
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

A framework for estimating the applicability of GAs
for real-world optimization problems
Hsin-yi Jiang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Jiang, Hsin-yi, "A framework for estimating the applicability of GAs for real-world optimization problems" (2009). Graduate Theses and
Dissertations. 11084.
https://lib.dr.iastate.edu/etd/11084

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11084&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11084&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11084?utm_source=lib.dr.iastate.edu%2Fetd%2F11084&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A framework for estimating the applicability of GAs for real-world optimization

problems

by

Hsin-yi Jiang

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Carl K. Chang, Co-major Professor

Andrew S. Miner, Co-major Professor
Samik Basu

Daniel Tauritz
Johnny S. Wong

Dan Zhu

Iowa State University

Ames, Iowa

2009

Copyright c© Hsin-yi Jiang, 2009. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to my grand parents, parents, and uncle Ming. Without

their support, I would not have been able to complete this work. I would also like to thank

my friends for their kind help during the writing of this work.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . xi

ABSTRACT . xii

CHAPTER 1. INTRODUCTION . 1

1.1 Overview of this Work . 1

1.2 Problem Statement and Motivation of this Work 1

1.3 The Goal of this Work . 3

CHAPTER 2. REVIEW OF LITERATURE 6

2.1 Real-World Optimization Problems . 6

2.1.1 Problem Domain 1 - Project Management Problems 6

2.1.2 Problem Domain 2 - Software Engineering Problems 7

2.2 Analyzing the Behaviors of GAs . 8

2.2.1 Markov Chain Based Approaches . 8

2.2.2 Other Approaches . 10

CHAPTER 3. BACKGROUND OF GENETIC ALGORITHMS 12

3.1 Optimization Problems and Fitness Functions of GAs 12

3.2 The Canonical Genetic Algorithm and Its Operators 12

3.3 An Overview of Markov Chain . 13

3.3.1 Definitions and Theorems in GA, Markov Chain Theory, and Linear

Algebra . 14

iv

3.3.2 Research Assumptions . 18

3.3.3 Markov Chain Analysis for GAs . 19

CHAPTER 4. CONVERGENCE RATE AND THE FIRST HITTING TIME 24

4.1 Convergence Rate . 24

4.1.1 Eigenvalues of Transition Matrices and Fix Points of Genetic Algorithm 27

4.2 Second Largest Eigenvalue versus Expected First Hitting Time 29

CHAPTER 5. THE EVALUATION METRICS 30

5.1 The Bridge between Theory and Practice . 30

5.1.1 Equivalent Forms in terms of Convergence 30

5.2 The Proposed Evaluation Metric . 36

5.2.1 Overview of the Methodology . 36

5.2.2 Evaluating the Applicability of GAs from Run Time Data 36

5.2.3 Theoretical Framework for Approximating the Applicability of CGAs . 37

5.2.4 Foundation of the Methodology . 41

5.2.5 The Implementation and Data Structure of the Proposed Methodology . 43

5.2.6 Complexity Analysis . 44

5.3 Experimental Validation of the Proposed Evaluation Metric 45

5.3.1 One Dimensional Fitness Functions . 45

5.3.2 Discussion of the Sizes of Samples . 45

5.3.3 Discussion of the Precision of the Estimation 48

5.3.4 Discussion of the Convergence Trend . 50

5.3.5 Discussions on the Confidence Intervals 51

5.3.6 Discussions on the Smallest Number of Samples Needed for the Estimation 65

5.3.7 Multi-Dimensional Fitness Functions . 67

CHAPTER 6. The Estimation of Global Convergence 71

6.1 The Overview of the Estimation . 71

6.1.1 The Empirical Estimation on the Traces and the Fitting Curve 71

6.2 The Number of Generations for the Empirical Global Convergence 81

v

6.3 The Verification of the Proposed Estimation Framework 81

CHAPTER 7. A Case Study - Evolutionary Testing 89

7.1 Overview of Evolutionary Testing . 89

7.2 The Flag Problem . 92

7.3 Discussion . 93

7.4 Experiment Settings . 93

7.5 The Result of the Case Study . 94

CHAPTER 8. The Generalization of the Proposed Methodology 99

CHAPTER 9. Conclusion and Future Work 102

9.1 Contributions of this Work . 102

9.2 Limitations . 103

9.3 Future Work . 104

BIBLIOGRAPHY . 105

vi

LIST OF TABLES

Table 5.1 The Selected Fitness Functions . 46

Table 5.2 The Estimated Trace((CMS)n′
) w.r.t. the Number of Generations and

Power n′ . 46

Table 5.3 The Estimated Trace((CMS)n′
) With Respect To the Number of Gen-

erations and Power n′ . 47

Table 5.4 The Data of Figure 5.4(a) and 5.4(b) 53

Table 5.5 Comparison with Actual Trace Values 54

Table 5.6 The Range for Numbers of Generations at which the CGA with Best

Solution Maintained Over Time Has Probability of 80% (out of 1000

Trials) to Reach the Global (or Near) Optimal Solution 65

Table 5.7 The Selected 3-Dimensional Fitness Functions and Their Features . . . 67

Table 6.1 The Relationships among the Estimated Trace, the Proportion of the

Visited States over the Total Number of States (n′ = 10) 73

Table 6.2 The Relationships among the Estimated Trace, the Proportion of the

Visited States over the Total Number of States (n′ = 12) 74

Table 6.3 The Pair (λ̂2, m̂2) with respect to Each Fitness Function 82

Table 6.4 The Bins Which First Reach 80% in CDFs 83

Table 6.5 The Empirical Global Convergence for Each Fitness Function 83

Table 7.1 The Fitness Functions of P1 and P2 . 95

Table 7.2 The Results of the Estimated Trace((CMS)n′
) 96

Table 7.3 The Corresponding Information for Fitness Functions f14 and f15 . . . 97

vii

LIST OF FIGURES

Figure 1.1 General Methodology for Estimating the Applicability of GA G for

Optimization Problem P . 4

Figure 3.1 The Transition Matrix of the Random Walker in the Small Town . . . 15

Figure 3.2 Structure of the Extended Transition Matrix PU 23

Figure 5.1 An illustration of the Product PU · PU 32

Figure 5.2 The Estimation on the Trace of (CMS)n′
. 39

Figure 5.3 A possible data structure for the proposed methodology 43

Figure 5.4 The relationship between estimated trace values, actual trace values,

and numbers of generations with m = 3, l = 3 48

Figure 5.5 The relationship between estimated traces and numbers of generations 49

Figure 5.6 The convergence trends of Trace((CMS)n′
) 51

Figure 5.7 The Distribution with respect to f1 . 53

Figure 5.8 The Distribution with respect to f2 . 55

Figure 5.9 The Distribution with respect to f3 . 56

Figure 5.10 The Distribution with respect to f4 . 57

Figure 5.11 The Distribution with respect to f5 . 58

Figure 5.12 The Distribution with respect to f6 . 59

Figure 5.13 The Distribution with respect to f7 . 60

Figure 5.14 The Distribution with respect to f8 . 61

Figure 5.15 95% SCI for f1 . 62

Figure 5.16 95% SCI for f2 . 62

viii

Figure 5.17 95% SCI for f3 . 62

Figure 5.18 95% SCI for f4 . 62

Figure 5.19 95% SCI for f5 . 62

Figure 5.20 95% SCI for f6 . 62

Figure 5.21 95% SCI for f7 . 62

Figure 5.22 95% SCI for f8 . 62

Figure 5.23 The Comparison of 95% SCIs for the Estimated Trace Values Generated

by the Proposed Evaluation Metric . 63

Figure 5.24 95% WI for f1 . 64

Figure 5.25 95% WI for f2 . 64

Figure 5.26 95% WI for f3 . 64

Figure 5.27 95% WI for f4 . 64

Figure 5.28 95% WI for f5 . 64

Figure 5.29 95% WI for f6 . 64

Figure 5.30 95% WI for f7 . 64

Figure 5.31 95% WI for f8 . 64

Figure 5.32 The means of WI and SCI for fitness functions f1 and f8, respectively 66

Figure 5.33 The order of fitness functions w.r.t. smaller numbers of generations . . 66

Figure 5.34 The convergence trends of Trace((CMS)n′
) for multi-dimensional fit-

ness functions . 68

Figure 6.1 The Overview of the Estimation . 72

Figure 6.2 The relationship between the value and the setting of l 75

Figure 6.3 The relationship between the value and the setting of l 76

Figure 6.4 The relationship between the actual curve and the curve fitted by the

pair (n′ = 10, n′ = 12) . 77

Figure 6.5 The relationship between the actual curve and the curve fitted by the

pair (n′ = 10, n′ = 20) . 78

ix

Figure 6.6 The relationship between the actual curve and the curve fitted by the

pair (n′ = 20, n′ = 22) . 78

Figure 6.7 The CDF for Number of Trials to Find the Global Optimal Solution

with respect to f1 and f2 (X-Axis represents the number of generations;

Y-Axis represents the cumulated number of trials to find the global

optimal solution (out of 1000 trials)) 85

Figure 6.8 The CDF for Number of Trials to Find the Global Optimal Solution

with respect to f3 and f4 (X-Axis represents the number of generations;

Y-Axis represents the cumulated number of trials to find the global

optimal solution (out of 1000 trials)) 86

Figure 6.9 The CDF for Number of Trials to Find the Global Optimal Solution

with respect to f5 and f6 (X-Axis represents the number of generations;

Y-Axis represents the cumulated number of trials to find the global

optimal solution (out of 1000 trials)) 87

Figure 6.10 The CDF for Number of Trials to Find the Global Optimal Solution

with respect to f7 and f8 (X-Axis represents the number of generations;

Y-Axis represents the cumulated number of trials to find the global

optimal solution (out of 1000 trials)) 88

Figure 7.1 Classification of Dynamic Structural Test Data Generation Techniques

Using EAs [McMinn, P. (2004)] . 91

Figure 7.2 An Example: The Source Code . 92

Figure 7.3 Program with Flags . 94

Figure 7.4 Program without Flags . 94

Figure 7.5 The Control Flow Graph for P1 and P2 96

Figure 7.6 The PDF and CDF for Number of Trials to Find the Global Optimal

Solution with respect to f14 (X-Axis represents the number of gener-

ations; Y-Axis represents the cumulated number of trials to find the

global optimal solution (out of 1000 trials)) 98

x

Figure 8.1 An Illustration of the Conversion . 101

xi

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, Dr.

Carl K. Chang and Dr. Andrew S. Miner for their guidance, patience and support throughout

this research and the writing of this thesis. Their insights and words of encouragement have

often inspired me and renewed my hopes for completing my graduate education. I would also

like to thank my committee members for their efforts and contributions to this work: Dr.

Samik Basu, Dr. Daniel Tauritz, Dr. Johnny S. Wong, and Dr. Dan Zhu. I would additionally

like to thank Dr. Daniel Tauritz, and his students (Ekaterina Holdener and Travis Service) for

their valuable comments on improving this dissertation.

xii

ABSTRACT

Genetic Algorithms (GAs) have been gradually identified as an optimization-problem solver

for certain classes of real-world applications. As GAs are increasingly utilized, a foundational

study on how well GAs can perform with respect to varying problem domains becomes cru-

cial. Yet, none of the prevalent theoretical studies are built upon the linkage between the

theory and application of GAs. This dissertation introduces a methodology for estimating the

applicability of a GA configuration for an arbitrary optimization problem based on run-time

data. More specifically, this work analyzes the convergence behavior within a finite number of

generations for each GA run through the estimation of the trace of the transition matrix of the

corresponding Markov chain from run-time data. The analytical and empirical results show

that the methodology is helpful for evaluating the applicability of GAs to optimization prob-

lems. Through the methodology, the number of generations needed for empirical convergence

with respect to a fitness function (or a problem) can be estimated. The proposed methodology

entails an evaluation metric and connects theory to application of GAs, for estimating the

applicability of a GA to a problem. The methodology is demonstrated through a case study

on evolutionary testing.

1

CHAPTER 1. INTRODUCTION

1.1 Overview of this Work

This dissertation develops a framework for estimating the applicability of a particular

Genetic Algorithm (GA) configuration for an arbitrary optimization problem based on run-

time data. GAs are increasingly employed to solve complex real-world optimization problems

featuring ill-behaved search spaces (e.g., non-continuous, non-convex, non-differentiable) for

which traditional algorithms fail. The quality of the optimal solution (i.e., the fitness value of

the global optimum) is typically unknown in a real-world problem, making it hard to assess

the absolute performance of an algorithm that is being applied to that problem. In other

words, with a solution provided by a GA run, a method or theory to measure the quality

of the solution is generally lacking. Although many researchers applying GAs have provided

experimental results showing their successful applications, those are merely averaged-out, ad

hoc results. They cannot represent nor guarantee the usability of the best solutions obtained

from a single GA run, since the solutions can be very different for each run. Therefore, it is

desirable to provide a formalized measurement to estimate the applicability of GAs to real-

world problems.

1.2 Problem Statement and Motivation of this Work

In many real-world optimization problem domains, researchers have gradually found that

GAs possess the properties suitable for certain classes of applications. Many researchers have

reported success in applying GAs to real-world problems, but have failed to provide a theoret-

ical foundation to explore or explain why GAs were appropriate for the specific problems. As

GAs are increasingly utilized, a foundational study on how well GAs can perform for each of

2

the various problem domains becomes crucial. Note that many theoretical studies have investi-

gated the behaviors of GAs using Markov chains [Eiben, A. E. and Aarts, E. H. L. and Hee, K.

M. V. (1991); Nix, A. E. and Vose, M. D. (1992); Ding, L. and Yu, J. (2005); Jiang, H. and

Chang, C. K. and Zhu, D. and Cheng, S. (2007); Fogel, D. B. (1995); Rudolph, G. (1994);

Suzuki, J. (1995, 1998); Vose, M. D. and Liepins, G. E. (1991); Rudolph, G. (1996); Davis, T.

E. and Principe, J. C. (1993)]. Yet, no existing theoretical studies are built upon the linkage

between the theory and application of GAs. Through existing analyses, the convergence of a

canonical form of Genetic Algorithm termed CGA with best solutions maintained has been

proven [Rudolph, G. (1994)], the expected value of the first hitting time of GAs has been

calculated [Ding, L. and Yu, J. (2005)], and the convergence rate of GAs has been predicted

by the second largest eigenvalue of the transition matrix [Suzuki, J. (1995); Jiang, H. and

Chang, C. K. and Zhu, D. and Cheng, S. (2007)]. Other methods, such as the analysis on

Walsh transformation [Bethke, A. D. (1980); Forrest, S. and Mitchell, M. (1993)] or Fourier

transformation of fitness functions of GAs [Kosters, W. A. and Kok, J. N. and Leiden, P. F.

(1999)], have also been adopted by some researchers. Although many papers have proposed

various approaches to analyzing the behaviors of GAs, most existing GA theories lack concern

for practicality [Schoenauer, M. et al. (2007); Jiang, H. and Chang, C. K. (2008); Jiang,

H. and Chang, C. K. and Zhu, D. and Cheng, S. (2007)]. For instance, the convergence of

GAs studied by Rudolph is only meant as a theoretical study, since time is assumed to go to

infinity [Rudolph, G. (1994)]. In reality, it is impossible for any application to wait for an

infinite amount of time to obtain the optimal solution. Moreover, the computation time for

deriving transition matrices of GAs with respect to real-world problems is much larger than

calculating fitness values of the entire search space (i.e., the state space). It is not practical

because researchers will not waste more time to obtain weaker solutions. In general, “theo-

retical studies of GAs are criticized for rarely being applicable to the real-world [Schoenauer,

M. et al. (2007)],” and applications of GAs to real-world problems are frequently studied

without foundational support [Jiang, H. and Chang, C. K. (2008); Jiang, H. and Chang, C.

K. and Zhu, D. and Cheng, S. (2007)]. In application domains of GAs, a more practical and

3

functionally equivalent approach to evaluate the applicability of GAs is desired in view of the

current state of the art.

1.3 The Goal of this Work

This work aims to develop a practical support for researchers and practitioners to evaluate

the applicability of GAs to their problem domains. We have proven that the convergence rate

of Markov transition matrices with respect to encodings of optimization problems is related

to the second largest eigenvalue of the transition matrices in absolute value with its physical

meaning explained. The second largest eigenvalue can bound the expected value of the first

hitting time of the optimal solutions corresponding to those optimization problems [Ding, L.

and Yu, J. (2005); Jiang, H. and Chang, C. K. and Zhu, D. and Cheng, S. (2007)]; however,

the computation time of constructing the transition matrix with respect to an optimization

problem takes more than the computation time of calculating all the feasible solutions [Jiang,

H. and Chang, C. K. (2008)]. Relying on the second largest eigenvalue of the transition matrix

with respect to a problem to acquire convergence degrees of GAs is impractical due to the long

computation time. With a concern for practicality, we propose a novel method, an important

approach for real-world applications, to derive the applicability of a GA to a problem based

on the approximate sum of eigenvalues. Mathematically, the sum of eigenvalues of a matrix is

equal to the sum of the diagonal elements (which is called “trace”) of the matrix. According

to that property, our methodology is developed to estimate the trace of the corresponding

transition matrix. Through this method, a degree of convergence can be determined for each

GA run. Being aware of the degree of convergence, researchers and practitioners will be able

to obtain certain information about the applicability of GAs and know how good the solutions

generated by GAs are, so that correct decisions can be made. Moreover, a possible approach

for estimating the number of generations needed for global convergence is also proposed. The

general methodology is illustrated in Figure 1.1. In summary, this dissertation makes the

following contributions to theory and application of GAs:

• a problem statement for the current state of the art;

4

An Optimization Problem P

Genetic Algorithm G

Objectives

Encoding of
Parameters

Fitness Functions

The Proposed
Methodology
(A Bridge)

Transition Matrix
(Theoretical View)

Degree of Convergence to the
Global Optimal Solution
(Practical View)

Extract the
Essential
Properties
(Trace of
the Matrix)

Figure 1.1 General Methodology for Estimating the Applicability of GA
G for Optimization Problem P

• a novel and possible approach to build a linkage between theory and application of GAs;

• the verification of the proposed approach.

The rest of this dissertation is organized as follows. Chapter 2 provides the literature review

of this work. Chapter 3 reviews the basic operators of GAs, Markov chains, and how to model

the operators of GAs using Markov chains. Research assumptions and definitions are also

presented in this chapter. Chapter 4 proves that the convergence rate of a CGA (see Section

3.3.3.2) with best solution maintained over time depends on the second largest eigenvalue of

the corresponding transition matrix, and explains the relationship between the second largest

eigenvalue of the transition matrix, and the first hitting time (i.e., expected waiting time) of the

optimal solution of a GA. Chapter 5 explores an evaluation matrix to evaluate the applicability

of GAs to real world optimization problems. In Chapter 6, a case study about an evolutionary

algorithm (EA) used in software testing (also called evolutionary testing) is provided. Chapter

5

7 proposes a possible approach for estimating the number of generations needed for the global

convergence. Chapter 8 proves that the proposed metric can be generalized to support certain

classes of EAs. Chapter 9 concludes the dissertation and outlines future research work.

6

CHAPTER 2. REVIEW OF LITERATURE

2.1 Real-World Optimization Problems

Generally, if a problem has more than one feasible solution, the problem can be considered

as an optimization problem. Theoretically, the optimization problem is defined as the problem

which can be solved by more than one feasible solution and has at least one criterion to

evaluate solutions, with the goal being the search for the best solution within the domain of

all the feasible solutions.

In the real-world, there are many optimization problems in which GAs are applicable.

Among many fields of study, such as combinatorial optimization problem domains, machine

learning, information retrieval, and data mining, project management and software engineering

are two heavily studied fields that provide ample opportunities to apply GAs for performance

improvement.

I have research interests in both Project Management (PM) and Software Engineering (SE).

Some problems in those two domains are listed below.

2.1.1 Problem Domain 1 - Project Management Problems

In PM, optimal scheduling is one of the typical optimization problems [Chang, C. K. and

Christensen, M. J. (1999); Chang, C. K. and Christensen, M. J. and Zhang, T. (2001); Chao,

C. (1995); Ge, Y. (2004)]. One branch in PM research explores ways to intelligently match

employees to tasks with respect to the factors gathered during early project development.

Typical factors include salaries of employees (costs), capabilities of employees, learning curves

of employees, and potential hazard levels of assignments [Xu, R. and Qian, L. and Jing, X.

(2003)]. Researchers may expand or narrow this list of factors depending upon their research

7

goals.

2.1.2 Problem Domain 2 - Software Engineering Problems

Software Testing Problems - In SE, the traditional waterfall model regards testing as

a key component of verification and validation (V&V) activities [Pressman, R. S. (2005)].

Verification is to inspect whether specific functions are built correctly in the software, and

validation is to examine whether the software meets customer requirements. To conduct testing

on a piece of software, various strategies have been proposed. Some strategies are formulated

as optimization problems [Berndt, D. and Fisher, J. and Johnson, L. and Pinglikar, J. and

Watkins, A. (2003); Berndt, D. J. and Watkins, A. (2004); Briand, L. C. and Labiche, Y. and

Shousha, M. (2004, 2005); Clark, J. and Dolado, J. J. and Harman, M. and Hierons, R. M.

and Jones, B. and Lumkin, M. and Mitchell, B. and Mancoridis, S. and Rees, K. and Roper,

M. and Shepperd, M. (2003); Vieira, F. E. and Menezes, R. and Braga, M. (2006)]. For

instance, with regard to branch testing in a structural testing problem [Clark, J. and Dolado,

J. J. and Harman, M. and Hierons, R. M. and Jones, B. and Lumkin, M. and Mitchell, B.

and Mancoridis, S. and Rees, K. and Roper, M. and Shepperd, M. (2003)], the condition

statements of the test-aim branch are formulated into a fitness function, which guides the

search of input data to satisfy all the conditions of the test-aim branch. That is, researchers

measure the “distance” between the test-aim branch and the branch caused by a set of input

data. GAs minimize the distance so that the input data (called test cases) of a test aim can

be generated.

Software Module Clustering Problems - Owing to the rapid development of computer

technologies, industrial applications are increasingly equipped with highly complex software

systems, which often consist of a large number of components. To streamline the design

phase, a large-scale system can be designed hierarchically. Instead of directly integrating

all of the components into a system, a set of congruent components are first grouped into a

subsystem. How to cluster the original set of components into several subsystems has attracted

the attention of researchers for many years [Chang, C. K. and Cleland-Haung, J. and Hua, S.

8

and Kuntzmann-Combelles, A. (2001)]. Oftentimes, they try to maximize cohesion inside a

component and minimize coupling among components. This kind of problem also represents a

class of optimization problems in SE [Mitchell, B. S. and Mancoridis, S. (2002)].

2.2 Analyzing the Behaviors of GAs

2.2.1 Markov Chain Based Approaches

A variety of methods have been employed to analyze the behaviors of GAs [Rudolph, G.

(1994); DeJong, K. A. and Spears, W. M. and Gordon, D. F. (1995); Suzuki, J. (1995); He,

J. and Kang, L. (1999); He, J. and Yao, X. (2001); Ding, L. and Yu, J. (2005); Coley, D. A.

(1999); Mitchell, M. (1996); Goldberg, D. E. (1989); Grefenstette, J. J. (1992); Bethke, A.

D. (1980); Forrest, S. and Mitchell, M. (1993); Bridges, C. L. and Goldberg, D. E. (1991);

Naudts, B. and Kallel, L. (2000)]. Among them, different approaches are derived and asserted.

While each method has its own merits, Markov chain analysis can be most successfully applied

to capture the essential spirit of GAs due to the following reasons:

• The initial population of a GA run is based on a probability distribution. Usually, it is

a uniform distribution.

• From one generation to another, the GA selects the individuals based on the proportions

of the fitness values of the individuals in the current population. In other words, the

selection operator selects the individuals from (and only from) the current state where

each individual has some probability of being preserved in the next generation. Note

that the fitness function of the GA run is considered in the selection operation.

• Regardless of the type of recombination employed to solve the optimization problem, the

recombination and mutation operators are both related to probability issues.

My research adopts Markov chain analysis to investigate the behaviors of GAs. Previous

work by Rudolph [Rudolph, G. (1994)], De Jong [DeJong, K. A. and Spears, W. M. and

Gordon, D. F. (1995)], Suzuki [Suzuki, J. (1995)], He [He, J. and Kang, L. (1999); He, J.

9

and Yao, X. (2001)], and Ding [Ding, L. and Yu, J. (2005)], including their methodologies

and results, are particularly relevant to my approach.

Rudolph’s main contribution on the behavior of GAs is to prove that the CGA with best

solution maintained converges to its global optimal solution [Rudolph, G. (1994)]. Addition-

ally, he mentions that in an ergodic Markov chain, the expected value of the transient time in

which an arbitrary state i goes to any other state j is finite. This claim is a well established

result in Markov chain theory. The detailed proof can be seen in [Iosifescu, M. (1980) (p.

133)]. This implies that the expected value of the transient time in which the initial state

moves to the optimal state is finite, since both the initial state and the optimal state are the

states in Markov chain.

Later, De Jong et al. proposed a method to capture the “hardness” of a GA (i.e., the level

of difficulty to apply it) by computing the expected waiting time (i.e., the first hitting time)

through the use of transition matrices [DeJong, K. A. and Spears, W. M. and Gordon, D. F.

(1995)]. To my knowledge, this was the first attempt to use the first hitting time to predict

the applicability of GAs. In 2005, the expected first hitting time of the optimal state was

investigated and calculated again by Ding et al. [Ding, L. and Yu, J. (2005)]. They proposed

an approach to reformulate the transition matrices so that the formula to derive the expected

value of the first hitting time became simpler than before. Besides the computation of the

expected waiting time, De Jong et al. introduced the concept of predicting the behaviors of

GAs within a fixed number of generations based on the derived transition matrices [DeJong,

K. A. and Spears, W. M. and Gordon, D. F. (1995)]. This concept provides an insight for the

waiting time in practical use, which is similar to Assumption 3 in Chapter 3 of this dissertation.

In Suzuki’s work, the investigation of behaviors of GAs was first linked to the second largest

eigenvalue of the transition matrix and convergence rates of Markov chains [Suzuki, J. (1995)].

My preliminary result, which is presented in Chapter 4 and derived from a different approach

in Markov chain theory, matches this assertion in some sense. In addition to the eigenvalue-

based approach, He and Kang proposed another perspective to bound the convergence rate

through the “minorization condition” in Markov chain theory [He, J. and Kang, L. (1999)].

10

He and Yao devoted their work to calculating the computational time complexity of evolu-

tionary algorithms (EAs) [He, J. and Yao, X. (2001)]. Their work generalized Droste’s work,

which provided a rigorous complexity analysis of the (1 + 1) EA (i.e., EA with a population

size of 1 and only with mutations), for a class of fitness functions [Droste, S. and Jansen,

T. and Wegener, I. (1998)]. With He and Yao’s approach, Droste’s work was extended to

general EAs through drift analysis. Several drift conditions were studied for deriving the com-

putational time. Their work began with modeling the evolution of an EA population as a

random sequence, e.g., a Markov chain. The general case was considered with three opera-

tors (selection, crossover, mutation) and a population with multiple individuals. Then, they

analyzed the relationship between the drift of the sequence and the optimal solution of the

problem. Various bounds on the first hitting time were derived under different drift conditions.

They also asserted that some drift conditions caused the random sequence to drift away from

the optimal solution, while others enabled the sequence to drift towards the optimal solution.

The conditions used to determine the time complexity of an EA to solve a problem were also

investigated and proposed [He, J. and Yao, X. (2001)].

2.2.2 Other Approaches

Starting from the early 1970s, a series of approaches different from Markov chain analysis

were proposed to analyze the behaviors of GAs. In 1975, Holland introduced the notion of

schemas to formalize the informal notion of “building blocks” [Coley, D. A. (1999) Mitchell, M.

(1996)]. His building block hypothesis stated that GAs attempt to find highly fit solutions to a

problem through short, low-order, and above-average schemata. However, the schema theory

merely demonstrated a rough idea in high level that better performing schemata will receive

an increasing number of trials in the next generation. It does not give us much information

about the detailed analysis of the behaviors of GAs. In 1987, the term “deception problem” was

coined by Goldberg, who said that a problem is deceptive if certain hyperplanes guide the search

toward some solutions or genetic building blocks that are not globally competitive [Goldberg,

D. E. (1989)]. Comparing Goldberg’s statement with Holland’s building block hypothesis,

11

the deception problem appears to suggest a contradiction. Hence, deception problems are

considered “hard” problems for GAs. Nevertheless, the deception is neither a sufficient nor

necessary condition to characterize problems that are hard for GAs [Grefenstette, J. J. (1992)].

Goldberg isolated the deception problems from Bethke’s work [Bethke, A. D. (1980);

Forrest, S. and Mitchell, M. (1993)]. Bethke used discrete Walsh functions to analyze the

fitness functions of GAs. He developed the Walsh-Schema transform to calculate the average

fitness of schema efficiently and used it to characterize functions as easy or hard for GAs to

optimize. This method helps to produce ideas for solving a problem; however, it can be difficult

to convert functions to Walsh polynomials. This method, a static analysis, examines only a

flat population, where every possible string is assumed to be represented in equal proportion

[Bridges, C. L. and Goldberg, D. E. (1991)]. Bethke’s method fails to capture the more

dynamic aspects found in GAs. To address this issue, Bridges and Goldberg proposed another

approach called the Nonuniform Walsh Transform [Bridges, C. L. and Goldberg, D. E. (1991)].

Unfortunately, as in the case of Walsh transformations, it is difficult to convert fitness functions

into such forms.

In 2000, Naudts and Kallel studied two widely-known predictive measures of problem dif-

ficulty in GAs (with both the GA-easy and GA-hard functions): epistasis variance and fitness

distance correlation [Naudts, B. and Kallel, L. (2000)]. They found that the values of the

measures can be completely unreliable and entirely uncorrelated to the convergence quality

and speed of GAs.

In general, the GA theory developed thus far shows that it is difficult to fully capture the

behaviors of GAs, especially in finite time with different types of fitness functions. The missing

link is the bridge between the theory and its applicability to practical problems [Jiang, H. and

Chang, C. K. (2008)]. This observation coincides well with the recent claims stated in the

front pages of the journal [Schoenauer, M. et al. (2007)] concerning the difficulty in directly

linking GA theory to real-world applications. In this study, the objective is to develop the

necessary support theory to effectively bridge the gap between evolutionary computation and

real-world applications.

12

CHAPTER 3. BACKGROUND OF GENETIC ALGORITHMS

This chapter reviews and presents the background information for GAs, Markov chains,

how to model GAs using Markov chains, existing theorems, and research assumptions of my

work.

3.1 Optimization Problems and Fitness Functions of GAs

As mentioned before, an optimization problem is defined as the problem which can be

solved by more than one feasible solution, has at least one criterion to evaluate solutions,

with the goal of the problem being the search for the best solution within the domain of all

the feasible solutions. The (feasible) solutions of GAs are encoded into strings, usually called

chromosomes or individuals. With a GA being chosen as the optimization method, the criteria

to evaluate solutions are formulated as a fitness function for the GA.

3.2 The Canonical Genetic Algorithm and Its Operators

The CGA (also called a simple GA) can be sketched as follows [Rudolph, G. (1994)].

Choose an initial population (i.e., a list of a fixed number of individuals)

Compute the fitness of each individual

Perform selection

Repeat

Perform crossover

Perform mutation

Compute the fitness of each individual

Perform selection

13

Until stopping criterion is satisfied

In other words, it is composed of three operators:

• Selection (also called Reproduction)

• Crossover

• Mutation

Selection is a process in which individuals are copied according to their fitness values. Usu-

ally, the individuals with higher fitness values have higher probabilities to be selected into the

next generation. Therefore, a typical fitness function for a selection operator should be the

function to be maximized. This operator is actually an artificial version of natural selection,

the Darwinian theory of “survival of the fittest” [Goldberg, D. E. (1989)]. Various selec-

tion methods, such as roulette wheel selection (proportional selection), tournament selection,

and (μ, λ) selection, etc., are proposed. Among them, roulette wheel selection is commonly

adopted in the literature. It selects individuals based on their proportions of the fitness values

among the individuals in the current population (generation). For demonstration purposes,

this dissertation mainly discusses roulette wheel selection. In Chapter 8, the selection operator

is generalized to any type of selection methods.

Crossover, including one point crossover, two point crossover, and uniform crossover, etc.,

mimics the mating of creatures. It swaps some bits of two chosen individuals. The resulting

individuals are passed into the next generation.

The mutation operator simulates biological mutation, maintaining genetic diversity from

one generation to another. A simple and common way to implement it is to sweep each

individual bit of strings within a population once, and each bit has a fixed probability to be

flipped to another number.

3.3 An Overview of Markov Chain

Markov chains are named after Prof. Andrei A. Markov (1856-1922) who first published

his result in 1906 [Ching, W. K. and Ng, M. K. (2006)]. His research work on Markov

14

chains launched the study of stochastic processes, which was followed by a large variety of

applications. In this work, the discrete homogeneous finite state Markov chain is applied.

Specifically, a Markov chain is a sequence of random variables X1, X2, X3, . . . with the Markov

property [Iosifescu, M. (1980)]. The Markov property is the property that:

Pr(Xn+1 = x|Xn = xn, . . . , X1 = x1) = Pr(Xn+1 = x|Xn = xn),∀n ∈ N. (3.1)

The future state is only dependent on the current state and independent of the past states.

A Markov chain is called time-homogeneous if:

Pr(Xn+1 = x|Xn = y) = Pr(Xn = x|Xn−1 = y),∀n ∈ N. (3.2)

To form a Markov chain, three basic components should be considered: a state space, an initial

distribution, and a transition matrix.

Consider a random walker in a small town. Within the town, there are a finite number of

places to go. Suppose that at time t, t ∈ N , the random walker stands in a place in the town.

At time t+1, he walks to any place in the town with a certain probability, dependent only upon

the place he was in at time t (i.e., time is a non-factor). If each place in the town is assigned

a distinct number (as an index), say, 1, 2, . . . , k (k ∈ N), and at each time t, Xt is a random

variable denoting the index of the random walker’s location, (X0, X1, . . .) is a random process

taking values in {1, 2, . . . , k}. Such a random process can be treated as a discrete homogeneous

finite state Markov chain. Figure 3.1 illustrates the transition matrix of a Markov chain for the

random walker in the small town. In Figure 3.1, places are considered as states of the Markov

chain. If the current time is t, ‘∗’ represents the probability of transitioning from state i to

state j (i, j ∈ {1, . . . , k}) at time t + 1.

3.3.1 Definitions and Theorems in GA, Markov Chain Theory, and Linear Alge-

bra

Definition 1. A nonnegative square matrix A is said to be stochastic if and only if the sum

of the entries in any row of A is 1.

15

 * * … … … … *

 * * … … … … *

 * * … … … … *

 * * … … … … *

 * * … … .. … *

Place 1

Place 2

Place 3

Place 4

From

To

Place k

.

.

.

Place 1 Place 2 Place k

i

j

Figure 3.1 The Transition Matrix of the Random Walker in the Small Town

Definition 2. A square matrix Ar×r is called positive (i.e., A > 0) if and only if aij > 0

∀i, j ∈ {1, 2, . . . , r}.

Definition 3. A stochastic matrix A is said to be regular if and only if there exists a natural

number r such that Ar is positive (i.e., Ar > 0).

Note that the product of stochastic matrices is a stochastic matrix.

Definition 4. A state in a Markov transition matrix is called transient if there is a non-zero

probability that once the chain leaves that state, it will never return.

Definition 5. A state in a Markov transition matrix is called absorbing if once the chain

enters that state, it never leaves.

Definition 6. The trace of a square matrix Ar×r is defined to be the sum of the elements on

the main diagonal of A, i.e.,

Trace(A) = a11 + a22 + · · · + arr.

Definition 7. [Burden, R. L. and Faires, J. D. (2005)] [Convergence Rate] Suppose {βn}∞n=1

16

is a sequence known to converge to zero, and {αn}∞n=1 converges to a number α. Then it is

called that {αn}∞n=1 converges to α with convergence rate (or rate of convergence) O(βn) if

there exist a constant K and a number M ′ > 0 such that

|αn − α| ≤ K|βn|, for all n ≥ M ′. (3.3)

In addition, Inequality (3.3) indicates that αn = α + O(βn) for large n.

Definition 8. [Empirical Convergence] Let P be a square matrix of order r and {Pn}n∈N

converges to P ∗ as n → ∞. In other words, for all ε > 0, there exists a constant n1(ε) such

that ⎛
⎝ r∑

i,j=1

|p(n)
ij − p∗ij |2

⎞
⎠

1/2

< ε,∀n ≥ n1(ε),

where p
(n)
ij is the element in the ith row and jth column of Pn, and p∗ij is the element in the ith

row and jth column of P ∗. Then {Pn}n∈N is called to empirically converge to P ∗ with respect

to a given ε > 0 at n = k if k ≥ n1(ε).

Theorem 1 [Rudolph, G. (1994)] The transition matrix of the CGA with mutation proba-

bility pm ∈ (0, 1), crossover probability pc ∈ [0, 1] and fitness proportional survivor selection is

regular.

Theorem 1, formulated by Rudolph, is used to prove the convergence of CGA, with best

solution maintained, to its global optimal solution [Rudolph, G. (1994)].

Theorem 2 [Iosifescu, M. (1980)] If P is a r×r regular stochastic matrix, then Pn converges

as n → ∞ to a positive stable stochastic matrix
∏

= evT , where e = (1, 1, · · · , 1)T is a r × 1

column vector in which all elements are of the value 1, and vT = (v1, v2, · · · , vr) is a 1 × r

probability row vector with non-null entries. Moreover, there exists a constant a > 0 such that

|p(n)
ij − vj | ≤ anm2−1|λ2 P |n, (3.4)

where p
(n)
ij is the ith row and jth column of Pn, λ2 P is the second largest eigenvalue of P in

absolute value, and m2 is the (algebraic) multiplicity of λ2 P .

17

Theorem 3 [Iosifescu, M. (1980)] Let the transition matrix P be

P =

⎛
⎜⎝ P1 0

R A

⎞
⎟⎠ ,

where P1 is regular, R
= 0. Then

Pn =

⎛
⎜⎝ Pn

1 0
∑n−1

i=0 An−1−iRP i
1 An

⎞
⎟⎠ . (3.5)

As n → ∞, Pn converges to

lim
n→∞Pn =

⎛
⎜⎝ e1v

T 0

e2v
T 0

⎞
⎟⎠ , (3.6)

where vT = (v1, v2, · · · , vr1) is a 1 × r1 probability row vector with non-null entries, e1 =

(1, 1, · · · , 1)T is a r1×1 column vector if r1 is the number of rows in P1, and e2 = (1, 1, · · · , 1)T

is a r2 × 1 column vector if r2 is the number of rows in R.

Note that An converges to 0 as n → ∞. Moreover, limn→∞ Pn has the property that each

of the columns has the same entry value. This is insightful for the proof that the initial state

will not impact the final state if time goes to infinity.

Theorem 4 [Iosifescu, M. (1980)][Perron’s Formula] If A is a square matrix of order r,

λ1, λ2, . . . , λq, q ≤ r, are the eigenvalues of A, and m1, m2, . . . , mq are the (algebraic) multi-

plicities of the eigenvalues, respectively, m1 + m2 + · · · + mq = r, then

a
(n)
ij =

q∑
k=1

1
(mk − 1)!

(
dmk−1

dλmk−1

(λnAij(λ)∏
i�=k(λ − λi)mi

))
λ=λk

,

where a
(n)
ij is the element in the ith row and jth column of An, and Aij(λ) is the element in

the ith row and jth column of the adjoint of the matrix (λIr − A); that is, Aij(λ) is equal to

the product of (−1)i+j and determinant of the minor of (λIr − A)ji. Note that the minor of

(λIr − A)ji is derived by deleting the jth row and ith column from the matrix (λIr − A), and

Ir is the identity matrix of order r.

Theorem 5 [Iosifescu, M. (1980)] If A is a regular matrix, then there exists a real eigenvalue

λ1 > 0 which is simple (i.e., of algebraic multiplicity 1) and which exceeds the absolute values

of all other eigenvalues of A.

18

Lemma 1 [Iosifescu, M. (1980)] If A is a stochastic matrix (i.e., A is nonnegative and the

sum of the elements in any row of A is 1), then the eigenvalues of A are in absolute value at

most equal to 1. Moreover, 1 is an eigenvalue of A.

Theorem 6 [Horn, R. A. and Johnson, C. R. (1985)] [Schur] If A is a square matrix of

order r with eigenvalues λ1, λ2, . . . , λr in any prescribed order, there exists a unitary matrix S

(square matrix) of order r such that

S∗AS = T = [tij]

is upper triangular, with diagonal entries tii = λi, i = 1, 2, . . . , r. That is, every square matrix

A is unitarily equivalent to a triangular matrix whose diagonal entries are the eigenvalues of

A in a prescribed order.

Theorem 2, 3, 4, 5, 6, and Lemma 1 are directly from Markov chain theory and linear

algebra. Theorem 4, 5, 6, and Lemma 1 are utilized to deduce my preliminary result [Jiang,

H. and Chang, C. K. and Zhu, D. and Cheng, S. (2007)].

3.3.2 Research Assumptions

The first two assumptions adopted in this research are based on Rudolph’s work [Rudolph,

G. (1994)].

Assumption 1 [Problem Definition] The problems max{f(b)|b ∈ IBl}, where 0 < f(b) < ∞
for all b ∈ IBl = {0, 1}l, and l is the length of the binary strings which represent feasible

solutions, are the subjects for discussion.

Assumption 2 [Choice of Solution Method] The CGA, which only has selection, crossover,

and mutation operators, with the best solution maintained, is the algorithm to be analyzed.

(More specifically, roulette wheel selection, any crossover operation, and bit mutation are con-

sidered before Chapter 8 in this dissertation.)

The last assumption pertains to the concerns for practicality and applicability.

19

Assumption 3 The number of generations of GAs is a reasonably large number, and it is

fixed.

3.3.3 Markov Chain Analysis for GAs

3.3.3.1 State Representations

Two types of state representations for the finite state homogeneous Markov transition

matrices are commonly adopted in Markov chain analysis. Michael D. Vose, Joe Suzuki, et al.

applied the transition matrix with the states representing the occurrences of the individuals

[Suzuki, J. (1995, 1998); Vose, M. D. and Liepins, G. E. (1991)]. The cardinality of different

populations (i.e., the dimension of the state space), becomes [Suzuki, J. (1995)]

|S| =

⎛
⎜⎝ m + 2l − 1

m

⎞
⎟⎠ ,

where S is the state set, m is the size of a population, and l is the length of the binary strings.

Günter Rudolph and David B. Fogel [Fogel, D. B. (1995); Rudolph, G. (1994)] proposed

the transition matrix in which the states are defined by every possible configuration of an entire

population of bit strings. Therefore, there are 2ml states, where m is the size of a population,

and l is the length of the binary strings.

Although the approaches of both Vose and Rudolph possess similar concepts and func-

tionalities, and they can be converted to each other (see Theorem 11), the representations

are different. Each approach has its advantages. While fewer states and the distributions of

the individuals can be obtained in Vose’s approach, the analysis of this approach is not as

intuitive as Rudolph’s approach. For instance, if there are four individuals (3-digit binary

strings) within a generation, say “101, 111, 011, 111”, this generation is represented by the

state “101111011111” in Rudolph’s approach. For Vose’s approach, one has to list the sorted

state space “000, 001, 010, 011, 100, 101, 110, 111” first, and obtain the state “11101101100”.

Since my research goal is to seek an evaluation metric to estimate the applicability of GAs

for real-world applications and Markov chain analysis is not so practical (discussed in Sec-

tion VI), either approach can be chosen as the transient analyzing method. Due to the fact

20

that Rudolph’s approach is more intuitive than Vose’s, my work uses Rudolph’s approach to

transform the encodings of optimization problems to Markov chains [Rudolph, G. (1994)].

Rudolph’s work studies the convergence of CGAs with the best solution maintained. The

transition matrices of his Markov chains are described below.

3.3.3.2 Transition Matrices

A CGA is a canonical GA which consists of an m-tuple of binary strings bi, i ∈ {1, 2, . . . , m},
of length l. The bits of each string are considered to be the genes of an individual chromosome.

The m-tuple of individual chromosomes is said to be a population of a generation. From one

generation to another, CGA applies three operators on the population. The operators include

selection, crossover, and mutation operators.

The selection operator, in which the roulette wheel selection (proportional selection) is

assumed, forms a transition matrix S. As mentioned before, there are m (an even number)

individuals for each generation. By Assumption 1, S is a 2ml × 2ml matrix with the element

sij =
∏m

k=1 Ok · f(πk(j))
(Σm

k=1f(πk(i)))m

if {π1(j), π2(j), . . . , πm(j)} ⊆ {π1(i), π2(i), . . . , πm(i)} , where πk(i), k ∈ {1, . . . , m} are the kth

segment of length l from the state i, Ok is the number of occurrences of πk(j) in state i, and

f(·) is the fitness function. Otherwise, sij = 0.

By the same token, the crossover transition matrix C is also a 2ml × 2ml matrix. After

the crossover method is determined, Ii is defined to be the index set in which each element is

a binary string with length ml representing a possible mating method for the individuals of

state i. For each r ∈ Ii, let pr be the probability of r being selected as a mating method. If pc

is the crossover probability, then

cij = (1 − pc)δij + pc · (
∑
r∈Ii

pr ·
m
2∏

k=1

Pr{Cr(π2k−1(r), π2k(r)) = (π2k−1(j), π2k(j))}), (3.7)

where

δij =

⎧⎪⎨
⎪⎩

1 if i = j

0 if i
= j
,

21

Cr(·, ·) is the result of the crossover operation, and Pr{·} is the probability of the event. In

(3.7),

Pr{Cr(π2k−1(r), π2k(r)) = (π2k−1(j), π2k(j))}

depends on the crossover method applied.

Bit mutation is designed to serve as a background operator to ensure that all possible

alleles can occur in the population [Fogel, D. B. (1995)]. Once the population of chromosomes

reaches a configuration such that crossover no longer produces offspring outperforming their

parents, it is the only operator which leads the population to leap out of the homogeneous

populations. The mutation transition matrix is denoted as M , which is a 2ml × 2ml matrix.

Let pm ∈ (0, 1) be the probability of flipping each individual bit, then

mij =
m∏

k=1

pH(πk(i),πk(j))
m (1 − pm)l−H(πk(i),πk(j)),

where H(·, ·) is the Hamming distance of the strings (chromosomes). The matrix CMS, the

product of C, M , and S, forms a transition matrix for CGA.

In order to show that the CGA with the best solution maintained converges to its global

optimum, the state space is extended from 2ml to 2(m+1)l. That is, for each state (m individ-

uals), there is a referenced individual (assumed to be the leftmost individual) with it. The

referenced individual is for the calculation with respect to the presence of the best solution.

Since there are 2l distinct referenced individuals, the new state space is 2ml · 2l = 2(m+1)l. The

new transition matrix P is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

CMS

CMS

. . .

CMS

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.8)

where each of the diagonal squares CMS′s is corresponding to a referenced individual. The

referenced individuals are sorted by fitness values in descending order. That is, the first

diagonal square represents the highest fitness value, and the second square represents the

second highest fitness value, and so on.

22

The upgrade matrix U is also for maintaining the best solution. If a state in the ith

diagonal square has a best fitness value higher than the fitness value of the referenced individual

corresponding to the ith diagonal square, this state is upgraded to the jth, j < i, diagonal square

in which the fitness value is equal to the best fitness value of the state. The structure of U is

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U11

U21 U22

...
...

. . .

U2l,1 U2l,2 · · · U2l,2l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.9)

which is a lower triangular matrix. Moreover, since it is assumed that there is a unique optimal

solution for the optimization problem in Rudolph’s work [Rudolph, G. (1994)], U11 is the only

2ml × 2ml identity matrix. That is, none of the states in the first diagonal square need to be

upgraded.

Figure 3.2 shows an example of the structure of PU with the dashes representing nonzero

entries of PU , where m = 1 and l = 3. In fact, the figure can be generalized to any value of m

and l.

3.3.3.3 The Proof of Convergence of CGA

Rudolph’s proof on the convergence of CGA, with best solution maintained to its global

optimal solution, is quite unique [Rudolph, G. (1994)]. The concept and method will be briefly

reviewed in this subsection.

From Equation (3.8) and (3.9) in the previous subsection, we have

PU =

⎛
⎜⎝ CMSU11 0

R A

⎞
⎟⎠ , (3.10)

where R and A are corresponding sub-matrices. Since U11 is a 2ml × 2ml identity matrix, the

block matrix CMSU11 in Equation (3.10) can be simplified as CMS.

According to Theorem 1, CMS is regular. Theorem 3 shows that the matrix PU converges

(i.e., CGA with best solution maintained converges). In addition, based on Equation (3.5) and

23

Figure 3.2 Structure of the Extended Transition Matrix PU

Equation (3.6), the first 2ml states are absorbing states. That is, regardless of the initial pop-

ulation (state), the populations (states) of CGA with best solution maintained will eventually

be restricted within a subset of all the populations (states). According to the design of upgrade

matrix U in the previous subsection, all the populations in the subset are under the condition

that the global optimal solution is found. Their referenced individuals have the highest fitness

value. Hence, we can conclude that CGA with best solution maintained converges to its global

optimal solution.

24

CHAPTER 4. CONVERGENCE RATE AND THE FIRST HITTING

TIME

Rudolph’s proof shows that a CGA with the best solution maintained over time will even-

tually converge to its global optimal solution; however, how long it takes to converge is not

specified. To address this problem, a study was conducted to investigate and analyze the

convergence rate of a CGA with the best solution maintained over time.

4.1 Convergence Rate

From Theorem 4 [Perron’s Formula], without loss of generality, we can bound a
(n)
ij by

estimating the term, (
dmk−1

dλmk−1

(λnAij(λ)∏
i�=k(λ − λi)mi

))
λ=λk

, (4.1)

where k ∈ {1, 2, . . . , q}, as follows. Since Aij(λ) is equal to the product of (−1)i+j and deter-

minant of the minor of (λIr − A)ji, it is a polynomial of order (r − 1). Let

fij(λ) =
λnAij(λ)∏

i�=k(λ − λi)mi
, (4.2)

then we get the order of the function fij(λ) is (n+(r−1))−(r−mk) = n+(mk−1). Therefore,

the order of (mk − 1)th derivative of fij(λ) in equation (4.1) is n. Moreover, a multiplier of

O(n) is applied everytime during the process in which the derivative is obtained. Hence, it

is concluded that if A is a square matrix of order r, λ1, λ2, . . . , λq, q ≤ r, are the eigenvalues

of A, and m1, m2, . . . , mq are the (algebraic) multiplicities of the eigenvalues, respectively,

m1 + m2 + · · · + mq = r, then there exists a positive number K such that

|a(n)
ij | ≤ Knmmax−1|λmax|n, (4.3)

25

where a
(n)
ij is the element of An in the ith row and jth column, mmax = max{m1, m2, . . . , mq},

and |λmax| = max{|λ1|, |λ2|, . . . , |λq|}. This inequality will be exploited to show that the

convergence rate is related to one of the eigenvalues of the transition matrix later.

From section 2, the transition matrix of the CGA with the best solution maintained is

PU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

CMSU11

CMSU21 CMSU22

...
...

. . .

CMSU2l,1 CMSU2l,2 · · · CMSU2l,2l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4)

From the form of PU in Equation (4.4), we get that the eigenvalues of PU are the eigenvalues

of the diagonal blocks [Suzuki, J. (1995)]. Moreover, in the matrix (PU)n, where n is the fixed

number of generations, the elements of the first 2ml columns are related to the probabilities

of convergence to the global optimum. With the initial distribution p0 (a row vector) being

known beforehand, to compute the probability of convergence to the global optimum, we have

to sum up the first 2ml elements of p0(PU)n. Without loss of generality, we can assume that

p0 = (p0,1, p0,2, . . . , p0,2(m+1)l). As an alternative, we compute the summation of the elements

other than the first 2ml ones of p0(PU)n.

In equation (4.4), the matrix PU can be represented as

PU =

⎛
⎜⎝ CMSU11 0

R A

⎞
⎟⎠ , (4.5)

where

R =

⎛
⎜⎜⎜⎜⎝

CMSU21

...

CMSU2l,1

⎞
⎟⎟⎟⎟⎠ , (4.6)

and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

CMSU22

CMSU32 CMSU22

...
...

. . .

CMSU2l,2 CMSU2l,3 · · · CMSU2l,2l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.7)

26

Then,

(PU)n =

⎛
⎜⎝ (CMSU11)n 0

∑n−1
i=0 AiR(CMSU11)(n−1)−i An

⎞
⎟⎠ . (4.8)

Let v(n) = p0(PU)n. Since A is a square matrix, for the element a
(n)
ij of An, the inequality

(4.3) holds. Hence, we have

2(m+1)l∑
i=2ml+1

vi(n) =
2(m+1)l−2ml∑

i=1

p0,2ml+i

2(m+1)l−2ml∑
j=1

a
(n)
ij ≤ (2(m+1)l − 2ml)Knmmax−1|λmax|n, (4.9)

The following shows |λmax| < 1. Since the upgrade matrix upgrades some columns of A to

the first 2ml columns of PU , the sum of each row of A is less than 1. Therefore, if λ is an

eigenvalue of A = (a(1)
ij) and u = (u(i)) is its left eigenvector, we have

λu(j) =
2(m+1)l−2ml∑

i=1

u(i)a(1)
ij , j = 1, 2, . . . , 2(m+1)l − 2ml. (4.10)

That is,

2(m+1)l−2ml∑
j=1

|λu(j)| ≤
2(m+1)l−2ml∑

i=1

|u(i)|
2(m+1)l−2ml∑

j=1

a
(1)
ij <

2(m+1)l−2ml∑
i=1

|u(i)|. (4.11)

Hence, |λ| < 1. Since the eigenvalues of PU are the eigenvalues of the diagonal blocks, we

get that the set of eigenvalues of A is contained in the set of eigenvalues of PU . Moreover,

since CMSU11 is a regular (stochastic) matrix (Theorem 3 in [Rudolph, G. (1994)]), from

Lemma 1 and Theorem 5, we obtain that λ1 = 1 is an eigenvalue of CMSU11, i.e., λ1 = 1 is an

eigenvalue of PU , and λ1 is simple. If we agree that the eigenvalues, λ1, . . . , λk, k ≤ 2(m+1)l,

of PU are in descending order 1 = λ1 > |λ2| ≥ · · · ≥ |λk|, with m1, m2, . . . , mk being the

(algebraic) multiplicities, respectively, the following inequality can be derived.

2(m+1)l∑
i=2ml+1

vi(n) ≤ K ′nm′
max−1|λ2|n, (4.12)

where K ′ > 0 and m′
max is the maximal (algebraic) multiplicity of the eigenvalues of PU . That

is, regardless the initial distribution of the populations, the probability of convergence to the

global optimum is greater than or equal to 1 − K ′nm′
max−1|λ2|n.

If K ′nm′
max−1|λ2|n > 1, that means either the fixed n is not large enough, or λ is not

small enough, this equation is meaningless. For any optimization problem, we first need to

27

compute its transition matrix CMS, extend it to PU , find the eigenvalue λ2, which is related

to the convergence rate of the problem, of PU , and then apply λ2 to K ′nm′
max−1|λ2|n. With

n satisfying K ′nm′
max−1|λ2|n ≤ 1, we can obtain the CGA’s hardness of the problem (i.e., the

applicability of CGA to the problem). Nevertheless, it is concluded that the computations

described above are time consuming and impractical for the current state of the art. By the

following subsection, we get that traces of the transition matrices (PU)n is highly related to

|λ2|. In Chapter 5, the relationship is modified and applied so that an alternative approach

to substituting the estimation of |λ2| is proposed to estimate the applicability of the CGA

to optimization problems. Chapter 7 uses the proposed method in Chapter 5 and provides a

possible approximation method to estimate the number of generations needed for the global

convergence.

4.1.1 Eigenvalues of Transition Matrices and Fix Points of Genetic Algorithm

The convergence rate is shown to be related to |λ2|, the second largest eigenvalue of the

transition matrix in absolute value. This subsection provides the relationship between the

second largest eigenvalue of the transition matrix and the fix points of CGA.

Theorem 6 demonstrates that every square matrix is unitarily equivalent to a triangular

matrix whose diagonal entries are the eigenvalues of the matrix. Hence, the transition matrix

(PU)n, representing transition probabilities for every n generations of a CGA, can be written

as

(PU)n = (STS∗)n = STnS∗, (4.13)

where S is a unitary matrix and T is upper triangular with diagonal entries are the eigenvalues

of PU . Let the eigenvalues of PU be denoted as λ1 = 1, λ2, . . . , λ2(m+1)l (in absolute descending

order). Then Tn is an upper triangular matrix with diagonal entries are λn
1 , λn

2 , . . . , λn
2(m+1)l .

Moreover, the trace of (PU)n is

Trace((PU)n) = Trace((STn)S∗) = Trace(S∗STn) = Trace(Tn) =
2(m+1)l∑

i=1

λn
i . (4.14)

28

By the inequality

|
2(m+1)l∑

i=1

λn
i | ≤

2(m+1)l∑
i=1

|λi|n ≤ 1 + (2(m+1)l − 1)|λ2|n, (4.15)

it is obtained that

Trace((PU)n) ≤ 1 + (2(m+1)l − 1)|λ2|n. (4.16)

That is, |λ2|n is bounded (from the left) by the trace of the transition matrix (PU)n with a

constant multiple. Since |λi| < 1 for i ∈ {2, . . . , 2(m+1)l}, there exists a number M1 > 0 such

that

Trace((PU)n) = 1 + λn
2 + · · · + λn

2(m+1)l ≥ C1, ∀n ≥ M1,

where C1 ∈ (0, 1] is a constant. That implies that there exists a constant K” such that

1 + (2(m+1)l − 1)|λ2|n ≤ 1 + (2(m+1)l − 1) ≤ K”Trace((PU)n), ∀n ≥ M1. (4.17)

Equation (4.17) shows that if n is large enough, Trace((PU)n) with a constant multiple can

also form an upper bound for |λ2|n. Combined with Inequality (4.16), it can be known that

computing bounds for |λ2|n with n ≥ M1 is equivalent to computing the trace of the transition

matrix to the power n. Additionally, the diagonal element of the transition matrix corre-

sponding to each state shows probability of a fix point over the solutions in the CGA search

space. The product of any distribution of transient states and the diagonal elements of the

transition sub-matrix corresponding to the transient states represents the total probability of

fix points, which are outside the set of optimal populations (absorbing states) of CGA. Note

that a population ξ∗ is called an optimal population if there exists i, 1 ≤ i ≤ m + 1, such that

πi(ξ∗) is an optimal solution. For searching purpose, we do not want CGA to stay within a

transient state too long since the state is already visited. The revisiting of a state will cost

some time without any improvement of solutions. In other words, if the total probability of

fixed points of CGA can be reduced, the probability of CGA to search other candidate states

will be increased for the number of the states is finite.

29

4.2 Second Largest Eigenvalue versus Expected First Hitting Time

The research on computation time of GAs used to solve optimization problems is important

for the foundation and theory of evolutionary algorithms. Both convergence rate and expected

first hitting time express the information on time complexity.

From Ding’s work [Ding, L. and Yu, J. (2005)], the first hitting time is defined as

τ(ξ∗) = min{k ≥ 0|ξk = ξ∗},

where ξ∗ is an optimal population, and {ξk|k ∈ N} is a discrete homogeneous Markov chain.

Moreover, the expected first hitting time is calculated as

E[τ(ξ∗)] =
∑
k≥0

k × P{τ(ξ∗) = k}. (4.18)

As mentioned in Chapter 2, a Markov theorem tells us that the expected value of the

transient time in which an arbitrary state i goes to any other state j is finite. That is, there

exists 0 < M1 < ∞ such that

E[τ(ξ∗)] < M1,

since the optimal state is also a state in the state space of the Markov chain. With respect to

the same problem, if the second largest eigenvalue in absolute value of PU : λ2
= 0 (i.e., CMS

does not have identical rows), we can get that there exists 0 < C1 < ∞ such that

E[τ(ξ∗)] < C1|λ2|. (4.19)

For an arbitrary fitness function, an inequality similar as Inequality (4.19) can be derived. In

fact, if a problem has the corresponding λ2
= 0, it is possible to use λ2 to estimate the first

hitting time. Suppose λ2
= 0 is given while m and l are also given. Based on the arrangement

of eigenvalues in Section 4.1.1, the inequality

1 + |λ2|n + |λ3|n + · · · + |λ2(m+1)l |n ≤ 1 + (2(m+1)l − 1)|λ2|n

always holds. For a small ε > 0, the solution of ε = (2(m+1)l−1)|λ2|n on n can be an estimation

of the first hitting time.

30

CHAPTER 5. THE EVALUATION METRICS

5.1 The Bridge between Theory and Practice

Although the expected first hitting time and the convergence rate can be mathematically

computed, there is still a huge gap between the theoretical prediction and the estimation on the

applicability of GAs to problems in real world applications. As I know, the calculations on the

expected first hitting time or convergence rate include the computation on the corresponding

transition matrix of problems. To obtain the transition matrix with respect to a problem, the

matrices C, M , and S should be considered. Since S is derived from selection operator, in

which the proportional selection is applied, the construction time is much longer than the total

computation time on the fitness values of the entire search space. Hence, the theory is only an

ideal view. The real world demands a practical approach for the estimation on applicability of

GAs.

In order to derive a more practical approach, a direction related to Markov chain analysis

is suggested. It is introduced as follows.

5.1.1 Equivalent Forms in terms of Convergence

The extended transition matrix PU is used to prove that the CGA with best solution

maintained converges to the global optimal solution. Because the computation time of the

transition matrix is not practical, CMS and PU cannot be computed directly. PU includes

even more states than CMS. My goal is to find a way which can extract only the essential

properties of the transition matrix so that an evaluation metric can be formulated to evaluate

the applicability of CGAs to real-world problems.

Instead of PU , the transition matrix CMS is used to develop the metric in the next section.

31

According to Theorem 3, the convergence of (PU)n as n → ∞ is proved; however, it does not

show much information about the relationship between (PU)n and (CMS)n, especially when n

is finite. In order to further investigate the convergence behavior among (PU)n, (CMS)n, and

An (the sub-matrix of (PU)n in Equation (3.10)) within finite steps (i.e., n ∈ N and n < ∞),

Theorem 7 is formulated. Note that the term empirical convergence is defined in Definition 8.

Theorem 7 The empirical convergence of {(CMS)n}n∈N at n = n1 and {An}n∈N at n = n2

with respect to ε

2
√

2(2l−1)
implies the empirical convergence of {(PU)n}n∈N at n = k with

respect to ε, where k ≥ max{n1, n2}, A is the sub-matrix of PU in Equation (3.10), and ε > 0

is a sufficiently small number.

Proof. To prove the theorem, one has to first verify with respect to each row of blocks of

(PU)n, if all of the blocks are summed, the result is equal to (CMS)n, for all n ∈ N . The

statement is proved by applying Mathematical Induction on n (the steps).

First, suppose that n = 2. Based on the structure of PU (e.g., Figure 3.2), the property

can be obtained that each row of blocks has exactly 2ml (the order of CMS) nonzero columns.

Let all of the 2ml columns be named from left to right as column1, column2, . . . , column2ml .

It can be shown that their positions within any row of blocks are distinct and sorted. That is,

within a row of blocks, no matter which block it is in, column1 is always the first column in

the block, column2 is always the second column in the block, and so on. To compute PU ·PU ,

for any row i, 1 ≤ i ≤ 2(m+1)l, of the left PU , the first nonzero entry, which is in the first

column, is multiplied with the first row of the right PU , the second nonzero entry, which is in

the second column, is multiplied with the second row in the corresponding row of blocks of the

right PU , and so on. (Figure 5.1 shows an illustration of PU · PU , where m = 1 and l = 3.)

Since the 2ml nonzero entries in the ith row of the left PU are from a row of CMS, and rows

with 2ml nonzero entries of the right PU are from rows of CMS, it can be derived that

Rowj((CMS)2) =
2l∑

g=1

Rowj((PU)2hg), (5.1)

where j = (i mod 2ml), Rowj(·) indicates the jth row in the block, (PU)2uv is the block in the

32

The product of the 1st
column and 1st row

The product of the 2nd
column and 2nd row

The product of the
3rd column and 3rd
row

The product of the 4th
column and 4th row

The product of the 5th column and 5th row

 The product of the 6th column and 6th row

 The product of the 7th column and 7th row

The product of the 8th
column and 8th row

Figure 5.1 An illustration of the Product PU · PU

uth row and vth column of (PU)2, and h =
 i
2ml �. From Equation (5.1), it can be obtained

that with respect to each row of blocks of (PU)2, if all of the blocks are summed, the result is

equal to (CMS)2. In other words, the statement holds for n = 2.

Suppose for n = k, the statement holds. That is, with respect to each row of blocks of

(PU)k, if all of the blocks are summed, the result is equal to (CMS)k.

For n = k + 1, the product PU · (PU)k needs to be computed. Let (PU)k
uv be the block

in the uth row and vth column of (PU)k. For any row i, 1 ≤ i ≤ 2(m+1)l, of PU , assume C1,

C2, . . . , C2ml are the aforementioned nonzero entries, j = (i mod 2ml), and h =
 i
2ml �. Then,

based on the rule for the product of two matrices, it is derived that

Rowj((PU)k+1
hw) =

h−w−1∑
z=0

Cw+zRoww+z((PU)k
(w+z)w)

+
2ml∑
x=h

CxRowx((PU)k
hw),

if w ≤ h, and

Rowj((PU)k+1
hw) = (0, . . . , 0)2ml ,

33

if w > h. Hence, it is obtained that

2l∑
w=1

Rowj((PU)k+1
hw) =

h∑
w=1

Rowj((PU)k+1
hw) (5.2)

=C1Row1((PU)k
11) + C2Row2((PU)k

21 + (PU)k
22)+

C3Row3((PU)k
31 + (PU)k

32 + (PU)k
33) + · · ·+

Ch−1Rowh−1((PU)k
(h−1)1 + · · · + (PU)k

(h−1)(h−1))+

ChRowh((PU)k
h1 + · · · + (PU)k

hh)+

Ch+1Rowh+1((PU)k
h1 + · · · + (PU)k

hh)+

· · · + C2mlRow2ml((PU)k
h1 + · · · + (PU)k

hh).

Since it is already known that with respect to each row of blocks of (PU)k, if all of the

blocks are summed, the result is equal to (CMS)k (i.e., the statement holds for n = k), it can

be derived that the right hand side (RHS) of Equation (5.2) is equal to Rowj((CMS)k+1).

Hence, the statement holds for n = k + 1. That is, with respect to each row of blocks of

(PU)k+1, if all of the blocks are summed, the result is equal to (CMS)k+1.

Secondly, the empirical convergence of (PU)n with respect to ε needs to be proved. Let

u
(n)
ij be the element in the ith row and jth column of (PU)n.

By Definition 8 and the fact that {(CMS)n} converges empirically at n = n1 and {An}
converges empirically at n = n2 with respect to the same ε

2
√

2(2l−1)
> 0, Inequality (5.3) and

Inequality (5.4) are derived. For ε

2
√

2(2l−1)
> 0 and the constant n1,

⎛
⎝ 2ml∑

i,j=1

|v(n)
ij − v∗j |2

⎞
⎠

1/2

<
ε

2
√

2(2l − 1)
,∀n ≥ n1, (5.3)

where v
(n)
ij is the element in the ith row and jth column of (CMS)n, and e(v∗)T is the limit of

(CMS)n (see Theorem 2). In addition, for ε

2
√

2(2l−1)
> 0 and the constant n2,

⎛
⎝2(m+1)l−2ml∑

i,j=1

|a(n)
ij − 0|2

⎞
⎠

1/2

<
ε

2
√

2(2l − 1)
,∀n ≥ n2, (5.4)

34

where a
(n)
ij is the element in the ith row and jth column of An, and 0 is the limit of An. Then

∃n3 = max{n1, n2} such that

2(m+1)l∑
i=2ml+1

2ml∑
j=1

|u(n)
ij − v∗j |2 =

2(m+1)l∑
i=2ml+1

2ml∑
j=1

|u(n)
ij +

2l−2∑
k=0

a
(n)

i,k·2ml+j
− v∗j −

2l−2∑
k=0

a
(n)

i,k·2ml+j
|2

=
2(m+1)l∑
i=2ml+1

2ml∑
j=1

|v(n)
ij − v∗j −

2l−2∑
k=0

a
(n)

i,k·2ml+j
|2

≤
2(m+1)l∑
i=2ml+1

2ml∑
j=1

(12 + (−1)2)(|v(n)
ij − v∗j |2 + |

2l−2∑
k=0

a
(n)

i,k·2ml+j
|2)

(by Cauchy-Schwarz Inequality)

≤
2(m+1)l∑
i=2ml+1

2ml∑
j=1

2 · (|v(n)
ij − v∗j |2 + (2l − 1) ·

2l−2∑
k=0

|a(n)

i,k·2ml+j
|2)

(by Cauchy-Schwarz Inequality)

≤ 2
2(m+1)l∑
i=2ml+1

2ml∑
j=1

|v(n)
ij − v∗j |2 + 2(2l − 1)

2(m+1)l∑
i=2ml+1

2ml∑
j=1

2l−2∑
k=0

|a(n)

i,k·2ml+j
|2

< 2 · (2l − 1) · ε2

8(2l − 1)
+ 2 · (2l − 1) · ε2

8(2l − 1)
=

ε2

2
,∀n ≥ n3.

Then by Inequality (5.3) and Inequality (5.4),

2(m+1)l∑
i,j=1

|u(n)
ij − (pu)∗ij |2 <

ε2

8(2l − 1)
+

ε2

8(2l − 1)
+

ε2

2

<
ε2

4
+

ε2

4
+

ε2

2
(l ≥ 1)

= ε2,

where (pu)∗ij is the element in the ith row and jth column of the limit of (PU)n.

That is, from the statement of Mathematical Induction and the fact that {(CMS)n} con-

verges empirically at n = n1 and {An} converges empirically at n = n2 with respect to the

same ε

2
√

2(2l−1)
, the empirical convergence of {(PU)n} at n = k, k ≥ max{n1, n2}, with respect

to ε is proved. �

Based on Inequality (3.4) and Inequality (4.12), it is implied that the convergence of

{(CMS)n} and {An} depend on |λ2 CMS | (the second largest eigenvalue of CMS in absolute

35

value) and |λ2|, respectively. Since CMS is one of the diagonal blocks of PU , |λ2 CMS | ≤ |λ2|.
If 0 < λ2 CMS < 1, sufficiently small λn

2 CMS implies that n is large enough. Hence, |λ2|n

is small enough for the empirical convergence of An. Suppose after (n − 1) generations, the

elements in An−1 satisfy

⎛
⎝2(m+1)l−2ml∑

i,j=1

|a(n−1)
ij − 0|2

⎞
⎠

1/2

<
ε

2(m+1)l − 2ml
, for some ε. (5.5)

Then regardless of the initial distribution,

Pr{The nth Generation is an Optimal State} > 1 − ε. (5.6)

The proof of that is as follows. Suppose the initial distribution is p0 = (p0,1, p0,2, p0,3, . . . , p0,2(m+1)l),

where p0,1, . . . , p0,2ml are corresponding to the absorbing states (related to the global optimal

solution). Since p0 is a probability distribution, it can be derived that
∑2(m+1)l

i=2ml+1 p0,i ≤ 1.

According to Equation (3.5) and Equation (3.10), we get

p0(PU)n−1

=(p0,1, . . . , p0,2ml , p0,2ml+1, . . . , p0,2(m+1)l)

⎛
⎜⎝ (CMSU11)n−1 0

∑n−2
i=0 An−2−iR(CMSU11)i An−1

⎞
⎟⎠ .

(5.7)

From Inequality (5.5), it is derived that aij < ε
2(m+1)l−2ml for all i, j ∈ {1, 2, . . . , 2(m+1)l − 2ml}.

With Equation (5.7), we obtain that the probability for the nth generation (state) to be an

transient state is

p0,2ml+1 · (a11 + a12 + · · · + a1,2(m+1)l−2ml)

+ . . .

+p0,2(m+1)l · (a2(m+1)l−2ml,1 + · · · + a2(m+1)l−2ml,2(m+1)l−2ml)

<p0,2ml+1 · ε + · · · + p0,2(m+1)l · ε

<1 · ε = ε.

Hence, the probability for the nth generation (state) to be an optimal (absorbing) state is

greater than 1 − ε.

36

5.2 The Proposed Evaluation Metric

5.2.1 Overview of the Methodology

This section proposes an evaluation metric, which derives the applicability of a CGA to

a problem from the estimated trace of the corresponding transition matrix. Through this

method, a degree of convergence can be determined for each CGA run. According to that,

researchers and engineers will be able to obtain a comprehensive view of the applicability of

CGA and know how good the solutions generated by CGA, so that more correct decisions can

be made. The general methodology diagram is illustrated in Figure 1.1.

5.2.2 Evaluating the Applicability of GAs from Run Time Data

The major concerns for the applicability of GAs to real-world problems are the computation

time and the quality of the obtained solutions. Actually, there are tradeoffs between them.

For instance, typically the longer the computation time, the better the solution is. Since they

are tightly related, without loss of generality, we can fix one and utilize another to estimate

the applicability of GAs to problems. Assumption 3 forces us to fix the computation time,

whereas the quality of the obtained solution will be used to measure the problem applicability

of GAs. Again, the discussion will be focused on CGA.

Due to the lack of information on the landscapes of fitness functions and encodings, it

is difficult to analyze the quality of the obtained solution itself; however, the quality of the

obtained solution can be measured indirectly through the degree of convergence under certain

evaluation metrics from run time data. Theorem 8 functions as a support for the evaluation

metric on degrees of convergence. The reason for employing the trace of (CMS)n′
, where n′ is

fixed, to estimate degrees of convergence is because it quantifies degrees of convergence. With

it, a number on the degree of convergence of CGA will be given at the end of a CGA run. Based

on that, one can determine whether or not the CGA run converges within n′ generations.

Theorem 8 The trace of (CMS)n converges to 1 as n → ∞.

37

Proof. By Theorem 1, 5, and Lemma 1, it is obtained that CMS has only one eigenvalue

which is equal to 1 and others are less than 1.

Moreover, by Theorem 6, every square matrix is unitarily equivalent to a triangular matrix

whose diagonal entries are the eigenvalues of the matrix. Hence, (CMS)n can be written as

(CMS)n = (STS∗)n = STnS∗,

where S is a unitary matrix and T is upper triangular. The diagonal entries of T are the

eigenvalues of CMS. Let the eigenvalues of CMS be denoted as λ1, . . . , λ2ml with 1 = λ1 >

|λ2| ≥ · · · ≥ |λ2ml |. Then

Trace((CMS)n) = Trace((STn)S∗) = Trace(S∗STn) = Trace(Tn) =
2ml∑
i=1

λn
i . (5.8)

From Equation (5.8), the result, the trace of (CMS)n converges to 1 as n → ∞, is derived.

�

In fact, Theorem 8 coincides with a result from Theorem 2. In Theorem 2, since CMS

is regular, it converges to a positive stable stochastic matrix
∏

= evT as n → ∞, where

e = (1, 1, · · · , 1)T is a 2ml × 1 column vector in which all elements are of the value 1, and

vT = (v1, v2, · · · , vr) is a 1 × 2ml probability row vector with non-null entries. Based on that,

the result, limn→∞ Trace((CMS)n) = 1, can be obtained.

5.2.3 Theoretical Framework for Approximating the Applicability of CGAs

This subsection mainly discusses the methodology adopted to evaluate the applicability of

CGAs based on Theorem 8.

The overview of the idea includes:

1. Applying a Monte-Carlo-like simulation (Empirical Probability) [Leemis, L. H. and Park,

S. K. (2005)] to estimate Trace((CMS)n′
), n′ ∈ N , from states visited by a CGA run.

Note that n′ should be chosen carefully so that n−n′ can be a large number, where n is

the number of generations.

38

2. Comparing the obtained Trace((CMS)n′
) with the “expected” value 1, and then deriving

a value for the degree of convergence with respect to that CGA run.

In Assumption 3, n, the number of generations, is a reasonably large number and it is

fixed. After a CGA run, there will be n generations in total. Each generation corresponds to a

state from the state space of the Markov transition matrix CMS. During a CGA run, a state

representing the next generation will be generated after every selection operation. If all of the

n generations (states) are recorded, a list of n states sorted chronologically will be generated

at the end of each CGA run. With that list, a number n′ ∈ N , where n′ < n and n − n′ is a

large number, is chosen. The starting states and the ending states are determined accordingly

to estimate the trace of (CMS)n′
. Figure 5.2 illustrates this concept; it shows that for each

generation (state) i, 1 ≤ i ≤ (n−n′), given as a starting state, the (i+n′)th generation (state)

is the corresponding ending state. After the matching, there are (n − n′) pairs of (Starting

State, Ending State). Based on the results, one can compute the frequency, or probability, of

any starting state which goes back to itself. If all the obtained frequencies are summed up,

the obtained value is the approximation of Trace((CMS)n′
). Note that an ending state of a

pair can also be a starting state of another pair.

According to my empirical investigation, the transition matrix CMS constructed by CGA

has the property that its eigenvalues, which have large absolute values, are all real and positive

if pm is small (e.g. pm < 0.45). Only a few eigenvalues of CMS, whose absolute values are

close to 0, are complex numbers. Intuitively, the transition matrix M constructed by a small

mutation probability pm is symmetric and strictly diagonally dominant (i.e., M is a positive

definite matrix). It has eigenvalues which are all real and positive. The sparse matrices C

and S do not significantly impact the eigenvalues of M . Therefore, the eigenvalues of CMS

primarily depend on the eigenvalues of M . This fact implies that Trace((CMS)n′
) decreases

to 1 as n′ increases.

Theorem 9 Any square matrix with identical rows has only one nonzero eigenvalue, which is

equal to the sum of any row of the matrix.

39

The 1st Generation (1st State)

The 2nd Generation (2nd State)

The 3rd Generation (3rd State)

The 4th Generation (4th State)

The 5th Generation (5th State)

The (n’+1)th Generation ((n’+1)th State)

The (n’+2)th Generation ((n’+2)th State)

The (n’+3)th Generation ((n’+3)th State)

The (n’+4)th Generation ((n’+4)th State)

The (n’+5)th Generation ((n’+5)th State)

A sample for ')(nCMS

A sample for ')(nCMS

A sample for ')(nCMS

A sample for ')(nCMS

A sample for ')(nCMS

Figure 5.2 The Estimation on the Trace of (CMS)n′

40

Proof. Suppose that A is an arbitrary square matrix of order r with identical rows. First,

the claim that 0 is an eigenvalue of A is going to be proved. Based on the definition of

eigenvalues [Horn, R. A. and Johnson, C. R. (1985)], λ is an eigenvalue of A if and only if

det(A− λIr) = 0. Let λ = 0 and we have det(A− 0 · Ir) = det(A) = 0 because A has identical

rows. Hence, 0 is an eigenvalue of A.

Secondly, it is claimed that the eigenspace of A corresponding to 0 (i.e., the (algebraic)

multiplicity of 0) is r − 1. To compute that, the number of linearly independent eigenvectors

corresponding to 0 should be calculated. Consider the equation

Ax = 0 · x, x
= 0.

Since A has identical rows, there is only one constraint for the r−dimensional vector x. There-

fore, there are r− 1 linearly independent eigenvectors corresponding to the eigenvalue 0. That

is, the eigenspace of A corresponding to 0 is r − 1.

Now, let us prove that the only nonzero eigenvalue of A is the sum of any row of A. Let x

be an r × 1 vector e = (1, 1, . . . , 1)T . Then

Ax =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1r

a11 a12 · · · a1r

...
...

. . .
...

a11 a12 · · · a1r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= (a11 + a12 + · · · + a1r)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, (a11 + a12 + · · · + a1r) is an eigenvalue of A. �

Theorem 9 tells us that any stochastic stationary state matrix has eigenvalues 1, 0, 0, . . . , 0.

Based on the discussion above, Theorem 8, and Theorem 9, to determine the degree of con-

vergence one simply needs to compare the obtained value with 1. More specifically, all the

diagonal blocks of A are principal submatrices of CMS and M is a positive definite matrix. By

the theoretical result from the current state of the art in mathematics [Hwang, S. (2004)] and

empirical study, the second largest eigenvalue of PU , λ2, is a little bit larger than, but very

close to λ2 CMS . Hence, it can be derived that the trace of (CMS)n′
, where n′ ∈ N , needs to

41

be close to 1 first (i.e., |Obtained Value−1| close to 0), and then the global convergence occurs.

That is, (CMS)n′
has to be first close to its stationary state matrix, and then A(n′+k), where

k ∈ N , is going to be close to 0. Therefore, if the value (or criterion) |Obtained Value − 1| is

close to 0, the degree of convergence is high.

The merit of this approach is that for every CGA run, a degree of convergence can be

derived from run time data. With n′ being fixed, one can compare different encodings of the

same problem, or obtain the values on how good the solutions are for several CGA runs with

respect to different problems. Researchers can evaluate the best solution obtained by a CGA

based on the degree of convergence.

5.2.4 Foundation of the Methodology

According to Theorem 8 and the discussion in previous subsection, it can be derived that

the trace of (CMS)n determines the degree of convergence. In other words, to obtain the degree

of convergence, one can calculate the trace of (CMS)n first. A traditional way to compute it

is first to compute the transition matrix CMS; however, as mentioned, the construction time

of CMS takes more than the total computation time of all feasible solutions. Therefore, the

traditional way is considered to be impractical due to the large computation time.

My methodology to approximate the trace of (CMS)n′
is based on the following. In

Figure 5.2, the first generation (state) is chosen at random from all feasible solutions. After

the first generation is determined, the second generation can be generated by the crossover,

mutation, and selection operators of a CGA accordingly. In the perspective of Markov chains,

the distribution of the second generation is generated based on the product of the distribution

of the first generation and the transition matrix CMS. Similarly, the distribution of the third

generation is generated based on the product of the distribution of the first generation and

the transition matrix (CMS)2, and so on. In general, for i ∈ N , if the distribution of the ith

generation is determined, the distribution of the (i + n′)th generation can be generated based

on the product of the distribution of the ith generation and the transition matrix (CMS)n′
.

To estimate the trace of (CMS)n′
, the ith generation and the (i + n′)th generation need to

42

be coupled (i, n′ ∈ N). Now consider the physical meaning of the trace of (CMS)n′
. The

diagonal elements of (CMS)n′
represent the probabilities of the fix points (states) from the ith

generation to the (i+n′)th generation for a CGA. Therefore, the summation of the frequencies

(probabilities) of any starting state going back to itself approximates the trace of (CMS)n′
.

A question about the distribution of samples may be raised. Besides the first generation,

the ith generation (i ≥ 2) is dependent on the (i − 1)th generation. That is, after the first

generation, the starting state is not chosen uniformly. According to my investigation, this

dependency will not cause any problem. On the other hand, it helps improve the accuracy of

the approximation. Suppose the transition matrix

(CMS)n′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t11 t12 · · · t1,2ml

t21 t22
...

...
... · · · . . .

...

t2ml,1 · · · · · · t2ml,2ml

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.9)

For the purpose of illustration, we may assume that t11 has a large value, say 0.99, and

t2ml,2ml has a small value, say 0.01. If the first state (i.e., the state corresponds to the element

t11 in Equation (5.9)) is generated as the ith generation (i ≤ n), in the (i + n′)th generation, it

has a high probability (0.99) to be chosen again. Other states have lower probability to become

the (i + n′)th generation. Similarly, if the last state is generated as the ith generation, in the

(i + n′)th generation, it has merely 0.01 probability to be chosen again. Other states have a

large probability to become the (i+n′)th generation. Accordingly, a state with a large diagonal

value has a high probability to become a starting state, and more samples will be collected

for estimating it. A state with a small diagonal value may be ignored from the estimation.

Compared with the samples collected uniformly, it increases the accuracy of the approximation

since the number of samples is fixed (by n and n′) and the large diagonal values dominate the

trace. If more samples with the starting states being the states with small diagonal values are

gathered, fewer samples with starting states being the states with large diagonal values will be

collected. In that case, the estimations of large diagonal values as well as the approximation

of the trace may not be so accurate.

43

Number 3 (Key)
Representing State 3
Number of Fix Points
Number of Times It
Appears as a Starting

Point
Left Child Right Child

Number 2 (Key)
Representing State 2
Number of Fix Points
Number of Times It
Appears as a Starting

Point
Left Child Right Child

Number 1 (Key)
Representing State 1
Number of Fix Points
Number of Times It
Appears as a Starting

Point
Left Child Right Child

Figure 5.3 A possible data structure for the proposed methodology

5.2.5 The Implementation and Data Structure of the Proposed Methodology

Many data structures, such as binary search trees, hash tables, and linked lists, can be

applied to implement the proposed methodology. For the purpose of demonstration, binary

search trees are applied (see Figure 5.3). Other data structures are also encouraged to be used

to speed up the computation time.

For each node in the binary search tree, there are four fields. The first field is a number,

the key of the node, representing the starting state converted from a binary string. The second

field represents the number of ending states which are the same as the starting state in the

first field, and the third field represents the total number of occurrences of the starting state

in the first field. The fourth field represents the addresses for the roots of sub-trees.

The following shows how the proposed methodology is implemented:

1. Set the root of the tree to be NULL.

2. Record the first n′ states as starting states using an array.

3. Start from the n′ + 1 state, do 4) to 7) until the stop condition is satisfied.

4. Search for the corresponding starting state in the tree. If it is not found, insert the

44

corresponding starting state in the tree.

5. Compare the current state with the corresponding starting state. If it is the same as the

starting state, add 1 to the second field.

6. Add 1 to the third field.

7. Replace the corresponding starting state with the current state in the array.

Since for each generation the selection operator selects individuals for the entire state, all

of the states can be recorded at the same time as the selection. The recording will not increase

the complexity of the computation time. In the next subsection, detailed information on the

space and time complexity is calculated.

5.2.6 Complexity Analysis

5.2.6.1 Space Complexity

Based on the implementation in the previous section, an array and a binary search tree

must be maintained during a CGA run. Each element in the array needs to record a binary

string with length ml. Since there are n′ states preserved in the array, the space complexity

of the array is O(n′ml). Moreover, there are (n − n′) pairs of (Starting State, Ending State).

Therefore, the tree has to maintain at most (n− n′) nodes. Similar to the array, each node in

the tree needs to record a binary string with length ml, so the space complexity of the tree is

O((n − n′)ml). Hence, the total space complexity is O(nml).

5.2.6.2 Time Complexity

The extra time needed for the estimation is mainly from the time to search (or insert) the

corresponding starting states in the tree (Step 4 in the previous section). Since there are in

total (n − n′) starting states, the tree has at most (n − n′) nodes. The time to search each

starting state (or insert a node) in the tree is O(log(n−n′)) in the average case and O((n−n′))

in the worst case. That is, the total time complexity is O(n · log(n)) in the average case and

45

O(n2) in the worst case. However, a form of self balancing binary search tree, such as red-

black trees, can be used for improving the computation time. With that form, insertions and

searches are O(log(n)) in the worst case. In other words, the total time complexity becomes

O(n · log(n)) in the worst case.

5.3 Experimental Validation of the Proposed Evaluation Metric

My goal for the experiments is to investigate the usability of the proposed evaluation metric.

To facilitate the experimental comparisons in the following sections, we can fix the value of

some of the CGA parameters. The fixed parameters are:

• the crossover probability pc is set to 0.5

• the mutation probability pm is set to 0.01 (a small value)

In addition, for the purpose of validation, several fitness functions, including 1−dimensional

and 3−dimensional functions, with their known optimal solutions are selected as test functions.

5.3.1 One Dimensional Fitness Functions

Eight 1−dimensional fitness functions with different degrees of difficulty for CGAs are

investigated and analyzed. The eight fitness function types are: a linear function, a quadratic

function, a periodic function, a fraction function, two functions with isolation optimal points

(called needle-in-a-haystack (NIAH) [Horn, J. and Goldberg, D. E. (1995); Horn, J. (1995)]),

a function consisting of unequal spaced peaks of uniform heights, and a function consisting of

unequal spaced peaks of nonuniform heights [Sareni, B. and Krahenbuhl, L. (1998); Petrowski,

A. (1996)]. The fitness functions and their optimal fitness values are presented in Table 5.1

(the default value for the domains is [0, 600]).

5.3.2 Discussion of the Sizes of Samples

One may argue how we can be sure that the size of the samples is sufficient for deriving a

proper approximation. To answer this question, experiments of sample sizes with respect to

46

Table 5.1 The Selected Fitness Functions
Fitness Function Optimal Value

f1(x) = x 600
f2(x) = 360000 − x2 360000
f3(x) = 1 + sin(x) 2
f4(x) = 1√

x+1
1

f5(x) =

⎧⎨
⎩

−x2 + 90000, x < 300
100000, x = 300

−(x − 600)2 + 90000, x > 300
100000

f6(x) =
{

100000, x = 0
−(x − 300)2 + 90000, x
= 0

100000

f7(x) = sin6(5π[x3/4 − 0.05]) 1

f8(x) = e−2(ln 2)(
(x/600)−0.08

0.854
)2sin6(5π[(x/600)3/4 − 0.05]) 1

encoding sizes for a problem are conducted.

For the following observations, I apply the theoretical truth, if the power n′ is fixed, the

value Trace((CMS)n′
) is fixed. With the setting on both the number of individuals in a

generation m = 2 and the length of feasible solutions l = 2, CMS has a total of 24 = 16 states.

Table 5.2 lists the average results for fitness function f2 from 20 trials of CGA runs for the

number of generations ranging from 5000 to 10000 with the actual traces compared. Note that

similar results are also derived for other fitness functions.

Table 5.2 The Estimated Trace((CMS)n′
) w.r.t. the Number of Genera-

tions and Power n′

No. of Gens. �� Power n′ 10 12 14 16 18 20

5000 2.7331 2.5614 2.4094 2.2540 2.1660 2.0517
6000 2.7343 2.5584 2.4156 2.2564 2.1737 2.0527
7000 2.7379 2.5620 2.4104 2.2631 2.1715 2.0532
8000 2.7333 2.5692 2.4143 2.2613 2.1742 2.0565
9000 2.7397 2.5672 2.4070 2.2584 2.1716 2.0539
10000 2.7351 2.5558 2.4105 2.2708 2.1671 2.0548

Actual Traces 3.3043 3.1863 3.0771 2.9737 2.8763 2.7843

As we can see, with the same n′, no matter how many generations exist, the results for

estimated Trace((CMS)n′
) are almost the same for each one, and are close to actual traces.

Therefore, it is concluded that those numbers of generations are large enough for l = 2 and

m = 2.

Now let the length l be set to 16. Table 5.3 shows the average results for fitness functions

47

f1 and f2 from 20 trials of CGA runs for the number of generations ranging from 5000 to

10000. Note that similar results are also derived for other fitness functions.

Table 5.3 The Estimated Trace((CMS)n′
) With Respect To the Number

of Generations and Power n′

Fitness Function f1 Fitness Function f2

No. of Gens. �� Power n′ 10 15 20 25 10 15 20 25

5000 7.0202 1.9653 1.2016 1.0667 6.5991 1.9553 1.3250 1.2053
6000 8.1490 2.1476 1.3326 1.0867 7.6623 1.9990 1.3516 1.1179
7000 9.7629 2.4942 1.4066 1.1031 9.2037 2.4565 1.3858 1.2133
8000 10.8016 2.7857 1.3546 1.1576 10.3304 2.6599 1.4224 1.2306
9000 12.5045 3.2925 1.4917 1.0618 11.8056 3.0480 1.5589 1.0657
10000 13.8309 3.6587 1.5685 1.2171 13.2582 3.3984 1.4045 1.1884

Table 5.3 shows that the results are different from previous results since as the number

of generations increases, the estimated Trace((CMS)n′
) increases. This occurs because the

numbers of samples for the 232 states are relatively small. Some diagonal elements of (CMS)n′

will not be calculated by the small numbers of samples; however, based on the data from

Table 5.3, we observe that both of the Trace((CMS)n′
) converge to 1 as n′ increases. A

conclusion can be drawn that although the number of samples sometimes may not be large

enough for large l’s, for some n′, the estimated Trace((CMS)n′
) is still referenceable. The

setting of the n′ depends on the setting of l and experiences.

As mentioned before, it is believed that large diagonal elements are easily estimated by

the proposed metric. To verify, I have run several experiments. The result for f2 is presented

in Figure 5.5. Similar results can be derived for other fitness functions. As shown, the esti-

mated Trace((CMS)n′
) increases rapidly before a large enough number of generations (e.g.,

n = 5000) and after, it increases asymptotically to its actual value. If we choose the fixed

number of generations close to the turning point (n = 5000), a certain amount (percentage) of

Trace((CMS)n′
) can be derived. The detailed data from Figure 5.5 is shown in Table 5.4.

Table 5.4 implies that when a state space has 29 = 512 states and the (fixed) number of

generations is set to 2000, more than 50% of Trace((CMS)n′
) can be estimated if n′ is between

10 and 26. In addition, small n′ (e.g., n′ = 10) has better estimated precision than large n′

(e.g., n′ = 26). However, the power n′ cannot be set too small since with small n′, relatively

small eigenvalues are still not very close to zero, which causes some noise if the purpose is to

48

0

1

2

3

4

5

6

7
Th

e
Tr
ac
e
V
al
ue

s

Comparison of Traces for f2

The Estimated Trace of
CMS to the Power 10

The Actual Trace

The Number of Generations

(a) Power n′ = 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Th
e
Tr
ac
e
V
al
ue

s

Comparison of Traces for f2

The Estimated Trace of
CMS to the Power 26

The Actual Trace

The Number of Generations

(b) Power n′ = 26

Figure 5.4 The relationship between estimated trace values, actual trace
values, and numbers of generations with m = 3, l = 3

predict a degree of convergence. In other words, (CMS)n′
with too small n′ has large number

of diagonal elements being not very close to zero, which makes the estimation difficult for the

proposed metric because the sample size is relatively small with respect to the number of states

in the state space.

5.3.3 Discussion of the Precision of the Estimation

Now, let us compare the estimated Trace((CMS)n′
) of fitness functions and their ac-

tual values. In order to accomplish this comparison, I have run the experiments on a High-

Performance-Computer (HPC: hpc-class.iastate.edu). The maximal order of the transition

matrices (square matrices) estimated for the actual trace values is 210. In this case, we can

either set (m, l) = (2, 5), or (m, l) = (5, 2). Both of them draw the same conclusion. Table 5.5

presents the estimated and actual values of Trace((CMS)n′
) for (m, l) = (2, 5) with the (fixed)

number of generations being set to 10000. Other settings with ml ≤ 10 have similar results.

In Table 5.5, if we compare the estimated Trace((CMS)n′
) with n′ being fixed, we get

that all of the estimated Trace((CMS)n′
) have close percentages of accuracy. The rates for

49

10000 15000 20000 25000 30000 35000 40000 45000

f8 23.4952 34.3248 46.6035 56.9009 67.6494 78.1026 88.6881 99.4274

f2 13.2582 20.699 27.6228 34.3891 40.5652 47.0527 53.3591 60.0603

0

20

40

60

80

100

120

Th
e
Es
ti
m
at
ed

 T
ra
ce
 o
f C

M
S
to
 t
he

 P
ow

er
 1
0

The Number of Generations n

Figure 5.5 The relationship between estimated traces and numbers of gen-
erations

The Estimated Value
The Actual Value are between 50% and 60%. As we can see, those rates are larger than the

percentages of visited states for most n′. This coincides with the earlier conclusion that the

states with large diagonal elements tend to be visited first. With this feature, we can be sure

that if a fitness function has larger trace value for a certain n′, the proposed evaluation metric

will not underestimate its Trace((CMS)n′
) compared to the estimated traces of other fitness

functions. For the same reason, small n′ has better estimated precision than large n′.

However, a concern may be raised that the discussion and observation above are based on

the condition that the number of samples is greater than the number of states. The relation

between estimated Trace((CMS)n′
) with a fixed n′ and a number of generations n with n

smaller than a predefined number of states is not specified. My empirical investigation shows

that the estimated Trace((CMS)n′
) and the number of generations n are linearly related if

n is less than the number of states. Figure 5.5 illustrates their relationship with respect to

f2 and f8 when the setting is (n′, m, l) = (10, 2, 16). That means, the estimated traces with

respect to fitness functions should have close percentages of accuracy with n smaller than the

number of states, if they have close percentages of accuracy with n larger than or equal to the

number of states.

50

5.3.4 Discussion of the Convergence Trend

Another feature in the data shown in Table 5.3 is that with the number of generations being

fixed, the estimated Trace((CMS)n′
) decreases as n′ increases. Therefore, the convergence

trend of the estimated Trace((CMS)n′
) remains the same as the convergence trend of the

theoretical value of Trace((CMS)n′
). This feature can be applied to evaluate the degrees of

convergence asserted earlier in this dissertation.

To analyze the convergence trends of the estimated Trace((CMS)n′
) with respect to the

fitness functions, the number of individuals within a generation m is set to 2, the length of

an individual (a feasible solution) l is set to 16, the number of generations is fixed to 10000,

and the power n′ of (CMS)n′
is set from 10 to 24, respectively. The derived result, shown in

Figure 5.6, is the average over 40 trials of CGA runs. For the purpose of verification, a set of

numerical data representing the range for numbers of generations at which the CGA with best

solution maintained over time has probability of 80% to reach the global (or near) optimal

solution, shown in Table 5.6, is derived from 1000 trials.

Figure 5.6 shows the relationship between n′ and the estimated Trace((CMS)n′
), and

demonstrates that no matter what type the fitness function, as n′ increases, the estimated

Trace((CMS)n′
) decreases. All of the estimated values of Trace((CMS)n′

) approach to a

value between 0 and 1 with increasing n′. This result coincides with Theorem 8 and discussions

in both Section 5.3.2 and Section 5.3.3. Moreover, the fitness functions are clustered based on

their difficulties for CGAs. Depending on different scales for clustering, two or more clusters

can be identified in the figure. In my opinion, fitness functions f1, f2, f4, f5, and f6 can be

considered to be in the same cluster, fitness functions f3 and f8 are in another, and f7 is in

the other. Compared with Table 5.6, we obtain that except for the fitness function f4, the

clustering in Figure 5.6 is consistent with the set of numerical data in Table 5.6. Since the

landscape of the fitness function f4 is almost flat, the fitness value is not sensitive with respect

to the modifications of the value x. With this type of fitness function, proportional selection

cannot discriminate “good” solutions from “bad” ones. Therefore, during a CGA run, most

states have large probabilities of remaining the same in the next generation. In other words,

51

10 12 14 16 18 20 22 24

f1 14.5302 8.1459 4.9993 2.9086 1.9005 1.2744 0.8140 0.5106

f2 13.8783 7.7411 4.8642 2.6984 1.7729 1.2384 0.8017 0.4642

f3 19.8732 12.4199 7.7600 4.8535 3.4456 2.3932 1.6257 1.1904

f4 16.5959 9.7069 6.1892 3.7104 2.5831 1.8673 1.2885 0.8590

f5 14.6078 8.5993 5.2436 3.0107 1.9977 1.4727 0.9137 0.5883

f6 14.7254 8.6355 5.2466 3.0074 1.9599 1.3963 0.9248 0.5869

f7 34.4671 22.8780 16.1032 11.3766 8.4466 6.0263 4.7592 3.7598

f8 23.4952 14.3811 9.4715 6.0392 4.2120 3.0089 2.0636 1.4013

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

X‐Axis: n'; Y‐Axis: Estimated Trace of CMS to the Power n'

Figure 5.6 The convergence trends of Trace((CMS)n′
)

this type of fitness function results in a transition matrix which has a large number of diagonal

entries which are not close to 0 and have values close to each other. This feature will cause

problems for the proposed methodology since there may not be enough samples to reach all

of the states and accurately estimate Trace((CMS)n′
), n′ ∈ N . However, besides f4, the

clustering shows that the proposed evaluation metric has the ability to distinguish the degrees

of difficulty of the CGA.

5.3.5 Discussions on the Confidence Intervals

Further investigation on the relationship between n′ and the estimated value Trace((CMS)n′
)

generated by the proposed evaluation metric is conducted. The distributions for the estimated

52

traces generated by the metric with respect to f1 to f8 are illustrated in Figure 5.7 to Fig-

ure 5.14, respectively. The settings remain the same as in the previous discussion on the

convergence trend. The 95% standard confidence intervals (SCIs) are computed for all of the

fitness functions f1 to f8 (see Figure 5.15 to Figure 5.22). Note that the evaluation metric

cannot derive 100% of true trace values (see Section 5.3.3). The 95% SCIs merely can tell us

something about the true mean value (i.e., the mean of all possible outcomes) generated by

the metric, which is certain percentage of the true trace value.

The SCI tends to shrink as n′ increases. Among f1 to f8, f7 has the largest confidence

intervals for n′ = 10 and n′ = 24, whose lengths are around 2.02 and 0.60 (less than 1),

respectively. In Figure 5.23, the 95% SCIs for f1, f3, and f7 representing the three clusters

mentioned in the previous discussion are compared. The SCIs for f1 do not overlap with the

SCIs for f3. Similarly, the SCIs for f3 do not overlap with the SCIs for f7. It confirms that the

clustering of fitness functions with respect to the estimated values of Trace((CMS)n′
) derived

by the evaluation metric is valid and has a strong discrimination. In reality, except f4, f7 is

the most difficult fitness function among f1 to f8 for the CGA with the setting (m, l) = (2, 16)

(see Table 5.6).

In the literature, researchers who investigate confidence intervals have asserted that the

actual coverage probability of the SCI may sometimes not be equal to the nominal level claimed,

especially when the sample is small [Brown, L. D. and Cai, T. T. and DasGupta, A. (2001)].

Several alternative intervals are recommended. The Wilson interval (WI) is one of them and

used to compare with the SCI here (see Figure 5.24 to Figure 5.31). As we can see, the WI also

tends to shrink as n′ increases. Most of the mean values and the lengths of WIs are slightly

smaller than those of SCIs. Figure 5.32 shows the mean values of WI and SCI for the fitness

functions f1 and f8, respectively. Carefully comparing the WIs and SCIs for the eight fitness

functions, we can get that when n′ ≥ 14, the two intervals overlap each other. No matter which

interval (WI or SCI) is used for the comparison, the clusters formed earlier are still valid.

53

Table 5.4 The Data of Figure 5.4(a) and 5.4(b)

Power n′ = 10 Power n′ = 26

No. of Gens Estimated Value Actual Value % Estimated Value Actual Value %
1000 3.1428 5.8952 53.31 1.6304 3.8432 42.42
1500 3.4209 5.8952 58.03 1.8348 3.8432 47.74
2000 3.6386 5.8952 61.72 1.9571 3.8432 50.92
2500 3.7500 5.8952 63.61 1.9859 3.8432 51.67
3000 3.8105 5.8952 64.64 2.0407 3.8432 53.10
3500 3.8867 5.8952 65.93 2.0509 3.8432 53.36
4000 3.8913 5.8952 66.01 2.0675 3.8432 53.80
4500 3.9689 5.8952 67.32 2.1166 3.8432 55.07
5000 4.0181 5.8952 68.15 2.1479 3.8432 55.89
5500 4.0554 5.8952 68.79 2.1935 3.8432 57.08
6000 4.0788 5.8952 69.19 2.1977 3.8432 57.18
6500 4.1034 5.8952 69.61 2.2439 3.8432 58.39
7000 4.1206 5.8952 69.90 2.2226 3.8432 57.83
7500 4.1298 5.8952 70.05 2.2292 3.8432 58.00
8000 4.1457 5.8952 70.32 2.2528 3.8432 58.62
8500 4.1307 5.8952 70.07 2.2546 3.8432 58.66
9000 4.1564 5.8952 70.50 2.2398 3.8432 58.28
9500 4.1780 5.8952 70.87 2.2620 3.8432 58.86
10000 4.1642 5.8952 70.64 2.2591 3.8432 58.78

1

6

27

32

22

7
5

0

5

10

15

20

25

30

35

9.0 ‐ 10.5 10.5 ‐ 12.0 12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5

The Distribution for 100 Samples for f1

2

10

13

11

3

1

0

2

4

6

8

10

12

14

10.5 ‐ 12.0 12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5

The Distribution for 40 Samples for f1

Figure 5.7 The Distribution with respect to f1

54

Table 5.5 Comparison with Actual Trace Values

Fitness f2 Fitness f3

The Power n′ Estimated Value Actual Value % Estimated Value Actual Value %
10 11.2222 19.8676 56.48 10.7942 19.9873 54.00
12 9.6180 18.1384 53.03 9.3883 18.3296 51.22
14 8.2574 16.6158 49.70 8.3272 16.8629 49.38
16 7.1721 15.2567 47.01 7.2876 15.5563 46.85
18 6.2690 14.0383 44.66 6.5492 14.3887 45.52
20 5.4732 12.9436 42.29 5.9391 13.3429 44.51
22 4.9405 11.9583 41.31 5.3703 12.4042 43.29
24 4.3463 11.0701 39.26 4.8289 11.5599 41.77
26 3.9340 10.2680 38.31 4.4362 10.7989 41.08
Percentages of Visited States (%) 42.29 35.25

Fitness f4 Fitness f5

The Power n′ Estimated Value Actual Value % Estimated Value Actual Value %
10 10.9152 19.8817 54.90 11.7743 19.9793 58.93
12 9.0834 18.1525 50.04 10.0742 18.2940 55.07
14 7.7609 16.6331 46.66 8.7976 16.8133 52.33
16 6.7049 15.2781 43.89 7.6219 15.4948 49.19
18 5.8291 14.0643 41.45 6.7025 14.3155 46.82
20 5.0959 12.9746 39.28 5.3872 13.2577 40.63
22 4.5871 11.9946 38.24 5.1549 12.3069 41.89
24 4.0685 11.1118 36.61 4.8047 11.4504 41.96
26 3.6454 10.3154 35.34 4.4481 10.6772 41.66
Percentages of Visited States (%) 35.44 42.87

Fitness f7 Fitness f8

The Power n′ Estimated Value Actual Value % Estimated Value Actual Value %
10 10.3222 20.2025 51.09 10.9513 20.2646 54.04
12 9.1415 18.6256 49.08 9.7161 18.7078 51.94
14 8.2737 17.2356 48.00 8.7522 17.3387 50.48
16 7.5026 16.0042 46.88 7.9443 16.1280 49.26
18 6.9316 14.9097 46.49 7.1592 15.0536 47.56
20 6.2590 13.9342 44.92 6.6624 14.0971 47.26
22 5.7717 13.0621 44.19 6.2506 13.2431 47.20
24 5.4395 12.2804 44.29 5.7019 12.4782 45.69
26 5.1078 11.5777 44.11 5.4555 11.7910 46.27
Percentages of Visited States (%) 30.37 31.74

55

6

10

26

33

17

7

1

0

5

10

15

20

25

30

35

9.0 ‐ 10.5 10.5 ‐ 12.0 12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5

The Distribution for 100 Samples for f2

2

8

12 12

3
2

1

0

2

4

6

8

10

12

14

9.0 ‐ 10.5 10.5 ‐ 12.0 12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5

The Distribution for 40 Samples for f2

Figure 5.8 The Distribution with respect to f2

56

7

12

18

27

22

8
6

0

5

10

15

20

25

30

15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5 19.5 ‐ 21.0 21.0 ‐ 22.5 22.5 ‐ 24.0 24.0 ‐ 25.5

The Distribution for 100 Samples for f3

4

6

9

8

6

3

4

0

1

2

3

4

5

6

7

8

9

10

15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5 19.5 ‐ 21.0 21.0 ‐ 22.5 22.5 ‐ 24.0 24.0 ‐ 25.5

The Distribution for 40 Samples for f3

Figure 5.9 The Distribution with respect to f3

57

1

7
9

33

24
22

3
1

0

5

10

15

20

25

30

35

10.5 ‐ 12.0 12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5 19.5 ‐ 21.0 21.0 ‐ 22.5

The Distribution for 100 Samples for f4

4

6

14

10

6

0

2

4

6

8

10

12

14

16

12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5

The Distribution for 40 Samples for f4

Figure 5.10 The Distribution with respect to f4

58

1

7

21

31

22

15

2 1

0

5

10

15

20

25

30

35

9.0 ‐ 10.5 10.5 ‐ 12.0 12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5 19.5 ‐ 21.0

The Distribution for 100 Samples for f5

1
2

7
8

11

8

2
1

0

2

4

6

8

10

12

9.0 ‐ 10.5 10.5 ‐ 12.0 12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5 19.5 ‐ 21.0

The Distribution for 40 Samples for f5

Figure 5.11 The Distribution with respect to f5

59

10

16

29

25

17

2 1
0

5

10

15

20

25

30

35

10.5 ‐ 12.0 12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5 19.5 ‐ 21.0

The Distribution for 100 Samples for f6

3

8 8

11

9

1

0

2

4

6

8

10

12

10.5 ‐ 12.0 12.0 ‐ 13.5 13.5 ‐ 15.0 15.0 ‐ 16.5 16.5 ‐ 18.0 18.0 ‐ 19.5

The Distribution for 40 Samples for f6

Figure 5.12 The Distribution with respect to f6

60

1

6 7

12

21

27

16

7

2 1

0

5

10

15

20

25

30

27.0 ‐ 28.5 28.5 ‐ 30.0 30.0 ‐ 31.5 31.5 ‐ 33.0 33.0 ‐ 34.5 34.5 ‐ 36.0 36.0 ‐ 37.5 37.5 ‐ 39.0 39.0 ‐ 40.5 40.5 ‐ 42.0

The Distribution for 100 Samples for f7

2

1

3

5

8

6

7

3 3

2

0

1

2

3

4

5

6

7

8

9

28.5 ‐ 30.0 30.0 ‐ 31.5 31.5 ‐ 33.0 33.0 ‐ 34.5 34.5 ‐ 36.0 36.0 ‐ 37.5 37.5 ‐ 39.0 39.0 ‐ 40.5 40.5 ‐ 42.0 42.0 ‐ 43.5

The Distribution for 40 samples for f7

Figure 5.13 The Distribution with respect to f7

61

1 0

13

17

14

24
22

7

2

0

5

10

15

20

25

30

22.5 ‐ 24.0 24.0 ‐ 25.5 25.5 ‐ 27.0 27.0 ‐ 28.5 28.5 ‐ 30.0 30.0 ‐ 31.5 31.5 ‐ 33.0 33.0 ‐ 34.5 34.5 ‐ 36.0

The Distribution for 100 Samples for f8

9

12

7

5
4

3

0

2

4

6

8

10

12

14

25.5 ‐ 27.0 27.0 ‐ 28.5 28.5 ‐ 30.0 30.0 ‐ 31.5 31.5 ‐ 33.0 33.0 ‐ 34.5

The Distribution for 40 Samples for f8

Figure 5.14 The Distribution with respect to f8

62

10 12 14 16 18 20 22 24

Upper 15.1583 8.5197 5.3850 3.1595 2.0829 1.4411 0.9701 0.6405

Lower 13.9022 7.7721 4.6136 2.6578 1.7182 1.1077 0.6580 0.3808

Mean 14.5302 8.1459 4.9993 2.9086 1.9005 1.2744 0.8140 0.5106

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

SCI for f1 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.15 95% SCI for f1

10 12 14 16 18 20 22 24

Upper 14.4911 8.1023 5.2361 2.9404 1.9384 1.4000 0.9362 0.5712

Lower 13.2654 7.3799 4.4922 2.4564 1.6074 1.0769 0.6673 0.3572

Mean 13.8783 7.7411 4.8642 2.6984 1.7729 1.2384 0.8017 0.4642

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

SCI for f2 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.16 95% SCI for f2

10 12 14 16 18 20 22 24

Upper 20.5872 12.9341 8.2233 5.1900 3.7460 2.5986 1.8050 1.3414

Lower 19.1592 11.9058 7.2968 4.5170 3.1452 2.1878 1.4465 1.0395

Mean 19.8732 12.4199 7.7600 4.8535 3.4456 2.3932 1.6257 1.1904

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

SCI for f3 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.17 95% SCI for f3

10 12 14 16 18 20 22 24

Upper 17.3203 10.1731 6.6153 4.0311 2.8266 2.0813 1.4795 1.0068

Lower 15.8715 9.2406 5.7630 3.3896 2.3395 1.6534 1.0974 0.7112

Mean 16.5959 9.7069 6.1892 3.7104 2.5831 1.8673 1.2885 0.8590

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

20.0000

SCI for f4 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.18 95% SCI for f4

10 12 14 16 18 20 22 24

Upper 15.3125 9.0202 5.5931 3.2827 2.2047 1.6674 1.0796 0.7408

Lower 13.9030 8.1784 4.8940 2.7386 1.7907 1.2781 0.7479 0.4358

Mean 14.6078 8.5993 5.2436 3.0107 1.9977 1.4727 0.9137 0.5883

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

SCI for f5 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.19 95% SCI for f5

10 12 14 16 18 20 22 24

Upper 15.4367 9.0498 5.5629 3.2721 2.1522 1.5796 1.0856 0.7207

Lower 14.0140 8.2212 4.9303 2.7426 1.7675 1.2129 0.7640 0.4530

Mean 14.7254 8.6355 5.2466 3.0074 1.9599 1.3963 0.9248 0.5869

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

SCI for f6 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.20 95% SCI for f6

10 12 14 16 18 20 22 24

Upper 35.4786 23.6414 16.7527 11.8831 8.8169 6.3886 5.0691 4.0590

Lower 33.4557 22.1147 15.4536 10.8701 8.0762 5.6639 4.4493 3.4606

Mean 34.4671 22.8780 16.1032 11.3766 8.4466 6.0263 4.7592 3.7598

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

SCI for f7 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.21 95% SCI for f7

10 12 14 16 18 20 22 24

Upper 24.2092 14.8996 9.9001 6.4057 4.5187 3.2564 2.2814 1.5974

Lower 22.7812 13.8626 9.0429 5.6727 3.9053 2.7613 1.8459 1.2052

Mean 23.4952 14.3811 9.4715 6.0392 4.2120 3.0089 2.0636 1.4013

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

SCI for f8 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.22 95% SCI for f8

63

Figure 5.23 The Comparison of 95% SCIs for the Estimated Trace Values
Generated by the Proposed Evaluation Metric

64

10 12 14 16 18 20 22 24

Upper 13.8755 7.8198 4.9597 2.9306 1.9498 1.3648 0.9355 0.6360

Lower 12.7262 7.1321 4.2504 2.4645 1.6058 1.0483 0.6376 0.3834

Mean 13.3008 7.4759 4.6051 2.6976 1.7778 1.2066 0.7865 0.5097

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

WI for f1 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.24 95% WI for f1

10 12 14 16 18 20 22 24

Upper 13.2668 7.4390 4.8239 2.7309 1.8186 1.3275 0.9056 0.5744

Lower 12.1451 6.7741 4.1396 2.2807 1.5042 1.0199 0.6450 0.3603

Mean 12.7060 7.1066 4.4818 2.5058 1.6614 1.1737 0.7753 0.4673

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

WI for f2 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.25 95% WI for f2

10 12 14 16 18 20 22 24

Upper 18.8286 11.8466 7.5488 4.7822 3.4650 2.4197 1.6964 1.2745

Lower 17.5227 10.9043 6.6990 4.1619 2.9099 2.0349 1.3578 0.9854

Mean 18.1756 11.3754 7.1239 4.4720 3.1875 2.2273 1.5271 1.1299

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

20.0000

WI for f3 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.26 95% WI for f3

10 12 14 16 18 20 22 24

Upper 15.8479 9.3278 6.0819 3.7250 2.6270 1.9476 1.3991 0.9694

Lower 14.5231 8.4725 5.2994 3.1332 2.1741 1.5475 1.0397 0.6857

Mean 15.1855 8.9001 5.6907 3.4291 2.4006 1.7475 1.2194 0.8275

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

WI for f4 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.27 95% WI for f4

10 12 14 16 18 20 22 24

Upper 14.0161 8.2761 5.1498 3.0427 2.0604 1.5704 1.0350 0.7264

Lower 12.7271 7.5031 4.5060 2.5386 1.6726 1.2046 0.7199 0.4347

Mean 13.3716 7.8896 4.8279 2.7907 1.8665 1.3875 0.8775 0.5806

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

WI for f5 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.28 95% WI for f5

10 12 14 16 18 20 22 24

Upper 14.1293 8.3032 5.1226 3.0331 2.0128 1.4907 1.0407 0.7090

Lower 12.8284 7.5421 4.5388 2.5422 1.6511 1.1448 0.7345 0.4495

Mean 13.4789 7.9226 4.8307 2.7877 1.8319 1.3177 0.8876 0.5792

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

WI for f6 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.29 95% WI for f6

10 12 14 16 18 20 22 24

Upper 32.4146 21.6150 15.3302 10.8877 8.0910 5.8755 4.6721 3.7507

Lower 30.5669 20.2193 14.1417 9.9594 7.4095 5.2086 4.0999 3.1977

Mean 31.4908 20.9172 14.7360 10.4235 7.7502 5.5420 4.3860 3.4742

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

WI for f7 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.30 95% WI for f7

10 12 14 16 18 20 22 24

Upper 22.1331 13.6399 9.0789 5.8911 4.1700 3.0191 2.1300 1.5065

Lower 20.8273 12.6897 8.2919 5.2166 3.6035 2.5590 1.7232 1.1382

Mean 21.4802 13.1648 8.6854 5.5538 3.8867 2.7890 1.9266 1.3223

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

WI for f8 (X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n')

Figure 5.31 95% WI for f8

65

Table 5.6 The Range for Numbers of Generations at which the CGA with
Best Solution Maintained Over Time Has Probability of 80%
(out of 1000 Trials) to Reach the Global (or Near) Optimal So-
lution

Fitness Function The Range

f1 15500 − 16000
f2 14500 − 15000
f3 24000 − 24500
f4 > 70000
f5 16000 − 16500
f6 16500 − 17000
f7 57000 − 57500
f8 44000 − 44500

5.3.6 Discussions on the Smallest Number of Samples Needed for the Estimation

Through above discussions, we know that the proposed evaluation metric has the ability to

determine the order of fitness functions sorted by the difficulty levels for CGAs. This subsection

simply discusses the smallest number of samples needed for the estimation. Similar as before,

the fitness functions, except f4, with the setting (n′, m, l) = (10, 2, 16) are investigated. Assume

that for the same n′, using a larger number of samples derives the estimated Trace((CMS)n′
)

closer to the actual trace value. The order of fitness functions when the number of generations

n = 20000 is compared with smaller numbers of generations. When n = 20000, the order of

the fitness functions from the most difficult one (i.e., the one has the largest Trace((CMS)10))

to the easiest one is

f7 → f8 → f3 → f6 → f5 → f1 → f2

Note that when n = 10000, the order of fitness functions is exactly the same as the above

order. Figure 5.33 shows the results obtained from using smaller numbers of generations.

As we can see, when the number of generations increases, the estimated traces increase

linearly. This result is similar as the result in Figure 5.5. From n = 500 to n = 8500, the

two lines representing the trace values for f5 and f6 are tangled. This is also the case when

n is around 20000. When n = 500, the traces for f7 and f8 already have larger values than

66

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

10 12 14 16 18 20 22 24

WI Mean for f1

SCI Mean for f1

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

10 12 14 16 18 20 22 24

WI Mean for f8

SCI Mean for f8

Figure 5.32 The means of WI and SCI for fitness functions f1 and f8,
respectively

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500

f1 0.6253 1.2786 2.0860 2.8878 3.4890 4.1477 4.9034 5.4100 6.3109 6.9763 7.7268 8.4477 9.2892 10.0685 10.8294 11.6051 12.2922

f2 0.6054 1.2151 1.9933 2.6677 3.2866 3.8819 4.6370 5.1135 5.9336 6.6432 7.3858 8.0454 8.8982 9.6757 10.4233 11.0594 11.7757

f3 0.8837 1.9069 2.8323 4.0885 4.7344 5.5737 6.7923 7.7534 8.9298 9.5974 10.6760 11.4780 12.8716 13.6020 14.6862 15.4508 16.8723

f5 0.7261 1.2942 2.1760 2.9467 3.5726 4.2176 5.0005 5.5002 6.4924 7.0663 7.9332 8.7603 9.4911 10.4578 11.1834 11.8869 12.6843

f6 0.6150 1.3212 2.1519 2.8931 3.6736 4.2777 4.9713 5.6158 6.4333 7.1158 7.9624 8.7233 9.4822 10.3563 11.0863 11.9290 12.6130

f7 1.6455 3.3554 5.0956 6.8892 8.4818 10.1882 11.7871 13.4378 15.2493 17.0930 18.8189 20.3979 21.5578 24.1855 25.7478 27.4307 28.9841

f8 0.9442 2.0381 3.3521 4.5662 5.5568 6.9103 8.0021 9.1777 10.3121 11.5317 12.6491 13.5721 15.0209 16.2174 17.2449 18.5058 19.1493

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

X‐Axis: The Number of Generations n; Y‐Axis: Estimated Trace of CMS to the Power 10

Figure 5.33 The order of fitness functions w.r.t. smaller numbers of gen-
erations

67

the traces for other fitness functions; however, the difference of the traces for any two fitness

functions is very small, which may cause problems. For instance, we cannot know whether the

fitness function which has a smaller trace is actually the easier one or not. When n = 1000,

we get the exact same order of fitness functions presented above. This shows that the smallest

number of samples needed for the setting (n′, m, l) = (10, 2, 16) can be around 1000. Compared

with the number of states (232) and the number of feasible solutions in the solution space (216),

it is a small number.

5.3.7 Multi-Dimensional Fitness Functions

In order to present more evidence for verifying my proposed methodology, five 3−dimensional

fitness functions are selected, including Ackley’s, Rastrigin’s, and Sphere functions, with differ-

ent degrees of difficulty for CGAs [Tang, K. and Yao, X. and Suganthan, P. N. and MacNish,

C. and Chen, Y. P. and Chen, C. M and Yang, Z. (2007)]. Ackley’s, Rastrigin’s, and Sphere

functions are designed to be minimized. The selection technique utilized in all experiments in

this dissertation, roulette wheel selection, enables a CGA to maximize fitness functions. Hence,

those fitness functions are slightly adjusted in this experiment. The five fitness functions in-

vestigated are in Table 5.7. Intuitively, the fitness functions f9 and f10 are relatively simple

Table 5.7 The Selected 3-Dimensional Fitness Functions and Their Fea-
tures

Fitness Function Optimal Value

f9(x) = (
∑3

i=1 xi) + 16, where x1, x2, x3 ∈ [−5, 5] 31
(Sphere Function - Unimodal and Separable)
f10(x) = −(

∑3
i=1 x2

i) + 76, where x1, x2, x3 ∈ [−5, 5] 76
(Ackley’s Function 1 - Multimodal, and Non-separable)

f11(x) = −(−20e
−0.2

√
1
3

∑3
i=1 x2

i − e
1
3

∑3
i=1 cos(2πxi) + 20 + e) + 15, where x1, x2, x3 ∈ [−5, 5] 15

(Ackley’s Function 2 - Multimodal, and Non-separable)

f12(x) = −(−20e
−0.2

√
1
3

∑3
i=1 x2

i − e
1
3

∑3
i=1 cos(2πxi) + 20 + e) + 23, where x1, x2, x3 ∈ [−32.768, 32.768] 23

(Rastrigin’s Function - Multimodal, and Separable)
f13(x) = −(

∑3
i=1(x

2
i − 10cos(2πxi) + 10)) + 135, where x1, x2, x3 ∈ [−5, 5] 135

among the five, since both of them only have one optimal solution. Comparing the features of

the rest of the fitness functions, Ackley’s function is more difficult for a CGA than Rastrigin’s

68

function, since Ackley’s function is not only multimodal, but also non-separable (i.e., it cannot

be rewritten as a sum of several functions of just one variable) [Hadley, G. (1964)]. Separable

functions can be optimized for each variable in turn. Non-separable functions are more difficult

to optimize as the accurate search direction depends on two or more genes. The result of this

experiment, shown in Figure 5.34, is the average from 40 trials of CGA runs. The confidence

intervals with respect to the settings of n′ are similar to the results derived for 1−dimensional

fitness functions. From Figure 5.34, the estimated trace derived by f12 is larger than that of

10 12 14 16 18 20

f9 16.7812 9.2259 5.4055 3.1064 1.9131 1.4340

f10 17.1290 9.2133 5.5234 3.1696 1.9131 1.4428

f11 18.5263 10.2056 6.2144 3.6466 2.1088 1.6128

f12 24.5977 14.5670 8.9094 5.5118 3.4642 2.5321

f13 17.1850 9.3063 5.6309 3.2171 1.9981 1.5354

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

X‐Axis: n'; Y‐Axis: Trace of CMS to the Power n'

Figure 5.34 The convergence trends of Trace((CMS)n′
) for multi-dimen-

sional fitness functions

f11 since the range [−32.768, 32.768] includes more peaks than the range [−5, 5]. The degree

of difficulty of f12 is higher than that of f11 for a CGA. Moreover, when fitness functions are

multi-dimensional, the traces estimated by the proposed evaluation metric still coincide with

the earlier assertion that more difficult fitness functions, with respect to a CGA, result in

higher estimated traces. The proposed evaluation metric has the ability to determine the best

fitness function for a CGA among a set of fitness functions.

69

5.3.7.1 Observations on the Experiments

Due to the fact that usually the sample size is relatively small compared to the state space

size, the estimated Trace((CMS)n′
) is only a small percentage of the actual Trace((CMS)n′

).

The criterion (i.e., |Obtained Value− 1|) discussed in Section 5.2.3 for determining a degree of

convergence should be slightly adjusted. Since the actual Trace((CMS)n′
) is greater than or

equal to 0 for all n ∈ N , any percentage of Trace((CMS)n′
) should be greater than or equal

to 0. The criterion can be modified to |Obtained Value − 0| (i.e., Obtained Value) to reflect

that the smaller the estimated Trace((CMS)n′
), the higher the degree of convergence.

From the experiments, the probability that multiple encoded points have equal fitness

values is low, even for periodic functions. That is, in the real world, there is usually one global

optimal solution in the search space of CGAs. Different settings of m and l may cause different

orders of fitness functions sorted by difficulty to a certain CGA configuration. The reason is

that the number of points encoded in a search space for discovering the landscape of a fitness

function is based on l. Small l implies a small number of points encoded in a search space. In

that case, a non-smooth fitness function may become a smooth one due to the lack of points.

The setting of m impacts probabilities of selecting individuals. Another observation is that

different domains of a fitness function encoded in a search space have a high possibility to

result in different degrees of difficulties for a CGA, which is because more of the landscape of

the fitness function, such as peaks, and valleys, is included in a larger domain.

In addition, before running a CGA with the evaluation metric, one has to check:

1. Sensitivity of the fitness function;

2. Fitness values of the encoding 0000 . . . 0 and 1111 . . . 1;

3. If the isolation points are known, the fitness values of those points should be computed

in advance.

Checking the sensitivity of the fitness function helps researchers determine whether or not

the defined fitness function has a low discrimination for “good” and “bad” solutions. In real-

world applications, CGAs with non-sensitive fitness functions are rare. Practitioners apply

70

CGAs to obtain (near) optimal solutions. If the fitness function is almost flat for a CGA,

it is meaningless to spend time searching for the global optimal solution. Besides, the low

discrimination fitness function can always be reformulated to improve the performance of

CGAs. Through the second step, the isolation points of the fitness function in the extreme

locations can be known beforehand. This step is essential because the isolation points other

than 0000 . . . 0 and 1111 . . . 1 are relatively easy to produce by chance through crossover and

mutation operators. Checking the extreme cases first helps CGAs to have a better chance to

find the global optimal solution.

71

CHAPTER 6. The Estimation of Global Convergence

This chapter presents an approach to using the proposed evaluation metric in Chapter 5

for estimating the number of generations needed for the best solution generated by a CGA to

converge to the global optima of a fitness function.

6.1 The Overview of the Estimation

The estimation includes the following three phases (see Figure 6.1):

• the empirical estimation on Trace((CMS)n′
) and Trace((CMS)n′+k), for some n′, k ∈

N ,

• the generation of a fitting curve based on Trace((CMS)n′
) and Trace((CMS)n′+k), and

• the derivation of the least number of generations needed (for global convergence) from

the fitting curve and a small fixed ε.

Each phase is introduced below.

6.1.1 The Empirical Estimation on the Traces and the Fitting Curve

In the experiments of Chapter 5, estimated traces derived by the proposed evaluation metric

are merely certain proportions of the actual ones. Without any other information, the exact

actual trace is difficult to determine from the estimated trace. To closely estimate a trace, one

has to know the number of states visited by a CGA run, which can be computed by directly

counting the number of nodes in the linked list in Figure 5.3. Being aware of the number of

states visited by a CGA run, the proportion of the visited states over the total number of

states is derived, which is used to estimate the actual trace below.

72

1

1+ε

Trace((CMS)n’)

Trace((CMS)n’+k)

n’ n’+k

The Fitting Curve

Trace((CMS)n)=1+ε

n

Figure 6.1 The Overview of the Estimation

73

Due to the limitation of the computer capability, the maximal order of the transition

matrices (square matrices) estimated for the actual traces is 210. For this reason, the setting

m = 2 is used to develop the entire estimation framework as an illustration. Similar frameworks

can be derived by the same way for other settings of m. Table 6.1 and Table 6.2 show the

relationships among the estimated trace, the proportion of the visited states over the total

number of states, and the actual trace with respect to the fitness function f1(x) = x. Note

that the actual traces for the settings l > 5 are guessed by fitting a curve to the previous four

points (i.e., (m, l) = (2, 2), (2, 3), (2, 4) and (2, 5)).

Fitness Function: f1(x) = x, n′ = 10

Settings m = 2, l = 2 m = 2, l = 3 m = 2, l = 4 m = 2, l = 5 m = 2, l = 6 m = 2, l = 7 m = 2, l = 8

Number of Generations: 500

(Average) Number of States Visited 10 27 54 89 121 157 186
Percentages of Visited States (%) 62.50 42.19 21.09 8.69 2.95 0.96 0.28
Estimated Trace by the Proposed Metric 1.9325 2.7694 3.6092 4.1131 4.4298 3.8777 3.5605
(Estimated Trace/Percentages of Visited States) (∗500) 3.0919 6.5644 17.1103 47.3240 149.9540 404.6681 1254.5194
(∗500)/(The Actual Trace) 0.9357 1.0933 1.5674 2.3842 4.1543 6.1644 10.5078

Number of Generations: 1000

(Average) Number of States Visited 13 35 77 141 208 284 352
Percentages of Visited States (%) 81.25 54.69 30.08 13.77 5.08 1.73 0.54
Estimated Trace by the Proposed Metric 2.2072 3.0862 4.6629 6.0658 6.8859 6.9667 6.5767
(Estimated Trace/Percentages of Visited States) (∗1000) 2.7166 5.6433 15.5027 44.0521 135.6001 401.9119 1224.4665
(∗1000)/(The Actual Trace) 0.8221 0.9399 1.4202 2.2193 3.7566 6.1224 10.2561

Number of Generations: 1500

(Average) Number of States Visited 13 39 90 176 279 398 507
Percentages of Visited States (%) 81.25 60.94 35.16 17.19 6.81 2.43 0.77
Estimated Trace by the Proposed Metric 2.2457 3.4820 5.2121 7.2691 8.6713 9.3192 9.3039
(Estimated Trace/Percentages of Visited States) (∗1500) 2.7640 5.7140 14.8255 42.2932 127.3033 383.6316 1202.6409
(∗1500)/(The Actual Trace) 0.8365 0.9516 1.3581 2.1307 3.5268 5.8439 10.0733

Number of Generations: 2000

(Average) Number of States Visited 14 42 100 203 335 498 647
Percentages of Visited States (%) 87.50 65.63 39.06 19.82 8.18 3.04 0.99
Estimated Trace by the Proposed Metric 2.3166 3.5612 5.5706 7.7670 10.0028 11.1726 11.5273
(Estimated Trace/Percentages of Visited States) (∗2000) 2.6475 5.4265 14.2607 39.1792 122.3023 367.5734 1167.6285
(∗2000)/(The Actual Trace) 0.8012 0.9038 1.3064 1.9738 3.3882 5.5993 9.7800

Number of Generations: 5000

(Average) Number of States Visited 15 51 139 306 570 933 1342
Percentages of Visited States (%) 93.75 79.69 54.30 29.88 13.92 5.69 2.05
Estimated Trace by the Proposed Metric 2.4505 4.0357 6.4425 9.8537 14.0102 17.9755 20.9455
(Estimated Trace/Percentages of Visited States) (∗5000) 2.6139 5.0644 11.8654 32.9744 100.6768 315.6592 1022.8634
(∗5000)/(The Actual Trace) 0.7911 0.8434 1.0870 1.6612 2.7891 4.8085 8.5675

The Actual Trace 3.3043 6.0044 10.9161 19.8492 36.0964 (Guess) 65.6460 (Guess) 119.3893 (Guess)

Table 6.1 The Relationships among the Estimated Trace, the Proportion
of the Visited States over the Total Number of States (n′ = 10)

As shown in both Table 6.1 and Table 6.2, the value, derived by dividing the estimated

trace by the proportion of the visited states over the total number of states, is greater than the

actual trace when setting m = 2 and l ≥ 4. Moreover, the relationship between the value and

74

Fitness Function: f1(x) = x, n′ = 12

Settings m = 2, l = 2 m = 2, l = 3 m = 2, l = 4 m = 2, l = 5 m = 2, l = 6 m = 2, l = 7 m = 2, l = 8

Number of Generations: 500

(Average) Number of States Visited 10 27 54 88 121 156 185
Percentages of Visited States (%) 62.50 42.19 21.09 8.59 2.95 0.95 0.28
Estimated Trace by the Proposed Metric 1.8528 2.5426 3.1317 3.2154 3.2348 3.1077 2.6261
(Estimated Trace/Percentages of Visited States) (∗500) 2.9644 6.0269 14.8466 37.4151 109.5020 326.3875 930.2841
(∗500)/(The Actual Trace) 0.9303 1.0595 1.4620 2.0641 3.3843 5.6512 9.0237

Number of Generations: 1000

(Average) Number of States Visited 13 35 77 140 207 284 351
Percentages of Visited States (%) 81.25 54.69 30.08 13.67 5.05 1.73 0.54
Estimated Trace by the Proposed Metric 2.0982 2.8219 4.0908 4.9186 5.4002 5.4528 5.0476
(Estimated Trace/Percentages of Visited States) (∗1000) 2.5824 5.1601 13.6007 35.9760 106.8554 314.5709 942.4512
(∗1000)/(The Actual Trace) 0.8104 0.9071 1.3393 1.9847 3.3025 5.4466 9.1417

Number of Generations: 1500

(Average) Number of States Visited 13 39 90 176 279 397 506
Percentages of Visited States (%) 81.25 60.94 35.16 17.19 6.81 2.42 0.77
Estimated Trace by the Proposed Metric 2.1311 3.1494 4.6002 5.9594 6.8408 7.3889 7.0296
(Estimated Trace/Percentages of Visited States) (∗1500) 2.6228 5.1682 13.0850 34.6728 100.4298 304.9358 910.4647
(∗1500)/(The Actual Trace) 0.8231 0.9085 1.2886 1.9128 3.1039 5.2798 8.8315

Number of Generations: 2000

(Average) Number of States Visited 14 42 100 203 334 497 647
Percentages of Visited States (%) 87.50 65.63 39.06 19.82 8.15 3.03 0.99
Estimated Trace by the Proposed Metric 2.1711 3.2489 4.8517 6.3587 7.9047 8.7813 8.7114
(Estimated Trace/Percentages of Visited States) (∗2000) 2.4812 4.9507 12.4203 32.0755 96.9392 289.4821 882.3972
(∗2000)/(The Actual Trace) 0.7786 0.8703 1.2231 1.7695 2.9960 5.0122 8.5592

Number of Generations: 5000

(Average) Number of States Visited 15 51 139 306 570 933 1342
Percentages of Visited States (%) 93.75 79.69 54.30 29.88 13.92 5.69 2.05
Estimated Trace by the Proposed Metric 2.3152 3.7109 5.6716 8.3251 11.1602 13.9268 16.0126
(Estimated Trace/Percentages of Visited States) (∗5000) 2.4696 4.6569 10.4456 27.8591 80.1966 244.5628 781.9699
(∗5000)/(The Actual Trace) 0.7750 0.8186 1.0286 1.5369 2.4786 4.2344 7.5851

The Actual Trace 3.1866 5.6887 10.1548 18.1266 32.3562 (Guess) 57.7557 (Guess) 103.0934 (Guess)

Table 6.2 The Relationships among the Estimated Trace, the Proportion
of the Visited States over the Total Number of States (n′ = 12)

75

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

m=2, l=2m=2, l=3m=2, l=4m=2, l=5m=2, l=6m=2, l=7m=2, l=8

X‐Axis: The Length of an Individual l;
Y‐Axis: The Multiple of Actual Trace

The Number of Generation
n=500

The Number of Generation
n=1000

The Number of Generation
n=1500

The Number of Generation
n=2000

The Number of Generation
n=5000

Figure 6.2 The relationship between the value and the setting of l

the setting of l is shown in Figure 6.2, which is based on the results from the setting n′ = 10.

Figure 6.3 shows the difference between the setting n′ = 10 (the power of CMS) and n′ = 12

when the number of generations is set to 2000. The observations on other fitness functions

have similar results, although the values are slightly different.

Based on my investigation, different fitness functions, with fixed numbers of generations,

have different multiple functions (as shown in Figure 6.2) for actual traces, but all of them

can be fitted by the curve y = αl−3 when l ≥ 4, where α ≥ 1. Note that different settings

on the number of generations have different values for α. For each fitness function, we can

always compute its own multiple functions to derive the (estimated) actual traces for estimating

the number of generations for the empirical global convergence; however, that idea has some

drawbacks. We have to compute everything for each fitness function, which costs a lot of

computation time. In addition, computation errors of the multiple functions may sometimes

result in the situation that the estimated λ2 (i.e., the second largest eigenvalue in absolute

value), denoted as λ̂2, is greater than 1. In order to conquer the above problems and provide a

robust method for the estimation, the entire estimation framework is analyzed and simplified.

The following explains how the framework works.

Let us discuss the equation planned to be used as the fitting curve in Figure 6.1 first.

76

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

m=2, l=2 m=2, l=3 m=2, l=4 m=2, l=5 m=2, l=6 m=2, l=7 m=2, l=8

X‐Axis: The Length of an Individual l;
Y‐Axis: The Multiple of Actual Trace

The Power of CMS: n'=12

The Power of CMS: n'=10

Figure 6.3 The relationship between the value and the setting of l

Theoretically, the curve should be y = f(x) = 1+m2λ
x
2 +m3λ

x
3 + · · ·+mqλ

x
q , where m2, . . . , mq

and λ2, . . . , λq are defined in Theorem 4 in Chapter 3; however, to include all of the parameters

(m2, . . . , mq and λ2, . . . , λq) costs a lot of computation overhead. As it is commonly known

that λ2, . . . , λq are all less than 1, for a large enough x, the terms m3λ
x
3 , . . . , mqλ

x
q can be

ignored. The equation y = f(x) = 1 + m2λ
x
2 is thusly applied to fit the curve. In this case,

merely two points are needed for the fitting. Note that in order to obtain more precise results,

higher dimensional fitting curves using the existing fitting techniques, such as least squares

fitting, can be applied here, but more points are needed for the fitting.

With the two points version, a proper set of fitness functions with different difficulty levels

is chosen for estimating λ2. With an arbitrary setting of m and l, the estimations of λ2 derived

by three pairs of points, (n′ = 10, n′ = 12), (n′ = 10, n′ = 20), and (n′ = 20, n′ = 22), are

compared. Based on the results, it is considered true that λ̂2 computed based on the pair

(n′ = 20, n′ = 22) is always the largest. For instance, with respect to the fitness function

y = f3(x) = 1 + sin(x) with the setting m equal to 2 and l equal to 5, λ̂2 derived by the pair

(n′ = 10, n′ = 12) is equal to 0.9554, λ̂2 derived by the pair (n′ = 10, n′ = 20) is equal to

0.9578, and λ̂2 derived by the pair (n′ = 20, n′ = 22) is equal to 0.9612. The reason is that,

at the point x = 10, m3λ
x
3 + · · · + mqλ

x
q is not really close to 0, which causes some noises

for the estimation. Although the λ̂2 derived by the pair (n′ = 20, n′ = 22) is the best among

77

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

The Actual Curve 19.9873 18.3296 16.8629 15.5563 14.3887 13.3429 12.4042 11.5599 10.7989 10.1115 9.4895 8.9254 8.4129 7.9463 7.5208 7.1319 6.7759

The Fitting Curve 20.0096 18.3518 16.8385 15.4572 14.1964 13.0455 11.9950 11.0361 10.1609 9.3620 8.6327 7.9670 7.3594 6.8048 6.2986 5.8365 5.4147

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

Y‐
A
xi
s:
 T
he

 T
ra
ce
 V
al
ue

The Actual Curve and The Fitting Curve for the Pair (n'=10, n'=12)
X‐Axis: The Power of CMS ‐‐ n'

Figure 6.4 The relationship between the actual curve and the curve fitted
by the pair (n′ = 10, n′ = 12)

the three, the noises caused by m3λ
x
3 + · · · + mqλ

x
q still exist, which makes the estimated λ2

slightly smaller than the actual λ2. The fitting curves based on those three λ̂2’s and their

corresponding m̂2’s are drawn in Figure 6.4, Figure 6.5, and Figure 6.6, respectively, where

m̂2 represents the estimated m2. Comparing three of them, the curve generated by the pair

(n′ = 20, n′ = 22) is the best fit for the actual curve. Note that the n′ cannot be too large

when it is applied to estimate λ2 for any fitness function. Too large n′ may cause some errors

due to precision problems.

This paragraph mainly discusses and analyzes the approach adopted for estimating traces

with certain powers n′ and the corresponding λ2. Consider an arbitrary fitness function. With

respect to this fitness function, we can compute two multiple functions for both n′ = 20 and

n′ = 22. Suppose the value of the multiple function for n′ = 20 at l = 16 is Mul20(16), and

the value of the multiple function for n′ = 22 at l = 16 is Mul22(16). The traces for n′ = 20

and n′ = 22 are Estimated Trace (n′=20)
Percentages of Visited States/Mul20(16) and Estimated Trace (n′=22)

Percentages of Visited States/Mul22(16), re-

spectively. Note that the fraction Estimated Trace
Percentages of Visited States is used for estimating traces because

the proportion of visited states roughly presents the percentages of traces discovered by the

78

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

The Actual Curve 19.9873 18.3296 16.8629 15.5563 14.3887 13.3429 12.4042 11.5599 10.7989 10.1115 9.4895 8.9254 8.4129 7.9463 7.5208 7.1319 6.7759

The Fitting Curve 20.4926 18.8821 17.4047 16.0494 14.8060 13.6654 12.6190 11.6590 10.7784 9.9705 9.2294 8.5495 7.9257 7.3535 6.8286 6.3471 5.9053

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

Y‐
A
xi
s:
 T
he

 T
ra
ce
 V
al
ue

The Actual Curve and The Fitting Curve for the Pair (n'=10, n'=20)

X‐Axis: The Power of CMS ‐‐ n'

Figure 6.5 The relationship between the actual curve and the curve fitted
by the pair (n′ = 10, n′ = 20)

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

The Actual Curve 19.9873 18.3296 16.8629 15.5563 14.3887 13.3429 12.4042 11.5599 10.7989 10.1115 9.4895 8.9254 8.4129 7.9463 7.5208 7.1319 6.7759

The Fitting Curve 19.8493 18.4150 17.0898 15.8655 14.7343 13.6892 12.7236 11.8315 11.0073 10.2458 9.5422 8.8922 8.2917 7.7368 7.2242 6.7505 6.3130

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

Y‐
A
xi
s:
 T
he

 T
ra
ce
 V
al
ue

The Actual Curve and The Fitting Curve for the Pair (n'=20, n'=22)
X‐Axis: The Power of CMS ‐‐ n'

Figure 6.6 The relationship between the actual curve and the curve fitted
by the pair (n′ = 20, n′ = 22)

79

evaluation metric. From Table 6.1 and Table 6.2, we know that the fraction overestimates the

traces by some multiples when l ≥ 4. The multiple functions are leveraged to solve the over-

estimated problem. The reason for the overestimation is that usually the sum of the relatively

larger diagonal elements is discovered and computed by the evaluation metric. The amount

is already included in the estimated trace. Estimating the sum of smaller diagonal elements

using the sum of the relatively larger diagonal elements causes the problem. After deriving the

estimated traces for n′ = 20 and n′ = 22, the equations
⎧⎪⎪⎨
⎪⎪⎩

1 + m2λ
20
2 = Trace((CMS)20)

1 + m2λ
22
2 = Trace((CMS)22)

are applied to estimate λ2. From the equations, we obtain

λ̂2
2

=
Trace((CMS)22) − 1
Trace((CMS)20) − 1

=
Trace((CMS)22)
Trace((CMS)20)

+
(

Trace((CMS)22) − 1
Trace((CMS)20) − 1

− Trace((CMS)22)
Trace((CMS)20)

)

=
Trace((CMS)22)
Trace((CMS)20)

−
(

1
Trace((CMS)20) − 1

− Trace((CMS)22)
Trace((CMS)20)(Trace((CMS)20) − 1)

)
.

(6.1)

Note that the second term of the last line in Equation (6.1) can be ignored if Trace((CMS)20) is

large enough (e.g., Trace((CMS)20) ≥ 1000). We use a function Correction(Trace((CMS)20),

T race((CMS)22)) to denote it. Combined with the computations mentioned earlier, Equa-

tion (6.1) becomes

λ̂2
2

=(
Estimated Trace (n′ = 22)

Percentages of Visited States
/Mul22(l))/(

Estimated Trace (n′ = 20)
Percentages of Visited States

/Mul20(l))

− Correction(Trace((CMS)20), T race((CMS)22)),

(6.2)

which can be re-written as

λ̂2
2

=
Mul20(l)
Mul22(l)

(
(

Estimated Trace (n′ = 22)
Percentages of Visited States

)/(
Estimated Trace (n′ = 20)

Percentages of Visited States
)
)

− Correction(Trace((CMS)20), T race((CMS)22)).

(6.3)

80

If both of Trace((CMS)20) and Trace((CMS)22) are estimated by the proposed evaluation

metric at the same time (i.e., they are computed using the same set of random numbers),

Equation (6.3) can be simplified and re-written as

λ̂2
2

=
Mul20(l)
Mul22(l)

(
Estimated Trace (n′ = 22)
Estimated Trace (n′ = 20)

)
−Correction(Trace((CMS)20), T race((CMS)22)),

(6.4)

since both of them have the same value for Percentages of Visited States.

Now let us carefully consider an approximation equation for Equation (6.4) using the lim-

ited known information. As mentioned before, it is time consuming to compute the multiple

functions for each fitness function. In order to get more precise results, one may choose to

perform that. My goal is to simplify the computation process. Hence, an approximation ap-

proach is suggested. Based on my observation, the results show that with respect to the same

setting of l, the rates Mul20(l)
Mul22(l) of different fitness functions are close; however, fitness functions

which have smaller numbers of states visited by the CGA tend to have slightly larger rates.

The fitness function f7(x) = sin6(5π[x3/4 − 0.05]) is chosen as the referenced fitness function.

(Note that other fitness functions can also be used as the referenced fitness function.) For

different l (l ≥ 4), the rate Mul20(l)
Mul22(l) of f7 (when the number of generations n is set to 2000) is

approximate to
Mul20(l)
Mul22(l)

= (1.0072)l−3.

Some adjusted coefficients need to be applied for other fitness functions. The one suggested

is the fraction The Number of States Visited for f7

The Number of States Visited for the Fitness Function for a specific fitness function. The

approximation equation for Equation (6.4) can be

λ̂2
2 ≈ (1.0072)l−3(The Adjusted Coefficient)

(
Estimated Trace (n′ = 22)
Estimated Trace (n′ = 20)

)
, (6.5)

where l ≥ 4. The Correction(Trace((CMS)20), T race((CMS)22)) is ignored because for most

of the cases, we need Equation (6.5) to estimate λ2 for large-scale problems; in which case, l

is greater than 14. When l ≥ 14 and n′ = 20, the traces are around or greater than 1000.

81

6.2 The Number of Generations for the Empirical Global Convergence

After obtaining λ̂2, the equation 1+m2λ
20
2 = Trace((CMS)20) is used to estimate m2. Be-

fore that, Trace((CMS)20) needs to be computed first. By the computation in the previous sec-

tion, for each fitness function, Trace((CMS)20) is equal to the fraction Estimated Trace (n′=20)
Percentages of Visited States

divided by a number Mul20(l) corresponding to the fitness function. According to the results

on the values of Mul20(l) for fitness functions in the observed set, the largest Mul20(l) is

around ten times of the smallest one. As mentioned before, it is not very efficient to compute

the multiple functions for each fitness function. Hence, using one of the multiple functions

instead of all of them is suggested. Note that the selection of the value Mul20(l) only impacts

m̂2, which is employed in computing n from the equation 1 + m2λ
n
2 = 1 + ε (as in Figure 6.1),

in the entire estimation framework. An equivalent equation for 1 + m2λ
n
2 = 1 + ε is

n =
log(ε

m2
)

log(λ2)
. (6.6)

From Equation (6.6), we can get that λ2 is more sensitive than m2. Moreover, Figure 6.6

shows that the fitting curve computed by the proposed estimation method is eventually lower

than the curve drawn by the actual traces after n exceeds a value. That means the number

of generations for the global convergence estimated by the proposed method is smaller than

the actual one. Hence, smaller Mul20(l) is suggested to be leveraged so that larger m̂2 can be

used to solve n in Equation (6.6).

6.3 The Verification of the Proposed Estimation Framework

The one-dimensional fitness functions f1 to f8 in Chapter 5, with the setting (m, l) = (2, 16),

are used for the verification. Table 6.3 shows the pair (λ̂2, m̂2) with respect to each fitness

function computed by the proposed methodology. Note that Mul20(16) = 158.5566 ≈ 159

(from the observed set) is applied to derive m̂2.

Figure 6.7 to Figure 6.10 shows the cumulative distribution function (CDF) for fitness

functions f1 to f8, respectively. It is estimated by observing the convergence trends of the

fitness functions from 1000 trials. More specifically, 1000 trials of the CGA (with best solution

82

Table 6.3 The Pair (λ̂2, m̂2) with respect to Each Fitness Function

Fitness Function λ̂2 m̂2

f1 0.8490 102814
f2 0.8434 150613
f3 0.8890 76333
f4 0.9339 26663
f5 0.8646 87450
f6 0.8699 84670
f7 0.9439 85533
f8 0.9165 12535

maintained) are run for each fitness function. The CDFs with the length of the bin being 500

are generated. For the non-periodic fitness functions, the trials, in which the CGA reach the

global optimal solutions, are counted. Note that the isolation points of the fitness functions

f5 and f6 are ignored here. That is, as long as the best solutions maintained reach 90000.0,

the trials of the CGA are considered converging to the global optimal solutions. Sometimes,

they can reach 100000.0. However, based on my observation, the best solutions have certain

difficulty to reach 100000.0 for all trials even for a very large n. For the periodic fitness

functions f3 and f7, it is almost impossible for their best solutions to reach only a single point

since they have more than one global optimal solutions. Therefore, for f3 and f7, with the

best solutions maintained over time, when for the first time x (best solutions) satisfy

|fi(x) − Global Optimal Value| < 10−6,

the trials are considered converging to the global optimal solutions. For those figures, the

maximum number of generations is set to 70000. In other words, the trials which run more

than 70000 generations are not shown in the figures.

In order to compare the CDFs of the CGA with respect to those fitness functions, the bin,

representing a range for numbers of generations, which first reaches probability of 80% in the

CDF for each fitness function is listed in Table 6.4. (The second column of Table 6.4 repeatedly

shows the λ̂2 column in Table 6.3.) In Table 6.4, the second column which is derived using my

83

proposed methodology and the third column show similar results. That is, the difficulty of the

CGA with respect to the fitness functions f2, f1, f5, and f6 is the least. The difficulty of the

CGA with respect to f7 and f4 is the greatest. This implies that the proposed methodology

can derive close values for the corresponding λ2.

Table 6.4 The Bins Which First Reach 80% in CDFs

Fitness Function λ̂2 80% in CDFs

f1 0.8490 15500 − 16000
f2 0.8434 14500 − 15000
f3 0.8890 24000 − 24500
f4 0.9339 > 70000
f5 0.8646 16000 − 16500
f6 0.8699 16500 − 17000
f7 0.9439 57000 − 57500
f8 0.9165 44000 − 44500

Table 6.5 The Empirical Global Convergence for Each Fitness Function

Fitness Function Condition ε = 0.003 ε = 0.000003
(99% of the Global Optima) Derived Number Probability Derived Number Probability

of Generations (Out of 40) of Generations (Out of 40)

f1 Best Value ≥ 594 106 0.8250 149 0.9500
f2 Best Value ≥ 35640 105 1.0000 145 1.0000
f3 Best Value ≥ 1.98 145 1.0000 204 1.0000
f4 Best Value ≥ 0.99 234 1.0000 335 1.0000
f5 Best Value ≥ 89100 119 1.0000 166 1.0000
f6 Best Value ≥ 89100 124 0.9000 172 0.9750
f7 Best Value ≥ 0.99 298 1.0000 417 1.0000
f8 Best Value ≥ 0.99 175 0.9250 254 0.9750

Table 6.5 shows the results derived by the proposed methodology. With respect to different

settings of ε, the probabilities of satisfying the condition that the best solution maintained over

time is greater than or equal to 0.99 multiple of the global optimal solution are different. The

result from small ε has higher probability to satisfy the condition. Comparing the numbers

of generations derived by the proposed method and the upper bounds of the third column in

Table 6.4, we can get that the latter ones are in certain multiples of the former ones. Except

84

f4 (i.e., the unknown one), the multiples are in between 138 and 255 for ε = 0.003, and in

between 99 and 176 for ε = 0.000003, respectively. Hence, the number of generations derived

by the proposed method is useful for providing some information about the empirical global

convergence if a certain multiple greater than 255 (e.g., 260) is applied to it and ε is set to be

less than 0.003.

Another important result derived from Table 6.3 and Table 6.5 is that, the convergence

mainly depends on the value λ2, while m2, related to the constant in Inequality (4.3), does

not have significant impact on it. For instance, the m̂2 with respect to f2 is much larger than

the m̂2 with respect to f1, but in the Derived Number of Generations columns in Table 6.5

for both ε = 0.003 and ε = 0.000003, the Derived Number of Generations for f2 is a little bit

less than that for f1. The values of λ̂2 mainly control the order. Equation (6.6) explains this

result. Further, this result coincides with my earlier result (see Inequality (4.3)) and many

work in the literature that the second largest eigenvalue represents the convergence rate of a

Markov chain (see Definition 7 for convergence rate).

85

0

0.2

0.4

0.6

0.8

1

1.2

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

The CDF for f1 (1000 Trials)

0

0.2

0.4

0.6

0.8

1

1.2

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

The CDF for f2 (1000 Trials)

Figure 6.7 The CDF for Number of Trials to Find the Global Optimal
Solution with respect to f1 and f2 (X-Axis represents the num-
ber of generations; Y-Axis represents the cumulated number of
trials to find the global optimal solution (out of 1000 trials))

86

0

0.2

0.4

0.6

0.8

1

1.2

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

The CDF for f3 (1000 Trials)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

The CDF for f4 (1000 Trials)

Figure 6.8 The CDF for Number of Trials to Find the Global Optimal
Solution with respect to f3 and f4 (X-Axis represents the num-
ber of generations; Y-Axis represents the cumulated number of
trials to find the global optimal solution (out of 1000 trials))

87

0

0.2

0.4

0.6

0.8

1

1.2

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

The CDF for f5 (1000 Trials)

0

0.2

0.4

0.6

0.8

1

1.2

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

The CDF for f6 (1000 Trials)

Figure 6.9 The CDF for Number of Trials to Find the Global Optimal
Solution with respect to f5 and f6 (X-Axis represents the num-
ber of generations; Y-Axis represents the cumulated number of
trials to find the global optimal solution (out of 1000 trials))

88

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

The CDF for f7 (1000 Trials)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

The CDF for f8 (1000 Trials)

Figure 6.10 The CDF for Number of Trials to Find the Global Optimal So-
lution with respect to f7 and f8 (X-Axis represents the number
of generations; Y-Axis represents the cumulated number of tri-
als to find the global optimal solution (out of 1000 trials))

89

CHAPTER 7. A Case Study - Evolutionary Testing

7.1 Overview of Evolutionary Testing

Software testing is a critical element of software quality assurance and represents the ulti-

mate review of specification, design, and coding [Pressman, R. S. (2005)]. Due to its impor-

tance, at least 50% of the total cost (including human effort) involved in a software development

project is typically consumed by testing [Beizer, B. (1990); Tracey, N. and Clark, J. and Man-

der, K. (1998)]. Although a lot of effort has been allocated to the task of testing, complete

testing is usually impossible in practice because of the vast amount of possible input situations

[Wegener, J. (2005)]. For the same reason, effective methods for automatic test data gen-

eration are in great demand. Many techniques focusing on that purpose have been proposed

and developed. Evolutionary Testing (ET) is one of them and it gradually forms an important

branch of the research area in automatic test data generation.

ET exploits evolutionary algorithms (EAs), such as GA, to generate test data. According

to the objectives of testing [Pressman, R. S. (2005)], it is believed that ET has its potential

to become a major technique for automatically generating test data since it possesses the

following features:

• Like Random Testing (RT), it has the ability to search feasible solutions in the search

space. However, unlike RT, it can guide solutions to the desired ones through an eval-

uation criterion. With guidance, ET is capable of producing effective solutions even for

complex and poorly understood search spaces with many dimensions. Without it, ET

behaves exactly the same as RT. Hence, ET is more powerful than RT.

• ET is able to recombine the input data based on the higher fitness values. That is, it has

90

the capability to adjust the input data from the testing history, and create the desired

ones.

A better encoding of EAs is one that can explore more possible solutions within a fixed time

duration. In other words, a good design for ET can cover lots of combinations of inputs and

discover errors with a high probability.

Among all the software testing activities (i.e., test case design, test execution, monitoring,

test evaluation, test planning, test organization, and test documentation), test case design is

essential. Systematic generation of test cases based on the test design is indispensable to the

quality of software. However, for most of the test objectives, it is difficult to automate the

generation of test cases due to the reasons listed below [Sthamer, H. and Wegener, J. and

Baresel, A. (2002)]:

• The generation of test cases for functional testing is usually impossible because in general

no formal specifications can be applied in industrial practice.

• Structural testing is difficult to automate due to the limits of symbolic execution.

• No specialized methods and tools exist for testing the temporal behavior of systems.

• A generation of test cases for testing safety constraints is generally impossible.

Hence, test cases have to be defined manually, which is not efficient. Therefore, the researchers

have sought other techniques, e.g., ET, to effectively solve these problems.

According to the literature review, ET has been applied for functional testing (black box

testing), structural testing (white box testing), and real-time testing [Last, M. and Eyal1, S.

and Kandel, A. (2006); Michael, C. C. and McGraw, G. and Schatz, M. A. (2001); Baresel,

A. and Pohlheim, H. and Sadeghipour, S. (2003); Baresel, A. and Binkley, D. and Harman,

M. and Korel, B. (2004); McMinn, P. (2004); Wegener, J. (2005)] to automatically generate

test data. Among all of the existing work, structural testing is the method that has been

investigated and developed the most.

91

In structural testing, various methods to analyze the coverage of program structures have

been proposed. Depending on their test aims, fitness functions of ET are formulated. The

fitness functions summarized below are commonly seen in the literature.

The test data generation problem for structural testing is to find a set of program inputs

that achieves the desired coverage [Tracey, N. and Clark, J. and Mander, K. (1998)]. This type

of problems has been converted to optimization problems since the test criteria are specifically

known. Most of the work defines the fitness function based on the test criterions. The methods

to construct fitness functions can be categorized in Figure 7.1 [McMinn, P. (2004)].

Evolutionary Structural Test Data Generation

Structure‐Oriented

Coverage‐Oriented

(Watkins 1995, Roper 1997)

Control‐Oriented
(Pargas et al. 1999)

Branch‐Distance‐Oriented
(Xanthakis et al. 1992, Jones et al.

1996, McGraw et al. 1997)

Combined Control and Branch Distance Approaches

(Tracey 2000, Wegener et al. 2001)

Figure 7.1 Classification of Dynamic Structural Test Data Generation
Techniques Using EAs [McMinn, P. (2004)]

From Figure 7.1, we can see that researchers started to apply EAs for software testing

around two decades ago. They first set their goal in terms of coverage. For instance, the fitness

functions are designed to penalize the individuals that follow already covered paths. Later,

they found that it is difficult for the coverage-oriented approach to discover some specific paths.

It gradually changed to structure-oriented approach. In this approach, researchers employed

different information to form the fitness functions. The most updated one has combined control

and branch distance together. The branch distance is usually normalized to the range [0, 1)

[McMinn, P. (2004); McMinn, P. and Binkley, D. and Harman, M. (2005)]. With it (fractional

part), one may evaluate two feasible solutions with the same fitness value on the approach level

(integer part) [Levin, S. and Yehudai, A. (2007)]. The basic form of that to be minimized is

92

Fitness = Approach Level + Branch Distance, (7.1)

where the Approach Level is the number of target condition statements which are not exe-

cuted by the given test data, and Branch Distance is the distance from the test data to the

input values of the target branch, and it can be computed in various ways. The formula to

calculate both depend on the test goal, i.e., which types of coverage are needed [McMinn, P.

and Holcombe, M. (2003); McMinn, P. (2004); Wegener, J. (2005)].

7.2 The Flag Problem

Many works have applied EA for structural testing using fitness functions to guide the

feasible solutions to form sets of test data for the desired branches. However, problems exist

that inhibit the search and have not been perfectly solved yet. The flag problem is one of them.

Typically, it occurs when the source code has flag variables. A flag variable is any variable that

takes on one of two or more (finite) discrete values [Baresel, A. and Binkley, D. and Harman,

M. and Korel, B. (2004)]. For instance, boolean variables are flag variables. In the following,

an example is given to show how the flag variable influences the performance of the search.

Suppose Figure 7.2 is part of the tested source code.

1. flag = false;

2. . . . /*Nothing related to ‘flag’*/

3. if (switch == 5) flag = true;

4. . . . /*Nothing related to ‘flag’*/

5. if (flag) /* Test aim */

Figure 7.2 An Example: The Source Code

In Figure 7.2, there is an boolean variable called flag. The test aim is in line 5, in which

flag should be equal to 1 (TRUE). In that case, part of the fitness function related to the flag

variable should be of some formula like |flag − 1|, i.e., the absolute value of (flag − 1). Now,

93

given two or more sets of input test data automatically generated by EA, if all of them do

not go to the branch in which the variable switch is equal to 5 before line 3, all of the fitness

values related to the flag variable are equal to |0− 1|. That is, the fitness values related to the

flag variable are the same for all sets of test data with flag not being TRUE in line 5. Hence,

the fitness function does not provide any guidance for reaching the test aim as the flag can be

always FALSE and cannot become TRUE. The search degenerates to random search.

7.3 Discussion

The reason of selecting ET as a case study is that

• There is a difficult flag problem in the context of ET so that the difficult problems can

be compared with easier problems (i.e., the problems dealing with testing of flag-free

programs);

• From the final fitness value, we can always get information about the quality of solutions.

The Approach Level (i.e., integer part) represents which branch the generated test case

is located in.

7.4 Experiment Settings

The flag problem is a difficult problem for ET. In order to demonstrate that the pro-

posed evaluation metric has the ability to discern the applicability of CGAs for real-world

optimization problems, two types of programs are designed (see Figure 7.3 and Figure 7.4).

A corresponding fitness function is formulated for each program (see Table 7.1). CGA with

best solution maintained over time is applied to generate test cases for those types of programs

with respect to the fitness functions.

The first type of the program (called P1) has flags which are discrete values. For this type

of program, the fitness function formulated using Equation 7.1 has isolation points. The second

type of the program (called P2) is a flag-free program.

94

Input (a, b, c, d)

1. if (a==18.75)
2. {
3. if (b==37.5)
4. {
5. if (c==56.25)
6. {
7. if (d==75)
8. {
9. Test Aim
10. }
11. }
12. }
13. }

Figure 7.3 Program with Flags

Input (a, b, c, d)

1. if (a>=1)
2. {
3. if (b>=2)
4. {
5. if (c>=3)
6. {
7. if (d>=4)
8. {
9. Test Aim
10. }
11. }
12. }
13. }

Figure 7.4 Program without Flags

f14 and f15 in Table 7.1 are the corresponding fitness functions for P1 and P2, respectively.

The function Approach Level in Table 7.1 is in Figure 7.5.

The CGA with best solution maintained is applied to generate test cases corresponding to

P1 and P2 with their fitness functions, respectively. With the setting n = 10000, l = 16, and

m = 2, the result in Section 7.5 is derived.

In order to further verify that the proposed methodology in Chapter 6 is valid, λ2 and m2

are computed for both fitness functions. The result is also presented in Section 7.5.

7.5 The Result of the Case Study

Table 7.2 presents the average values of Trace(CMS)n′
derived from the proposed evalu-

ation metric from 40 trials. f15 with P2 has lower estimated Trace(CMS)n′
for all n′ because

it is easier than the other for ET. The results coincide the conclusions made from Chapter 5.

From the results, we can also know that the isolation points occasionally can be visited under

the condition that they are always encoded as points in the search space of CGAs.

Table 7.3 shows the values of λ2, m2, and the corresponding information for both fitness

functions. λ2 for the fitness function f14 is much greater than λ2 for the fitness function f15.

95

Table 7.1 The Fitness Functions of P1 and P2

Program Fitness Function

P1 f14 = 5 − (Approach Level + 1
1101(|a − 18.75| + |b − 37.5| + |c − 56.25| + |d − 75|))

P2 f15 = 5 − (Approach Level + 1
1190(fa′(a) + fb′(b) + fc′(c) + fd′(d))), where

fa′(a) =
{ |a − 1|, if a ≥ 1

|a − 1| + 180, if a < 1

fb′(b) =
{ |b − 2|, if b ≥ 2

|b − 2| + 180, if b < 2

fc′(c) =
{ |c − 3|, if c ≥ 3

|c − 3| + 180, if c < 3

fd′(d) =
{ |d − 4|, if d ≥ 4

|d − 4| + 180, if d < 4

Therefore, the number of generations derived from the proposed approximation method with

respect to f14 is much greater than that with respect to f15 with ε = 0.000003. The results here

are also consistent with the conclusions made from previous two chapters. Since the fitness

functions f14 and f15 are multi-dimensional, it may not be appropriate to compare the results

derived in Table 6.3, Table 6.5, and their corresponding data.

In order to verify the number of generations derived in Table 7.3, the PDFs and CDFs

with respect to both fitness functions are investigated. Figure 7.6 shows the number of trials

needed (and the corresponding CDF) to reach the global optimal solution with respect to f14

out of 1000 trials. When the number of generations equals to 70000, the CDF in Figure 7.6

merely reaches the probability around 50%. Comparing to the PDF and CDF with respect

to f15 (not shown here), f15 is much easier for the CGA since all of the 1000 trials reach the

global optimal solution (i.e., the branch of the test aim) within 500 generations. This result is

consistent with the derived numbers of generations in Table 7.3.

96

 Condition
in Line 1

Condition
in Line 3

Condition
in Line 5

Condition
in Line 7

Satisfied (Test Aim)
Approach_Level = 0

Not Satisfied

Approach_Level = 1

Not Satisfied

Approach_Level = 2

Not Satisfied

Approach_Level = 3

 Not Satisfied
Approach_Level = 4

Satisfied

Satisfied

Satisfied

Figure 7.5 The Control Flow Graph for P1 and P2

Table 7.2 The Results of the Estimated Trace((CMS)n′
)

n’ f14 corresponding to P1 f15 corresponding to P2

10 14.3495 13.9687
12 8.4146 7.9792
14 4.9971 4.7871
16 2.9591 2.7624
18 2.1697 1.8531
20 1.6540 1.5847
22 1.5015 1.3598
24 1.3851 1.2680
26 1.2795 1.1730

Average
Best Value 4.2517 4.9296

97

Table 7.3 The Corresponding Information for Fitness Functions f14 and
f15

Fitness Function λ2 m2 The Number of Generations
with Derived from the Proposed

Information Approximation Method
ε = 0.000003

f14 0.9819 9313 1197
Trace Values
for n = 2000:
n′ = 20: 0.3180
n′ = 22: 0.3033
The Number of
States Visited: 1329

f15 0.9313 5016 299
Trace Values
for n = 2000
n′ = 20: 0.2476
n′ = 22: 0.2134
The Number of
States Visited: 1333

98

0
1
2
3
4
5
6
7
8
9
10

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

7
0
0
0
0
 ‐
7
0
5
0
0

The PDF for f14 (1000 Trials)

0

0.1

0.2

0.3

0.4

0.5

0.6

0
 ‐
5
0
0

2
0
0
0
 ‐
2
5
0
0

4
0
0
0
 ‐
4
5
0
0

6
0
0
0
 ‐
6
5
0
0

8
0
0
0
 ‐
8
5
0
0

1
0
0
0
0
 ‐
1
0
5
0
0

1
2
0
0
0
 ‐
1
2
5
0
0

1
4
0
0
0
 ‐
1
4
5
0
0

1
6
0
0
0
 ‐
1
6
5
0
0

1
8
0
0
0
 ‐
1
8
5
0
0

2
0
0
0
0
 ‐
2
0
5
0
0

2
2
0
0
0
 ‐
2
2
5
0
0

2
4
0
0
0
 ‐
2
4
5
0
0

2
6
0
0
0
 ‐
2
6
5
0
0

2
8
0
0
0
 ‐
2
8
5
0
0

3
0
0
0
0
 ‐
3
0
5
0
0

3
2
0
0
0
 ‐
3
2
5
0
0

3
4
0
0
0
 ‐
3
4
5
0
0

3
6
0
0
0
 ‐
3
6
5
0
0

3
8
0
0
0
 ‐
3
8
5
0
0

4
0
0
0
0
 ‐
4
0
5
0
0

4
2
0
0
0
 ‐
4
2
5
0
0

4
4
0
0
0
 ‐
4
4
5
0
0

4
6
0
0
0
 ‐
4
6
5
0
0

4
8
0
0
0
 ‐
4
8
5
0
0

5
0
0
0
0
 ‐
5
0
5
0
0

5
2
0
0
0
 ‐
5
2
5
0
0

5
4
0
0
0
 ‐
5
4
5
0
0

5
6
0
0
0
 ‐
5
6
5
0
0

5
8
0
0
0
 ‐
5
8
5
0
0

6
0
0
0
0
 ‐
6
0
5
0
0

6
2
0
0
0
 ‐
6
2
5
0
0

6
4
0
0
0
 ‐
6
4
5
0
0

6
6
0
0
0
 ‐
6
6
5
0
0

6
8
0
0
0
 ‐
6
8
5
0
0

The CDF for f14 (1000 Trials)

Figure 7.6 The PDF and CDF for Number of Trials to Find the Global
Optimal Solution with respect to f14 (X-Axis represents the
number of generations; Y-Axis represents the cumulated num-
ber of trials to find the global optimal solution (out of 1000
trials))

99

CHAPTER 8. The Generalization of the Proposed Methodology

As aforementioned, the proposed evaluation metric is based on the condition that CMS is

regular, which is obtained from the assumption that CGA is applied to solve the optimization

problems. In this chapter, I am going to prove that in addition to CGA, the evaluation metric

can be applied to any type of selection, and crossover operators, as long as bit mutation is

performed after selection and crossover operators.

Theorem 10 Regardless of the types of selection and crossover operators, the transition ma-

trix SCM is regular if and only if bit mutation is performed after selection and crossover.

Proof. Since S and C are stochastic matrices, SC is a stochastic matrix (i.e., sum of

elements in a row is equal to 1 and each element of SC is nonnegative). Moreover, because bit

mutation is performed, for all i and j, the element mij in M is

mij =
m∏

k=1

pH(πk(i),πk(j))
m (1 − pm)l−H(πk(i),πk(j)),

where H(·, ·) is the Hamming distance of the strings (chromosomes). Hence, mij is positive

for all i and j. That means M is positive.

Since SC is a stochastic matrix and M is positive, SCM is positive. Therefore, SCM is

regular.�

With the condition that SCM is regular, the evaluation metric can be generally applied —

not limited to certain types of selection and crossover operators. The corresponding properties

investigated and checked in previous chapters should also be further investigated if different

selection or crossover operators are used.

100

Theorem 11 The transition matrix A constructed by Rudolph’s version can be converted to a

transition matrix B in Vose’s version. Moreover, the statement that A is positive implies that

B is positive.

Proof. Let us consider an arbitrary state, Statei, of the transition matrix A constructed by

Rudolph’s version. Suppose the number of different individuals in Statei is r, each individual

is assigned a distinct number between 1 and r, and mj , j ∈ {1, 2, . . . , r}, is the corresponding

number of occurrences for Individualj (in State i). Note that m1 + m2 + · · · + mr = m.

By Rudolph’s state representation, there are m!
m1!m2!...mr! states which are a permutation

of individuals in Statei in the transition matrix A. In Vose’s version, those states, including

Statei, are all in one state since each state represents only the number of occurrences of the

individuals. To convert the transition matrix A in Rudolph’s version to a transition matrix

B in Vose’s version, one can simply add up the columns that correspond to the destination

states (in Rudolph’s version) considered as the same states in Vose’s version. Similarly, the

rows which correspond to the source states (in Rudolph’s version) considered as the same

states in Vose’s version are added up. For the computation of rows, a multiple of 1/ m!
m1!m2!...mr!

needs to be applied to the result. The reason is that given a state with r different individuals

in Vose’s version, there is 1/ m!
m1!m2!...mr! possibility that this state is permutation k, where

k ∈ {1, 2, . . . , m!
m1!m2!...mr!}, in Rudolph’s version (see Figure 8.1).

Based on the computation above, we get that if A is positive, then B is positive since the

adding and multiplying manipulations of positive numbers are still positive. �

In Rudolph’s paper [Rudolph, G. (1994)], it is shown that CMS constructed by CGA

is positive. With Theorem 10, we know that SCM constructed by a GA, with bit mutation

being performed after any selection and crossover operations, is also positive. The proposed

evaluation metric can be generalized to a GA with bit mutation being performed after any

selection and crossover operations using Vose’s version for state representation, since the con-

verted transition matrix in Vose’s version is positive (also regular). More experiments on the

performance of the proposed evaluation metric with states being represented by Vose’s version

need to be conducted. I believe that the estimated trace of a transition matrix in Vose’s version

101

A Source State with
m1 Occurrences of Individual1,
m2 Occurrences of Individual2,
…,
mr Occurrences of Individualr
in Vose’s Version

!!...!
!

1

21 rmmm
m

Possibility for Permutation 1 in Rudolph’s Version

!!...!
!

1

21 rmmm
m

Possibility for Permutation 2 in Rudolph’s Version

!!...!
!

1

21 rmmm
m

Possibility for Permutation
!!...!

!

21 rmmm
m

 in Rudolph’s Version

Figure 8.1 An Illustration of the Conversion

will be more accurate than the estimated trace of the transition matrix in Rudolph’s version.

This will be one of the directions of my future work.

102

CHAPTER 9. Conclusion and Future Work

The conclusion of this dissertation includes three sections. The first section describes the

contributions of this work; the second section discusses the limitations of the evaluation metric

and the proposed approximation approach. In the final section, future work is suggested.

9.1 Contributions of this Work

The contributions of this work include the following:

• The convergence rate of PU (the extended transition matrix) from Perron’s Formula is

derived (see Chapter 4).

• A research framework is proposed for estimating the applicability of CGAs for real-world

optimization problems. I have formulated several corresponding theorems, conducted

experiments for the proposed framework, and analyzed the experimental results (see

Chapter 5). I have also studied several cases in Software Testing to validate the evaluation

metric (see Chapter 6).

• With my evaluation metric, researchers can decide a cluster of better fitness functions

among a set of fitness functions by taking a set of fitness functions as input with the same

GA configuration. This feature is very important for real-world optimization problems,

since researchers or practitioners may consider using more than one fitness function

when they attempt to solve optimization problems. The evaluation metric can rank the

fitness functions from the best to the worst by sorting the fitness functions by degrees of

convergence.

103

The traditional way (also the only existing computational and analyzable way) to dis-

criminate the fitness functions with respect to a GA configuration is to compute their

Markov transition matrices. With a number of 2ml states, at least 2ml × 2ml ×m fitness

evaluations need to be performed, which costs a lot of time and is impractical for large-

scale real-world applications. Another method, comparison of the fitness values after a

fixed number of generations, is not a practical method, since the chosen fixed number

may be too large, so that all of the transition matrices empirically converge to their

limits.

• An approximation approach is presented for applying the proposed evaluation metric to

estimate the number of generations for the global convergence of GAs (Chapter 7).

9.2 Limitations

Both the evaluation metric and the proposed approximation approach have limitations,

discussed as follows:

• The proposed evaluation metric has the ability to rank the difficulties of fitness functions

with respect to a configuration of GAs. However, it is difficult for the metric to derive a

precise value of trace.

• A small n makes the metric arduous to predict the relative convergence behavior of a

flat fitness function. This limitation can be solved by using large n. For a large enough

n, a close numerical value related to the degree of convergence can be derived. However,

the number n may be too large to make the metric practical.

• The proposed approximation approach for predicting the number of generations for the

global convergence of GAs has difficulty in dealing with fitness functions that contain

isolation points. The empirical results show that with respect to such a fitness function,

when n is equal to the number of generations derived from the approximation, the best

solution maintained over time reaches a global optimal solution of the fitness function

104

other than the isolation points in 40 continuous trials. Only a few of the trials obtain

the best solutions equal to the isolation points.

Further investigation is needed to tackle the aforementioned limitations.

9.3 Future Work

My future work will be focused on improving the precision of the proposed evaluation

metric. Currently, the metric is able to evaluate the applicability of CGA with best solution

maintained over time, and is extended to a more general case in Chapter 7 (e.g., the appli-

cability of EAs that perform bit mutation after selection and crossover operators). Further

investigation on more classes of EAs is necessary. Chapter 8 also proves that the state rep-

resentation using Rudolph’s version can be converted to the state representation using Vose’s

version. I believe that this conversion is helpful for improving the precision of the trace es-

timated by the proposed evaluation metric, since certain states represented using Rudolph’s

version are combined into a state in Vose’s version. The diagonal elements of the transition

matrices constructed by Vose’s version have larger values than those of the transition matrices

constructed by Rudolph’s version, and the state space in Vose’s version is smaller than that in

Rudolph’s version. These reasons make the estimation easier in Vose’s version. More research

work and experiments need to be conducted along this line.

An alternative approach or adjustment to the approximation method is another future

direction. The approximation method currently can predict the number of generations for the

global convergence of GAs by multiplying the derived values with certain multiples; however,

a solution to deal with its limitation is needed. I plan to investigate the Markov transition

matrices constructed by the fitness functions with isolation points and solve the problem by

either adjusting the proposed approximation or developing a novel approach.

The design of fitness functions of multi-objective problems is the other direction for future

research. If the fitness functions cannot be well-formed for multi-objective problems, some

of the objectives will not be considered during the GA runs. In the future, I plan to derive

suitable rules to guide other researchers in dealing with this problem.

105

BIBLIOGRAPHY

Baresel, A. and Pohlheim, H. and Sadeghipour, S. (2003). Lecture Notes in Computer Sci-

ence: Structural and Functional Sequence Test of Dynamic and State-Based Software with

Evolutionary Algorithms. Springer-Verlag Berlin Heidelberg.

Baresel, A. and Binkley, D. and Harman, M. and Korel, B. (2004). Evolutionary testing in

the presence of loop-assigned flags: a testability transformation approach. Proceedings of the

International Symposium on Software Testing and Analysis, 108–118.

Beizer, B. (1990). Software Testing Techniques (second edition). International Thomson Com-

puter Press.

Berndt, D. and Fisher, J. and Johnson, L. and Pinglikar, J. and Watkins, A. (2003). Breeding

Software Test Cases with Genetic Algorithms. proceedings of Hawaii International Confer-

ence on System Sciences, 338–347.

Berndt, D. J. and Watkins, A. (2004). Investigating the Performance of Genetic Algorithm-

Based Software Test Case Generation. proceedings of IEEE International Symposium on

High Assurance Systems Engineering, 261–262.

Berndt, D. J. and Watkins, A. (2005). High Volume Software Testing using Genetic Algorithms.

proceedings of Hawaii International Conference on System Sciences, 318–326.

Bethke, A. D. (1980). Genetic Algorithm as Function Optimizers. Ph.D. Dissertation, Univer-

sity of Michigan.

106

Briand, L. C. and Labiche, Y. and Shousha, M. (2004). Performance Stress Testing of Real-

Time Systems Using Genetic Algorithms. Technical Report: SCE 03-23, Carleton University.

Briand, L. C. and Labiche, Y. and Shousha, M. (2005). Stress testing real-time systems with

genetic algorithms. proceedings of Conference on Genetic and Evolutionary Computation,

1021-1028.

Bridges, C. L. and Goldberg, D. E. (1991). The Nonuniform Walsh-Schema Transform. San

Mateo, CA: Morgan Kaufmann.

Brown, L. D. and Cai, T. T. and DasGupta, A. (2001). Interval Estimation for a Binomial

Proportion. Statistical Science, 16 (2), 101–117.

Burden, R. L. and Faires, J. D. (2005). Numerical Analysis, 8th Edition. Brooks/Cole.

Chang, C. K. and Christensen, M. J. (1999). A Net Practice for Software Project Management.

IEEE Software, 16 (6), 80–88.

Chang, C. K. and Christensen, M. J. and and Zhang, T. (2001). Genetic Algorithms for Project

Management. Annals of Software Engineering 11, 107–139.

Chang, C. K. and Cleland-Haung, J. and Hua, S. and Kuntzmann-Combelles, A. (2001).

Function-Class Decomposition: A Hybrid Software Engineering Method. Computer, 34 (12),

87–93.

Chao, C. (1995). SPMNET: A New Methodology For Software Management. Ph.D. Disserta-

tion, University of Illinois at Chicago.

Ching, W. K. and Ng, M. K. (2006). Markov Chains: Models, Algorithms and Applications.

Springer Science + Business Media, Inc.

107

Clark, J. and Dolado, J. J. and Harman, M. and Hierons, R. M. and Jones, B. and Lumkin,

M. and Mitchell, B. and Mancoridis, S. and Rees, K. and Roper, M. and Shepperd, M.

(2003). Reformulating Software Engineering as a Search Problem. IEE Proceedings - soft-

ware, 150 (3), 161–175.

Coley, D. A. (1999). An Introduction to Genetic Algorithms for Scientists and Engineers. New

Jersey: World Scientific Publishing Co. Pte. Ltd.

Davis, T. E. and Principe, J. C. (1993). A Markov framework for the simple genetic algorithm.

Evolutionary Computation, 1 (3), 269–288.

DeJong, K. A. and Spears, W. M. and Gordon, D. F. (1995). Using Markov Chains to Analyze

GAFOs. Foundations of Genetic Algorithms 3, 115–137.

Ding, L. and Yu, J. (2005). Some Theoretical Results About the Computation Time of Evolu-

tionary Algorithms. proceedings of Conference on Genetic and Evolutionary Computation,

1409–1415.

Droste, S. and Jansen, T. and Wegener, I. (1998). A rigorous complexity analysis of the (1+1)

evolutionary algorithm for linear functions with Boolean inputs. Proceedings of International

Conference on Evolutionary Computation (ICEC), 499–504.

Eiben, A. E. and Aarts, E. H. L. and Hee, K. M. V. (1991). Global convergence of genetic

algorithms: A markov chain analysis. Parallel Problem Solving from Nature, 496, 3–12.

Fogel, D. B. (1995). Evolutionary Computation. New York: IEEE Press.

Forrest, S. and Mitchell, M. (1993). What Makes a Problem Hard for a Genetic Algorithm?

Some Anomalous Results and Their Explanation. Machine Learning, 13, 285–319.

Ge, Y. (2004). Capability-based Software Project Scheduling with System Dynamics and

Heuristic Search. Master’s Thesis, Iowa State University.

108

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Professional.

Grefenstette, J. J. (1992). Foundations of Genetic Algorithms 2: Deception Considered Harm-

ful. San Mateo, CA: Morgan Kaufmann

Hadley, G. (1964). Nonlinear and Dynamics Programming. Addison Wesley

He, J. and Kang, L. (1999). On the convergence rates of genetic algorithms. Theoretical Com-

puter Science, 229, 23–39.

He, J. and Yao, X. (2001). Drift analysis and average time complexity of evolutionary algo-

rithms. Artificial Intelligence, 127 (1), 57–85.

Holland, J. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence. The MIT Press.

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press.

Horn, J. and Goldberg, D. E. (1995). Foundations of Genetic Algorithms 3: Genetic Algorithm

Difficulty and the Modality of Fitness Landscapes. San Francisco, CA: Morgan Kaufmann.

Horn, J. (1995). Genetic Algorithms, Problem Difficulty, and the Modality of Fitness Land-

scapes. Master’s Thesis, University of Illinois at Urbana-Champaign.

Hwang, S. (2004). Cauchy’s Interlace Theorem for Eigenvalues of Hermitian Matrices. Ameri-

can Mathematical Monthly, 111 (2), 157–158.

Iosifescu, M. (1980). Finite Markov Processes and Their Applications. John Wiley and Sons.

Jiang, H. and Chang, C. K. and Zhu, D. and Cheng, S. (2007). A Foundational Study on

the Applicability of Genetic Algorithm to Software Engineering Problems. proceedings of

Congress on Evolutionary Computation, 2210–2219.

109

Jiang, H. and Chang, C. K. (2008). Deriving Evaluation Metrics for Applicability of Genetic Al-

gorithms to Optimization Problems. proceedings of Conference on Genetic and Evolutionary

Computation, 1113–1114.

Kosters, W. A. and Kok, J. N. and Leiden, P. F. (1999). Fourier Analysis of Genetic Algorithms.

Theoretical Computer Science, 229, 143–175.

Last, M. and Eyal1, S. and Kandel, A. (2006). Lecture Notes in Computer Science: Effective

Black-Box Testing with Genetic Algorithms. Springer-Verlag Berlin Heidelberg.

Leemis, L. H. and Park, S. K. (2005). Discrete-Event Simulation: A First Course. Prentice

Hall.

Levin, S. and Yehudai, A. (2007). Lecture Notes in Computer Science: Evolutionary Testing:

A Case Study. Springer Berlin/Heidelberg.

McMinn, P. and Holcombe, M. (2003). The state problem for evolutionary testing. Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO’03), 2488-2497.

McMinn, P. (2004). Search-Based Software Test Data Generation: A Survey. Software Testing,

Verification and Reliability, 14 (2), 105–156.

McMinn, P. and Binkley, D. and Harman, M. (2005). Testability Transformation for Efficient

Automated Test Data Search in the Presence of Nesting. Proceedings of the Third UK Soft-

ware Testing Workshop (UKTest 2005), 165–182.

Michael, C. C. and McGraw, G. and Schatz, M. A. (2001). Generating Software Test Data by

Evolution. IEEE Transactions on Software Engineering, 27 (12), 1085–1110.

Mitchell, B. S. and Mancoridis, S. (2002). Using Heuristic Search Techniques To Extract Design

Abstractions From Source Code. proceedings of Conference on Genetic and Evolutionary

Computation, 1375–1382.

Mitchell, M. (1996). An Introduction to Genetic Algorithm. Cambridge, MA: MIT Press.

110

Naudts, B. and Kallel, L. (2000). A comparison of predictive measures of problem difficulty in

evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 4, 1–15.

Nix, A. E. and Vose, M. D. (1992). Modeling genetic algorithms with Markov chains. Annals

of Mathematics and Artificial Intelligence, 5 (1), 79–88.

Petrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms. Pro-

ceedings of IEEE International Conference on Evolutionary Computation, 798–803.

Pressman, R. S. (2005). Software Engineering: A Practitioner’s Approach (6th edition). The

McGraw-Hill Companies, Inc.

Rudolph, G. (1994). Convergence Analysis of Canonical Genetic Algorithms. IEEE Transac-

tions on Neural Networks, 5 (1), 96–101.

Rudolph, G. (1996). Convergence of Evolutionary Algorithms in General Search Spaces. pro-

ceedings of Congress on Evolutionary Computation, 50–54.

Sareni, B. and Krahenbuhl, L. (1998). Fitness Sharing and Niching Methods Revisited. IEEE

Transactions on Evolutionary Computation, 2 (3), 97–106.

Schoenauer, M. et al. (2007). Bridging the Gap between Theory and Practice. MIT Press

Journals - Evolutionary Computation, 15 (4), iii–v.

Setnes, M. and Roubos, H. (2000). GA-Fuzzy Modeling and Classification: Complexity and

Performance. IEEE Transactions on Fuzzy Systems, 8 (5), 509–522.

Sthamer, H. and Wegener, J. and Baresel, A. (2002). Using Evolutionary Testing to improve

Efficiency and Quality in Software Testing. Proceedings of the 2nd Asia-Pacific Conference

on Software Testing Analysis and Review (AsiaSTAR2002), 50–54.

Suzuki, J. (1995). A Markov chain analysis on simple genetic algorithms. IEEE Transactions

on Systems, Man and Cybernetics, 25 (4), 655–659.

111

Suzuki, J. (1995). A Further Result on the Markov Chain Model of Genetic Algorithms and Its

Application to a Simulated Annealing-Like Strategy. IEEE Transactions on Systems, Man

and Cybernetics - Part B: Cybernetics, 28 (1), 95–102.

Tang, K. and Yao, X. and Suganthan, P. N. and MacNish, C. and Chen, Y. P. and Chen, C. M

and Yang, Z. (2007). Benchmark Functions for the CEC’2008 Special Session and Compe-

tition on Large Scale Global Optimization. Technical Report, Nature Inspired Computation

and Applications Laboratory, USTC, China.

Tracey, N. and Clark, J. and Mander, K. (1998). Automated Program Flaw Finding Using

Simulated Annealing. Proceedings of the International Symposium on Software Testing and

Analysis, 73–81.

Vieira, F. E. and Menezes, R. and Braga, M. (2006). Using genetic algorithms to generate

test plans for functionality testing. proceedings of Annual Southeast Regional Conference,

140–145.

Vose, M. D. and Liepins, G. E. (1991). Punctuated Equilibria in Genetic Search. Complex

Systems, 5 (1), 31–44.

Wegener, J. (2005). Lecture Notes in Computer Science: Evolutionary Testing Techniques.

Springer-Verlag Berlin Heidelberg.

Xu, R. and Qian, L. and Jing, X. (2003). CMM-based software risk control optimization. IEEE

International Conference on Information Reuse and Integration (IRI), 499–503.

	2009
	A framework for estimating the applicability of GAs for real-world optimization problems
	Hsin-yi Jiang
	Recommended Citation

	F:/Thesis/stdthesis_1/thesis.dvi

