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CHAPTER 1 Introduction

A large variety of systems (e.g. communication protocols over lossy channels, client-server

protocols with unreliable servers, and distributed leader-election algorithms) exhibit prob-

abilistic behavior in which the systems evolve from one configuration to another following

a certain pre-specified probability distribution. Such probabilistic behaviors are often mod-

eled using discrete time Markov chains (DTMC), continuous time Markov chains (CTMC), and

Markov decision processes (MDP). Several techniques and tools have been developed to prove

the correctness (in a probabilistic sense) of these system models. One such technique that

automatically verifies the conformance of probabilistic systems modeled as DTMC, CTMC, or MDP

(Roy and Gopinath (2005); Norman and Shmatikov (2006); Duflot et al. (2006); Kwiatkowska

et al. (2008)) against desired properties expressed in probabilistic temporal logic (e.g., PCTL

from Hansson and Jonsson (1994) or CSL from Aziz et al. (2000)), is called probabilistic model

checking.

Broadly, there are two categories of probabilistic model checking methods. The first cate-

gory, typically referred to as the numerical method (see Hansson and Jonsson (1994); Bianco

and de Alfaro (1995); Courcoubetis and Yannakakis (1995); Aziz et al. (2000); Baier et al.

(2003)) relies on exploration of the entire state-space of the probabilistic system and applies

linear equation solvers to obtain the probability with which the system satisfies a property. In

contrast, the other method, referred to as the approximate or statistical method (see Younes

and Simmons (2002); Herault et al. (2004); Sen et al. (2005)), samples a finite set of paths in

the system and infers the approximate probability of satisfaction of a property by the whole

system using statistical arguments and probabilistic analysis. While the numerical method pro-

vides exact solutions, it requires complete knowledge of the system and may fail for systems
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with a large state space (known as the state-space explosion problem). It is in this situation

that sampling-based statistical methods are useful. However, two important issues need to be

addressed before any statistical verification approach can be applied effectively: the number

of sample paths to simulate and the length for each sample path.

The sampling method explores only a portion of the state space of the system and therefore

the accuracy of the verification results depends on the size of the sample (i.e., the number of

sample paths, N). This value of N is typically obtained from well-known probabilistic bounds

that ascertain the closeness of the estimate to the actual probability with respect to certain

pre-specified error limit (ε) and confidence parameter (δ).

By definition, the sampling method can consider only paths of finite length. This is not a

problem when the property under consideration has a specific bound (as for a bounded path

property): ϕ1 U≤k ϕ2, i.e., ϕ2 must be satisfied within k steps from the start state and in all

states before that ϕ1 must be satisfied. This implies that finite paths of length k are sufficient

to verify such properties.

However, the property of interest may be unbounded1, i.e., ϕ1 U ϕ2. The semantics of the

property states that a path satisfies it if and only if there exists a state in the path which

satisfies ϕ2 and in all states before that state ϕ1 is satisfied. Note that ϕ1 can be satisfied any

number of times in a path before ϕ2 is satisfied for the first time. Therefore, in any path of

finite length where every state satisfies ϕ1∧¬ϕ2, it is impossible to infer whether any extension

of the path will eventually satisfy or not satisfy ϕ1 U ϕ2. The existing statistical methods for

probabilistic model checking either assume that an appropriate bound is given, as in Herault

et al. (2004); Younes and Simmons (2006); or require some specific knowledge of the system

behavior, as in Sen et al. (2005); Rabih and Pekergin (2009).

In contrast, we introduce a new statistical method which automatically computes a bound

k0 on simulation path length and does not require any prior knowledge of the system. The

central theme of our technique is to reduce the problem of verifying (ϕ1 U ϕ2) to that of its
1Grunske Grunske (2008) proposes patterns for specifying probabilistic properties where he discusses the

need for (time-) unbounded until properties for representing various probabilistic properties, e.g., invariance,
existence, response.
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Figure 1.1 A simple example.

bounded counter-part (ϕ1 U≤k0 ϕ2). The reduction is possible only when a suitable k0 can be

obtained for which P(s, ϕ1 U≤k0 ϕ2) (i.e., the probability of satisfying of ϕ1 U≤k0 ϕ2 at state

s) is a good approximation of P(s, ϕ1 U ϕ2). In other words, the bound k0 is large enough

to make the difference between P(s, ϕ1 U≤k0 ϕ2) and P(s, ϕ1 U ϕ2) small. Such a k0 provides

an approximate upper bound of the sample path length needed for our statistical verification

technique. We obtain k0 using the probability of satisfying a different bounded path property:

ψk := (ϕ1 U≤k ϕ2) ∨ (¬ϕ2 U≤k (¬ϕ1 ∧ ¬ϕ2)). This property states that the original property

(ϕ1 U ϕ2) is either satisfied (first disjunct) or unsatisfied (second disjunct) in at most k steps.

We prove that a suitable k0 is one for which P(s, ψk0) is close to 1, and that the degree of

“closeness” is related to ε, the overall measure of accuracy of the entire statistical method.

In essence, there are two phases in our method. The first phase estimates P(s, ψk) for

k = 0, 1, 2, . . . and chooses k0 which satisfies P(s, ψk0) ≥ 1 − ε0, where ε0 < ε. In the second

phase, P(s, (ϕ1 U≤k0 ϕ2)) is estimated, which in turn serves as an estimate of P(s, (ϕ1 U ϕ2)).

The computations for each phase involve only bounded-path properties and can be carried out

efficiently using the existing sampling techniques such as those described in Herault et al.

(2004). For systems where P(s, ψk) 6≥ 1 − ε0 for any k, we propose an alternate heuristic

method to estimate P(s, (ϕ1 U ϕ2)) based on changes in the estimates of P(s, ψk) with k.
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1.1 Illustrative Example

To provide an intuitive explanation of why the proposed technique is useful and effective,

we present a simple toy example (Figure 1.1) where the proposed method is applied success-

fully and where both the numerical method and the existing statistical verification method as

implemented in the popular PRISM model checker (described in Hinton et al. (2006)) fail. The

example contains a probabilistic transition system containing 6 + n states where n is some

large integer. The state s0 is the start state of the system. The dotted segment in the figure

represents some “complicated” transition structure on n different states (see Jennings et al.

(2010) for the specification). We will refer to this segment as DS. Let proposition ϕ1 hold in

all states except s2 and s5, and proposition ϕ2 hold in states s3 and s4. The objective is to

find the probability of satisfying the property (ϕ1 U ϕ2) at state s0. From the probabilities

specified in the figure, we know that the resultant probability is 0.66 as there are only two

paths (s0, s3, . . .) and (s0, s4, . . .) that satisfy the property.

We experimented with the PRISM model checker Hinton et al. (2006) using the above ex-

ample. PRISM’s numerical method fails as the large state-space (large n) results in state-space

explosion. PRISM’s statistical method takes a parameter ε as input and provides an approxi-

mate result within an ε error margin. Our experiments with several ε > 0 failed to provide

any estimate. This is because PRISM’s statistical method requires that the satisfaction of a

property ϕ1 U ϕ2 be known within some pre-specified number of steps. The failure happens

when at least one sample path enters DS and does not leave DS. In this case, ϕ1 is satisfied for

all states in the path, but ϕ2 is not satisfied for any states in the path, i.e., it cannot be known

whether ϕ1 U ϕ2 is satisfied or not.

In terms of ψk as introduced earlier, the above requirement in PRISM’s statistical method

is equivalent to P(s0, ψk) = 1, for some pre-specified bound k (k = 10, 000 by default in

PRISM). In general, it is not possible to find an appropriate value for k such that P(s0, ψk) = 1.

In contrast, we claim that it is not necessary to verify whether P(s0, ψk) is equal to 1. The

necessary precision for an approximate statistical model checking can be obtained by identifying

a k (k0 in our terminology) for which P(s0, ψk) is close to 1. In the above example, such a
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bound can be immediately obtained as the sample paths (s0, s1, . . .) have very low probability

(≤ 0.01). Once such a bound is obtained, we compute P(s0, ϕ1 U≤k0 ϕ2) which approximately

coincides with P(s0, ϕ1 U ϕ2). In our experiments, with n ≈ 108, the PRISM model checker

fails to provide any result, while our method identifies a bound k0 = 3343 and estimates the

probability to be equal to 0.6601 in approximately 97 seconds.

1.2 Contributions

The contributions of our approach are summarized as follows:

1. Automation. We present a methodology for automatically selecting a suitable bound k0

which allows unbounded until properties for probabilistic systems modeled as Discrete

Time or Continuous Time Markov Chains to be verified using the corresponding k0-

bounded until properties. The reduction allows us to re-use the existing results for

statistical verification of bounded until properties to identify the bound on the sample

size N required to infer results within a pre-specified error margin.

2. Universal Application. The technique is applied for probabilistic model checking of any

unbounded (untimed) path properties (expressed in PCTL or CSL) for models expressed

as DTMC and CTMC.

3. Theoretical Correctness. We prove the soundness of our technique and discuss the

condition under which our technique will always terminate with an estimate with a

pre-specified error bound and confidence parameter. When the required condition is

not satisfied in a system, our technique (as well as any other statistical method for

probabilistic model checking that does not require prior knowledge of the complete model

structure) will fail to terminate. We discuss a heuristic for dealing with such systems.

4. Effective Implementation and Usability. We present PRISM-U2B, an optimized imple-

mentation of our method based on the well-developed probabilistic model checking tool

PRISM. We leverage PRISM’s realization of generating sample simulations from a given
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DTMC or CTMC model and re-use PRISM’s widely-used graphical user interface, command-

line interface and input specification languages, thereby reducing the cognitive burden

of understanding and using PRISM-U2B. It is worth mentioning that Jansen et al. (2007)

rates PRISM as the most user-friendly tool for probabilistic model checking in terms of

modeling features and usability. Being based on PRISM, our tool PRISM-U2B enjoys similar

ease of use.

5. Experimental Evaluation. We compare PRISM-U2B and PRISM’s statistical method, and

empirically show that PRISM-U2B is about 1.5 times faster than PRISM for the examples

where both can compute an estimate. We discuss several examples (and present results)

where PRISM fails to provide an estimate while PRISM-U2B successfully terminates with an

estimate. We also compare the tools PRISM-U2B and MRMC. MRMC is faster than PRISM-U2B

as MRMC, unlike PRISM-U2B, utilizes pre-analysis of the model. However, MRMC fails for

case studies with large state-space, where PRISM-U2B successfully computes the result.

The tool PRISM-U2B, as well as its documentation and case studies2 can be obtained at

Jennings et al. (2010).

1.3 Organization

Chapter 2 provides a brief overview of discrete time Markov chains and the probabilis-

tic temporal logic PCTL. Chapter 3 discusses related work. Chapter 4 presents our solution

methodology and its proof of correctness. The implementation is discussed in Chapter 5.

Chapter 6 discusses the necessary condition for the termination of our technique and presents

a heuristic method when this condition is not satisfied. Chapter 7 discusses the application

of our technique for continuous time Markov chains. Chapter 8 presents a brief summary of

the tool PRISM-U2B followed by its empirical evaluation using several examples in Chapter 9.

Finally, Chapter 10 concludes with the summary and future avenues of research.

2Most of the case studies are available at http://www.prismmodelchecker.org/casestudies/index.php.
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CHAPTER 2 Preliminaries

We proceed with a brief summary on probabilistic systems modeled as DTMC followed by the

syntax and semantics of probabilistic properties expressed in the logic of PCTL. The proposed

method and its explanations and theoretical results will be presented in terms of these concepts.

Subsequently, we will show (Chapter 7) that the proposed method is equally applicable for

specific types of reachability properties in CTMC.

2.1 Probabilistic Systems: Discrete Time Markov Chain Models

We will describe the behavior of a system that evolves from one configuration to another

based on a certain probability as a state machine augmented with probabilities labeling the

transitions. In its simplest form, where every transition in the state machine represents prob-

abilistic choice and every choice only depends on the current configuration, the representation

aligns with the definition of a DTMC.

Definition 1. A Discrete Time Markov Chain is defined as DTMC = (S, sI , T, L), where:

• S is a finite set of states

• sI ∈ S is the initial or start state

• T : S × S → [0, 1] is a transition probability function such that ∀s :
∑

s′∈S T (s, s′) = 1

• L : S → P(AP ) is the labeling function which labels each state with a set of atomic

propositions ⊆ AP that hold in that state.

Paths and Probability Measures. A path in a DTMC, denoted by π, is a finite or infinite sequence

of states (s0, s1, s2, s3, . . .) such that for all i ≥ 0 : si ∈ S and T (si, si+1) > 0. We denote
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the set of all infinite paths starting from s as Path(s). π[i] denotes the i-th state in the path

π and |π| is the length of π in terms of the number of transitions in π. For example, for an

infinite path π, |π| =∞, while for a finite path π = (s0, . . . , sn), |π| = n, n ≥ 0. The cylinder

set, denoted by Cs(π) for a state s and a finite length path π starting from s, is defined as

Cs(π) = {π′ : π′ ∈ Path(s) ∧ π is prefix of π′}. Essentially, Cs(π) is the set of all infinite

paths ∈ Path(s) with the common finite length prefix π. For any finite path π with |π| = n

we define

P (π) =

 1 if n = 0

T (π[0], π[1])× . . .× T (π[n− 1], π[n]) otherwise
(2.1)

For a cylinder Cs(π), define Pr(Cs(π)) = P (π). It is well-known that this probability measure

Pr(·) extends uniquely over all sets in the relevant σ−algebra of path(s).

2.2 Probabilistic Properties

Properties of a DTMC can be expressed using PCTL, an extension of standard CTL augmented

with probabilistic specifications. Let ϕ represent a state formula and ψ represent a path

formula. Then PCTL syntax is defined as follows:

ϕ → tt | a ∈ AP | ¬ϕ | ϕ ∧ ϕ | Ponr(ψ) and ψ → ϕ U ϕ | ϕ U≤k ϕ

In the above, on ∈ {≤,≥, <,>}, r ∈ [0, 1] and k ∈ {0, 1, . . .}. Note that we always use state

formulas to specify the properties of a DTMC and path formulas only occur inside Ponr(.). A

state s (or a path π) satisfying a state formula ϕ (or a path formula ψ) is denoted by s |= ϕ

(or π |= ψ), and is inductively defined as follows:

s |= tt for all s ∈ S s |= a ⇔ a ∈ L(s) s |= ¬ϕ ⇔ s 6|= ϕ

s |= ϕ1 ∧ ϕ2 ⇔ s |= ϕ1 and s |= ϕ2 s |= Ponr(ψ) ⇔ P(s, ψ) on r

In the above, P(s, ψ) = Pr({π ∈ Path(s) : π |= ψ}). In other words, s |= Ponr(ψ) holds if and

only if the probability that ψ is true for an outgoing infinite path from state s is on r. For any

infinite path π:

π |= ϕ1 U≤k ϕ2 ⇔ ∃0 ≤ i ≤ k : π[i] |= ϕ2 ∧ ∀j < i : π[j] |= ϕ1

π |= ϕ1 U ϕ2 ⇔ ∃i ≥ 0 : π[i] |= ϕ2 ∧ ∀j < i : π[j] |= ϕ1
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Note that ϕ1 U ϕ2 ≡ ∃k : ϕ1 U≤k ϕ2. We refer to properties of the form ϕ1 U ϕ2 as unbounded

because the bound k is not fixed and not known a priori.
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CHAPTER 3 Related Work

Legay and Delahaye (2010) survey and compare different probabilistic model checking

techniques based on statistical sampling. In this section, we elaborate on some of these existing

techniques and distinguish the contributions of our technique and those of the existing ones.

We proceed with an overview of sampling based methods for probabilistic model checking.

Note that for all of these methods, it is necessary to decide whether a simulation path

satisfies or does not satisfy the given property ψ. For a bounded path property ψ = ϕ1 U≤k ϕ2,

simulation paths of length at most k definitely satisfy or do not satisfy the property. For an

unbounded path property ψ = ϕ1 U ϕ2, it is not possible to know a priori the path length

that is necessary to decide whether or not a given path satisfies ψ. In the following discussion,

it is assumed that samples can be taken from the system. This implies that only bounded

properties can be considered, or that some method exists that can determine the appropriate

bound. The different methods to determine the bound (or to determine when to stop sampling)

are discussed with each theoretical result.

3.1 Sampling Based Methods for Probabilistic Model Checking

The verification problem of whether a DTMC satisfies a probabilistic temporal property

expressed in PCTL (Chapter 2) can be reduced to the problem of solving a set of linear equations

over a set of variables where each variable corresponds to the probability that a state in the DTMC

satisfies the given temporal (path) property. As mentioned before, this method of verification

by solving linear equations numerically is referred to as the numerical method for probabilistic

model checking (Hansson and Jonsson (1994); Bianco and de Alfaro (1995); Courcoubetis and

Yannakakis (1995); Aziz et al. (2000); Baier et al. (2003)). However, as in traditional model
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checking, the numerical method suffers from state-space explosion because it requires complete

knowledge of the model state space. Furthermore, it is not possible to apply numerical methods

in situations where the model transition structure is not available, but rather only simulation

runs of the model can be obtained as needed (e.g. black-box systems).

To address the problem of state-space explosion and avoid the necessity of prior complete

knowledge of the model transition structure, sampling based methods have been proposed and

developed. The central theme of these methods is to infer from sample simulations whether

the probabilistic property is satisfied by the model, while controlling the error in the inference

using statistical bounds. In this context, there are two related inferencing methods: in one,

the inference involves estimating the probability with which a state satisfies a property, while

in the other, the inference involves verifying (accepting, or more precisely, rejecting) whether

the probability that a state satisfies a property is greater (or less) than a pre-specified value.

The former computes the estimate within certain confidence bounds (defined by error limits),

while the latter employs hypothesis testing with an indifference width (interval where the null

hypothesis and its alternate remain undecided). Both methods aim to obtain results such that

the error in the result can be controlled. The methods use sample simulations associated to

random variables X1, X2, . . . with outcomes of 1 or 0 depending on whether the simulation

satisfies the path property or not; Xi corresponds to the outcome of the i-th simulation. The

proportion

p̂ = pN =

N∑
i=1

Xi

N
(3.1)

is used in both the statistical estimation and the hypothesis testing methods as an estimate of

the probability that a property is satisfied.

Since it takes some time to obtain each sample, a secondary goal in any statistical method

is to minimize N , which is the number of samples required. Intuitively, taking more samples

increases confidence in the result of the test; however, different procedures can achieve the

same confidence levels for varying values of N , as shown below.
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3.1.1 Hypothesis Testing Based Statistical Estimation

Hypothesis based statistical estimation tests whether the probability that s satisfies ψ is

on r, where the probabilistic property under consideration is Ponr(ψ). For the discussion here,

assume that on is ≥. In this setting, the null hypothesis H0 : p ≥ r and its alternate H1 : p < r

are considered. For some number N of sample simulations starting from s, the proportion of

paths p̂ (Equation 3.1) that satisfy ψ, is computed. The test rejects the null hypothesis if the

proportion is less than r, and does not reject the null hypothesis if the proportion is greater

than or equal to r. There are two types of errors considered in such a testing procedure. Type

I error (false negative error) is the probability that the null hypothesis is rejected when in

reality it holds. Type II error (false positive error) is the probability that the null hypothesis

is not rejected when in reality it does not hold. The maximal bounds on these probabilities

are typically denoted by α and β, i.e.,

Pr[Type I error] = Pr[reject H0 | H0 holds ] ≤ α

Pr[Type II error] = Pr[do not reject H0 | H0 does not hold ] ≤ β

From the above, it can be shown that Pr[do not reject H0 | H0 holds] ≥ 1 − α. This implies

that the test can correctly distinguish between the two cases p = r and p = r − δ for some

infinitesimally small delta, which in turn, requires that the samples cover the entire model

(Younes and Simmons (2002)).

In order to overcome this deficiency, some tolerance (denoted ξ) must be introduced such

that the test is not required to distinguish between infinitesimally small probabilities. The new

test uses the hypothesis H ′0 : p ≥ r + ξ and the alternate H ′1 : p ≤ r − ξ. Note that if the new

test fails to reject H ′0 then it fails to reject H0. Proceeding as before, let

Pr[reject H ′0 | H ′0 holds ] ≤ α

Pr[do not reject H ′0 | H ′0 does not hold ] ≤ β

Therefore, Pr[do not reject H0 | H ′0 holds ] ≥ 1−α, and Pr[do not reject H0 | H ′1 holds ] ≤ β.

Consider p such that p = r. Then this new test must fail to reject both H ′0 and H ′1.

Therefore, this procedure can only be correctly applied for p /∈ [r − ξ, r + ξ]. This region is
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(a) Performance of an ideal testing procedure. (b) Performance of a testing procedure with an
indifference region.

Figure 3.1 Probability (Lp) of accepting the hypothesis p ≥ θ.

referred to as the indifference region, and 2ξ is called the indifference width. In effect, the

probability of rejecting a true hypothesis cannot be bounded in this region. Younes (2005a)

provides figures 3.1(a) and 3.1(b) to illustrate the concept of the indifference region.

Younes (2005a) describes several techniques for calculating the appropriate sampling size

N , which is a function of α, β and ξ. The simplest is the single sampling plan. For some

number of samples n, compute the number of “successful” trials, defined by C =
∑n

i=1Xi.

Then for some pair 〈c, n〉, if c ≥
∑n

i=1Xi, reject H1; otherwise, reject H0. The challenge is to

minimize n so that there exists some integer c such that this procedure will incorrectly reject

H0 with probability at most α, and incorrectly reject H1 with probability at most β.

Since C is the sum of a series of Bernoulli trials, C has a binomial distribution. The

cumulative distribution function for the binomial distribution is given by:

F (c;n, p) = Pr(C ≤ c) =
c∑
i=1

(
n

i

)
pi(1− p)n−i (3.2)

The goal is to select c and n such that

c∑
i=1

(
n

i

)
pi(1− p)n−i ≤ α (3.3)

and



14

1−
c∑
i=1

(
n

i

)
pi(1− p)n−i ≤ β (3.4)

There exist infinitely many 〈c, n〉 pairs that satisfy these inequalities. Since the goal is to

minimize the number of samples required, the pair with the smallest n should be selected. In

general, there is no simple solution for these equations. Grubbs (1949) provides tables of values

for various parameters. Younes (2005a) provides a binary search algorithm that can find these

values for arbitrary parameters, and provides an approximation for n given α, β, and ξ. The

sample size is inversely proportional to (2ξ)2, and directly proportional to log(α) and log(β).

Therefore, it is generally more efficient to decrease α and β than to decrease the indifference

width.

A minor variation of the single sampling plan stops the testing as soon as c successful or

n − c unsuccessful trials have been observed, since the remaining samples cannot change the

final result.

The second major technique for determining N is based on the sequential probability ratio

test, originally developed by Wald (1945). This test proceeds one sample at a time maintains

a count of successful and unsuccessful trials. At each step, two quantities are computed: the

probability of the observed sequence given that the true probability is less than p− ξ and the

probability of the observed sequence given that the true probability is greather than p+ξ. The

ratio of these two quantities is compared to two values A and B, which are defined such that

0 < B < A. If the ratio is less than or equal to B, then H1 is rejected; if the ratio is greater

than or equal to A, then H0 is rejected. Otherwise, the test proceeds to the next sample.

A and B must be chosen appropriately such that H0 is incorrectly rejected with probability

at most α and H1 is incorrectly rejected with probability at most β. In practice, Wald (1945)

suggests defining A = 1−β
α and B = β

1−α , and demonstrates that these values give errors that

are at most insignificantly greater than α and β.

The goal of this technique as opposed to the simple sampling plan is to reduce the number

of samples required. Younes and Simmons (2006) shows that the expected number of samples

is lower for the sequential probability ratio test, but can require a greater number of samples in
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some cases. In practice, the sequential test is preferable because of the lower expected number

of samples.

3.1.2 Implementations of hypothesis testing based approaches

3.1.2.1 Ymer

Younes (2005b) describes a tool called Ymer that implements this method. Models are

described using a variation of the PRISM modeling language and properties are expressed in

either CSL for continuous time properties, or PCTL for discrete time properties. Younes et al.

(2006) note that their method can handle unbounded until properties ϕ1 U ϕ2 only when any

path in the model either reaches a deadlocked state or a state satisfying ¬ϕ1 ∨ ϕ2. In its

original implementation, Ymer does not support the unbounded until operator of either CSL

or PCTL.

Recently, Younes et al. (2011) proposed two new methods for handling unbounded until

properties. The first is based on reachability analysis and requires the construction of the full

model before verification can proceed; therefore, it has similar memory requirements to the

numerical method. Younes et al. (2011) shows empirically that this method is faster than the

numerical method for large models.

The second method is based on a Monte Carlo method for inverting a matrix, developed by

von Neumann and Ulam (published by Forsythe and Leibler (1950)). This method has a de-

pendence on the subdominant eigenvalue of the transition matrix, which cannot be computed

without building the full model. Younes et al. (2011) simplify the compution the subdomi-

nant eigenvalue for parametric models by computing it for small parameters and either using

the same value for larger parameters, or adjusting it based on how it should change for the

particular model. This approach is not practical for general models because they may not be

parametric, or it may not be known how their subdominant eigenvalues scale. As this work

is very recent, it is likely that the authors will extend this method to be more general in the

future.
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3.1.2.2 VESTA

Sen et al. (2005) introduce a new model checking algorithm based on hypothesis testing

that can control both Type I and Type II errors. Given a path π and a formula ψ = ϕ1 U ϕ2,

π � ψ if there exists some finite prefix of π that ends with a state that satisfies ϕ2. However,

if π 2 ψ there is not necessarily some prefix π that ends with a state that satisfies neither ϕ1

nor ϕ2. Rather, π may contain states that satisfy only ϕ1. In fact, there may be a strongly

connected component in the model such that all states in the component satisfy ϕ1 but not

ϕ2. The central observation of Sen et al. (2005) is that for any state s in such a component,

P(s, ϕ1 U ϕ2) = 0.

Therefore, this technique defines a basis procedure which verifies P(s, ϕ1 U ϕ2) > 0. For a

model M = (S, sI , T, L), a new model M ′ = (S′, sI , T ′, L′) is constructed such that:

S′ = S ∪ {sterm}

T ′
(
(t, sterm)

)
= ps ∀t ∈ S

T ′
(
(sterm, sterm)

)
= 1

T ′
(
(t, u)

)
= T (t, u) · (1− ps) ∀t, u ∈ S

L′(s) = L(s) ∀s ∈ S

L′(sterm) = ∅

In effect, a new state sterm is created such that all other states reach sterm with probability

ps, and sterm does not satisfy ϕ1 U ϕ2. Here ps is some pre-specified probability that will

be discussed in more detail later. In this modified model, for any path π, there exists an

extension π̂ such that ππ̂ is a valid path in the model, and the last state in π̂ does not satisfy

ϕ1 U ϕ2. That is, starting from any state, there is a non-zero probability of sampling a state

that satisfies either ϕ2 or ¬ϕ1 ∧ ¬ϕ2. Note that this same statement cannot be said of the

original model M and that this property allows finite samples to be taken from the model M ′.

The basis procedure samples paths from the modified model M ′. If it ever samples a path

that satisfies ϕ1 U ϕ2, then P(s, ϕ1 U ϕ2) > 0 for all states in the path (up to the state that

satisfies ϕ2). If it samples a large number of paths and never finds a path that satisfies ϕ1 U ϕ2,
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then P
(
P(s, ϕ1 U ϕ2) > 0

)
< δ for some δ.

Unfortunately the basis procedure as described by Sen et al. (2005) is flawed, for two

reasons.

First, the basis procedure depends on the parameters ps and δ2. The algorithm requires

that p > δ2
(1−ps)N , where p = P(s, ϕ1 U ϕ2) and N is the number of states in the model.

However, since p is the quantity that is desired to be computed, the user cannot appropriately

determine a value for δ2.

Second, Sen et al. (2005) include a proof of the following theorem:

p′ ≥ (1− ps)N · p (3.5)

where p′ is the probability that a path satisfies the property in M ′. This theorem effectively

bounds the error from sampling from the modified model instead of sampling from the original

model. Younes and Simmons (2006) note that the proof does not hold in general for models

with loops.

In He et al. (2010), we propose an alternate to the basis procedure that is valid for any

model. The alternate technique requires prior knowledge of the total number of states in the

model and its maximum branching factor. The technique is similar to the one proposed by

Grosu and Smolka (2005), which deals with sampling based model checking of non-probabilistic

models against linear temporal logic (LTL) properties. In contrast to Grosu and Smolka (2005),

the technique proposed in this paper does not depend on the state-space of the model and can

be used to model check probabilistic properties of probabilistic models.

3.1.2.3 MRMC

Zapreev (2008) proposes a hypothesis testing based statistical technique for verifying un-

bounded until properties that also uses estimations based on confidence intervals (see Sec-

tion 9.3 for details). This technique begins by identifying the bottom strongly connected

components, or BSCCs, in the model. If a simulation path enters a BSCC and none of the

states in the BSCC satisfy ϕ1 U ϕ2, then it is known that the path will never satisfy ϕ1 U ϕ2.
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Therefore, sampling for this path can be terminated. The computation of the BSCCs requires

preanalysis of the model, and thus limits the application of this technique. The tool MRMC,

found at MRMC (2010), is based on Zapreev (2008). Katoen and Zapreev (2009) compare

MRMC with Ymer and VESTA, and show that both Ymer and VESTA use less space (constant

memory) than MRMC, while the verification times of MRMC are mostly several factors (up to 10)

smaller than those of Ymer and VESTA. However, the performance of MRMC rapidly decreases

with growth in model size. A similar and more detailed comparison is presented by Jansen

et al. (2007).

3.1.2.4 Ψ2

For an ergodic DTMC with any starting distribution, after some number of steps, the proba-

bility distribution at the next state equals the probability distribution at the current state. In

effect, the DTMC has a steady-state distribution. The number of steps required before the DTMC

reaches the steady-state distribution is model dependent. Propp and Wilson (1996) describe a

procedure that can calculate the appropriate number of steps through simulation. Rabih and

Pekergin (2009) propose a new statistical approach to check both steady-state and unbounded

until properties utilizing this procedure.

The key insight from Rabih and Pekergin (2009) is that if a sample path reaches the steady-

state while always satisfying ϕ1 ∧ ¬ϕ2, then it will never reach a state that satisfies ϕ1 ∧ ϕ2.

The knowledge of the steady-state distribution effectively allows sampling to be terminated at

the appropriate time for any given path.

Rabih and Pekergin (2009) provide a tool called Ψ2 (available at Rabih and Pekergin

(2011)), which implements this method. They provide experimental results from the tool, but

no comparison to other tools.

The major drawback of this method is that it requires that the model be ergodic (i.e.

irreducible and aperiodic). This condition cannot be guaranteed in general, and determining

whether a model is ergodic has space complexity polynomial to the model size and therefore can

result in space-space explosion. This condition also precludes the application of this method for
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models where it is impossible to verify ergodicity, such as black-box systems or other systems

where knowledge of the transition structure is not available.

3.1.3 Confidence Interval Based Statistical Estimation

In contrast to the above approaches, these methods attempt first to compute an estimate

of the probability p with which paths from s satisfy ψ. Then (if desired), the estimate can be

compared to the given bound to determine satisfaction of the property ψ.

Given a state s in a DTMC and a path property ψ, an appropriate number of samples, say

N , is obtained starting from s; and p̂ (Equation 3.1) is used as the estimate of the probability

p with which paths from s satisfy ψ. The estimation method aims to bound the error in the

estimate as follows:

Pr(|p̂− p| > ε) < δ

In the above, ε is the error bound of the estimate and δ is the probability of error in the

estimate, i.e., the probability that the estimate is at least ε distance away from p. δ is also

referred to as the confidence parameter of the estimate. The interval [p − ε, p + ε] is referred

to as the confidence interval. Given ε and δ, one can use the Chernoff-Hoeffding inequality

developed by Hoeffding (1963) to precisely compute the lower bound of the number of samples

(N) for probabilistic model checking. Smaller values for ε and δ result in larger values of this

lower bound.

Herault et al. (2004) have proposed a method to verify a subset of LTL formulae, namely the

EPF (Essentially Positive Fragment) in DTMC. Their technique checks whether the probability

that a state satisfies an unbounded path property ψ is greater than or equal to r. This is

performed using the null hypothesis H0 : p ≥ r against the alternate H1 : p < r. The

technique relies on estimating p (Chapter 3.1.3) within a pre-specified error bound and uses

the Chernoff-Hoeffding inequality (Hoeffding (1963)) to obtain the appropriate sample size.

However, it fails to completely control the error in the procedure.

The sample path length used in the procedure has a pre-specified upper bound. If a

simulation reaches that bound and fails to infer a decided result (i.e., whether the path satisfies
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the given path property or not), the technique assumes that the simulation, if allowed to

proceed, eventually will not satisfy the path property under consideration. This assumption

allows the method to control Type II error within a pre-specified limit. However, as the authors

state in Herault et al. (2004), the proposed technique cannot determine the appropriate upper

bound on simulation path length to control the number of the undecided simulations. As such,

the method loses control of Type I error (the error that the null hypothesis H0 holds but the

test rejects it).

3.1.4 Implementations of confidence interval based approaches

3.1.4.1 APMC

Herault et al. (2006) describes a tool called APMC, or Approximate Probabilistic Model

Checker. As noted above, the tool cannot control error for unbounded path properties. Herault

et al. (2004) does not directly address this problem, other than to note that it is an issue.

3.1.4.2 PRISM

After the development of APMC, the technique was incorporated in the popular proba-

bilistic model checker PRISM, as described by Hinton et al. (2006). The distinguishing feature

of PRISM’s statistical approach is that unlike the method described above, which allows un-

decided simulations, PRISM will not provide a result to the model checking problem if any

sample path remains undecided for some arbitrary, pre-specified length. Although this feature

effectively controls Type I error, it becomes necessary to identify a bound on sample length for

which the simulation run of each sample will have a decided result. If a sample reaches this

predetermined length, the simulation process is aborted and the user is requested to run the

experiment again with a larger bound.

All of the results presented in this paper are based on PRISM 3.3.1 (released November 22,

2009). Recently, prerelease versions of PRISM 4 have become available. This new version of

PRISM supports both confidence interval and hypothesis testing approaches. More discussion

of PRISM 4 is included in Chapter 10.2.
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3.1.4.3 PRISM-U2B

We propose herein a technique which can be viewed as a natural extension of the technique

proposed by Herault et al. (2004) and the algorithm implemented in PRISM. It uses two phases:

in the first phase, an appropriate system-dependent bound k0 in sample length is obtained

automatically; and in the second phase, this bound is used to compute the result for unbounded

until properties. In effect, a property ϕ1 U ϕ2 is converted into the property ϕ1 U≤k0 ϕ2, while

maintaining the desired error bounds. To the best of our knowledge, this is the first technique

that can estimate the probability of satisfying unbounded until properties in probabilistic DTMC

and CTMC models using statistical sampling without any prior knowledge of the model structure

to appropriately control the error in estimate.

It should be noted that any of the existing techniques based on either confidence interval

estimation or hypothesis testing could be deployed in the second phase of our technique, as the

property under consideration is bounded appropriately by k0, which is computed automatically

in the first phase. The results presented here use the technique developed by Herault et al.

(2006), as implemented in PRISM.

3.2 Summary

Table 3.2 provides a brief summary and comparison of the model checking tools presented

here. The usability rankings are based on Jansen et al. (2007), with −− indicating the lowest

score, ++ indicating the highest score, and 0 being neutral.

PRISM’s modeling language, which is based on the reactive modules formalism developed

by Alur and Henzinger (1999), is considered to be the easiest to use. APMC imports PRISM

models directly, while MRMC has the option of importing models exported from PRISM. Ymer

uses a language similar to PRISM’s language.

Ψ2 is a new tool created by Rabih and Pekergin (2009) to demonstrate the effectiveness

of perfect sampling as applied to probabilistic model checking. As such, its modeling and

usability scores are low.

Note that most of the tools either do not support unbounded until properties at all, do
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Tool Method Last update
Until properties Ease of usea

Bounded Unbounded Modeling Use
Ymer Hypothesis 2011 Yes Yes + 0
Vesta Hypothesis 2005 Yes Yesb −− +

MRMC Hypothesis 2011 Yes Yesc ++ 0/+
Ψ2 Hypothesis 2010 Yes Yesd −− 0

APMC Confidence 2006 Yes Yese ++ −−
PRISM 3 Confidence 2010 Yes Yesf ++ ++
PRISM 4 Both 2011 Yes Yesf ++ ++

PRISM-U2B Confidence 2011 Yes Yes ++ ++

Table 3.1 Comparison of model checking tools
aPartially based on Jansen et al. (2007)
bIncorrect results for models containing loops
cRequires knowledge of model (BSCC detection)
dRequires ergodic models
eDoes not control Type I error
fDoes not always provide a result

not provide correct results for unbounded until properties, or only support unbounded until

properties in certain types of models. Only PRISM-U2B provides correct results for unbounded

until properties in arbitrary models.



23

CHAPTER 4 Two-phase Approximate Probabilistic Model Checking

The objective of our work is to reduce unbounded until properties to bounded until prop-

erties in the context of probabilistic model checking. The main problem that needs to be

addressed to realize such a reduction involves identifying

(a) a suitable bound k0 for checking the bounded until property (in each simulation) (done

in Phase I ), and

(b) a bound on the number of simulation-paths (each of length k0) (done in Phase II ),

such that a statistical sampling based verification result of the bounded until property ap-

proximately coincides with that of the unbounded until property within a pre-specified error

limit.

4.1 Rationale

The paths belonging to the semantics of ϕ1 U ϕ2 (Section 2.1) can be partitioned into two

groups for each k ≥ 1: one includes the paths that satisfy the property in ≤ k steps; while the

other includes the paths that satisfy the property in > k steps. I.e., the semantics of ϕ1 U ϕ2

can be written as

π |= ϕ1 U ϕ2

⇔ ∀k :


∃0 ≤ i ≤ k : π[i] |= ϕ2 ∧ ∀j < i : π[j] |= ϕ1∨
∃i > k : π[i] |= ϕ2 ∧ ∀j < i : π[j] |= ϕ1 ∧ ¬ϕ2


⇔ π |= ∀k :

[
(ϕ1 U≤k ϕ2) ∨ (ϕ1 U>k ϕ2)

]



24

Note that we have defined that π |= ϕ1 U>k ϕ2 if and only if the first state π[i] that satisfies

ϕ2 appears in π after at least k + 1 steps and ϕ1 is satisfied in all states before π[i].

Since (ϕ1 U≤k ϕ2) ∧ (ϕ1 U>k ϕ2) = ff, by law of total probability

P(s, ϕ1 U ϕ2) = P(s, ϕ1 U≤k ϕ2) + P(s, ϕ1 U>k ϕ2) (4.1)

From the fact that probabilities ∈ [0, 1],

0 ≤ P(s, ϕ1 U ϕ2)− P(s, ϕ1 U≤k ϕ2) = P(s, ϕ1 U>k ϕ2) (4.2)

Next consider the property ϕ1 U>k ϕ2.

π |= ϕ1 U>k ϕ2

⇔ ∃i > k : π[i] |= ϕ2 ∧ ∀j < i : π[j] |= ϕ1 ∧ ¬ϕ2

⇒ ∀i ≤ k : π[i] |= ϕ1 ∧ ¬ϕ2

⇔ ϕ1 U ϕ2 is neither satisfied nor unsatisfied in k steps from π[0]

⇔ π |= ¬(ϕ1 U≤k ϕ2) ∧ ¬(¬ϕ2 U≤k (¬ϕ1 ∧ ¬ϕ2))

Let ψk = (ϕ1 U≤k ϕ2) ∨ (¬ϕ2 U≤k (¬ϕ1 ∧ ¬ϕ2)), i.e., ψk is the property that is satisfied by a

path π only when the satisfiability of ϕ1 U ϕ2 can be proved or disproved in k steps from the

start state (π[0]). Therefore, from the above, (ϕ1 U>k ϕ2)⇒ ¬ψk and

P(s, ϕ1 U>k ϕ2) ≤ P(s,¬ψk) = 1− P(s, ψk) (4.3)

From Equations 4.2 and 4.3, for any k ≥ 1 we obtain

0 ≤ P(s, ϕ1 U ϕ2)− P(s, ϕ1 U≤k ϕ2) ≤ 1− P(s, ψk) (4.4)

Our objective is to select a k0 such that for any given ε0.

P(s, ψk0) ≥ 1− ε0 (4.5)

In that case,

0 ≤ P(s, ϕ1 U ϕ2)− P(s, ϕ1 U≤k0 ϕ2) ≤ 1− P(s, ψk0) ≤ ε0 (4.6)

In other words, by choosing an appropriate k0, the probability of satisfying the unbounded

path property ϕ1 U ϕ2 can be made close (within an error margin of ε0, for any arbitrarily

small choice of ε0) to the probability of satisfying the bounded path property ϕ1 U≤k0 ϕ2.
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4.2 U2B: Two-phase Approximate Model Checking for DTMC

The discussion in the previous section (specifically, Equations 4.5 and 4.6) motivates our

two phase method. In the first phase we determine a suitable k0 and in the second phase we

estimate P(s, ϕ1 U≤k0 ϕ2). Finally, we use this estimate of P(s, ϕ1 U≤k0 ϕ2) as the estimate

of P(s, ϕ1 U ϕ2). Our method utilizes confidence interval based statistical estimation (see

Section 3.1.3) in both phases.

In Phase I, P(s, ψk) is estimated for different values of k using N1 Monte Carlo simulation

paths similar to the GAA (Generic Approximation Algorithm) described in Herault et al.

(2004). This is done for all k ≥ 1 until for some k0, the estimate satisfies Equation 4.5.

Once k0 is obtained, in Phase II we estimate P(s, ϕ1 U≤k0 ϕ2). This estimate is computed

as the proportion of N2 Monte Carlo simulation paths (each of length at most k0) that satisfy

ϕ1 U≤k0 ϕ2. This also can be thought of as a simple application of the GAA algorithm for

bounded until properties described in Herault et al. (2004).

The two phases for computing k0 and then computing P(s, ϕ1 U≤k0 ϕ2) are carried out

“independently”, i.e., involving separate samples (of sizes N1 and N2 respectively), which

enables us to combine the errors in two phases to guarantee a certain precision. The number

of Monte Carlo simulation paths used in the two phases and the value of k0 are chosen in

a way that controls the errors in each of the phases and combines them to guarantee the

correctness of the final estimate within a pre-specified error limit (see Theorem 1 below). In

short, our method, U2B(M, s, ϕ1 U ϕ2, ε, δ), takes as input the DTMC model M , the state s, the

until property under consideration, the error margin ε and the confidence parameter δ; and

returns the estimate of P(s, ϕ1 U ϕ2) within ε bound with a high degree of certainty (at least

1− δ). The steps of our method are summarized as follows:

Main Steps. U2B(M, s, ϕ1 U ϕ2, ε, δ)

1. Phase I : Obtaining k0

(a) Choose N1 ≥ N∗1 = 9 log(4
δ )/2ε2. From M , obtain N1 Monte Carlo simulation paths

of length k = 1. For i = 1, . . . , N1, let Xi = 1 if the i-th simulation satisfies ψk;
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Xi = 0 otherwise.

(b) Estimate P(s, ψk) as the proportion of the simulation paths satisfying ψk, i.e.

P̂(s, ψk) =
1
N1

N1∑
i=1

Xi. (4.7)

(c) Verify if Equation 4.5 is satisfied by the estimate in Equation 4.7 with the current

value of k and ε0 = ε
3 . More precisely, if

P̂(s, ψk) ≥ 1− ε0= 1− ε

3
, (4.8)

then k0 = k and proceed to Phase II. Otherwise, increase k by 1 and generate

one more transition for each of the existing N1 simulation paths, creating N1 paths

of increased (by 1) length. Define Xi, i = 1, . . . , N1 as in Step 1(a) using these

extended simulation paths and repeat the Step 1(b)-(c).

2. Phase II : Estimating P(s, ϕ1 U≤k0 ϕ2)

(a) Choose N2 ≥ N∗1 = 36 log(4
δ )/ε2. From M , obtain N2 Monte Carlo simulation

paths (of length at most k0). For i = 1, . . . , N2, let Yi = 1 if the i-th simulation

path satisfies ϕ1 U≤k0 ϕ2; Yi = 0 otherwise.

(b) Estimate P(s, ϕ1 U≤k0 ϕ2) as the proportion of the simulation paths that satisfy

ϕ1 U≤k0 ϕ2, i.e

P̂(s, ϕ1 U≤k0 ϕ2) =
1
N2

N2∑
i=1

Yi. (4.9)

Return P̂(s, ϕ1 U≤k0 ϕ2), as the estimate for P(s, ϕ1 U ϕ2)

4.3 Proof of Correctness

The following theorem states the correctness of our method.

Theorem 1. Given any precision parameter ε > 0 and confidence parameter δ > 0, the

estimator U2B(M, s, ϕ1 U ϕ2, ε, δ) with the chosen values of k0, N
∗
1 , N

∗
2 satisfies the following:

Pr (| U2B(M, s, ϕ1 U ϕ2, ε, δ)− P(s, ϕ1 U ϕ2) | > ε) ≤ δ. (4.10)
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Figure 4.1 Choosing k0 in Phase I from F (k)

We begin by discussing auxiliary results in theoretical statistics that will be used in proving

the above theorem. We discuss properties of the estimation procedure separately for the two

phases.

4.3.1 Phase I: Estimating k0

Let F (·) be a function where F (k) = P(s, ψk), k ≥ 1. Figure 4.1 illustrates the sample

valuations of F (·) for different valuations of k; we refer to this graph as the Decided Graph

(D-Graph); F (k) being the probability that ϕ1 U ϕ2 is decided in ≤ k steps from the state

s. The main challenge in Phase I is that the function F (·) is not typically known. If this

function were known, finding a k0 that satisfies Equation 4.5 could have been achieved by

simply inverting this (non-decreasing) function.

The function F (·) can be thought of as the cumulative distribution function (c.d.f) of a

random variable K = the minimum number of transitions required to verify ϕ1 U ϕ2 along a

randomly selected simulation path in the given model. In this way, our estimation process in

Phase I is equivalent to estimating this c.d.f using N1 independent samples collected from the

distribution of this variable K. In fact, our estimate P̂(s, ψk) (as a function of k) is the usual

empirical c.d.f estimator F̂N1(·) of the true c.d.f F (·). It is well known that k ≥ 1, F̂N1(k)

converges to F (k), as N1 → ∞ at a suitable rate, for each k. For the proof of Theorem 1,

we need the rate uniform in k at which this convergence takes place. This is provided by the
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celebrated Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (see for example, Massart (1990)):

For each ε1 > 0, N1 ≥ 1, Pr
(

supk≥1 |F̂N1(k)− F (k)| > ε1

)
≤ 2e−2N1(ε1)2 . This result,

restated in terms of P(s, ψk) = F (k) and P̂(s, ψk) = F̂N1(k), for each k, yields the following

lemma, which will be needed for our proof of Theorem 1.

Lemma 1. Given any ε1 > 0 and N1 ≥ 1,

Pr

(
sup
k≥1
| P̂(s, ψk)− P(s, ψk) |> ε1

)
≤ 2e−2N1(ε1)2 .

4.3.2 Phase II: Estimating P(s, ϕ1 U≤k0 ϕ2)

In this phase, we estimate the probability of the bounded until property ϕ1 U≤k0 ϕ2 in M ,

with k0 ≥ 1 as determined in Phase I. For any given k ≥ 1, our algorithm in Phase II is simply

the GAA algorithm (c.f. Herault et al. (2004)) of estimating the probability of a bounded until

property ϕ1 U≤k ϕ2 in M . Hence using the same technique (i.e., using Chernoff-Hoeffding

bound) we get for each ε2 > 0,

Pr
(
| P̂(s, ϕ1 U≤k ϕ2)− P(s, ϕ1 U≤k ϕ2) |> ε2

)
≤ 2e−N2(ε2)2/4.

Now since the above inequality is true for all k ≥ 1, it is true conditional on the simulations of

Phase I, for k = k0. But the two phases are carried out independently, which means the above

statement must be true unconditionally as well, for k = k0. Summarizing this discussion, we

have

Lemma 2. Given any ε2 > 0 and N2 ≥ 1, for k0 given by Phase I of U2B

Pr
(
| P̂(s, ϕ1 U≤k0 ϕ2)− P(s, ϕ1 U≤k0 ϕ2) |> ε2

)
≤ 2e−N2(ε2)2/4.

Now we use the results of Lemmas 1 and 2 to complete the proof of Theorem 1.

Proof of Theorem 1. The triangle inequality (after adding and subtracting suitable terms)

yields the following

| U2B(M, s, ϕ1 U ϕ2, ε, δ)− P(s, ϕ1 U ϕ2) |=| P̂(s, ϕ1 U≤k0 ϕ2)− P(s, ϕ1 U ϕ2) |

≤ | P̂(s, ϕ1 U≤k0 ϕ2) − P(s, ϕ1 U≤k0 ϕ2) |

+ | P(s, ϕ1 U ϕ2)− P(s, ϕ1 U≤k0 ϕ2) | . (4.11)
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Recall from Equation 4.8 that we have 1− P̂(s, ψk) ≤ ε/3. Hence, using Equation 4.4 and the

triangle inequality, we get the following bound on the last term in Equation 4.11

| P(s, ϕ1 U ϕ2)− P(s, ϕ1 U≤k0 ϕ2) | ≤ (1− P(s, ψk0))

≤ (1− P̂(s, ψk0))+ | P̂(s, ψk0)− P(s, ψk0) |

≤ ε

3
+ sup

k≥1
| P̂(s, ψk)− P(s, ψk) | . (4.12)

Combining Equation 4.11 with Equation 4.12, we get the following bound

| U2B(M, s, ϕ1 U ϕ2, ε, δ)− P(s, ϕ1 U ϕ2) | ≤

| P̂(s, ϕ1 U≤k0 ϕ2)− P(s, ϕ1 U≤k0 ϕ2) | + ε
3 + supk≥1 | P̂(s, ψk)− P(s, ψk) |

Hence, the fact that the left side of the above inequality is greater than ε (see Equation 4.10

in Theorem 1) implies that at least one of the terms on the right side is greater than ε/3.

Therefore, we obtain the following:

Pr (| U2B(M, s, ϕ1 U ϕ2, ε, δ)− P(s, ϕ1 U ϕ2) |> ε)

≤ Pr
(
| P̂(s, ϕ1 U≤k0 ϕ2) − P(s, ϕ1 U≤k0 ϕ2) |> ε

3

)
+ Pr

(
sup
k≥1
| P̂(s, ψk)− P(s, ψk) |>

ε

3

)
≤ δ. (4.13)

The last inequality follows from the bounds in Lemmas 1 and 2 with ε1 = ε/3 and ε2 = ε/3,

since with Ni ≥ N∗i , i = 1, 2, we have 2e−2N1(ε1)2 ≤ δ/2 (i.e, N1 ≥ 1
2ε21
log(4

δ ) ≥ 9
2ε2
log(4

δ )) and

2e−N2(ε2)2/4 ≤ δ/2 (i.e., N2 ≥ 4
ε22
log(4

δ ) ≥ 36
ε2
log(4

δ )). This completes the proof of Theorem 1.

Remark 1. Observe that there are three error bounds that are derived from ε, each of which

is assigned to ε
3 : ε0 (From Equation 4.8), ε1 (From Lemma 1) and ε2 (From Lemma 2). While

ε0 is the measure of closeness of P̂(s, ψk) to 1, ε1 and ε2 capture the closeness of the estimated

and true probabilities in each phase. In other words, a smaller ε0 will lead to a larger value for

k0 (sample path length), while smaller ε1 and ε2 values will result in larger values for N1 and

N2, the sample sizes in each phase. The proof of our theorem holds as long as ε0 + ε1 + ε2 = ε.

These values can be fine tuned experimentally.
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CHAPTER 5 Efficient & Practical Realization of U2B Model Checker

As discussed in Section 4.2, our method, U2B involves two phases. In this chapter, we

present a direct (naive) implementation of Phase I followed by an optimized variation. Recall

that Phase II deals with estimating P(s, ϕ1 U≤k0 ϕ2), which can be immediately computed using

the existing statistical method present in PRISM; as such, we do not provide any additional

optimization for Phase II. The integration of this method into PRISM (i.e. the development of

PRISM-U2B) is discussed in Chapter 8.

5.1 Naive Implementation of Phase I

Algorithm 1 lists the procedure identifyK0, describing a naive realization of Phase I in

U2B. workingSet contains the set of current states (last states of simulation paths) that are

examined in Phase I. It is initialized with N1 copies of the start state of the model; these are

the current states in N1 paths of length 0 (Line 3). The variable trueCount, initialized to 0

(Line 4), captures the number of paths in workingSet that satisfy ψk.

The states in workingSet are verified to check whether ψk is satisfied; if satisfied, the

states are removed from workingSet and trueCount is incremented (Lines 6–9). Observe that

trueCount captures the number of paths of length k that satisfy ψk. Therefore, trueCount/N1

computes P̂(s, ψk) (Equation 4.7). The loop (Lines 5) is terminated if N1(1− ε0) ≤ trueCount

(Lines 10, 11), i.e., if the proportion of paths in the sample of size N1 that satisfy ψk is less

than 1− ε0.

If the terminating condition is not satisfied, k is incremented and workingSet is updated

by obtaining the next states of the paths in the working set by random selection based

on the probability distribution in the model. On termination of the iteration, i.e., when
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Algorithm 1 Naive Implementation of Phase I
1: procedure identifyK0(N1, ε0, ψ)

. N1: Total number of samples for Phase I (see U2B Step 1(a))
. ε0 closeness to 1 (see U2B Step 1(c))
. ψ := (ϕ1 U ϕ2) ∨ (¬ϕ2 U ¬ϕ1 ∧ ¬ϕ2)

2: k := 0;
3: workingSet := add N1 copies of start state; . path length k = 0
4: trueCount := 0; . Initial number of paths that satisfy ψk

5: while True do
6: for each state ∈ workingSet that satisfies ¬ϕ1 ∨ ϕ2 do . i.e., path satisfies ψk

7: remove state from workingSet;
8: trueCount++;
9: end for

10: if (N1(1 - ε0) ≤ trueCount) then
11: return k; . trueCount ≥ N1(1− ε0), i.e., P̂(s, ψk) = truecount

N1
≥ 1− ε0

12: end if
13: k++;
14: replace current states in workingSet with randomly obtained next states;
15: end while
16: end procedure

trueCount/N1 ≥ 1 − ε0, the value k is returned. This concludes Phase I of the U2B and

initiates the invocation of Phase II.

Remark 2. Algorithm 1 terminates and returns k if and only if P̂(s, ψk) ≥ 1 − ε0. The

above statement holds directly from the facts that P̂(s, ψk) is equal to the proportion of paths in

sample of size N1 that satisfy ψk, and that Algorithm 1 considers a workingSet of N1 paths

and terminates only when trueCount ≥ N1(1− ε0).

5.2 Optimization: Reducing the workingSet in Phase I

Algorithm 1 initializes workingSet to a set (of size N1) of paths of length 0, and maintains

a subset of paths that do not satisfy ψk until the loop terminating condition at Line 5 is

satisfied. This can be expensive in terms of space usage because N1 is often large.

An alternative realization of Phase I has been developed in which only a small subset of the

sample (of total size N1) is considered in workingSet. This is achieved from the observation

that on termination of Phase I, the number of paths that do not satisfy ψk can be at most

N1ε0 − 1 in the sample of size N1 (as trueCount/N1 is required to be ≥ 1 − ε0). Therefore,

it is sufficient to consider only N1ε0 paths in workingSet at any point in time. Whenever
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Figure 5.1 Optimized realization of Phase I of U2B, workingSet of size
N1ε0: Sliding window strategy.

some paths in workingSet satisfy ψk, they are replaced with a new set of paths such that the

size of workingSet is maintained at N1ε0. These new paths are extended to length k before

k is incremented and the old paths are extended. In short, a sliding window workingSet is

considered until the total number of paths that satisfy ψk is ≥ N1(1− ε0) (as required in Phase

I ). This reduces the space usage as the number of paths stored in workingSet at any time is

fixed to N1ε0, a small proportion of N1.

Figure 5.1 illustrates this strategy. Each sector represents the working set of paths examined

at each iteration. The working set size is fixed to N1ε0. The radius of each sector denotes

the length of paths in the corresponding working set. In the figure, initially a working set

containing paths of length 1 is considered. The property ψk is satisfied in some of these paths

and as a result, those paths are removed and new paths of length 1 are generated and added to

the working set. All paths in the working set are then extended by one step. This is repeated

in iteration 2, at the end of which the working set contains paths of length 3. As per the

figure, none of the paths in the working set satisfy ψk and as such, no new paths are added to

the working set; instead all paths in the working set are extended by one step (i.e., the path
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length k becomes 4). The above process is repeated until a sector (working set) is obtained

such that (a) it overlaps with the shaded sector and (b) contains a sub-sector of paths (denoted

by dotted lines) that satisfy ψk and that also overlaps with the shaded sector. This implies

that the proportion of paths that satisfy ψk is ≥ 1 − ε0. Algorithm 2 presents the listing of

this optimized implementation.

Algorithm 2 Optimized Implementation of Phase I
1: procedure identifyK0 Opt 1(N1, εo, ψ)

. N1: Total number of samples for Phase I (see U2B Step 1(a))
. ε0: Error bound for Phase I (see U2B Step 1(c))

. ψ := (ϕ1 U ϕ2) ∨ (¬ϕ2 U ¬ϕ1 ∧ ¬ϕ2)
2: k := 0; . Initial length of paths
3: workingSet := add N1ε0 copies of start state; . paths of length k = 0
4: trueCount := 0; . Initial number of paths that satisfy ψk

5: while True do
6: for each state ∈ workingSet that satisfies ¬ϕ1 ∨ ϕ2 do . i.e., path satisfies ψk

7: remove state from workingSet;
8: trueCount++;
9: end for

10: if (N1(1 - ε0) ≤ trueCount) then
11: return k; . trueCount ≥ N1(1− ε0), i.e., P̂(s, ψk) = truecount

N1
≥ 1− ε0

12: end if
13: k++;
14: replace current states in workingSet with randomly obtained next states;
15: run (N1ε0 - |workingSet|) random simulations for k steps from start state;

16: add last states to workingSet;
17: end while
18: end procedure

The primary differences between Algorithms 1 and 2 are at Lines 3 and 15–16 of Algo-

rithm 2. Instead of initializing workingSet with N1 copies of start states (as in Algorithm 1), it

is initialized withN1ε0 copies of start states. Then, if some states are removed from workingSet

(Line 7), it is replenished with the last states of newly extended paths of appropriate length

such that the total number of states in workingSet remains equal to N1ε0 (Line 15, 16).

Proposition 1. Algorithm 2 terminates and returns k if and only if P̂(s, ψk) ≥ 1− ε0.

Algorithm 2 terminates if N1(1 − ε0) ≤ trueCount. Therefore, it must examine at least

N1(1 − ε0) + 1 paths before terminating and returning a k. That is, at most N1ε0 − 1 paths

are not considered by Algorithm 2 for returning a k and inferring that P̂(s, ψk) ≥ 1 − ε0.
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Figure 5.2 Logarithms of N1 and N1ε0 against ε (x-axis).

The above proposition holds as P̂(s, ψk) is the proportion of paths (i.e., trueCount) in a

sample of size N1 that satisfy ψk and the terminating condition of Algorithm 2 ensures that

trueCount/N1 ≥ 1− ε0.

5.2.1 Discussion: Algorithm 1 Vs. Algorithm 2

Recall that Algorithm 1 uses N1 = 1
2ε21
log(4

δ ) samples while Algorithm 2 requires N1ε0

samples. We have considered ε0 = ε1 = ε
3 (see Remark 1 in Section 4.3); however any other

choice of ε0 and ε1 as a function of ε would suffice for this discussion. Figure 5.2 compares

the increases (in log scale) in the value of N1 and N1ε0 with the decrease in ε for a specific

confidence parameter δ = 0.001. Observe that N1 increases faster than N1ε0 with the decrease

in error bound ε of the U2B method (for instance, with ε = 0.001, N1 = 1.6 × 107 while

N1ε0 = 5403). In other words, as the precision of the U2B method is increased, Algorithm 2

uses a considerably smaller working set (and in turn, less space) compared to that used by

Algorithm 1; the larger the precision, the greater the benefit in terms of space usage in using

Algorithm 2 over Algorithm 1.

The space-saving benefit increases with the increase in the number of variables describing

the model (i.e., each model state). We have experimented with different variations of a simple

queue model (see Jennings et al. (2010)) where each variation contains a different number of

variables. Figure 5.3 shows that with the increase in the number of variables in the model, the
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Figure 5.3 Memory usage by Algorithm 1 Vs. Algorithm 2 for variations
of a simple queue model.

increase in the space usage (in MB) by Algorithm 1 is larger than that in Algorithm 2. In fact,

when the number of variables is ≥ 2500, Algorithm 1 reports out of memory and terminates

without computing any result.
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CHAPTER 6 Dealing with Non-termination in U2B

Recall that F (k) is the probability that ϕ1 U ϕ2 is decided in k steps from a state s under

consideration. In Section 4.3.1 we introduced the notion of the Decided Graph (D-Graph;

Figure 4.1) presenting the valuations of F (·) for different valuations of k. In this chapter, we

discuss the condition on the valuation of F (·) (and the corresponding shape of the D-Graph)

under which the U2B method fails to terminate and propose a heuristic-based alternate method

to ensure termination.

Our argument for the applicability of the U2B method requires that as k →∞, the limit of

F (k) = P(s, ψk) ≥ 1− ε0 (see Equation 4.5). That is,

lim
k→∞

P(s, ψk) ≥ 1− ε0 (6.1)

When the limit is 1, Equation 6.1 is satisfied for any ε0 and hence our method is valid for any

ε0 ≥ 0. (See Figure 4.1, which illustrates the case when the limit is 1.)

When the limit is not equal to 1, our method works (i.e., Phase I computation terminates)

for any ε0 that satisfies the inequality in Equation 6.1. See Figure 6.1 for an example D-Graph

from such a model. There are several local plateaus, followed by an unbounded plateau. Note

that the requirement of satisfying this inequality does not restrict the applicability of our

technique to any specific class of properties or models; our technique can be applied for any

until property and for any model as long as the above requirement is satisfied. It is worth

mentioning that PRISM’s statistical method is equivalent to choosing ε0 = 0 in our method

and hence will fail to provide a result whenever this limit is not equal to 1. In other words,

whenever PRISM’s statistical verification method is successful in computing a result, our method

also terminates with a result; and furthermore, our method is able to estimate probabilities

for many cases where PRISM’s statistical method fails (see discussion in Section 9).
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The implication of the limit not being equal to 1 is that P(s,¬(tt U (ϕ2 ∨ ¬ϕ1))) > 0,

which happens if and only if there exists a path to a strongly connected component in the

model where every state satisfies (ϕ1 ∧ ¬ϕ2). If the probability of such a path (or paths) is

greater than ε0 then the Phase I computation will fail to terminate. It is worth mentioning

that in such a case, any statistical verification method that does not analyze model transition

structure may not be able to compute any result. However, this feature of not analyzing the

model allows the application of statistical verification methods (including ours) for the purpose

of estimating the probability of properties in systems for which pre-analysis of system-model

is not possible due to prohibitively large state-space; or for systems for which only sample

simulations of the system can be generated (as needed).

Consider the DTMC model in Figure 6.2. The start state of the model is s0 and each state is

annotated with the property (ϕ1, ϕ2) that holds at that state. As in the illustrative example

introduced in Section 1.1, the dotted segment, denoted by DS, represents some complicated

transition structure on n different states (an exact description of the model is available at

Jennings et al. (2010)). All states in DS satisfy ϕ1. The objective is to compute P(s0, ϕ1 U ϕ2).

There are three paths s0, s3, s3, . . ., s0, s4, s4, . . . and s0, t0, . . . , tm, s4, . . . that satisfy ϕ1 U ϕ2;

therefore, P(s, ϕ1 U ϕ2) = 0.2 + 0.2 + 0.4 × 0.65 = 0.66. Observe that there exists an infinite

path in the model with positive probability where every state satisfies (ϕ1 ∧ ¬ϕ2). In fact,

limk→∞ P(s0, ψk) = 0.86. As PRISM’s statistical method requires the above limit to be 1, it
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Figure 6.2 A modification of the illustrative example (Figure 1.1).

fails to compute the estimate of P(s0, ϕ1 U ϕ2). Similarly, our proposed method U2B will fail

to terminate when ε0 < 0.14. More precisely, Phase I of the U2B method will fail to terminate.

In the following, we present a strategy and a corresponding heuristic to address this problem

of non-termination.

6.1 Rationale

From the semantics of PCTL (Section 2.2), the probability of satisfying ϕ1 U ϕ2 can be

expressed in terms of satisfying ϕ1 U≤k ϕ2 as follows:

lim
k→∞

P(s, ϕ1 U≤k ϕ2) = P(s, ϕ1 U ϕ2), i.e., P(s, ϕ1 U≤∞ ϕ2) = P(s, ϕ1 U ϕ2) (6.2)

Next, suppose there exists a method by which a k∗ can be computed such that

∀∆k ≥ 1 : P̂(s, ϕ1 U≤k∗ ϕ2) = P̂(s, ϕ1 U≤k∗+∆k ϕ2) (6.3)

We refer to any k∗ that satisfies the above equation as an unbounded-plateau-detector (the

valuation of estimate P̂(s, ϕ1 U≤k ϕ2) remains unchanged for all k ≥ k∗). Note that there is

at most one unbounded plateau and an infinite number of unbounded-plateau-detectors. The

above equation implies that P̂(s, ϕ1 U≤k∗ ϕ2) = P̂(s, ϕ1 U≤∞ ϕ2). Proceeding further, we prove

the following theorem which forms the basis of our method.

Theorem 2. Given any precision parameter ε1 > 0 and confidence parameter δ1 > 0,

Pr
(
| P̂(s, ϕ1 U≤k∗ ϕ2)− P(s, ϕ1 U ϕ2) | > ε1

)
≤ δ1



39

where k∗ is an unbounded-plateau-detector and δ1 ≥ 2e−2N1(ε1)2.

Proof.

| P̂(s, ϕ1 U≤k∗ ϕ2)− P(s, ϕ1 U ϕ2) | ≤ | P̂(s, ϕ1 U≤k∗ ϕ2)− P(s, ϕ1 U≤∞ ϕ2) |

+ | P(s, ϕ1 U≤∞ ϕ2)− P(s, ϕ1 U ϕ2) |

≤ | P̂(s, ϕ1 U≤k∗ ϕ2)− P(s, ϕ1 U≤∞ ϕ2) |

using Equation 6.2

Therefore,

| P̂(s, ϕ1 U≤k∗ ϕ2)− P(s, ϕ1 U ϕ2) | ≤ | P̂(s, ϕ1 U≤k∗ ϕ2)− P̂(s, ϕ1 U≤∞ ϕ2) |

+ | P̂(s, ϕ1 U≤∞ ϕ2)− P(s, ϕ1 U≤∞ ϕ2) |

≤ | P̂(s, ϕ1 U≤∞ ϕ2)− P(s, ϕ1 U≤∞ ϕ2) |

using Equation 6.3

(6.4)

From Lemma 1, the following holds for any k, N1 ≥ 1 and ε1 > 0

Pr

(
sup
k≥1
| P̂(s, ϕ1 U≤k ϕ2)− P(s, ϕ1 U≤k ϕ2) |> ε1

)
≤ 2e−2N1(ε1)2

where P̂(s, ϕ1 U≤k ϕ2) is the proportion of paths (starting from s) in N1 samples that satisfy

ϕ1 U≤k ϕ2. Therefore, from Equation 6.4

Pr
(
| P̂(s, ϕ1 U≤∞ ϕ2)− P(s, ϕ1 U≤∞ ϕ2) | > ε1

)
≤ δ1, i.e.,

Pr
(
| P̂(s, ϕ1 U≤k∗ ϕ2)− P(s, ϕ1 U ϕ2) | > ε1

)
≤ δ1

where δ1 ≥ 2e−2N1(ε1)2 .

It follows that if N1 ≥ 1
2ε21
log( δ12 ) samples are considered to compute a k∗ such that Equa-

tion 6.3 is satisfied, then the proportion of paths that satisfy ϕ1 U≤k∗ ϕ2 in N1 samples (i.e.,

P̂(s, ϕ1 U≤k∗ ϕ2)) estimates P(s, ϕ1 U ϕ2) with precision parameter ε1 and confidence parameter

δ1.

The above theorem provides a sound roadmap to estimate P(s, ϕ1 U ϕ2) and it does not

require that limk→∞ P(s, ψk) ≥ 1 − ε0 (as is necessary for the termination of Phase I of
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our U2B method). However, this roadmap suffers from the drawback that it assumes the

existence of a method for computing k∗, an unbounded-plateau-detector. No such method

for computing k∗ can be realized in practice. As such, we propose a heuristic for estimating

k∗ which ensures termination of U2B at the cost of precision (i.e., the resulting P̂(s, ϕ1 U ϕ2)

may not be an estimate within pre-specified error bound and confidence parameter) when

limk→∞ P(s, ψk) 6≥ 1− ε0.

6.2 U2B P: Heuristic for Computing Plateau-Detector using the D-Graph

If in a D-Graph the valuation of F (k) = P(s, ψk) for a range of values of k (see Figure 6.1)

remains unaltered, then a plateau in the corresponding valuation of P(s, ϕ1 U≤k ϕ2) occurs

for the same k values. Recall that Phase I of U2B does not terminate when there exists an

unbounded plateau in F (·) such that the value of the plateau is less than 1− ε0. For instance

F (·) for the model in Figure 6.2 has an unbounded plateau with valuation 0.86.

The basis of the heuristic, therefore, is as follows. An estimate k̂∗ of k∗ is said to be “good”

if a “long” plateau in F̂N1(k) = P̂(s, ψk) (estimate of F (k) from N1 samples) is detected starting

from k = k̂∗. In other words, given Γ, a pre-specified length of a plateau, k̂∗ is an estimate of

k∗ if ∀k : k̂∗ ≤ k ≤ k̂∗ + Γ, the valuation of F̂N1(k) remains unaltered.

∀k : k∗ ≤ k < (k∗ + Γ) : F̂N1(k) = F̂N1(k + 1)⇒ P̂(s, ϕ1 U≤k ϕ2) = P̂(s, ϕ1 U≤k+1 ϕ2) (6.5)

The precision of this method of estimation depends on the length, Γ, of the detected plateau;

a longer plateau (larger Γ) is likely to provide a better estimate k̂∗. For example, in Figure 6.1,

if Γ is greater than k2−k1, k3−k4, and k6−k5, then k̂∗ will be indeed an unbounded-plateau-

detector; otherwise, one of the local plateaus may result in an incorrect k̂∗ computation. In the

following, we provide a heuristic to obtain a suitable valuation for Γ based on the valuations

of k.

Let ki be the current valuation of the simulation length and kj be the smallest value of k

for which F̂N1(ki) = F̂N1(kj). The objective is decide whether the difference ki − kj is a long

enough (≥ Γ) to infer that a global plateau is detected. Assuming that F (·) increases at a
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constant rate given by F (kj)/kj , we estimate the kx for which F (kx) = 1

1− F (kj)
kx − kj

=
1
kx

⇔ kx − kj = kj

(
1

F (kj)
− 1
)

We say that Γ = (kj + AF)γsimpoly where

• AF is the additive factor (= 10).

• γ = MINMAX

(
LB, 1

F̂N1
(kj)
− 1, UB

)
,

• simpoly is a user-specified parameter (default value is 1),

• LB = 2 and UB = 5 are the pre-specified lower- and upper-bounds of γ, and

• F̂N1(·) is the estimator of F (·) (see Section 4.3.1)

The value kj is said to be an estimate k̂∗ when ki − kj > Γ and F̂N1(ki) = F̂N1(kj). Note that

we have arbitrarily set the three parameters AF, UB and LB. AF is used to ensure that a long

enough plateau is considered even when kj is small (e.g., kj = 1). LB (and UB) ensures that

the required plateau length grows reasonably by exponents of 2 (or 5) if the slope F̂N1(kj)/kj

is too large (or too small). We have allowed users the control the length of the plateau using

the exponent simpoly.

Consider an example illustration in Figure 6.1. At k1, the value of Γ is k4 − k1 (assume

that there is no pre-set LB, UB, AF), i.e., if the value of F̂N1(·) remains unaltered between k1

and k4 (inclusive), we say that a plateau is identified starting from k1 and the corresponding

value of P̂(s, ϕ1 U≤k1 ϕ2) is identified as the P̂(s, ϕ1 U ϕ2) (see Equation 6.5). Similarly at k3,

Γ computed using the above formula is k7 − k3.

We have developed a method, referred to as U2B P, based on the above heuristic to compute

kj = k̂∗. In U2B P, if a plateau in F̂N1(·) is detected starting from kj and if F̂N1(kj) 6> 1−ε0, then

P̂(s, ϕ1 U≤kj ϕ2) is returned as the estimate of P(s, ϕ1 U ϕ2) (see Theorem 2). P̂(s, ϕ1 U≤kj ϕ2)

is the proportion of paths in N1 samples that satisfy ϕ1 U≤kj ϕ2. On the other hand, if

F̂N1(kj) > 1 − ε0, then U2B P is said to have successfully estimated k0 (= kj) and therefore

U2B P reduces to U2B and invokes Phase II computation (as described in U2B method; see

Section 4.3.2).
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Algorithm 3 Implementation of U2B P

1: procedure plateauKStar(N1, εo, ψ, simpoly)
. N1: Total number of samples for phase 1 (see U2B Step 1(a))

. ε0: Error bound for phase 1 (see U2B Step 1(c))
. ψ := (ϕ1 U ϕ2) ∨ (¬ϕ2 U ¬ϕ1 ∧ ¬ϕ2)

. simpoly: Exponent for plateau length calculation
2: k := 0; . Initial length of paths
3: lastk := 0; . last value of k for which ψk was satisfied
4: workingSet := add N1 copies of start state;
5: trueCount := 0; . Initial number of paths that satisfy ψk

6: satCount := 0; . Initial number of paths that satisfy ϕ1 U≤k ϕ2

7: while (1) do
8: for each state ∈ workingSet that satisfies ¬ϕ1 ∨ ϕ2 do . i.e., path satisfies ψk

9: remove state from workingSet;
10: trueCount++;
11: if (the state satisfies ϕ2) then
12: satCount++; . update satCount

13: end if
14: lastk := k; . record value of k
15: end for
16: if (N1(1 - ε0) ≤ trueCount) then
17: return k; . trueCount ≥ N1(1− ε0), i.e., P̂(s, ψk) = truecount

N1
≥ 1− ε0

. Invoke Phase II of U2B using k
18: end if
19: k := k++;
20: replace current states in workingSet with randomly obtained next states;
21: if (trueCount > 0) then . Calculation of plateau length

22: Γ := (lastk + 10)× [MINMAX(2, N1/trueCount− 1, 5)]simpoly;
23: end if
24: if (Γ > 0) && (k > lastk + Γ) then . Condition for plateau: heuristic
25: return k and satCount/N1 as P̂(s, ϕ1 U ϕ2)
26: end if
27: end while
28: end procedure

Remark 3. As U2B P is based on a heuristic, it cannot provide any correctness guarantees.

We give users the option to deploy either U2B (with the Algorithm 2 implementation for Phase

I) or U2B P. In the event that U2B fails to return an estimated probability within the amount of

time the user is willing to wait, the user can terminate the process and deploy U2B P. We have

not deployed U2B P in any of the experimental results presented in Chapter 8.

The U2B P method is realized as follows in Algorithm 3. In addition to keeping track of

the proportion of paths that satisfy ψk (trueCount, i.e., F̂N1(k)), the algorithm also keeps

information regarding the number of paths that satisfy ϕ1 U≤k ϕ2 (satCount in Lines 6, 12).
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Figure 6.3 Execution of Algorithm 3 for DTMC model in Figure 6.2:
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The value of k for which there is some change in the valuation of trueCount is recorded in lastk

(Line 14). Γ is computed at Line 22 following the above description. If trueCount does not

change for a large range of values of k (i.e, the difference between current value of k and lastk

is > Γ), then for the same range the value of satCount will also not change (Equation 6.5). If

a plateau is detected in the value of trueCount (i.e., FN1(·)), then satCount/N1 is returned

as an estimate for P(s, ϕ1 U ϕ2) along with a warning to the user that a heuristic has been

used to satisfy Equation 6.3 (Line 25). The computation can be re-done with larger values of

Γ, if the user so chooses, by increasing simpoly. If the termination condition of the while-loop

at Line 8 is satisfied, then it implies that F̂N1(k) is ε0 close to 1. In that case, the algorithm

returns k as k0 (Line 17) and Phase II of U2B is invoked.
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6.2.1 Discussion: U2B vs U2B P

Consider the example model in Figure 6.2. The U2B method will fail to terminate and

estimate P(s, ϕ1 U ϕ2) for this model because the limit1 limk→∞ P(s, ψk) = 0.86 < 1− ε0 where

ε0 = 0.0025. That is, P(s, ψk) or F (k) has an unbounded plateau for some value of k and the

valuation of P(s, ψk) at the plateau is < 1− ε0.

The U2B P method as implemented in Algorithm 3, on the other hand, terminates and

successfully estimates P(s0, ϕ1 U ϕ2). In the example, we have considered m = 20 (number

of ti-states in the model) and used simpoly = 1. Algorithm 3 identifies two plateaus–one

where the simulation paths end up in the states t0, . . . , tm (local plateau) and the other where

the simulation paths end up in the DS (global plateau). Figure 6.3 shows these plateaus in

terms of the changes in the valuation of the trueCount (number of paths with decided result),

satCount (number of paths that satisfy ϕ1 U ϕ2).

The execution starts with k = 0 and |workingSet| = N1 = 19, 171 (N1 = 19, 171 for

ε0 = 0.0025 and δ = 0.01). The value of trueCount remains at 11, 492 until the value of k

becomes 20, i.e., ∀k ∈ [1, 20] : F̂N1(k) = P̂(s, ψk) = 0.59942. This is because the length of paths

considered is ≤ 20 and as such the transitions tm to s4 and tm to s1 are yet to be explored.

However, the length (20) of this plateau in F̂N1(·) is not considered to be sufficient as per the

heuristic because ∀lastk ∈ [1, 19] : lastk + Γ ≥ 23 (see the computation of Γ described in

Section 6.2). That is, if F̂N1(·) remained unaltered for paths of length 23, then U2B P would

infer that a reasonably large size plateau have been detected and, therefore, would terminate.

In the current example, that does not happen as F̂N1(20) < F̂N1(21)2.

The value of trueCount remains at 16, 566 for k ≥ 21, i.e., the last time trueCount

value changes is when k = 21. In this case, when lastk = 21, Γ = 62. In other words,

if the trueCount value does not change for k between 21 and 21 + 62 = 83, the U2B P

terminates. Observe that changes in satCount follow a similar pattern as trueCount; a
1Recall that ψk denotes the property stating that ϕ1 U ϕ2 is decided in k steps. The limk→∞ P(s, ψk) ≥ 1−ε0

(see Equation 6.1) is required for the termination of Algorithm 2.
2If m is increased to > 23 and simpoly is set to 1, then the heuristic based method U2B P would terminate,

incorrectly infer a plateau, and estimate P(s0, ϕ1 U ϕ2) incorrectly. That is why U2B P produces a warning
message on termination and recommends that the user re-run U2B P using different values of simpoly.
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plateau in the valuation of trueCount (i.e., F̂N1(k)) implies a plateau in the valuation of

satCount (i.e., P̂(s0, ϕ1 U≤k ϕ2)). As such, on termination U2B P returns P̂(s0, ϕ1 U≤lastk ϕ2) =

satCount/N1 = 0.66665 as the estimate for P(s0, ϕ1 U ϕ2); recall that P(s, ϕ1 U ϕ2) = 0.66.
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CHAPTER 7 Application to Continuous Time Markov Chain Models

So far, we have shown the application of U2B in the context of probabilistic model checking

of unbounded until properties against DTMC models. In this chapter, we discuss its applicability

in verifying similar properties for CTMC models. Unlike a DTMC model where transition from one

state to another captures the probability of a discrete time step, a Continuous Time Markov

Chain (CTMC) model describes the probability with which a system evolves from one state

(configuration) to another within t time units. Formally, a CTMC is defined as:

Definition 2. A Continuous Time Markov Chain CTMC = (S, sI , R, L), where S is a finite

set of states, sI ∈ S is the initial or start state, R : S × S → R≥0 is the rate matrix, and

L : S → P(AP ) is the labeling function which labels each state with a set of atomic propositions

⊆ AP that holds in that state.

The rate matrix R in the above definition denotes the rate at which the system evolves from

one state to another, while for any s ∈ S, E(s) = Σs′∈SR(s, s′) denotes the rate at which the

system moves out of the state s. This is used as the parameter to the exponential distribution

capturing the probability 1 − e−E(s).t of taking an outgoing transition from s within t time

units. If R(s, s′) > 0 for multiple s′, then there exists a race between the moves from s to its

multiple next states. The probability T (s, s′) with which a state s in CTMC moves to a state

s′ in single step is equal to the probability that the delay of moving from s to s′ is less than

those for any other moves from s; T (s, s′) = R(s, s′)/E(s). Based on this observation, a CTMC

contains an embedded DTMC which captures the probability of each transition independent of

the time at which it occurs.

Definition 3. Baier et al. (2003) Given a CTMC = (S, sI , R, L), the corresponding embedded
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DTMC, emb(DTMC) = (S, sI , T, L), where T : S × S → [0, 1] such that

T (s, s′) =


R(s, s′)/E(s) if E(s) > 0

1 if E(s) = 0 and s′ = s

0 if E(s) = 0 and s′ 6= s

Paths and Probability Measures. A path σ in CTMC is a finite or infinite sequence of tuples

(s0t0, s1t1, s2t2, . . .) where ti denotes the amount of time the system remains in state si. As

in DTMC, the set of all infinite paths starting from state s is denoted by PathCTMC(s). Let σ[i]

denote the i-th state in the path, σi denote the suffix of σ starting from σ[i] and σ@t denote

the state at time t. Then, σ@t = σ[i] where i = MIN(k | t ≤
∑k

j=0 tj). We will use σemb(DTMC) to

denote (s0, s1, s2, . . .) which represents a path corresponding to σ in the emb(DTMC). Observe

that σ[i] = σemb(DTMC)[i] for i ≥ 0.

C(s0I0, s1I1, . . . , sn−1In−1, sn) denotes the cylinder set consisting of all paths of the form

σ = (s0t0, s1t1, . . .) ∈ PathCTMC(s0) such that σ[i] = si and ti ∈ Ii for i < n and I ∈ R≥0.

Proceeding further, PrCTMC(C(s0I0, s1I1, . . . , sn)) is recursively defined as follows.

PrCTMC(C(s0I0, s1I1, . . . , sn))



1 if n = 0

PrCTMC(C(s0I0, s1I1, . . . , sn−1).T (sn−1, sn).∫
In−1

E(sn−1).e−E(sn−1)tdt

otherwise

(7.1)

Observe that T (sn−1, sn) in the above equation corresponds to probability of moving from

sn−1 to sn in the emb(DTMC) (Definition 3). The last term in the above equation captures the

probability of exiting sn−1 in the interval In−1.

CTMC properties. Properties of interest for CTMC include transient and steady state prop-

erties which are expressed in Continuous Stochastic Logic (CSL), developed by Aziz et al.

(1996). Here, we focus on verification of a specific type of CSL property: the time un-

bounded until property of the form Ponr(ϕ1 U[0,∞) ϕ2) which is satisfied by s ∈ S such that
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PCTMC(s, ϕ1 U[0,∞) ϕ2) on r, where

PCTMC(s, ϕ1 U[0,∞) ϕ2) = PrCTMC({σ ∈ PathCTMC(s) : σ |= ϕ1 U[0,∞) ϕ2}), and

σ |= ϕ1 U[0,∞) ϕ2 ⇔ ∃a ∈ [0,∞) : σ@a |= ϕ2 ∧ ∀b < a : σ@b |= ϕ1)
(7.2)

We will use the fact that PCTMC(s, ϕ1 U[0,∞) ϕ2) is equal to P(s, ϕ1 U ϕ2) in the correspond-

ing emb(DTMC). For the completeness of discussion, we present here the proof of the above

statement.

PCTMC(s, ϕ1 U[0,∞) ϕ2) = PrCTMC({σ ∈ PathCTMC(s) : σ |= ϕ1 U[0,∞) ϕ2})

=
∑
σ∈Υ

PrCTMC(σ)

where Υ = {σ ∈ PathCTMC(s) : σ |= ϕ1 U[0,∞) ϕ2}

In the above, consider any path σ = s0t0, s1t1, . . .. From Equation 7.2, ∃a ∈ [0,∞) : σ@a |= ϕ2

and ∀b < a : σ@b |= ϕ1. Let σ@a = σ[k] = sk. Therefore,

PrCTMC(σk) = 1 as σ@a = σ[k] ∧ σ@a |= ϕ2 (7.3)

and ∀i : 0 ≤ i < k

PrCTMC(σi) =
∫ ∞

0
T (si, si+1).E(si).e−E(si).ti .P rCTMC(σi+1) dti (7.4)

From the above,

PrCTMC(σ0) =
∫ ∞

0
T (s0, s1).E(s0).e−E(s0).t0 .P rCTMC(σ1) dt0 = T (s0, s1).P rCTMC(σ1)

and

PrCTMC(σ1) =
∫ ∞

0
T (s1, s2).E(s1).e−E(s1).t1 .P rCTMC(σ2) dt1 = T (s1, s2).P rCTMC(σ2)

Proceeding further,

PrCTMC(σ) = PrCTMC(σ0) = T (s0, s1).T (s1, s2). . . . .T (sk−1, sk) =
k−1∏
i=0

T (si, si+1)
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Note that for any σ in CTMC there is a corresponding path σemb(DTMC) in the emb(DTMC) such

that σemb(DTMC)[i] = σ[i] for all i ≥ 0, and σ |= ϕ1 U[0,∞) ϕ2 ⇒ σemb(DTMC) |= ϕ1 U ϕ2 in the

emb(DTMC). Hence,

PrCTMC(σ) =
k−1∏
i=0

T (si, si+1) = Pr(σemb(DTMC)) (see Equation 2.1 in Section 2.1) (7.5)

Furthermore,

σ ∈ PathCTMC(s)⇒ σemb(DTMC) ∈ Pathemb(DTMC)(s) and

π ∈ Pathemb(DTMC)(s)⇒ ∃σ ∈ Path(s) : σemb(DTMC) = π

(7.6)

where Pathemb(DTMC)(s) denotes the set of paths starting from s in the emb(DTMC). Recall that,

Υ = {σ ∈ PathCTMC(s) : σ |= ϕ1 U[0,∞) ϕ2}. Let, Ξ = {σemb(DTMC) : σ ∈ Υ}. From the above,

it follows that Ξ = {π : π ∈ Pathemb(DTMC)(s) ∧ π |= ϕ1 U ϕ2} Therefore, from Equations 7.5

and 7.6

PCTMC(s, ϕ1 U[0,∞) ϕ2) =
∑
σ∈Υ

PrCTMC(σ) =
∑
π∈Ξ

Pr(π)

= P(s, ϕ1 U ϕ2) in the emb(DTMC) (see Section 2.1)

Hence, a CSL property of the form Ponr(ϕ1 U[0,∞) ϕ2) can be verified at any state s in a CTMC by

verifying satisfiability of Ponr(ϕ1 U ϕ2) in the corresponding embedded DTMC, emb(DTMC), at the

same state s. That is, our U2B algorithm is applicable in the verification of Ponr(ϕ1 U[0,∞) ϕ2)

for CTMC models.
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CHAPTER 8 Overview of PRISM-U2B Tool

We have realized the U2B and U2B P methods in a tool called PRISM-U2B, which is developed

leveraging the existing implementation of the PRISM model checker, as described by Hinton

et al. (2006) (available under GNU GPL). The work described here is implemented based

on PRISM version 3.3.1. Recently, pre-release versions of PRISM 4 have become available.

Implementation in PRISM 4 is discussed in 10.2. Figure 8.1 presents an overview of the various

modules used in PRISM-U2B. Observe that PRISM-U2B re-uses PRISM’s user interface, parsers,

and simulation engine. Specifically, PRISM-U2B uses PRISM’s input specification language and

presents a user interface similar to PRISM. This significantly minimizes the cognitive burden to

learn and understand the usage of PRISM-U2B. While simple changes to the PRISM user interface

were sufficient to allow for the additional error bounds and confidence parameters used in the

two phases of PRISM-U2B, the internal changes to the PRISM simulator are significant. In the

following, we discuss the distinguishing aspects of PRISM-U2B with respect to realization of

sample path generation.

8.1 Simulator overview

The core of PRISM’s statistical method is the simulation generator engine. It takes as input

(a) the model (e.g., DTMC) given in terms of rules and probabilities for transitions as translated

from PRISM’s model specification language, and (b) the property (e.g., in PCTL) translated

from PRISM’s property specification language. Notably, PRISM does not generate a concrete

representation of the model in memory; rather, it reads the model specification as rules that

can later be translated into transition probabilities. The simulator then calculates the number

of paths (N) required to compute the probability estimate given the user-specified error bound
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Figure 8.1 Architectural overview and module dependencies in PRISM-U2B.

and confidence parameter. Finally, it iterates N times, in each iteration randomly generating

one path up to a pre-specified maximum length k (by default, 10, 000) and returns as the

probability estimate the proportion among these N paths that satisfy the given property. In

the event that the simulator obtains a path in which the given property is not decided (i.e.,

satisfiability and un-satisfiability cannot be inferred), PRISM fails and requests that the user

specify a larger value for k.

Note that the methods described here require selecting the next state randomly based

on the rules describing the model. This is generally accomplished by generating a uniform

random variable and selecting the next state based on the probability distribution from the

model. PRISM version 3 uses the rand and srand functions from the C standard library to

generate these values. Younes (2005a) gives more commentary on the application of various

random number generators to probabilistic model checking, and recommends the Mersenne

twister, developed by Matsumoto and Nishimura (1998). PRISM version 4 uses the Mersenne

twister.

The PRISM simulator currently does not support models with multiple initial states; PRISM-U2B

inherits this limitation.

8.2 Implementation of PRISM-U2B

As described in Chapter 4, U2B performs model checking in two phases. The changes

required to implement U2B are described below. When calls to the simulator are made, the

U2B implementation checks for unbounded until properties. If no such properties are found,
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Algorithm 4 PRISM’s sample path generation
1: procedure (M, s0, ψ,maxLength)

. M : Model transition rules
. s0: Initial state
. ψ := (ϕ1 U ϕ2)

. maxLength := Prespecified maximum path length
2: currentState := s0;
3: length := 0;
4: while currentState 2 ψ∧ length < maxLength do
5: for rule ∈M do
6: if rule matches currentState then
7: currentState := next(rule) ; . random selection based on rule
8: length++;
9: break;

10: end if
11: end for
12: end while
13: if currentState � ψ then return true;
14: elsereturn false;
15: end if
16: end procedure

the standard PRISM simulator is called. The U2B method can also be bypassed entirely (even

for unbounded properties) through a command line switch.

8.2.1 Phase I

PRISM’s path generation method is described by algorithm 4. This method assumes that

some rule from the model will match every state. PRISM ensures this condition by adding

self-loops to deadlocked states.

Two primary limitations in this procedure make it unsuitable for its direct use in the Phase

I of the U2B method in PRISM-U2B. First, the procedure requires the maxLength parameter,

which effectively defines an upper bound on the path length even for unbounded until path

properties. Phase I of the U2B method, on the other hand, requires truly unbounded paths

in order to calculate an appropriate k0. Second, the PRISM simulator operates by creating

single paths and extending them until the property under consideration is decided, or until

the maximum path length is reached. As U2B does not put any restriction on the path length,

the above is not a good strategy for random generation of paths in the Phase I. For instance,

for the property ϕ1 U ϕ2, if the path being generated is a part of an unconditional loop in the
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model and satisfies the property ϕ1∧¬ϕ2, then the above path generation method will lead to

generation of an infinite length path and therefore never terminate. Algorithms proposed in

Sections 5 and 6 provide a better strategy for path generation in Phase I of U2B (and U2B P).

This requires that the simulator in PRISM-U2B randomly generate and keep track of multiple

paths using the last state in the corresponding path (where the number of states corresponds

to the window size in Algorithms 2 and 3 at a time.

Much of the infrastructure required to implement Algorithms 2 and 3 is already present in

PRISM. Rather than maintaining a single current state, PRISM-U2B maintains a set of current

states and switches between them in order to extend the paths evenly. The maxLength

parameter and the length checking condition are simply removed for Phase I.

8.2.2 Phase II

In Phase II, only k0-bounded until properties are considered, where k0 is obtained from

Phase I. Therefore, for DTMC models, the PRISM simulator is directly used in Phase II to

estimate the k0 bounded until property using N2 (as prescribed by Phase II of U2B) samples

of paths with length k0.

8.3 Application to CTMC models

As previously described, the U2B method can be applied to unbounded CSL properties on

CTMC models through their embedded DTMCs. Bounded properties in CSL are bounded in

time rather than number of steps. One step may represent a relatively small or large amount

of time, and steps may vary in the amount of time that they represent. Therefore, there is no

direct translation from the step bound calculated by the first phase of the U2B method to a

time bound in a CSL property.

When verifying CSL properties on CTMCs, the first phase of PRISM-U2B is essentially

identical. Instead of being generated from a probability distribution, paths are generated

from the rates on outgoing transitions. Once a step bound k0 has been established, the CSL

properties are left unmodified. Instead, the internal maximum path length for the default



54

PRISM simulator is set to k0. By default, when a path reaches that length, the PRISM simulator

prints an error message and does not return a result. For PRISM-U2B, this behavior is modified

so that a property is assumed to be false when a path reaches the maximum length.

8.4 Plateau detection

As described in 6.2, there are models and properties for which Algorithm 2 will not termi-

nate. If desired, the user can invoke Algorithm 3 through a command line switch. Algorithm

3 is not deployed by default because it is not known whether the algorithm has found a true

plateau without preanalysis of the model.

8.5 PRISM-U2B Usage Description

The interfaces (command line and graphical) of PRISM-U2B follow closely those of PRISM.

We proceed by describing various command line options that are added to the existing ones.

While in PRISM the statistical model checking can be invoked by

prism -sim <model-file> <property-file>

the U2B method based statistical model checking can be invoked in PRISM-U2B with an addi-

tional qualification of the type of statistical method

prism -sim 2 <model-file> <property-file>.

PRISM’s statistical method can be invoked by setting sim flag to 1. In the event that all input

properties are (step or time) bounded until properties, PRISM-U2B directly invokes PRISM’s

existing sampling technique. PRISM’s statistical method allows users to input the error bound,

the confidence parameter, and the maximum path lengths. If no such value is specified, PRISM

uses the default values of error bound (0.01), confidence parameter (10−10) and maximum path

length (10, 000). In a similar fashion, PRISM-U2B uses default values for the error bounds and

the confidence parameters in the two phases of U2B method: ε0 = 0.0025, ε1 = 0.0125, ε2 = 0.01

and δ1 = δ2 = 0.005. PRISM-U2B also allows for user-specified error bounds and confidence

parameters for the U2B method. The user can provide specific values for the individual εs
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Figure 8.2 PRISM-U2B GUI
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(and/or δs) or can provide a single global ε (and/or a global δ). In the latter case, the global

error bound is partitioned using the default factors: ε0 = ε
10 , ε1 = ε

2 , ε2 = 2 ε5 , and the global

confidence parameter is partitioned into two equal halves for δ1 and δ2. For instance,

prism -sim 2 -simepsilon 0.002 0.001 0.01 -simdelta 0.0001

<model-file> <property-file>

This provides as input ε0 = 0.002, ε1 = 0.001, ε2 = 0.01, and a global δ = 0.0001. In the above,

PRISM-U2B uses Algorithm 2 for computing k0 in Phase I. If the user chooses to use method

U2B P, he or she can invoke

prism -sim 2 -simpoly 3 <model-file> <property-file>

The value of the switch simpoly controls the length of plateau (as discussed in Section 6.2)

and ensures the termination of statistical sampling based method. Inputs can be supplied in a

similar fashion when PRISM-U2B is invoked via the graphical user interface (Figure 8.2). The

tool, PRISM-U2B, along with its source code, sample models, and documentation, is available

from Jennings et al. (2010).
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CHAPTER 9 Experimental Evaluation

We evaluate the proposed U2B method and its realization in PRISM-U2B using a number

of case studies available in the PRISM example suite. The objective of this empirical study

is to show the effectiveness of the U2B method with respect to (a) precision of estimate, (b)

computation time, and (c) memory usage. We proceed by describing in brief the various case

studies in Section 9.1 followed by a detailed analysis of empirical results in Sections 9.2 and

9.3.

9.1 Case Studies

As noted before, PRISM-U2B re-uses PRISM’s input specification language and language

parsers, and therefore, our experiments directly use several case studies from the PRISM example

suite. PRISM (and by extension PRISM-U2B) allows for a specific type of PCTL and CSL property

syntax, which essentially queries the probability with which certain path property is satisfied

by the system under consideration. The syntax for such a query is P=?[path-property]. The

result of such a query is the probability with which the paths from the start state of the system

satisfies path-property. In the following, we will discuss case studies and consider several

property queries. The results obtained by applying PRISM’s numerical method (whenever

possible) will be used to evaluate and compare the precision of results obtained by applying

PRISM’s statistical method and the U2B method of PRISM-U2B.

9.1.1 Randomized Dining Philosopher

This is a DTMC model represented a probabilistic variation of the standard dining philosopher

protocol. The model is analyzed against a PCTL until property query to obtain the probability
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that the first philosopher is able to eat before any other philosophers. That is,

P=?[ "allhungry" U ("othershungry" & "eat") ]

where allhungry denotes that none of the philosophers have eaten, othershungry denotes

that all but the first philosopher have not eaten and eat denotes that the first philosopher is

able to eat. Experiments are conducted by varying the number of philosophers in the model.

Available at: Jennings et al. (2010).

9.1.2 Simple Queue

This is a DTMC model of a queue in which requests are either received or serviced with a

particular probability distribution. If too many requests are received before they can be ser-

viced, then there is an overflow of requests. The property considered computes the probability

with which the queue eventually reaches such a state.

P=?[ true U "overflow"]

Experiments are conducted by varying the size of the buffer (queue states) in the model.

Available at: Jennings et al. (2010).

9.1.3 IPv4 Zeroconf Protocol

This a simplified DTMC model created by Sen et al. (2005) representing the IPv4 Zeroconf

Protocol. Similar to the overflow state in the queue model, it has an error state; it is not

desirable for the system executing the protocol to be in such a state. The property query used

in our experiments is

P=?[ true U "error"]

As in the queue, experiments are conducted by varying the number of states (denoting the

number of intermediate nodes in the network) in the Zeroconf protocol.
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9.1.4 Crowds Protocol

This is a DTMC model of a protocol from Reiter and Rabin (1998) for anonymous Web

browsing. The protocol is intended to minimize the chance that eavesdropping adversaries will

be effective in identifying the individual users by spying on network traffic. Experiments are

done with models containing 50, 100 and 200 hosts (size of the crowd) and four adversaries.

The property query involves estimating the probability that the identify of an user is divulged,

which happens when at least two adversaries observe (agree on) the user’s identity.

P=?[true U (observe0>1)]

In the above, observe[i] denotes the number of adversaries that have observed the user i.

Available at: http://www.prismmodelchecker.org/casestudies/crowds.php.

9.1.5 Broadcast Protocol

This is a DTMC model of a simple broadcast protocol based on gossiping, where each node in

the network forwards the message it receives to its neighbors with a pre-specified probability.

Two variations of the protocol are considered. In the synchronous, no-collision variation, the

nodes send and receive messages simultaneously over independent channels (thereby ensuring

freedom from collision). The synchronous, lossy variation, on the other hand, assumes that

the neighboring nodes share a channel, which may result in collisions and message loss. The

property query of interest involves computing the probability with which certain nodes (e.g.,

nodes 1 and 2) receive the broadcast message.

P=?[ true U (active1=0) ] and P=?[ true U (active2=0) ]

In the above active[i] is equal to 0 when a node goes to sleep after receiving (and possibly

forwarding) message.

Available at: http://www.prismmodelchecker.org/casestudies/prob broadcast.php.
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9.1.6 EGL Contract Signing Protocol

EGL Contract signing protocol describes a method by which two parties can reach an

agreement by exchanging their respective secrets. The protocol is said to be fair if and only

if the exchange of messages following the protocol guarantees that either both participants

obtain the other’s secret or none do. A DTMC model of the EGL contract signing protocol is

considered. A property query is considered to demonstrate that the protocol is flawed with

respect to fairness. That is, the property captures the fact that one participant gets access to

the other party’s secret without communicating its own secrets.

P=?[ true U (!"kA" & "kB") ]

In the above, kA and kB denotes the states where participants A and B have knowledge of the

other’s secret.

Available at: http://www.prismmodelchecker.org/casestudies/contract egl.php

9.1.7 Simple Dice Protocol

This is a DTMC model where the possible outcomes of rolling a fair die are captured using

multiple flips of a fair coin. The result of the property query against which the model is

analyzed is the probability of obtaining a specific roll of the die. For instance,

P=?[true U ("s=7" & "d=6")]

is a PCTL property querying the probability of obtaining a roll of 6 on a single die.

Available at: http://www.prismmodelchecker.org/casestudies/dice.php

9.1.8 Embedded Control System

This is a CTMC model of an embedded data collection system with built-in redundancy. The

controller ensures that the system shuts down if any module in the system is down (due to

possible malfunction) for a certain number of cycles (e.g., 20, 000). The property queries the

probability that the cause of shut down is attributed to a sensor failure. It is represented in

PCTL query as follows.
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P=?[ !"down" U "fail sensors" ]

Available at: http://www.prismmodelchecker.org/casestudies/embedded.php

9.1.9 Cyclic Server Polling System

This is a CTMC model of a polling system consisting of multiple workstations that are being

served by a single server. The CSL property that is used for our evaluation is

P=?[ !(s=2 & a=1) U (s=1 & a=1) ]

which queries the probability with which the first workstation in the system is served before

the second one. Experiments are conducted by varying the number of workstations in the

system.

Available at: http://www.prismmodelchecker.org/casestudies/polling.php

9.2 Precision, Computation Time and Memory Usage

The experimental evaluation is based on the illustrative example discussed in Chapter 1

and the case studies described in Section 9.1. All experiments are conducted on Red Hat

Enterprise Linux 5.1 running on Intel Core 2 Duo 3GHz CPU and 2GB memory. The results

for PRISM-U2B are obtained by using the Algorithm 2 as all the examples considered from the

PRISM example suite satisfy the condition lim
k→∞

P(s, ψk) ≥ 1−ε0 as required for the termination

of Phase I in the U2B method.

9.2.1 Precision & Computation Time

We show that the estimate obtained using U2B method is as precise as the statistical method

provided by the PRISM tool given the error bounds and confidence parameters. Furthermore,

the U2B method is as efficient as (and typically about 1.5 times faster than) PRISM’s statistical

method.

Table 9.1 provides a summary of our results. For each of the methods, the table presents

the probability and its estimates, and the computation time. For the statistical methods, the
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bounds on the sample path lengths are also reported: k̄ denotes the maximum path length

considered by PRISM’s statistical method and k0 denotes the maximum path length considered

by PRISM-U2B (the bound obtained automatically from Phase I of U2B).

For the illustrative example, PRISM fails to compute any result, while PRISM-U2B success-

fully terminates with a good estimate. For the randomized dining philosopher example, PRISM’s

numerical method fails to compute any result when the number of philosophers is ≥ 12 due

to prohibitively large state-space of the DTMC model (details in Section 9.2.2), whereas PRISM’s

statistical method and U2B successfully compute the estimate. For the simplified queue model,

PRISM’s numerical method and statistical method both require updates to the default value

for maximum number of Jacobi iterations or the maximum simulation path length. The U2B

method does not require any such user guidance.

Observe that for the rest of the case studies, PRISM-U2B typically outperforms PRISM’s

statistical method (timing results shown in bold). While both U2B in Phase II and PRISM’s

statistical method use the same sampling technique, the former uses a much smaller sample

path length bound (k0 obtained via Phase I ) compared to PRISM’s statistical method (which

uses k̄; see Table 9.1). Recall that the default value for sample path length in PRISM’s statistical

method is 10, 000 and may require the user to specify a greater value for some examples. The

U2B method uses Phase I to compute a model dependent path length bound k0. The gain in

computation time achieved by using k0 in Phase II of U2B instead of the sample path lengths

used in PRISM’s statistical method surpasses the loss in computation time spent computing k0

in Phase I.

9.2.2 Memory Usage

Another important consideration is the memory consumed by each of the methods. Fig-

ure 9.1 is a graph of the memory usage (in terms of KB) for the case studies for each of the

methods. As all the methods are realized in the PRISM model checking engine, each incurs a

minimal overhead of ∼ 30MB. The memory usage is comparable for all the methods for models

that have small state-space. As expected, for models in which the state-space is large (e.g.,
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Figure 9.1 Memory usage (in KB) for Case Studies.

randomized dining philosopher and embedded control system), PRISM’s numerical method uses

much more memory than the statistical methods (in PRISM and PRISM-U2B). Figure 9.2 shows

the increase in the memory usage by PRISM’s numerical method with the increase in the number

of philosophers in the randomized dining philosopher case study. PRISM’s numerical method

fails due to the large memory requirement when the number of philosophers is greater than

11. Observe that the statistical methods do not suffer from such an increase in the memory

usage with the increase the state-space of the model.

It is worth mentioning that U2B method in general is expected to use more memory than

that used by the statistical method of PRISM as U2B method stores N1ε0 states for the Phase

I computation (for ε0 = 0.0025 and δ = 0.001, N1ε0 = 48).

9.2.3 Summary of results

The results empirically show that the U2B method as implemented in PRISM-U2B is (a) as

time-efficient as PRISM’s statistical method (and in many cases outperforms PRISM’s statistical

method), (b) as precise as PRISM’s statistical method, and (c) successfully computes results

automatically for cases where PRISM fails or requires user guidance (to increase the maximum

Jacobi iterations for the numerical method or the maximum sample path length for the nu-

merical method). Finally, as PRISM-U2B utilizes the model specification language, graphical
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Figure 9.2 Memory usage for (in KB) Randomized Dining Philosopher.

user interface, and command-line interface of PRISM, it enjoys (as does PRISM) a high rating

among all the probabilistic model checkers in terms of usability, as determined by Jansen et al.

(2007). In short, PRISM-U2B broadens the scope of application of approximate probabilistic

model checking based on statistical methods; it is not only more efficient and effective than

one of the most widely used statistical method as implemented in PRISM but also has been

proven (theoretically and empirically) to be applicable in case studies where PRISM fails.

9.3 Comparison with the MRMC tool

Katoen and Zapreev have performed extensive comparison of the statistical model checking

tools MRMC (based on Zapreev (2008)), VESTA (based on Sen et al. (2005)), and Ymer (based

on Younes and Simmons (2002)); and concluded that MRMC is the fastest among the three.

The version of Ymer used in this study did not allow verification of (time) unbounded until

properties, while VESTA and MRMC do support verification of these properties. Recall from

Chapter 3 that the statistical method in VESTA suffers from two main drawbacks which restrict

its correct application in models with loops (see Younes and Simmons (2006); He et al. (2010)

for details). Furthermore, we were unable to obtain the tool from the authors (personal

communication with Koushik Sen dated: 11/04/2010). While the tool MRMC does not have any
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such restriction, it requires prior analysis of the model transition structure to correctly verify

unbounded until properties even when using the sampling based method. In the following, we

compare MRMC and PRISM-U2B, and discuss their distinguishing aspects.

Markov Reward Model Checker supports verification of probabilistic temporal logic prop-

erties (PCTL, CSL, etc.) against different types of probabilistic models (DTMC, CTMC, etc.) using

both numerical and statistical sampling based methods. MRMC’s statistical method utilizes con-

fidence interval based estimation to control the error in inferring whether the null hypothesis

is correctly rejected or not. As this method utilizes both confidence interval based statis-

tical estimation (Section 3.1.3) and hypothesis testing (Section 3.1.1), we present below an

overview of the technique to clearly explain the user-specified inputs that are necessary for

correct application of MRMC’s statistical method.

Recall that PRISM and PRISM-U2B are meant to compute the probability of satisfying a

given path property within pre-specified error margin and with a certain confidence bound. In

contrast, probabilistic queries in MRMC are of the form Ponr(ψ), where on∈ {<,>,≤,≥} and ψ is

a path property. Therefore, the result or output of MRMC is boolean. More precisely, MRMC uses

the statistical estimate p̂ using the confidence interval and infers that the relation p̂ on r holds

when the confidence interval does not include r. For instance, if on is equal to ≥, then the

method can provide a definitive answer (true) when lower bound of the confidence interval is

greater than r, and a definitive answer (false) when the upper bound of the confidence interval

is less than r. However, due to the probabilistic nature of the confidence interval, it is necessary

to assume that r is at least ξ distance from the true probability (where the indifference width

2ξ; see Section 3.1.1) and that the confidence interval is tighter than ξ. In short, MRMC draws

from techniques used in hypothesis testing (as applied in probabilistic model checking) as well

as confidence interval based statistical estimation. MRMC therefore requires the following user

inputs: confidence level δ for estimation using the confidence interval and 2ξ′, the confidence

interval (such that ξ′ < ξ). That is, ξ′ corresponds to the ε used in PRISM-U2B.

Zapreev (2008) proposes a technique (realized in the tool MRMC) that deals with unbounded

until properties by pre-analyzing the model under consideration. More specifically, for the
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property ϕ1 U ϕ2, the sampling based method in MRMC first identifies (and discards) the states

that never lead to any state satisfying ϕ1 U ϕ2. Such reachability analysis requires complete

knowledge of the model transition structure, which may not be possible when the model state-

space is prohibitively large or the model of the system is not available (only samples simulations

can be generated as needed).

Another important difference between MRMC and both PRISM and PRISM-U2B (which possibly

stems from MRMC’s requirement to pre-analyze the model) is that MRMC reads/loads the entire

transition matrix of the probabilistic model for its sampling based method. Therefore, the

memory usage of sampling based method in MRMC is similar to that of numerical methods (e.g.,

in PRISM’s numerical method modulo the differences that stem from a different implementation

framework). This significantly reduces the applicability of MRMC’s sampling based method for

large systems. In fact, for several examples in Table 9.1, we cannot obtain results using MRMC

as it leads to an out-of-memory error.

MRMC does not have a modeling language of it’s own. The input files are simply the full

transition matrix. PRISM provides the option of exporting MRMC-formatted files for use in MRMC;

the authors suggest using this method for generating models. For several of the models in

Table 9.1, PRISM is unable to export the files because of the large size of the models.

Table 9.2 summarizes the results of our experiments with MRMC. We have used an identical

δ = 0.01 (confidence parameter) and ε = ξ′ = 0.025 for the experiments. As MRMC tests whether

the estimate is related to a given value r using on relation and requires that the true p be ξ > ξ′

distance away from r, we have set r to be equal to p + ξ where ξ = 0.026 > ξ′. This allows

MRMC to provide definitive answers (true or false) in all the cases. If ξ′ is chosen to be greater

than ξ, MRMC fails to compute a definitive answer. Note that no such assumption is required

for the validity of our method as implemented in PRISM-U2B.

In the table, the column p corresponds to the “actual” probability of satisfying the property

being considered. It is either computed manually, computed by PRISM’s numerical method, or

estimated by PRISM’s statistical method. The query input to MRMC tests whether the estimated

probability on p ± 0.026. The boundaries of the confidence interval estimated by MRMC are
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presented in the columns Lower bound and Upper bound. MRMC produces results faster than

PRISM-U2B in all the cases where it is successful in computing the result. This is because (as

noted above) MRMC analyzes the model before performing sampling based confidence interval

estimation. That is, MRMC does not deploy a pure sampling based statistical method. This is

advantageous for smaller models whose reachability can be performed. In fact, in some cases,

sampling may not be even necessary. For instance, for the contract signing protocol, MRMC

produces a definitive answer (infers that the property is satisfied) without using any samples.

However, if such pre-analysis of the model is not possible, then MRMC fails. This happens for

several examples when the transition matrix is too large to be exported from PRISM to MRMC

(e.g. the example in Figure 1.1, Crowds protocol of size ≥ 100, Embedded Control System,

Cyclic Server Polling System of size 20) or when the reachability analysis fails in MRMC (Dining

philosopher protocol with ≥ 10 philosophers, Crowds protocol of size 50).

In summary, the following aspects distinguish PRISM-U2B from MRMC:

1. MRMC relies on reachability analysis in addition to samples to compute the results. PRISM-U2B

deploys a pure sampling based method. For the case studies for which MRMC can perform

reachability analysis, MRMC computes verification result faster than PRISM-U2B.

2. MRMC fails for models where the transition matrix is too large for loading or for performing

reachability analysis. PRISM-U2B can be used for comparatively larger models.

3. MRMC requires that the user-input ξ′ (the parameter specifying the confidence interval

size) be smaller than the distance (half of indifference width) of r from the true p in the

query of the form Ponr(ψ) where on belongs to {<,≤, >,≥}. There is no such requirement

for PRISM-U2B. While MRMC may not be able to compute a definitive answer when the

confidence interval size is not less than the indifference width, the U2B algorithm in

PRISM-U2B may not always terminate (Chapter 6). None of the case studies, however,

led to the non-termination of the U2B algorithm in PRISM-U2B.
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CHAPTER 10 Conclusion

10.1 Conclusion

We have presented U2B, an approximate probabilistic model checking method based on sta-

tistical sampling. The method does not require any prior information regarding the structure

of the model being verified and therefore can be used in a setting where only sample simulations

of the model can be generated. The method can be applied for verifying untimed properties in

both DTMC and CTMC models. We have proved the correctness of the U2B method and have dis-

cussed the optimized realization of the U2B method. We have also explored a class of examples

where PRISM’s statistical method will not be able to estimate a result and the U2B method will

suffer from non-termination. We have explained the cause of such problems in terms of the

notion of a “plateau” in the D-Graph. We have developed U2B P, a heuristic-based plateau-

detection method, to deal with the non-termination problem. Finally, we have incorporated

the U2B and U2B P methods in the PRISM tool to develop PRISM-U2B, and conducted a detailed

experimental study using different probabilistic models. The experiments show the effective-

ness of the tool PRISM-U2B in terms of precision, computation time and broader applicability

(for large probabilistic models).

10.2 Future work

10.2.1 Implementation in PRISM version 4

PRISM version 4 introduces significant changes to the simulator architecture. The new

version implements a frontend/backend approach such that different probabilistic methods can

be “plugged in” in order to perform model checking. This allows any of the different model
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checking methods described in Chapter 3 to be implemented within PRISM. Currently the

methods described by Herault et al. (2004) and Younes and Simmons (2002) are implemented.

This new architecture does not directly ease the implementation of U2B, because all of the

approaches described in Chapter 3 are implemented by checking one simulation path at a time,

not multiple paths as required by U2B. Therefore, U2B will be implemented as a layer above the

new PRISM simulator. This format will also allow Phase II to utilize any of the implemented

methods, rather than only the approach implemented in PRISM version 3.

The basic U2B method has already been ported to PRISM 4. A more thorough investi-

gation would involve experimental comparison amongst PRISM 3, PRISM 4, PRISM-U2B as a

modification to PRISM 3, and PRISM-U2B as a modification to PRISM 4.

10.2.2 Termination of Phase I

The current heuristic for termination of Phase I is unsatisfactory in the sense that it

requires the user either to have knowledge of the model (and thus know that when a true

plateau will be reached); or guess when a true plateau has been reached. Although some

guidance about the length of a plateau is provided by the current implementation, in general

the user will not know with certainty when it is appropriate to deploy U2B P.

As part of future work, we plan to study the feasibility of identifying and pre-computing

only the necessary information (regarding the model transition structure) required to guarantee

the termination of Phase I of the U2B method. If this computation can be made less complex

than numerical model checking, it may be possible to remove the user-specified parameter from

U2B P.

10.2.3 Markov decision processes

We also plan to develop statistical sampling based methods to verify untimed, unbounded

path properties of Markov Decision Processes (MDP). An MDP is a probabilistic model which

includes both probabilistic and non-deterministic choices in its transition system. The verifica-

tion objective for an MDP is to compute the maximum or the minimum probability with which
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a state satisfies a given path property. Such computation requires identifying a strategy for

selecting next states at non-deterministic choice points, where each strategy results in a DTMC

embedded in the corresponding MDP.

It is known that for any MDP, there exist memoryless schedulers that correspond to the

minimum and maximum probabilities. A naive method would be to apply U2B for every possible

memoryless scheduler and then select the optimum. However, the number of memoryless

schedulers is O(|S|n), where n is the maximum number of non-deterministic choices at any

state in the model, and |S| is the number of states.

Work is underway on a method that attempts to sample some subset of the memoryless

schedulers and bound the probability of selecting a scheduler that is less than optimal. Both the

selection of the scheduler and the model checking of the underlying DTMC could be probabilistic,

thus avoiding the problem of state space explosion.
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