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ABSTRACT

Many applications today rely on location information, yet disclosing such information can

present heightened privacy and safety risks. A person’s whereabouts, for example, may reveal

sensitive private information such as health condition andlifestyle. Location information also

has the potential to allow an adversary to physically locateand destroy a subject, which is

particularly concerned in digital battlefields.

This research investigates two problems. The first one is location privacy protection in

location-based services. Our goal is to provide a desired level of guarantee that the location

data collected by the service providers cannot be correlated with restricted spaces such as

home and office to derive who’s where at what time. We propose 1) leveraging historical lo-

cation samples for location depersonalization and 2) allowing a user to express her location

privacy requirement by identifying a spatial region. With these two ideas in place, we develop

a suite of techniques for location-privacy aware uses of location-based services, which can be

either sporadic or continuous. An experimental system has been implemented with these tech-

niques. The second problem investigated in this research islocation safety protection in ad

hoc networks. Unlike location privacy intrusion, the adversary here is not interested in finding

the individual identities of the nodes in a spatial region, but simply wants to locate and de-

stroy them. We define the safety level of a spatial region as the inverse of its node density and

develop a suite of techniques for location safety-aware cloaking and routing. These schemes

allow nodes to disclose their location as accurately as possible, while preventing such informa-

tion from being used to identify any region with a safety level lower than a required threshold.

The performance of the proposed techniques is evaluated through analysis and simulation.
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CHAPTER 1. Introduction

With the continuous price dropping and miniaturization of positioning systems such as

GPS, more and more applications in wireless networks have taken advantage of location in-

formation of wireless users and devices in their design and development. However, disclosing

location information can presents heightened privacy and safety risks. In the aspect of pri-

vacy, physical destinations such as medical clinics may indicate a person’s health problems.

Likewise, regular stops at certain types of places may be linked directly to one’s lifestyles or

political associations. In the aspect of safety, knowing the position of a wireless device allows

an adversary to locate and physically destroy the subject, which is particularly concerned in

digital battlefields.

Our research in this thesis aims to address the above threatspresented by location exposure.

Specifically, we investigate two problems. The first one islocation privacy protection in

the context of location-based services (LBSs). Too use an LBS, a user needs to submit her

location to the service provider, which may not be trustworthy in keeping the information in

confidential. Even if a user replaces her real-world identity with a pseudonym, the anonymous

location information may still be correlated with restricted spaces such as house and office

for subject re-identification. Our research focuses on thisproblem known asrestricted space

identification, and investigates location depersonalization for the purpose of location privacy

protection. Specifically, given an anonymous location disclosed in a service request, we want

to prevent an adversary from deriving who was in the locationat the time of the service request.

Toward this goal, we propose to explore users’ historical location samples, each called a

footprint, for location depersonalization. A spatial region withK different footprints means it
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has been visited byK different people. When a user requests a service, her location is reported

as such a region instead of her accurate position. Therefore, even if an adversary manages to

identify all these visitors using restricted spaces, he will not know which of them was inside the

area at the time of the service request. In addition to location depersonalization, we address

the challenge of modeling location privacy requirement. With the traditionalK-anonymity

model, a user needs to specify a value ofK as her privacy requirement. This is problematic,

because privacy is about feeling, and it is awkward for one toscale her feeling using a number.

Our solution circumvents this problem by allowing a user to identify a public region, such as

a shopping mall, which she would feel comfortable that it is reported as her location should

she request a service inside it. This region is then used as her privacy requirement – each

location disclosed on her behalf needs to be at least as popular as that area. Compared to

choosing a number ofK, this feeling-basedstrategy provides a much more intuitive way for

users to express their privacy requirement. With the above ideas in place, we present a suite of

cloaking algorithms to depersonalize users’ location disclosed in both sporadic and continuous

LBSs. We evaluate the performance of our techniques via simulations. Moreover, we have

implemented an experimental prototype for feasibility andpracticality study.

The second problem investigated in this thesis islocation safety protection in the context

of ad hoc networks. Many applications and protocols (e.g., LAR (1), DREAM (2),GPSR (3))

designed for ad hoc networks take advantage of node locationinformation for functionality

and scalability. Little work, however, has been done to dealwith the safety threat introduced

when nodes disclose their location information in a hostileenvironment. Knowing a spatial

region contains a set of sensors, an adversary may comb through the area to locate and destroy

all of them. This threat is different from location privacy intrusion in the sense that here the

adversary is not interested in finding the individual identities of the nodes in a spatial region,

but simply wants to locate and destroy them.

The specific goal of thwarting the location safety threat is to make it practically infeasible

for an adversary to find nodes’ accurate position based on thelocation information they dis-
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close in communications. An adversary can always comb through an entire region to destroy

the nodes located inside it, but if the area is very large, thecost can be prohibitively high.

As such, we define thesafety levelof a spatial region as the inverse of its node density. The

higher safety level a spatial region has, the less attractive it is for the adversary to attack the

nodes inside. With this concept, we developed a set of distributed algorithms for nodes to

cloak their location in both stationary and mobile ad hoc networks. Our strategy is to partition

the network domain into a number of safe subdomains that is assmall as possible, and let

each node take the subdomain where it resides in as its cloaking box. To make subdomains as

small as possible, each subdomain is recursively split as long as the resulted subdomains are

all safe. We evaluate the performance of our techniques through both mathematical analysis

and simulation.

The above cloaking techniques protect nodes’ location safety by reducing their location

resolution. This, unfortunately, has a significant impact on the geographic routing protocols

in ad hoc networks. We show that the routing operation of packet forwarding may allow an

adversary to refine a node’s location resolution, thus reversing the effect of location cloaking

on safety protection. To address this issue, we introduce a new concept calledsafe link. A

network link is said to be a safe link if the packet delivery through the link does not allow

an adversary to refine the sender and receiver’s location resolution. Based on the concept, we

first propose a verification technique that allows a node to determine whether or not a link

is safe based on the received signal strength. Then, we develop a secure geographic routing

protocol (LSR). LSR constructs a routing path using only safe links, and it delivers packets

to destination nodes without knowing their accurate location information. To our knowledge,

LSR is the first ad hoc routing technique designed with built-in mechanisms to support location

safety protection.

The rest of this thesis is organized as follows. We discuss the background and related work

in Chapter 2. We present our research for location privacy and location safety protection in

Chapter 3 and Chapter 4 respectively. Finally, we conclude this thesis in Chapter 5.
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CHAPTER 2. Related work

This chapter surveys existing techniques closely related to our work. These pieces of

work were also proposed to protect users’ sensitive information from being revealed in the

disclosed locations in communications. In Section 2.1, we present regulation and policy-based

approaches for safeguarding personal location information. In Section 2.2, we discuss existing

techniques proposed for anonymous uses of LBSs. In Section 2.3, we discuss a novel approach

which can be used for location privacy protection since it does not need users disclose their

location for requesting LBSs. In Section 2.4 and 2.5 we address trajectory perturbation and

trajectory anonymization used to prevent a user being identified from a location trajectory

revealed in continuous LBSs respectively. In Section 2.6, we present privacy protection in

opportunistic sensing and monitoring. In Section 2.7, we shift our focus on ad hoc networks,

and surveys existing anonymous routing protocols.

2.1 Regulation and policy-based approaches for location data

protection

Various efforts have been made toward safeguarding personal location data. On the legis-

lation front, laws and regulations governing collection and distribution of the location infor-

mation of wireless subscribers have been or are in the process of being enacted in a number of

regions, including the United States, the European Union, and Japan (4). Technical standards

for location data transmission have been investigated by the Internet Engineering Task Force’s

Geopriv working group (5). The group focuses on protocol designs that allow mobile devices
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to communicate their location in a private and secure fashion.

Several policy-based approaches (e.g., (6; 7; 8)) have alsobeen developed for personal

location management, by which users can configure their mobile devices when and to whom

their location information can be released. The work in (6) focuses on Automotive Telematics,

which are information intensive applications using mobilevehicles as the sensing, computing

and communication platform. Dynamic data generated by automobiles creates unique chal-

lenges for privacy protection. Unlike static data, which has to be collected only once by any

interested party, dynamic data has to be collected repeatedly by a telematic service provider

to keep it up-to-date. Thus, continuously reporting location information to the untrustworthy

service providers presents a serious threat on users’ privacy. In the proposed framework, user

can configure their privacy policy to withhold their preciselocation information, and only re-

port accumulative information. For example, users are not allowed to report their accurate

positions, but can report the mileage of their recent travel.

The framework LocServ proposed in (7) lets users apply general policies to control distri-

bution of their information. The policies let users restrictly access to their location information

in several ways: 1) Service type. A user only reports her location in requesting certain types of

service. 2) Time limit. A user only reports her location at certain time periods, which can vary

on workdays and holidays. 3) Location limit. A user only reports her location in specified ge-

ographic areas. In addition, a standard xml format is definedfor users to submit their privacy

policy statement to validators which validate the user preference against system policy.

The work in (8) considers a ubiquitous computing environment which contains a number

of services. Each service has a policy proxy which beacons the service description and data

collection policies to every user entering the environment. Upon receiving a beacon, the user’s

personal privacy proxy extracts the policies from the beacon and compares them with the

user’s own privacy preference. After the comparison, the privacy proxy will help user to

decide whether accept or decline the service. Specifically,a service is acceptable only if it can

support mechanisms to encode the location information in the collected data and can enforce
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access restrictions based on the location of the person wanting to use the data.

Although these approaches protect location privacy from various aspects, they do not work

when users have to release their location information to a party that is not trustworthy in

keeping the data in confidential.

2.2 Anonymous uses of LBSs

Just like regular Internet access, a user may not want to be identified as the subscriber of

some LBS, especially when the service is sensitive. To achieve anonymous uses of LBSs, the

user’s location disclosed to the service provider has to be prevented from being linked to her

identity. This problem was first investigated in (9), and a solution is proposed by introducing

the concept of locationK-anonymity in the context of LBSs. LocationK-anonymity demands

that the user’s location information reported to the service provider should be indistinguishable

from at leastK − 1 other users. To achieveK-anonymity protection, the proposed scheme

reduces the accuracy of the location information along spatial and/or temporal dimensions

before it is disclosed to the service provider. Specifically, when a client requests a service, a

quadtree-based algorithm is applied to compute a cloaking box that contains the client and at

leastK−1 others, and then uses this cloaking box as the client’s location to request the service.

If the resolution is too coarse for quality services, temporal cloaking is applied, i.e., delaying

a user’s service request. When more mobile nodes come near tothe user, a smaller cloaking

area can then be computed. The concept of locationK-anonymity has since been improved

by a series of work. In the rest of this section, we review themin different categories.

Customizable locationK-anonymity: The work in (10) address the disadvantages of the

cloaking technique proposed in (9). First, (9) uses a system-wide staticK value to anonymize

all users, which is unrealistic in practice as users tend to have varying privacy requirements

under different contexts. Instead, this paper introduces acustomizableK-anonymity model

that allows each user to specify her own value ofK. In addition, the quadtree-based algorithm
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used in (9) suffers from poor service quality because the generated cloaking boxes have low

resolution, while in this paper a CliqueCloak algorithm is proposed to compute cloaking boxes

as small as possible. The algorithm first constructs a graph,in which a vertex corresponds to

a user’s location, and an edge between two vertices means thetwo corresponding users can

share a cloaking box. Then, the algorithm searches for cliques ofK vertices and the minimum

bounding rectangle (MBR) of them is computed as the users’ cloaking box.

The work in (11) and (12) consider preventing an adversary from identifying a subject

based on her historical moving pattern. These pieces of workintroduce the notion ofhistorical

K-anonymitywhich defines the requirement to preserve locationK-anonymity for a trajectory

of service queries submitted by the same user. Based on this definition, a spatial-temporal

cloaking algorithm is proposed. For each location update ina trajectory, a three dimensional

(two spatial dimension and one temporal dimension) MBR thatis crossed byK − 1 other

users is built and these MBRs form a cloaking trajectory. In addition, a probabilistic unlinking

technique is presented which prevents adversaries from linking the service requests submitted

by a same user at different time.

Query processing with reduced location resolution:In an anonymized service query

received by a LBS provider, the location is cloaked into a spatial region. The cloaked location

information brings up the challenges of query processing, i.e., how to provide efficient and

accurate LBSs based on the knowledge of the spatial region rather than the exact location

information. This issue motivates a series of work (13; 14; 15). In (13), a probabilistic model

is proposed to process the queries with cloaked location data. It generatesimpreciseanswers to

the user, each of which is a tuple(S, P ) whereS is the service content andP is the probability

that the answer satisfies the corresponding query. In addition, it defines several metrics for

evaluating the quality of a service based on the imprecise answers. These metrics allow a user

to decide whether she should adjust her cloaked location in order to obtain a better service.

The work in (14) addresses the challenge of processing queries over private data, i.e., the

location information of the querying target is also inaccurate. Specifically, this paper focuses
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on nearest neighbor (NN) query processing, and a grid-basedalgorithm is proposed to find

the minimum set of candidates for an NN query. The main idea ofthe algorithm is to initially

select a set offilter objects that can be used to prune the search over the whole setof object.

With the filter objects, the algorithm can identify the spatial region which covers all potential

answers to an NN query regardless of the exact location of objects in their cloaking boxes.

The work in (15) focuses onk nearest neighbor (kNN) query processing, and it addresses

the challenge of query processing when the cloaked locationis a circular region. An algorithm

calledCkNN-Circis proposed to compute the candidate list of query results. Specifically, the

algorithm partitions the circumference of the circular cloaking region into disjoint arcs, and

associates to each arc the data objects nearest to it. In addition, it shows that compared with

query processing on rectangular cloaking boxes,CkNN-Circhas a higher overhead but it can

reduce the number of candidates, which means that using circular cloaking box is preferable

in the situation when communication cost is more important than processing cost.

Anonymous uses of LBSs in P2P environments:In all the above techniques, a central

anonymization server is used as a trusted middle-ware between mobile nodes and service

providers. The server tracks the movement of mobile nodes and computes cloaking boxes

upon requests. On the other hand, some pieces of work (16; 17;18; 19; 20) have investigated

anonymous uses of LBS in fully distributed mobile peer-to-peer environments. Compared to

the centralized framework, the cloaking box computation inP2P system does not rely on the

anonymization server. Thus, it is free from the problem of server bottleneck or single point

of failure. In (16), before a user send a request to the LBS provider, she finds a group of

peers in her neighborhood via single-hop and/or multi-hop routing. Then, the spatial cloaked

region that covers the entire group of peers is computed as her location for requesting service.

The proposed P2P cloaking algorithm operates in two modes: 1) on-demandin which mobile

clients execute the algorithm only when they need to requestan LBS; 2)proactivein which

mobile clients periodically look around to find the desired group of peers for cloaking. The

on-demand mode has lower power consumption, while the proactive mode can achieve faster
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service response. The P2P system proposed in (17) is called MOBIHIDE. It manages the

mobile users with a hierarchical distributed hash table based on Chord architecture (21). In

addition, it employs the Hillbert space-filling curve to mapthe 2-D user locations to a 1-

D Chord space. With the assist of such curve, peers can compute their cloaking boxes by

choosing random groups ofK users (including the service user) that are consecutive in the

1-D space.

The work in (18; 19) assumes that users’ actual positions arepublicly known. Thus, to

protect users’ anonymity, each cloaking box should have theK-sharingproperty, i.e., it must

satisfy that 1) at leastK users are contained by the cloaking box and 2) at leastK of these

users share the same cloaking box. The system PRIVE in (18) uses the Hilbert transforma-

tion to generate a sorted 1-D sequence of all users. Then, it constructs fixed partitions ofK

users each, and the minimum bounding rectangle (MBR) of all the users in a partition is the

cloaking box for these users. To generate the fixed partitions, PRIVE implements an overlay

network which resembles a distributedB+-tree. Since every time the search for a cloaking

box starts from the root of the tree, the peer at the root can beoverloaded. The work in

(19) focuses on the anonymity protection in continuous LBSs, where the adversary can attack

users’ anonymity based on their historical movement. At theinitial timestamp, the proposed

algorithm computes the service user a cloaking box which contains at least K users. Then, at

a subsequent timestamp, the algorithm computes a new cloaking box which encloses the same

set of users. The drawback of this technique is obvious. As users move, the resulting cloaking

box can grow very large, leading to prohibitively low service quality.

Despite their difference, all the above P2P systems assume mobile nodes trust each other

and require nodes to disclose exact location to their neighbors. In contrast the technique

(20) allows nodes to collaborate in computing cloaking boxes without having to reveal their

exact location. Specifically, the cloaking process contains two phases. In the first phase,K

users (including the service user) are grouped together according to the proximity location

information, the distance between a user and its 1-hop neighbors. In the second phase, the
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bounding box of the group of users is obtained without exposing their accurate positions. To

achieve this goal, the proposed technique extend Secure Multi-party Computation (SMC) (22),

and a public function is used for all the users in the group to evaluate a candidate bound with

their private positions while ensuring no users can learn additional information other than the

evaluation results.

All the above techniques described in this section are designed to preserve users’ anonymity

in service uses, but not their location privacy. Each cloaking box contains a set of users who

are currently inside the area. By correlating with restricted spaces, an adversary has the po-

tential to identify all these users. The adversary may not know which of them requests the

service, but knows they are all inside the area at the time when the service is requested, thus

violating their location privacy. As compared to a single user’s location, revealing the pres-

ence of a group of people together in a small area is even more threatening – it is well said that

”where you are and whom you are with are closely correlated with what you are doing” (23).

2.3 Non-location exposure uses of LBS

The work in (24) proposes a novel framework to let a user directly download location-

based information from a service provider without having toreport her location informa-

tion (either accurate position or cloaking box). The proposed technique does not need an

anonymizer. It is based on the theory of Private InformationRetrieval (PIR) (25), which al-

lows a user to privately retrieve information from a server database, without letting the server

learn what particular information the user has requested. Specifically, this framework imple-

ments PIR for nearest neighbor (NN) service requests based on the Hilbert curve and on an

R-tree variant. It shows that for a server database which containsn point of interests (POIs),

the user can securely find her NN by downloadingO(
√
n) of them.

This technique can be used to provide users location privacyprotection, since a user does

not need to disclose any location information to the serviceprovider.For each query, however,
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this scheme requires a mobile client to download about the square root of the total amount of

data stored in the service provider.This requirement will present a major burden to a mobile

client when the database is large.

2.4 Trajectory perturbation

A user’s time-series sequence of location updates creates atrajectory. One can associate

each location update with a different pseudonym; but using different pseudonyms or simply

not using identifiers at all may not be effective, because successive location samples are highly

correlative and could be re-linked using trajectory tracking methods. For example, Multi Tar-

get Tracking (MTT) (26) algorithms are a well-studied technique to link subsequent location

samples to individual users who periodically report anonymized location information.

Beresford and Stajano first proposed the concept ofmix zone(27) for trajectory perturba-

tion. Specifically, the network domain is partitioned into application zones and mix zones.

Each application zone is a region registered by an LBS, and a user can report her location to

the LBS provider whenever she steps into the region. On the other hand, a mix zone is a region

not registered by any LBS, and a mobile user does not report its location when she is inside

a mixed zone. When there are multiple nodes inside the same mix zone, they exchange their

pseudonyms. After exiting the mix zone, these nodes start touse new pseudonyms in location

updates, making it hard for an adversary to link incoming andoutgoing paths of these nodes.

The above approach is restricted in many applications because it relies on pre-defined spa-

tial regions for pseudonym exchange, and users do not reporttheir locations in mix zones. Hoh

and Gruteser (28) proposed another approach through path confusion. A trusted anonymizer is

employed to track the movement of mobile users. When it finds some users’ paths are within

some threshold, it switches their pseudonyms. In addition,it replaces users’ original loca-

tions with perturbed location samples such that the adversary (applying MTT algorithms) will

confuse the tracks and follows the wrong users. Specifically, the proposed technique formal-
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izes the perturbation using an entropy-based model, and uses this model to generate perturbed

location samples in order to maximize the chance of confusion.

Despite their difference, these approaches reduce, but cannot prevent, location privacy

risks. A partial trace, or just a single location sample, can be sufficient for an adversary to

identify a user, thus knowing her whereabouts.

2.5 Trajectory anonymization

Anonymizing the trajectories of a given set of moving objects has been investigated re-

cently. In (29), it is shown that even if the users’ identities are removed in a trajectory database,

the adversary can still assemble a user’s trajectory according to his partial knowledge, i.e., a

portion of location samples in the trajectory. The proposedanonymization technique sup-

presses location information in the original trajectory database wherever privacy leaks occur

and converts it to a secure published database. It shows thatfinding the optimum set of location

samples to suppress is NP-hard, and a greedy algorithm is proposed to ensure that the adver-

sary cannot correctly infer the owner of any unknown location sample with certain probability

threshold, while maximizing the similarity of the originaltrajectories to their corresponding

transformations.

In (30) Abul et al exploits the impact of position uncertainty on the trajectory anonymiza-

tion. Due to the imprecision of moving objects’ whereabouts(e.g., caused by GPS error),

the trajectory of a moving object is no longer a polyline, instead it is a cylindrical volume,

where its radiusδ represents the possible location imprecision. The main contribution of this

paper is the introduction of the concept(K, δ)-anonymity, which anonymizes a trajectory by

having at leastK moving objects appearing within the cylindrical volume of radiusδ of every

moving object in the same period of time. To ensure(K, δ)-anonymity a clustering algorithm

is proposed based onspace translation. The paper first proves that the problem of achieving

(k, δ)-anonymity by space translation with minimum distortion isNP-hard, and then proposes
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a greedy algorithm which represents the best trade-off between effectiveness and efficiency.

The work in (31) shares a similar idea of (30), but addresses the impact of trajectory

anonymization on applications which rely on the published location data. The anonymized

trajectories are 3D cylindrical volumes, but most data mining and statistical applications work

on atomic trajectories which consist of location samples with accurate coordinates. To address

this issue, a location reconstruction technique is applied, which regeneralizes users’ locations

by randomly sampling from the cloaking boxes in a trajectory. The experiment results show

that although the reconstructed locations are different from the originated ones reported by

users, they only produces slight effect on the performance of data mining applications.

Fung et al study the privacy threats caused by publishing RFID data in (32). It is shown that

even if names and social security numbers has been removed from the published RFID data,

an adversary may identify a target victim’s record or infer her sensitive value by matching

a priori known visited locations and timestamps. Since RFIDdata is high-dimensional and

sparse, the challenge of anonymizing RFID moving objects data lies on how to improve the

cloaking resolution. The proposedLKC-privacy model ensures that every RFID moving path

with length not greater thanL is shared by at leastK−1 other moving paths and the confidence

of inferring any pre-specified sensitive values is not greater thanC.

In all the above trajectory anonymization schemes, each disclosed trajectory is traversed

by a set of users at the same time. As such, they share the same problem as the techniques

developed for anonymous uses of LBS.

2.6 Privacy-aware opportunistic sensing and monitoring

Opportunistic sensing and monitoring systems (e.g., (33; 34; 35)) have been proposed to

leverage users’ mobile devices to measure environmental context. In these systems, appli-

cations can task mobile nodes in a target region to report context information (e.g., traffic

conditions, pollution reading) from their vicinity. However, the location information revealed
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in the report can put the privacy of users at risk. In (36), Kapadia et al present a privacy-

aware opportunistic sensing system calledAnonySense, which features a two-layer protection

of users’ privacy. In the first layer, the proposed techniquepartitions the network domain

into many tiles, each being a region thatK users typically visit within a short time interval,

and lets each node report its location at a granularity of tiles. In the second layer, reports are

aggregated to ensure that several reports are combined before sending context information to

applications. As a result, this system allows applicationsto deliver tasks to anonymous nodes

and eventually collect reports from anonymous nodes.It is unclear, though, how mobile nodes

are updated with the latest tessellation information. The proposed system also assumes that

each report is an independent event. It does not protect privacy when a user’s location updates

form a trajectory.

In parallel to the above work, Hoh et al address the location privacy risk in traffic moni-

toring system (37), trying to shorten the time period that the adversary can successfully track

a probe vehicle. To achieve this goal, they proposed a systembased on Virtual Trip Lines

(VTLs). A VTL is a geographic marker that indicates where a vehicle needs to make a traffic

report (with its location). For privacy protection, these markers are placed to avoid particularly

sensitive areas. Their distances are also made large enoughto prevent a user’s consecutive lo-

cation updates from being re-linked as a trajectory. In addition, a distributed temporal cloaking

scheme was proposed which reduces timestamp accuracy to guaranteeK-anonymity protec-

tion. Specifically, it replaces a VTL timestamp with a time window during which at least

K updates were generated from the same VTL.However, this approach cannot be used for

location privacy protection in LBS because the placement ofVTLs is pre-determined.

2.7 Anonymous routing in ad hoc networks

An ad hoc network consists of a set of nodes, either stationary or mobile, which com-

municate with each other through packet relaying. Because of low cost and easy setup, such
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networks are often deployed in hostile environments such asenemy terrain where no commu-

nication infrastructures exist. In addition, many applications developed in ad hoc networks

are security sensitive, such as military battlefield operations, homeland security scenarios, and

rescue missions. As a result, security issues in ad hoc routing have drawn intensive attention

recently.

Traffic analysisis one of the most serious security attacks against ad hoc routing. By

tracing the network routes and the en-route nodes, the adversary can infer sensitive information

about the applications and the communicating parties, suchas nodes’ identities, locations and

moving patterns. To thwart the above threat, a number of anonymous routing protocols have

been developed in literature. In this section we review themin different categories.

Protecting traffic pattern in ad hoc routing: The adversary in some ad hoc network has

global observation of the network traffic and wants to identify the routing paths of data packets.

Knowing traffic pattern of communications the adversary candeduce sensitive information

such as military actions. To address this threat, Jiang et alin (38) proposed Dynamic Mix

Method (DMM) which is extended from the traditional Chaum’smix method (39) used to hide

sender and receiver of email. They assume that there are a number of mix nodes distributed

over the whole network. When a node has a packet pending, it searches for the mix node

to forward the packet by executing a mix discovery protocol called Optimal Mix (OM). This

protocol is similar to Dynamic Source Routing (DSR) (40), and it constructs a routes between

source and destination with a set of mix nodes in between. Since each mix node re-encrypts

the packets it forwards, the routes are untraceable for the adversary.

Kong et al in (41) proposed an anonymous on-demand routing protocol called ANODR

which does not rely on the predetermined mix nodes in the network. For route discovery, an

Onion-based (42) routing algorithm is proposed to construct an anonymous route between the

source and destination. During data delivery, each hop en route is associated with a random

route pseudonym. As a result, the data packets on different routing paths are mixed at each

forwarding node so that it is hard for the adversary to find outwhere a packet flow comes from
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and where it goes to.

Different from the above two papers, the work in (43) addressthe anonymous routing in

MAC-layer communications. It considers the case that thereco-exist multiple groups of nodes

in the network. Nodes within a same group communicate with each other and they do not want

to be identified by nodes of other groups. Thus, the challengeis how to construct communica-

tion links between group members without revealing their identities. The proposed technique

employs a trusted authority who assigns each node a sufficiently large set of collision-resistant

pseudonyms. These pseudonyms are chosen to substitute realID in communications in order

to prevent adversary from tracking. In addition, a pairing-based secret handshake scheme is

used to anonymously authenticate two nodes in the same groupand establish the correspond-

ing communication link.

Protecting source location in ad hoc routing: Another track of research (44; 45; 46)

considers the sensor networks that are deployed for detecting and monitoring valuable sources.

The sensors around a source continuously send reports to thesink, while an adversary can

trace the data flow hop by hop backward to discover the source.In (44; 45), Ozturk et al

show that a simple strategy to address this issue is to let some fake sources generate messages

at the same time in order to confuse the adversary. However, it consumes too much energy

and is not suitable for sensor networks. On the other hand, they introduce phantom flooding

which attempts to direct messages from a source to differentlocations of the network so that

the adversary cannot receive a steady stream of messages to track the source. Specifically, a

message is first unicasted in a random fashion (referred to asrandom walk) within the firsth

hops, and then the message is flooded to the sink. Thus, each message traverses a different

path to the sink.

The work in (46) addresses that the scheme based on random walk in the above two papers

can prevent adversary from tracing back to the source, but the generated routing path may

be much longer than the shortest path to the sink, which leadsto undesirable delivery time.

To cope with this problem, this paper proposes the cyclic entrapment method (CEM). In this
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approach, several loops are generated after the deploymentof the sensor network and before

sources send any messages to the base station. When a messageis being routed along a

path from the source to the sink and it encounters one of thesepre-configured loops, the

encountered loop will be activated and will begin cycling fake messages around the loop.

Therefore, when an adversary arrives at this spot, he cannotdistinguish the real message and

fake messages, and then becomes unable to track back further.

Protecting nodes’ location in position-based routing: In general, the techniques in

the above two categories consider topology-based routing,and they assume the adversary

locates nodes based on their signal strength (e.g., using triangulation (47; 48; 49)). In contrast,

the work in (50; 51) focuses on position-based routing, and it assumes the adversary can

compromise some node and thus access the location information of nodes that they disclose in

routing protocols. Since location information is the driving factor in position-based routing, it

is more challenging to prevent the adversary from deriving nodes’ sensitive information from

their locations.

The work in (50) aims to unlink the nodes’ identities to theirlocations during geographic

routing. An anonymous greedy forwarding (AGFW) technique is proposed to achieve this

goal. In this approach, each node maintains an anonymous neighbor table, where the neigh-

bors’ identities are not known but pseudonyms are used instead. During data delivery, the

packet header includes atrapdoorfield which can only be opened by the destination. When a

node receives a packet, it can determine if it is the destination using the trapdoor. Otherwise,

it forwards the packet to its neighbor closest to the destination.

AGFW unlinks a node’s identity to its locations using pseudonyms. However, similar to

the traditional geographic routing protocols (e.g. GPSR (3)), it requires each node periodically

broadcast its accurate position to its neighbors. In (51), Wu et al argue that such periodical

heart-beat makes a node highly traceable and it’s much easier to obtain a node’s ID based on

its trajectory. To address this issue, they propose an anonymous geographic routing protocol

called AO2P, which does not require the time-based positionreport. During packet forwarding,
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only the destination’s position is open, and a contention-based scheme is used to choose the

next hop. Specifically, once a previous hop sends out a packet, its neighbors compute their

distance to the destination, and the ones closer to the destination have a higher probability

to win the contention and become the forwarder. This approach can suppress the location

information revealed in routing, meanwhile it can generateroutes with small number of hops.

Despite their differences, anonymous routing techniques aim to prevent an adversary from

identifying important nodes in the network. They do not dealwith the safety threat imposed by

the exposure of nodes’ location information.
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CHAPTER 3. Location privacy protection in LBSs

In this chapter, we present our research that investigates location privacy protection in

the context of location-based services. As we discussed in Chapter 1, location information

exposed in service requests presents users significant privacy threats. To address this issue, our

research objective is to prevent a user’s location information, either a single location sample

or a time-series sequence of them, from being correlated with restricted spaces to derivewho’s

where at what time. Towards this goal, we make following contributions.

1) We propose using historical location samples, each called a footprint, for location de-

personalization. A location or a trajectory withK different footprints means it has been visited

by K different people. Even if an adversary manages to identify all these people, he will not

know who was there at the time of the service request, thus preserving the user’s location

privacy. 2) We address the challenge of modeling location privacy requirement. With the tra-

ditionalK-anonymity model, a user needs to specify a value ofK to request a desired level

of privacy protection. This is problematic, because privacy is about feeling, and it is difficult

to scale one’s feeling using a number. Our solution circumvents this problem by allowing a

user to identify a spatial region, such as a shopping mall, which she would feel comfortable

that it is reported as her location should she request a service inside it. This region is then

used as her privacy requirement – each location disclosed onher behalf needs to be at least

as popular as that region. Compared to choosing a number ofK, this feeling-basedstrategy

provides a much more intuitive way for users to express theirprivacy requirement. 3) With the

above ideas in place, we present a suite of algorithms for efficient location cloaking. These

techniques allow users to entertain LBSs, either sporadic or continuous, while providing them
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a desired level of location privacy protection. We evaluatethe performance of our techniques

via simulation under various conditions using location data synthetically generated based on

real road maps. For feasibility and practicality evaluation, we have also implemented an ex-

perimental prototype that supports location privacy awareuses of LBSs.

3.1 Feeling-based privacy modeling

Our research aims at preventing location information disclosed for LBS requests from

being used to derive who’s where at what time. More specifically, given a cloaking boxb

reported at timet for an LBS, we want to prevent an adversary from identifying who was in

b at timet by correlatingb with restricted spaces such as home and office, which are public-

accessible information. Unlike existing work aimed at supporting anonymous service uses, we

do not consider observation attack. When a user is under direct observation, she does not have

location privacy anyway. As mentioned early, ensuring eachcloaking box contains a number

of current users can protect users’ anonymity in service uses, but not their location privacy. To

circumvent this problem, our idea is to leverage historicallocation samples for cloaking. Given

a cloaking box that has been visited by a number of people, even if an adversary manages to

identify all these people, he will not know who was in the box at the time of service request.

To customize the level of privacy protection, a user can specify a value ofK: each cloaking

box disclosed on her behalf must have at leastK different visitors. A larger value ofK makes

it harder to link the box to some specific user, thus meaning a higher level of protection. While

this traditionalK-anonymity model (52; 53) is simple to implement, choosing an appropriate

K value can be difficult. Why would a user feel that her privacy is well-protected ifK = 20,

but not if K = 19? Ultimately, privacy is about feeling, and it is awkward forone to scale

her feeling using a number. A user can always choose a largeK to ensure a sufficient privacy

protection, but this will result in unnecessary reduction of location resolution. A very coarse

location will make it difficult to provide a meaningful LBS. In addition to this inherent K-
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anonymity problem, another issue has to do with the robustness in protection. Ensuring each

location has been visited by at leastK different users may not provide privacy protection at the

level ofK. Indeed, it can achieve so only when theseK users have an equal chance of visiting

the region, i.e., they leave the same amount of footprints inthe area. In reality, a spatial region

may be visited by many people, but some may have a dominant presence. For example, if an

LBS is requested from an office, then the office staff is more likely to be the service requestor,

even if the office has many visitors.

Instead of aK value, a user can specify a spatial region, which we will refer to as apublic

region, and request that the location disclosed on her behalf be at least as popular as that region.

For example, a user may choose a shopping mall in town as her public region. As compared to

choosing a number, choosing a public region provides a much more intuitive way for a user to

express her privacy requirement. We refer to this approach as feeling-basedprivacy modeling.

The challenge now is how to measure the popularity of a spatial region. As mentioned above,

simply using the number of visitors for popularity measurement is not sufficient, because

the presence of these visitors in the space may not be uniformed. To address this problem,

we borrow the concept ofentropyfrom Shannon’s information theory (54). Suppose we can

collect location samples from cellular phone users. These location samples, each called a

footprint, can then be used to measure the popularity of a spatial region as follows.

Definition 1. LetR be a spatial region andS(R) = {u1, u2, · · · , um} be the set of users who

have footprints inR. Letni (1 ≤ i ≤ m) be the number of footprints that userui has inR, and

N =
∑m

i=1 ni. We define theentropyof R asE(R) = −∑m

i=1
ni

N
log ni

N
, and thepopularityof

R asP (R) = 2E(R).

The value ofE(R) can be interpreted as the amount of additional information needed for

the adversary to identify the service user fromS(R) whenR is reported as her location in

requesting an LBS. According to the above definition, we have1 < P (R) ≤ m. P (R) has the

maximum valuem when every user inS(R) has the same number of footprints inR. On the
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other hand,P (R) has the minimum value when one user inS(R) hasN −m+1 footprints in

R while each of the rest has only 1. We have the following two observations. First,P (R) is

higher ifm is larger. In other words, a region is more popular if it has more visitors. Second,

P (R) has a lower value if the distribution of footprints is more skewed. If some users are

dominant in the region,P (R) will be much less thanm. In this case,R needs to be enlarged

to contain more users in order to have a required popularity.

LetR be a user’s public region. When the user requests a sporadic LBS, where the request

can be seen as an independent event, we can find a cloaking box that 1) contains the user’s

current position, 2) has a popularity that is no less thanP (R), and 3) is as small as possible,

and then report this box as the user’s location. When the userrequests a continuous LBS, a

time-series sequence of cloaking boxes will be reported that form a trajectory. In this case,

simply ensuring that each cloaking box has a popularity no less thanP (R) does not protect

the user’s location privacy at her desired level. This is dueto the fact that the adversary can

narrow down the list of possible service users by finding the common visitors of these cloaking

boxes. To prevent such attack, we must use the footprints of the common set of users, instead

of all visitors of the regions, in computing the popularity of each cloaking box. We define the

popularity of a spatial region with respect to a given set of users as follows.

Definition 2. Given a spatial regionR, and a user setU = {u1, u2, · · · , um′} ⊆ S(R), the

entropyof R with respect toU is EU(R) = −∑m′

i=1
ni

N ′ log
ni

N ′ , whereni is the number of

footprints thatui has inR, andN ′ =
∑m′

i=1 ni. Thepopularityof R with respect toU is

PU(R) = 2EU (R).

When a sequence of cloaking boxes are generated on a user’s behalf, we must ensure that

the popularity of each cloaking box with respect to the common set of visitors is no less than

that of the user’s public region. In other words, the trajectory formed by these cloaking boxes

must be aP-Popular Trajectory(PPT), which is formally defined below:
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Definition 3. Let T = {R1, R2, · · · , Rn} be a sequence of cloaking boxes generated for a

user, andS(Ri) (1 ≤ i ≤ n) the set of people who have footprints inRi. We sayT is the

user’sPPT if for eachRi, it satisfies that 1)Ri covers the user’s position at the time when

Ri is disclosed, and 2)PS(Ri) ≥ P (R), whereS =
⋂

1≤i≤n S(Ri) andR is the public region

specified by the user.

Given a trajectoryT = {R1, R2, · · · , Rn}, we define its resolution to be|T | =
∑n

i=1 Area(Ri)

n
,

whereArea(Ri) denotes the area of boxRi. For location privacy protection, a trajectory

formed by the location samples disclosed on a user’s behalf must be a PPT. Meanwhile, its

resolution needs to be as fine as possible to guarantee the quality of the required LBS services.

3.2 Location cloaking techniques

With the feeling-based privacy model in place, we present our location cloaking tech-

niques for location privacy protection in this section. We first give an overview of the system

architecture and database indexing. Then, we present a suite of cloaking algorithms to sup-

port location privacy protection in both sporadic LBSs and continuous LBSs. For the latter,

we discuss trajectory cloaking under two scenarios: 1)In-advancecloaking when the client’s

moving trajectory is predetermined before the service session begins; 2)On-the-flycloaking

when the moving trajectory is unknown beforehand.

3.2.1 System overview

Similar to existing work (e.g., (9), (10), (14)), we assume mobile clients communicate with

LBS providers through a trusted central location depersonalization server (LDS) managed by

the clients’ cellular service carriers, as shown in Figure 3.1. For LBSs that require user au-

thentication (e.g., for service charges), we assume anonymous authentication (e.g., (55), (56),

(57)) is used. The carriers offer the depersonalization services as a value-added feature to their

clients, and supply the LDS with an initial footprint database that contains location samples
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collected from their clients (e.g., through regular phone calls). These location samples will be

used to compute the popularity of a spatial region and for trajectory cloaking. Hereafter, we

will use terms location sample and footprint interchangeably. The footprint database will be

expanded with the location data obtained from mobile users in their requests of LBSs.

Location & 

Request

Answer Answer

Cloaked region 

& Request

Base 

Station

Location 

Depersonalization 

Server

LBS Server

Trusted cellular infrastructures

Internet ::

::

Users

Com3

Com3
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LBS Server

Untrusted facilities

Figure 3.1 System architecture

We assume the adversaries have access to anonymous locationdata collected by LBSs and

are interested in finding who was where at what time by correlating such information with

restricted spaces such as office and home addresses. For LBSs, which may involve a large

number of users and have a global coverage, such restricted space identification is probably

the most realistic and economic way for location privacy intrusion. Unlike service anonymity

protection, we do not consider observation attack (9). If anadversary has direct observation

over the region where a user locates, the user does not have location privacy anyway.

Our research considers location cloaking for both sporadicLBSs and continuous LBSs. In

the former, each location update of a user is independent to others. The LDS needs to cloak

it with a region no less popular than the user specified publicregion. In the latter, location

updates of a user in a service are correlated and they form a trajectory. The LDS needs to

cloak it with a PPT defined in Section 3.1. To facilitate the cloaking process, we use the

following structure of manage the historical location data.

We partition the network domain recursively into cells in a quad-tree style. The partition-

ing stops when the size of cells becomes less than a threshold(our implementation sets each
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cell to be at least100×100meter2). All the cells generated in the partitioning form a pyramid

structure as shown in Figure 3.2. Suppose the partitioning stops at thehth recursion, then the

pyramid has a height ofh. The top level in the pyramid is level 1 and has only one grid cell

that covers the whole network domain. Each grid cell except the ones at the bottom level is

composed of four cells at the next lower level, which we referto as its child cells.

Level 1

Level 2

Level 3

Level h

uid pos

uid num

Footprint table

Cell table

tlink

Trajectories

Figure 3.2 Data structure

Each cell at the bottom levelh keeps a footprint table and a user table. The footprint table

stores the footprints the cell contains, and each tuple of the table is a record of(uid, pos, tlink),

whereuid is the identity of the mobile user that a footprint belongs to, pos is the coordinates

of a footprint, andtlink is a pointer that links to the corresponding trajectory stored in the

database. The user table records the number of footprints a user has in the cell, and each tuple

of the table is a record of(uid, num), wherenum is the number of footprints the user has in

the cell. For each cell not at the bottom level, we also keeps auser table, which is derived

from the user tables corresponding to its four child cells.

3.2.2 Single location sample cloaking

For instant LBSs, a mobile client configures her privacy requirement by specifying a public

regionR, and report it with its locationp to the LDS. In response, the LDS calculates the

popularity of the public regionP (R), and computes a cloaking box which containsc and has



26

a popularity no less thanP (R). For the sake of service quality, the size of the cloaking box

should be as small as possible. Cloaking footprints is different from cloaking neighboring

users since different footprints may belong to the same user. A cloaking box containingK

footprints may not have a popularity ofK. Thus, existing cloaking techniques using current

neighbors cannot be directly applied for cloaking footprints. In this section, we present a

heuristic algorithm to the cloaking box with a resolution asfine as possible. The pseudo code

is given in Algorithm 1.

Algorithm 1 Cloak(p, P (R))

1: {Phase I: compute searching box}
2: b′ ← the cell that containsp
3: while P (b′) < P (R) do
4: {get cells at bottom level adjacent tob′}
5: E ← Adjacent(b′, h)
6: {merging the cells inE with b′}
7: b′ ← b′

⋃
E

8: update user table ofb′

9: end while
10: {Phase II: compute cloaking box}
11: k = ⌈P (R)⌉
12: F ← k closest footprints belonging to different users
13: U ← corresponding users of footprints inF
14: b←MBB of footprints inF
15: while P (b) < P (R) andU 6= S(b′) do
16: k′ = ⌈P (R)− P (b)⌉
17: for i = 1 to k′ do
18: f ← the footprint closest top not belonging toU
19: F ← F

⋃{f}
20: U ← U

⋃ {user corresponding tof}
21: end for
22: b← MBB of footprints inF
23: end while
24: if U = S(b′) andP (b) < P (R) then
25: b← MBB of all footprints inb′

26: end if
27: returnb

The cloaking algorithm consists of two phases: (I) the LDS finds a searching boxb′ with
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a popularity no less thanP (R) according to the user tables of the cells in the bottom level;

(II) using the footprints in the searching boxb′, the LDS computes the cloaking boxb which

has a popularity no less thanP (R) and has an area as small as possible. In phase I (line 1-9),

the LDS first sets the searching boxb′ as the cell at the bottom level of the pyramid which

contains the client’s positionp, and computes its popularityP (b′) according to its user table.

If P (b′) < P (R), which meansb′ is not popular enough, the LDS expands the searching boxb′

by merging it with its adjacent cells at the bottom level, andupdates its user table by computing

the union of the user tables of the cells inb′. The searching box is expanded repeatedly until

its popularity is no less thanP (R) (line 3-9).

In phase II (line 10-27), the LDS first findsk = ⌈P (R)⌉ closest footprints top each

belonging to a different user, and records the footprint setasF and the corresponding user set

asU . Then the LDS computes the minimum bounding box (MBB)b of thek footprints and

compute its popularity. IfP (b) < P (R), the LDS findsk′ = ⌈P (R)−P (b)⌉ closest footprints

to p each belonging to a different user who is not inU , and updatesF andU by adding these

footprints and corresponding users. Next, the LDS recalculatesb as the MBB of the footprints

in F and the above process is run repeatedly untilP (b) ≥ P (R), or U = S(b′) which means

all people visitedb′ have been counted (line 15-23). IfU = S(b′) butP (b) < P (R), the LDS

computes the cloaking boxb as the MBB of all footprints inb′.

3.2.3 In-advance trajectory cloaking

In a continuous LBS, a mobile client makes a time series sequence of location updates

which form a trajectory. In response, the LDS needs to generate a cloaking box for each

location update, and make sure these cloaking boxes together form a P-Popular Trajectory

(PPT). Comparing with single location cloaking, trajectory cloaking is more challenging. As

mentioned in Section 3.1, simply having each cloaking box aspopular as the public region

cannot ensure the protection of the client’s location privacy. Instead, the LDS has to make
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each cloaking box popular enough with respect to a common setof user. In the rest of this

section, we focus on how to address this challenge in trajectory cloaking. We first discuss

in-advance cloaking scenario, in which the service user knows her moving route beforehand.

As the moving route is predetermined, when the service user submits the service request,

she also reports abase trajectoryT0 = {p1, p2, · · · , pn} to the LDS, in whichpi is a location

sample on her route where she will update her location. In response, the LDS computes a PPT

T = {b1, b2, · · · , bn}, wherebi is a cloaking box containingpi. During the service session,

when the client arrivespi, bi will be reported to the LBS provider in requesting service. In this

subsection, we present a trajectory cloaking algorithm that generates a PPT with resolution as

fine as possible.

According to its definition, to generate a PPT, the LDS has to find a common set of users,

which we refer to ascloaking set, and use their footprints to compute cloaking boxes in the

PPT. It may first appear that the LDS can determine the cloaking set, denoted asS, by finding

the set of users who have footprints closest to the starting point of the service user. This simple

solution minimizes the size of the first cloaking box. However, as the service user moves, the

users inS may not have footprints that are close to her current position. As a result, the size of

the cloaking boxes may become larger and larger, making it difficult to guarantee the quality

of LBS. To address this challenge, our idea is to find those users who have footprint close to

all the location samples in the base trajectoryT0 and use them to create the cloaking set. Based

on this idea, we develop the following approach to compute the cloaking set. The pseudo code

is given in Algorithm 2. The LDS first finds out all cells at the bottom level of the pyramid

that overlap withT0’s location samples. These cells, denoted asb′i(1 ≤ i ≤ n), are marked

assearching boxes(line 2-4). According to the cells’ user tables, the LDS thenretrieves the

users, sayU , that have visited all of these searching boxes, and computetheir popularity with

respect toU . Among all the searching boxes, if there exists at least one whose popularity

with respect toU is less thanP (R), the LDS expands the searching scope by merging each

searching box and its adjacent cells together as a new searching box. Then, according to the
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user tables of the searching boxes, the LDS recalculates theuser setU who have visited all

of them. This process is repeated until all searching boxes’popularity with respect toU is no

less thanP (R) (line 6-15). Then,U is selected as the cloaking set.

Algorithm 2 Select-In-Advance(T0, P (R))

1: {Base trajectoryT0 = {p1, p2, · · · , pn}}
2: for i = 1 to n do
3: b′i ← cell that containspi
4: end for
5: U ← ⋂

1≤i≤n S(b
′
i)

6: while ∃i ∈ [1, n]|PU(b
′
i) < P (R) do

7: for i = 1 to n do
8: {get cells at bottom level adjacent tob′i}
9: Ei ← Adjacent(b′i, h)

10: {merging the cells inEi with b′i}
11: b′i ← b′i

⋃
Ei

12: update user table ofb′i
13: end for
14: U ← ⋂

1≤i≤n S(b
′
i)

15: end while
16: returnU

After choosing the cloaking set, the LDS generates a PPT by computing a cloaking box for

each location sample inT0 using the footprints of users inU . Given a locationpi, 1 ≤ i ≤ n,

the LDS can simply call the function in Algorithm 1 to computethe cloaking box. The only

difference is that the LDS counts only footprints of users inU .

3.2.4 On-the-fly trajectory cloaking

In this subsection we discuss on-the-fly cloaking scenario,in which the service user does

not know her moving route beforehand. When the service user requests an LBS, she also

informs the LDS atravel boundB, a rectangular spatial region that bounds her travel during

the service session. In response, the LDS randomly generates a service session ID and contacts

the service provider. After establishing a service session, the service user periodically reports

her current location to the LDS. For each location update, the LDS computes a cloaking box



30

which contains the service user’s current location, and exports this box along with the session

ID to the corresponding LBS provider. The LDS must ensure that the trajectory created by the

sequence of cloaking boxes is a PPT that satisfies the user’s privacy requirement.

Similar to in-advance cloaking, the LDS has to find acloaking setin order to generate the

PPT. But on-the-fly cloaking is more difficult. The challengeis that the service user’s route

is not predetermined, and thus the LDS cannot figure out whosefootprints will be closer to

the service user during her travel. Therefore, it is hard to find a PPT with a fine resolution.

To address this challenge, our idea is to find those users who have visited most places in the

service user’s travel boundB and use them to create the cloaking set. As these users have

footprints spanning the entire regionB, it will help generate a PPT with a fine resolution.

Recall that in Section 3.2.1 we present a pyramid structure which manages all historical

location data in the network domain. Here we say a user isl-popular withinB, if she has

footprints in every cell at levell that overlaps withB. According to the pyramid structure,

cells at level with a largerl have a finer granularity. This implies that given anl-popular user,

the larger the value ofl is, the more popular the user is. Figure 3.3 shows an example in

which a network domain is partitioned into a 4-level pyramid(There are 1, 4, 16, 64 cells at

each level respectively from top to bottom). It also shows a travel boundB and the footprints

inside it. The footprints in different colors belong to different users.u1, u2, andu3 are three

2-popular users withinB because they have footprints in the two cells at level 2 of thepyramid

which overlap withB; u2, u3 are two3-popular users withinB since they have footprints in

all four cells at level 3 that overlap withB; only u3 is 4-popular since she is the only one who

has footprints in all the sixteen cells at level 4 that overlap with B.

Based on the above definitions, we now present a simple and effective algorithm that can

find an appropriate cloaking set which can assist generatinga PPT with fine resolution. The

pseudo code is given in Algorithm 3. In this algorithm, the LDS sorts the users inS(B)

according to their popularity at levell, and selects the most popular users inS(B) as the

cloaking set, starting from the bottom to top of the pyramid.Let Cl denote the set of cells at
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u3

u1

u2

B

Figure 3.3 A travel bound and footprints inside

level l in the pyramid,C ′
l the set of cells inCl that overlap withB, andSl the set of users who

arel-popular withinB. The LDS first findsSh. Since levelh is the bottom level, these users

are the most popular users inS(B). To findSh (i.e., the users who have visited all the cells

in C ′
h), the LDS simply joins the user tables of these cells on column uid (line 6-7). Next,

the LDS computes the popularity ofB with respect toSh using their footprints inB. If the

popularityPSh
(B) is less thanP (R), it means that cloaking with the footprints of the users

in Sh cannot provide the desired level of privacy protection for the service user. In this case,

the LDS considers the cells one level higher, i.e., levelh− 1 (line 9), and computesSh−1 and

PSh−1
(B) similarly. This procedure is repeated until at some levell the popularityPSl

(B) is

no less thanP (R) (line 3-10).

The above algorithm goes over the pyramid level by level frombottom to top. If a user is

l-popular withinB, it must also be(l − 1)-popular withinB. Thus, each time the algorithm

checks the cells at a higher level, the cloaking set is expanded to include more users. As long

asP (R) ≤ P (B) (i.e., a user’s public region is at most the same popular as that of her travel

bound), the algorithm will find a sufficient number of visitors withinB for the cloaking set.

In the worst case, all users inS(B) are included in the cloaking set. On the other hand, if

P (B) < P (R), the LDS does not need to find a cloaking set. It can simply compute a spatial
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Algorithm 3 Select-On-The-Fly(B, P (R))

1: U ← ∅{U keeps the cloaking set}
2: l ← h
3: while U ⊂ S(B) and PU(B) < P (R) do
4: {Get cells at levell overlapping withB}
5: C ′

l ← Overlap(Cl, B)
6: {Join user tables ofC ′

l by columnuid}
7: T ← Join(C ′

l , uid)
8: U ← Sl ← T.uid
9: l ← l − 1

10: end while
11: returnU

region that containsB and has a popularity no less thanP (R), and always report this region

as the user’s location as long as it moves insideB.

Similar to in-advance cloaking, during the service session, the LDS will generate a PPT by

computing a cloaking box for each location update from the service user using the footprints

of users in the cloaking setU . Given a locationp, the LDS can simply call the function in

Algorithm 1 to compute the cloaking box. The differences lieon two points. First, the LDS

only counts footprints of users inU . Second, when expanding the searching box (Algorithm

1 line 4-7), only the adjacent cells inB are merged.

3.3 Simulations

In this section, we evaluate the effectiveness of the proposed technique under various con-

ditions using location data synthetically generated basedon a real road map. We modify the

simulatorNetwork-based Generator of Moving Objects(58) to generate mobile nodes and

simulate their movement on the real road map of Oldenburg, Germany, a city about15 × 15

km2. The GUI of the simulator is shown in Figure 3.4. We extract four types of roads from

the road map, primary road (interstate expressway), secondary road (state road), connecting

road and neighborhood road as defined in census TIGER/Line (59). In our simulation, mobile

nodes change their speeds at each intersection, and the moving speed on a road follows a nor-
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mal distribution determined by the road type. The mean speeds and the standard deviations

of moving speeds on all road types are listed in Table 3.1. We generate a footprint database

that contains a certain number of trajectories, which are assigned to 2000 users. The num-

ber of trajectories each user has follows a normal distribution with a standard deviation 0.1.

These trajectories are indexed using the grid-based approach discussed in the Section 3.2.1.

We evaluate the performance of our techniques for both single location cloaking and trajectory

cloaking, which we will present in the rest of this section respectively.

Figure 3.4 Generator of moving objects
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Table 3.1 Traffic parameters

Road type Mean speed Standard deviation

Primary 100km/h 20km/h
Secondary 60km/h 15km/h
Connecting 45km/h 10km/h
Neighborhood 30km/h 5km/h

3.3.1 Single location sample cloaking

In this study, we investigate the performance of single location cloaking algorithm. For

each simulation, we generate 300 service requests. Every service request contains the service

user’s position which is randomly selected from the location samples in the database, and a

public region which is a square region that contains the position. For each request, a cloak-

ing box is computed using Algorithm 1, and exposed as the service user’s location. We are

interested in two performance metrics. One iscloaking area, defined to be the average area

of cloaking boxes generated for the set of request in a simulation. The other one isprivacy

level, defined to be the average popularity of the cloaking boxes. We varied the size of a public

region, measured by the side length of the square region, from 50 to 250 meters, and plotted

the performance results in Figure 3.5. Figure 3.5 (a) shows that when the size of the public

region increases, the average cloaking area increases. This is due to the fact that a larger pub-

lic region is likely to contain more people’s footprints andhave a higher popularity. Thus,

a cloaking box needs to be larger to satisfy a higher level of privacy requirement. In Figure

3.5(b), besides the privacy level, we draw another line which indicates the average number of

users who have visited the cloaking box computed for a request. As we can see, both lines

are incremental with respect to the size of public region, but the number of visitors is always

larger than the popularity of the cloaking box. This result shows that the number of visitors of

a region is not a good measure of the privacy level the region can provide for the service user.
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Figure 3.5 Performance of single location cloaking on the effect of privacy re-
quirement

3.3.2 Trajectory cloaking

We evaluate the performance of both in-advance cloaking andon-the-fly cloaking. For

comparison purpose, we have implemented two other approaches. The first one, which we

will refer to asNaive, assumes the location updates made a service user are independent to

each other. For each location update, Naive just applies Algorithm 1 to compute a cloaking

box, and reports it as the service user’s location in her service request. Note that this scheme

may not protect a user’s location privacy at her desired level when she makes a time-series

sequence of location updates. The second approach is referred to asPlain hereafter. This

scheme determines the cloaking set for the service users by finding the footprints closest to

her start position. After fixing the cloaking set, Algorithm1 is applied to compute the cloaking

boxes for the service user during her entire service session. For each simulation, we generate

a number of service sessions. Every session contains a user specified public region, a travel

bound, and the user’s moving route which is the fastest path between a start and a destination

selected in the travel bound. For in-advance cloaking, we select a location sample every 100

meters along the moving route and these samples form the user’s base trajectory, and the PPT
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is computed according to the base trajectory using Algorithm 2. For on-the-fly cloaking, we

assume the moving routing is un-predetermined, and the PPT is computed according to the

travel bound using Algorithm 3.

In our study, we are mainly interested in the following two performance metrics. One is

cloaking area, defined to be the average area of cloaking boxes in a cloakingtrajectory. The

other one isprotection level. Given a cloaking trajectory, we measure its protection level using

the ratio between the average popularity of its cloaking boxes with respect to the common set

of users who have visited all of them and the popularity of theuser specified public region.

Clearly, the protection level must be at least 1, otherwise the cloaking trajectory fails to protect

the service user’s location privacy at the required level. In the following subsections, we report

how the performance of the techniques is affected by variousfactors.

Table 3.2 Simulation parameters

parameter range default unit
Users # 2000 2000 unit

Public region size 50 - 250 150 meter

Trajectory # 100K − 300K 200K unit

Travel bound size 2− 6 4 km

Travel distance 2− 6 4 km

Service requests # 300 300 unit

Minimum cell size 100 × 100 100 × 100 meter2

3.3.2.1 Effect of privacy requirement

This study investigates the impact of privacy requirement (i.e., the popularity of the public

region specified by a service user) on the performance of the three techniques. We generated

300 service requests. Each request has a travel bound of a4 × 4 km2 square region, and the

travel distance of the corresponding user during her service session is4 km. Each service user

specifies her public region as a square region which containsher start position. The size of

a public region, measured by the side length of the square, isvaried from 50 to 250 meters.
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The performance results are plotted in Figure 3.6. Figure 3.6 (a) shows that when the size of

the public region increases, the average cloaking area under all the schemes increases. This

is due to the fact that a larger public region is likely to contain more people’s footprints and

have a higher popularity. To satisfy a higher level of privacy requirement, a cloaking box

needs to be larger to include more people. This study also shows that Plain always has a

much larger cloaking area as compared to the other approaches. This scheme does not take

user popularity into consideration when selecting a user’scloaking set. When some unpopular

users are selected in a cloaking set, the cloaking boxes generated for the future movement

of a service user will become larger and larger in order to contain all users in the cloaking

set. Moreover, we can see in Figure 3.6 (a) that On-the-fly haslarger cloaking area than In-

advance. This is due to the fact that In-advance cloaking selects the cloaking set according to

the predetermined base trajectory, and thus the users in thecloaking set must have footprints

close to the moving route. On the other hand, On-the-fly cloaking selects the cloaking set using

their footprints in the travel bound, and thus it cannot guarantee they have footprints close to

the moving route. Comparing with the other three schemes, Naive has the smallest cloaking

area. This scheme does not consider the correlation of the cloaking boxes in a trajectory, just

cloaking each location with a bounding box that is as small aspossible and has a popularity

no less than that of the public region. The problem is, simplyensuring that each cloaking box

satisfies the privacy requirement does not protect a user’s privacy at her specified level. This

is confirmed in Figure 3.6 (b). It shows that the protection level of Naive is constantly lower

than 1. As for the other three schemes, they all guarantee that the actual protection level is no

less than required.

3.3.2.2 Effect of travel distance

In this study, we investigated the impact of travel distanceon the performance of the three

techniques. In each simulation run, we set the public regionas a150 × 150 m2 square, and
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Figure 3.6 Effect of privacy requirement

generated 300 service requests. The travel distance is varied from2 km to 6 km, and accord-

ingly the side length of travel bound is varied from2 km to 6 km. The performance results

are shown in Figure 3.7 (a) and (b). Figure 3.7 (a) shows that under all schemes except Naive,

the average cloaking area increases as the travel distance increases. However, In-advance per-

forms the best while Plain performs the worst. The reason behind is explained as follows.

When the travel distance is larger, the trajectory of the service user tends to traverse through a

larger region. It is more difficult to find a cloaking set that all the users have footprints close to

every location update in the moving route. Since In-advancecloaking always finds the users

who have footprints closest to the base trajectory, the generated PPTs tend to have a finer

cloaking resolution. As for On-the-fly and Plain, cloaking is not based on the predetermined

base trajectory. In general, the more unpopular users included in the cloaking set, the more

difficult it is to generate a PPT with fine resolution. Plain performs worse because in average

it includes more unpopular users in a cloaking set. On the other hand, the cloaking area under

Naive remains almost constant as the travel distance changes. It is due to the fact that Naive

assumes each location update is an independent event. For each location update, it simply

finds the nearest footprints to cloak. As such, the cloaking area is irrelevant to the number of



39

location updates in the trajectory. Again, this approach cannot be used for location privacy

protection when a user has to report her location periodically in a service session. Figure 3.7

(b) shows the protection level of Naive decreases as the travel distance increases. Since each

location update is cloaked independently in Naive, a longertrajectory tends to have a less

number of users who have visited all cloaking boxes in the trajectory, and thus has a lower

popularity with respect to this common set of users. In contrast, the privacy level under none

of the other three schemes is much affected by the variance oftravel distance.
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Figure 3.7 Effect of travel distance

3.3.2.3 Effect of footprint database size

This study investigates the impact of the number of trajectories in the footprint database

on the performance. We varied the number of trajectories in the database from 100,000 to

300,000. The performance results are plotted in Figure 3.8 (a) and (b). It is shown in Fig-

ure 3.8 (a) that all schemes have better cloaking results when the database contains more

trajectories. Clearly, more historical trajectories meanthat more footprints collected in a fixed

spatial region. As a result, a smaller cloaking box may be populous enough to meet the privacy

requirement. By adding a service user’s moving route to the database for future cloaking, our
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technique can generate better cloaking results. This feature makes it especially attractive for

large-scale LBS that consists of a large number of users. Figure 3.8 (b) again shows that the

protection level of Naive is constantly lower than 1. On the other hand, the protection level

under all the other schemes is always above 1.
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Figure 3.8 Effect of database size

3.4 Experiments

We have implemented an experimental system based on the technique presented in the

previous sections. The prototype, calledlocation privacy aware gateway(LPAG), has two

software components, client and server. Client is implemented in C# using .Net Compact

Framework 1.0. It runs on Windows Mobile 2003 platform and wehave tested it with two

types of mobile devices, HP IPAQ 6515 and HP IPAQ 4310 as shownin Figure 3.9. The former

is a smart phone with a built-in 4-channel GPS receiver. The device communicates with the

server through AT&T’s GPRS wireless data service. As long asit is within the region covered

by the carrier’s service network, it can stay connected to the server which is located in our lab.

The other type of client device, namely HP IPAQ 4310, is a regular pocket PC which connects

with the server through our university’s campus wireless network, which limits its roaming
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area to be within our campus. To make it position-aware, we bundle it with an external 16-

channel GPS receiver, which provides position informationthrough bluetooth connection. The

server component is implemented in C# using .Net Framework 1.0. It manages the historical

location data and corresponding indices using MySQL 5.0, and cloaks mobile clients’ location

updates using the proposed techniques when they request LBSs. In a seperate research project,

we have a implemented a location-based service system called ePostit(60). This system allows

one to publish a geo-referenced note, each associated with ageographic region and delieved to

a user when the user arrive at the region. In our experiment, we also plant a number of spatial

messages in our campus and let a user entertain the services provided by ePostit through the

LPAG.

Figure 3.9 Client devices

Our test of LPAG consists of a location sampling phase, during which we collect users’

footprints for location depersonalization. We create a number of client accounts, and carry

the devices and have a walk around the campus, during which the devices makes periodical

location update to the server. After a trajectory is collected, we randomly choose a client from

the accounts created before, assign the trajectory to the client, and save it in the trajectory

database in the server. In our testing of LPAG, we specify a rectangular region in the campus
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as the public region, and have a walk in the campus with a mobile device. During the walk,

we send a sequence of queries to the server, each with our current position. For each query,

the server generates a cloaking box using the proposed technique, and forwards it to ePostit.

In response, the service provider delivers all the messageswhose bounding boxes overlap

with the cloaking box to the server, and the server forwards to the client only the ones whose

bounding box contains the client’s current position. In thefollowing subsections, we introduce

our system’s user interfaces and discuss the experimental results collected in our field tests.

(a) (b) (c)

Figure 3.10 Server and client interface

3.4.1 Server and client user interface

Figure 3.10 (a) shows the server interface. Every time the server receives a query from a

client, it computes a cloaking box as the client’s location in requesting the service. Then, the

server displays the cloaking box and the client’s position on the map. As the example shown

in this figure, two clients and their cloaking boxes are displayed on the campus map.

When a mobile device is powered on, the client finds out the current position and then

connects to the server. After initialization, the screen shows a local map as its background
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and marks the client’s position by a small face icon (see Figure 3.10 (b)). At the beginning of

a service session, the client can set the public region by clicking the touch screen to specify

its top-left corner and bottom-right corner, and embed the public region in the query packet.

In the example shown in Figure 3.10 (b), the client specifies the library as her public region

which is marked by the red rectangle. In our experiments, thetravel bound is set as the whole

campus. Then, during the session, the client can choose to periodically update her location or

manually update whenever she wants (see Figure 3.10 (c)).

3.4.2 Experimental results

We first examine the system resources used by our code runningon mobile devices.

CPU utilization: We measure the CPU utilization of our client code on the smartphone

using Xda pps (61), which allows one to monitor the CPU usage of all the processes running

on a smart device. When the device is idling with no movement,the CPU utilization is about

1%, indicating that reading GPS position (every one second) does not take much computation.

When the client moves around but does not make any location update, we observe that the

CPU utilization is in between4%−12%, as our code redraws the client’s position on the map.

When the client communicates with the server (e.g., location update, message delivery), the

CPU utilization is in between10%− 25%.

Memory and storage: Our client executable is only 120KB by itself. Since it is built

on the .NET Compact Framework 1.0 and OPENNETCF 1.4, additional 2.5MB and 580KB

files from the two platforms are needed, respectively. When running, our system has a mem-

ory footprint of 5.1MB, which is less than10% of available main memory on HP IPAQ6515

(57.78MB) and HP IPAQ4310 (56.77MB). On both devices, our code can run simultaneously

with other applications such as media player and Internet explorer.

We also examine two performance metrics which affect the usability of our system.

GPS accuracy:Because of position deviation of the GPS receiver, the position reported
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to the server may be different from the actual position of a client. If the position deviation

is large, the bounding box computed by the server may not contain the client’s position, and

the client may get the false query result (missing or downloading wrong messages). In our

experiments, we have tested the accuracy of the two types of GPS in the campus area. The

smartphone we use has a built-in 4-channel GPS, while the external GPS bundled with the

pocket PC has 16 channels. To calculate the position, a GPS receiver needs to have signals

from at least 4 satellites. In general, the more channels available, the more accurate position

it can compute. Our tests show that the 16-channel GPS has 5 meters error in average and 8

meters error in maximum. While the 4-channel GPS performs worse. It has 7 meters error

in average and 14 meters error in maximum. These tests indicate that in the worst case the

server should expand the boundary of the cloaking box by 15 meters to ensure the cloaking

box contains the client’s actual position, and the boundingbox of a message should not be

smaller than15m× 15m.

Response time:The interval between the time a client sends a query and the time she

receives the query result consists of four parts: 1) the timeit takes to deliver the query from

the client to the server, 2) the time the server uses to compute the cloaking box, 3) the time for

the server to send the cloaking box to the service provider and receive candidate messages from

the service provider, 4) the time it takes to download the resulting messages from the server

to the client. Our experiments show that the server computesthe cloaking box usually in less

than 10 ms. In addition, the transmission speed between the server and the service provider is

also very fast (> 4MB/s) since they are connected with a high speed LAN. The bottleneck

is the communication between the client and the server, i.e., part 1) and 4). The smartphone

we use connects to our server via AT&T’s GPRS, while the Pocket PC connects to our server

via our campus’s WLAN. In our test, we create a number of messages, some with simple

text messages (1-5KB) and short audio clips (10-30KB), while the rest with video clips (100-

300KB). Our tests show that for messages with simple text andaudio clips, the smartphone and

pocket PC can download them with a delay of less than 1 second and 3 seconds, respectively;
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for the messages with video clips, the pocket PC has a minimaldelay of 5 seconds while

the smartphone has a latency of more than 20 seconds. This study indicates that for cellular

phones, our system is more appropriate for light-weight messages. Fortunately, this will not

be a problem with the continuous development of broadband wireless services provided by

the cellular carriers.
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CHAPTER 4. Location safety protection in ad hoc networks

In this chapter, we present our research which investigateslocation safety protection in ad

hoc networks. As discussed in Chapter 1, the location safetythreat is considered particularly

in digital battlefield, where enemy can locate and destroy a network node using its location in-

formation revealed in communications. This threat is different from location privacy intrusion

in the sense that here the adversary is not interested in finding the individual identities of the

nodes in a spatial region, but simply wants to locate and destroy them. In terms of counter-

measure, the two threats actually appear to be opposite to each other. For privacy protection,

we want a subject to be accompanied by as many others as possible. This, however, is coun-

terintuitive from the safety point of view, because the morenodes a spatial region contains,

the more attractive for an adversary to destroy them all together.

Our research goal of location safety protection is to allow nodes to reveal their location

information, yet make it practically infeasible for the adversary to locate them based on such

information. Towards this objective, we make the followingcontributions. 1) We proposed

to reduce location resolution of nodes’ disclosed locationto achieve a desired level of safety

protection. Instead of revealing its accurate position, a node can report that it is inside some

geographic region – cloaking box. 2) We address the challenge of computing a cloaking box

with cost-effective solutions in the context of both stationary and mobile ad hoc networks. 3)

We investigate the impact of location cloaking on the geographic routing protocols, and we

proposes a novel location secure routing (LSR) protocol which is able to deliver data packets

efficiently, as well as prevent adversary from compromisingnodes’ location safety according

to the routing information. In the rest of this chapter, we first present our cloaking techniques
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in Section 4.1, and then we present the location secure routing protocol in Section 4.2.

4.1 Location cloaking for location safety protection

We consider an ad hoc network formed by a set of sensor nodes deployed in a hostile

environment, where communications among the nodes may be open to an adversary. The ad-

versary is interested in collecting the location information revealed by the nodes, then locating

and destroying them. This safety threat cannot be fully defeated by the means of message

encryption (50) and anonymous routing (38; 41; 43). Encryption makes a message intelligible

only to its destination, but works only if the intended recipient is trustworthy. Anonymous

routing shares the same problem. By making routes untraceable, it prevents an adversary from

identifying important targets like a command post through the collection and analysis of data

flow and traffic pattern. But it does not thwart the direct threats imposed by the exposure

of nodes’ location information. In reality, a node may be destroyed whenever it is located,

regardless of its importance.

Knowing that a certain region contains a set of sensors, the adversary can always comb

through the whole area to uncover them. However, if the area is very large, the searching cost

can be prohibitively high. In light of this observation, we propose reducing location resolution

to achieve a desired level of safety protection. Instead of revealing its accurate position, a node

can report that it is inside some geographic region, which wewill refer to as a cloaking box.

Given a cloaking box, we measure itssafety levelas the ratio of its area and the number of

nodes inside it. The higher safety level a cloaking box has, the less attractive for the adversary

to search the nodes inside it. When a cloaking box’s safety level exceeds some threshold, it

can be considered safe for release – the adversary would not be able to search because of high

cost.

The challenge is how to compute cloaking boxes. First, each cloaking box must satisfy

the minimal safety level requirement, meanwhile it must be as small as possible in order to
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minimize the impact of reduced location resolution on the efficiency of network operating and

applications. Second, nodes must be able to compute their cloaking boxes without having to

reveal their accurate position. Finally, a sequence of cloaking boxes must not be correlated

to identify an area whose safety level is below the requirement. This is due to the fact that

the adversary may be able to collect many cloaking boxes. It may first appear that a node can

simply broadcast to query its nearby nodes about their location, and then identify the smallest

region that meets the safety requirement as its cloaking box. This strategy, however, requires

nodes to report their exact location, a security breach thatshould not be allowed in a hostile

environment. In addition, determining the query broadcastregion itself is difficult. When the

node queries a region, it actually reveals that it is inside the region. If the region’s safety level

is not sufficient, the nodes inside the region are all in danger.

To address the above challenges, our idea is partitioning the network domain into a number

of safesubdomains that is as small as possible, and let each node take the subdomain where it

resides as its cloaking box. A subdomain is safe if its safetylevel is no less than the minimal

required level. To make subdomains as small as possible, each subdomain is recursively split

as long as the resulted subdomains are all safe.

Based on the above idea, we have developed a novel cloaking technique for location safety

protection. Next, we will introduce the concept of safety level and the requirement of location

cloaking, followed by our cloaking algorithms for both static and mobile ad hoc networks. As

we will show, our algorithms do not require nodes to reveal their accurate position. In fact,

we guarantee that the safety requirement is satisfied for alllocation information they disclose.

We also show that even if all cloaking boxes reported by nodesare known to the adversary,

they cannot be correlated to refine an area that violates the safety requirement.
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4.1.1 Safety level

We assume the adversary locates the nodes by collecting and analyzing their location dis-

closed in communications, but not combing through the network domain (e.g., physically

explore the domain and detect communicating nodes within its radio range). To avoid from

being located, nodes reduce the resolution of their location information. Specifically, when-

ever a node has to disclose its location, it reports acloaking box, a geographic region that

contains its current position. Given a cloaking boxb, we define itssafety levelasS(b) = A(b)
N(b)

,

whereA(b) denotes the area ofb,N(b) denotes the population ofb, i.e., the number of wireless

nodes insideb.

Reducing location resolution can provide a desired level ofsafety protection to an ad hoc

network. We say the network is protected at a safety level ofθ if during its life time, the

adversary cannot find any region in the network domain whose safety level is less thanθ.

Simply ensuring that each cloaking box reported by nodes hasa minimal safety level ofθ

does not guarantee that the network is protected atθ level, because the adversary may collect

multiple cloaking boxes and correlate them for attack. Consider three cloaking boxes showed

in Figure 4.1. Even if each box has a safety level ofθ, when combined, the safety level of their

concatenated region is less thanθ.

b1

b2

b3

Figure 4.1 Correlation attack

Let b be a cloaking box to be disclosed by a node at timet, andB = {b1, b2, · · · , bm} be

the set of all cloaking boxes revealed by nodes in the networkbefore timet. To protect the

network’s safety atθ level, the following two conditions must be satisfied:
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1. S(b) ≥ θ;

2. b cannot be combined with any subset ofB, sayB′ = {b′1, b′2, · · · , b′k} ⊆ B, such that

S(
⋃k

j=1 b
′
j

⋃
b) ≥ θ

The first condition ensures that each cloaking box has a safety level no less thanθ. The

second condition is to guarantee that any combination of cloaking boxes also has a safety

level no less thanθ. In other words, the adversary cannot correlateb with any cloaking boxes

disclosed previously to identify a region whose safety level is less thanθ.

Clearly, a cloaking box needs to be as small as possible, because coarse location infor-

mation will result in inferior performance of routing protocols and applications. On the other

hand, it must not reduce the desired level of network safety protection. The challenges of

computing such a cloaking box are twofold. First, it must be computed without having to

request other nodes’ accurate position. In fact, whenever anode disclose its position, it can

only report a cloaking box, which must also meet the two safety requirements. Second, a node

generally cannot know all cloaking boxes other nodes have disclosed, making it difficult to

prevent the correlation attack.

4.1.2 Location cloaking techniques

In this section, we present our algorithms for cloaking box computing in stationary and

mobile ad hoc networks. Without loss of generality, we assume the network is deployed in a

rectangular domainD and the required level of network safety protection isθ, whereS(D)

(i.e., the safety level ofD) ≥ θ. Our basic idea is to partition domainD recursively into a

number of subdomains, each having a safety level of at leastθ. The partitioning of a subdo-

main is always along its longer dimension. If two dimensionsare equal, then always split on

the horizon. Figure 4.2 illustrates the processing of partitioning. Initially,D is partitioned into

two equal subdomains,R1 andR2. The partitioning is recursive in the sense that a subdomain

is further partitioned into two new subdomains as long as their safety levels are no less thanθ.
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For instance,R1 is further partitioned intoR11 andR12, and soR12 into R121 andR122. The

process of partitioning creates a binary partitioning tree(BP-tree), which records the domain

hierarchy. The root of the BP-tree is of depth one and each partitioning creates a new level.

At the end of partitioning, each node takes the leaf subdomain, which cannot be partitioned

further, as its cloaking box. An important characteristic of a BP-tree is that, given the root

domainD and a leaf partitionP , a node can compute all subdomains in the path fromD toP .

For example, a node inR121 knows that pathD → R1 → R12 → R121.

We now consider how to do such partitioning in a fully distributed environment, where

each node needs to compute its cloaking box without knowing other nodes’ exact position. In

the following subsections, we first present our solution fora stationary ad hoc network, and

then extend it for a mobile ad hoc network, where the movementof nodes requires the domain

partitioning to be adjusted dynamically.

Figure 4.2 Example of BP-tree

4.1.2.1 Cloaking for stationary ad hoc networks

Suppose nodes are deployed simultaneously (e.g., distributed by an airplane) in a target do-

mainD. For each node, its initial partitionP is set to beD. Starting at time 0, the nodes refine

their partition distributively as follows round by round. In each round, each node broadcasts

a PLUSpacket within its own partitionP . The format of the packet is(PLUS, seqnum, P ),
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whereseqnum is a global unique number used for dropping the redundant packet during the

broadcast (62). By counting the number of different packetsit receives, a node knows the

number of nodes inside its current partitionP . Let i be the number of the different packets.

P ’s safety level can then be computed asS(P ) = A(P )
i

. If S(P ) < 2 · θ, the node takesP as

its cloaking box (i.e., leaf subdomain). Otherwise, it divides its current partitionP into two

equal halves (according to the rules discussed earlier) andsetsP to be the one that contains its

current position. When a new round of refinement starts, it broadcasts(PLUS, seqnum, P )

to find the number of nodes insideP and computes the safety level ofP . Each node repeats

this process until the safety level of its current partitionis less than2 · θ.

(0,0)

(1,1)

n1

X

Y

n2

n4

n5

n3
n7

n6

n9
n8

n10

(b)

Figure 4.3 Example of location cloaking in stationary ad hocnetworks

Algorithm 4 is the pseudo code for each node to find its cloaking box. All nodes start to

execute this code right after they are deployed (at timet0). Since nodes have no idea of the

actual position of neighbors, we assume simple flooding is used for regional broadcast. That

is, when a node receives a packet(PLUS, seqnum, P ), it rebroadcasts the packet if it is inside

P and has not seen this packet (based on seqnum). Otherwise, itsimply drops the packet. Note

that in each round of partitioning, a node needs to wait for a certain time periodT . This is to

collect PLUS packets sent by other nodes in the same partition. Since the broadcast delay is

proportional to node population, we can preset the initial waiting time to some value (e.g.,T0)
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and then cut 50% each round.

Algorithm 4 Cloak for stationary ad hoc networks
S-Cloak(D, θ) // executed by each node
1: p←my current position
2: seqnum← my unique id
3: P ← D

4: T ← T0

5: while truedo
6: send packet(PLUS, seqnum,P )
7: wait(T){wait until PLUS packets collection are finished}
8: i← the number of PLUS packets collected
9: s← A(P )

i
{GetP ′s safety level}

10: if s ≥ 2θ then
11: P ← Partition(P, p) {get the half partition that containsp)
12: T ← T

2
13: else
14: returnP
15: end if
16: end while

In the above process, a node reveals its location information in itsPLUSpackets. For each

(PLUS, seqnum, P ) packet,P ’s safety level is guaranteed to be no less thanθ. LetP ′ beP ’s

parent partition, we haveS(P ′) ≥ 2 · θ, since a node will not proceed to the next round of

partitioning unless the safety level of its current partition is at least2 ·θ. Thus, even if all nodes

in P ′ are actually located insideP , P ’s safety level is still no less thanθ. As a result, each

partition disclosed satisfies the safety requirement. The recursive domain partitioning also

makes correlation attack impossible because, given any twopartitionsP1 andP2, either they

do not overlap at all or one contains the other completely. Asan example, consider Figure 4.3.

Suppose ten nodes are distributed in a square domain of[0, 1]2, and the safety requirement is

θ = 1
32

. We present a partition in the form of[(x1, y1), (x2, y2)], where(x1, y1) denotes the

position of its top left corner, and(x2, y2) for the bottom right corner. In the first and second

rounds, the safety levels of the partitions are all larger than2θ. In the third round, each node

in partition [(.5, 0), (1, .5)] finds out that the safety levelof its partition is 1
20

, which is less

than2θ. Thus, they stop the partition process and use [(.5, 0), (1, .5)] as their cloaking box.

Similarly, in the fourth round, nodesn1, n2 andn3 determine [(.25,0),(0.5.5)] as their cloaking
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box, and in the fifth round, noden4 andn5 take [(.25, .5),(.5, 1)]. As we can see, nodes in a

denser region tend to have a larger cloaking box.

It is possible for an adversary to compromise some node and let it send multiple PLUS

packets to falsify cloaking results. This does not jeopardize the safety level of a cloaking box,

but artificially enlarges the cloaking box size. Such attackcan be prevented by authentication

techniques (63; 43). The idea is to add a certificate field in the PLUS packet. The certificate

field allows a node to verify the sender of a packet and thus detect if multiple PLUS packets

have been sent from a same node. Alternatively, a compromised node may stay silent, not

sending any PLUS packets. In this case, the number of PLUS packets received is less than the

actual population inside a partition. This approach, however, does not reduce the safety level

of those uncompromised nodes since they rely on the actual PLUS packets they receive for

cloaking. Ultimately, the adversary is interested in locating and destroying the uncompromised

nodes.

4.1.2.2 Cloaking for mobile ad hoc networks

Location cloaking in the presence of node mobility is more challenging. Right after the

network is deployed, each node can find its initial cloaking box using the domain partitioning

technique discussed in the previous subsection. One minor change is the minimal safety level

that governs when a subdomain should be partitioned further. Given a partitionP , its safety

level S(P ) downgrades when a node moves into it. Given the required safety level θ, the

maximum number of nodes allowed inP is nmax = ⌊A(P )
θ
⌋. Thus, to ensureS(P ) no less

thanθ beforeP is merged with some other partitions,S(P ) must be at leastα · θ, whereα,

referred to asP ’s safety coefficient, is equal tonmax

nmax−1
. Therefore, the domain partitioning

procedure goes to a subdomainP , only if the safety level of its parent partition is no less than

2α · θ.

We now consider how to adjust the domain partition dynamically as nodes move in and



55

out of their cloaking boxes. After the initial partitioning, each node knows its partition and

uses that as its cloaking box. When nodes move, they monitor their own movement against

their current partition. If a node, sayM , moves out of its current partitionP , it notifies the

nodes inside ofP by broadcasting them aLEAV E message,(LEAV E, seqnum, P ). When

receiving such a message, each node insideP computesP ’s new safety level. IfS(P ) > 2α·θ,

it calls S-Cloak(P , θ) to splitP , and determines its new cloaking box.

Algorithm 5 Cloak for mobile ad hoc networks
M-Cloak(θ)//exucte by each node
1: {monitor my movement against current partitionP}
2: if crossing the boundary ofP then
3: //updateP
4: send packet(LEAV E, seqnum,P )
5: N(P )← N(P )− 1

6: s← A(P )
N(P )

7: if s ≥ 2α · θ then
8: wait(T){wait until LEAVE broadcast is finished}
9: S − Cloak(P, θ) {splitP}

10: end if
11: //find new cloaking box
12: {listen and eavesdrop ADVERTISE packet forP ′}
13: send packet(JOIN, seqnum,P ′)
14: N(P ′)← N(P ′) + 1

15: s← A(P ′)
N(P ′)

16: if s ≤ α · θ then
17: wait(T){wait until JOIN broadcast is finished}
18: while truedo
19: P ′ ← parent partition ofP ′

20: calculate safety level ofP ′ {as the same as is S-Cloak}
21: if S(P ′) ≥ α · θ then
22: setP ′ as new cloaking box
23: end if
24: end while
25: end if
26: end if

In addition to notifying its leaving,M also needs to find its new partition and announce

its coming to the nodes in the partition. We assume that each node in a partitionP ′ peri-

odically broadcasts an ADVERTISE message,(ADV ERTISE, seqnum,N(P ′), P ′), where

P’ is its current partition. After receiving an ADVERTISE message withP ′ that contains its

current position,M takesP ′ as its current cloaking box, and then broadcasts a JOIN mes-
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sage,(JOIN, seqnum, P ′). Upon receiving a JOIN message, each node insideP ′ com-

putes the new safety level ofP ′. If S(P ′) < α · θ, P ′ is not safe enough, each node takes

the parent partition ofP ′ as its new cloaking box, and then broadcasts a MERGE message,

(MERGE, seqnum, P ′′), whereP ′′ is the parent partition ofP ′. When the nodes inP ′′

receive the MERGE message, they calculate the safety level of P ′′ by broadcasting PLUS

message inP ′′. If S(P ′′) > α · θ, the nodes insideP ′′ takeP ′′ as their new cloaking box.

Otherwise, they repeat this merge process until they find a partition whose safety level is at

leastα · θ.

The pseudo code of the cloaking update algorithm is given in Algorithm 5. To illustrate

this process, we use the same example in section 4.1.2.1. Dueto the effect of the safety

coefficientα, the initial cloaking box ofn4 andn5 is [(.25,.5), (.5, 1)] as shown in Figure 4.4

(a), which is different from that in the stationary network.Suppose the noden4 moves out of

its cloaking box. Whenn5 receives the LEAVE message sent byn4, it recalculate the safety

value of its cloaking box as1
8
, which is larger than2α · θ = 1

12
. Thus, this partition is split in

half andn5 will find its new cloaking box as [(.25,.5), (.5,.75)]. In addition, after receiving the

JOIN fromn4, n1, n2 andn3 recalculate the safety value of their cloaking box as1
32

which is

smaller thanα · θ = 1
24

. Thus, they broadcast MERGE messages in the parent partition of the

current cloaking box. As a result,n1, n2, n3 andn4 will use partition [(0,0), (.5,.5)] as their

new cloaking box, which is shown in Figure 4.4 (b).

In the above process, a node reveals its location information in packets LEAVE, AD-

VERTISE, JOIN and MERGE. For each packet of(LEAV E, seqnum, P ), the location in-

formation in the packet cannot be used to locate the sender because the sender is outsideP .

In addition, an ADVERTISE packet is broadcast in the sender’s cloaking box, whose safety

level is guaranteed to be no less thanθ; a MERGE packet is broadcast in the parent partition

of sender’s cloaking box, whose safety level is also no less thanθ. Comparing with LEAVE,

ADVERTISE and MERGE, JOIN packets involve a safety problem.When an adversary eaves-

drops a JOIN packet of(JOIN, seqnum, P ), it knows the population ofP increases by one.
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Figure 4.4 Example of location cloaking in mobile ad hoc networks

Thus, if the adversary receives multiple JOIN packets in a short period, it may be able to infer

that the safety level ofP downgrades belowθ. To cope with this problem, a node should not

send JOIN packet immediately after it eavesdrops an ADVERTISE message. Instead, we let

a node wait for a random time period before it sends JOIN packet. During the waiting period,

if a node receives another JOIN packet, it waits for another certain period which ensures that

the eavesdropped JOIN packet has been broadcast inP . As long as it does not hear MERGE

packet during the waiting period, it sends its JOIN packet. Otherwise, it extends the waiting

time further until the merge process finishes. In this way, the JOIN packets are broadcast se-

quentially, and from perspective of the adversary, the safety level ofP must be no less thanθ

before merge happens.

An adversary may launch DOS attacks by inserting fake LEAVE or JOIN packets. Such

attacks can be prevented by simply letting nodes recalculate the population in their current

cloaking box before each split or merge.

In the above algorithms, we assume the network is fully connected. However, in the case

that the network is disconnected, the number of PLUS packetscollected by a node may be less

than the actual population of a partition. In the mobile ad hoc networks, the movement of mo-

bile nodes may change the topology of the network. For example, suppose two disconnected
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groups of nodes are deployed in a same partition. Since they have no idea the existence of the

other group of nodes, every node uses the number of nodes in its own group to compute the

safety level of the partition, and thus the safety level is overestimated. When the two groups of

nodes move towards each other and become connected, the adversary may find out the safety

level of this cloaking box is lower thanθ.

To prevent such threat caused by disconnection, we propose asimple strategy as follows.

As we know, a node can updates the population of its cloaking box when it receives corre-

sponding LEAVE and JOIN packets. Suppose the network is initially connected. After nodes

start to move, if a node finds the population of its cloaking box suddenly changes a lot, which

does not match the LEAVE and JOIN packets it received, it considers the network is dis-

connected. Then, the node can estimate the population of itscloaking box according to the

number of nodes in the connected group it belongs to. For example, suppose at the time that

network becomes disconnected, the node calculates the ratio r between the population before

disconnection and the number of nodes in the connected group. Then, the node estimates the

population of the cloaking box by timingr with the current population of the connected group.

Actually, a node can adjust the ratior as necessary. If a largerr is chosen, the node tends to

overestimate the population, the cloaking boxes have high safety since the estimated popula-

tion is larger than the actual population with a high probability. However, overestimate may

lead to unnecessary partition merge. The resulting cloaking boxes with larger size deteriorate

the communication efficiency.

4.1.3 Analysis

In this subsection, we propose an analytical model to estimate control overhead involved

in the cloaking algorithms, which is measured by the number of control packets. Recall that in

our algorithms all the control packets are sent by regional broadcast. Because nodes do not re-

veal their positions, there is no neighborhood informationavailable to help packet forwarding.
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Thus, we simply assume pure flooding, in which each sensor node has to forward data packet

as long as it is inside the broadcasting region. Specifically, the cost of broadcasting a packet

within a region is equal to the population of the region. We assume there arem wireless nodes

uniformly distributed in the network domain of sizel × w, and we also assumel·w
m
≥ 2θ.

Because ifl·w
m

< 2θ, according to Algorithm 4, we know that all nodes will use theentire

network domain as their cloaking box.

In the stationary ad hoc network, the cloaking boxes are calculated only once right after

the network is deployed. When calculating the population ofa partitionP , every sensor node

inside broadcasts a PLUS packet withinP . The total number of packets isN2(P ), and the

cost for each node isN(P ). Under uniform distribution, the population of the partition is

approximately proportional to its size, and the populationof a partition at depthk in the BP-

tree is m
2k−1 . Thus, the cost of a node when computing the population of a partition at depthk

in BP-tree can be estimated asC(k) = m
2k−1 . In addition, as explained in Algorithm 4, a sensor

node stops searching when it finds the safety level of a partition is less than2θ. Under uniform

distribution, the cloaking boxb of any sensor node has the same size. It contains only the node

itself, and it satisfiesθ ≤ A(b)
N(b)

< 2θ. Thus, we can infer thatb is the on the depthdmax =

⌊log2 l·w
θ
⌋ in the BP-three. Therefore, the overall number of packets sent by a sensor node in

calculating its cloaking box can be estimated asCinit =
∑dmax

i=1 C(i) = (2− 21−dmax)m.

In the mobile ad hoc network, the initialization of cloakingboxes is very similar with the

stationary ad hoc network. In the analysis, we focus on the cloaking box update and estimate

average number of control packets sent by a mobile node per time unit. Supposeb is a cloaking

box at the depthk in the BP-tree. When a node moves out ofb, it broadcasts a LEAVE packet

within b, and the cost isCleave = N(b). If the safety level ofb becomes larger than2αθ, b is

split, and every node insideb will recalculate its cloaking box by broadcasting a PLUS packet

in b’s child partitions. The costCsplit is bounded by1
2
N2(b) ≤ Csplit ≤ N2(b). The lower

bound denotes the cost when mobile nodes inb is uniformly distributed; the upper bound

denotes the cost when one ofb’s child partition is empty. On the other hand, if a mobile node
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moves intob, a JOIN packet is broadcast insideb with costCjoin = N(b). If the safety level

of b downgrades lower thanθ, every node inb broadcasts a MERGE packet withinb’s parent

partitionP (b), the cost of which isN(b)N(P (b)). Then all nodes inP (b) recalculate the

safety level ofP (b) by broadcasting PLUS packets, the cost of which isN2(P (b)). Thus, the

total cost of the merging process isCmerge = N(P (b))(N(P (b)) + (N(b))).

Suppose mobile nodes follow a random walk model, in which at every time unit, a mobile

node moves with a randomly picked direction and speed. According to (64), the time duration

that a randomly moving unit may stay in an area can be approximated as an exponential

distribution and the mean staying time ist = πA
E[v]L

, whereA is the area,L is the perimeter of

the area, andE[v] is the average speed of the mobile unit. As discussed above, under uniformly

distribution, the cloaking boxes of mobile nodes are at depth dmax in the BP-tree. Thus, the

average time duration that a mobile host stays inside its cloaking box is̄t = π·l·w
2dmax−1E[v]L(dmax)

,

whereL(k) = l

2⌊k/2⌋−1 + w

2⌊(k−1)/2⌋−1 is the perimeter of a partition at depthk in the BP-tree.

Since the random walk does not change the uniform distribution, theoretically, neither split nor

merge happens during the movement of mobile nodes, and the control overhead is composed

of only LEAVE and JOIN messages. In reality, split and merge may happen but the frequency

must be very low. Thus, in the analysis, we only count the LEAVE and JOIN messages. Since

the cloaking boxes contain only one node, the cost of broadcasting LEAVE and JOIN is equal

to 1. Therefore, during cloaking update, the average numberof control packets sent by a

mobile node per time unit can be estimated asCupdate =
2
t̄
.

4.1.4 Performance study

To evaluate the performance of the proposed schemes, we havedeveloped a detailed sim-

ulator. We implemented a mobile ad hoc network in which a number of mobile nodes are

distributed in a rectangular domain. Our simulation consists of two phases: mobile nodes

first initiate their cloaking boxes using Algorithm 4, and then move following a random walk
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model and update their cloaking boxes whenever necessary using Algorithm 5. We are mainly

interested in two performance metrics:

• Cloaking area. This metric measures the potential impact of location cloaking on the

applications that rely on node location information. We measure cloaking area as the

average size of cloaking boxes used by each node in simulation. Since a node may

use different cloaking boxes, we compute its cloaking area using time weighted aver-

age. Suppose during a simulation time period of[0, T ], a node has its cloaking box

{a0, a1, · · · , ak} at time ticks{0, t1, · · · , tk}, respectively. The node’s cloaking area is

computed asa0·t1+
∑k−1

i=1 ai·(ti+1−ti)+ak ·(T−tk)

T
.

• Control overhead. This metric measures the communication cost incurred by location

cloaking. We evaluate two communication costs,Cinit andCupdate, incurred in two

simulation phases, respectively.Cinit is the average number of control packets sent by

each node in the initial domain partitioning. This cost measures the communication

efficiency of Algorithm 4. On the other hand,Cupdate measures the communication cost

incurred after nodes start to move, and therefore evaluatesthe efficiency of Algorithm 5

It is defined as the average control packets sent by each node per time unit.

Table 4.1 summarizes the parameters used in our study. Unless otherwise specified, the

default values are used. When the distribution of nodes is uniform, the performance of our

techniques can be predicted with our analytical model. Thus, we focus on evaluate the per-

formance of our techniques under a non-uniform distribution. In our simulation, the initial

distribution of nodes follows a normal distribution. To ensure such a distribution, we partition

the networks into many small grid cells, and then deploy different number of nodes in cells so

that the node population in cells obeys a normal distribution approximately. The movement of

nodes follows a random walk. As such, as nodes continue to move, their distribution eventu-

ally become uniformed. Our simulation stops when the changeof average cloaking box sizes
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become less than 5%. In the next subsections, we report how the two performance metrics are

affected by safety requirementθ, network density, and nodes’ moving speed.

Table 4.1 Simulation parameters

parameter range default unit

network domain 1000× 1000 1000× 1000 meter2

node number 200 - 700 400 unit
transmission radius 50 50 meter
node speed 1 - 5 3 meter/sec
safety requirementθ 20− 180 100 unit

4.1.4.1 Effect of safety level

In this study, we investigated the impact of safety level on the performance. We partitioned

the network domain into a number of grid cells, each being20×20meter2, and deployed 400

nodes in the grid cells in a normal distribution with variance of 0.05, 0.1, and 0.5 respectively.

Here the variance is normalized by dividing grid cell population with the total number of

nodes. Thus, the larger the variance is, the more even the nodes are distributed. The value

of safety requirement is varied from 20 to 180, and the performance results are plotted in

Figure 4.5. Figure 4.5 (a) shows that the cloaking area is larger when the variance of the

distribution is more skewed. This is due to the fact that under a more uneven distribution,

more nodes are deployed closer in some small region, causinglarger cloaking boxes for these

nodes. The figure also shows that the cloaking area under all three variance settings increases

as the safety requirementθ increases. Under the same distribution setting, a largerθ makes

it more difficult to find a small partition that has sufficient safety level. Figure 4.5 (b) shows

thatCinit is higher when the distribution is more skew. This can be explained as follows. The

cost that every node inside a partition broadcasts a PLUS message within it is equal to the

square of its population. Thus, when a partition is split, the total broadcasting cost in two

child partitions is less when the difference between their population is larger. Therefore, the
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more uneven distribution tends to have a higher init cost. The figure also shows that in all

the three distributions,Cinit decreases asθ increases. A smallerθ leads to smaller cloaking

boxes, which have larger depths in the BP-tree. This means the domain partition procedure

goes deeper in the BP-tree, thus incurring more control overhead.
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Figure 4.5 Effect of safety requirement

Figure 4.5 (c) shows that as the safety level increases,Cupdate decreases under distribution

with variance 0.5, but increases under distribution with variance 0.1 and 0.05. Under random

walk, the uneven distribution will become more and more uniform as the simulation runs. For

a distribution with a larger variance, the initial cloakingboxes are smaller. Partition splits or

merges happen less frequently, and the overall update cost is mainly composed of the LEAVE

and JOIN messages, the number of which is inversely proportional to the size of cloaking

boxes. By contrast, when the distribution is more skewed, many initial cloaking boxes are
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very large. Thus, more partition splits take place after thenodes start to move, thus generating

more control overhead.
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Figure 4.6 Effect of network density

4.1.4.2 Effect of network density

This study investigated the impact of network density on theperformance of our cloaking

algorithms. We setθ = 100, and varied the node number from 200 to 700. The performance

results are shown in Figure 4.6. As showed in Figure 4.6 (a), the cloaking area increases as

the network becomes denser. In a non-uniform distribution,nodes are more densely deployed

in some regions, and given a distribution with certain variance, the node density in these

regions is proportional to the network population. Thus, the size of cloaking boxes increases

as the network population increases. Figure 4.6 (b) shows thatCinit increases linearly as the

network density increases. Since the cost of broadcasting one PLUS packet to every node in a
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partition is equal to the population of the partition, givena distribution with certain variance,

the population of a partition is proportional to the networkpopulation. Thus, the cost of

broadcasting a PLUS packet in the partition is also proportional to the network population.

Figure 4.6 (c) shows that as the network density increases,Cupdate for all three distributions

increases, and the increment is sharper when the distribution variance is smaller. As explained

in the previous study, when a distribution is more skew, morepartition splits occur and thus

generate more control overhead. In addition, the cost of splitting a partition is proportional to

the square of the population of the partition.

4.1.4.3 Effect of node mobility

This study investigated the impact of node mobility on the performance of our cloaking

algorithms. We deployed 400 nodes in the network domain, andvaried the speed of mobile

nodes from 1m/s to 5m/s. Under a random walk model, the distribution of mobile nodeswill

become more and more even as time elapses. In order to study the effect of node mobility on

the distribution change, we ran all simulations within a same time interval. The performance

results are shown in Figure 4.7.

Figure 4.7 (a) shows that as the moving speed increases, the cloaking area decreases. This

is due to the fact that a higher mobility causes a skew distribution to become even faster. When

the distribution becomes even, the size of cloaking boxes issmallest. Figure 4.7 (b) shows

that the curves forCinit are flat. Since this cost is measured before nodes start to move, it is

not affected by the node mobility. In contrast, as node mobility increases,Cupdate increases

under all the three distributions, as showed in Figure 4.7 (c). When the mobility is higher,

there are more events that nodes move out of their cloaking boxes. As the figure shows, the

increment ofCupdate becomes smaller when the mobility increases. This can be explained as

follows. When the average moving speed is higher, it takes less time for the node distribution

to become even. When the distribution is even, the majority update cost comes from LEAVE
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and JOIN, the frequency of which will become stabilized.
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Figure 4.7 Effect of node mobility

4.2 Location secure routing

The above cloaking techniques show that reducing the location resolution is effective in

protecting wireless nodes’ location safety. However, it has a significant impact on the geo-

graphic routing protocols in ad hoc networks. First, existing protocols may suffer efficiency

loss. For example, in order to deliver a packet to a destination node, we should broadcast the

packet in the node’s cloaking box, which incurs a lot of routing overhead. More importantly,

the operations of these protocols such as packet forwardingmay allow an adversary to refine

a node’s location resolution, thus reducing the required level of protection.

As an example, consider Figure 4.8. It shows three nodes and the corresponding cloaking
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regions that they disclose1. SupposeA sends a packet. IfB forwards the packet, thenA would

know thatB must be within its transmission range, thus allowing it to refineB’s location. To

prevent such location refinement, a node should avoid forwarding a packet unless its cloaking

region is completely covered by the sender’s transmission range. In this example, onlyC can

forward a packet originating fromA. The problem is how a receiving node can determine if

this condition is satisfied. It may first appear that we can letthe sender advertise its transmis-

sion radius. But doing this would place the sender in danger.If B knowsA’s transmission

radius, it can refineA’s location based on the signal strength it receives. Indeed, even if a

node makes its transmission range known, such information cannot be trusted. This is due to

the fact that the node may be compromised and falsify the information for location refinement

attack.

A

B

cloaking region

A’s transmission range

C

Figure 4.8 Location refinement attack

Our research in this section investigates the impact of location cloaking on geographic ad

hoc routing protocols and introduce a new concept calledsafe link. A network link is said to

be a safe link if the packet delivery through the link does notallow an adversary to refine the

sender and receiver’s location resolution. Assuming asymmetric communication links, where

nodes keep their transmission radius in secret, we propose asolution that allows a node to de-

termine whether or not a link is safe based on the received signal strength. With this technique

in place, we propose a location secure routing protocol (LSR). Like existing protocols such as

1Throughout this chapter, we will use a dashed circle to denote a node’s cloaking region and a solid one its
transmission coverage.
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GPSR (3), LSR tries to route a packet using nodes closer to thedestination whenever possible,

and if not, detours the packet along some faces in the networkconnectivity graph. However,

LSR constructs a routing path using only safe links. Moreover, it can work with inaccurate

location information. To our knowledge, LSR is the first ad hoc routing technique that is de-

signed with built-in mechanisms to prevent routing activities from being used to refine nodes’

location.

4.2.1 Safe link

We consider an ad hoc network deployed in a two-dimension space. Without loss of gen-

erality, we assume each location reported by nodes is acloaking circle. As mentioned early,

A node’s cloaking circle needs to contain the its position and satisfy other conditions, depend-

ing on the protection type (privacy or safety) and the level of protection. Since the focus of

this work is on the design of routing mechanism, we will not concern ourselves the details of

computing a cloaking circle, but simply assume some existing technique is used.

We assume the adversary has access to the communications among the networking nodes

(e.g., it can be one of these nodes) and know nodes’ location information which they disclose

in packet delivery. The adversary is interested in locationrefinement attack, which is to derive

more accurate location than reported. As discussed in the introduction, the key to prevent

such attack is to ensure that data packets are forwarded onlythrough safe links. That is, when

a node receives a data packet, it should not forward the packet unless the cloaking circle it

discloses is completely covered by the sender’s transmission range. The problem is how to

verify this forwarding condition without knowing the sender’s transmission radius. Here we

present two approaches.

The first approach lets a node estimate if its cloaking circleis completely covered using

only the signal strength it receives. According to the Free Space Model (65), given a pair of
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sender and receiver with a distance ofd, the signal strength at the receiver can be computed as

Pr = k
Pt

d2
, (4.1)

wherePt is the sender’s transmitting power (i.e., the signal strength at the sender site) andk

is a constant. Thus, given a received signal strengthPr, a node can estimate the distance that

the signal can be further propagated asd1 = (kPr

Pl
)
1
2 , wherePl is the minimum signal strength

that is detectable to a node. Letd2 be the maximum distance from the node’s current position

to the boundary of its cloaking circle. Ifd2 ≤ d1, the receiving node can be assured that its

cloaking circle is within the sender’s transmission range.

The above scheme is simple to implement and guarantees zero false positive verification.

It, however, is a pessimistic solution as it assumes the worst situation: the sender is right on

the receiver’s position using the minimum transmission power. In reality, the sender can be

far away, which means that the actual transmission power is larger than the signal strength

sensed by the receiver. Since we assume each node is willing to disclose its cloaking circle,

and location verification techniques (e.g., (66; 67)) can beapplied to verify the trustworthiness

of such information, we can take advantage of the cloaking circle disclosed by the sender to

estimate its transmission coverage.

Figure 4.9 (a) shows two nodes,A andB, and their corresponding cloaking circlesCA

andCB. SupposeB receives a data packet sent byA and the received signal strength isPr.

If B knowsA’s exact position,B can computeA’s transmission powerPt =
Pr·|AB|2

k
, where

|AB| denotes the distance betweenA andB, andA’s transmission radiusr = (kPt

Pl
)
1
2 , where

Pl is the minimum signal strength detectable to a node.B can then deriveA’s transmission

coverage, which is the circle centered onA’s position with a radius ofr, and check ifCB is

within the coverage. The problem is,B does not knowA’s exact position, but only knows that

it is insideCA. A simple solution is to computeA’s transmission coverage for every position

in CA. If each of these possible coverages containsCB, thenB can forward the data packet.

This approach, however, requires intensive computation.
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To address the above problem, we have come up a more efficient approach. Letd1 = |BX|

be the shortest distance fromB to the boundary ofA’s transmission range. LetOB denote the

center ofB’s cloaking circleCB, Y be the point that lineAOB intersects withCB, andZ

be the point thatAOB intersects with the boundary ofA’s transmission range. LetB′ be the

point on lineAOB such that|AB| = |AB′|, andd2 denote the length of segmentB′Y . These

notations are illustrated in Figure 4.9 (a). Our solution isbased on the following theorem.

A
B

X

boundary of A’s 

transmission range

OB

CB

Y

d1

d2'B’

Z

A
B

CB

CA CA

OB
OA

A’

A’’

W

(a) Verify if CB is covered by A’s 

transmission range
(b) Estimate the value of d1 and d2'

Figure 4.9 Safe link verification

Theorem 1. CB is entirely covered byA’s transmission range⇐⇒ d1 ≥ d2.

Proof. First of all, sinceAOB overlaps with the diameter ofCB, we have the equivalence:CB

is entirely covered byA’s transmission range⇐⇒ |AZ| ≥ |AY |. In addition, since|AX| =

|AZ| which is the transmission radius, and|AB| = |AB′|, we have the equivalence:d1 ≥ d2

⇐⇒ |AX| ≥ |AY | ⇐⇒ |AZ| ≥ |AY |. Therefore, combining the two equivalences, we can

infer thatCB is entirely covered byA’s transmission range⇐⇒ d1 ≥ d2.

So the question now is how to computed1 andd2. Let’s first considerd1. We know that

d1 = r−|AB| = P
1
2
t [(

k
Pl
)
1
2 − ( k

Pr
)
1
2 ]. SincePl, k, andPr are all fixed,d1 is determined byA’s

transmission powerPt, and a smallerPt results in a smallerd1. According to Equation 4.1,

Pt =
|AB|2Pr

k
, Pt has a smaller value whenA is closer toB. SoPt is smallest whenA is at

W (see Figure 4.9 (b)), the point where lineOAB intersects with the boundary ofCA. As
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such,B can use the distance|WB| to compute the minimum value ofPt and then compute the

minimum value ofd1. Clearly, as long asCA does not coverB’s position, the minimum value

of Pt is larger thanPr, and therefore,d1 will be larger than derived by the first approach.

Algorithm 6 Link safety verification
LinkStatus(p) // executed by each node

1: Pr ← receiving signal strength ofp
2: CA← cloaking circle of senderA
3: CB ← cloaking circle of receiverB
4: {estimate minimumd1}
5: W ← intersection ofBOA andCA

6: dmin ← |WB|
7: Pmin =

Prd
2
min

k

8: d1 ← P
1
2
min[(

k
Pl
)
1
2 − ( k

Pr
)
1
2 ]

9: {estimate maximumd2}
10: compute two tangent linesA′OB andA′′OB

11: if B is in betweenA′OB andA′′OB then
12: d′2 ← |BOB|+R
13: else
14: d′2 = MAX{|A′OB| − |A′B|, |A′′OB| − |A′′B|}+R
15: end if
16: if d1 ≥ d′2 then
17: return SAFE
18: else
19: return UNSAFE
20: end if

We now considerd2. As shown in Figure 4.9 (a),d2 = |AY |− |AB| = |AOB|− |AB|+R

whereR is the radius ofCB. Since in the triangle△AOBB the length of edgeBOB does

not change no matter whereA is, |AOB| − |AB| has a larger value when the angle∠ABOB

is larger and its maximum value is|BOB|. Therefore,B can first calculate the two tangent

lines ofCA which pass throughOB, denoted asA′OB andA′′OB, as illustrated in Figure 4.9

(b). If B is in between the two lines,|AOB| − |AB| has the maximum value when the angle

∠ABOB = π and in this case the maximum value ofd2 is equal to|BOB|+R. Otherwise,B

computes|A′OB|−|A′B|+R and|A′′OB|−A′′B|+R respectively and chooses the larger one

asd2’s maximum value. Thus, if the maximumd2 is no larger than the minimumd1, B can be
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assured that it is withinA’s transmission range. We can see that this approach can compute

a more accurate maximum value ofd2 as long asB is not in between the two tangent lines.

Thus, it generates less false negative verification of safe links. The pseudo code of the second

verification approach is shown in Algorithm 6.

4.2.2 LSR

We now consider how to construct a routing path with safe links and inaccurate location.

Each data packet has the following fields in its header:src pos (the location of the source

node),dst pos(the location of the destination node),fwr pos(the location of the node which

is forwarding this packet). When a source node sends a packetto a destination node, it fills in

src posanddst pos. The fieldfwr posis initialized with the sender’s location. When a node

forwards this packet, it updates the field with its own location.

Similar to other protocols like GPSR, the proposed LSR also works in two modes: 1)

greedy routing, which is used whenever possible; 2)face routing, which is used where greedy

routing does not work. We explain these two modes in the following subsections.

4.2.2.1 Greedy routing

When a node receives a packet, it computes whether the link issafe and whether it is closer

to the destination than the sender. If any one of the two conditions is not satisfied, the node

drops the packet. Otherwise, it waits for a certain time period. During the waiting time, if the

node eavesdrops the same packet forwarded by some other node, it drops the packet. Other-

wise, it forwards the packet. The length of the waiting period is set to be proportional to the

distance between the node and the packet destination. As such, a node closer to the destination

waits shorter and has a higher probability to forward. If a node forwards a packet, it also sends

an acknowledgement packet back to the sender with a transmitting power which is ensured

to cover the sender’s cloaking circle. If the sender does notreceive any acknowledgement, it
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means there is no safe link to any other node closer to the destination. When this happens, the

packet forwarding switches to face routing mode, which we will discuss later.

The above strategy constructs packet routing path using only safe links. It is worth men-

tioning that this approach is also lightweight as it avoids proactive location advertising. In

existing protocols like GPSR, a forwarding node needs to know all of its neighbors’ position

in order to choose the next hop that is closest to the destination. For this purpose, every node is

required to periodically update its latest location to its neighbors. This not only incurs signif-

icant routing overhead, but also is subject to location refinement attack. When a node makes

frequent location updates, the time-series sequence of thecorresponding cloaking areas may

be correlated to refine its location.

One problem of implementing the above routing scheme is how to compute the distance

between two nodes. To make a forwarding decision, a node needs to compute the distance

from the packet sender and itself to the destination node. Since no node reveals its exact posi-

tion, we estimate the distance between two nodes by measuring the average distance between

a pair of points in the two cloaking circles respectively, defined as follows:

D(C1, C2) =
1

A1A2

∫
C1

∫
C2

Dist(p1, p2) dp1 dp2, (4.2)

whereC1 andC2 are the two cloaking circles;Dist(p1, p2) is the Euclid distance between a

positionp1 in C1 and a positionp2 in C2; A1 andA2 are the area ofC1 andC2 respectively.

Another problem is how to deliver the packet to the destination node without knowing its

accurate location. It may first appear that we can simply apply the above routing scheme to

forward the packet and when the packet reaches the cloaking circle of the destination node,

a regional broadcast in the cloaking circle can be launched to accomplish the delivery. This

strategy, however, does not guarantee the packet delivery.Since nodes use the average distance

defined in Equation 4.2 to make a forwarding decision, the position where the packet enters the

cloaking circle of the destination node may not be the one that is closest to its actual position.

If the sub-network in the cloaking circle is not connected the packet may not be able to reach
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Figure 4.10 An example of delivery failure.

the destination node. In the example shown in Figure 4.10, the packet is forwarded toC in the

cloaking circleCD of destination nodeD. SinceC cannot reach fromD directly, the packet

delivery will fail even with a regional broadcast of the packet withinCD. Yet, there actually

exists an external path fromC toD, which isA→ B → E → D.

To cope with this problem, we proposed to involve more nodes in routing when a packet

reaches the cloaking circle of the destination node. If a node’s transmission range overlaps the

cloaking circle of the destination node, it will forward thepacket as long as the link is safe,

no matter whether it is closer to the destination than the sender, and whether it eavesdrops the

packet forwarded by other nodes. In the same example as shownin Figure 4.10, the nodeB

will also forward the packet fromA even though the packet has been forwarded byC. As a

result, the packet can reach the destination along the routeA → B → E → D. The pseudo

code for our proposed greedy routing is given in Algorithm 7.

4.2.2.2 Face routing

When a node forwarding a packet does not have any neighbor that is closer to the destina-

tion and forms a safe link, the packet reaches a dead-end in greedy routing mode. When this

happens, the packet forwarding switches to face routing mode, in which the packet delivery

is detoured around the dead-end until a closer next-hop is found. The face routing in LSR
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consists of three components: 1) connectivity graph generation, 2) planarization, 3) packet

forwarding. We discuss them as follows.

Algorithm 7 LSR greedy routing
Greedy(p) // executed by each node

1: s← LinkStatus(p)
2: if s = UNSAFE then
3: drop packet and return
4: else
5: CD ← cloaking circle of the destination
6: if node’s transmission range overlaps withCD then
7: forward packet and return
8: else
9: d′ ← distance from node to destination

10: d′′ ← distance from sender to destination
11: if d′ ≥ d′′ then
12: forwarding← false
13: else
14: forwarding← true
15: end if
16: end if
17: end if
18: if forwarding = truethen
19: wait T
20: if packet is forwarded by others during waitingthen
21: drop packet
22: else
23: forward packet
24: end if
25: else
26: drop packet
27: end if

The first component constructs the network connectivity graph with safe links. Specifi-

cally, when a nodeA switches to the face routing, it locally broadcasts a query packet. When

receiving such a query, each of its neighbors verifies its link safety and sends an acknowledge

back if the verification result is positive. This allowsA to figure out all its outgoing links

in the connectivity graph. Figure 4.11 (a) shows an example where a subnetwork containing

three nodes is mapped to the directed graph in Figure 4.11 (b). Note that since each node can
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have its own cloaking circle and transmission range, the safe links in the connectivity graph

are asymmetric, and such asymmetric links can lead to routing failures. This will be explained

later when we discuss the third component.

A
C

B

A

B

C

(a) (b)

Figure 4.11 An example of connectivity graph generation.

Similar to GPSR, face routing in LSR forwards a packet using right-hand rule. The correct

operation of right-hand rule requires the network connectivity graph be planar, which does

not contain cross links. Therefore, the second components in LSR planarizes the network

connectivity graph by removing the cross links. It is worth mentioning that in the presence

of location inaccuracy, planarization may disconnect the network. This problem has been

addressed in (68; 69). LSR just applies the techniques in these papers to ensure the network

connectivity after planarization.

The third component applies the right-hand rule and forwards a packet around the dead-

end until finding a closer next-hop to the destination. The major challenge is how to deal with

routing failures brought by asymmetric links in the network. In a planar graph, the connecting

line from the source to the destination must go through a number of open or close elementary

faces2. If the connectivity graph is undirected, i.e., all links are symmetric, a packet will

be routed around these faces one by one using the right-hand rule from the source to the

destination. For example in Figure 4.12, a packet fromS to D should be routed around faces

SAB, ABF , BEGF , andFGD consequently. In LSR, however, the network connectivity

2An elementary face is a face that does not contain other faces
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Figure 4.12 An example of face routing.

graph is directed. Simply applying the right-hand rule may not be able to route a packet

correctly, because sometimes a packet cannot be routed around the boundary of a face in a

directed graph. For example, as shown in Figure 4.12, when the packet reachesB, it cannot

be forwarded aroundBEGF since there is no link fromB toE. Following the right-hand rule,

the packet will be forwarded toC, and then it will loop aroundBCE until TTL is exhausted.

To solve this problem, we need to prevent the packet being routed in a face likeBCE

which is not crossed by the connecting line from the source tothe destination. Our strategy

is as follows. When a packet cannot be forwarded around a faceF on the connecting line,

we deactivate the one-way link, sayl′, which stops the packet forwarding (e.g., linkEB in

Figure 4.12), and then route the packet around the faceF
′ which is composed ofF and the

elementary face on the other side ofl′. Sincel′ is deactivated,F′ must be an elementary face

on the connecting line. In the example shown in Figure 4.12, LSR will route the packet around

faceBCEGF .

Algorithm 8 shows the pseudo code for a node to relay a packetp in face routing mode.

We let every forwarding node include its identity in the routing header of the packet, and thus

all the en-route nodes who have forwarded this packet form aforwarding list in the header.

Then, when a new forwarding node selects a link using right-hand rule, it checks whether the

node on the other side of the link already exists in the forwarding list. If not, the node forward
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the packet on this link. Otherwise, it means that the packet is being forwarded around a face

not on the connecting line. Thus, the node deactivates this link and chooses the next available

link using right-hand rule. In the same example shown in Figure 4.12, when the packet reaches

E, nodesS, B andC has been included in the forwarding list. Following right-hand rule,E

selects link
−−→
EB first. ButB exists in the forwarding list. Thus,E finds the next available link

−−→
EG. SinceG is not in the forwarding list,E will forward the packet though this link. As a

result, the packet will be routed around faceBCEGF , and finally reaches destinationD.

Algorithm 8 LSR face routing
Face(p) // executed by each node

1: l ← link wherep is sent from
2: L← forwarding list ofp
3: while truedo
4: {find next link using right-hand rule}
5: l′ ← RightHand(l)
6: if l′ = null then
7: {no link available}
8: drop packet and return
9: else

10: N ← node on the other side ofl′

11: {check if this link should be deactivated}
12: if N ∈ L then
13: continue
14: else
15: {addN to forwarding list and forward packet}
16: L← L+N
17: forward packet and return
18: end if
19: end if
20: end while

4.2.3 Performance evaluation

For performance evaluation, we have developed a detailed simulator. We implement two

versions of LSR. The two schemes, which we will refer to as LSR-basic and LSR-adv, are

different in the way of verify link safety. In LSR-basic, a node receiving a data packet uses
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only the received signal strength to determine if it is safe to forward the data packet, while

in LSR-adv, a node would leverage both the signal strength and the location disclosed by the

sender. For comparison purpose, we have also implemented anapproach referred to asNative.

This scheme lets a node forwards a received packet as long as it is closer to the destination

than the sender. However, unlikeLSRbasic andLSRadv, this scheme lets a node forward a

data packet without verifying link safety and is therefore subject to location refinement attack.

We are mainly interested in two performance metrics:

• Cloaking area: The location disclosed by a node can be refined if the node participates in

data forwarding without considering link safety. The metric of cloaking area is defined

to be the size of a node’s cloaking circle known to an adversary after location refinement.

As such, this metric measures the degree that a node’s location can be refined. We report

the average cloaking area of all nodes.

• Delivery rate: This metric is defined to be the ratio between the number of data packets

that are successfully delivered to their destination and the total number of data pack-

ets transmitted. The delivery rate measures how reduced location resolution and the

forwarding conditions have impact on the routing performance.

Table 4.2 summarizes the parameters used in our study. Unless otherwise specified, the

default values are used. We simulate an ad hoc network in which nodes are deployed in

a rectangular domain. In each simulation, we generate a number of nodes and randomly

place them in a1000 × 1000 m2 network domain. That is, each node’s coordinates inX

andY axis are randomly chosen from[0, 1000]. After deployment, each node initializes its

exposing location as a cloaking circle with a radius randomly chosen from [rmin, r max]. In

each simulation, we create a number of routing tasks, each containing a pair of source and

destination nodes which are selected randomly. During routing, a forwarding node randomly

chooses its transmission radius from [Rmin, R max]. In the next subsections, we focus on
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how the two performance metrics are affected by the initial size of nodes’ cloaking circles,

network density, and nodes’ transmitting power.

Table 4.2 Parameters

parameter range default unit

network domain 1000× 1000 1000× 1000 meter2

node number 800 - 1200 1000 unit

r min 20 20 meter

r max 40 - 80 60 meter

R min 60 60 meter

R max 100 - 200 150 meter

routing tasks number 300 300 meter

4.2.3.1 Effect of initial cloaking circle

This study investigates the impact of nodes’ cloaking circle size on the performance. We

generate 1000 nodes and deploy them randomly in the network domain. The value of max-

imum radius of nodes’ initial cloaking circle is varied from40 to 80 meters, and the per-

formance results are plotted in Figure 4.13. Figure 4.13 (a)shows that Native results in a

much smaller cloaking area and thus fails to protect nodes’ location privacy/safety. Since this

scheme let a node forward a data packet as long as it is closer to the destination than the sender,

it is prone to the location refinement attack. In contrast, the proposed LSR lets a node avoid

forwarding a data packet whenever it determines that the link is not safe. As such, a node’s

location resolution known to an adversary is the same as thatdisclosed by the node. Note that

both LSR-basic and LSR-adv have this feature, so they share the same line.

Figure 4.13 (b) shows that both LSR-basic and LSR-adv have a smaller delivery rate than

Native, and the delivery rate decreases as the size of the cloaking circle increases. In LSR,

a packet is forwarded only via safe links. Thus, sometimes there is not a safe path from the

source to the destination even if the network is connected. When a cloaking circle increases,

the chance of its being totally covered by a node’s transmission range reduces. Thus, there
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Figure 4.13 Effect of cloaking circle

are less safe links in the network when the size of cloaking circles increases, making it more

difficult to find a safe route. Figure 4.13 (b) also shows that the delivery rate of LSR-basic

decreases much faster than that of LSR-adv. This indicates that the basic scheme has a much

higher false negative rate on safe link verification. When the size of cloaking circle is larger,

the number of safe links become too small for an end-to-end packet delivery. On the other

hand, as we can see the delivery rate of LSR is always more than90%. It is worth mentioning

that Native has 100% data delivery rate. This, however, is achieved at the expense that the

location of nodes is known to an adversary more accurately.

4.2.3.2 Effect of network density

This study investigates the impact of network density on routing performance. We fix the

maximum radius of initial cloaking circle as60 meters, and vary the node number from 800

to 1200. The performance results are plotted in Figure 4.14.As showed in Figure 4.14 (a),

the cloaking area of Native is always much lower than LSR, andit is not affected by network

density. This is due to the fact that in Native the next hop is always selected as the closest one

to the destination, and the distance between two consecutive forwarding nodes is not affected
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Figure 4.14 Effect of network density

by the network density. Figure 4.14 (b) shows that the delivery rate of Native is always 100%

which means the network is connected under all the above system settings. On the other hand,

the delivery rate of both LSR-adv and LSR-basic increases asthe network become denser. In

a denser network, nodes are closer to each other and this results in more safe links. Thus, the

chance of having a safe path from a source to a destination is higher. We can also see that the

performance of LSR-basic is very sensitive to the network density. The the density is lower,

the delivery rate deteriorates quickly. In contrast, the performance of LSR-adv is much stable.

4.2.3.3 Effect of transmitting power

This study investigates the impact of transmitting power onthe performance of the routing

protocols. We deploy 1000 nodes in the network domain, and vary nodes’ maximum transmis-

sion radius from 100m to 200m. The performance results are shown in Figure 4.15. Figure

4.15 (a) shows that as the transmitting power increases, thecloaking area of Native has a very

slight increment. This is due to the fact that only forwarding nodes’ location may be refined

and a larger transmission range decreases the hop number of the route between a pair of source

and destination. Figure 4.15 (b) shows that the delivery rate of both LSR-basic and LSR-adv
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Figure 4.15 Effect of transmitting power

increase as the transmitting power increases. It is becauseunder the same network density, a

larger transmission range can cover more nodes’ cloaking circle, and thus generates more safe

links. More safe links in a network make it easier to find a saferoute from a source to a desti-

nation. Figure 4.15 (b) also shows that LSR-basic is acceptable as a practical routing scheme

only when the nodes’ transmitting power is high, and comparatively LSR-adv is preferable in

most scenarios. In the previous study, we have seen a similarresult.
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CHAPTER 5. Conclusion and Future Work

5.1 Summary of Contributions

This thesis includes two of our research subjects, locationprivacy protection and location

safety protection. Their objectives are different but highly related. The major issue behind is

how to let wireless users disclose their location information to enable many network applica-

tions, while preventing such location being used to compromise their privacy and safety. In

summary, our contributions are:

Exploring historical location data for location privacy pr otection. Personal location

data can be correlated with restricted spaces such as home and office addresses for subject

re-identification. This is probably the most practical and economic way for an adversary to

identify the anonymous users of LBSs. Existing location depersonalization techniques pro-

posed to address this problem can support anonymous uses of LBSs, but not location privacy

protection. We proposed to explore users’ historical location data for location depersonaliza-

tion. A cloaking region with different footprints means it has been visited by different people.

Thus, if a user’s location is disclosed as such a region, eventhough an adversary can identify

all these visitors with restricted spaces, he will not know which of them was inside the area at

the time of the service request.

Feeling-based privacy modeling.In order to get a certain level of privacy protection, a

user needs to determine her privacy requirement. In this thesis, we address the challenge of

modeling location privacy requirement. We first show that the traditionalK-anonymity model

is problematic, because privacy is about feeling, and it is difficult to scale one’s feeling using a
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number. Then we propose our solution which circumvents thisproblem by allowing a user to

identify herpublic region, a spatial region which she would feel comfortable that it isreported

as her location should she request a service inside it. Compared to choosing a number of

K, this feeling-basedstrategy provides a much more intuitive way for users to express their

privacy requirement.

Distributed location cloaking for location safety protection. We differentiate location

safety with location privacy. Here adversary in not interested in identifying a wireless node in

a network, but locating and destroying it. We propose to protect location safety by reducing

location resolution and we definesafety levelof a cloaking region. We identify three chal-

lenges of location cloaking and address these challenges bydeveloping distributed cloaking

algorithms for both static and mobile ad hoc networks.

Secure location-based routing with cloaked location.We discuss the impact of loca-

tion cloaking on geographic routing protocols. Cloaked location downgrades the routing ef-

ficiency, and operations of routing will in turn jeopardize the safety protection provided by

location cloaking. Our research address this issue with a novel location secure routing pro-

tocol called LSR. In LSR, the routing packets are forwarded only on safe linkswhich ensure

that adversaries cannot refine nodes’ location resolution by analyzing the routing traffic.

5.2 Future Research

We envision extending this research along the following directions:

Modeling and thwarting new types of location privacy intrusion in LBS. Our current

work considers only restricted space identification, but other types of attacks are likely. For

example, a user may be observed at some time. A user under direct observation does not

have location privacy, but the observed point may allow an adversary to learn her other visits.

Orthogonal to suchobservationattack isexclusivenessattack. If a user is known to never visit

a location, she cannot be the subject of any trajectory that contains the location. We will model
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and thwart these and other attacks that may be discovered during the course of this research.

Developing advanced safety cloaking algorithms.Our current design partitions the net-

work domain into subdomains and each node take some subdomain as its cloaking box. Since

the safety level of a subdomain can be up to2θ, the cloaking box can be further refined to have

a safety level as close as possible to, but no less than,θ. A possible solution is to apply secure

multi-party computation (SMC) (22) that allows multiple nodes to jointly evaluate with their

private values while ensuring that no one can learn additional information other than the evalu-

ation results. In addition to such improvement, we will investigate differential safety cloaking,

in which different nodes may need different levels of safetyprotection. The motivation is that

instead of providing the same level of protection to all nodes, we can let less important nodes

report more accurate location to improve network efficiency. The main research effort will be

on preventing correlation attack. It would be interesting to see how such differential cloak-

ing can complement the existing anonymous routing protocols (e.g., (38; 41; 43)) for safety

protection.
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