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Abstract

The increasing number of new and complex computer-based applications has generated a 

need for a more natural  interface between human users and computer-based applications. 

This  problem can  be  solved  by using  hand  gestures,  one  of  the  most  natural  means  of 

communication between human beings. The difficulty in deploying a computer vision-based 

gesture application in a non-controlled environment can be solved by using new hardware 

which  can  capture  3D information.  However,  researchers  and  others  still  need  complete 

solutions to perform reliable gesture recognition in such an environment. 

This paper presents a complete solution for the one-hand 3D gesture recognition problem, 

implements a solution, and proves its reliability. The solution is complete because it focuses 

both on the 3D gesture recognition and on understanding the scene being presented (so the 

user does not need to inform the system that he or she is about to initiate a new gesture). The 

selected approach models the gestures as a sequence of hand poses. This reduces the problem 

to  one  of  recognizing  the  series  of  hand  poses  and  building  the  gestures  from  this 

information. Additionally, the need to perform the gesture recognition in real time resulted in 

using a simple feature set that makes the required processing as streamlined as possible.

Finally, the hand gesture recognition system proposed here was successfully implemented 

in two applications, one developed by a completely independent team and one developed as 

part of this research. The latter effort resulted in a device driver that adds 3D gestures to an 

open-source, platform-independent multi-touch framework called Sparsh-UI.
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 1. Introduction

The rapid evolution of computer-based technology and the growing number of complex 

applications have increased the need for more natural means of interaction between human 

users and computer systems. Although keyboard and mouse have been successfully used as 

main interfaces in many applications, more complex applications require more natural means 

of interaction. Gestures are one of the most natural forms of human interaction, so they offer 

a good solution for those applications. 

Using gestures as an interface with complex applications would allow users to interact 

with visually complex systems. Using a mouse and keyboard is difficult in these systems 

because they are designed for working in a 2D space, whereas generally visually demanding 

systems require users to interact in a 3D space. Anther interesting context in which gestures 

seem to fit better than keyboard and mouse is a public setting or conference when the user is 

required to play a more active role with respect to the environment. 

There are two main groups of gesture interfaces with computer-based applications: those 

based  on  touch  surfaces  or  stylus-based  tablets,  and  those  based  on  computer  vision 

(cameras).  Touch  surface  gestures  are  already  part  of  people's  everyday  life—examples 

include touch phones like Apple's iPhone, the Samsung SGH-F480 or the HTC P347, and 

CNN's “Magic Wall” used during the 2008 U.S. presidential elections. Although great effort 

has been invested in computer vision-based gestures, they have not yet reached the popularity 

of touch-based gestures. Possibly this is because of the great difficulty that computer vision 

systems have with understanding the scene presented by the camera. The availability of new 

3D hardware appears to be an important step in mitigating this problem.
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 1.1. Motivation

The goal  of  this  work is  to  propose  a  complete  solution for  the  one-hand 3D gesture 

recognition problem using a 3D camera called ZCam [12] and Support Vector Machines [4]. 

The  solution  claims  to  be  complete  because  it  focuses  on  recognizing  a  gesture  and 

understanding the scene so users can start and stop gestures at any moment—other special 

postures or interactions such as a keyboard or mouse are not necessary. Additionally, this 

research has a secondary goal to consider the importance of being able to recognize gestures 

in real time (which requires processing to be as simple as possible). 

Thus, the specific research question is:

Is  it  possible  to  create  a  complete  gesture  recognition  system using  the  ZCam which 

recognizes  previously-trained  hand gestures  in  real  time and does  not  require  any other  

interaction from the user?

The selected approach to address these goals is to model the 3D gestures as a sequence of 

poses,  reducing  the  problem to  a  hand  pose  recognition  problem.  However,  hand  pose 

recognition by itself is not enough to achieve the goal of developing a complete system. To 

understand the scenario at all times, hand recognition and tracking must also be considered. 

Finally, the hand pose recognition problem was refined into pose and rotation recognition 

where the pose of the hand is considered independent of the rotation angle. 

 1.2. Related Work 

Computer-based  applications  are  constantly  evolving  into  more  complex  systems  that 

require a more active interaction with the user. In this context, keyboard and mouse are no 

longer ideal interfaces; there is an increasing need for more natural interfaces. Gestures are 

one of the most natural means of communication between humans, so it is not surprising that 
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human computer interaction based on gestures has become an important theme of research in 

recent years. 

Research in computer vision-based gestures had a strong breakthrough in the early to mid-

1990s. It remains an active research area, and much work has been done over the last few 

years. The more advanced hardware now available provides an opportunity for many new 

advancements. To address the related work, it is better to divide the research into classes, 

although these classes are not completely separate. One approach is to consider how gestures 

are modeled for recognition. In this sense, there are two main groups of researchers: those 

who consider the gesture as a sequence and focus their efforts on comparing such sequences, 

and those who consider the gesture to be the sum or concatenation of several static poses and 

focus their effort on recognizing each static pose. 

For the group which considers the gestures dynamically in sequences, the general approach 

is to consider different feature sets to train Hidden Markov Models (HMM) classifiers or 

similar algorithms. This approach is interesting because it deals with a series of movements 

in a way that is less susceptible to low image resolution or to losing some frames during the 

execution of the gestures. However, this approach is more susceptible to the execution of the 

gesture, so when new users who are not well trained don’t perform the gesture perfectly, this 

type  of  classifiers  has  a  hard  time.  Some  relevant  researchers  using  this  approach  are 

Pentland, Sclaroff, Starner, and Wei. [35], [36], [7], [11], [2].

Starner  and  Pentland  [35] propose  extending  the  use  of  HMM  from  speech  and 

handwriting recognition to visual gesture recognition. By doing so, they were able to model 

American  Sign  Language  (ASL)  gestures  without  modeling  hands  and  fingers.  Starner, 

Weaver,  and  Pentland  [36] extended  their  previous  work  to  recognize  ASL sentences, 
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tracking the user's unadorned hands using a desk-mounted camera and a wearable camera 

attached to the user's cap. 

Chen et al.,  [11] use hand tracking and movement detection to identify candidate regions 

where a feature set based on spatial and temporal information is extracted and used to feed a 

HMM classifier for gestures recognition.  Alon et al., [2] recognize that using techniques like 

skin color detection, movement analysis, and background subtraction can be very helpful for 

gesture  recognition,  but  they  are  not  reliable  with  more  complex  backgrounds  so  they 

propose to  wrap the results  of the skin color detection and movement  analysis  into time 

sequences and then do their gesture recognition by comparing such sequences. To do this, 

they propose an extension of the dynamic time wrapping algorithm called Dynamic Space-

Time Wrapping (DSTW) algorithm.

Researchers who consider the gestures as a combination of static poses focus their work on 

different means of processing and recognizing hand poses in each frame. Then the gesture is 

built  by  combining  the  previously  obtained  information.  In  this  group,  the  preferred 

classification mean is diverse, ranging from statistical analysis to image-based classification 

like  eigenspaces  to  machine  learning  classifiers  like  neural  networks  or  Support  Vector 

Machines (SVM). One advantage of this approach is that it builds the gesture based on the 

known poses. Once the classifiers are trained in a given set of poses, a considerable number 

of gestures can be built. Actually, new gestures can be built without needing new training, as 

long as no new hand pose is required. Some  prominent authors in this group are Huang, 

Strintzis, Stenger, Neumann, and Wu [39], [40], [3], [43], [5], [6], [20], [1], [23]. Moreover, 

it  is worth noting that Tseng, Sun, and Jiang  [37],  [42],  [18] use SVM as their preferred 

classification method.
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Wu and Huang [39], [40] recognize the intrinsic difficulties of modeling the human hand 

and its articulations. In [40], they propose an appearance-based learning approach to handle 

large variations of linear points. To alleviate the learning process, they use a combination of 

supervised and unsupervised learning paradigms and a large number of unlabeled training 

samples.  In  [39],  they  propose  a  two-step  iterative,  model-based  algorithm  to  capture 

articulated human hand and motion. 

Shan et al., [6] integrate two successful visual tracking approaches such as particle filtering 

and mean shift to improve their hand tracking process. Patwardhan and Roy [20] propose an 

eigenspace framework which models hand gestures based on both hand shape and motion 

tracking.  Al-Rajab  et  al.,  [1] and  Gu  and  Su  [23] use  Zernike  moments  for  gesture 

recognition.

Chen and Tseng  [37] use a combination of three SVM classifiers to recognize multiple-

angle hand postures in finger guessing games. Liu et al., [42] propose an algorithm based on 

Hu moments and SVM to recognize hand postures and evaluate whether or not the hand can 

meet the requirements of a driver’s license test. Finally, Ye et al.,  [18] combine the greater 

classification power of SVM (when dealing with good generalization properties and limited 

samples) with HMM (which are good for dealing with sequences) to recognize Chinese sign 

language.   

Another  relevant  method  of  classifying  the  current  work  done  on  Computer  Vision 

gestures is to study the input data used to analyze the gestures. Again, there are two main 

groups: those that work with 2D streams and those that have available 3D information about 

the scene. 

Working in 2D has an important advantage in that it uses the least expensive hardware that 
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is  available.  However,  the  problem  of  analyzing  the  scene  is  more  difficult.  Several 

techniques are used to address the problem of understanding the scene such as skin color 

detection, movement analysis, and background removal. Although many of these techniques 

have been refined throughout the years, they are still not completely reliable. Background 

objects have colors which are easily confused with skin color, and background noise can 

disturb both movement analysis and background removal. Nonetheless, new algorithms to 

mitigate these problems are being developed and published. Some authors who have done 

interesting work in this group are Cheng, Lu, Collobert, and Xu. [38], [25], [21], [34], [9]. 

Starting with an specific gesture, Fang et al.,  [38] use motion and color cues to perform 

hand detection and tracking. Fujimura and Xu [21] address the problem of recognizing those 

sign language signs which include hand overlapping by converting the input blob into a 

graph that represents the finger and the palm of the user's hand and processing the new graph 

by either subdivision or integer programing.    

Completed work based on 3D input has increased in recent years, as the required hardware 

is now more accessible [22], [12]. There are many advantages to working with 3D input data 

because many of the background problems that are difficult to solve in a 2D environment are 

easily avoided with the new information. In general, the main concern when working with 

3D data is how to use the depth information to separate the relevant information of the scene 

from the background. Nevertheless, many, if not all, the techniques used in 2D environments 

are also used in this new environment as they help researchers understand the information 

being presented in order to make more intelligent threshold operations. Various authors in 

this field are Kumar, Ohya, and Strintzis [33], [30], [17].

Malassiotis and Strintzis  [30] propose a 3D gesture recognition based on hand poses. It 
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includes obtaining 3D information of the scene by illuminating it with a colored pattern, 

segmenting the arm and the hand, classifying the hand posture, and finally recognizing the 

3D gesture. 

Finally, Holub et al.,  [17] use the ZCam to implement an ASL recognition system which 

starts with skin color detection and depth information and implements an HMM classifier.  

 1.2.1. The approach in this research

The research presented in this paper uses an approach that is a pose-based recognition 

using 3D information. The goal is to build a complete solution to the problem of identifying 

one-hand 3D gestures that include understanding the scene being presented without assuming 

the user's presence, identifying the user's hand pose and rotation angle in every frame, and 

constructing the 3D gesture. The static pose approach was selected because one of the visible 

applications of this work is to integrate it within a multi-touch framework, thus combining 

the two main gesture environments. This integration requires an ability to rapidly generate 

new  gestures—possible  if  a  wide  enough  set  of  poses  is  included  for  training.   The 

availability of the ZCam hardware that provides 3D data was the main factor in choosing 

such input. 

Finally, one of the main contributions of this work, with respect to previous work in pose 

recognition using SVM, is to consider the entire problem without assuming that the user's 

hand is present in the scene. This would allow the application, once integrated in the multi-

touch framework, to run smoothly even when the user leaves or rests his or her arms. Another 

interesting contribution is the proposed feature set with very little image processing effort 

required which facilitates the gesture recognition being done in real time. 
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 2. Methods

 2.1. Overview of the implemented solution

As previously stated, the selected approach to address the 3D gesture recognition problem 

is to model the gestures as a sequence of poses. Thus, the gesture recognition problem is 

reduced  to  a  hand  pose  recognition  problem  using  3D  information  about  the  scene. 

Additionally, to completely solve the 3D gesture recognition problem, hand presence/absence 

and  rotation  recognition  are  also  considered.  This  redefines  the  problem  into  a  triple 

recognition problem: first, presence/absence of the user's hand; second, the pose of the user's 

hand; and third, the rotation angle of such pose. 

Figure 1 shows a high-level view of the design of the implemented solution. The starting 

point for the application's data flow is the two 30 FPS streams: one with depth information 

and one with color video of the scene, produced by the ZCam. Each frame is considered 

separately for analysis. After some simple image processing operations (described in more 

detail further on in this document), one or more candidate regions are identified from each 

frame. Each of these candidate regions is extracted, resized to a 64x64 image, and named 

“normalized  candidate  region  image.”  From  each  of  these  normalized  candidate  region 

images a novel feature set (also described further on in the document), is extracted and used 

as input for 3 SVM classifiers. There is one for each of the previously stated subproblems: 

the user's hand presence/absence, its pose, and its rotation.  
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Figure 1. Application's data flow diagram.

 2.2. Depth information acquisition and usage

A 3D web cam called ZCam developed by Yahav and 3DV systems [12] was used as the 

3D data input device.  The ZCam generates infrared light  pulses by laser  diodes that  are 

reflected by the objects  in front of the camera.  By capturing such reflections,  the device 

calculates for each pixel the exact distance to the objects in the scene being represented by 

the pixel. This process is illustrated in Figure 2. In (A), the camera generates infrared pulses 

that, when reflected in the object, provide the depth information (B). 
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Figure 2. ZCam 3D data acquisition.
Image adapted from Yahav's 3D imaging in the studio. [12]

The ZCam inputs two 320 x 240 images into the system in a rate of 30 FPS (See Figure 5 

(A)). The first image is the depth image. This is a gray scale image which reflects the depth 

information where the brighter the pixel, the closer the object to the camera using 256 levels 

of  gray.  The second image is  the RGB image.  This  is  a  color  image similar  to  the one 

provided by a normal web cam.  

The ZCam builds its depth information of the scene in such a way that the resulting image 

represents a  view of the scene from the perspective of the camera.  However,  to  build  a 

consistent 3D model of the scene, the depth component of the object's representation should 

be independent of whether the object is in front of the camera or towards the edge of the 

image.  Figure 3 illustrates the perspective problem where Objects 1 and 2 are both aligned. 

They have the same depth value, but the ZCam places Object 2 farther away (darker) than 

Object 1 because of the perspective problem.

Figure 3. Illustration of the perspective problem where both Objects 1 and 2 are aligned. 
They have the same depth value, but the ZCam places Object 2 farther away (darker) than Object 1 because that is the 

ZCam's perspective.
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To solve the perspective problem, the trigonometry shown in Figure 4 was applied, with 

the result that the pure depth or vertical (z) component for each pixel is obtained by: 

d 2−center.x− pixel.x 2center.y−pixel.y 2

Where center.x and center.y are the x and y coordinates of the center of the depth image, 

pixel.x and pixel.y are the x and y coordinates of the pixel for which the vertical component is 

being obtained, and d is the actual depth value given by the ZCam for the given pixel. 

Figure 4. Trigonometry used to solve the perspective problem.

After  solving the ZCam's  perspective problem and mirroring both the ZCam's  original 

images, a new version of both frames is obtained as shown in  Figure 5 (B). Note how the 

background noise in both left and right sides of the new image are lighter than in the original 

image—that is a result of fixing the perspective.  

Assuming that if the user's hand is present in the scene it will be closer to the camera than 

the rest of the body, the approach was to identify the pixel closest to the camera (the brighter 
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pixel) and threshold the depth image so it would only consider a small window of depth 

starting from the closest point (20 levels of gray). The new depth image would only contain 

blobs for the closest objects. These blobs are extracted and resized into a new 64x64 image 

shown in  Figure 5 (C) which in turn will be the input from where the feature set will be 

extracted and fed to the classifiers. 

Figure 5. Image processing evolution.
A: Original images generated by the ZCam.

B: Resulting images after being mirrored and applied the perspective problem fix.
C: Resulting image after thresholding 20 levels of gray from the closest point, extracting the blob, and resizing into a 

new 64x64 image.

 2.3. The feature set 

When designing  a  feature  set,  the  goal  is  to  identify  a  set  of  characteristics  that  will 

separate  samples  of  one  class  from samples  of  another.  A good  feature  set  is  one  that 

correctly separates samples of different classes. However, as the set of characteristics grows 

larger or more complex, the required effort to process them also increases. Therefore, if two 
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feature sets achieve the same sample separation, the feature set with simpler characteristics is 

preferable over the one with more complex characteristics. In the case of this research, the 

samples to be separated are samples of the different hand poses, samples of the different 

rotation poses, and samples where the hand is present and where it is not. Using the input of 

the normalized candidate region image, a novel feature set based on simple characteristics is 

proposed to model the sample universe and to separate samples of different classes. The main 

idea is to detect alternations or “jumps” between black (void) and some level of gray (hand) 

using the number and size of the jumps as the chosen characteristics that form the feature set. 

Alternations between black and gray characterize how many fingers the user shows and 

whether  they are  separated.  For example,  if  the image is  an open hand with the fingers 

pointing up, there should be several small jumps in the upper rows of the image. If the image 

is a closed fist, then the number of alternations should be quite low as the image would be 

similar to a solid block in the center of the screen. Moreover, if the image is a single pointing 

finger, then there will be a smaller solid block (the finger) and a bigger one (the rest of the 

hand) in the image. Figure 6 shows the open hand and the pointing hand examples where the 

jumps of the highlighted row (red) are show in blue and towards the right of the image. 

The same concept of searching for jumps is used to capture the 3D information of the 

image. Given that the closer the object is to the camera, the brighter the pixel that represents 

that  object,  the  brightness  levels  can  be  used  to  find  the  jumps  in  depth  plane.  So,  for 

example, in the case of a hand pointing with one finger to the camera, there would be a big 

jump for the finger and a smaller jump for the rest of the image. Figure 6 shows two images 

of hands pointing to the camera: in the first image there is an open hand where only the index 

and the little finger are extended; in the second image, the hand is closed and pointing only 
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with one finger. The corresponding jumps are again drawn in blue towards the right of the 

image.     

 
Figure 6. Hand characterization based on black and gray alternations. 

In the upper images, jumps are used to distinguish between an open hand and a pointing hand. In the lower images, 
jumps based on brightness intensity are used to distinguish between two hands pointing to the camera. 

To implement the previously described feature set, an extension of the algorithm is used 

for handwriting recognition [13],  [41]. The handwriting recognition algorithm starts from a 

64x64 image and divides it into 64 8x8 windows. Then for each window, it searches for 

vertical,  horizontal,  and diagonal  patterns.  In  this  work,  the normalized candidate  region 

image is divided into 64 8x8 windows as shown in Figure 7, where each of these windows is 

represented by an integer in the feature set. Note that using 8x8 windows in a 64x64 image 

results  in  a  64  elements  feature  set,  so  using  smaller  windows would  help  obtain  more 

detailed information of the candidate region image, but would also require a bigger feature 

set,  which in turn would require more processing effort.  Each of these 8x8 windows are 

divided  again  into  four  4x4  smaller  windows,  where  each  of  these  last  windows  are 

represented by a flag in a 4-bit number. The flag of the 4x4 window will be turned on (1) if at 

least one of the 4x4 bits is not 0 (a bit in 0 means black or absence of object in front of the 
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camera). It will be 0 otherwise. So for each of the 8x8 windows, there will be a number 

between 0 (there is no object in the 8x8 window) and 15 (the window is completely covered) 

which represents the presence or absence of an object in that window.  Figure 7 shows an 

example of a normalized candidate region image divided into the 64 8x8 windows, and then 

shows how three of these windows are divided again into four 4x4 inner windows that in turn 

are used as flags in a 4-bit number as previously explained. 

Figure 7. Feature extraction from normalized candidate region image. 
This figure shows the extracting back and gray alternations process  by first dividing the image into 64 8x8 windows 

and then dividing each of these windows again into four 4x4 inner windows and using these last windows as flags in a 
4-bit number. In the image, three of the 64 8x8 windows are highlighted to show how they are divided again into 4x4 

inner windows.

The depth information is also relative to the 8x8 windows. Taking advantage of the fact 

that the normalized candidate region image has a fixed depth (20 levels of gray), the depth 

window is divided into four equidistant regions numbered from one to four, where one is the 

closest region (with larger depth values) and four is the farthest region (with lower depth 

values) as shown in Figure 8. Then for each of the 8x8 windows, the pixel with the highest 

depth value is considered and set into one of the previous four regions. The depth region 
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number  for  the  closest  pixel  of  the  window would  be  the  rightmost  digit  of  the  integer 

describing the window in the feature set.

Figure 8. 20 levels of gray divided into regions. 
Dividing the 20 levels of gray into four equal regions to characterize the depth level of each of 8x8 windows in which 

the image was divided.

So up to this point, the feature set is composed by 64 3-digit numbers, one for each of the 

8x8  windows,  where  each  of  these  numbers  contains  information  about  the  black  gray 

alternations as well as brightness or depth alternations. 

There is a 65th integer included in the feature set. It is a flag that would take value 1 if the 

TDV  hand-tracking  tool  provided  by  the  ZCam  SDK  recognizes  a  hand,  and  value  0 

otherwise.  R. Jordan-Osorio and Sukhoy  [28] did a survey analyzing the accuracy of the 

TDV hand-tracking tool with the following results:
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Table 1. Accuracy of the TDV hand tracking tool provided by the ZCam SDK.
From Proteins visualization control using hand gestures [28].

Notice that in all cases, the hand is placed with the fingers pointing up. The accuracy drops 

when the hand is rotated to other positions. 

 2.4. The classifiers

Three classifiers were implemented. The first classifier (called “hand classifier”) decides if 

the  image  being  analyzed  corresponds  to  a  hand  or  not.  If  the  image  is  classified  to 

correspond to a hand, then the second classifier (called “pose classifier”), categorizes the 

hand  into  one  of  the  predefined  poses  or  the  “other/undefined  pose.”  Finally,  the  third 

classifier (called “rotation classifier”) defines the rotation of the hand as it best approximates 

one of the predefined rotation angles.    

Both the pose classifier and the rotation classifier can be trained for a different number of 

poses and different rotation angles. Neither the algorithm nor the application restricts the 

number of poses or rotations, and there is also no restriction on including any specific pose or 
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rotation angle. In this case, six1 different poses were predefined: fist, open hand with separate 

fingers, open hand with fingers together, pointing hand (with one and two fingers), showing 

two fingers, and showing three fingers. Regarding the rotation, five different rotation angles 

or  positions  were  predefined:  left,  up-left,  up,  up-right,  and  right.  See  Figure  9 for  an 

illustration of the poses and rotation positions.

Figure 9. Selected poses and rotation positions.

All three classifiers were implemented as Support Vector Machines (SVM) trained through 

the Sequential Minimal Optimization (SMO) algorithm using Weka's [16] API (Application 

programming interface).

 2.4.1. Support Vector Machines and Sequential Minimal Optimization algorithms

Support  Vector  Machines  classifiers  (invented  by  Vapnik  in  1979),  try  to  find  an 

hyperplane that separates samples of the different classes, maximizing the distance between 

the decision boundary and any of the samples. The minimum of these distances between the 

1 6 poses and 5 rotation positions were predefined as the combinations of them would cover an interesting 
number of possible gestures. If needed more poses and more rotation positions could be added.



19

decision boundary and each sample is called the margin [8]. 

Figure 10. Support Vector decision boundary.

Assuming the sample set is linearly separable, the decision boundary is obtained through:

g x= wtxb

Where w is the weights vector, x is the samples features (input) vector, and b is a constant. 

The algebraic distance of a point (sample) to the decision boundary and the margin of the 

training set are:

distancei=
g x 
||w ||

margin=mini

t i g  x i
||w ||

Where ti ∈ {-1, +1} and if a data sample is correctly classified, then ti g(xi) > 0. Given that 

the definition of an hyperplane does not change when rescaled and that the margin also is not 
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affected by rescaling, it is possible to rescale so that mini ti g(xi) = 1, then the margin is now 

equal to 1/||w||, so minimizing ||w|| would maximize the margin. Then the resulting quadratic  

programming (QP) minimizing problem is:

Minimize
wt w
2

subject to
t i w

txb≥1 i=1, ... , n

Through Lagrangian theory, the dual optimization problem for the previous primal is:

Maximize

Ld =∑i
i−

1
2 ∑i , j

i j t i t j x i⋅x j

subject to
∑i

i ti=0
i≥0 ∀ i

 

The Karush-Kuhn-Tucker (KKT) conditions for the previous problems optimal solutions 

are:

w=∑ i t i x i

∑i t i=0
i≥0
t i w xb−1≥0
i[ t iw xb−1]=0
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Then, only the samples xi for which ti (wi xi + b) = 1 can have αi ≠ 0. These samples are the 

support vectors as they are the closest samples to the decision boundary and they contain all 

the necessary information to reconstruct the decision boundary hyperplane.

In case the samples  are  not  linearly separable,  “slack” variables  are  introduced in  the 

primary problem to relax the constraint that all training data must be correctly classified. The 

slack variable ξi represents how much the sample xi fails to respect the margin of 1 from the 

deciding boundary. After introducing the slack variables the primal quadratic programming 

problem definition is:

Minimize
wt w
2

C∑i
i

subject to
t i w

txb≥1−i i=1, ... , n
i≥0 i=1, ... , n

where  the  ξi is  the  slack  variable  and C is  a  constant  penalty  for  usage  of  the  slack 

component. The dual problem with slack variables would be:

Maximize

Ld =∑i
i−

1
2 ∑i , j

i j t i t j x i⋅x j

subject to
∑i

i ti=0
0≤i≤C ∀ i

Again the support vectors are the only samples for which ti (wi xi + b) = 1 - ξi  meaning 
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that αi ≠ 0. 

In many cases, classes are not linearly separable. A possible solution is to use non-linear 

transformations into a feature space where the data becomes separable. The problem here is 

dealing with high dimensional feature spaces and the high risk of overfitting. To avoid the 

problems of working with high dimensional feature spaces, kernel functions can be used as 

long as the data points only appear inside dot products. A kernel is a function which returns 

the result of the dot product of the images of the samples in the new feature space, even when 

the transformation function Φ is not known:

K  x1, x2= x1
t x2

 

Given that in the dual representation of the problem, samples only appear in a dot product, 

so kernel substitutions can be done. The final dual representation is:

Maximize

Ld  =∑i
i−

1
2 ∑i , j

i j t i t j K x i , x j

subject to
∑i

i ti=0
0≤i≤C ∀ i

For  the  particular  case  of  this  work,  a  polynomial  kernel  was  used  based  on  Weka's 

implementation:

K x1, x2= x1⋅x2
d
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SMO is an algorithm for training support vector machines proposed by Platt  [27]. The 

main problem when training SVM is the size of the QP problem that involves a matrix of size 

square to the number of training samples. There are several methods to reduce the size of the 

matrix, but they still require solving the QP problem numerically. 

The SMO algorithm takes advantage of the theorem proved by Osuna et al.,  [10] which 

proves that a large QP problem can be reduced to smaller QP sub-problems as long as at least 

one sample that is not optimized (violates the KKT conditions) is added to the previous sub-

problem.  Based  on  the  previous  theorem,  the  SMO  algorithm would  solve  the  smallest 

possible QP problem, which in the case of SVM includes two Lagrangian multipliers. The 

greatest  advantage  of  the  SMO training  method  is  that  it  only includes  two Lagrangian 

multipliers per step, so it can resolve the QP problem analytically without performing the 

numerical optimization.

There are  two main parts  to  the  SMO training algorithm, solving  the two Lagrangian 

multipliers QP problem and identifying which multipliers to use. 

First, identify the two Lagrangian multipliers to be solved. The algorithm first computes 

the  constraints  on  those  multipliers  and  then  obtains  the  constrained  maximum.  The 

constraint  0  ≤ αi ≤ C restricts the multipliers to lie within a box and the constraint  ∑i  αi ti 

places  the  multipliers  within  a  diagonal  line.  So  both  constraints  together  restrict  the 

multipliers  to lie within a well-defined segment.  The SMO algorithm then calculates the 

maximum  in  the  defined  segment  and  moves  the  Lagrangian  multipliers  to  that  point. 

(Special cases, such as when both ends of the segment have the same objective value, are 

considered in the original paper). 
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Second, identify which of the Lagrangian multipliers should be used. This is done through 

two heuristics: one to obtain the first multiplier and the other to obtain the second one. To 

select the first multiplier, the algorithm goes through all samples once and identifies those 

that do not satisfy the KKT conditions. Then it completes a second loop only through those 

samples where the multiplier  is neither 0 nor C (called the “non-bound samples”), again 

identifying those samples that do not satisfy the KKT conditions. Samples that do not satisfy 

the  KKT conditions  are  eligible  for  optimization.  The  algorithm  selects  the  non-bound 

samples for optimization first,  as they are more likely to change during the optimization 

process. Once all non-bounding samples are optimized, the algorithm moves back to the rest 

of the samples and repeats until finished (the process can include several alternating loops 

over  non-bound  samples  and  total  set  of  samples).  The  second  multiplier  is  selected  to 

maximize the size of the step taken during the optimization process by comparing the errors 

of each sample and choosing the sample that has the biggest error difference with the first 

sample. 
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 3. Classifiers performance results

 A tool was developed to generate both the training set and an independent testing set. The 

generation of both the training set  and the independent testing set  is  an iterative process 

where each cycle consists in recording frames, performing the image processing operations 

described  in  the  previous  section,  classifying  the  resulting  image,  and  generating  one 

training/testing  file  for  each  classifier.  First,  in  each  cycle,  the training tool  records  100 

frames and performs the required image processing to each frame. When each frame is ready, 

the  user  training  the  tool  must  classify  the  resulting  image.  This  is  done  by  pressing 

predefined keys  (H for hand,  N for Not Hand, F for fist,  and so on),  that  automatically 

generates entries for three training files, one for each classifier. For this research, two training 

set were created and labeled, one by the author with 4,956 samples for the hand classifier, 

8,575 for the pose classifier,  and 3,113 for the rotation classifier  and another  one by an 

independent non-computer-science undergraduate user who did not participate in any other 

part  of  the  development  with  8,451  samples  for  the  hand  classifier,  8,098  for  the  pose 

classifier and 8367 for the rotation classifier.  The distribution among classes is shown in 

Table 2. Note that the load among classes was not balanced for the hand and pose classifiers. 

This could cause the classifiers to prefer (classify more frequently) those classes with more 

samples reducing the classifier's accuracy. To avoid such situations, Weka's filter SMOTE 

was used to balance the sample loads.  The SMOTE filter  applies the Synthetic Minority 

Oversampling TEchnique (SMOTE) introduced by Chawla et al.  [26]. It over-samples the 

minority classes by introducing new samples in the line segments joining the original sample 

with its  nearest  neighbors.  As a result  of  applying the filter,  the new training files were 
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balanced, also shown in Table 2.

Class

Author's training Independent user's training

Before 
Balancing

After 
Balancing 
(SMOTE)

Before 
Balancing

After 
Balancing 
(SMOTE)

Hand Classifier
No Hand 1,331 2,662 8,140 8,140
Hand 3,625 3,625 311 1,247

Pose Classifier
Fist 556 1,112 555 1,114
Open 1,236 1,236 1,631 1,631
Closed 1,713 1,713 1,351 1,351
Pointing 1,953 1,953 1,298 1,298
2 Fingers 1,186 1,186 1,542 1,542
3 Fingers 1,192 1,192 1,433 1,433
Other 731 731 288 573

Rotation Classifier
Left 593 593 1,611 1,611
Up-Left 559 559 1,387 1,387
Up 644 644 2,499 2,499
Up-Right 663 663 1,406 1,406

Right 654 654 1,464 1,464
Table 2. Training load for each classifier.

 

Additionally, an independent testing set was generated by the author in a similar manner: 

frames were recorded, classified, and stored in testing files, resulting in 1,491 (255, 1,236) 

test  cases for the hand classifier,  1,237 (105, 211, 248, 236, 169, 125, 143) for the pose 

classifier, and 988 (75, 288, 433, 135, 57) for the rotation classifier. (There is no point in 

balancing the testing set; in fact, balancing the testing set would distort the test results.) The 

process of generating training samples and generating testing samples are similar. But when 
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generating the training samples, the training case (the hands pose and rotation) was defined 

before recording—as the user generated the testing samples, he or she would move his or her 

hand arbitrarily, as any user would do while using the application to perform gestures for the 

camera. This was done to generate more transitions and more natural poses in the testing set. 

Both  training  sets  were  tested  against  the  same  independent  testing  set  to  measure  the 

intercoder reliability among both training sets. 

There are several metrics to evaluate the performance of a classifier. True positive rate 

(TPR) or sensitivity, false positive rate (FPR) or 1 – specificity, and correlation coefficient 

(CC) are commonly used for such purpose and they are defined as follows: 

TPR= TP
TPFN

FPR= FP
TNFP

CC= TP×TN−FP×FN
TNFN TNFPTPFN TPFP

Although these are commonly-used metrics to evaluate classifiers, the evaluation is done 

over a single predefined classification threshold which, if changed, could drastically alter 

classifier behavior. The receiver operating characteristic (ROC) curve evaluates a classifier 

over all possible thresholds. The ROC curve is a plot between the true positive rate versus the 

false positive rate changing the classifier's threshold. The area under the ROC curve (AUC) 

is used as a single number summary of the ROC curve, which could be used as a measure of 

the accuracy of the classifiers (Huang and Ling  [15]). A perfect classifier would have an 

AUC = 1, whereas the worst possible classifier (one that cannot discriminate) would have an 
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AUC = 0.5. Figure 11 illustrates the ROC curve of three classifiers and shows how the best 

classifier is the one with AUC closest to 1.

 
Figure 11. ROC and AUC illustration.

The performance  of  the  three  classifiers  used  in  this  work  (hand,  pose,  and  rotation), 

according to the previously mentioned criteria and for both training sets are summarized in 

Table 3.  
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Using author's training set Using independent user's training set
TPR FPR CC AUC TPR FPR CC AUC

Hand Classifier
No Hand 0.867 0.054 0.775 0.962 0.404 0.017 0.528 0.875
Hand 0.946 0.133 0.775 0.944 0.983 0.596 0.528 0.857

Pose Classifier
Fist 0.810 0.036 0.713 0.970 0.876 0.080 0.625 0.956
Open 0.768 0.065 0.680 0.931 0.308 0.038 0.366 0.796
Close 0.532 0.043 0.562 0.865 0.343 0.111 0.254 0.717
Pointing 0.568 0.042 0.591 0.926 0.771 0.142 0.562 0.871
2 Fingers 0.704 0.084 0.568 0.919 0.533 0.156 0.318 0.761
3 Fingers 0.744 0.070 0.588 0.884 0.416 0.094 0.291 0.719
Other 0.594 0.060 0.522 0.865 0.007 0.013 -0.017 0.609

Rotation Classifier
Left 0.920 0.010 0.894 0.996 0.880 0.011 0.864 0.975
Up-Left 0.747 0.023 0.777 0.942 0.705 0.029 0.735 0.939
Up 0.968 0.209 0.755 0.880 0.822 0.164 0.656 0.895
Up-Right 0.615 0.029 0.644 0.954 0.874 0.106 0.648 0.939
Right 0.596 0.002 0.740 0.970 0.456 0.009 0.572 0.975
Table 3. Results for the three classifiers when implemented as SVM-SMO with polynomial kernel of degree 1.

The plotted ROC curves for the three classifiers (hand, pose and rotation) when using the 

author's training sets are shown in Figure 12, Figure 13 and Figure 14 respectively.
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Figure 12. ROC curves for the hand classifier trained by the author.
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Figure 13. ROC curves for the pose classifier trained by the author.
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Figure 14. ROC curves for the pose classifier trained by the author.

The plotted ROC curves for the three classifiers (hand, pose and rotation) when using the 
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independent  user's  training  sets  are  shown  in  Figure  15,   Figure  16 and   Figure  17 

respectively.
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Figure 15. ROC curves for the hand classifier trained by the independent user.
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Figure 16. ROC curves for the pose classifier trained by the independent user.
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Figure 17. ROC curves for the rotation classifier trained by the independent user

Understanding that the AUC metric indicates the probability of a given class to be actually 

positive when classified as such, averages values, over all classes, of 93% when using the 

author's training set and 85% when using the independent user's training indicate that the 

SVM-SMO classifier is a reliable classifier for all three problems being addressed. However, 

when using the independent user's training set there were some low AUC values that cause 

the  classifier  to  be  less  reliable  regarding  those  classes.  However,  to  obtain  a  value  of 

intercoder reliability, an extension of the Holsti's [14] method was used. Instead of counting 

the  number  of  decisions  upon  which  the  two  trainers  agree,  the  correlation  coefficient 

obtained  after  testing  both  training  sets  against  the  same  testing  set  was  used.  So  the 

intercoder reliability measure was obtained by:
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Average over all classes {1−∣CC author−CC independent user∣}

 The resulting value is: 80%, which exceeds 70%, the minimum requirement for reliability. 

This reliability demonstrates that the quality of the training set does not depend strongly on 

who does the training. Furthermore, the lack of special training for the independent user (an 

undergraduate with no previous exposure to the project) indicates that there is no need of a 

deep understanding of how the system works to successfully label a high quality training set.

After a closer look at the rotation classifier, it  seems that the up class has a noticeable 

lower curve than the other classes. This is because of the difficulty (even during the training 

phase) to clearly distinguish between up versus up-left  and up versus up-right.  A similar 

problem occurs with the classes left and right respectively, but it does not seem to have the 

same effect.  A possible  solution  to  this  problem is  to  calculate  an  approximation  to  the 

rotation angle instead of using classifiers. This possibility is included within the future work 

section of this paper.

Although the previous results are promising, it  is interesting to compare them with the 

results that other classification algorithms have produced with the same training and testing 

sets, verifying that the SVM-SMO algorithm is the best for the job. Only the author's training 

set  was  used  for  these  comparisons.   So the  previous  results  were  compared  with  other 

commonly used classifier implementations. Naive Bayes, J48 decision tree, Adaboost with 

J48 tree, and Adaboost with ID3 tree were used. 

The Naive Bayes classifier performs its classification by obtaining the posterior probability 

of each class given a set of evidence:
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NB=arg max j
P  j∏i

P  xi∣ j

A key assumption of the Naive Bayes classifier is that all features in the feature space are 

statistically  independent  (this  is  why  the  classifier  is  called  “naïve”).  Although  this 

assumption seems pretty strong, the Naive Bayes classier performs well in various settings.

P x1, x2, ... , xn∣ j=∏i
P x i∣ j

The J48 decision tree is Weka's implementation of the C4.5 model from J. R. Quinlan [19]. 

Basically, decision trees try to identify the feature that best discriminates between classes and 

creates a branch for each of the possible values of such feature. If necessary, each branch 

performs a similar selection until all samples of the branch belong to the same class. 

Adaboost algorithms ensemble different classifiers to obtain a better overall performance. 

The  goal  of  ensemble  learning  classifiers  is  to  eliminate  individual  errors  by averaging 

between several classifiers; in general the averaging is done through weighted vote. Boosting 

algorithms  manipulate  the training set  by setting  different  weights  to  the  samples  of  the 

training  set.  Then  the  inner  classifiers  are  trained  with  the  different  weighted  data  sets, 

resulting in different base classifiers. Here, the base classification algorithms used were the 

J48  decision  tree  and  the  ID3  decision  tree.  Decision  trees  were  selected  as  the  base 

classifiers because they are relatively fast to train, and small changes in the data set have a 

great affect on the resulting tree. 
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Table  4 compares  the  performance  of  the  three  classifiers  (hand,  pose,  and  rotation), 

trained  with  the  author's  training  set,  based  on  the  predefined  metrics  implementing  the 

different  classification  algorithms.  (The  values  in  the  table  are  average  values  over  all 

classes.) 

TPR FPR CC AUC
Hand Classifier

SVM-SMO 0.932 0.120 0.775 0.947
Naive Bayes 0.939 0.221 0.774 0.952
J48 decision tree 0.893 0.212 0.647 0.885
Adaboost-J48 0.946 0.154 0.808 0.966
Adaboost-ID3 0.889 0.076 0.699 0.968

Pose Classifier
SVM-SMO 0.655 0.057 0.603 0.906
Naive Bayes 0.487 0.086 0.431 0.850
J48 decision tree 0.490 0.091 0.399 0.775
Adaboost-J48 0.643 0.064 0.579 0.891
Adaboost-ID3 0.333 0.075 0.317 0.775

Rotation Classifier
SVM-SMO 0.830 0.103 0.762 0.922
Naive Bayes 0.840 0.097 0.798 0.970
J48 decision tree 0.748 0.130 0.621 0.856
Adaboost-J48 0.804 0.108 0.721 0.909
Adaboost-ID3 0.738 0.181 0.673 0.912

Table 4. Performance over the three classifiers of different classifiers algorithms implementation.

The  plot  of  the  ROC  curves  comparing  the  performance  of  the  different  classifier 

implementations for each of the classifiers in one example class are shown in  Figure 18, 

Figure 19, and Figure 20.
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Figure 18. ROC curves for the hand class in the hand classifier for the different classification algorithms.
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Figure 19. ROC curves for the open hand class in the pose classifier for the different classification algorithms.
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Figure 20. ROC curves for the up class in the rotation classifier for the different classification algorithms.

When reviewing the previous results for the hand classifier, it can easily be concluded that, 

with the exception of the J48 tree algorithm, all classifiers had similar performances between 

94% and 97%. This  means  that  the  selected  feature  set  is  a  good representation  of  this 

particular  model.  The case is  not  the same for  the pose classifier  where the SVM-SMO 

classifier  clearly  outperforms  all  other  algorithms.  Finally,  in  the  case  of  the  rotation 

classifier, the Naive Bayes algorithm seems to be the best algorithm for this classifier, with 

SVM-SMO coming in second place. 

From these results, and considering that in both the hand and the rotation classifiers the top 

classifiers performed similarly, the overall best algorithm for all three classifiers is the SVM-

SMO. 

During the overview of the SVM classifiers,  it  was stated that  the kernel used by the 
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classifier plays a key role in the performance of the classifier. So to test if any improvement 

can  be  obtained,  the  same three  classifiers  were  implemented  and tested  using  different 

kernels, again only the author's training set was used for these experiments. Up to this point, 

a polynomial kernel of degree 1 was used.  Then, to evaluate the impact of changing the 

kernel, polynomial kernels of degree 2 and 3 were chosen. Additionally, an instance of the 

Radial Basis Function (RBF) kernel, which is a Gaussian-based kernel, was also selected for 

the comparative study. The RBF kernel is:

K x , y =e
− ||x− y ||2

22 

=e−gamma ||x− y ||2

  

For this work the gamma parameter was set to 0.001. 

Table  5 compares  the  performance  of  the  three  classifiers  (hand,  pose,  and  rotation) 

implemented  with  the  SVM-SMO  algorithms  using  the  different  kernels  previously 

mentioned. (Again, the values in the table are average values over all classes.) Although in 

general, the more complex kernels outperform the selected polynomial 1-degree kernel, the 

processing time to train the classifiers with these more complex kernels was considerably 

longer  (sometimes  more  than  five  times  longer).  However,  the  actual  classification 

processing time will not be affected in the same way. So the extra effort is just a one time 

offline situation.  
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TPR FPR CC AUC
SVM-SMO Hand Classifier

Polynomial Kernel degree 1 0.932 0.120 0.775 0.947
Polynomial Kernel degree 2 0.968 0.084 0.886 0.963
Polynomial Kernel degree 3 0.973 0.077 0.902 0.968
Radial Basis Function Kernel 0.956 0.099 0.846 0.983

Pose Classifier
Polynomial Kernel degree 1 0.655 0.057 0.603 0.906
Polynomial Kernel degree 2 0.747 0.039 0.710 0.932
Polynomial Kernel degree 3 0.766 0.037 0.729 0.938
Radial Basis Function Kernel 0.730 0.048 0.683 0.946

Rotation Classifier
Polynomial Kernel degree 1 0.830 0.103 0.762 0.922
Polynomial Kernel degree 2 0.840 0.100 0.784 0.925
Polynomial Kernel degree 3 0.843 0.098 0.794 0.927
Radial Basis Function Kernel 0.826 0.105 0.757 0.918

Table 5. Performance over the three classifiers of the SMO-SVM algorithm using different kernels.

Plots of the ROC curves comparing the different kernels of some sample classes are shown 

in Figure 21,  Figure 22, and Figure 23. 
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Figure 21. ROC curves for hand class in the hand classifier for different kernels in the SVM-SMO algorithm.
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Figure 22. ROC curves for the open hand class in the pose classifier for different kernels in the SVM-SMO algorithm.
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Figure 23. ROC curves for the open hand class in the pose classifier for different kernels in the SVM-SMO algorithm.
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From this last set of experiments, it is clear that more complex kernel spaces cause more 

accurate classification results, meaning that the sample space is better divided when working 

with these more complex spaces. However, the cost of working with these more complex 

kernels, especially during the training phase, should be considered as the training time was 

much higher when using the complex kernels—sometimes more than four times as long. 

Table 6 shows the required training time for all classifiers and the time to test the just-trained 

classifier over the same testing data. This is done to validate the training process (classifiers 

are expected to accurately classify more than 98% of its own training data) and to obtain a 

reference of the required evaluation time of the classifiers. 

Classifier
Training Time

Seconds Seconds
Hand Classifier

SVM-SMO polynomial kernel degree 1 1210.48 2.08
Naïve Bayes 0.05 0.41
J48 Tree 0.47 0.28
Adaboost with J48 4.85 0.22
Adaboost with ID3 15.85 0.55
SVM-SMO polynomial kernel degree 2 5041.53 822.36
SVM-SMO polynomial kernel degree 3 6538.80 1022.63
Svm-SMO RBF kernel 6359.23 1881.51

Pose Classifier
SVM-SMO polynomial kernel degree 1 6217.73 26.68
Naïve Bayes 0.14 0.89
J48 Tree 1.89 0.30
Adaboost with J48 16.32 0.48
Adaboost with ID3 35.12 0.92
SVM-SMO polynomial kernel degree 2 21873.49 14371.52
SVM-SMO polynomial kernel degree 3 30489.14 19816.76
Svm-SMO RBF kernel 7202.49 6656.90

Rotation Classifier
SVM-SMO polynomial kernel degree 1 113.24 4.43
Naïve Bayes 0.05 0.31
J48 Tree 0.28 0.17
Adaboost with J48 2.96 0.16
Adaboost with ID3 8.56 0.30
SVM-SMO polynomial kernel degree 2 622.86 647.23
SVM-SMO polynomial kernel degree 3 858.89 1001.60
Svm-SMO RBF kernel 171.32 240.09

Cross Validation 
Testing Time

Table 6. Training time and cross validation testing time for all classifiers considered in this work.
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 4. The Application: Implementing 3D gestures

The  initial  claim  that  justified  focusing  on  3D  gestures  of  hand,  pose,  and  rotation 

recognition was that if the latter information was known for each frame, then building and 

recognizing the 3D gestures is a simple task. To prove this and to build and recognize 3D 

gestures using the classifiers presented in the previous section, two applications that require 

3D gestures were successfully implemented using the system described in this paper.

The first application called ZCam driver for the open source Sparsh UI  [29] framework 

was developed as part of this same work with the previously stated purpose of proving that 

3D gestures can be recognized using hand, pose, and rotation recognition. (This application 

will be described in detail in this section.)

The second application was developed by an independent team Kodavali S., Patel A., and 

Owusu E  [32]. This application used the three classifiers system described in the previous 

sections and the training samples generated during the performance evaluation to develop a 

3D modeling system. This system helps the user to model 3D objects by using the ZCam as 

the main interface and a series of defined gestures to interact with the model in the screen. 

Figure  24 shows the  application  in  action  where  the  user  is  using  a  pointing  gesture  to 

translate the 3D model. Another gesture was used for rotation.  A demonstration video of the 

application can be seen on youtube.com [31].
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Figure 24. Kodavali S., Patel A., and Owusu E 3D modeling application. 
Image obtained from [32]

The goal of the of the ZCam driver for the Sparsh UI application is to extend the Sparsh UI 

framework so that current and new Sparsh-UI client applications will be able to run with a 

ZCam as if it were a simulated multi-touch device. This integrates two important interface 

technologies: touch and computer vision. 

Sparsh-UI  is  a  platform  independent  multi-touch  framework  which  allows  client 

applications to run over different hardware in a transparent manner for the application. The 

Sparsh-UI solution consists of three main components: the input device, the gesture sever, 

and the gesture adapter. 

The input device can be thought of as the hardware interface of the system. As part of the 

input device there are drivers already developed for several kinds of hardware, including an 

optical FTIR system, an infrared bezel, and others. The goal for this system is to add the 

ZCam to already supported devices, even though it is not a multi-touch device. 

The  gesture  server  is  the  main  component  of  the  system and is  the  one  in  charge  of 

translating the input data provided by the input device into gestures. The gesture server has 
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several of the most common gestures used in multi-touch devices already implemented, such 

as drag, rotate, zoom, and more. Additionally, this component is designed in such a way that 

new gestures can be added easily. 

Finally, once a gesture has been identified, the information is sent to the gesture adapter 

that formats the information so that the client applications can understand them. The gesture 

adapter is the client interface of the system. 

Figure 25 shows a high level diagram of the Sparsh-UI data flow. Data, in the form of 

touch points, are input to the system through the input device (1). One touch point represents 

the event that goes from a user making contact to the multi-touch surface until the contact 

ends.  This means that one touch point is  actually composed of several  points  of contact 

which occur in time. Once a new touch point is  detected,  the gesture server will  ask all 

registered clients to claim the point (2), meaning that the client would be prompted to either 

return an ID of the object being touched or to ignore this touch point. Client applications can 

subscribe their components to any arbitrary list of gestures—at this point, this information is 

also prompted by the gesture server.  As long as the touch point  evolves,  new points  are 

received for the touch point, (3) the gesture server would start recognizing gestures (4), if the 

component that claimed the touch point is registered for any of those gestures, gesture events 

would be sent to the client for that component through the gesture adapter (5). 
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Figure 25. Schema of Sparsh-UI main functionalities.
Some images of this figure were obtained from Sparsh-UI's web site:

 http://code.google.com/p/sparsh-ui

So, the goal of the application can be reformulated to include the ZCam as one of the 

supported  input  devices  so  that  client  applications  can  interact  with  it  transparently.  To 

achieve this goal, the information provided by the three classifiers (hand, pose, and rotation) 

plus the position in space of the closest point previously rescaled to [0,1] was used as input. 

All this information was processed through a finite state machine that would generate either a 

new type of event called a hover event, or would generate the required touch points as any 

other touch device would.

One of the main differences when using the ZCam versus using a touch device is that with 

touch devices, the user makes contact exactly in the point he or she wants, whereas with the 

camera, the user's hand is always present so the user must be able to move his or her hand 

freely without generating touch points as would happen when moving his or her hand over 

the touch device without making contact with it. To do so, a new event was added to the set 

of existing Sparsh gesture events called “hover event.” The new event informs the client 

http://code.google.com/p/sparsh-ui
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application that the user is moving his or her hand around the screen but is not actually 

touching anything. The client application can use this event and the information it provides to 

show the user where the hand is with respect to the application's screen.  

The transition between states of the state machine can result from two possible causes. 

First,  a  transition  can  occur  because  a  new  hand  pose  or  a  new  rotation  angle  or  a 

combination of them has been identified. This transition will be complete as soon as the new 

state has been identified. Second, a transition can occur as a result of an internal processing 

of the state. Once a new state is reached, if the state was set with a processing function, then 

this function is run. As a consequence, processing a jump to another state may occur. Note 

that with the first transition type, the machine waits in the current state until new information 

arrives, whereas with the second transition type, jumps between states are done automatically 

without waiting for more information. This is so the machine does not stop on those states 

governed by this type of transition. 

Figure 26 shows a schematic view of the implemented state machine (not all transitions are 

included for clarity purposes) that covers drag and rotation gestures. Other gestures can be 

added by just extending this state machine. The first type transitions are drawn in blue and 

the second type transitions are drawn in green.   
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Figure 26. State machine for drag and rotate gestures of the ZCam driver for Sparsh. Other gestures can be added by 
extending this state machine.

(Not all transitions are included in this illustration of the state machine for clarity purposes.) 

The state machine starts at the initial state of “No Hand.” Once the user's hand is detected, 

the machine moves to the “Hand” state where the “hover event” is sent. The user can select a 

component of the application anytime. To do this, the user either points to the object and 

moves forward, or opens and closes his or her hand as if grabbing the component. Once a 

component is selected, the user can either drag the object around or rotate it. Either way, the 

relevant touch points  are generated so the Sparsh-UI framework sends the corresponding 

events to the application. Notice that even in the event of a “No Hand,” the object still keeps 

being selected, allowing the user to rest between operations. Finally, if the user decides to 

release the object, he or she can perform the relevant sequence. 

Using the driver, both drag and rotate events were successfully sent to a previous existing 

application “Sparsh Tangrams,” with just some minor changes in the application (support for 

the hover event). This indicates that application was successful and that the goal of proving 

that 3D gesture recognition can easily be done when hand, pose, and rotation information is 

available was achieved. The ZCam driver has successfully been integrated within the Sparsh 
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UI framework and will be included in future releases of the framework once all the supported 

Sparsh gestures have been mapped to 3D gestures in a similar fashion as drag and rotate. To 

do this, a new state will be created. It can be reached by transitioning from the Selected state 

through some hand pose and will transition to the End Gesture state once the gesture has 

ended. Although the application works correctly, a scaling problem must be solved so that the 

Spash UI client applications can be easily used with the ZCam. The camera image definition 

320x240 is much smaller than the application 1280x768, so small hand movements result in 

big jumps in the application, making it difficult to perform precise movements. Also, it was 

suggested to adjust the scale dynamically so once an object is selected, the user can then 

perform big movements on the screen with small wrist movements. The idea is to reduce the 

arm movements  during  the  gestures  and avoid  tiring  the  arm.  Both  problems  would  be 

addressed in  future work done to  the Sparsh UI framework.  However,  it  is  important  to 

highlight that these scaling problems are not gesture recognition problems, but enhancements 

required to improve the relationship between Sparsh UI and ZCam. These problems do not 

compromise the fact that 3D gestures were successfully recognized and that the goal of this 

application was achieved.    
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 5. Conclusions and future work

This research was framed by the following question: Is it possible to create a complete 

gesture  recognition  system  using  the  ZCam  which  recognizes  previously-trained  hand 

gestures in real time and does not require any other interaction from the user? The question 

was  answered  by  creating  a  system which  uses  the  ZCam and  three  previously  trained 

classifiers to recognize gestures in real time and does not require any other interaction from 

the user because it is able to detect the user’s presence and when he or she begins to perform 

a gesture.

Using the approach of modeling 3D gestures as a sequence of hand poses, a complete 

solution for the one-hand 3D gesture recognition problem was proposed, implemented, and 

proved to be reliable. It is a complete solution because the 3D gesture recognition problem 

was  not  addressed  as  an  isolated  problem,  but  was  considered  in  the  context  of  a  real 

application. In this sense, the common assumption that the system starts its life cycle with the 

user's hand in a starting position was not used; in fact, the assumption that the user's hand 

was present in the scene was not used either. So the proposed solution first addresses the 

problem of analyzing the scene and interpreting whether what it sees is actually the user's 

hand. If that is the case, then pose and rotation recognition is done in each frame. Finally, all 

the information is processed together using a finite state machine to generate the 3D gesture. 

Considering the importance of applying 3D recognition in real time, it became clear that 

the required image processing must be as simple as possible. Therefore, a novel and simple 

feature set was proposed and evaluated. This can be obtained using a small number of image 

processing  operations.  Based  on  the  accuracy  results  obtained  during  the  performance 
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evaluation, the feature set seems to model the samples space in such a way that good level of 

classification can be achieved. 

Additionally, as a result of the evaluations, it can be concluded that overall the SVM-SMO 

classification algorithm has the best performance. Moreover, if further accuracy is needed, 

more  complex  kernels  can  be  used  only requiring  some extra  effort  during  the  training 

process which needs to be executed only once and off line.

Finally, the integration into the Sparsh UI framework created a connection between the 3D 

gesture  recognition  through Computer  Vision  and 2D gesture  recognition  done on  touch 

surfaces.  Actually,  using  the  previously  mentioned  integration  applications  (which  were 

originally  were  designed  to  run  over  touch  surfaces)  can  now  be  used  with  much  less 

expensive hardware. 

A demonstration video of the recognition system where the three classifiers are shown 

independently can be seen on youtube.com [24].

 5.1.1. Future Work

The goal of this research was to present a complete solution for the 3D gesture recognition 

problem and show it to be reliable. However, there is room for improvement and for new 

experiments. Some of these new opportunities have already been identified.

The system developed in this research was trained with only the right hand, so it only 

processes  right-handed  gesture.  However,  it  would  be  interesting  to  include  left-handed 

gestures,  which  could  be  done  by  either  mirroring  the  image  and  then  comparing  the 

classification results  of  the  original  image and the  mirrored,  or  by adding the necessary 

samples to the current training set.
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It would also be interesting to develop an algorithm to dynamically define the best depth 

window size when thresholding from the closest point. In this research, a depth window of 20 

levels of gray was used; however, being able to dynamically adjust the window's size would 

help to obtain more accurate classification. This problem has several challenges. First, the 

required depth depends not only upon the hand’s distance from the camera, but also on the 

hand’s  pose;  whereas  a  hand  pointing  towards  the  camera  would  require  a  large  depth 

window, a hand showing its palm to the camera can be solved with a much smaller window. 

Possibly considering previous frames and their hand pose classification would help develop a 

window that would better fit the current hand position. Another option is to use a similar 

approach, such as Malassiotis and Strintzis [30], and apply some variation of the threshold, 

cluster, and merge algorithm. 

Frames can also be used to improve the performance of the classifiers in the current frame. 

One approach for this could be the application of Hidden Markov Models after having the 

initial classification to either validate or change the initial classification. To apply this idea, 

they should return the probability distribution over the different classes and allow the HMM 

machine to finally decide the classification class instead of having the current  classifiers 

returning the resulting class. 

Another future improvement would be to analyze the impact of having more granularity 

when building the feature set. Currently, only 65 features are build-based in the 8x8 windows 

in which the input image is divided. It would be interesting to analyze the impact of having 

256 features by building 4x4 windows, while leaving the rest of the functionalities as they 

currently work.

Finally, the natural next step is to generate more test cases with different users to cross 
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validate the results obtained in this work. Additionally, a usability test with several trained 

and untrained users would give valuable information about the affordances of the 3D gestures 

and the usability of the ZCam driver for Sparsh UI applications.



53

 6. References

1. Al-Rajab, Moaath and Hogg, David and Ng, Kia. A Comparative Study on Using Zernike 

Velocity Moments and Hidden Markov Models for Hand Gesture Recognition.  Articulated 

Motion and Deformable Objects,  5098. 319-327, 2008

2. Alon, Jonathan and Athitsos, Vassilis and Yuan, Quan and Sclaroff, Stan. Simultaneous 

Localization and Recognition of Dynamic Hand Gestures.  Motion and Video Computing,  

2005. WACV/MOTIONS '05 Volume 2. IEEE Workshop on,  2. 254-260, 2005

3. Athitsos, V. and Sclaroff, S.. Estimating 3D hand pose from a cluttered image. ,  2.  II-432-

9 vol.2, 2003

4. Bernhard Scholkopf and Patrice Simardz and Alex Smolay and Vladimir Vapnikz. Prior 

Knowledge  in  Support  Vector  Kernels.  Advances  in  neural  information  processing 

systems,  . , 1998

5.  Björn Stenger. Template-Based Hand Pose Recognition Using Multiple Cues.  Springer  

Berlin / Heidelberg. . 2006

6. Caifeng Shan and Tieniu Tan and Yucheng Wei. Real-time hand tracking using a mean 

shift embedded particle filter. Pattern Recognition,  40. 1958 - 1970, 2007

7. Caifeng Shan and Yucheng Wei and Tieniu Tan and Ojardias, F.. Real time hand tracking 

by combining particle filtering and mean shift. ,  .  669-674, 2004

8. Christopher M. Bishop. Pattern Recognition and Machine Learning.  Springer. M. Jordan 

and J. Kleinberg and B. Schölkopf. 2006

9. Dan Luo and Jun Ohya. Hand-gesture extraction and recognition from the video sequence 

acquired  by  a  dynamic  camera  using  condensation  algorithm.  Intelligent  Robots  and 



54

Computer Vision XXVI: Algorithms and Techniques,  7252. 72520S, 2009

10. E. Osuna and R. Freund and F. Girosi. Improved training algorithm for support vector 

machines. Proc. IEEE NNSP,  . , 1997

11. Feng-Sheng Chen and Chih-Ming Fu and Chung-Lin Huang. Hand gesture recognition 

using a real-time tracking method and hidden Markov models. Image and Vision Computing, 

21. 745 - 758, 2003

12.  G.  J.  Iddan  \&  G.  Yahav.  3D  Imaging  in  the  studio.  The  Society  of  Photo-Optical  

Instrumentation Engineers,  4298. 48, 2000

13. Hideto Oda and Bilan Zhu and Junko Tokuno and Motoki Onuma and Akihito Kitadai 

and  Masaki  Nakagawa.  A Compact  On-line  and  Off-line  Combined  Recognizer.  Tenth 

International Workshop on Frontiers in Handwriting Recogntion,  1. 133–138, 2006

14. Holsti, OR. Content analysis for the social sciences and humanities. Addison-Wesley Pub.  

Co. . 1969

15.  Huang,  Jin  and Ling,  Charles  X..  Using AUC and Accuracy in  Evaluating Learning 

Algorithms. IEEE Trans. on Knowl. and Data Eng.,  17. 299--310, 2005

16.  Ian  H.  Witten  and  Eibe  Frank.  Data  Mining:  Practical  machine  learning  tools  and 

techniques. . Morgan Kaufmann. 2005

17.  J.  Holub and  B.  Nekolny and  M.  Van Waardhuizen.  Recognition  of  American  Sign 

Language  using  the  3DV  ZCam.  http://www.vrac.iastate.edu/575x/S09/doku.php?

id=projects:project1,  . , 2009

18.  Jianjun Ye and Hongxun Yao and Feng Jiang.  Based on HMM and SVM multilayer 

architecture classifier for Chinese sign language recognition with large vocabulary. ,  .  377-

380, 2004



55

19. JR Quinlan. C4.5: Programs for Machine Learning. Publishers Inc., San Francisco, CA,  

USA. Morgan Kaufmann. 1993

20. Kaustubh Srikrishna Patwardhan and Sumantra Dutta Roy. Hand gesture modelling and 

recognition  involving  changing  shapes  and  trajectories,  using  a  Predictive  EigenTracker. 

Pattern Recognition Letters,  28. 329 - 334, 2007

21.  Kikuo  Fujimura  and  Lijie  Xu.  Sign  Recognition  Using  Constrained  Optimization. 

Springer Berlin / Heidelberg. . 2007

22. Lee, Jaeseon and Park, Kyoung and Hahn, Minsoo. The 3D Sensor Table for Bare Hand 

Tracking and Posture Recognition. Advances in Multimedia Modeling,  4351. 138--146, 2006

23. Lizhong Gu and Jianbo Su. Natural hand posture recognition based on Zernike moments 

and hierarchical classifier.  Robotics and Automation, 2008. ICRA 2008. IEEE International  

Conference on,  . 3088-3093, 2008

24. Lucas Bonansea.  Demonstration video of the 3D gesture recognition system using Zcam 

and SVM.  http://www.youtube.com/watch?v=VsM0a_3I1_Q. 2009

25. Marcel, S. and Bernier, O. and Viallet, J.-E. and Collobert, D.. Hand gesture recognition 

using input-output hidden Markov models . ,  . 456-461, 2000

26.  Nitesh  V.  Chawla  and  Kevin  W.  Bowyer  and  Lawrence  O.  Hall  and  W.  Philip 

Kegelmeyer.  SMOTE: Synthetic Minority Over-sampling Technique.  Journal of  Artificial  

Intelligence Research,  16. 321-357, 2002

27.  Platt,  John  C..  Fast  training  of  support  vector  machines  using  sequential  minimal 

optimization. ,  . 185--208, 1999

28.  Rafael  Jordan-Osorio  and  Vlad  Sukhoy.  Proteins  visualization  control  using  hand 

gestures. http://www.vrac.iastate.edu/575x/S09/doku.php?id=projects:project2.  2009



56

29. Ramanahally, P. and Gilbert, S. and Anagnost, C. and Niedzielski, T. and Velázquez, D. 

Creating a Collaborative Multitouch Computer Aided Design Program. Proc. of WinVR,  . , 

2009

30. S. Malassiotis and M.G. Strintzis. Real-time hand posture recognition using range data. 

Image and Vision Computing,  26. 1027 - 1037, 2008

31. Sateesh Kodavali and Ankit Patel and Emmanuel Owusu.  Demonstration video of the 

application  "Z-Space:  3D  Modeling  Using  Hand  Gestures".. 

http://www.youtube.com/watch?v=yG_gt86Sghg. 2009

32. Sateesh Kodavali and Ankit Patel and Emmanuel Owusu. Z-Space: 3D Modeling Using 

Hand Gestures. http://www.vrac.iastate.edu/575x/S09/doku.php?id=projects:project10.  2009

33.  Segen,  J.  and Kumar,  S..  Shadow gestures:  3D hand pose  estimation  using  a  single 

camera. ,  1. -485 Vol. 1, 1999

34. Sushmita Mitra and Tinku Acharya. Gesture Recognition: A Survey.  Systems, Man and 

Cybernetics - Part C: Applications and Reviews. IEEE Transactions on,  37. 311-324, 2007

35. Thad Starner and Alex Pentland. Real-Time American Sign Language Recognition from 

Video Using Hidden Markov Models. AAAI Technical Report FS-96-05,  . , 1996

36. Thad Starner and Joshua Weaver and Alex Pentland. Real-Time American Sign Language 

Recognition Using Desk and Wearable Computer Based Video. IEEE PAMI '98,  . , 1998

37.  Yen-Ting  Chen  and  Kuo-Tsung Tseng.  Multiple-angle  Hand Gesture  Recognition  by 

Fusing SVM Classifiers. ,  . 527-530, 2007

38. Yikai Fang and Kongqiao Wang and Jian Cheng and Hanqing Lu. A Real-Time Hand 

Gesture Recognition Method.  Multimedia and Expo, 2007 IEEE International Conference  

on,  . 995-998, 2007



57

39.  Ying  Wu and Huang,  T.S..  Capturing  articulated  human  hand motion:  a  divide-and-

conquer approach. ,  1. 606-611 vol.1, 1999

40. Ying Wu and Huang, T.S.. View-independent recognition of hand postures. ,  2. 88-94 

vol.2, 2000

41.  Youbin  Chen  and  Xiaoqing  Ding  and  Youshou  Wu.  Off-line  handwritten  Chinese 

character recognition based on crossing line feature. ,  1. 206-210 vol.1, 1997

42. Yun Liu and Zhijie Gan and Yu Sun. Static Hand Gesture Recognition and its Application 

based on Support Vector Machines. ,  . 517-521, 2008

43.  Zhenyao  Mo  and  Ulrich  Neumann.  Real-time  Hand  Pose  Recognition  Using  Low-

Resolution Depth Images. Int. Conf. on Computer Vision and Pattern Recognition,  . , 2006


	2009
	3D Hand gesture recognition using a ZCam and an SVM-SMO classifier
	Lucas Bonansea
	Recommended Citation


	3D Hand gesture recognition using a ZCam and an SVM-SMO classifier  

