃗(S, n) for infinitely many n ∈ ℕ. Then, by

the construction of C, there exists �⃗ ∈ C such that �⃗∗ ∈ B(�⃗, �2). Now, we have that, for

infinitely many n ∈ ℕ,

ℋm(�⃗) = ℋm(�⃗∗) ≥ E�⃗(S,n) logm
1

�⃗∗ − �

2

= E�⃗(S,n) logm
1

�⃗
+ E�⃗(S,n) logm

�⃗

�⃗∗ − �

2
.

By the definition of B(�⃗, �2),

ℋm(�⃗) ≥ E�⃗(S,n) logm
1

�⃗
− �;

76

i.e., �⃗ ≫� �⃗(S, n) for infinitely many n ∈ ℕ. Since S ∈ X is arbitrary, we may partition X as

X =
∪

�⃗∈C X�⃗ such that, for every �⃗ ∈ C,

X�⃗ = {S ∈ X ∣ �⃗≫� �⃗(S, n) for infinitely many n ∈ ℕ} .

Since � > 0 is arbitrary, Theorem 4.4.12 tells us that dimFS(X�⃗) ≤ ℋm(�⃗) = H for every �⃗ ∈ C.

Since ∣C∣ <∞, Theorem 4.1.1 tells us that dimFS(X) ≤ H. Similarly, DimFS(X) ≤ P .

Theorem 4.4.13 automatically gives a pointwise solution for finding an upper bounds for

dimensions of arbitrary X.

Corollary 4.4.15. Let X ⊆ Cm, and let H and P be defined as in Theorem 4.4.13. Then

dimFS(X) ≤ H and DimFS(X) ≤ P .

In the following, we derive the dimensions of a few interesting saturated sets using Theorem

4.4.13.

Let H�,m = logm[�−�(1−�
m−1)

�−1].

Theorem 4.4.16. Let �, �̄ ∈ [0, 1] such that 1/m < � ≤ �̄ and let

M
�,�̄
k = {S ∈ Σ∞

m ∣ lim inf
n→∞

�k(S, n) = � and lim sup
n→∞

�k(S, n) = �̄}.

Then dimH(M
�,�̄
k) = H�̄,m and dimP(M

�,�̄
k) = H�,m.

Proof. It is easy to check that M
�,�̄
k is saturated. We prove this theorem for k = 0. For other

values of k, the proof is essentially identical.

Let �⃗0 = (�, 1−�
m−1). Let �⃗1 = (�̄, 1−�̄

m−1). Note that H�,m = ℋm(�⃗0) and H�̄,m = ℋm(�⃗1). It

is easy to verify that

H�̄,m = inf
�⃗∈Δ(Σm)∩[�,�̄]×ℝm−1

ℋm(�⃗),

and that

H�,m = sup
�⃗∈Δ(Σm)∩[�,�]×ℝm−1

ℋm(�⃗).

The theorem follows from Theorem 4.4.13 by easily confirming that there exists a sequence

S ∈M
�,�̄
k such that �⃗0 ∈ Π(S) and �⃗1 ∈ Π(S).

77

Corollary 4.4.17. Let �, �̄ ∈ [0, 1] such that � ≤ �̄ and let

M
�,�̄
k = {S ∈ Cm ∣ lim inf

n→∞
�k(S, n) = � and lim sup

n→∞
�k(S, n) = �̄}.

Then

dimH(M
�,�̄
k) = inf

�∈[�,�̄]
H�,m = min(H�,m,H�̄,m)

and

dimP(M
�,�̄
k) = sup

�∈[�,�̄]
H�,m =

⎧

⎨

⎩

1 if � ≤ 1/m ≤ �̄,

max(H�,m,H�̄,m) otherwise.

Proof. If � ≤ 1/m ≤ �̄, then for some S ∈M
�,�̄
k , lim sup

n→∞
ℋm(�⃗(S, n)) = 1.

Corollary 4.4.18 (Barreira, Saussol, and Schmeling [10]). Let k ∈ Σm and let

Mk = {S ∈ Cm ∣ lim inf
n→∞

�k(S, n) < lim sup
n→∞

�k(S, n)}.

Then

dimH(∩m−1
k=0 Mk) = 1.

Proof. Let M = ∩m−1
k=0 Mk. For all � ∈ (0, 1

m) and all k ∈ Σm, M
1
m
−�, 1

m
+�

k ⊆ Mk. Let

M� = ∩k∈MM
1
m
−�, 1

m
+�

k . It is clear that M� ∕= ∅, M� ⊆M , and M� is saturated. By Corollary

4.4.17, dimH(M�) = H 1
m
−�,m. Then by the monotonicity of dimension (Theorem 4.1.1),

dimH(M) ≥ H 1
m
−�,m. (4.4.5)

Note that (4.4.5) holds for all �. Therefore,

dimH(M) ≥ sup
�∈(0, 1

m
)

H 1
m
−�,m = lim

�→0
H 1

m
−�,m = 1.

Theorem 4.4.19. Let A be a d×m matrix and b = (b1, . . . , bd) ∈ ℝd. Let

K i.o.(A, b) = {S ∈ Cm ∣ (∃{kn} ⊆ ℕ) lim
n→∞

kn = ∞ and lim
n→∞

A(�⃗(S, kn))
T = b}

and let

K(A, b) = {S ∈ Cm ∣ lim
n→∞

A(�⃗(S, n))T = b}.

78

Then

dimFS(K
i.o.(A, b)) = dimH(K

i.o.(A, b)) = sup
�⃗∈Δ(Σm)
A�⃗T=b

ℋm(�⃗),

dimP(K
i.o.(A, b)) = 1, and dimH(K(A, b)) = DimFS(K(A, b)) = sup�⃗∈Δ(Σm)

A�⃗T=b

ℋm(�⃗).

Proof. It is easy to check that K i.o.(A, b) and K(A, b) are both saturated.

Many more examples of the application of Theorem 4.4.13 can be easily enumerated and

such examples can be very exotic and the determination of the actual value of the fractal

dimensions can still be very difficult. A tool like Theorem 4.4.13 significantly reduces the diffi-

culty of determining fractal dimensions by connecting the dimension of a set to the dimensions

of individual elements in the set. However, in practice, the mere difficulty in determining what

elements belong to the set under consideration can be prohibitive.

79

5 FRACTALS IN GEOMETRY

In this chapter, we study computable curves of finite length. The set of all the points that

are on some computable curve of finite length form a set ℛ, or the computable transit network.

5.1 Curves and Computability

We fix an integer n ≥ 2 and work in the Euclidean space ℝn. A tour is a continuous

function f : [a, b] → ℝn for some real numbers a < b. A curve is the range of a tour and we

say that the tour is a parametrization of the curve. We very often choose a = 0 and b = 1 for

convenience. The length of a tour f is

length(f) = sup
a⃗

k−1
∑

i=0

∣f(ai+1)− f(ai)∣,

where ∣x∣ is the Euclidean norm of a point x ∈ ℝn and the supremum is taken over all dissections

a⃗ of [a, b], i.e., all a⃗ = (a0, . . . , ak) with 0 = a0 < a1 < ⋅ ⋅ ⋅ < ak = 1. Note that length(f) is

the length of the actual path traced by f . If f is one-to-one (i.e., the tour is simple), then

length(f) coincides with ℋ1(f([0, 1])), which is the length (i.e., the one-dimensional Hausdorff

measure [31]) of the range of f , but, in general, f may “retrace” parts of its range, so length(f)

may exceed ℋ1(f([0, 1])). A tour f is rectifiable if length(f) <∞. A curve is rectifiable if it is

the range of some tour f that is rectifiable. A curve is simple if it is the range of some simple

tour.

A function f is the tour of a set K ⊆ ℝn if f is a tour such that K ⊆ f([0, 1]).

Since tours are continuous, the extended computability notion introduced by Braverman

[15] coincides with the computability notion formulated in the 1950s by Grzegorczyk [38] and

Lacombe [57] and exposited in the recent paper by Braverman and Cook [16] and in the

80

monographs [85, 54, 98]. Specifically, a tour f : [0, 1] → ℝn is computable if there is an oracle

Turing machine M with the following property. For all t ∈ [0, 1] and r ∈ ℕ, if M is given a

function oracle 't : ℕ → ℚ such that, for all k ∈ ℕ, ∣'t(k)− t∣ ≤ 2−k, then M , with oracle 't

and input r, outputs a rational point M't(r) ∈ ℚn such that ∣M't(r)− f(t)∣ ≤ 2−r. A curve

Γ is computable if there exists a computable tour f such that Γ = range(f).

A point x ∈ ℝn is computable if there is a computable function x : ℕ → ℚn such that,

for all r ∈ ℕ, ∣ x(r) − x∣ ≤ 2−r. It is well known and easy to see that, if f : [0, 1] → ℝn and

t ∈ [0, 1] are computable, then f(t) is computable.

5.2 The Computable Transit Network

We use ℛ to denote the computable transit network, i.e., points that lie on rectifiable

computable curves. Here we briefly discuss the structure of ℛ, referring freely to existing

literature on fractal geometry [31] and effective dimension [63, 64, 28].

For each rectifiable tour f , we have ℋ1(f([0, 1])) ≤ length(f) <∞, so the Hausdorff dimen-

sion of f([0, 1]) is 1, unless f([0, 1]) is a single point (in which case the Hausdorff dimension is

0). Since ℛ is the union of countably many such sets f([0, 1]), it follows by countable stability

[31] that ℛ has Hausdorff dimension 1. This implies that ℛ is a Lebesgue measure 0 subset of

ℝn, i.e., that almost every point in ℝn lies in the complement of ℛ.

Since ℛ contains every computable point in ℝn, ℛ is dense in ℝn. Also, if x ∈ f([0, 1]) and

y ∈ g([0, 1]), where f and g are rectifiable computable tours, then we can use f , g, and the

segment from f(1) to g(0) to assemble a rectifiable computable tour ℎ such that x, y ∈ ℎ([0, 1]).

Hence, ℛ is path-connected in the strong sense that any two points inℛ lie in a single rectifiable

computable tour.

For each rectifiable computable tour f , the set f([0, 1]) is a computably closed (i.e., Π0
1)

subset of ℝn [72]. Since ℛ is the union of all such f([0, 1]), it follows by Hitchcock’s cor-

respondence principle [45] that the constructive dimension of ℛ coincides with its Hausdorff

dimension, which we have observed to be 1. (It is worth mention here that ℛ can easily be

shown not to have computable measure 0, whence ℛ has computable dimension n [63]. By

81

Staiger’s correspondence principle [91, 45], this implies that ℛ is not a Σ0
2 set.) It follows that

each point x ∈ ℛ has dimension at most 1 (in the sense that {x} has constructive dimension

1 [64]). It might be reasonable to conjecture that this actually characterizes points in ℛ, but

the following example shows that this is not the case.

Construction 5.2.1. Given an infinite binary sequence R, define a sequence A0, A1, A2, . . .

of closed squares in ℝ2 by the following recursion. First, A0 = [0, 1]2. Next, assuming that An

has been defined, let a and b be the 2nth and (2n + 1)st bits, respectively of R. Then An+1

is the ab-most closed subsquare of An with area(An+1) =
1
16area(An), where 00 =“lower left”,

01 =“lower right”, 10 = “upper left”, and 11 =“upper right”. Let xR be the unique point in

ℝ2 such that xR ∈ An for all n ∈ ℕ.

It is well known [71, 35] that the set K consisting of all such points xR is a bounded set

with positive, finite one-dimensional Hausdorff measure (and hence with Hausdorff dimension

1), but that K is not contained in any rectifiable curve. The next lemma is a constructive

extension of this fact.

Lemma 5.2.2. For any sequence R that is random (in the sense of Martin-Löf [67]; see

also [58, 28]), the point xR of Construction 5.2.1 has dimension 1 and does not lie on any

computable curve of finite length.

We will need the following claim about geometry to prove Lemma 5.2.2.

Claim. Let n ∈ ℤ+. Let X be a set of points such that for each x ∈ X, there exists wx ∈

{0, 1}2n with x ∈ An(wx) and for x ∕= y ∈ X, wx ∕= wy. (Note that ∣X∣ ≤ 4n.) Then the length

of any curve that traverse X is at least

6

4
4−n∣X∣ log4 ∣X∣.

Proof. We prove this by induction on n. For n = 1, ∣X∣ ≤ 4 and the claim can be easily

verified by using the triangle inequality of the Euclidean plane.

Let 1 < n ∈ ℤ+. Assume the claim for the case of n− 1.

82

Let w ∈ {0, 1}2n. The sidelength of An(w) is 4
−n. For each a, b ∈ {0, 1}, let

Xab = {An−1(w) ∣ An(abw) ∈ X } .

Then we have that X =
∪

a,b∈{0,1}Xab and Xab ⊆ A1(ab). Note that for each a, b ∈ {0, 1},

A1(ab) is a 1
4 scaling of the unit square A0(�). Regard, A1(ab) as the unit square, then it

is clear that the assumption of this claim holds for Xab such that for each x ∈ Xab, there

exists a distinct wx ∈ {0, 1}2(n−1) with x ∈ An−1(wx). By the induction hypothesis, the length

required to traverse Xab is
1
4 ⋅ 6

44
−(n−1)∣Xab∣ log4 ∣Xab∣ (note the scaling factor 1

4 in front).

By the triangle inequality of the Euclidean plane, we know that it uses less length if we

connect each non-empty Xab internally and then make c − 1 connections (each of length at

least 1
2) between different Xab’s, where c ≤ 4 is the number of non-empty Xab’s. So the length

required to connect all points in X is

c− 1

2
+

∑

a,b∈{0,1}
Xab ∕=∅

(

1

4
⋅ 6
4
4−(n−1)∣Xab∣ log4 ∣Xab∣

)

≥c− 1

2
+

1

4
⋅ 6
4
4−(n−1)

∑

a,b∈{0,1}
Xab ∕=∅

∣Xab∣ log4 ∣Xab∣

≥Jensen′s c− 1

2
+

6

4
4−nc

∣X∣
c

log4
∣X∣
c

≥6

4
4−n∣X∣ log4 ∣X∣+ c− 1

2
− 6

4
4−n∣X∣ log4 c

≥6

4
4−n∣X∣ log4 ∣X∣.

Note that for 1 ≤ c ≤ 4, ∣X∣ ≤ c4n−1 and it can be verified that the above inequality holds for

each 1 ≤ c ≤ 4.

Proof of Lemma 5.2.2. Let : [0, 1] → ℝ2 be a computable curve. Let Xn ⊆ {0, 1}2n be

the set of all strings w ∈ {0, 1}2n such that the distance between An(w) and ([0, 1]) is less

than 2−22
n

. We defined martingales dm : {0, 1}∗ → [0,∞) such that for all strings of length

83

2m+1

dm(w) =

⎧

⎨

⎩

22⋅2
m ∣{x∈X2m ∣ w⊑x}∣

∣X2m ∣ ∣w∣ ≤ 2m+1

d(w[0..2m+1 − 1]) otherwise.

Note that since is computable and bounded, it can be sampled to any precision computably.

Therefore, dm is computable for each m. Let d =
∑∞

m=1
1
m2 dm. It is clear that d is constructive.

Let R be (Martin-Löf) random such that xR ∈ ([0, 1]). Then R[0..2n − 1] ∈ Xn for all

n ∈ ℕ and there exists c ∈ ℕ such that d(R[0..2n − 1]) < c for all n ∈ ℕ. Therefore, for each

m > 0,

1

m2
dm(R[0..2m+1 − 1]) < d(R[0..2m+1 − 1]) < c,

i.e.,

1

m2
22⋅2

m ∣
{

x ∈ X2m
∣

∣ R[0..2m+1 − 1] ⊑ x
}

∣
∣X2m ∣ < c.

Note that ∣
{

x ∈ X2m
∣

∣ R[0..2m+1 − 1] ⊑ x
}

∣ = 1. We have

∣X2m ∣ >
22

m+1

cm2
,

there are more than points in (or extremely close to) 22
m+1

cm2 blocks of the form A2m(w). Since

all these blocks are traversed by , by the Claim, the length of is at least

6

4
4−2m 22

m+1

cm2
log4

(

22
m+1

cm2

)

=
3

2cm2
(2m − log4(cm

2)) → ∞ as m→ ∞.

Therefore, cannot have finite length.

The following theorem shows that more is true, although the proof, a Baire category argu-

ment, does not yield such a concrete example.

Theorem 5.2.3. The complement of ℛ contains points of arbitrarily small dimension, includ-

ing 0.

Lemma 5.2.4. DIM=0∩ [0, 1] is co-meager in [0, 1] and DIM=0∩ [0, 1]2 is co-meager in [0, 1]2.

Proof. We prove in the coding space instead of [0, 1] and [0, 1]2. Since the proof for [0, 1] and

[0, 1]2 are almost identical, we only prove it for the [0, 1] case. Note that the constructive

dimension of a point in ℝn is n times the dimension of its coding sequence [65].

84

Let ℎ : {0, 1}∗ → {0, 1}∗ be a constructor such that

ℎ(w) = w02
∣w∣

for all w ∈ {0, 1}∗. Let g : {0, 1}∗ → {0, 1}∗ be an arbitrary constructor. Let S = R(g, ℎ).

We claim that S ∈ DIM=0.

Let � > 0 be rational. Let d� : {0, 1}∗ → [0,∞) be such that d�(�) = 1 and for all

� ∕= w ∈ {0, 1}∗,

d�(w0) = 2sd�(w)(1 − �) and d�(w1) = 2sd�(w)�.

It is easy to verify that d� is a computable (hence constructive) s-gale. Let f(n) = (f0(n), f1(n)) ∈

[0, 1]× [0, 1] be such that f0(n) is the frequency of 0’s in S[0..n− 1] and f1(n) is the frequency

of 1’s in S[0..n − 1]. Let n = ∣(ℎ ∘ g)i(�)∣.

d�(S[0..n − 1]) = 2sn(1− �)nf0(n)�nf1(n)

= 2(s+f0(n) log(1−�)+f1(n) log �)n

= 2(s−f0(n) log(1−�)−1+f1(n) log �−1)n.

Note that by the definition of ℎ,

lim
i→∞

f0(∣(ℎ ∘ g)i(�)∣) = 1.

By the continuity of the function (x, y) 7→ x log y + (1 − x) log(1 − y), for all � > 0, there is a

� > 0 such that for all sufficiently large n = ∣(ℎ ∘ g)i(�)∣, f0(n) log(1− �)−1 + f1(n) log �
−1 < �

and � → 0 as � → 0.

By the above analysis, d� witnesses that the constructive dimension of S is no more than

2�. By taking limit of � approaching 0, we have that the dimension of S is 0, i.e., S ∈ DIM=0.

Therefore, DIM=0 is co-meager.

The following lemma is used in the proof of Theorem 5.2.3. As we mentioned, it may be

proven using Hitchcock’s correspondence principle [45].

Lemma 5.2.5. Every point in ℛ has dimension at most 1.

85

In the following, we prove Theorem 5.2.3 in ℝ2. The proof for the general case in ℝn is

very similar.

Proof of Theorem 5.2.3. Let � ≥ 0. Without loss of generality, we prove that DIM=� ∩

[0, 1]2 is not contained in ℛ.

We first prove the case where � > 0.

We use the Cantor space C = {0, 1}∞ in place of [0, 1] for this proof. Let r ∈ RAND ∩C.

Let b = f(r), where f : C → C is defined such that for all S ∈ C and all n ∈ ℕ,

f(S)[2n − 1..2n − 1 + ⌊�2n⌋ − 1] = S[2n − 1..2n − 1 + ⌊�2n⌋ − 1]

and

f(S)[2n − 1 + ⌊�2n⌋ ..2n+1 − 2] = 02
n−⌊�2n⌋.

It is clear by the definition of f that dim(b) = �. Let Lb = {(x, b) ∣ x ∈ [0, 1]}. Let

L′
b = {(x, b) ∣ x ∈ DIM=0 ∩ [0, 1]}. Note that every point in L′

b has dimension � in ℝ2.

Suppose every point in DIM=� ∩ ℝ2 ⊆ ℛ, then every point in L′
b is on some computable

rectifiable curve. Since there are only countably many computable curves — Γ0,Γ1, . . . ,

L′
b ⊆

∞
∪

i=0

(Γi ∩ L′
b).

For A ⊆ ℝ2, let P (A) = {x ∣ (x, y) ∈ A}. Then we have

P (L′
b) ⊆

∞
∪

i=0

P (Γi ∩ L′
b).

Note that P (L′
b) = DIM=0∩ [0, 1]. By Lemma 5.2.4, we have that for some n0 ∈ ℕ, P (Γn0∩L′

b)

is dense in some interval I ⊆ [0, 1]. Since Γn0 is compact, I×{b} ⊆ Γn0∩(I×{b}). Let RANDr

be the subset of [0, 1] that contains all real numbers that are random relative to r. Since RANDr

is dense in [0, 1], there is a real number r′ ∈ RANDr ∩ I. Since r′ is random relative to r, r

is random relative to r′. Hence r′ is random relative to b and b has dimension � relative to

r′. Therefore dim((r′, b)) = 1 + �, which contradicts Lemma 5.2.5. Therefore, some point of

dimension � is not on any computable rectifiable curve.

For the case � = 0, the proof is simpler.

86

Let f : [0, 1] → ℝ2 be an arbitrary computable rectifiable curve in the plane. Since f([0, 1])

is compact, f([0, 1]) is nowhere dense, since otherwise f([0, 1]) would have covered part of

the plane with a positive area. Since there are only countably many computable curves, the

union of all their images is a countable union of nowhere dense set, hence meager. (For basic

properties of Baire Category, refer to [84].) Therefore, ℛ is meager. As in Lemma 5.2.4,

DIM=0 ∩ [0, 1]2 is co-meager, hence DIM=0 ∩ [0, 1]2 ∩ℛc ∕= ∅.

5.3 Points on Rectifiable Computable Curves

In last section, we have shown that it is not possible to use constructive dimension to

characterize points in ℛ . In this section, we characterize points in ℛ by extending the

famous “analyst’s traveling salesman theorem” of geometric measure theory to a theorem

in computable analysis. We begin by describing the classical “analyst’s traveling salesman

theorem” in detail.

For each m ∈ ℤ, let Qm be the set of all dyadic cubes of order m, which are half-closed,

half-open cubes

Q = [a1, a1 + 2−m)× ⋅ ⋅ ⋅ × [an, an + 2−m)

in ℝn with a1, . . . , an ∈ 2−mℤ. Note that such a cube Q has sidelength ℓ(Q) = 2−m and all its

vertices in 2−mℤn. Let Q =
∪

m∈ℤ Qm be the set of all dyadic cubes of all orders. We regard

each dyadic cube Q as an “address” of the larger cube 3Q, which has the same center as Q

and sidelength ℓ(3Q) = 3ℓ(Q). The analyst’s traveling salesman theorem is stated in terms of

the resulting system {3Q ∣ Q ∈ Q} of overlapping cubes.

Let K be a bounded subset of ℝn. For each Q ∈ Q, let r(Q) be the least radius of any

infinite closed cylinder in any direction in ℝn that contains all of K ∩ 3Q. Then the Jones

beta-number of K at Q is

�Q(K) =
r(Q)

ℓ(Q)
,

and the Jones square beta-number of K is

�2(K) =
∑

Q∈Q
�Q(K)2ℓ(Q)

87

(which may be infinite). With these notations, the analyst’s traveling salesman theorem can

be stated precisely as follows.

Theorem 5.3.1. (Jones [50], Okikiolu [77]). Let K ⊆ ℝn be bounded. Then K is contained

in some rectifiable curve if and only if �2(K) <∞.

Jones’s proof of the “if” direction of Theorem 5.3.1 is an intricate “farthest insertion” con-

struction of a curve containing K, together with an amortized analysis showing that the length

of this curve is finite. This proof works in any Euclidean space ℝn. However, Jones’s proof of

the “only if” direction of Theorem 5.3.1 uses nontrivial methods from complex analysis and

only works in the Euclidean plane ℝ2 (regarded as the complex plane ℂ). Okikiolu’s subsequent

proof of the “only if” direction is a clever geometric argument that works in any Euclidean

space ℝn. (It should also be noted that these papers establish a quantitative relationship be-

tween �2(K) and the infimum length of a curve containing K, and that the constants in this

relationship have been improved in the recent thesis by Schul [88]. In contrast, we are only

concerned with the qualitative question of the existence of a rectifiable curve containing K

here.)

Theorem 5.3.1 is generally regarded as a solution of the “analyst’s traveling salesman

problem” (analyst’s TSP), which is to characterize those sets K ⊆ ℝn that can be traversed

by curves of finite length. It is then natural to pose the computable analyst’s TSP, which is

to characterize those sets K ⊆ ℝn that can be traversed by computable curves of finite length.

While the analyst’s TSP is only interesting for infinite sets K (because every finite set K is

contained in a rectifiable curve), the computable analyst’s TSP is interesting for arbitrary sets

K including singleton sets.

5.3.1 The Computable Analyst’s Traveling Salesman Theorem

To solve the computable analyst’s TSP, we first replace the Jones square beta-number of

the arbitrary set K with a data structure that can be required to be computable. To this

end, we define a cylinder assignment to be a function assigning to each dyadic cube Q an

(infinite) closed rational cylinder (Q), by which we mean that (Q) is a cylinder whose axis

88

passes through two (hence infinitely many) points of ℚn and whose radius �(Q) is rational. (If

�(Q) = 0, the cylinder is a line; if �(Q) < 0, the cylinder is empty.) The set permitted by a

cylinder assignment is the (closed) set �() consisting of all points x ∈ ℝn such that, for all

Q ∈ Q,

x ∈ (3Q)o ⇒ x ∈ (Q),

where (3Q)o is the interior of 3Q.

There is one technical point that needs to be addressed here. If is a cylinder assignment

that, at some Q ∈ Q, prohibits a subcube 3Q′ of 3Q (i.e., (Q) ∩ (3Q′)o = ∅), then �()

contains no interior point of 3Q′, so it is pointless and misleading for to assign Q′ a cylinder

(Q′) that meets (3Q′)o. We define a cylinder assignment to be persistent if it does not make

such pointless assignments, i.e., if, for all Q,Q′ ∈ Q with Q′ ⊆ Q and (Q) ∩ (3Q′)o = ∅, we

have (Q′) ∩ (3Q′)o = ∅. It is easy to transform a cylinder assignment into a persistent

cylinder assignment ′ that is equivalent to in the sense that �() = �(′), with ′ computable

if is.

Definition. Let be a cylinder assignment.

1. The Jones beta-number of at a cube Q ∈ Q is

�Q() =
�(Q)

ℓ(Q)
.

2. The Jones square beta-number of is

�2() =
∑

Q∈Q
�Q()

2ℓ(Q).

Note that �2() may be infinite.

Definition. A Jones constriction is a persistent cylinder assignment for which �2() <∞.

We can now state the computable analyst’s traveling salesman theorem.

Theorem 5.3.2. Let K ⊆ ℝn be bounded. Then K is contained in some rectifiable computable

curve if and only if there is a computable Jones constriction such that K ⊆ �().

89

Theorem 5.3.2 solves the computable analyst’s TSP, and thus immediately gives us a char-

acterization of ℛ.

Corollary 5.3.3. A point x ∈ ℝn is rectifiable if and only if x is permitted by some computable

Jones constriction. That is,

ℛ =
∪

computable

�(),

where the union is taken over all computable Jones constrictions.

It should be noted that (the proof of) Theorem 5.3.2 relativizes to arbitrary oracles, so it

implies Theorem 5.3.1. This is the sense in which our computable analyst’s traveling salesman

theorem is an extension of the analyst’s traveling salesman theorem.

Our proof of the “only if” direction of Theorem 5.3.2 is easy, because we are able to use the

corresponding part of Theorem 5.3.1 as a “black box”. However, our proof of the “if” direction

is somewhat involved. Given an arbitrary computable Jones constriction , we construct a

rectifiable computable tour containing �(). In this construction, we are able to follow the

broad outlines of Jones’s “farthest insertion” construction and to use its key ideas, but we

have an additional obstacle to overcome. The analyst’s TSP does not require an algorithm, so

Jones’s proof can simply “choose” elements of the given set K according to various criteria at

each stage of the construction (often moving these points later as needed). However, even if

is computable, neither the set �() nor its elements need be computable. Hence the algorithm

for our computable tour cannot directly choose points in (or even reliably near) �(). Our

proof succeeds by carefully separating the algorithm/construction from the amortized analysis

of the length of the tour that it computes. The construction is discussed in section 5.3.2 and

the analysis is in section 5.3.3.

Before we go into the details, we first summarize our proof. Since a version of the

Pythagorean Theorem is center to the proof, we state it first:

Theorem 5.3.4. Let m ∈ ℤ and A > 9. Let a, b, c be the lengths of three line segments

that form a triangle inside a cylinder of length l = A21−m and width w < l
A3

√
n

such that

90

ℎ

�

a
b

c
�
′

Figure 5.3.1 Pythagorean Theorem

21−m ≥ a, b ≥ 2−m and c ≥ 21−m, where n is the dimension of the space. Let � = w
l . Then

a+ b ≤ c+ 2A�2l.

Proof. Let � be the small angle determined by line segments a and c. Let �′ be the small

angle determined by line segments b and c. Let ℎ be the distance from the intersection of line

segments a and b to line segment c.

a+ b− c ≤ ℎ sin � + ℎ sin �′ = ℎ ⋅ ℎ
a
+ ℎ ⋅ ℎ

b

= a ⋅
(

ℎ

a

)2

+ b ⋅
(

ℎ

b

)2

≤ 2A
(w

l

)2
⋅ l

= 2A�2l.

This version of Pythagorean Theorem easily generalizes to the case where more line seg-

ments are involved in the setting.

We first dispose of the “only if” direction. If we are given a rectifiable computable tour f

and a rational � > 0, it is routine to construct a computable a cylinder assignment such that

f([0, 1]) ⊆ �() and �2() ≤ �2(f([0, 1])) + �. The “only if” direction of Theorem 5.3.2 hence

follows easily from the “only if” direction of Theorem 5.3.1. We thus focus our attention on

proving the “if” direction of Theorem 5.3.2.

As pointed out by Jones [50], the analyst’s TSP is significantly different from the classical

TSP in that it typically involves uncountably many points at locations that are not explicitly

specified. In his construction, he has the privilege to “know” whether a point is in the set K

or not, since he is concerned only with the existence of a tour and not with the computability

91

of the tour. This is no longer true in our situation, since we work with only a computable

constriction, from which we may not computably determine whether a point is in the set.

Although the situations differ by so much, ideas with a flavor of the “farthest insertion” and

“nearest insertion” heuristics that are used in Jones’s argument and the classical TSP are

essential to our solution.

Given a computable Jones constriction , we construct computably a tour f : [0, 1] → ℝn

of the set K = �() permitted by such that �() ⊆ f([0, 1]) and the length of the tour is

finite.

Our construction proceeds in stages. In each stage m ∈ ℕ, a set of points with regulated

density is chosen according to the constriction and a tour fm of these points is constructed

so that every point in K is at most roughly 2−m from the tour. Every tour is constructed by

patching the previous tour locally so that the sequence of tours {fm} converges computably.

During the tour patching at each stage, the insertion ideas mentioned earlier are applied at

different parts of the set K according to the local topology given by the constriction. Note that

it is not completely clear that the use of “farthest insertion” is absolutely necessary. However,

it greatly facilitates the associated amortized analysis of length, which is as crucial in our proof

as it is in Jones’s. In the following, we describe in more detail how and when these ideas are

applied in the algorithmic construction of the tour.

In each stage m ∈ ℕ, we look at cubes Q of sidelength A2−m, where A = 2k0 is a sufficiently

large universal constant. We pick points so that they are at least 2−m from each other and

every point in K is at most 2−m from some of those chosen points. Based on the value of �Q(),

which measures the relative width of 3Q∩K, we divide cubes into “narrow” ones (�Q() < �0)

and “fat” ones (�Q() ≥ �0), where �0 is a small universal constant.

The fat cubes are easy to process, since the associated square beta-number is large. We

connect the points in those cubes to nearby surrounding points, some of which are guaranteed

to be in the previous tour due to the density of the points in the tour. Since the points

are chosen with regulated density, the number of connections we make here is bounded by

a universal constant. The length of each connection is proportional to the sidelength of the

92

cube, which is proportional to 2−m. Thus the total length we add to the tour is bounded by

c0 ⋅ �20ℓ(Q), which is then bounded by c0 ⋅ �2Q()ℓ(Q), where c0 is a sufficiently large universal

constant.

For the narrow cubes, we carry out either “farthest insertion” or “nearest insertion” de-

pending on the local topology around each insertion point.

Suppose that we are about to patch the existing tour to include a point x. Since from stage

to stage, the points are picked with increasing density, there is always a point z1 already in the

tour inside the cube that contains x. However, there are two possibilities for the neighborhood

of x. One is that there is another point z2 already in the tour and z2 is inside the cube that

contains x. The other possibility is that z1 is the only such point.

In the first case, point x lies in a narrow cube and there are points z1 and z2 in the narrow

cube such that x is between z1 and z2. Points z1 and z2 are in the existing tour and are

connected directly with a line segment in the tour. In this case, we apply “nearest insertion”

by letting z1 and z2 be the closest two neighbors of x in the existing tour, breaking the line

segment between z1, z2, and connecting z1 to x and x to z2. The increment of the length of the

tour is ℓ([z1, x]) + ℓ([x, z2])− ℓ([z1, z2]), which is bounded by c1 ⋅ �2Q()ℓ(Q) by an application

of the Pythagorean Theorem, since the cube is very narrow.

In the second case, point z1 is the only point in the existing tour that is in the same cube

as x. It is not guaranteed that x can be inserted between two points in the existing tour.

Even when it is possible, the other point in the existing tour would be outside the cube that

we are looking at and thus it might require backtracking an unbounded number of stages to

bound the increment of length, which would make the proof extremely complicated (if even

possible). Therefore, we keep the patching for every point local and, in this case, we make

sure x is locally the “farthest” point from z1 and connect x directly to z1. (Note that the

actual situation is slightly more involved and is addressed in the full proof.) In this case, the

Pythagorean Theorem cannot be used and thus we cannot use the Jones square beta-number

to directly bound the increment of length. To remedy this, we employ amortized analysis and

save spare square beta-numbers in a savings account over the stages and use the saved values

93

to bound the length increment. In order for this to work, we choose �0 so small that at a

particular neighborhood, “farthest insertion” does not happen very frequently and we always

have the time to save up enough of the square beta-number before we need to use it.

5.3.2 The Construction Of The Tour

In this section, we fully describe the construction of f , a computable tour that contains

K = �().

Note that by the definition of constriction, the set K = �() permitted by constriction is

compact. We assume K ⊆ [0, 1/
√
n]n, (0, . . . , 0) ∈ K, and (1/

√
n, . . . , 1/

√
n) ∈ K. We do not

lose generality by imposing this assumption, since scaling of a function can be easily computed.

Let A = 2k0 > 9. Let �0 <
1

A3
√
n
be a fixed small constant, where n is the dimension of the

Euclidean space we are working with.

In the construction, we inductively build point sets L0 ⊆ L1 ⊆ ⋅ ⋅ ⋅ ⊆ Lm ⋅ ⋅ ⋅ in stages with

the following properties.

C1: ∣zj − zk∣ ≥ 2−m −√
n2−2m , for zj , zk ∈ Lm, j ∕= k.

C2: For m ∈ ℕ and every x ∈ K, there exists z ∈ Lm such that ∣x− z∣ ≤ 2−m +
√
n2−2m .

Note that for each m ∈ ℕ, Lm ⊆ Km, where Km is the union of dyadic cubes of sidelength

2−2m permitted by . However, the points in Lm are not specified by explicit coordinates.

Instead, every point in Lm is specified by an algorithm, which when given a precision parameter

r, outputs the coordinates of the dyadic cube of sidelength at most 2−r that the point lies in.

At stage m, we use r = 2m. Although the points we pick may not have rational coordinates, at

each stage m, we only look at them with precision r and treat them as if they all have rational

coordinates. The dyadic cube determined by the coordinates is a sub-cube of the dyadic cube

given by smaller precision parameter m. Thus the point is specified by a nested chain of dyadic

cubes of progressively smaller sizes. When, for some m, such a dyadic cube is not permitted

by , the output of the algorithm remains to be the coordinates given by the algorithm with

the largest precision parameter that leads to an output of a dyadic cube that is permitted by

. Thus it is possible that a point in Lm is not in K.

94

In stage m ∈ ℕ, we look at cubes Q of sidelength A2−m. For each Q, we use 3Q to denote

the cube of side length 3A2−m centered at the center of Q. For the sake of precision, we look

at the resolution level of Km. Let �(Q) = �Q() =
�(Q)
ℓ(Q) . Note that Jones square beta-number

�2() of set K is
∑

Q∈Q �
2(Q)ℓ(Q). For each term in the sum, we call �2(Q)ℓ(Q) the local

square beta-number at Q. We build a tour fm : [0, 1] → ℝn of Lm by patching the tour fm−1

locally according to the local topology of Km given by the constriction so that the sequence of

tours {fm} converges computably.

Since the tour we build is computable, which requires parameterized approximation, the

approximation scheme in computing the points in Lm is not harmful.

As we mentioned earlier, points in Lm may not lie in K, thus it is possible that, at some

stage, a point chosen earlier is discovered to be outside K. However, when this happens, we

don’t remove the point. Instead, we keep such points in order to maintain the convergence of

the parameterizations of the sequence of tours. Therefore, due to the inability to computably

choose points strictly from K, we may introduce extra length to the tours. However the extra

length turns out to be bounded by the local square beta-numbers and thus the access to the set

K in Jones’s original construction is a nonessential feature of the analyst’s traveling salesman

problem and our characterization using Jones constriction is a proper relaxation of Jones’s

characterization. However, we also note that in Jones’s world, using K is equivalent to using

the constriction.

Before getting into the construction, we describe some sub-routines that we will use in the

construction to patch the tours.

First note again that, at each stage m, we use a precision parameter of r = 2m for points

and treat them as if they have dyadic rational coordinates. It is also easy to make sure that

for each fm, for all p ∈ [0, 1] such that fm(p) ∈ Lm =⇒ p ∈ [0, 1] ∩ℚ. Thus, we may keep a

table of all p ∈ [0, 1] with fm(p) ∈ Lm.

The first procedure is attach(f, z, x,m) with z ∈ Lm−1 or z ∈ Lm being already explicitly

traversed by f . This procedure modifies f so that the output f ′ = attach(f, z, x,m) traverses

line segment [z, x] in addition to the set f originally traverses and for all p ∈ [0, 1], ∣f(p) −

95

f ′(p)∣ ≤ 21−m.

The procedure first looks up the table and finds q ∈ [0, 1] such that f(q) = z. Then it finds

a ∈ ℚ∩ (0, 1) such that ∣f(q− 2a)− f(q)∣ < 21−m, ∣f(q+2a)− f(q)∣ < 21−m, and z is the only

point in Lm−1 ∩ f([q − 2a, q + 2a]) and it appears only once. The output f ′ is such that for

all p ∈ [0, 1] ∖ [q − 2a, q +2a] , f ′(p) = f(p); f ′ maps [q − 2a, q − a] to f([q− 2a, q]) linearly; f ′

maps [q − a, q] to [z, x] linearly; f ′ maps [q, q + a] to [x, z] linearly; f ′ maps [q + a, q + 2a] to

f([q, q + 2a]) linearly.

The second procedure is reconnect(f, z1, z2, x0, . . . , xN ,m) with the assumption that f tra-

verses line segment [z1, z2] from one end to the other. This procedure first looks up the table

and, without loss of generality, we assume that it finds the smallest interval [p, q] ⊆ [0, 1] such

that f(p) = z1 and f(q) = z2 and f([p, q]) = [z1, z2]. We obtain f ′ by reparameterizing f to in-

clude x0, . . . , xN in order. First we pick rational points q0, . . . , qN such that for each i ∈ [0..N],

∣f(qi)−xi∣ ≤ 2�03A2
−m. Then we let f ′ map [p, q0] to [z1, x0] and let f ′ map [qN , q] to [xN , z2].

For i ∈ [0..N − 1], let f ′ map [qi, qi+1] to [xi, xi+1]. Note that if all these points involved lie in

a very narrow strip, it is guaranteed that the newly added line segments are very close to the

longer line segment they replace. The distance between the new parameterization and the old

one is bounded by 2�03A2
−m.

Note that in each of the above procedures, when f is reparameterized to obtain f ′, the

table that saves the information on the preimages of points in Lm−1 and Lm is updated to

reflect the changes.

The construction proceeds as follows:

Stage 0: m = 0 and the size of Q we consider is ℓ(Q) = A. L0 contains the two diagonal

points of [0, 1/
√
n]n, i.e., L0 = {(0, . . . , 0), (1/√n, . . . , 1/√n)}. Let f0 map [0, 1] linearly to the

line segment [(0, . . . , 0), (1/
√
n, . . . , 1/

√
n)].

Stage m: For any point z and x with z ∕= x, let

Ez,x = {y ∣ y − z is at most 2
3� from x− z }.

For all x ∈ K, let Qx be such that x ∈ Qx and Qx ∈ Qm−k0 . Let zx ∈ Lm−1 be the closest

neighbor of x (2−m −√
n2−2m ≤ ∣x− zx∣ ≤ 21−m +

√
n2−2m−1

).

96

First we build a set of points that we eventually add into Lm−1 to form Lm. The following

piece of code first finds new points inKm that correspond to the cases where “farthest insertion”

is required. Note that in this case, as long as the point we pick is sufficiently close to the farthest

point, the construction will work. (By “sufficiently close”, we mean that the point we pick

is close enough to a farthest point so that another instance of “farthest insertion” does not

happen within k0 stages in that neighborhood.) This allows us to computably pick points for

“farthest insertion” without worrying about not being able to pick the actual farthest points.

L′ ⊆ Km be a set of points such that Lm−1 ∪ L′ satisfies conditions C1 and C2;

L′ = L′ ∩ {x ∈ Km ∣ �(Qx) < �0 and Lm−1 ∩BA21−m+
√
n2−2m (zx) ∩ Ezx,x ∖ {zx} = ∅};

L̂ = ∅;

for all x0 ∈ L′ do

if ℓ([x0, zx0]) ≥ max{ℓ([x, zx]) ∣ x ∈ Ezx0 ,x0 ∩B21−m(zx0) ∩Km} − √
n2−2m ;

then

L̂ = L̂ ∪ {x0};

else

let x′0 ∈ Km be such that

ℓ([x′0, zx0]) = max{ℓ([x, zx0]) ∣ x ∈ Ezx0 ,x0 ∩Km ∩B21−m(zx0)} −
√
n2−2m ;

/* zx′
0
≡ zx0 */

L̂ = L̂ ∪ {x′0};

end if

end for

Let L̂1 = L̂ /* L̂1 contains all the “farthest insertion” points */

Greedily add more points into L̂ so that L̂ satisfies conditions C1 and C2;

We connect every point in L̂ to some points in Lm−1 by reparameterizing fm−1 to get fm.

Initially, let Lm = Lm−1 and fm = fm−1. We divide the process into 3 steps.

Step 1: Farthest Insertion

97

for all x0 ∈ L̂1 do /* �(Qx0) < �0 */

if ∣L̂ ∩ Ezx0 ,x0 ∩B21−n(zx0) ∖ {x0}∣ = 0

then

Lm = Lm ∪ {x0};

f = attach(f, zx0 , x0,m);

else /* ∣L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0) ∖ {x0}∣ = 1 */

Let x1 ∈ L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0) with x1 ∕= x0;

Lm = Lm ∪ {x0, x1};

f = attach(f, zx1 , x1,m); f = attach(f, x1, x0,m);

end if

end for

Step 2: Nearest Insertion

for x0 ∈ L̂ with �(Qx0) < �0 that are not processed yet do

Let z1 be the closest neighbor of x0 in Lm−1 ∩BA21−m(zx0) ∩ Ezx0 ,x0 ∖ {zx0};

/* Note that f already explicitly traverses [zx0 , z1] */

Let {x∗, x1, . . . , xN} = L̂ ∩ Ezx0 ,x0 ∩Bℓ([zx0 ,z1])
(zx0) be ordered by x component;

if x∗ ∕= x0 then continue; end if

f = reconnect(f, zx0 , z1, x0, . . . , xN ,m);

Lm = Lm ∪ {x0, x1, . . . , xN};

mark x0, x1, . . . , xN as processed and never process again;

end for

Step 3:

for all x0 ∈ L̂ with �(Qx0) ≥ �0 do

98

if [zx0 , x0] is not explicitly traversed by f then f = attach(f, zx0 , x0,m);

for all x1 ∈ 3Qx0 ∩ (L̂ ∪ Lm−1) do

if [x0, x1] is not explicitly traversed by f then f = attach(f, x0, x1,m);

end for

Lm = Lm ∪ {x0};

end for

By construction, for every m ∈ ℕ, the distance between fm and fm+1 is bounded by
√
n3A2−m.

So by the convergence of the geometric series, {fm} is a convergent sequence of bounded

continuous functions. Thus f = limm→∞ fm exists and is actually computable, since each

fm is computable from the computable constriction and the modulus of computation may be

obtained by using the geometric series for the distance between fm and fm+1.

5.3.3 The Amortized Analysis Of The Construction

In this section, we analyze the construction and prove that if Jones square beta-number of

 is finite, then K = �() ⊆ f([0, 1]) and length(f) <∞.

Proof. In order to make the analysis possible, we associate with each z ∈
∪

m∈ℕ Lm a variable

M(z) and a variable V (z). Variables M may be taken as a savings account where local square

beta-numbers are saved at times when they are not used up. The saved values are then

used to cover the cost at times when new local square beta-numbers may not cover the cost.

Variables V are used to keep track of the information about the local environment of each point

z ∈ ∪m∈ℕ Lm during the construction. The initial value of M(z) before the first assignment is

0 and that of V (z) is ∅. M(z) only changes when a new assignment occurs. The values of the

variables may change over stages and during the various steps of the construction in a single

stage, so M(z) and V (z) always refer to their respective current values.

In the following, we describe how the values of variables M and variables V are updated

during each stage and each step of the construction. We also analyze the construction and

argue that, any at time during the construction, the increment to M values is bounded by

99

corresponding local square beta-numbers and M values are always sufficient to cover the con-

struction cost when local square beta-numbers may not be used. Since M values come from

local square beta-numbers, the increase of the length is again bounded by local square beta-

numbers, though indirectly. During the construction, whenever we useM values, we decrement

M values accordingly to ensure that M values are not used repeatedly.

Since the construction is inductive, the analysis is also inductive. We will show that the

following two properties hold during the construction for all z ∈ Lm, m ∈ ℕ.

P1: For all z′ ∈ V (z), let {y1, . . . , yN} = V (z) be arranged in the order of their projections

on the line determined by [z, z′]. Then for all j ≤ N − 1, [yj, yj+1] is a direct line segment

in fm.

P2: V (z) ∕= ∅ and one of the following is true.

(1) If there are at least two points z1, z2 ∈ V (z) such that the angle between [z, z1] and

[z, z2] is at least 2�/3, then M(z) ≥∑z′∈V (z) ℓ([z, z
′]).

(2) If for some u ∕= z, Ez,u∩V (z) = ∅ and V (z) ∕= ∅, then we have both of the following.

(a) M(z) ≥ 21−m +
∑

z′∈V (z) ℓ([z, z
′]).

(b) For all k ≥ 0, if B2−m−k(z) ∩ Ez,u ∕= B21−m(z) ∩ Ez,u (at the resolution of Km),

then M(z) ≥ A21−m−k +
∑

z′∈V (z) ℓ([z, z
′]).

We verify that the properties are true initially and that if the properties are true at any time,

after any legal step of construction the properties are still true.

Stage 0: Initially, M values are all 0 and V values are all ∅, so the properties trivially

hold.

Let the two diagonal points be z1, z2. Note that ℓ([z1, z2]) = 1. Let M(z1) = A + 1 and

M(z2) = A + 1. Let V (z1) = {z2} and V (z2) = {z1}. Note that this assignment may be

regarded as a special case for step 3 in the construction. Without loss of generality, assume z1

is added before z2. It is easy to check that property P1 and property P2 (part (2)) are true

after z1 is added and remain true when z2 is added.

100

Stage m: We give different assignment rules for M values for each of the 3 steps in the

construction. For clarity, we keep the code for the construction and give the assignment rules

in annotations.

Step 1: Farthest Insertion

for all x0 ∈ L̂1 do /* �(Qx0) < �0 */

if ∣L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0)∣ = 1

then

Lm = Lm ∪ {x0};

f = attach(f, zx0 , x0,m);

@ V (x0) = V (x0) ∪ {zx0};

@ if V (zx0) ∩Ezx0 ,x0 ∕= ∅

@ then

@ V (zx0) = V (zx0) ∖ (V (zx0) ∩ Ezx0 ,x0);

@ end if

@ V (zx0) = V (zx0) ∪ {x0};

@ M(zx0) =M(zx0)−A21−m + 21−m;

@ M(x0) = 2 ⋅ 21−m;

else /* ∣L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0) ∖ {x0}∣ = 1 */

Let x1 ∈ L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0) with x1 ∕= x0;

Lm = Lm ∪ {x0, x1};

f = attach(f, zx1 , x1,m); f = attach(f, x1, x0,m);

@ V (x0) = V (x0) ∪ {x1};

@ V (x1) = V (x1) ∪ {zx0 , x0};

@ if V (zx0) ∩Ezx0 ,x0 ∕= ∅

@ then

@ V (zx0) = V (zx0) ∖ (V (zx0) ∩ Ezx0 ,x0);

@ end if

101

@ V (zx0) = V (zx0) ∪ {x1};

@ M(zx0) =M(zx0)−A21−m + 21−m + 2
√
n2−2m−1

;

@ M(x0) = 2(21−m + 2
√
n2−2m−1

);

@ M(x1) = 2(21−m + 2
√
n2−2m−1

);

end if

end for

Whenever “farthest insertion” is involved, the point x0 under consideration always lies

in a narrow cube that contains x0, zx0 , and possibly x1. Therefore, P1 is satisfied at

x0 due to the narrowness of the cube. For zx0 , P1 is maintained due to the removal of

points in V (zx0) ∩ Ezx0 ,x0 from V (zx0).

In every stagem ∈ ℕ, the tour fm traverses a set of line segments. By the construction,

every line segment is traversed at most twice. Therefore, for each m ∈ ℕ, length(fm) ≤

2ℓ(fm([0, 1])), where ℓ(fm([0, 1])) is the one dimensional Hausdorff measure of the set

fm([0, 1]). In the following analysis, we bound ℓ(fm([0, 1])) instead of length(fm).

The length of each line segment that we add in this case is at most 21−m+2
√
n2−2m−1

(taking into consideration the approximation of the locations of end points), and we

add at most 2 line segments. The total of M values for z, x0, and x1 (if it exists)

is bounded by 5(21−m + 2
√
n2−2m−1

). So the sum of added length and M values is

bounded by 7 ⋅ 21−m.

Since A > 9, it suffices to show that we may use A21−m from old M value to cover the

cost here.

Before this step of construction involving x0 and zx0 , zx0 satisfied property P2.

If part (1) of property P2 was satisfied before this step, there is a point z′ ∈ V (zx0) ∩

Ezx0 ,x0 such that ℓ([zx0 , z
′]) > A21−m. Since z′ is removed from V (zx0), the reduction

of A21−m from M(zx0) is used to cover the cost and is balanced by the removal of z′.

102

If after the addition of either x0 or x1 to V (zx0), the condition of part (1) in property

P2 is true, then since the addition toM(zx0), which is 21−m+2
√
n2−2m−1 ≥ ℓ([zx0 , x0])

(or in case ∣L̂1 ∩ Ezx0 ,x0 ∩ B21−m(zx0) ∖ {x0}∣ = 1, 21−m + 2
√
n2−2m−1 ≥ ℓ([zx0 , x1])),

part (1) in property P2 remains true.

If after the addition of either x0 or x1 to V (zx0), the condition of part (2) in property

P2 is true, then since the addition to M(zx0) is 21−m + 2
√
n2−2m−1

, part (2)-(a) in

property P2 is satisfied at zx0 . Since �(Qx0) < �0, on the side of zx0 (given by z′ in the

P2) where V (zx0)∩Exx0 ,z
′ is empty, there will not be further construction within less

than k0 stages, i.e., the condition of part (2)-(b) of property P2 will not be true within

k0 stages. Together with the fact that 21−m ≥ A21−m−k0 , part (2)-(b) of property P2

is satisfied at zx0 .

V (x0) contains only one point whose distance from x0 is between 2−m − 2−2m−1
and

21−m + 2−2m−1
. So part (2)-(a) of property P2 is satisfied at x0. Since �(Qx0) < �0,

there will be no further construction within less than k0 stages on the empty side of

V (x0), i.e., the condition of part (2)-(b) of property P2 will not be true within k0

stages. Therefore, part (2)-(b) of property P2 is satisfied at x0.

If x1 is added to Lm in this step, since �(Qx0) < �0, x1 is between zx0 and x0, part (1)

of property P2 is satisfied at x1.

If part (2) was satisfied before this step, we have two possibilities.

One possibility is that Ezx0 ,x0 ∩V (zx0) = ∅. Then since we have a “farthest insertion”

construction at x0, B2−m(zx0) ∩ Ezx0 ,x0 ∕= B21−m(zx0) ∩ Ezx0 ,x0 , i.e., the condition for

part (2)-(b) of property P2 is true and thus M(zx0) ≥ A21−m +
∑

z′∈V (zx0)
ℓ([zx0 , z

′]).

Now the extra A21−m may be used to cover the cost and is the amount that is deducted

from M(zx0). After we add x0 to V (zx0), since �(Qx0) < �0, the condition of part (1)

of property P2 is true. Since 21−m+2
√
n2−2m−1 ≥ ℓ([zx0 , x0]) (or in case ∣L̂∩Ezx0 ,x0 ∩

B21−m(zx0) ∖ {x0}∣ = 1, 21−m + 2
√
n2−2m−1 ≥ ℓ([zx0 , x1])), part (1) of property P2 is

satisfied at zx0 .

103

The other possibility is that Ezx0 ,x0 ∩ V (zx0) ∕= ∅. Then there is a point u ∈ V (zx0)∩

Ezx0 ,x0 such that ℓ([zx0 , u]) > A21−m. Now the analysis will be the same as in the

case when part (1) of property P2 was satisfied before this step except that we need

to note that although V (zx0) changes, the amount M(zx0)−
∑

u∈V (zx0)
ℓ([zx0 , u]) does

not decrease during the process. Therefore part (2) of property P2 remains true and

thus P2 remains true.

The analysis of the properties at x0 and x1 are the same as in the case when part (1)

of property P2 was satisfied before this step.

Also note that we never make variable V empty.

Step 2: Nearest Insertion

for all x0 ∈ L̂ with �(Qx0) < �0 that are not processed yet do

Let z1 be the closest neighbor of x0 in Lm−1 ∩BA21−m(zx0) ∩ Ezx0 ,x0 ∖ {zx0};

/* Note that [zx0 , z1] is traversed explicitly by fm−1 */

Let {x∗, x1, . . . , xN} = L̂ ∩ Ezx0 ,x0 ∩Bℓ([zx0 ,z1])
(zx0) be ordered by x component;

if x∗ ∕= x0 then continue; end if

f = reconnect(f, zx0 , z1, x0, . . . , xN ,m);

@ V (zx0) = V (zx0) ∪ {x0} ∖ {z1};

@ M(zx0) =M(zx0)− ℓ([zx0 , z1]) + ℓ([zx0 , x0]);

@ V (x0) = V (x0) ∪ {zx0};

@ M(x0) =M(x0) + ℓ([zx0 , x0]);

@ V (z1) = V (z1) ∪ {xN} ∖ {zx0};

@ M(z1) =M(z1)− ℓ([zx0 , z1]) + ℓ([xN , z1]);

@ V (xN) = V (xN) ∪ {z1};

@ M(xN) =M(xN) + ℓ([xN , z1]);

for i = 0 to N − 1 do

@ V (xi) = V (xi) ∪ {xi+1};

104

@ M(xi) =M(xi) + ℓ([xi, xi+1]);

@ V (xi+1) = V (xi+1) ∪ {xi};

@ M(xi+1) =M(xi+1) + ℓ([xi, xi+1]);

end for

Lm = Lm ∪ {x0, x1, . . . , xN};

mark x0, x1, . . . , xN as processed and never process again;

end for

Since in this case the points we work with are all located along a very narrow and long

cylinder, by the Pythagorean Theorem, we have that the length added is bounded by

C3

∑

�(Q)<�0

�(Q)2ℓ(Q).

Note that if we make �0 smaller, constant C3 can also be chosen smaller. Since we

don’t need to increase C3, we may fix C3 large enough for all sufficiently small �0 so

that C3 does not depend on the choice of �0 or the choice of A. Also since the changes

happen in a narrow cylinder, P1 is maintained.

For j ∈ [0..N], M(xj) satisfies P2, in particular part (1) of P2, since each of them is

connected to 2 other points that are more than 2�/3 angle apart.

For zx0 , in this case, z1 ∈ V (zx0) before we make the changes. So Ezx0 ,x0∩V (zx0) ∕= ∅,

and after we make the changes to M(zx0), since V (zx0) is changed accordingly, the

value M(zx0) −
∑

z′∈V (zx0)
ℓ([zx0 , z

′]) does not decrease. Therefore P2 remains true

after this step regardless of whether part (1) or part (2) was true. The same argument

tells us that P2 remains true at z1.

Due to the way we assign M values, the total increment of M values in this case is

bounded by at most 2 times the total increase of length, i.e.,

2 ⋅ C3

∑

�(Q)<�0

�(Q)2ℓ(Q).

105

Step 3:

for all x0 ∈ L̂ with �(Qx0) ≥ �0 do

if [zx0 , x0] is not explicitly traversed by f then

f = attach(f, zx0 , x0,m);

@ V (x0) = V (x0) ∪ {zx0};

@ M(x0) =M(x0) + ℓ([x0, zx0]);

@ V (zx0) = V (zx0) ∪ {x0};

@ M(zx0) =M(zx0) + ℓ([x0, zx0]);

end if

for all x1 ∈ 3Qx0 ∩ (L̂ ∪ Lm−1) do

if [x0, x1] is not explicitly traversed by f

then

f = attach(f, x0, x1,m);

@ V (x0) = V (x0) ∪ {x1};

@ M(x0) =M(x0) + ℓ([x0, x1]);

@ V (x1) = V (x1) ∪ {x0};

@ M(x1) =M(x1) + ℓ([x0, x1]);

end if

end for

Lm = Lm ∪ {x0};

@ M(x0) =M(x0) +A2−m;

end for

It is easy to verify that property P1 is maintained for each involved point.

Since we assign A2−m to M(x0) in addition to the sum of length of connected line

segments, P2 is true for every x0. For those x1 ∈ Lm−1 that are involved in this case,

M(x1) value is incremented by the length of the line segment for each of the added

line segment. The value M(x1) −
∑

z′∈V (x1)
ℓ([x1, z

′]) does not decrease. Therefore,

106

P2 remains true after the changes.

Let C1 be an upper bound of the maximum number of points that can be fit into 3Q

and satisfy property C1 for Lm. Let C2 be an upper bound of the maximum number

of points in Lm ∖ Lm−1 that can fit into 3Q. Note that C1 and C2 can be made to

be independent of Lm and to be functions of only n – the dimension of the Euclidean

space we are working with. So both the total length we add to fm and for each point

in Lm, the total increment of M value are bounded by

C1 ⋅A2−m + C1 ⋅ 2
∑

�(Q)≥�0

C2 ⋅ 3
√
nℓ(Q) =

9 ⋅ C1 ⋅ C2
√
n

�20

∑

�(Q)≥�0

�20ℓ(Q)

≤ 9 ⋅ C1 ⋅ C2
√
n

�20

∑

�(Q)≥�0

�(Q)2ℓ(Q).

We have, by now, established case by case a bound on length increment in every stage.

Now we put all these things together and bound the length of the tour we obtain.

Let

Mm =
∑

z∈Lm

M(z),

where M(z) takes the value at the end of stage m. So M0 = 2A+ 2.

Let lm be the total increment of length from fm−1 to fm introduced by “farthest insertion”

and l0 = 0.

Let C = max
(

9⋅C1⋅C2
√
n

�20
, 2 ⋅ C3

)

.

Let Mm,1 be the total reduction of M values in stage m in “farthest insertion”. Let

Mm,23 be the total increment of M values in stage m in Steps 2 and 3. By the construction,

Mm,23 ≤ C
∑

Q∈Qm−k0
�(Q)2ℓ(Q).

Note that in an instance of “farthest insertion”, the increment of length Δl is bounded by

2(21−m + 2
√
n2−2m−1

), i.e., Δl ≤ 2(21−m + 2
√
n2−2m−1

) ≤ 3 ⋅ 21−m. For the involved point

z ∈ Lm−1 ⊂ Lm and x0, x1 ∈ Lm ∖ Lm−1, the increment of M values at z, x0, and x1 is at

most by 5(21−m+2
√
n2−2m−1

) ≤ 7 ⋅ 21−m and the loss of M value at z is A21−m. Note that x1

may not be present in the construction. Since we give an upper bound here, we use the worst

case and assume x1 is present. So the total reduction in M value involved in such an instance

107

of “farthest insertion”, ΔM(z) is at least (A − 5)2−m+1. So for each individual instance of

“farthest insertion” in stage m, the ratio between the reduction inM values and the increment

of length is

ΔM(z)

Δl
≥ A− 7

3
.

So Mm,1 ≥ A−7
3 lm.

Note that in the following, we are combining the �(Q) ≥ �0 part and the �(Q) < �0 part

of the sum of local square beta-numbers, i.e., the sums for Step 2 and Step 3 are combined.

Mm −Mm−1 =Mm,23 −Mm,1 < C
∑

Q∈Qm−k0

�(Q)2ℓ(Q)− A− 7

3
lm.

Note that due to property P2, for all m0 ∈ ℕ, Mm0 ≥ 0. So

0 ≤Mm0 =M0 +

m0
∑

m=1

(Mm −Mm−1) < M0 +

m0
∑

m=1

⎛

⎝C
∑

Q∈Qm−k0

�(Q)2ℓ(Q)− A− 7

3
lm

⎞

⎠ .

Therefore
m0
∑

m=1

A− 7

3
lm < M0 +

m0
∑

m=1

⎛

⎝C
∑

Q∈Qm−k0

�(Q)2ℓ(Q)

⎞

⎠ .

And thus
∞
∑

m=1

A− 7

3
lm ≤M0 + C

∞
∑

m=1

⎛

⎝

∑

Q∈Qm−k0

�(Q)2ℓ(Q)

⎞

⎠ .

So
∞
∑

m=1

lm ≤ 3M0

A− 7
+

3C

A− 7

∞
∑

m=1

∑

Q∈Qm−k0

�(Q)2ℓ(Q).

By our construction, ℓ(fm)− ℓ(fm−1) consists of the increments in Step 1, Step 2, and Step

3. So

ℓ(fm)− ℓ(fm−1) ≤ lm + C
∑

Q∈Qm−k0

�(Q)2ℓ(Q).

108

Now we have that the one dimensional Hausdorff measure of f([0, 1]) is

lim
m→∞

ℓ(fm) = ℓ(f0) +

∞
∑

m=1

(ℓ(fm)− ℓ(fm−1))

≤ ℓ(f0) +
∞
∑

m=1

⎛

⎝lm + C
∑

Q∈Qm−k0

�(Q)2ℓ(Q)

⎞

⎠

= ℓ(f0) + C

∞
∑

m=1

∑

Q∈Qm−k0

�(Q)2ℓ(Q) +

∞
∑

m=1

lm

≤ ℓ(f0) + C

∞
∑

m=1

∑

Q∈Qm−k0

�(Q)2ℓ(Q) +
3M0

A− 7
+

3C

A− 7

∞
∑

m=1

∑

Q∈Qm−k0

�(Q)2ℓ(Q)

= ℓ(f0) +
3M0

A− 7
+ C

(

1 +
3

A− 7

) ∞
∑

m=1

∑

Q∈Qm−k0

�(Q)2ℓ(Q).

Therefore

length(f) ≤ 2 ⋅ ℋ1(f([0, 1])) ≤ 2ℓ(f0) +
6M0

A− 7
+ 2C

(

1 +
3

A− 7

) ∞
∑

m=1

∑

Q∈Qm−k0

�(Q)2ℓ(Q).

Since the square beta-number �2() <∞, length(f) <∞.

5.4 Computable Curves and Their Lengths

As mentioned in the introduction, the tour constructed in Section 5.3 may retrace part of

the curve. In Section 5.4.1, we show that retracing is unavoidable in general. In contrast, we

show in Section 5.4.2 that every computable simple curve of finite length has a constant-speed

(hence non-retracing) parametrization that is computable relative to the halting problem.

5.4.1 An Efficiently Computable Curve That Must Be Retraced

In the following, we construct a smooth, rectifiable, simple plane curve Γ that is parametriz-

able in polynomial time but not computably parametrizable in any amount of time without

unbounded retracing. We begin with a precise construction of the curve Γ by describing it

as if we are modeling the movement of a particle in the plane. We then give a brief intuitive

discussion of this construction.

109

y

x

−1

0

1

1 2 3 4 5
25
6

55
12

Figure 5.4.1 0,5,1

Construction 5.4.1. (1) For each a, b ∈ ℝ with a < b, define the functions 'a,b, �a,b : [a, b] →

ℝ by

'a,b(t) =
b− a

4
sin

2�(t− a)

b− a

and

�a,b(t) =

⎧

⎨

⎩

−'a, a+b
2
(t) if a ≤ t ≤ a+b

2

'a+b
2

,b(t) if a+b
2 ≤ t ≤ b.

(2) For each a, b ∈ ℝ with a < b and each positive integer n, define the function a,b,n : [a, b] →

ℝ by

 a,b,n(t) =

⎧

⎨

⎩

'a,d0(t) if a ≤ t ≤ d0

�di−1,di(t) if di−1 ≤ t ≤ di,

where

di =
a+ 5b

6
+ i

b− a

6n

for 0 ≤ i ≤ n. (See Figure 5.4.1.)

(3) Fix a standard enumeration M1,M2, . . . of (deterministic) Turing machines that take pos-

itive integer inputs. For each positive integer n, let �(n) denote the number of steps

110

executed by Mn on input n. It is well known that the diagonal halting problem

K =
{

n ∈ ℤ+ ∣ �(n) <∞
}

is undecidable.

(4) Define the horizontal and vertical acceleration functions ax, ay : [0, 1] → ℝ as follows. For

each n ∈ ℕ, let

tn =

∫ n

0
e−xdx = 1− e−n,

noting that t0 = 0 and that tn converges monotonically to 1 as n → ∞. Also, for each

n ∈ ℤ+, let

t−n =
tn−1 + 4tn

5
, t+n =

6tn − tn−1

5
,

noting that these are symmetric about tn and that t+n ≤ t−n+1.

(i) For 0 ≤ t ≤ 1, let

ax(t) =

⎧

⎨

⎩

−2−(n+�(n))�t−n ,t+n
(t) if t−n ≤ t < t+n

0 if no such n exists,

where 2−∞ = 0.

(ii) For 0 ≤ t < 1, let

ay(t) = tn−1,tn,n(t),

where n is the unique positive integer such that tn−1 ≤ t < tn.

(iii) Let ay(1) = 0.

(5) Define the horizontal and vertical velocity and position functions vx, vy, sx, sy : [0, 1] → ℝ

by

vx(t) =

∫ t

0
ax(�)d�, vy(t) =

∫ t

0
ay(�)d�,

sx(t) =

∫ t

0
vx(�)d�, sy(t) =

∫ t

0
vy(�)d�.

111

(6) Define the vector acceleration, velocity, and position functions a⃗, v⃗, s⃗ : [0, 1] → ℝ2 by

a⃗(t) = (ax(t), ay(t)),

v⃗(t) = (vx(t), vy(t)),

s⃗(t) = (sx(t), sy(t)).

(7) Let Γ = range(s⃗).

Intuitively, a particle at rest at time t = a and moving with acceleration given by the

function 'a,b moves forward, with velocity increasing to a maximum at time t = a+b
2 and

then decreasing back to 0 at time t = b. The vertical acceleration function ay, together

with the initial conditions vy(0) = sy(0) = 0 implied by (5), thus causes a particle to move

generally upward (i.e., sy(t0) < sy(t1) < ⋅ ⋅ ⋅), coming to momentary rests at times t1, t2, t3,

Between two consecutive such stopping times tn−1 and tn, the particle’s vertical acceleration

is controlled by the function tn−1,tn,n. This function causes the particle’s vertical motion to

do the following between times tn−1 and tn.

(i) From time tn−1 to time tn−1+5tn
6 , move upward from elevation sy(tn−1) to elevation sy(tn).

(ii) From time tn−1+5tn
6 to time tn, make n round trips to a lower elevation s ∈ (sy(tn−1), sy(tn)).

In the meantime, the horizontal acceleration function ax, together with the initial conditions

vx(0) = sx(0) = 0 implied by (5), ensure that the particle remains on or near the y-axis. The

deviations from the y-axis are simply described: The particle moves to the right from time

tn−1+4tn
5 through the completion of the n round trips described in (ii) above and then moves to

the y-axis between times tn and 6tn−tn−1

5 . The amount of lateral motion here is regulated by

the coefficient 2−(n+�(n)). If �(n) = ∞, then there is no lateral motion, and the n round trips

in (ii) are retracings of the particle’s path. If �(n) <∞, then these n round trips are “forward”

motion along a curvy part of Γ. In fact, Γ contains points of arbitrarily high curvature, but

the particle’s motion is kinematically realistic in the sense that the acceleration vector a⃗(t)

is polynomial time computable, hence continuous and bounded on the interval [0, 1]. Figure

112

y

x

Figure 5.4.2 Example of s⃗(t) from t0 to t2

5.4.1 illustrates the path of the particle from time tn−1 to tn+1 with n = 1 and hypothetical

(model dependent!) values �(1) = 1 and �(2) = 2.

The rest of this section is devoted to proving the following theorem concerning the curve

Γ.

Theorem 5.4.2. Let a⃗, v⃗, s⃗, and Γ be as in Construction 5.4.1.

1. The functions a⃗, v⃗, and s⃗ are Lipschitz and computable in polynomial time, hence con-

tinuous and bounded.

2. The total length, including retracings, of the parametrization s⃗ of Γ is finite and com-

putable in polynomial time.

3. The curve Γ is simple, rectifiable, and smooth except at one endpoint.

4. Every computable parametrization f : [a, b] → ℝ2 of Γ has unbounded retracing.

For the remainder of this section, we use the notation of Construction 5.4.1.

The following two observations facilitate our analysis of the curve Γ. The proofs are routine

calculations.

Observation 5.4.3. For all n ∈ ℤ+, if we write

d
(n)
i =

tn−1 + 5tn
6

+ i
tn − tn−1

6n

113

and

e
(n)
i = d

(n)
i +

tn − tn−1

12n

for all 0 ≤ i < n, then

tn−1 < t−n < d
(n)
0 < e

(n)
0 < d

(n)
1 < e

(n)
1 < ⋅ ⋅ ⋅ < d

(n)
n−1 < e

(n)
n−1 < tn < t+n < t−n+1.

Observation 5.4.4. For all a, b ∈ ℝ with a < b,

∫ b

a

∫ t

a
'a,b(�)d�dt =

(b− a)3

8�
.

We now proceed with a quantitative analysis of the geometry of Γ. We begin with the

horizontal component of s⃗.

Lemma 5.4.5. 1. For all t ∈ [0, 1] −∪n∈K(t−n , t
+
n), vx(t) = sx(t) = 0.

2. For all n ∈ K and t ∈ (t−n , tn) , vx(t) > 0.

3. For all n ∈ K and t ∈ (tn, t
+
n), vx(t) < 0.

4. For all n ∈ ℤ+, sx(tn) =
(e−1)3

1000�e3n 2
−(n+�(n)).

5. sx(1) = 0.

Proof. Parts 1-3 are routine by inspection and induction. For n ∈ ℤ+, Observation 5.4.4 tells

us that

sx(tn) =
(tn − t−n)

3

8�
2−(n+�(n))

=
(15 (tn − tn−1))

3

8�
2−(n+�(n))

=
(15 ((e− 1)e−n))3

8�
2−(n+�(n))

=
(e− 1)3

1000�e3n
2−(n+�(n))

so 4 holds. This implies that sx(tn) → 0 as n→ ∞, whence 5 follows from 1,2, and 3.

The following lemma analyzes the vertical component of s⃗. We use the notation of Obser-

vation 5.4.3, with the additional proviso that d
(n)
n = tn.

114

Lemma 5.4.6. 1. For all n ∈ ℤ+ and t ∈ (tn−1, d
(n)
0), vy(t) > 0.

2. For all n ∈ ℤ+, 0 ≤ i < n, and t ∈ (d
(n)
i , e

(n)
i), vy(t) < 0.

3. For all n ∈ ℤ+, 0 ≤ i < n, and t ∈ (e
(n)
i , d

(n)
i+1), vy(t) > 0.

4. For all n ∈ ℤ+, 0 ≤ i < n, and t ∈ {e(n)i , d
(n)
i , tn}, vy(t) = 0.

5. For all n ∈ ℤ+ and 0 ≤ i ≤ n, sy(d
(n)
i) = sy(d

(n)
0).

6. For all n ∈ ℤ+ and 0 ≤ i < n, sy(e
(n)
i) = sy(e

(n)
0).

7. For all n ∈ ℕ, sy(tn) =
53(e−1)3

63⋅8�
∑n

i=1
1
e3i

.

8. For all n ∈ ℤ+, sy(e
(n)
0) = sy(tn)− (e−1)3

123n38�e3n
.

9. sy(1) =
53(e−1)3

63⋅8�(e3−1) .

Proof. Parts 1-6 are clear by inspection and induction. By 4. and Observation 5.4.4,

sy(tn)− sy(tn−1) = sy(d
(n)
0)− sy(tn−1)

=
[56(tn − tn−1)]

3

8�
=

[56((e − 1)e−n)]3

8�

=
53(e− 1)3

63 ⋅ 8�e3n

for all n ∈ ℤ+, so 6 holds by induction. Also by 4 and Observation 5.4.4,

sy(tn)− sy(e
(n)
0) = sy(d

(n)
0)− sy(e

(n)
0)

=
[1
12n (tn − tn−1)]

3

8�
=

[1
12n ((e− 1)e−n)]3

8�

=
(e− 1)3

123n38�e3n
,

so 7 holds. Finally, by 6,

sy(1) =
53(e− 1)3

638�(e3 − 1)
,

i.e., 8 holds.

115

By Lemmas 5.4.5 and 5.4.6, we see that s⃗ parametrizes a curve from s⃗(0) = (0, 0) to

s⃗(1) = (0, 53(e−1)3

638�(e3−1)
).

The proofs of Lemmas 5.4.5 and 5.4.6 are included in the appendix.

It is clear from Observation 5.4.3 and Lemmas 5.4.5 and 5.4.6 that the curve Γ does not

intersect itself. We thus have the following.

Corollary 5.4.7. Γ is a simple curve from s⃗(0) = (0, 0) to s⃗(1) = (0, 53(e−1)3

638�(e3−1)).

Proof. Let s⃗′ : [0, 1] → ℝ2 be such that

s⃗′(t) =

⎧

⎨

⎩

s⃗(t+n)
t−t−n
t+n−t−n

+ s⃗(t−n)
t+n−t

t+n−t−n
t ∈ (t−n , t

+
n), n /∈ K,

s⃗(t) otherwise.

Note that by construction of s⃗, retracing happens along y-axis between (0, s⃗(t−n)) and (0, s⃗(t+n))

only when t ∈ (t−n , t
+
n) for n /∈ K. In s⃗′, for all n /∈ K, s⃗′ maps (t−n , t

+
n) to the vertical line

segment between (0, s⃗(t−n)) and (0, s⃗(t+n)) linearly. Otherwise, s⃗′(t) = s⃗(t). Hence, s⃗′(0) =

(0, 0), s⃗′(1) = (0, 53(e−1)3

638�(e3−1)), and s⃗
′ is a one-to-one parametrization of Γ = range(s⃗), although

s⃗′ is not computable. Therefore Γ is a simple curve.

Lemma 5.4.8. The functions a⃗, v⃗, and s⃗ are Lipschitz, hence continuous, on [0, 1].

Proof. It is clear by differentiation that Lip('a,b) =
�
2 for all a, b ∈ ℝ with a < b. It follows by

inspection that Lip(ax) ≤ �
4 and Lip(ay) =

�
2 , whence

Lip(⃗a) ≤
√

Lip(ax)2 + Lip(ay)2 ≤
�
√
5

4
.

Thus a⃗ is Lipschitz, hence continuous (and bounded), on [0, 1]. It follows immediately that v⃗

and s⃗ are Lipschitz, hence continuous, on [0, 1].

Since every Lipschitz parametrization has finite total length [5], and since the length of a

curve cannot exceed the total length of any of its parametrizations, we immediately have the

following.

Corollary 5.4.9. The total length, including retracings, of the parametrization s⃗ is finite.

Hence the curve Γ is rectifiable.

116

Lemma 5.4.10. The curve Γ is smooth except at the endpoint s⃗(1).

Proof. We have seen that Γ([0, t−1]) is simply a segment of the y-axis, and that the vector

velocity function v⃗ is continuous on [0, 1]. Since the set

Z = {t ∈ (0, 1) ∣ v⃗(t) = 0}

has no accumulation points in (0, 1), it therefore suffices to verify that, for each t∗ ∈ Z,

lim
t→t∗−

v⃗(t)

∣⃗v(t)∣ = lim
t→t∗+

v⃗(t)

∣⃗v(t)∣ , (5.4.1)

i.e., that the left and right tangents of Γ coincide at s⃗(t∗). But this is clear, because Lemmas

5.4.5 and 5.4.6 tell us that

Z =
{

tn
∣

∣ n ∈ ℤ+ and �(n) = ∞
}

,

and both sides of (5.4.1) are (0, 1) at all t∗ in this set.

Lemma 5.4.11. The functions a⃗, v⃗, and s⃗ are computable in polynomial time. The total length

including retracings, of s⃗ is computable in polynomial time.

Proof. This follows from Observation 5.4.4, Lemmas 5.4.5 and 5.4.6, and the polynomial time

computability of f(n) =
∑n

i=1 e
−3i.

Definition. A modulus of uniform continuity for a function f : [a, b] → ℝn is a function

ℎ : ℕ× ℕ such that, for all s, t ∈ [a, b] and r ∈ ℕ,

∣s− t∣ ≤ 2−ℎ(r) =⇒ ∣f(s)− f(t)∣ ≤ 2−r.

It is well known (e.g., see [54]) that every computable function f : [a, b] → ℝn has a modulus

of uniform continuity that is continuous.

Lemma 5.4.12. Let f : [a, b] → ℝ2 be a parametrization of Γ. If f has bounded retracing and

a computable modulus of uniform continuity, then K ≤T fy, where fy is the vertical component

of f .

117

Proof. Assume the hypothesis. Then there exist m ∈ ℤ+ and ℎ : ℕ → ℕ such that f does not

have m-fold retracing and ℎ is a computable modulus of uniform continuity for f . Note that

ℎ is also a modulus of uniform continuity for fy.

Let M be an oracle Turing machine that, given an oracle Og for a function g : [a, b] → ℝ,

implements the algorithm in Figure 5.4.3. The key properties of this algorithm’s choice of r

and Δ are that the following hold when g = fy.

(i) For each time t with fy(t) = sy(tn), there is a nearby time �j with j high. Similarly for

fy(t) = sy(e
(n)
0) and j low.

(ii) For each high j, ∣fy(�j)− sy(tn)∣ ≤ 3 ⋅ 2−r. Similarly for each low j and sy(e
(n)
0).

(iii) No j can be both high and low.

Now let n ∈ ℤ+. We show that MOfy (n) accepts if n ∈ K and rejects if n /∈ K. This is clear if

n ≤ m, so assume that n > m.

If n ∈ K, then Observation 5.4.3, Lemma 5.4.5, and Lemma 5.4.6 tell us that MOfy (n)

accepts. If n /∈ K, then the fact that f does not have m-fold retracing tells us that MOfy (n)

rejects.

Proof of Theorem 5.4.2. Part 1 follows from Lemmas 5.4.8 and 5.4.11. Part 2 follows from

Lemma 5.4.11. Part 3 follows from Corollaries 5.4.7 and 5.4.9 and Lemma 5.4.10. Part 4

follows from Lemma 5.4.12, the fact that every computable function g : [a, b] → ℝ2 has a

computable modulus of uniform continuity, and the fact that A is decidable wherever A ≤T g

and g is computable.

5.4.2 Lower Semicomputability of Length

In this section we prove that every computable curve Γ has a lower semicomputable length.

Our proof is somewhat involved, because our result holds even if every computable parametriza-

tion of Γ is retracing.

Construction 5.4.13. Let f : [0, 1] → ℝn be a computable function. Given an oracle Turing

machine M that computes f and a computable modulus m : ℕ → ℕ of the uniform continuity

118

input n ∈ ℤ+;

if n ≤ m then

use a finite lookup table to accept if n ∈ K and reject if n /∈ K

else

begin

r:= the least positive integer such that 23−r < sy(tn)− sy(e
(n)
0);

Δ:=2−ℎ(r);

for 0 ≤ j ≤ (b− a)/Δ do

begin

�j:=a+Δj ;

call j high if ∣Og(�j , r)− sy(tn)∣ < 21−r

call j low if ∣Og(�j, r)− sy(e
(n)
0 ∣ < 21−r

end;

if there are 0 < j0 < j1 < ⋅ ⋅ ⋅ < jm in which ji is high for all even i

and low for all odd i

then accept

else reject

end.

Figure 5.4.3 Algorithm for MOg(n) in the proof of Lemma 5.4.12.

119

of f , the (M,m)-cautious polygonal approximator of range(f) is the function �M,m : ℕ →

{polygonal patℎs} computed by the following algorithm.

input r ∈ ℕ;

S := {}; // S may be a multi-set

for i:=0 to 2m(r) do

ai := i2−m(r);

use M to compute xi with

∣xi − f(ai)∣ ≤ 2−(r+m(r)+1);

add xi to S;

output a longest path inside a minimum spanning tree of S.

Definition. Let (X, d) be a metric space. Let Γ ⊆ X and � > 0. Let

Γ(�) =

{

p ∈ X

∣

∣

∣

∣

inf
p′∈Γ

d(p, p′) ≤ �

}

be the Minkowski sausage of Γ with radius �.

Let dH : P(X) × P(X) → ℝ be such that for all Γ1,Γ2 ∈ P(X)

dH(Γ1,Γ2) = inf {� ∣ Γ1 ⊆ Γ2(�) and Γ2 ⊆ Γ1(�)} .

Note that dH is the Hausdorff distance function.

Let K(X) be the set of nonempty compact subsets of X. Then (K(X), dH) is a metric space

[29].

Theorem 5.4.14. (Frink [34], Michael [70]). Let (X, d) be a compact metric space. Then

(K(X), dH) is a compact metric space.

Definition. Let ℛC be the set of all simple rectifiable curves in ℝn.

Theorem 5.4.15. ([96] page 55). Let Γ ∈ ℛC. Let {Γn}n∈ℕ ⊆ ℛC be a sequence of rectifiable

curves such that lim
n→∞

dH(Γn,Γ) = 0. Then ℋ1(Γ) ≤ lim inf
n→∞

ℋ1(Γn).

120

This theorem has the following consequence.

Theorem 5.4.16. Let Γ ∈ ℛC. For all � > 0, there exists � > 0 such that for all Γ′ ∈ ℛC, if

dH(Γ,Γ
′) < �, then ℋ1(Γ′) > ℋ1(Γ)− �.

In the following, we prove a few technical lemmas that lead to Lemma 5.4.21, which plays

an important role in proving Theorem 5.4.22.

Lemma 5.4.17. Let Γ ∈ ℛC. Let p0, p1,∈ Γ be its two endpoints. Let Γ′ ⊊ Γ such that

p0, p1 ∈ Γ′. Then Γ′ /∈ ℛC.

Proof. If Γ′ is not closed, then we are done. Assume that Γ′ is closed. Let be a parametriza-

tion of Γ such that (0) = p0 and (1) = p1.

Since Γ′ ∕= Γ and p0, p1 ∈ Γ′, −1(Γ′) ⊆ I0 ∪ I1, where I0 ⊆ [0, 1] and I1 ⊆ [0, 1] are closed

and disjoint.

It is easy to see that (I0) and (I1) are closed and disjoint. And thus, for any continuous

function ′ : [0, 1] → ℝn, ′−1((I0)) and ′−1((I1)) are closed and disjoint. Therefore, for

any continuous function ′ : [0, 1] → ℝn, −1(Γ′) ∕= [0, 1], i.e., Γ′ /∈ ℛC.

Lemma 5.4.18. Let Γ ∈ ℛC. Let Γ′ ⊆ Γ be a connected compact set. Then Γ′ ∈ ℛC.

Proof. Let be the parametrization of Γ.

Let a = inf{−1(Γ′)} and let b = sup{−1(Γ′)}.

Let ′ : [0, 1] → ℝn be such that for all t ∈ [0, 1]

′(t) = (a+ t(b− a)).

Then ′ defines a curve and we show that ′([0, 1]) = Γ′.

It is clear that Γ′ ⊆ ′([0, 1]). Since Γ′ is compact, we know that ′(0), ′(1) ∈ Γ′.

Suppose for some t′ ∈ (0, 1), ′(t′) /∈ Γ′. Since Γ′ is compact, there exists � > 0 such that

′([t′ − �, t′ + �]) ∩ Γ′ = ∅. Then Γ′ ⊆ ′([0, t′ − �)) ∪ ′((t′ + �, 1]). Since ′ is one-one,

dH(
′([0, t′ − �)), ′((t′ + �, 1])) > 0.

121

Hence,

dH(Γ
′ ∩ ′([0, t′ − �)),Γ′ ∩ ′((t′ + �, 1])) > 0.

Thus, Γ′ cannot be connected.

Therefore, if Γ′ is connected, then Γ′ = ′([0, 1]) and hence Γ′ ∈ ℛC.

Lemma 5.4.19. Let Γ0,Γ1, . . . be a convergent sequence of compact sets in compact metric

space (X, d) that is eventually connected. Let Γ = lim
n→∞

Γn. Then Γ is connected.

Proof. We prove the contrapositive.

Assume that Γ is not connected. Then there exists open sets A,B ⊆ X such that A∩B = ∅,

Γ ∩A ∕= ∅, Γ ∩B ∕= ∅, and Γ ⊆ A ∪B.

Then (Γ ∩A) ∩ (Γ ∩B) = ∅, thus dH(Γ ∩A,Γ ∩B) > 0. Let

� = dH(Γ ∩A,Γ ∩B).

Since lim
n→∞

Γn = Γ, let n0 be such that for all n ≥ n0,

dH(Γn,Γ) ≤ �
3 .

It is clear that

(Γ ∩A)(�3) ∩ Γn ∕= ∅,

(Γ ∩B)(�3) ∩ Γn ∕= ∅,

and

Γn ⊆ (Γ ∩A)(�3) ∪ (Γ ∩B)(�3).

By the definition of �,

dH((Γ ∩A)(�3), (Γ ∩B)(�3)) ≥ �
3 .

Thus Γn is not connected for all n ≥ n0.

Lemma 5.4.20. Let Γ ∈ ℛC and let f : [0, 1] → Γ be a parametrization of Γ. Let

L(Γ, �) = inf
{

ℋ1(Γ′)
∣

∣ Γ′ ∈ ℛC and Γ′ ⊆ Γ(�) and f(0), f(1) ∈ Γ′} .

122

Then

lim
�→0+

L(Γ, �) = ℋ1(Γ).

Proof. It is clear that lim�→0+ L(Γ, �) ≤ ℋ1(Γ). It suffices to show that lim�→0+ L(Γ, �) ≥

ℋ1(Γ).

Let � > 0. For each i ∈ ℕ, let

Si =
{

Γ′ ∈ ℛC
∣

∣ Γ′ ⊆ Γ(1i) and (0), (1) ∈ Γ′} ,

where is a parametrization of Γ. Note that if i2 < i1, then Si1 ⊆ Si2 .

Let Γ0,Γ1, . . . be an arbitrary sequence such that for all i ∈ ℕ, Γi ∈ Ski , and k0, k1, ⋅ ⋅ ⋅ ∈ ℕ

is a strictly increasing sequence.

Since for all i ∈ ℕ, Γi is compact and connected, by Theorem 5.4.14 and Lemma 5.4.19,

there is at least one cluster point and every cluster point is a connected compact set. Let Γ′

be a cluster point. It is clear that Γ′ ⊆ Γ. Then by Lemma 5.4.18, Γ′ ∈ ℛC.

It is also clear that (0), (1) ∈ Γ′ by definition of Si. Thus by Lemma 5.4.17, Γ′ = Γ.

By Theorem 5.4.15, lim inf
n→∞

ℋ1(Γn) ≥ ℋ1(Γ′) = ℋ1(Γ). Then by Theorem 5.4.16, this

implies that for all sufficiently large i ∈ ℕ,

(∀Γ′′ ∈ Si)ℋ1(Γ′′) ≥ ℋ1(Γ)− �.

Therefore, for all sufficiently large i ∈ ℕ, L(Γ, 1i) ≥ ℋ1(Γ)− �. Since � > 0 is arbitrary,

lim
�→0+

L(Γ, �) ≥ ℋ1(Γ).

Lemma 5.4.21. Let Γ ∈ ℛC and let f : [0, 1] → Γ be a parametrization of Γ. Let

L(Γ, �, p1, p2) = inf
{

ℋ1(Γ′)
∣

∣ Γ′ ∈ ℛC and Γ′ ⊆ Γ(�) and p1, p2 ∈ Γ′} .

Then

lim
�→0+

sup
p1,p2∈Γ(�)

L(Γ, �, p1, p2) = ℋ1(Γ).

123

Proof. For every p ∈ Γ(�), there exists a point p′ ∈ Γ such that ∥p, p′∥ ≤ � and line segment

[p, p′] ⊆ Γ(�). Thus it is clear that for all p1, p2 ∈ Γ(�), L(Γ, �, p1, p2) ≤ 2�+ℋ1(Γ). Therefore,

lim
�→0+

sup
p1,p2∈Γ(�)

L(Γ, �, p1, p2) ≤ ℋ1(Γ).

For the other direction, observe that

lim
�→0+

sup
p1,p2∈Γ(�)

L(Γ, �, p1, p2) ≥ lim
�→0+

L(Γ, �).

Applying Lemma 5.4.20 completes the proof.

Theorem 5.4.22. Let Γ ∈ ℛC such that Γ = ([0, 1]), where is a continuous function. (Note

that may not be one-one.) Let S(a) = {(ai) ∣ ai ∈ a} for all dissection a. Let {an}n∈ℕ be

a sequence of dissections of Γ such that

lim
n→∞

mesh(an) = 0.

Then

lim
n→∞

ℋ1(LMST (an)) = ℋ1(Γ),

where LMST (a) is the longest path inside the Minimum Euclidean Spanning Tree of S(a).

Proof. For all n ∈ ℕ, let

�n = 2dH(Γ, S(an)).

Note that since is uniformly continuous and lim
n→∞

mesh(an) = 0, lim
n→∞

�n = 0.

Let w = 2�n.

Claim. Let T be a Euclidean Spanning Tree of S(a). If T has an edge that is not inside Γ(w),

then T is not a minimum spanning tree.

Proof of Claim. Let E be an edge of T such that E ⊈ Γ(w). Then ℋ1(E) > 2w. Removing E

from T will break T into two subtrees T1, T2. By the definition of �n and the continuity of ,

there exists s1, s2 ∈ S(a) with ∥s1 − s2∥ ≤ �n such that s1 ∈ T1 and s2 ∈ T2.

It is clear that T1 ∪ T2 ∪ {(s1, s2)} is also a Euclidean Spanning Tree of S(a) and ℋ1(T1 ∪

T2 ∪ {(s1, s2)}) < ℋ1(T), i.e., T is not minimum.

124

Let T be a Minimum Euclidean Spanning Tree of S(a). Let L be the longest path inside

T . Then L ⊆ T ⊆ Γ(w).

Note that ℋ1(L) ≤ ℋ1(Γ).

Let p0, p1 be the two endpoints of Γ.

Since L is the longest path inside T and p0, p1 are each within �n distance to some point

in S(an),

L(Γ, w, p0, p1) ≤ 2�n +ℋ1(L).

By Lemma 5.4.21,

lim
w→0+

L(Γ, w, p0, p1) = ℋ1(Γ).

Then

lim
n→∞

ℋ1(LMST (an)) = ℋ1(Γ).

This result implies that when the sampling density is high, the number of leaves in the

minimum spanning tree is asymptotically smaller than the total number of nodes.

We now have the machinery to prove the main result of this section.

Theorem 5.4.23. Let : [0, 1] → ℝn be computable such that Γ = ([0, 1]) ∈ ℛC. Then

ℋ1(Γ) is lower semicomputable.

Proof. Let the function f , M , and m in Construction 5.4.13 be , a computation of , and its

computable modulus respectively.

For each input r ∈ ℕ, �M,m(r) is the longest path Lr in MST (Sr), where Sr is the set of

points sampled by �M,m(r).

Let lr = ℋ1(Lr)− 2−r. Note that lr is computable from r ∈ ℕ.

We show that for all r ∈ ℕ, lr ≤ ℋ1(Γ) and limr→∞ lr = ℋ1(Γ).

Let f̃ be a one-one parametrization of Γ. Let � : {0, . . . , 2m(r)} → {0, . . . , 2m(r)} be a

permutation of {0, . . . , 2m(r)} such that for all i, j ∈ {0, . . . , 2m(r)},

i < j =⇒ f̃−1(f(a�(i))) < f̃−1(f(a�(j))).

125

Let Γ̂r be the polygonal curve connecting the points f(a�(0)), f(a�(1)), . . . , f(a�(2m(r))) in

order. Then Γ̂r is a polygonal approximation of Γ and ℋ1(Γ̂r) ≤ ℋ1(Γ).

Let Γ̄r be the polygonal curve connecting the points in Sr in the order of x�(0), x�(1),

. . . , x�(2m(r)).

Due to the approximation induced by the computation in Construction 5.4.13,

ℋ1(Γ̄r) ≤ ℋ1(Γ̂r) + 2−r.

Then it is clear that

ℋ1(Lr) = ℋ1(LMST (Sr)) ≤ ℋ1(Γ̄r) ≤ ℋ1(Γ̂r) + 2−r.

Thus

lr ≤ ℋ1(Γ̂r).

Let Ŝr = {f(a0), f(a1), . . . , f(a2m(r))}. Note that Ŝr may be a multi-set. By Theorem

5.4.22,

lim
r→∞

LMST (Ŝr) = ℋ1(Γ).

Let

�r = 2dH(Γ, Sr).

By Contruction 5.4.13,

lim
r→∞

�r = 0.

Let wr = 2�r.

Let Tr be a Minimum Euclidean Spanning Tree of Sr. Let Lr be the longest path inside

Tr. By the Claim in Theorem 5.4.22, L ⊆ T ⊆ Γ(wr).

By an essentially identical argument as the one in the proof of Theorem 5.4.22,

lim
r→∞

lr = lim
r→∞

ℋ1(LMST (Sr)) = ℋ1(Γ),

which completes the proof.

126

In the following, we use Ko’s curve fitting construction [23, 55] to prove that every positive

constructive real number may be the length of a computable curve in Theorem 5.4.25. We use

the following lemma to fit the curves.

Lemma 5.4.24. Let k, n ∈ ℤ+ be such that k < n. Let a ∈ ℤ+ be such that a < 2k.

Then there exists a polynomial-time computable curve f ≡ Fa2−k ,2−n : [0, 1] → ℝ2 such that

f([0, 1]) ⊆ [0, 2−n]2, f(0) = 0, f(1) = (0, 2−n), and length of the curve is a2−k.

Proof. We construct the curve using length unit 2−n−2. Since we need the curve to have total

length a2−k, the number of unit length is

T =
a2−k

2−n−2
= a2n−k+2.

Let x1 = 0, x2 = 2−n−2, xT = 2−n, xT−1 = 2−n − 2−n−2, xT−2 = 2−n − 2−n−1. Let m

be the smallest integer such that 2m > T − 4. For each positive integer i ≤ T − 5, let

x2+i = x2 + i2−n−2−m.

Let L0 = [(x1, 0), (x2, 0)]. For each positive integer i ≤ (T − 4)/2, let

Li = [(x2i, 0), (x2i, 2
−n−2)] ∪ [(x2i, 2

−n−2), (x2i+1, 2
−n−2)] ∪ [(x2i+1, 2

−n−2), (x2i+1, 0)].

For each positive integer i < (T − 4)/2, let

L′
i = [(x2i+1, 0), (x2i+2, 0)].

Let L′
(T−4)/2 = ∅. Let Le = [(xT−3, 0), (2

−n, 0)]. Let

L = L0 ∪ Le ∪
∪

i∈[1..(T−4)/2]

(Li ∪ L′
i).

Define f : [0, 1]
1−1−−→
onto

L to be a continuous mapping with f(0) = (0, 0) and f(1) = (2−n, 0) that

is parameterized by curve length. It is clear that f is a polynomial-time computable curve

with length a2−k.

Theorem 5.4.25. Every positive constructive real number is the length of a polynomial-time

computable rectifiable curve.

127

Proof. Let � be a positive c.e. real number. Let �(0) = 0, �(1), �(2), ..., �(n), ... be a

computable sequence (using Turing machine M) of dyadic rationals with the properties that

�(i + 1) > �(i) for all i ∈ ℕ and lim
n→∞

�(n) = �. Let t(n) be the number of steps M takes to

print �(n) on input n. Let T (n) =
∑n

i=1 t(i) for all n > 0 and T (0) = 0.

For n ∈ ℤ+ and x ∈ [1− 2−T (n−1), 1− 2−T (n)], let

fn(x) = (0,
n−1
∑

i=1

2−T (i)−2)

+ F�(n)−�(n−1),2−T (n)−2

(

x− (1− 2−T (n−1))

2−T (n−1) − 2−T (n)

)

,

where F�(n)−�(n−1),2−T (n)−2 is the function defined in Lemma 5.4.24.

For all n ∈ ℤ+ and x ∈ [0, 1], if fn(x) is not specified above, then fn(x) = (0, 0).

Note that for all n ∈ ℤ+, fn(x) on [1 − 2−T (n−1), 1 − 2−T (n)] defines a curve of length

�(n)− �(n− 1).

Let f : [0, 1] → ℝ2 be such that for all x ∈ [0, 1)

f(x) =
∞
∑

i=1

fi(x)

and

f(1) =

∞
∑

i=1

2−T (i)−2.

It is easy to verify that f is continuous on [0, 1]. It is clear that for all x ∈ [1− 2−T (n−1), 1 −

2−T (n)]

f(x) = fn(x).

Note that for all n ∈ ℤ+,

∣f(1)− fn(1− 2−T (n))∣ =
∞
∑

i=n+1

2−T (i)−2 ≤ 2−T (n+1)−1

and

f([1− 2−T (n), 1]) ⊆ (0,
n
∑

i=1

2−T (i)−2) + [0, ∣f(1) − fn(1− 2−T (n))∣]× [0, 2−T (n+1)−2]

⊆ (0,

n
∑

i=1

2−T (i)−2) + [0, 2−T (n+1)−1]× [0, 2−T (n+1)−2].

128

Thus for every point x ∈ f([1− 2−T (n), 1]),

∣x− f(1− 2−T (n))∣ ≤
√
2 ⋅ 2−T (n+1)−1 < 2−T (n+1).

Define T−1 : ℕ → ℕ be such that T−1(k) = n0 with T (n0) ≤ k < T (n0 + 1). Let

f̂ : ℚ ∩ [0, 1] × ℕ → ℚ×ℚ be such that

f̂(q, r) =

⎧

⎨

⎩

∑T−1(k)
i=1 fi(q) 0 ≤ q ≤ 1− 2−T (T−1(k))

(0,
∑T−1(k)

i=1 2−T (i)−2) 1− 2−T (T−1(k)) < q ≤ 1.

It is clear that f̂ is computable in time polynomial to ∣q∣+ r and f̂ is a computation of f .

The length of the curve defined by f is

∞
∑

n=1

length(fn) =

∞
∑

n=1

(�(n)− �(n− 1)) = lim
n→∞

�(n) = �.

5.4.3 Δ0
2-Computability of the Constant-Speed Parametrization

In this section we prove that every computable curve Γ has a constant speed parametrization

that is Δ0
2-computable.

Theorem 5.4.26. Let Γ = ∗([0, 1]) ∈ ℛC. (∗ may not be one-one.) Let l = ℋ1(Γ) and

Ol be an oracle such that for all n ∈ ℕ, ∣Ol(n) − l∣ ≤ 2−n. Let f be a computation of ∗

with modulus m. Let be the constant speed parametrization of Γ. Then is computable with

oracle Ol.

Proof. On input k as the precision parameter for computation of the curve and a rational

number x ∈ [0, 1] ∩ℚ, we output a point fk(x) ∈ ℝn such that ∣fk(x)− (x)∣ ≤ 2−k.

Without loss of generality, assume that ℋ1(Γ) > 1000 ⋅ 2−k.

Let � = 2−(4+k).

Run f as in Construction 5.4.13 with increasingly larger precision parameter r > − log �

until

ℋ1(LMST (a)) > ℋ1(Γ)− �
2

129

and the shortest distance between the two endpoints of LMST (a) inside the polygonal sausage

around LMST (a) with width 2d = 2 ⋅2−r is at least ℋ1(Γ)− �
2 . This can be achieved by using

Euclidean shortest path algorithms [53, 43].

Let dk ≤ 2−(4+k) be the largest d such that the above conditions are satisfied, which

is assured by Theorem 5.4.23 and Lemma 5.4.21. Let S be the polygonal sausage around

LMST (a) with width 2dk.

For p1, p2 ∈ S, let dS(p1, p2) = the shortest distance between p1 and p2 inside S. Note

that S is connected.

Let fk be the constant speed parametrization of LMST (a) and be the constant speed

parametrization of Γ. Without loss of generality, assume that ∥(0)− fk(0)∥ < ∥(1)− fk(0)∥

and ∥(1)− fk(1)∥ < ∥(0)− fk(1)∥, since we can hardcode approximate locations of (0) and

(1) such that when dk is sufficiently small, we can decide wehther a sampled point is closer

to (0) or (1). As we now prove

lim
k→∞

{fk(0), fk(1)} = {(0), (1)}.

Note that for each s ∈ S such that s /∈ LMST (a), there exists p ∈ LMST (a)∩S such that

the shortest path from s to p in MST (a) has length less than �
2 , i.e., dMST (a)(s, p) <

�
2 , since

ℋ1(LMST (a)) > ℋ1(Γ)− �
2 and ℋ1(MST (a)) ≤ ℋ1(Γ).

Let �0 = dS((0), fk(0)). Let s0 be the closest point to (0) in S ∩ LMST (a). Then

dS((0), s0) ≤ �
2 + dk. Then dLMST (a)(s0, fk(0)) ≥ �0 − �

2 − dk. Since s0 ∈ S ∩ LMST (a) and

we assume ℋ1(Γ) > 1000 ⋅ 2−k,

dS(s0, (1)) ≤ ℋ1(LMST (a)) − �0 +
�
2 + dk +

�
2 + dk = ℋ1(LMST (a))− �0 + � + 2dk.

Then

dS((0), (1)) ≤ ℋ1(LMST (a)) − �0 + � + 2dk +
�
2 + dk

< ℋ1(LMST (a)) − �0 +
3�
2 + 3dk.

130

And hence

dS((0), (1)) ≤ ℋ1(Γ)− �0 + 2� + 3dk. (5.4.2)

By the choice of dk, we have that dS(fk(0), fk(1)) ≥ ℋ1(Γ) − �
2 . Now, note that for any

two points p1, p2 ∈ Γ,

dS(p1, p2) ≤
ℋ1(Γ) + dS((0), (1))

2
,

since we can put them in half of a loop. Therefore

dS(fk(0), fk(1)) ≤
ℋ1(Γ) + dS((0), (1))

2
.

Thus

dS((0), (1)) ≥ ℋ1(Γ)− �. (5.4.3)

By (5.4.2) and (5.4.3), we have

�0 ≤ 3� + 3dk ≤ 6� < 2−k, (5.4.4)

i.e.,

∥fk(0) − (0)∥ ≤ dS(fk(0), (0)) ≤ 6� < 2−k. (5.4.5)

Similarly,

∥fk(1) − (1)∥ ≤ dS(fk(1), (1)) ≤ 6� < 2−k. (5.4.6)

Now we proceed to show that for all t ∈ (0, 1), ∥fk(t) − (t)∥ < 10� with f(0) being at

most 6� from (0) inside S and f(1) being at most 6� from (1) inside S.

Let Δk = ∥fk(t)− (t)∥.

Let sf ∈ S∩LMST (a) be such that ∣f−1
k (sf)−t∣ is minimized. Then dLMST (a)(fk(t), sf) ≤

dk, since every edge in MST (a) is at most dk long.

Let s′ ∈ S ∩ Γ be such that ∣−1(s′) − t∣ is minimized. Then dΓ((t), s
′
) ≤ dk, since we

sample S using dk as the density parameter.

Let s ∈ S ∩LMST (a) such that dMST (a)(s , s
′
) is minimized. Then dMST (a)(s , s

′
) ≤ �

2 ,

since ℋ1(MST (a)) ≥ ℋ1(Γ)− �
2 .

Then ∥fk(t)− s∥ ≥ Δk − (�2 + dk) = Δk − �
2 − dk.

131

Note that dLMST (a)(sf , s) ≥ ∥sf − s∥ ≥ Δk − �
2 − 2dk.

Without loss of generality, assume that distance from s to fk(0) along LMST (a) is Δk −
�
2 − dk more than the distance from fk(t) to fk(0). Otherwise, we simply look from the (1)

and fk(1) side instead.

The path traced by from (0) to (t) has length t ⋅ ℋ1(Γ).

The shortest distance between (t) to s inside Γ ∪MST (a) is at most dk +
�
2 .

The path traced by fk from s to fk(1) has length

dLMST (a)(s , fk(1)) ≤ ℋ1(LMST (a)) − [t(ℋ1(Γ)− �
2)− dk +Δk − �

2 − dk].

The shortest distance from (1) to fk(1) inside S is at most 6�.

Then the distance from (0) to (1) inside S is at most

t ⋅ ℋ1(Γ) + dk +
�
2 +ℋ1(LMST (a))− [t(ℋ1(Γ)− �

2)− dk +Δk − �
2 − dk] + 6�

≤ ℋ1(LMST (a)) + 3dk + 8� −Δk

≤ ℋ1(Γ) + 11� −Δk.

By (5.4.3), we have

Δk ≤ 12� < 2−k.

Corollary 5.4.27. Let Γ be a curve with the property described in property 4 of Theorem

5.4.2. Then the length ℋ1(Γ) of Γ is not computable.

Proof. We prove the contrapositive. Let Γ be a curve with a computable parametrization

with a computable length ℋ1(Γ). Then by Theorem 5.4.26, we can use the Turing machine

that computes ℋ1(Γ) as the oracle in the statement of Theorem 5.4.26 and obtain a Turing

machine that computes the constant speed parametrization of Γ. Therefore, Γ does not have

the property described in item 4 of Theorem 5.4.2.

132

BIBLIOGRAPHY

[1] E. Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov

complexity. In Proceedings of the 21st annual Conference on Foundations of Software

Technology and Theoretical Computer Science, volume 2245 of Lecture Notes in Computer

Science, pages 1–15. Springer-Verlag, 2001.

[2] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger. Power

from random strings. SIAM Journal on Computing, 35(6):1467–1493, 2006.

[3] E. Allender and M. Strauss. Measure on small complexity classes with applications for

BPP. In Proceedings of the 35th Symposium on Foundations of Computer Science, pages

807–818, 1994.

[4] K. Ambos-Spies, S. A. Terwijn, and X. Zheng. Resource bounded randomness and weakly

complete problems. Theoretical Computer Science, 172(1–2):195–207, 1997.

[5] T. M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in Math-

ematics. Springer-Verlag, 1976.

[6] T. M. Apostol. Modular Functions and Dirichlet Series in Number Theory, volume 41

of Graduate Texts in Mathematics. Springer-Verlag, 1976.

[7] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong di-

mension, algorithmic information, and computational complexity. SIAM Journal on

Computing, 37:671–705, 2007.

[8] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. Springer-Verlag, Berlin,

second edition, 1995.

133

[9] M. F. Barnsley. Fractals Everywhere. Morgan Kaufmann, 2nd edition, 2000.

[10] L. Barreira, B. Saussol, and J. Schmeling. Distribution of frequencies of digits via mul-

tifractal analyais. Journal of Number Theory, 97(2):410–438, 2002.

[11] C. H. Bennett and J. Gill. Relative to a random oracle A, PA ∕= NPA ∕= co-NPA with

probability 1. SIAM Journal on Computing, 10:96–113, 1981.

[12] A. S. Besicovitch. On the sum of digits of real numbers represented in the dyadic system.

Mathematische Annalen, 110:321–330, 1934.

[13] E. Borel. Sur les probabilités dénombrables et leurs applications arithmétiques. Rend.

Circ. Mat. Palermo, 27:247–271, 1909.

[14] C. Bourke, J. M. Hitchcock, and N. V. Vinodchandran. Entropy rates and finite-state

dimension. Theoretical Computer Science, 349(3):392–406, 2005.

[15] M. Braverman. On the complexity of real functions. In Forty-Sixth Annual IEEE Sym-

posium on Foundations of Computer Science, 2005.

[16] M. Braverman and S. Cook. Computing over the reals: Foundations for scientific com-

puting. Notices of the AMS, 53(3):318–329, 2006.

[17] H. Buhrman and L. Fortnow. One-sided versus two-sided randomness. In Proceedings

of the sixteenth Symposium on Theoretical Aspects of Computer Science, pages 100–109,

1999.

[18] E. Cahen. Sur la fonction �(s) de Riemann et sur des fonctions analogues. Annales de

l’École Normale Supérieure, 1894. (3) 11, S. 85.

[19] J. Cai and J. Hartmanis. On Hausdorff and topological dimensions of the Kolmogorov

complexity of the real line. Journal of Computer and Systems Sciences, 49:605–619,

1994.

[20] H. Cajar. Billingsley dimension in probability spaces. Lecture notes in mathematics, 892,

1981.

134

[21] D. G. Champernowne. Construction of decimals normal in the scale of ten. J. London

Math. Soc., 2(8):254–260, 1933.

[22] N. Chomsky and G. A. Miller. Finite state languages. Information and Control, 1(2):91–

112, 1958.

[23] A. W. Chou and K.-I. Ko. Some complexity issues on the simply connected regions of

the two-dimensional plane. In STOC, 1993.

[24] A. H. Copeland and P. Erdős. Note on normal numbers. Bull. Amer. Math. Soc., 52:857–

860, 1946.

[25] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons,

Inc., New York, N.Y., 1991.

[26] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. Theo-

retical Computer Science, 310:1–33, 2004.

[27] D. Doty, X. Gu, J. H. Lutz, E. Mayordomo, and P. Moser. Zeta-dimension. In Proceedings

of the Thirtieth International Symposium on Mathematical Foundations of Computer

Science, volume 3618 of Lecture Notes in Computer Science, pages 283–294, 2005.

[28] R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity. 2008. In

preparation.

[29] G. A. Edgar. Measure, topology, and fractal geometry. Springer-Verlag, 1990.

[30] H. Eggleston. The fractional dimension of a set defined by decimal properties. Quarterly

Journal of Mathematics, Oxford Series 20:31–36, 1949.

[31] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley,

second edition, 2003.

[32] M. Feder. Gambling using a finite state machine. IEEE Transactions on Information

Theory, 37:1459–1461, 1991.

135

[33] L. Fortnow. Comparing notions of full derandomization. In Proceedings of the 16th IEEE

Conference on Computational Complexity, pages 28–34, 2001.

[34] O. Frink, Jr. Topology in lattices. Transactions of the American Mathematical Society,

51(3):569–582, 1942.

[35] J. B. Garnett and D. E. Marshall. Harmonic Measure. New Mathematical Monographs.

Cambridge University Press, 2005.

[36] I. J. Good. The fractional dimensional theory of continued fractions. Proceedings of the

Cambridge Philosophical Society, 37:199–228, 1941.

[37] J. Grollman and A. Selman. Complexity measures for public-key cryptosystems. SIAM

J. Comput., 11:309–335, 1988.

[38] A. Grzegorczyk. Computable functionals. Fundamenta Mathematicae, 42:168–202, 1955.

[39] X. Gu and J. H. Lutz. Effective dimensions and relative frequencies. In Proceedings of the

Fourth Conference on Computability in Europe (CiE), volume 5028 of Lecture Notes in

Computer Science, pages 231–240. Springer-Verlag, 2008. Preliminary version presented

at Special Session on Randomness in Computation, 2005 Fall Central Section Meeting

of the AMS. Lincoln, Nebraska, October 21-23, 2005 (invited).

[40] X. Gu, J. H. Lutz, J. S. Royer, and S. Nandakumar. Axiomatizing resource bounds for

measure. In International Colloquium on Automata, Languages, and Programming 2009.

Submitted.

[41] G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Clarendon Press,

5th edition, 1979.

[42] F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157–179, 1919.

English translation.

[43] J. Hershberger and S. Suri. An optimal algorithm for euclidean shortest paths in the

plane. SIAM Journal on Computing, 28(6):2215–2256, 1999.

136

[44] J. M. Hitchcock. Effective fractal dimension: foundations and applications. PhD thesis,

Iowa State University, 2003.

[45] J. M. Hitchcock. Correspondence principles for effective dimensions. Theory of Comput-

ing Systems, 38(5):559–571, 2005.

[46] J. M. Hitchcock. Hausdorff dimension and oracle constructions. Theoretical Computer

Science, 355(3):382–388, 2006.

[47] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform

complexity. Journal of Computer and System Sciences, 69(2):97–122, 2004.

[48] J. M. Hitchcock and N. V. Vinodchandran. Dimension, entropy rates, and compression.

Journal of Computer and System Sciences, 72(4):760–782, 2006.

[49] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: De-

randomizing the XOR lemma. In Proceedings of the 29th Symposium on Theory of

Computing, pages 220–229, 1997.

[50] P. W. Jones. Rectifiable sets and the traveling salesman problem. Inventions mathemat-

icae, 102:1–15, 1990.

[51] D. W. Juedes and J. H. Lutz. Weak completeness in E and E2. Theoretical Computer

Science, 143(1):149–158, 1995.

[52] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information

and Control, 55:40–56, 1982.

[53] S. Kapoor and S. N. Maheshwari. Efficient algorithms for euclidean shortest path and

visibility problems with polygonal obstacles. In Proceedings of the fourth annual sym-

posium on computational geometry, pages 172–182, New York, NY, USA, 1988. ACM

Press.

[54] K.-I. Ko. Complexity Theory of Real Functions. Birkhäuser, Boston, 1991.

137

[55] K.-I. Ko. A polynomial-time computable curve whose interior has a nonrecursive mea-

sure. Theoretical Computer Science, 145:241–270, 1995.

[56] W. Kuich. On the entropy of context-free languages. Information and Control, 16(2):173–

200, 1970.

[57] D. Lacombe. Extension de la notion de fonction recursive aux fonctions d’une ou plusiers

variables reelles, and other notes. Comptes Rendus, 240:2478-2480; 241:13-14, 151-153,

1250-1252, 1955.

[58] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Appli-

cations. Springer-Verlag, Berlin, 1997. Second Edition.

[59] J. H. Lutz. Category and measure in complexity classes. SIAM Journal on Computing,

19(6):1100–1131, 1990.

[60] J. H. Lutz. Almost everywhere high nonuniform complexity. J. Comput. Syst. Sci.,

44(2):220–258, 1992.

[61] J. H. Lutz. A pseudorandom oracle characterization of BPP. SIAM Journal on Com-

puting, 22(5):1075–1086, 1993.

[62] J. H. Lutz. Dimension in complexity classes. In Proceedings of the Fifteenth Annual

IEEE Conference on Computational Complexity, pages 158–169, 2000.

[63] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32:1236–1259,

2003.

[64] J. H. Lutz. The dimensions of individual strings and sequences. Information and Com-

putation, 187:49–79, 2003.

[65] J. H. Lutz and E. Mayordomo. Dimensions of points in self-similar fractals. SIAM

Journal on Computing, 38:1080–1112, 2008.

[66] J. H. Lutz and W. J. Schmidt. Circuit size relative to pseudorandom oracles. Theoretical

Computer Science, 107(1):95–120, March 1993.

138

[67] P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–619,

1966.

[68] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifia-

bility. Cambridge University Press, 1995.

[69] C. T. McMullen. Hausdorff dimension of general Sierpinski carpets. Nagoya Mathematical

Journal, 96:1–9, 1984.

[70] E. Michael. Topologies on spaces of subsets. Transactions of the American Mathematical

Society, 71(1):152–182, 1951.

[71] F. Morgan. Geometric Measure Theory: A Beginner’s Guide. Academic Press, third

edition, 2000.

[72] Y. N. Moschovakis. Descriptive Set Theory. North-Holland, Amsterdam, 1980.

[73] P. Moser. Relative to P promise-BPP equals APP. Technical Report TR01-68, Electronic

Colloquium on Computational Complexity, 2001.

[74] P. Moser. Random nondeterministic real functions and Arthur Merlin games. Technical

Report TR02-006, ECCC, 2002.

[75] N. T. Müller and X. Zhao. Jordan areas and grids. In Proceedings of the Fifth Interna-

tional Conference on Computability and Complexity in Analysis, pages 191–206, 2008.

[76] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System

Sciences, 49:149–167, 1994.

[77] K. Okikiolu. Characterization of subsets of rectifiable curves in ℝn. Journal of the

London Mathematical Society, 46(2):336–348, 1992.

[78] L. Olsen. Multifractal analysis of divergence points of deformed measure theoretical

Birkhoff averages. Journal de Mathématiques Pures et Appliquées. Neuvième Série,

82(12):1591–1649, 2003.

139

[79] L. Olsen. Applications of multifractal divergence points to some sets of d-tuples of num-

bers defined by their n-adic expansion. Bulletin des Sciences Mathématiques, 128(4):265–

289, 2004.

[80] L. Olsen. Applications of divergence points to local dimension functions of subsets of ℝd.

Proceedings of the Edinburgh Mathematical Society, 48:213218, 2005.

[81] L. Olsen. Multifractal analysis of divergence points of the deformed measure theoretical

Birkhoff averages. III. Aequationes Mathematicae, 71(1-2):29–53, 2006.

[82] L. Olsen and S. Winter. Multifractal analysis of divergence points of the deformed

measure theoretical Birkhoff averages. II. 2001. preprint.

[83] L. Olsen and S. Winter. Normal and non-normal points of self-similar sets and divergence

points of self-similar measures. Journal of the London Mathematical Society (Second

Series), 67(1):103–122, 2003.

[84] J. C. Oxtoby. Measure and Category. Springer-Verlag, Berlin, second edition, 1980.

[85] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-

Verlag, 1989.

[86] C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and

System Sciences, 7:376–388, 1973.

[87] C. P. Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen. Acta Informatica,

1:345–359, 1972.

[88] R. Schul. Subsets of rectifiable curves in Hilbert space and the analyst’s TSP. PhD thesis,

Yale University, 2005.

[89] L. A. Sholomov. A sequence of complexly computable functions. Matematicheskie Za-

metki, 17(6):957–966, 1975. English version pp. 574-579.

[90] L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and Compu-

tation, 103:159–94, 1993.

140

[91] L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal

prediction. Theory of Computing Systems, 31:215–29, 1998.

[92] L. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD

thesis, Massachusetts Institute of Technology, July 1974.

[93] L. J. Stockmeyer and A. R. Meyer. Cosmological lower bound on the circuit complexity

of a small problem in logic. Journal of the ACM, 49(6):753–784, 2002.

[94] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically

finite Kleinian groups. Acta Mathematica, 153:259–277, 1984.

[95] C. Tricot. Two definitions of fractional dimension. Mathematical Proceedings of the

Cambridge Philosophical Society, 91:57–74, 1982.

[96] C. Tricot. Curves and Fractal Dimension. Springer-Verlag, 1995.

[97] B. Volkmann. Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigen-

schaften charakterisiert sind. VI. Mathematische Zeitschrift, 68:439–449, 1958.

[98] K. Weihrauch. Computable Analysis. An Introduction. Springer-Verlag, 2000.

[99] C. B. Wilson. Relativized circuit complexity. Journal of Computer and System Sciences,

31:169–181, 1985.

[100] J. Ziv and A. Lempel. Compression of individual sequences via variable rate coding.

IEEE Transaction on Information Theory, 24(5):530–536, 1978.

	2009
	Fractals in complexity and geometry
	Xiaoyang Gu
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Fractals in Complexity Classes
	1.1.1 Dimensions of Polynomial-Size Circuits
	1.1.2 Fractals and Derandomization

	1.2 Fractals in Individual Sequences and Saturated Sets
	1.2.1 Saturated Sets with Prescribed Limit Frequencies of Digits
	1.2.2 The Copeland-Erdos Sequences

	1.3 Effective Fractals in Geometry
	1.3.1 Points on Computable Curves
	1.3.2 Computable Curves and Their Lengths

	2 PRELIMINARIES
	2.1 Languages, Complexity Classes, Resource Bounds
	2.2 Measure, Dimension and Category

	3 FRACTALS IN COMPLEXITY CLASSES
	3.1 Dimensions of Polynomial-Size Circuits
	3.2 Fractals and Derandomization
	3.2.1 Resource-Bounded Dimension and Relativized Circuit Complexity
	3.2.2 Probabilistic Promise Problems
	3.2.3 Positive-Dimension Derandomization

	4 Fractals in Individual Sequences and Saturated Sets
	4.1 Finite-State Dimensions
	4.2 Zeta-dimension
	4.3 Dimensions of Copeland-Erdos Sequences
	4.4 Saturated Sets with Prescribed Limit Frequencies of Digits
	4.4.1 Relative Frequencies of Digits
	4.4.2 Saturated Sets and the Maximum Entropy Principle

	5 FRACTALS IN GEOMETRY
	5.1 Curves and Computability
	5.2 The Computable Transit Network
	5.3 Points on Rectifiable Computable Curves
	5.3.1 The Computable Analyst's Traveling Salesman Theorem
	5.3.2 The Construction Of The Tour
	5.3.3 The Amortized Analysis Of The Construction

	5.4 Computable Curves and Their Lengths
	5.4.1 An Efficiently Computable Curve That Must Be Retraced
	5.4.2 Lower Semicomputability of Length
	5.4.3 20-Computability of the Constant-Speed Parametrization

	BIBLIOGRAPHY

