
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

3D Hand gesture recognition using a ZCam and an
SVM-SMO classifier
Lucas Bonansea
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bonansea, Lucas, "3D Hand gesture recognition using a ZCam and an SVM-SMO classifier" (2009). Graduate Theses and Dissertations.
10829.
https://lib.dr.iastate.edu/etd/10829

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10829?utm_source=lib.dr.iastate.edu%2Fetd%2F10829&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

3D Hand gesture recognition using a ZCam and an SVM-SMO classifier

by

Lucas Bonansea

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Computer Science; Human Computer Interaction

Program of Study Committee:
Vasant G. Honavar, Co-major Professor

Stephen Gilbert, Co-major Professor
Leslie L. Miller

Iowa State University

Ames, Iowa

2009

ii

Table of Contents

List of Tables..iii

List of Figures...iv

Abstract...vi

 1.Introduction..1

 1.1.Motivation..2

 1.2.Related Work ...2

 2.Methods..8

 2.1.Overview of the implemented solution..8

 2.2.Depth information acquisition and usage...9

 2.3.The feature set ...12

 2.4.The classifiers...17

 3.Classifiers performance results..25

 4.The Application: Implementing 3D gestures...42

 5.Conclusions and future work...49

 6.References..53

iii

List of Tables

Table 1. Accuracy of the TDV hand tracking tool provided by the ZCam SDK.....................17

Table 2. Training load for each classifier...26

Table 3. Results for the three classifiers when implemented as SVM-SMO with polynomial

kernel of degree 1...29

Table 4. Performance over the three classifiers of different classifiers algorithms

implementation..35

Table 5. Performance over the three classifiers of the SMO-SVM algorithm using different

kernels..39

Table 6. Training time and cross validation testing time for all classifiers considered in this

work...41

iv

List of Figures

Figure 1. Application's data flow diagram...9

Figure 2. ZCam 3D data acquisition..10

Figure 3. Illustration of the perspective problem where both Objects 1 and 2 are aligned. . . .10

Figure 4. Trigonometry used to solve the perspective problem...11

Figure 5. Image processing evolution..12

Figure 6. Hand characterization based on black and gray alternations.14

Figure 7. Feature extraction from normalized candidate region image.15

Figure 8. 20 levels of gray divided into regions. ..16

Figure 9. Selected poses and rotation positions...18

Figure 10. Support Vector decision boundary..19

Figure 11. ROC and AUC illustration..28

Figure 12. ROC curves for the hand classifier trained by the author.......................................29

Figure 13. ROC curves for the pose classifier trained by the author.......................................30

Figure 14. ROC curves for the pose classifier trained by the author.......................................30

Figure 15. ROC curves for the hand classifier trained by the independent user......................31

Figure 16. ROC curves for the pose classifier trained by the independent user......................31

Figure 17. ROC curves for the rotation classifier trained by the independent user.................32

Figure 18. ROC curves for the hand class in the hand classifier for the different classification

algorithms..36

Figure 19. ROC curves for the open hand class in the pose classifier for the different

v

classification algorithms..36

Figure 20. ROC curves for the up class in the rotation classifier for the different classification

algorithms..37

Figure 21. ROC curves for hand class in the hand classifier for different kernels in the SVM-

SMO algorithm..39

Figure 22. ROC curves for the open hand class in the pose classifier for different kernels in

the SVM-SMO algorithm..40

Figure 23. ROC curves for the open hand class in the pose classifier for different kernels in

the SVM-SMO algorithm..40

Figure 24. Kodavali S., Patel A., and Owusu E 3D modeling application.43

Figure 25. Schema of Sparsh-UI main functionalities...45

Figure 26. State machine for drag and rotate gestures of the ZCam driver for Sparsh. Other

gestures can be added by extending this state machine...47

vi

Abstract

The increasing number of new and complex computer-based applications has generated a

need for a more natural interface between human users and computer-based applications.

This problem can be solved by using hand gestures, one of the most natural means of

communication between human beings. The difficulty in deploying a computer vision-based

gesture application in a non-controlled environment can be solved by using new hardware

which can capture 3D information. However, researchers and others still need complete

solutions to perform reliable gesture recognition in such an environment.

This paper presents a complete solution for the one-hand 3D gesture recognition problem,

implements a solution, and proves its reliability. The solution is complete because it focuses

both on the 3D gesture recognition and on understanding the scene being presented (so the

user does not need to inform the system that he or she is about to initiate a new gesture). The

selected approach models the gestures as a sequence of hand poses. This reduces the problem

to one of recognizing the series of hand poses and building the gestures from this

information. Additionally, the need to perform the gesture recognition in real time resulted in

using a simple feature set that makes the required processing as streamlined as possible.

Finally, the hand gesture recognition system proposed here was successfully implemented

in two applications, one developed by a completely independent team and one developed as

part of this research. The latter effort resulted in a device driver that adds 3D gestures to an

open-source, platform-independent multi-touch framework called Sparsh-UI.

1

 1. Introduction

The rapid evolution of computer-based technology and the growing number of complex

applications have increased the need for more natural means of interaction between human

users and computer systems. Although keyboard and mouse have been successfully used as

main interfaces in many applications, more complex applications require more natural means

of interaction. Gestures are one of the most natural forms of human interaction, so they offer

a good solution for those applications.

Using gestures as an interface with complex applications would allow users to interact

with visually complex systems. Using a mouse and keyboard is difficult in these systems

because they are designed for working in a 2D space, whereas generally visually demanding

systems require users to interact in a 3D space. Anther interesting context in which gestures

seem to fit better than keyboard and mouse is a public setting or conference when the user is

required to play a more active role with respect to the environment.

There are two main groups of gesture interfaces with computer-based applications: those

based on touch surfaces or stylus-based tablets, and those based on computer vision

(cameras). Touch surface gestures are already part of people's everyday life—examples

include touch phones like Apple's iPhone, the Samsung SGH-F480 or the HTC P347, and

CNN's “Magic Wall” used during the 2008 U.S. presidential elections. Although great effort

has been invested in computer vision-based gestures, they have not yet reached the popularity

of touch-based gestures. Possibly this is because of the great difficulty that computer vision

systems have with understanding the scene presented by the camera. The availability of new

3D hardware appears to be an important step in mitigating this problem.

2

 1.1. Motivation

The goal of this work is to propose a complete solution for the one-hand 3D gesture

recognition problem using a 3D camera called ZCam [12] and Support Vector Machines [4].

The solution claims to be complete because it focuses on recognizing a gesture and

understanding the scene so users can start and stop gestures at any moment—other special

postures or interactions such as a keyboard or mouse are not necessary. Additionally, this

research has a secondary goal to consider the importance of being able to recognize gestures

in real time (which requires processing to be as simple as possible).

Thus, the specific research question is:

Is it possible to create a complete gesture recognition system using the ZCam which

recognizes previously-trained hand gestures in real time and does not require any other

interaction from the user?

The selected approach to address these goals is to model the 3D gestures as a sequence of

poses, reducing the problem to a hand pose recognition problem. However, hand pose

recognition by itself is not enough to achieve the goal of developing a complete system. To

understand the scenario at all times, hand recognition and tracking must also be considered.

Finally, the hand pose recognition problem was refined into pose and rotation recognition

where the pose of the hand is considered independent of the rotation angle.

 1.2. Related Work

Computer-based applications are constantly evolving into more complex systems that

require a more active interaction with the user. In this context, keyboard and mouse are no

longer ideal interfaces; there is an increasing need for more natural interfaces. Gestures are

one of the most natural means of communication between humans, so it is not surprising that

3

human computer interaction based on gestures has become an important theme of research in

recent years.

Research in computer vision-based gestures had a strong breakthrough in the early to mid-

1990s. It remains an active research area, and much work has been done over the last few

years. The more advanced hardware now available provides an opportunity for many new

advancements. To address the related work, it is better to divide the research into classes,

although these classes are not completely separate. One approach is to consider how gestures

are modeled for recognition. In this sense, there are two main groups of researchers: those

who consider the gesture as a sequence and focus their efforts on comparing such sequences,

and those who consider the gesture to be the sum or concatenation of several static poses and

focus their effort on recognizing each static pose.

For the group which considers the gestures dynamically in sequences, the general approach

is to consider different feature sets to train Hidden Markov Models (HMM) classifiers or

similar algorithms. This approach is interesting because it deals with a series of movements

in a way that is less susceptible to low image resolution or to losing some frames during the

execution of the gestures. However, this approach is more susceptible to the execution of the

gesture, so when new users who are not well trained don’t perform the gesture perfectly, this

type of classifiers has a hard time. Some relevant researchers using this approach are

Pentland, Sclaroff, Starner, and Wei. [35], [36], [7], [11], [2].

Starner and Pentland [35] propose extending the use of HMM from speech and

handwriting recognition to visual gesture recognition. By doing so, they were able to model

American Sign Language (ASL) gestures without modeling hands and fingers. Starner,

Weaver, and Pentland [36] extended their previous work to recognize ASL sentences,

4

tracking the user's unadorned hands using a desk-mounted camera and a wearable camera

attached to the user's cap.

Chen et al., [11] use hand tracking and movement detection to identify candidate regions

where a feature set based on spatial and temporal information is extracted and used to feed a

HMM classifier for gestures recognition. Alon et al., [2] recognize that using techniques like

skin color detection, movement analysis, and background subtraction can be very helpful for

gesture recognition, but they are not reliable with more complex backgrounds so they

propose to wrap the results of the skin color detection and movement analysis into time

sequences and then do their gesture recognition by comparing such sequences. To do this,

they propose an extension of the dynamic time wrapping algorithm called Dynamic Space-

Time Wrapping (DSTW) algorithm.

Researchers who consider the gestures as a combination of static poses focus their work on

different means of processing and recognizing hand poses in each frame. Then the gesture is

built by combining the previously obtained information. In this group, the preferred

classification mean is diverse, ranging from statistical analysis to image-based classification

like eigenspaces to machine learning classifiers like neural networks or Support Vector

Machines (SVM). One advantage of this approach is that it builds the gesture based on the

known poses. Once the classifiers are trained in a given set of poses, a considerable number

of gestures can be built. Actually, new gestures can be built without needing new training, as

long as no new hand pose is required. Some prominent authors in this group are Huang,

Strintzis, Stenger, Neumann, and Wu [39], [40], [3], [43], [5], [6], [20], [1], [23]. Moreover,

it is worth noting that Tseng, Sun, and Jiang [37], [42], [18] use SVM as their preferred

classification method.

5

Wu and Huang [39], [40] recognize the intrinsic difficulties of modeling the human hand

and its articulations. In [40], they propose an appearance-based learning approach to handle

large variations of linear points. To alleviate the learning process, they use a combination of

supervised and unsupervised learning paradigms and a large number of unlabeled training

samples. In [39], they propose a two-step iterative, model-based algorithm to capture

articulated human hand and motion.

Shan et al., [6] integrate two successful visual tracking approaches such as particle filtering

and mean shift to improve their hand tracking process. Patwardhan and Roy [20] propose an

eigenspace framework which models hand gestures based on both hand shape and motion

tracking. Al-Rajab et al., [1] and Gu and Su [23] use Zernike moments for gesture

recognition.

Chen and Tseng [37] use a combination of three SVM classifiers to recognize multiple-

angle hand postures in finger guessing games. Liu et al., [42] propose an algorithm based on

Hu moments and SVM to recognize hand postures and evaluate whether or not the hand can

meet the requirements of a driver’s license test. Finally, Ye et al., [18] combine the greater

classification power of SVM (when dealing with good generalization properties and limited

samples) with HMM (which are good for dealing with sequences) to recognize Chinese sign

language.

Another relevant method of classifying the current work done on Computer Vision

gestures is to study the input data used to analyze the gestures. Again, there are two main

groups: those that work with 2D streams and those that have available 3D information about

the scene.

Working in 2D has an important advantage in that it uses the least expensive hardware that

6

is available. However, the problem of analyzing the scene is more difficult. Several

techniques are used to address the problem of understanding the scene such as skin color

detection, movement analysis, and background removal. Although many of these techniques

have been refined throughout the years, they are still not completely reliable. Background

objects have colors which are easily confused with skin color, and background noise can

disturb both movement analysis and background removal. Nonetheless, new algorithms to

mitigate these problems are being developed and published. Some authors who have done

interesting work in this group are Cheng, Lu, Collobert, and Xu. [38], [25], [21], [34], [9].

Starting with an specific gesture, Fang et al., [38] use motion and color cues to perform

hand detection and tracking. Fujimura and Xu [21] address the problem of recognizing those

sign language signs which include hand overlapping by converting the input blob into a

graph that represents the finger and the palm of the user's hand and processing the new graph

by either subdivision or integer programing.

Completed work based on 3D input has increased in recent years, as the required hardware

is now more accessible [22], [12]. There are many advantages to working with 3D input data

because many of the background problems that are difficult to solve in a 2D environment are

easily avoided with the new information. In general, the main concern when working with

3D data is how to use the depth information to separate the relevant information of the scene

from the background. Nevertheless, many, if not all, the techniques used in 2D environments

are also used in this new environment as they help researchers understand the information

being presented in order to make more intelligent threshold operations. Various authors in

this field are Kumar, Ohya, and Strintzis [33], [30], [17].

Malassiotis and Strintzis [30] propose a 3D gesture recognition based on hand poses. It

7

includes obtaining 3D information of the scene by illuminating it with a colored pattern,

segmenting the arm and the hand, classifying the hand posture, and finally recognizing the

3D gesture.

Finally, Holub et al., [17] use the ZCam to implement an ASL recognition system which

starts with skin color detection and depth information and implements an HMM classifier.

 1.2.1. The approach in this research

The research presented in this paper uses an approach that is a pose-based recognition

using 3D information. The goal is to build a complete solution to the problem of identifying

one-hand 3D gestures that include understanding the scene being presented without assuming

the user's presence, identifying the user's hand pose and rotation angle in every frame, and

constructing the 3D gesture. The static pose approach was selected because one of the visible

applications of this work is to integrate it within a multi-touch framework, thus combining

the two main gesture environments. This integration requires an ability to rapidly generate

new gestures—possible if a wide enough set of poses is included for training. The

availability of the ZCam hardware that provides 3D data was the main factor in choosing

such input.

Finally, one of the main contributions of this work, with respect to previous work in pose

recognition using SVM, is to consider the entire problem without assuming that the user's

hand is present in the scene. This would allow the application, once integrated in the multi-

touch framework, to run smoothly even when the user leaves or rests his or her arms. Another

interesting contribution is the proposed feature set with very little image processing effort

required which facilitates the gesture recognition being done in real time.

8

 2. Methods

 2.1. Overview of the implemented solution

As previously stated, the selected approach to address the 3D gesture recognition problem

is to model the gestures as a sequence of poses. Thus, the gesture recognition problem is

reduced to a hand pose recognition problem using 3D information about the scene.

Additionally, to completely solve the 3D gesture recognition problem, hand presence/absence

and rotation recognition are also considered. This redefines the problem into a triple

recognition problem: first, presence/absence of the user's hand; second, the pose of the user's

hand; and third, the rotation angle of such pose.

Figure 1 shows a high-level view of the design of the implemented solution. The starting

point for the application's data flow is the two 30 FPS streams: one with depth information

and one with color video of the scene, produced by the ZCam. Each frame is considered

separately for analysis. After some simple image processing operations (described in more

detail further on in this document), one or more candidate regions are identified from each

frame. Each of these candidate regions is extracted, resized to a 64x64 image, and named

“normalized candidate region image.” From each of these normalized candidate region

images a novel feature set (also described further on in the document), is extracted and used

as input for 3 SVM classifiers. There is one for each of the previously stated subproblems:

the user's hand presence/absence, its pose, and its rotation.

9

Figure 1. Application's data flow diagram.

 2.2. Depth information acquisition and usage

A 3D web cam called ZCam developed by Yahav and 3DV systems [12] was used as the

3D data input device. The ZCam generates infrared light pulses by laser diodes that are

reflected by the objects in front of the camera. By capturing such reflections, the device

calculates for each pixel the exact distance to the objects in the scene being represented by

the pixel. This process is illustrated in Figure 2. In (A), the camera generates infrared pulses

that, when reflected in the object, provide the depth information (B).

10

Figure 2. ZCam 3D data acquisition.
Image adapted from Yahav's 3D imaging in the studio. [12]

The ZCam inputs two 320 x 240 images into the system in a rate of 30 FPS (See Figure 5

(A)). The first image is the depth image. This is a gray scale image which reflects the depth

information where the brighter the pixel, the closer the object to the camera using 256 levels

of gray. The second image is the RGB image. This is a color image similar to the one

provided by a normal web cam.

The ZCam builds its depth information of the scene in such a way that the resulting image

represents a view of the scene from the perspective of the camera. However, to build a

consistent 3D model of the scene, the depth component of the object's representation should

be independent of whether the object is in front of the camera or towards the edge of the

image. Figure 3 illustrates the perspective problem where Objects 1 and 2 are both aligned.

They have the same depth value, but the ZCam places Object 2 farther away (darker) than

Object 1 because of the perspective problem.

Figure 3. Illustration of the perspective problem where both Objects 1 and 2 are aligned.
They have the same depth value, but the ZCam places Object 2 farther away (darker) than Object 1 because that is the

ZCam's perspective.

11

To solve the perspective problem, the trigonometry shown in Figure 4 was applied, with

the result that the pure depth or vertical (z) component for each pixel is obtained by:

d 2−center.x− pixel.x 2center.y−pixel.y 2

Where center.x and center.y are the x and y coordinates of the center of the depth image,

pixel.x and pixel.y are the x and y coordinates of the pixel for which the vertical component is

being obtained, and d is the actual depth value given by the ZCam for the given pixel.

Figure 4. Trigonometry used to solve the perspective problem.

After solving the ZCam's perspective problem and mirroring both the ZCam's original

images, a new version of both frames is obtained as shown in Figure 5 (B). Note how the

background noise in both left and right sides of the new image are lighter than in the original

image—that is a result of fixing the perspective.

Assuming that if the user's hand is present in the scene it will be closer to the camera than

the rest of the body, the approach was to identify the pixel closest to the camera (the brighter

12

pixel) and threshold the depth image so it would only consider a small window of depth

starting from the closest point (20 levels of gray). The new depth image would only contain

blobs for the closest objects. These blobs are extracted and resized into a new 64x64 image

shown in Figure 5 (C) which in turn will be the input from where the feature set will be

extracted and fed to the classifiers.

Figure 5. Image processing evolution.
A: Original images generated by the ZCam.

B: Resulting images after being mirrored and applied the perspective problem fix.
C: Resulting image after thresholding 20 levels of gray from the closest point, extracting the blob, and resizing into a

new 64x64 image.

 2.3. The feature set

When designing a feature set, the goal is to identify a set of characteristics that will

separate samples of one class from samples of another. A good feature set is one that

correctly separates samples of different classes. However, as the set of characteristics grows

larger or more complex, the required effort to process them also increases. Therefore, if two

13

feature sets achieve the same sample separation, the feature set with simpler characteristics is

preferable over the one with more complex characteristics. In the case of this research, the

samples to be separated are samples of the different hand poses, samples of the different

rotation poses, and samples where the hand is present and where it is not. Using the input of

the normalized candidate region image, a novel feature set based on simple characteristics is

proposed to model the sample universe and to separate samples of different classes. The main

idea is to detect alternations or “jumps” between black (void) and some level of gray (hand)

using the number and size of the jumps as the chosen characteristics that form the feature set.

Alternations between black and gray characterize how many fingers the user shows and

whether they are separated. For example, if the image is an open hand with the fingers

pointing up, there should be several small jumps in the upper rows of the image. If the image

is a closed fist, then the number of alternations should be quite low as the image would be

similar to a solid block in the center of the screen. Moreover, if the image is a single pointing

finger, then there will be a smaller solid block (the finger) and a bigger one (the rest of the

hand) in the image. Figure 6 shows the open hand and the pointing hand examples where the

jumps of the highlighted row (red) are show in blue and towards the right of the image.

The same concept of searching for jumps is used to capture the 3D information of the

image. Given that the closer the object is to the camera, the brighter the pixel that represents

that object, the brightness levels can be used to find the jumps in depth plane. So, for

example, in the case of a hand pointing with one finger to the camera, there would be a big

jump for the finger and a smaller jump for the rest of the image. Figure 6 shows two images

of hands pointing to the camera: in the first image there is an open hand where only the index

and the little finger are extended; in the second image, the hand is closed and pointing only

14

with one finger. The corresponding jumps are again drawn in blue towards the right of the

image.

Figure 6. Hand characterization based on black and gray alternations.

In the upper images, jumps are used to distinguish between an open hand and a pointing hand. In the lower images,
jumps based on brightness intensity are used to distinguish between two hands pointing to the camera.

To implement the previously described feature set, an extension of the algorithm is used

for handwriting recognition [13], [41]. The handwriting recognition algorithm starts from a

64x64 image and divides it into 64 8x8 windows. Then for each window, it searches for

vertical, horizontal, and diagonal patterns. In this work, the normalized candidate region

image is divided into 64 8x8 windows as shown in Figure 7, where each of these windows is

represented by an integer in the feature set. Note that using 8x8 windows in a 64x64 image

results in a 64 elements feature set, so using smaller windows would help obtain more

detailed information of the candidate region image, but would also require a bigger feature

set, which in turn would require more processing effort. Each of these 8x8 windows are

divided again into four 4x4 smaller windows, where each of these last windows are

represented by a flag in a 4-bit number. The flag of the 4x4 window will be turned on (1) if at

least one of the 4x4 bits is not 0 (a bit in 0 means black or absence of object in front of the

15

camera). It will be 0 otherwise. So for each of the 8x8 windows, there will be a number

between 0 (there is no object in the 8x8 window) and 15 (the window is completely covered)

which represents the presence or absence of an object in that window. Figure 7 shows an

example of a normalized candidate region image divided into the 64 8x8 windows, and then

shows how three of these windows are divided again into four 4x4 inner windows that in turn

are used as flags in a 4-bit number as previously explained.

Figure 7. Feature extraction from normalized candidate region image.
This figure shows the extracting back and gray alternations process by first dividing the image into 64 8x8 windows

and then dividing each of these windows again into four 4x4 inner windows and using these last windows as flags in a
4-bit number. In the image, three of the 64 8x8 windows are highlighted to show how they are divided again into 4x4

inner windows.

The depth information is also relative to the 8x8 windows. Taking advantage of the fact

that the normalized candidate region image has a fixed depth (20 levels of gray), the depth

window is divided into four equidistant regions numbered from one to four, where one is the

closest region (with larger depth values) and four is the farthest region (with lower depth

values) as shown in Figure 8. Then for each of the 8x8 windows, the pixel with the highest

depth value is considered and set into one of the previous four regions. The depth region

16

number for the closest pixel of the window would be the rightmost digit of the integer

describing the window in the feature set.

Figure 8. 20 levels of gray divided into regions.
Dividing the 20 levels of gray into four equal regions to characterize the depth level of each of 8x8 windows in which

the image was divided.

So up to this point, the feature set is composed by 64 3-digit numbers, one for each of the

8x8 windows, where each of these numbers contains information about the black gray

alternations as well as brightness or depth alternations.

There is a 65th integer included in the feature set. It is a flag that would take value 1 if the

TDV hand-tracking tool provided by the ZCam SDK recognizes a hand, and value 0

otherwise. R. Jordan-Osorio and Sukhoy [28] did a survey analyzing the accuracy of the

TDV hand-tracking tool with the following results:

17

Table 1. Accuracy of the TDV hand tracking tool provided by the ZCam SDK.
From Proteins visualization control using hand gestures [28].

Notice that in all cases, the hand is placed with the fingers pointing up. The accuracy drops

when the hand is rotated to other positions.

 2.4. The classifiers

Three classifiers were implemented. The first classifier (called “hand classifier”) decides if

the image being analyzed corresponds to a hand or not. If the image is classified to

correspond to a hand, then the second classifier (called “pose classifier”), categorizes the

hand into one of the predefined poses or the “other/undefined pose.” Finally, the third

classifier (called “rotation classifier”) defines the rotation of the hand as it best approximates

one of the predefined rotation angles.

Both the pose classifier and the rotation classifier can be trained for a different number of

poses and different rotation angles. Neither the algorithm nor the application restricts the

number of poses or rotations, and there is also no restriction on including any specific pose or

18

rotation angle. In this case, six1 different poses were predefined: fist, open hand with separate

fingers, open hand with fingers together, pointing hand (with one and two fingers), showing

two fingers, and showing three fingers. Regarding the rotation, five different rotation angles

or positions were predefined: left, up-left, up, up-right, and right. See Figure 9 for an

illustration of the poses and rotation positions.

Figure 9. Selected poses and rotation positions.

All three classifiers were implemented as Support Vector Machines (SVM) trained through

the Sequential Minimal Optimization (SMO) algorithm using Weka's [16] API (Application

programming interface).

 2.4.1. Support Vector Machines and Sequential Minimal Optimization algorithms

Support Vector Machines classifiers (invented by Vapnik in 1979), try to find an

hyperplane that separates samples of the different classes, maximizing the distance between

the decision boundary and any of the samples. The minimum of these distances between the

1 6 poses and 5 rotation positions were predefined as the combinations of them would cover an interesting
number of possible gestures. If needed more poses and more rotation positions could be added.

19

decision boundary and each sample is called the margin [8].

Figure 10. Support Vector decision boundary.

Assuming the sample set is linearly separable, the decision boundary is obtained through:

g x= wtxb

Where w is the weights vector, x is the samples features (input) vector, and b is a constant.

The algebraic distance of a point (sample) to the decision boundary and the margin of the

training set are:

distancei=
g x 
||w ||

margin=mini

t i g  x i
||w ||

Where ti ∈ {-1, +1} and if a data sample is correctly classified, then ti g(xi) > 0. Given that

the definition of an hyperplane does not change when rescaled and that the margin also is not

20

affected by rescaling, it is possible to rescale so that mini ti g(xi) = 1, then the margin is now

equal to 1/||w||, so minimizing ||w|| would maximize the margin. Then the resulting quadratic

programming (QP) minimizing problem is:

Minimize
wt w
2

subject to
t i w

txb≥1 i=1, ... , n

Through Lagrangian theory, the dual optimization problem for the previous primal is:

Maximize

Ld =∑i
i−

1
2 ∑i , j

i j t i t j x i⋅x j

subject to
∑i

i ti=0
i≥0 ∀ i

The Karush-Kuhn-Tucker (KKT) conditions for the previous problems optimal solutions

are:

w=∑ i t i x i

∑i t i=0
i≥0
t i w xb−1≥0
i[t iw xb−1]=0

21

Then, only the samples xi for which ti (wi xi + b) = 1 can have αi ≠ 0. These samples are the

support vectors as they are the closest samples to the decision boundary and they contain all

the necessary information to reconstruct the decision boundary hyperplane.

In case the samples are not linearly separable, “slack” variables are introduced in the

primary problem to relax the constraint that all training data must be correctly classified. The

slack variable ξi represents how much the sample xi fails to respect the margin of 1 from the

deciding boundary. After introducing the slack variables the primal quadratic programming

problem definition is:

Minimize
wt w
2

C∑i
i

subject to
t i w

txb≥1−i i=1, ... , n
i≥0 i=1, ... , n

where the ξi is the slack variable and C is a constant penalty for usage of the slack

component. The dual problem with slack variables would be:

Maximize

Ld =∑i
i−

1
2 ∑i , j

i j t i t j x i⋅x j

subject to
∑i

i ti=0
0≤i≤C ∀ i

Again the support vectors are the only samples for which ti (wi xi + b) = 1 - ξi meaning

22

that αi ≠ 0.

In many cases, classes are not linearly separable. A possible solution is to use non-linear

transformations into a feature space where the data becomes separable. The problem here is

dealing with high dimensional feature spaces and the high risk of overfitting. To avoid the

problems of working with high dimensional feature spaces, kernel functions can be used as

long as the data points only appear inside dot products. A kernel is a function which returns

the result of the dot product of the images of the samples in the new feature space, even when

the transformation function Φ is not known:

K  x1, x2= x1
t x2

Given that in the dual representation of the problem, samples only appear in a dot product,

so kernel substitutions can be done. The final dual representation is:

Maximize

Ld  =∑i
i−

1
2 ∑i , j

i j t i t j K x i , x j

subject to
∑i

i ti=0
0≤i≤C ∀ i

For the particular case of this work, a polynomial kernel was used based on Weka's

implementation:

K x1, x2= x1⋅x2
d

23

SMO is an algorithm for training support vector machines proposed by Platt [27]. The

main problem when training SVM is the size of the QP problem that involves a matrix of size

square to the number of training samples. There are several methods to reduce the size of the

matrix, but they still require solving the QP problem numerically.

The SMO algorithm takes advantage of the theorem proved by Osuna et al., [10] which

proves that a large QP problem can be reduced to smaller QP sub-problems as long as at least

one sample that is not optimized (violates the KKT conditions) is added to the previous sub-

problem. Based on the previous theorem, the SMO algorithm would solve the smallest

possible QP problem, which in the case of SVM includes two Lagrangian multipliers. The

greatest advantage of the SMO training method is that it only includes two Lagrangian

multipliers per step, so it can resolve the QP problem analytically without performing the

numerical optimization.

There are two main parts to the SMO training algorithm, solving the two Lagrangian

multipliers QP problem and identifying which multipliers to use.

First, identify the two Lagrangian multipliers to be solved. The algorithm first computes

the constraints on those multipliers and then obtains the constrained maximum. The

constraint 0 ≤ αi ≤ C restricts the multipliers to lie within a box and the constraint ∑i αi ti

places the multipliers within a diagonal line. So both constraints together restrict the

multipliers to lie within a well-defined segment. The SMO algorithm then calculates the

maximum in the defined segment and moves the Lagrangian multipliers to that point.

(Special cases, such as when both ends of the segment have the same objective value, are

considered in the original paper).

24

Second, identify which of the Lagrangian multipliers should be used. This is done through

two heuristics: one to obtain the first multiplier and the other to obtain the second one. To

select the first multiplier, the algorithm goes through all samples once and identifies those

that do not satisfy the KKT conditions. Then it completes a second loop only through those

samples where the multiplier is neither 0 nor C (called the “non-bound samples”), again

identifying those samples that do not satisfy the KKT conditions. Samples that do not satisfy

the KKT conditions are eligible for optimization. The algorithm selects the non-bound

samples for optimization first, as they are more likely to change during the optimization

process. Once all non-bounding samples are optimized, the algorithm moves back to the rest

of the samples and repeats until finished (the process can include several alternating loops

over non-bound samples and total set of samples). The second multiplier is selected to

maximize the size of the step taken during the optimization process by comparing the errors

of each sample and choosing the sample that has the biggest error difference with the first

sample.

25

 3. Classifiers performance results

 A tool was developed to generate both the training set and an independent testing set. The

generation of both the training set and the independent testing set is an iterative process

where each cycle consists in recording frames, performing the image processing operations

described in the previous section, classifying the resulting image, and generating one

training/testing file for each classifier. First, in each cycle, the training tool records 100

frames and performs the required image processing to each frame. When each frame is ready,

the user training the tool must classify the resulting image. This is done by pressing

predefined keys (H for hand, N for Not Hand, F for fist, and so on), that automatically

generates entries for three training files, one for each classifier. For this research, two training

set were created and labeled, one by the author with 4,956 samples for the hand classifier,

8,575 for the pose classifier, and 3,113 for the rotation classifier and another one by an

independent non-computer-science undergraduate user who did not participate in any other

part of the development with 8,451 samples for the hand classifier, 8,098 for the pose

classifier and 8367 for the rotation classifier. The distribution among classes is shown in

Table 2. Note that the load among classes was not balanced for the hand and pose classifiers.

This could cause the classifiers to prefer (classify more frequently) those classes with more

samples reducing the classifier's accuracy. To avoid such situations, Weka's filter SMOTE

was used to balance the sample loads. The SMOTE filter applies the Synthetic Minority

Oversampling TEchnique (SMOTE) introduced by Chawla et al. [26]. It over-samples the

minority classes by introducing new samples in the line segments joining the original sample

with its nearest neighbors. As a result of applying the filter, the new training files were

26

balanced, also shown in Table 2.

Class

Author's training Independent user's training

Before
Balancing

After
Balancing
(SMOTE)

Before
Balancing

After
Balancing
(SMOTE)

Hand Classifier
No Hand 1,331 2,662 8,140 8,140
Hand 3,625 3,625 311 1,247

Pose Classifier
Fist 556 1,112 555 1,114
Open 1,236 1,236 1,631 1,631
Closed 1,713 1,713 1,351 1,351
Pointing 1,953 1,953 1,298 1,298
2 Fingers 1,186 1,186 1,542 1,542
3 Fingers 1,192 1,192 1,433 1,433
Other 731 731 288 573

Rotation Classifier
Left 593 593 1,611 1,611
Up-Left 559 559 1,387 1,387
Up 644 644 2,499 2,499
Up-Right 663 663 1,406 1,406

Right 654 654 1,464 1,464
Table 2. Training load for each classifier.

Additionally, an independent testing set was generated by the author in a similar manner:

frames were recorded, classified, and stored in testing files, resulting in 1,491 (255, 1,236)

test cases for the hand classifier, 1,237 (105, 211, 248, 236, 169, 125, 143) for the pose

classifier, and 988 (75, 288, 433, 135, 57) for the rotation classifier. (There is no point in

balancing the testing set; in fact, balancing the testing set would distort the test results.) The

process of generating training samples and generating testing samples are similar. But when

27

generating the training samples, the training case (the hands pose and rotation) was defined

before recording—as the user generated the testing samples, he or she would move his or her

hand arbitrarily, as any user would do while using the application to perform gestures for the

camera. This was done to generate more transitions and more natural poses in the testing set.

Both training sets were tested against the same independent testing set to measure the

intercoder reliability among both training sets.

There are several metrics to evaluate the performance of a classifier. True positive rate

(TPR) or sensitivity, false positive rate (FPR) or 1 – specificity, and correlation coefficient

(CC) are commonly used for such purpose and they are defined as follows:

TPR= TP
TPFN

FPR= FP
TNFP

CC= TP×TN−FP×FN
TNFN TNFPTPFN TPFP

Although these are commonly-used metrics to evaluate classifiers, the evaluation is done

over a single predefined classification threshold which, if changed, could drastically alter

classifier behavior. The receiver operating characteristic (ROC) curve evaluates a classifier

over all possible thresholds. The ROC curve is a plot between the true positive rate versus the

false positive rate changing the classifier's threshold. The area under the ROC curve (AUC)

is used as a single number summary of the ROC curve, which could be used as a measure of

the accuracy of the classifiers (Huang and Ling [15]). A perfect classifier would have an

AUC = 1, whereas the worst possible classifier (one that cannot discriminate) would have an

28

AUC = 0.5. Figure 11 illustrates the ROC curve of three classifiers and shows how the best

classifier is the one with AUC closest to 1.

Figure 11. ROC and AUC illustration.

The performance of the three classifiers used in this work (hand, pose, and rotation),

according to the previously mentioned criteria and for both training sets are summarized in

Table 3.

29

Using author's training set Using independent user's training set
TPR FPR CC AUC TPR FPR CC AUC

Hand Classifier
No Hand 0.867 0.054 0.775 0.962 0.404 0.017 0.528 0.875
Hand 0.946 0.133 0.775 0.944 0.983 0.596 0.528 0.857

Pose Classifier
Fist 0.810 0.036 0.713 0.970 0.876 0.080 0.625 0.956
Open 0.768 0.065 0.680 0.931 0.308 0.038 0.366 0.796
Close 0.532 0.043 0.562 0.865 0.343 0.111 0.254 0.717
Pointing 0.568 0.042 0.591 0.926 0.771 0.142 0.562 0.871
2 Fingers 0.704 0.084 0.568 0.919 0.533 0.156 0.318 0.761
3 Fingers 0.744 0.070 0.588 0.884 0.416 0.094 0.291 0.719
Other 0.594 0.060 0.522 0.865 0.007 0.013 -0.017 0.609

Rotation Classifier
Left 0.920 0.010 0.894 0.996 0.880 0.011 0.864 0.975
Up-Left 0.747 0.023 0.777 0.942 0.705 0.029 0.735 0.939
Up 0.968 0.209 0.755 0.880 0.822 0.164 0.656 0.895
Up-Right 0.615 0.029 0.644 0.954 0.874 0.106 0.648 0.939
Right 0.596 0.002 0.740 0.970 0.456 0.009 0.572 0.975
Table 3. Results for the three classifiers when implemented as SVM-SMO with polynomial kernel of degree 1.

The plotted ROC curves for the three classifiers (hand, pose and rotation) when using the

author's training sets are shown in Figure 12, Figure 13 and Figure 14 respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Hand Classifier ROC
SVM-SMO (polynomial kernel of degree 1)

Class No Hand
Class Hand

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 12. ROC curves for the hand classifier trained by the author.

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pose Classifier ROC
SVM-SMO (polynomial kernel of degree 1)

Class Fis t
Class Open
Class Closed
Class Pointing
Class 2 Fingers
Class 3 Fingers
Class Other

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 13. ROC curves for the pose classifier trained by the author.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation Classifier ROC
SVM-SMO (polynomial kernel of degree 1)

Class Left
Class Up-Left
Class Up
Class Up-Right
Class Right

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 14. ROC curves for the pose classifier trained by the author.

The plotted ROC curves for the three classifiers (hand, pose and rotation) when using the

31

independent user's training sets are shown in Figure 15, Figure 16 and Figure 17

respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hand Classifier ROC
SVM-SMO (polynomial kernel of degree 1)

Class No Hand
Class Hand

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 15. ROC curves for the hand classifier trained by the independent user.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pose Classifier ROC
SVM-SMO (polynomial kernel of degree 1)

Class Fist
Class Open
Class Closed
Class Pointing
Class 2 Fingers
Class 3 Fingers
Class Other

False Positiv e Rate

Tr
ue

 P
os

iti
v

e
R

at
e

Figure 16. ROC curves for the pose classifier trained by the independent user.

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation Classifier ROC
SVM-SMO (polynomial kernel of degree 1)

Class Left
Class Up-Left
Class Up
Class Up-Right
Class Right

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
At

e

Figure 17. ROC curves for the rotation classifier trained by the independent user

Understanding that the AUC metric indicates the probability of a given class to be actually

positive when classified as such, averages values, over all classes, of 93% when using the

author's training set and 85% when using the independent user's training indicate that the

SVM-SMO classifier is a reliable classifier for all three problems being addressed. However,

when using the independent user's training set there were some low AUC values that cause

the classifier to be less reliable regarding those classes. However, to obtain a value of

intercoder reliability, an extension of the Holsti's [14] method was used. Instead of counting

the number of decisions upon which the two trainers agree, the correlation coefficient

obtained after testing both training sets against the same testing set was used. So the

intercoder reliability measure was obtained by:

33

Average over all classes {1−∣CC author−CC independent user∣}

 The resulting value is: 80%, which exceeds 70%, the minimum requirement for reliability.

This reliability demonstrates that the quality of the training set does not depend strongly on

who does the training. Furthermore, the lack of special training for the independent user (an

undergraduate with no previous exposure to the project) indicates that there is no need of a

deep understanding of how the system works to successfully label a high quality training set.

After a closer look at the rotation classifier, it seems that the up class has a noticeable

lower curve than the other classes. This is because of the difficulty (even during the training

phase) to clearly distinguish between up versus up-left and up versus up-right. A similar

problem occurs with the classes left and right respectively, but it does not seem to have the

same effect. A possible solution to this problem is to calculate an approximation to the

rotation angle instead of using classifiers. This possibility is included within the future work

section of this paper.

Although the previous results are promising, it is interesting to compare them with the

results that other classification algorithms have produced with the same training and testing

sets, verifying that the SVM-SMO algorithm is the best for the job. Only the author's training

set was used for these comparisons. So the previous results were compared with other

commonly used classifier implementations. Naive Bayes, J48 decision tree, Adaboost with

J48 tree, and Adaboost with ID3 tree were used.

The Naive Bayes classifier performs its classification by obtaining the posterior probability

of each class given a set of evidence:

34

NB=arg max j
P  j∏i

P  xi∣ j

A key assumption of the Naive Bayes classifier is that all features in the feature space are

statistically independent (this is why the classifier is called “naïve”). Although this

assumption seems pretty strong, the Naive Bayes classier performs well in various settings.

P x1, x2, ... , xn∣ j=∏i
P x i∣ j

The J48 decision tree is Weka's implementation of the C4.5 model from J. R. Quinlan [19].

Basically, decision trees try to identify the feature that best discriminates between classes and

creates a branch for each of the possible values of such feature. If necessary, each branch

performs a similar selection until all samples of the branch belong to the same class.

Adaboost algorithms ensemble different classifiers to obtain a better overall performance.

The goal of ensemble learning classifiers is to eliminate individual errors by averaging

between several classifiers; in general the averaging is done through weighted vote. Boosting

algorithms manipulate the training set by setting different weights to the samples of the

training set. Then the inner classifiers are trained with the different weighted data sets,

resulting in different base classifiers. Here, the base classification algorithms used were the

J48 decision tree and the ID3 decision tree. Decision trees were selected as the base

classifiers because they are relatively fast to train, and small changes in the data set have a

great affect on the resulting tree.

35

Table 4 compares the performance of the three classifiers (hand, pose, and rotation),

trained with the author's training set, based on the predefined metrics implementing the

different classification algorithms. (The values in the table are average values over all

classes.)

TPR FPR CC AUC
Hand Classifier

SVM-SMO 0.932 0.120 0.775 0.947
Naive Bayes 0.939 0.221 0.774 0.952
J48 decision tree 0.893 0.212 0.647 0.885
Adaboost-J48 0.946 0.154 0.808 0.966
Adaboost-ID3 0.889 0.076 0.699 0.968

Pose Classifier
SVM-SMO 0.655 0.057 0.603 0.906
Naive Bayes 0.487 0.086 0.431 0.850
J48 decision tree 0.490 0.091 0.399 0.775
Adaboost-J48 0.643 0.064 0.579 0.891
Adaboost-ID3 0.333 0.075 0.317 0.775

Rotation Classifier
SVM-SMO 0.830 0.103 0.762 0.922
Naive Bayes 0.840 0.097 0.798 0.970
J48 decision tree 0.748 0.130 0.621 0.856
Adaboost-J48 0.804 0.108 0.721 0.909
Adaboost-ID3 0.738 0.181 0.673 0.912

Table 4. Performance over the three classifiers of different classifiers algorithms implementation.

The plot of the ROC curves comparing the performance of the different classifier

implementations for each of the classifiers in one example class are shown in Figure 18,

Figure 19, and Figure 20.

36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hand Classifier ROC
curves for class = Hand

SV M-SMO
Naive Bayes
J48 Dec is ion Tree
A daboos t-J48
A daboos t-ID3

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 18. ROC curves for the hand class in the hand classifier for the different classification algorithms.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pose Classifier ROC
curves for class = Open Hand

SVM-SMO
Naive Bayes
J48 dec is ion tree
Adaboos t-J48
Adaboos t-ID3

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 19. ROC curves for the open hand class in the pose classifier for the different classification algorithms.

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation classifier ROC
curves for class = Up

SVM-SMO
Naive Bayes
J48 dec is ion tree
Adaboos t-J48
Adaboos t-ID3

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 20. ROC curves for the up class in the rotation classifier for the different classification algorithms.

When reviewing the previous results for the hand classifier, it can easily be concluded that,

with the exception of the J48 tree algorithm, all classifiers had similar performances between

94% and 97%. This means that the selected feature set is a good representation of this

particular model. The case is not the same for the pose classifier where the SVM-SMO

classifier clearly outperforms all other algorithms. Finally, in the case of the rotation

classifier, the Naive Bayes algorithm seems to be the best algorithm for this classifier, with

SVM-SMO coming in second place.

From these results, and considering that in both the hand and the rotation classifiers the top

classifiers performed similarly, the overall best algorithm for all three classifiers is the SVM-

SMO.

During the overview of the SVM classifiers, it was stated that the kernel used by the

38

classifier plays a key role in the performance of the classifier. So to test if any improvement

can be obtained, the same three classifiers were implemented and tested using different

kernels, again only the author's training set was used for these experiments. Up to this point,

a polynomial kernel of degree 1 was used. Then, to evaluate the impact of changing the

kernel, polynomial kernels of degree 2 and 3 were chosen. Additionally, an instance of the

Radial Basis Function (RBF) kernel, which is a Gaussian-based kernel, was also selected for

the comparative study. The RBF kernel is:

K x , y =e
− ||x− y ||2

22 

=e−gamma ||x− y ||2

For this work the gamma parameter was set to 0.001.

Table 5 compares the performance of the three classifiers (hand, pose, and rotation)

implemented with the SVM-SMO algorithms using the different kernels previously

mentioned. (Again, the values in the table are average values over all classes.) Although in

general, the more complex kernels outperform the selected polynomial 1-degree kernel, the

processing time to train the classifiers with these more complex kernels was considerably

longer (sometimes more than five times longer). However, the actual classification

processing time will not be affected in the same way. So the extra effort is just a one time

offline situation.

39

TPR FPR CC AUC
SVM-SMO Hand Classifier

Polynomial Kernel degree 1 0.932 0.120 0.775 0.947
Polynomial Kernel degree 2 0.968 0.084 0.886 0.963
Polynomial Kernel degree 3 0.973 0.077 0.902 0.968
Radial Basis Function Kernel 0.956 0.099 0.846 0.983

Pose Classifier
Polynomial Kernel degree 1 0.655 0.057 0.603 0.906
Polynomial Kernel degree 2 0.747 0.039 0.710 0.932
Polynomial Kernel degree 3 0.766 0.037 0.729 0.938
Radial Basis Function Kernel 0.730 0.048 0.683 0.946

Rotation Classifier
Polynomial Kernel degree 1 0.830 0.103 0.762 0.922
Polynomial Kernel degree 2 0.840 0.100 0.784 0.925
Polynomial Kernel degree 3 0.843 0.098 0.794 0.927
Radial Basis Function Kernel 0.826 0.105 0.757 0.918

Table 5. Performance over the three classifiers of the SMO-SVM algorithm using different kernels.

Plots of the ROC curves comparing the different kernels of some sample classes are shown

in Figure 21, Figure 22, and Figure 23.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hand Classifier ROC curves
class = Hand

Polynomial kernel
degree 1
Polynomial kernel
degree 2
Polynomial kernel
degree 3
RBF kernel

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 21. ROC curves for hand class in the hand classifier for different kernels in the SVM-SMO algorithm.

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pose Classifier ROC curves
class = Open Hand

Polynomial kernel
degree 1
Polynomial kernel
degree 2
Polynomial kernel
degree 3
RBF kernel

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 22. ROC curves for the open hand class in the pose classifier for different kernels in the SVM-SMO algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation Classifier ROC curves
class = Up

Polynomial kernel
degree 1
Polynomial kernel
degree 2
Polynomial kernel
degree 3
RBF kernel

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 23. ROC curves for the open hand class in the pose classifier for different kernels in the SVM-SMO algorithm.

41

From this last set of experiments, it is clear that more complex kernel spaces cause more

accurate classification results, meaning that the sample space is better divided when working

with these more complex spaces. However, the cost of working with these more complex

kernels, especially during the training phase, should be considered as the training time was

much higher when using the complex kernels—sometimes more than four times as long.

Table 6 shows the required training time for all classifiers and the time to test the just-trained

classifier over the same testing data. This is done to validate the training process (classifiers

are expected to accurately classify more than 98% of its own training data) and to obtain a

reference of the required evaluation time of the classifiers.

Classifier
Training Time

Seconds Seconds
Hand Classifier

SVM-SMO polynomial kernel degree 1 1210.48 2.08
Naïve Bayes 0.05 0.41
J48 Tree 0.47 0.28
Adaboost with J48 4.85 0.22
Adaboost with ID3 15.85 0.55
SVM-SMO polynomial kernel degree 2 5041.53 822.36
SVM-SMO polynomial kernel degree 3 6538.80 1022.63
Svm-SMO RBF kernel 6359.23 1881.51

Pose Classifier
SVM-SMO polynomial kernel degree 1 6217.73 26.68
Naïve Bayes 0.14 0.89
J48 Tree 1.89 0.30
Adaboost with J48 16.32 0.48
Adaboost with ID3 35.12 0.92
SVM-SMO polynomial kernel degree 2 21873.49 14371.52
SVM-SMO polynomial kernel degree 3 30489.14 19816.76
Svm-SMO RBF kernel 7202.49 6656.90

Rotation Classifier
SVM-SMO polynomial kernel degree 1 113.24 4.43
Naïve Bayes 0.05 0.31
J48 Tree 0.28 0.17
Adaboost with J48 2.96 0.16
Adaboost with ID3 8.56 0.30
SVM-SMO polynomial kernel degree 2 622.86 647.23
SVM-SMO polynomial kernel degree 3 858.89 1001.60
Svm-SMO RBF kernel 171.32 240.09

Cross Validation
Testing Time

Table 6. Training time and cross validation testing time for all classifiers considered in this work.

42

 4. The Application: Implementing 3D gestures

The initial claim that justified focusing on 3D gestures of hand, pose, and rotation

recognition was that if the latter information was known for each frame, then building and

recognizing the 3D gestures is a simple task. To prove this and to build and recognize 3D

gestures using the classifiers presented in the previous section, two applications that require

3D gestures were successfully implemented using the system described in this paper.

The first application called ZCam driver for the open source Sparsh UI [29] framework

was developed as part of this same work with the previously stated purpose of proving that

3D gestures can be recognized using hand, pose, and rotation recognition. (This application

will be described in detail in this section.)

The second application was developed by an independent team Kodavali S., Patel A., and

Owusu E [32]. This application used the three classifiers system described in the previous

sections and the training samples generated during the performance evaluation to develop a

3D modeling system. This system helps the user to model 3D objects by using the ZCam as

the main interface and a series of defined gestures to interact with the model in the screen.

Figure 24 shows the application in action where the user is using a pointing gesture to

translate the 3D model. Another gesture was used for rotation. A demonstration video of the

application can be seen on youtube.com [31].

43

Figure 24. Kodavali S., Patel A., and Owusu E 3D modeling application.
Image obtained from [32]

The goal of the of the ZCam driver for the Sparsh UI application is to extend the Sparsh UI

framework so that current and new Sparsh-UI client applications will be able to run with a

ZCam as if it were a simulated multi-touch device. This integrates two important interface

technologies: touch and computer vision.

Sparsh-UI is a platform independent multi-touch framework which allows client

applications to run over different hardware in a transparent manner for the application. The

Sparsh-UI solution consists of three main components: the input device, the gesture sever,

and the gesture adapter.

The input device can be thought of as the hardware interface of the system. As part of the

input device there are drivers already developed for several kinds of hardware, including an

optical FTIR system, an infrared bezel, and others. The goal for this system is to add the

ZCam to already supported devices, even though it is not a multi-touch device.

The gesture server is the main component of the system and is the one in charge of

translating the input data provided by the input device into gestures. The gesture server has

44

several of the most common gestures used in multi-touch devices already implemented, such

as drag, rotate, zoom, and more. Additionally, this component is designed in such a way that

new gestures can be added easily.

Finally, once a gesture has been identified, the information is sent to the gesture adapter

that formats the information so that the client applications can understand them. The gesture

adapter is the client interface of the system.

Figure 25 shows a high level diagram of the Sparsh-UI data flow. Data, in the form of

touch points, are input to the system through the input device (1). One touch point represents

the event that goes from a user making contact to the multi-touch surface until the contact

ends. This means that one touch point is actually composed of several points of contact

which occur in time. Once a new touch point is detected, the gesture server will ask all

registered clients to claim the point (2), meaning that the client would be prompted to either

return an ID of the object being touched or to ignore this touch point. Client applications can

subscribe their components to any arbitrary list of gestures—at this point, this information is

also prompted by the gesture server. As long as the touch point evolves, new points are

received for the touch point, (3) the gesture server would start recognizing gestures (4), if the

component that claimed the touch point is registered for any of those gestures, gesture events

would be sent to the client for that component through the gesture adapter (5).

45

Figure 25. Schema of Sparsh-UI main functionalities.
Some images of this figure were obtained from Sparsh-UI's web site:

 http://code.google.com/p/sparsh-ui

So, the goal of the application can be reformulated to include the ZCam as one of the

supported input devices so that client applications can interact with it transparently. To

achieve this goal, the information provided by the three classifiers (hand, pose, and rotation)

plus the position in space of the closest point previously rescaled to [0,1] was used as input.

All this information was processed through a finite state machine that would generate either a

new type of event called a hover event, or would generate the required touch points as any

other touch device would.

One of the main differences when using the ZCam versus using a touch device is that with

touch devices, the user makes contact exactly in the point he or she wants, whereas with the

camera, the user's hand is always present so the user must be able to move his or her hand

freely without generating touch points as would happen when moving his or her hand over

the touch device without making contact with it. To do so, a new event was added to the set

of existing Sparsh gesture events called “hover event.” The new event informs the client

http://code.google.com/p/sparsh-ui

46

application that the user is moving his or her hand around the screen but is not actually

touching anything. The client application can use this event and the information it provides to

show the user where the hand is with respect to the application's screen.

The transition between states of the state machine can result from two possible causes.

First, a transition can occur because a new hand pose or a new rotation angle or a

combination of them has been identified. This transition will be complete as soon as the new

state has been identified. Second, a transition can occur as a result of an internal processing

of the state. Once a new state is reached, if the state was set with a processing function, then

this function is run. As a consequence, processing a jump to another state may occur. Note

that with the first transition type, the machine waits in the current state until new information

arrives, whereas with the second transition type, jumps between states are done automatically

without waiting for more information. This is so the machine does not stop on those states

governed by this type of transition.

Figure 26 shows a schematic view of the implemented state machine (not all transitions are

included for clarity purposes) that covers drag and rotation gestures. Other gestures can be

added by just extending this state machine. The first type transitions are drawn in blue and

the second type transitions are drawn in green.

47

Figure 26. State machine for drag and rotate gestures of the ZCam driver for Sparsh. Other gestures can be added by
extending this state machine.

(Not all transitions are included in this illustration of the state machine for clarity purposes.)

The state machine starts at the initial state of “No Hand.” Once the user's hand is detected,

the machine moves to the “Hand” state where the “hover event” is sent. The user can select a

component of the application anytime. To do this, the user either points to the object and

moves forward, or opens and closes his or her hand as if grabbing the component. Once a

component is selected, the user can either drag the object around or rotate it. Either way, the

relevant touch points are generated so the Sparsh-UI framework sends the corresponding

events to the application. Notice that even in the event of a “No Hand,” the object still keeps

being selected, allowing the user to rest between operations. Finally, if the user decides to

release the object, he or she can perform the relevant sequence.

Using the driver, both drag and rotate events were successfully sent to a previous existing

application “Sparsh Tangrams,” with just some minor changes in the application (support for

the hover event). This indicates that application was successful and that the goal of proving

that 3D gesture recognition can easily be done when hand, pose, and rotation information is

available was achieved. The ZCam driver has successfully been integrated within the Sparsh

48

UI framework and will be included in future releases of the framework once all the supported

Sparsh gestures have been mapped to 3D gestures in a similar fashion as drag and rotate. To

do this, a new state will be created. It can be reached by transitioning from the Selected state

through some hand pose and will transition to the End Gesture state once the gesture has

ended. Although the application works correctly, a scaling problem must be solved so that the

Spash UI client applications can be easily used with the ZCam. The camera image definition

320x240 is much smaller than the application 1280x768, so small hand movements result in

big jumps in the application, making it difficult to perform precise movements. Also, it was

suggested to adjust the scale dynamically so once an object is selected, the user can then

perform big movements on the screen with small wrist movements. The idea is to reduce the

arm movements during the gestures and avoid tiring the arm. Both problems would be

addressed in future work done to the Sparsh UI framework. However, it is important to

highlight that these scaling problems are not gesture recognition problems, but enhancements

required to improve the relationship between Sparsh UI and ZCam. These problems do not

compromise the fact that 3D gestures were successfully recognized and that the goal of this

application was achieved.

49

 5. Conclusions and future work

This research was framed by the following question: Is it possible to create a complete

gesture recognition system using the ZCam which recognizes previously-trained hand

gestures in real time and does not require any other interaction from the user? The question

was answered by creating a system which uses the ZCam and three previously trained

classifiers to recognize gestures in real time and does not require any other interaction from

the user because it is able to detect the user’s presence and when he or she begins to perform

a gesture.

Using the approach of modeling 3D gestures as a sequence of hand poses, a complete

solution for the one-hand 3D gesture recognition problem was proposed, implemented, and

proved to be reliable. It is a complete solution because the 3D gesture recognition problem

was not addressed as an isolated problem, but was considered in the context of a real

application. In this sense, the common assumption that the system starts its life cycle with the

user's hand in a starting position was not used; in fact, the assumption that the user's hand

was present in the scene was not used either. So the proposed solution first addresses the

problem of analyzing the scene and interpreting whether what it sees is actually the user's

hand. If that is the case, then pose and rotation recognition is done in each frame. Finally, all

the information is processed together using a finite state machine to generate the 3D gesture.

Considering the importance of applying 3D recognition in real time, it became clear that

the required image processing must be as simple as possible. Therefore, a novel and simple

feature set was proposed and evaluated. This can be obtained using a small number of image

processing operations. Based on the accuracy results obtained during the performance

50

evaluation, the feature set seems to model the samples space in such a way that good level of

classification can be achieved.

Additionally, as a result of the evaluations, it can be concluded that overall the SVM-SMO

classification algorithm has the best performance. Moreover, if further accuracy is needed,

more complex kernels can be used only requiring some extra effort during the training

process which needs to be executed only once and off line.

Finally, the integration into the Sparsh UI framework created a connection between the 3D

gesture recognition through Computer Vision and 2D gesture recognition done on touch

surfaces. Actually, using the previously mentioned integration applications (which were

originally were designed to run over touch surfaces) can now be used with much less

expensive hardware.

A demonstration video of the recognition system where the three classifiers are shown

independently can be seen on youtube.com [24].

 5.1.1. Future Work

The goal of this research was to present a complete solution for the 3D gesture recognition

problem and show it to be reliable. However, there is room for improvement and for new

experiments. Some of these new opportunities have already been identified.

The system developed in this research was trained with only the right hand, so it only

processes right-handed gesture. However, it would be interesting to include left-handed

gestures, which could be done by either mirroring the image and then comparing the

classification results of the original image and the mirrored, or by adding the necessary

samples to the current training set.

51

It would also be interesting to develop an algorithm to dynamically define the best depth

window size when thresholding from the closest point. In this research, a depth window of 20

levels of gray was used; however, being able to dynamically adjust the window's size would

help to obtain more accurate classification. This problem has several challenges. First, the

required depth depends not only upon the hand’s distance from the camera, but also on the

hand’s pose; whereas a hand pointing towards the camera would require a large depth

window, a hand showing its palm to the camera can be solved with a much smaller window.

Possibly considering previous frames and their hand pose classification would help develop a

window that would better fit the current hand position. Another option is to use a similar

approach, such as Malassiotis and Strintzis [30], and apply some variation of the threshold,

cluster, and merge algorithm.

Frames can also be used to improve the performance of the classifiers in the current frame.

One approach for this could be the application of Hidden Markov Models after having the

initial classification to either validate or change the initial classification. To apply this idea,

they should return the probability distribution over the different classes and allow the HMM

machine to finally decide the classification class instead of having the current classifiers

returning the resulting class.

Another future improvement would be to analyze the impact of having more granularity

when building the feature set. Currently, only 65 features are build-based in the 8x8 windows

in which the input image is divided. It would be interesting to analyze the impact of having

256 features by building 4x4 windows, while leaving the rest of the functionalities as they

currently work.

Finally, the natural next step is to generate more test cases with different users to cross

52

validate the results obtained in this work. Additionally, a usability test with several trained

and untrained users would give valuable information about the affordances of the 3D gestures

and the usability of the ZCam driver for Sparsh UI applications.

53

 6. References

1. Al-Rajab, Moaath and Hogg, David and Ng, Kia. A Comparative Study on Using Zernike

Velocity Moments and Hidden Markov Models for Hand Gesture Recognition. Articulated

Motion and Deformable Objects, 5098. 319-327, 2008

2. Alon, Jonathan and Athitsos, Vassilis and Yuan, Quan and Sclaroff, Stan. Simultaneous

Localization and Recognition of Dynamic Hand Gestures. Motion and Video Computing,

2005. WACV/MOTIONS '05 Volume 2. IEEE Workshop on, 2. 254-260, 2005

3. Athitsos, V. and Sclaroff, S.. Estimating 3D hand pose from a cluttered image. , 2. II-432-

9 vol.2, 2003

4. Bernhard Scholkopf and Patrice Simardz and Alex Smolay and Vladimir Vapnikz. Prior

Knowledge in Support Vector Kernels. Advances in neural information processing

systems, . , 1998

5. Björn Stenger. Template-Based Hand Pose Recognition Using Multiple Cues. Springer

Berlin / Heidelberg. . 2006

6. Caifeng Shan and Tieniu Tan and Yucheng Wei. Real-time hand tracking using a mean

shift embedded particle filter. Pattern Recognition, 40. 1958 - 1970, 2007

7. Caifeng Shan and Yucheng Wei and Tieniu Tan and Ojardias, F.. Real time hand tracking

by combining particle filtering and mean shift. , . 669-674, 2004

8. Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer. M. Jordan

and J. Kleinberg and B. Schölkopf. 2006

9. Dan Luo and Jun Ohya. Hand-gesture extraction and recognition from the video sequence

acquired by a dynamic camera using condensation algorithm. Intelligent Robots and

54

Computer Vision XXVI: Algorithms and Techniques, 7252. 72520S, 2009

10. E. Osuna and R. Freund and F. Girosi. Improved training algorithm for support vector

machines. Proc. IEEE NNSP, . , 1997

11. Feng-Sheng Chen and Chih-Ming Fu and Chung-Lin Huang. Hand gesture recognition

using a real-time tracking method and hidden Markov models. Image and Vision Computing,

21. 745 - 758, 2003

12. G. J. Iddan \& G. Yahav. 3D Imaging in the studio. The Society of Photo-Optical

Instrumentation Engineers, 4298. 48, 2000

13. Hideto Oda and Bilan Zhu and Junko Tokuno and Motoki Onuma and Akihito Kitadai

and Masaki Nakagawa. A Compact On-line and Off-line Combined Recognizer. Tenth

International Workshop on Frontiers in Handwriting Recogntion, 1. 133–138, 2006

14. Holsti, OR. Content analysis for the social sciences and humanities. Addison-Wesley Pub.

Co. . 1969

15. Huang, Jin and Ling, Charles X.. Using AUC and Accuracy in Evaluating Learning

Algorithms. IEEE Trans. on Knowl. and Data Eng., 17. 299--310, 2005

16. Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and

techniques. . Morgan Kaufmann. 2005

17. J. Holub and B. Nekolny and M. Van Waardhuizen. Recognition of American Sign

Language using the 3DV ZCam. http://www.vrac.iastate.edu/575x/S09/doku.php?

id=projects:project1, . , 2009

18. Jianjun Ye and Hongxun Yao and Feng Jiang. Based on HMM and SVM multilayer

architecture classifier for Chinese sign language recognition with large vocabulary. , . 377-

380, 2004

55

19. JR Quinlan. C4.5: Programs for Machine Learning. Publishers Inc., San Francisco, CA,

USA. Morgan Kaufmann. 1993

20. Kaustubh Srikrishna Patwardhan and Sumantra Dutta Roy. Hand gesture modelling and

recognition involving changing shapes and trajectories, using a Predictive EigenTracker.

Pattern Recognition Letters, 28. 329 - 334, 2007

21. Kikuo Fujimura and Lijie Xu. Sign Recognition Using Constrained Optimization.

Springer Berlin / Heidelberg. . 2007

22. Lee, Jaeseon and Park, Kyoung and Hahn, Minsoo. The 3D Sensor Table for Bare Hand

Tracking and Posture Recognition. Advances in Multimedia Modeling, 4351. 138--146, 2006

23. Lizhong Gu and Jianbo Su. Natural hand posture recognition based on Zernike moments

and hierarchical classifier. Robotics and Automation, 2008. ICRA 2008. IEEE International

Conference on, . 3088-3093, 2008

24. Lucas Bonansea. Demonstration video of the 3D gesture recognition system using Zcam

and SVM. http://www.youtube.com/watch?v=VsM0a_3I1_Q. 2009

25. Marcel, S. and Bernier, O. and Viallet, J.-E. and Collobert, D.. Hand gesture recognition

using input-output hidden Markov models . , . 456-461, 2000

26. Nitesh V. Chawla and Kevin W. Bowyer and Lawrence O. Hall and W. Philip

Kegelmeyer. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial

Intelligence Research, 16. 321-357, 2002

27. Platt, John C.. Fast training of support vector machines using sequential minimal

optimization. , . 185--208, 1999

28. Rafael Jordan-Osorio and Vlad Sukhoy. Proteins visualization control using hand

gestures. http://www.vrac.iastate.edu/575x/S09/doku.php?id=projects:project2. 2009

56

29. Ramanahally, P. and Gilbert, S. and Anagnost, C. and Niedzielski, T. and Velázquez, D.

Creating a Collaborative Multitouch Computer Aided Design Program. Proc. of WinVR, . ,

2009

30. S. Malassiotis and M.G. Strintzis. Real-time hand posture recognition using range data.

Image and Vision Computing, 26. 1027 - 1037, 2008

31. Sateesh Kodavali and Ankit Patel and Emmanuel Owusu. Demonstration video of the

application "Z-Space: 3D Modeling Using Hand Gestures"..

http://www.youtube.com/watch?v=yG_gt86Sghg. 2009

32. Sateesh Kodavali and Ankit Patel and Emmanuel Owusu. Z-Space: 3D Modeling Using

Hand Gestures. http://www.vrac.iastate.edu/575x/S09/doku.php?id=projects:project10. 2009

33. Segen, J. and Kumar, S.. Shadow gestures: 3D hand pose estimation using a single

camera. , 1. -485 Vol. 1, 1999

34. Sushmita Mitra and Tinku Acharya. Gesture Recognition: A Survey. Systems, Man and

Cybernetics - Part C: Applications and Reviews. IEEE Transactions on, 37. 311-324, 2007

35. Thad Starner and Alex Pentland. Real-Time American Sign Language Recognition from

Video Using Hidden Markov Models. AAAI Technical Report FS-96-05, . , 1996

36. Thad Starner and Joshua Weaver and Alex Pentland. Real-Time American Sign Language

Recognition Using Desk and Wearable Computer Based Video. IEEE PAMI '98, . , 1998

37. Yen-Ting Chen and Kuo-Tsung Tseng. Multiple-angle Hand Gesture Recognition by

Fusing SVM Classifiers. , . 527-530, 2007

38. Yikai Fang and Kongqiao Wang and Jian Cheng and Hanqing Lu. A Real-Time Hand

Gesture Recognition Method. Multimedia and Expo, 2007 IEEE International Conference

on, . 995-998, 2007

57

39. Ying Wu and Huang, T.S.. Capturing articulated human hand motion: a divide-and-

conquer approach. , 1. 606-611 vol.1, 1999

40. Ying Wu and Huang, T.S.. View-independent recognition of hand postures. , 2. 88-94

vol.2, 2000

41. Youbin Chen and Xiaoqing Ding and Youshou Wu. Off-line handwritten Chinese

character recognition based on crossing line feature. , 1. 206-210 vol.1, 1997

42. Yun Liu and Zhijie Gan and Yu Sun. Static Hand Gesture Recognition and its Application

based on Support Vector Machines. , . 517-521, 2008

43. Zhenyao Mo and Ulrich Neumann. Real-time Hand Pose Recognition Using Low-

Resolution Depth Images. Int. Conf. on Computer Vision and Pattern Recognition, . , 2006

	2009
	3D Hand gesture recognition using a ZCam and an SVM-SMO classifier
	Lucas Bonansea
	Recommended Citation

	3D Hand gesture recognition using a ZCam and an SVM-SMO classifier

