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ABSTRACT

Machine learning approaches offer some of the most successful techniques for constructing

predictive models from data. However, applying such techniques in practice requires overcom-

ing several challenges: infeasibility of centralized access to the data because of the massive size

of some of the data sets that often exceeds the size of memory available to the learner, dis-

tributed nature of data, access restrictions, data fragmentation, semantic disparities between

the data sources, and data sources that evolve spatially or temporally (e.g. data streams and

genomic data sources in which new data is being submitted continuously). Learning using

statistical queries and semantic correspondences that present a unified view of disparate data

sources to the learner offer a powerful general framework for addressing some of these chal-

lenges. Against this background, this thesis describes (1) approaches to deal with missing

values in the statistical query based algorithms for building predictors (Nave Bayes and deci-

sion trees) and the techniques to minimize the number of required queries in such a setting.

(2) Sufficient statistics based algorithms for constructing and updating sequence classifiers. (3)

Reduction of several aspects of learning from semantically disparate data sources (such as (a)

how errors in mappings affect the accuracy of the learned model and (b) how to choose an

optimal mapping from among a set of alternative expert-supplied or automatically generated

mappings) to the well-studied problems of domain adaptation and learning in presence of noise

and (4) a software for learning predictive models from semantically disparate data.
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CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

Machine learning approaches offer some of the most successful techniques to learn from

data [Bishop (2006), Mitchell (1997)]. However, recent advances in high throughput data ac-

quisition technologies in many areas have led to a proliferation of a multitude of physically

distributed, autonomous and often semantically disparate data sources presenting several sig-

nificant challenges in learning from data in such a setting [Caragea et al. (2005), Honavar and

Caragea (2008)]: (1) massive data size that often exceeds the size of memory available to the

learner, (2) distributed nature of data, and (3) autonomous data sources that may place cer-

tain restrictions on the access to the data. In addition, the advent of Cloud Computing [Wang

et al. (2010), Vouk (2008), Armbrust et al. (2010)] offers the possibility for autonomous orga-

nizations to provide data analysis services over the cloud [Wang et al. (2008), Stein (2010)].

This calls for algorithms that can build predictive models from datasets accessible over the

cloud. Further, autonomous data sources, even in related domains, are often designed and de-

veloped independent of each other (e.g. Apweiler et al. (2004) lists multiple protein sequence

databases). As a result, independently developed data sources differ in structure (relational

databases, flat files) as well as the type of capabilities they provide a user to access the data

(e.g. support for SQL queries, ability to execute user-supplied code, web services etc.). Fur-

ther, the rise of the Semantic Web [Berners-Lee et al. (2001), Davies et al. (2002), Antoniou

and van Harmelen (2008)] has resulted in a proliferation in the use of ontologies to associate

semantics with data. Since ontological commitments associated with the data source are often

determined at design time, semantic disparity is a natural outcome of independently developed

and autonomously developed data sources. Hence, different data sources often use disparate
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vocabularies (e.g., M.S. student versus Masters student), units (e.g., temperature measured in

degrees Centigrade versus Fahrenheit), and levels of detail (e.g. graduate student, student)

to describe the objects of interest in the world being modeled. Learning a predictive model

from such disparate data sources (say in some domain of interest to a learner) requires recon-

ciliation of the semantic differences between the learner’s conceptualization of the world (i.e.

the learners ontology) and the models of the world associated with the disparate data sources

(i.e., the data source ontologies). Furthermore, in the distributed setting, the learner must

cope with data fragmentation. The fragmentation could be horizontal and/or vertical data

fragmentation. In the case of horizontal fragmentation, each data source (e.g., economic data

for different states) contains a subset of data tuples that make up the data source of interest

(e.g., economic data for the nation). In the case of vertical fragmentation, the different data

sources contain subtuples of data tuples that make up the data source of interest. In addition,

in settings such as learning from genomic data where new data is being constantly submitted

to the data sources, the learners need the ability to incorporate new data without having to

rebuild the learned model from scratch. The aforementioned challenges show that there is

an urgent need for approaches to learning predictive models from large datasets (that cannot

fit in the memory available on the device where the learning algorithm is executed) that are

scalable, are able to incorporate data updates, do not require access to the underlying dataset,

are able to handle data fragmentation (horizontal as well as vertical) and are able to cope with

semantic disparity (both at the schema level and the data content level).

Despite attention to several aspects of this problem in literature (see Section 1.1.1), there

are significant gaps in the current state of the art that remain to be addressed. Specifically,

theoretically well-founded and practical approaches to learn predictive models from data are

needed in the setting where:

• access to the underlying data (which may contain missing values) is unavailable (due to

massive size or access restrictions) but the data source provides certain statistics over

the data.

• the data is fragmented (horizontally as well as vertically) from the learner’s point of view.
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• the mapping used to resolve semantic disparity contains errors.

• choosing an optimal mapping (to resolve semantic disparity) from among a set of available

candidate mappings (either provided by different experts or generated using one of the

several available ontology alignment methods).

This thesis attempts to address these challenges.

1.1.1 Related Work

Scaling learning algorithms to large data sets have received significant attention in liter-

ature. Provost and Kolluri (1999) and Grossman (2001) survey work on scaling up learning

algorithms. Examples of approaches that have been explored include parallelization of spe-

cific algorithms [Jin and Agrawal (2003)], support for disk resident data [Alsabti et al. (1998),

Zou et al. (2006)], and learning decision trees from statistical queries [Moore and Lee (1998),

Caragea et al. (2004a), Bar-Or et al. (2005)]. Alternate approaches to learn from intractably

large data sets include distributing the centralized data set to multiple processors [Chu et al.

(2006)], using a tractable subset of the entire data set [Wilson and Martinez (2000), Molina

et al. (2002), Czarnowski and Jedrzejowicz (2008)] or learning models on tractably sized sub-

sets of the data and then combing the models as in ensemble of classifiers [Hall et al. (2000),

Breiman (1999)]. Of related interest is Apache Mahout [Foundation (2010), Ingersoll (2009)],

the goal of which is to build scalable machine learning algorithms. Mahout aims to exploit the

power of a distributed computing platform that is based on the Map/Reduce programming

paradigm [Dean and Ghemawat (2008)] to scale predictive models to large datasets.

The task of specifying the mappings has been extensively studied in the semantic web,

database and the ontology communities in various contexts including ontology mapping, ontol-

ogy matching, ontology alignment, ontology merging and ontology integration (see survey papers

Choi et al. (2006), Doan and Halevy (2005), Kalfoglou and Schorlemmer (2005), Wache et al.

(2001) and Noy (2009) and the book Euzenat and Shvaiko (2007)). The Ontology Alignment

Evaluation Initiative [OAE (2010)] is a coordinated international initiative that is aimed at

developing a set of common metrics and benchmarks for evaluating ontology alignment meth-
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ods . A variety of techniques for automating the specification of mappings between ontologies

have been explored. These include schema based approaches, instance based approaches or

a combination of the two (see Euzenat and Shvaiko (2007) for a detailed discussion of these

methods). Shvaiko and Euzenat (2008) identify ensuring consistency of mappings, specially in

large ontologies, identified as one of the major challenges in ontology integration. Barring a

few exceptions [Meilicke et al. (2007), Meilicke et al. (2009), Kalyanpur et al. (2006), Falconer

et al. (2007)] the problem of eliminating inconsistent mappings has received limited attention

in the literature.

Distributed data mining has received considerable attention in literature [see Park and Kar-

gupta (2002)]. Domingos (1997), Prodromidis et al. (2000) and Aoun-Allah and Mineau (2007)

propose ensemble of classifiers approach to learning from horizontally distributed fragmented

data. The said approach involves learning classifiers on each subset of data and combining

them in some well defined way (e.g. using a weighed voting scheme). Algorithms to learn de-

cision trees from vertically fragmented data have been proposed by Bhatnagar and Srinivasan

(1997). Most proposed approaches to learning from semantically disparate data sources involve

the use of a middleware (such as a data integration system or a query answering engine) to

resolve semantic heterogeneity (e.g. Chawathe et al. (1994), Caragea et al. (2005)).

The problem of data integration (see Lenzerini (2002) for theoretical overview) has received

significant attention in literature (see Doan and Halevy (2005) for a survey). Data integration

systems offers a uniform interface to multiple data sources and have enjoyed significant success

both in research and commercial applications [Halevy et al. (2005), Halevy et al. (2006), Haas

(2007)]. A significant portion of the work in this area has focused on bridging semantic differ-

ences between schema and ontologies associated with the individual data sources (see Shvaiko

and Euzenat (2005),Wache et al. (2001) for surveys of approaches that address schema hetero-

geneity ). The approach in SIRUP [Ziegler and Dittrich (2004), Ziegler and Dittrich (2007)] ]

primarily addresses schema heterogeneity. Aspects of data content heterogeneity are addressed

in Wache and Stuckenschmidt (2001), Goh et al. (1999). The handling of data content het-

erogeneity in COIN [Goh et al. (1999)] is limited to unit conversions (e.g., dollars into euros)
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and term substitutions. BUSTER [Visser et al. (2000)] handles both schema and data hetero-

geneity but assumes an existence of a global ontology with each data source ontology being

a refinement of the global ontology. Haas et al. (2009) propose a framework that leverages

information about both schema and data to improve the integrated result. Cafarella et al.

(2009) describes Octopus, a system that combines search, extraction, data cleaning and inte-

gration, and enables users to create new data sets from those found on the Web. Some recent

work has also focused on data integration with uncertainty [Agrawal et al. (2010), Dong et al.

(2007)] where uncertainty may be in the data itself, in terms of the mappings used to resolve

the semantic heterogeneity, errors in the data or the queries posed to the data (say posed using

keywords rather than in the structured form).

The current approaches are either unable to handle massive data sets because they need

in memory access to the data as is in the case of WEKA [Witten and Frank (2005)] and

other similar tools, or assumes direct access to data to handle missing values in data (e.g.

WekaDB [Zou et al. (2006)]). However, in many practical applications, the large size, access

restrictions, memory and bandwidth constraints, and in some instances, privacy considerations

prohibit direct access to data. Ensemble based approaches [Dietterich (2000a)] to learn from

distributed data may require user specified code to be executed on the multiple data sites

and do not provide rigorous guarantees with respect to the centralized counterpart. Mahout

[Ingersoll (2009)] and Hadoop based systems [Ghoting and Pednault (2009), Chu et al. (2006)]

that divide a massive dataset among multiple clusters and provide guarantees with respect to

centralized learning are unable to learn in the semantically disparate setting. Approaches to

learn in the semantically disparate setting (e.g. Caragea et al. (2005)) are unable to cope with

both horizontal and vertical fragmentation. In addition, though there has been some attention

given to the task of detecting mapping errors [Meilicke et al. (2007), Meilicke et al. (2009),

Kalyanpur et al. (2006), Falconer et al. (2007)], there has been very little work on the task of

learning in presence of errors. Hence, there is a need for approaches to learn from semantically

disparate data sources that are fragmented from a learner’s point of view and may deny access

to the underlying data. In addition, in such a setting, the learning algorithms used must be
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robust in presence of errors in the mappings.

1.2 Our Approach

This thesis addresses learning of predictive models from semantically disparate data in the

following setting:

• the data is distributed.

• bandwidth limitations, constant updates or privacy concerns prevent the data being

transported to a centralized location.

• data is fragmented both horizontally and vertically from a learner’s point of view.

• the database schema used by the various autonomous data sources differ from the learner’s

schema and from each other.

• the ontologies used by the autonomous data source to associate meaning with data are

related but differ from each other and the ontology used by the learner.

• mappings are used to resolve both the schema heterogeneity and data content hetero-

geneity.

Our approach to address this problem, building on the work of Caragea et al. (2005), is to

learn a predictive model from a dataset by interacting with the data source(s) (that holds the

dataset of interest to the learner)) only through statistical queries. This approach allows us to

cope with the challenges of massive data size (since in general the statistics of the data are much

smaller than the size of the data), no access to underlying dataset (because it interacts with data

source only through statistical queries) and in certain cases, data source updates (additions,

deletions of large subsets of data). In addition, we introduce a data integration framework that

presents to the learner a collection of physically distributed, autonomous and disparate data

source as though they were a single data source structured according to an ontology supplied

by the user. The use of a data integration framework allows us to simultaneously cope with

data fragmentation and semantic disparity when learning in the setting of disparate data
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sources. In addition, we reduce some important problems that occur in the setting of learning

from disparate data (e.g. learning in presence of mapping errors, choosing among multiple

available mappings) to some well-studied problems in literature such as domain adaptation and

learning in presence of noise. This reduction opens up the possibility of applying techniques

and algorithms from these settings to the setting of learning from disparate data.

1.3 Thesis Outline

The rest of the dissertation is organized as follows. In what follows, we summarize the rest

of the chapters in the thesis. Each chapter is self contained and corresponds to a paper. Some

of the work presented in this thesis has been already published in conference proceedings, is

under review, or is in preparation.

Chapter 2 describes an open source framework (Indus Learning Framework) that learns

Naive Bayes and decision trees classifiers from autonomous data sources using count queries.

The framework aims to address the challenge of learning from data when access to the un-

derlying data is unavailable (say due to constraints such as privacy or the cost of moving the

massive data set to a centralized location). In this setting we describe techniques to apply

data pre-processing steps (such as data filtering and handling missing values) by incorporating

their effect on the statistics required to build the classifiers. In addition, we present some

optimization techniques that can be used to minimize the number of queries required to build

a classifier from the dataset.

Chapter 3 describes an open source data integration system (Indus Integration Frame-

work) that presents the semantically disparate data sources that are fragmented from a learner’s

point of view as a single data source to a learner. The heart of the system is an query planner

that answers a user posed query in terms of queries that can be answered by the semanti-

cally disparate data sources, using available schema mappings, inter ontology mappings and

conversion functions.

Chapter 4 presents an approach to learn from massive sequence data using only count

queries. Specifically, in this chapter we focus attention on Markov Property based class of pre-
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dictive models for sequences: Markov Models, Probabilistic Suffix Trees, Interpolated Markov

Models that are among some of the most widely used in sequence classification.

Chapter 5 describes the problem of learning in the setting where the mappings used to

resolve semantic disparity between the multiple data sources may contain errors. Specifically,

in this chapter we show that the problem of learning from semantically disparate data sources

in the presence of mapping errors can be reduced to a variant of the problem of learning in

the presence of nasty classification noise (a problem previously studied in literature). This

reduction allows us to transfer theoretical results and algorithms from the latter to the former.

Chapter 6 describes, Learning Scenario, a model for supervised learning that can be used

to model distributed learning, learning from disparate data sources and domain adaptation

(among others). We use Learning Scenario to explore connections between domain adaptation

and learning from disparate data. Specifically we show that choosing among multiple available

mappings can be reduced to an aspect of domain adaptation and any two domains can be

adapted using probabilistic mappings.

Chapter 7 concludes the thesis, and provides a summary of contributions and directions

for further research.
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CHAPTER 2. Learning Classifiers from Large Databases Using Statistical

Queries

The emergence of data rich domains has led to an exponential growth in the size and num-

ber of data repositories, offering exciting opportunities to learn from the data using machine

learning algorithms. In many applications, the learning algorithm may not have direct access

to the entire dataset because of massive size of data , access restrictions, or bandwidth require-

ments. In such settings, there is a need for techniques that can learn predictive models (e.g.,

classifiers) from large data sets without direct access to the data. We describe an approach to

learn from large databases using statistical queries. Specifically, we extend previous approaches

to learning from statistical queries to handle missing values in data in settings where direct

access to the data or the ability to execute user-supplied procedures on the data repositories

is prevented. We demonstrate the proposed approach by providing an open source imple-

mentation of Naive Bayes and Decision Trees learning algorithms in a setting where the data

repositories are large relational databases that only answer SQL count queries. We analyze

the query complexity (a measure of the number of queries needed) for constructing classifiers

in such settings.

2.1 Introduction

Advances in virtually every area of human endeavor are being increasingly driven by our

ability to acquire knowledge from vast amounts of data. Most current approaches to learning

from data assume direct access to data. However, in many practical applications, the large

size, access restrictions, memory and bandwidth constraints, and in some instances, privacy

considerations prohibit direct access to data. Hence, there is an urgent need for scalable
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approach to learning predictive models from large datasets (that cannot fit in the memory

available on the device where the learning algorithm is executed). To address this need,

especially in settings where the data reside in distributed repositories, Caragea et al. [Caragea

et al. (2004a), Caragea et al. (2005)] have introduced a general strategy for transforming a broad

class of standard learning algorithms that assume in memory access to a dataset into algorithms

that interact with the data source(s) only through statistical queries or procedures that can

be executed on the remote data sources. This involves separating a learning algorithm into

two components: (i) a statistical query 1 generation component that poses a set of statistical

queries to be answered by a data source and (ii) a hypothesis construction component that uses

the resulting statistics to modify a partially constructed hypothesis (and may further invoke

the statistical query component as needed). The implementation of this strategy in practice

requires effective methods for minimizing the cost of statistical queries, and for coping with

missing values in data. This chapter describes an approach to learning predictive models (e.g.,

decision trees) from large databases using statistical queries that is guaranteed to yield the

same results as those obtained by the corresponding learning algorithms when they have direct

access to data.

2.2 Learning Predictive Model From Semantically Disparate Data Sources

Our approach to learn in a setting where access to underlying data is unavailable is based

on the observation that for a number of learning algorithms, relevant statistics of the data are

adequate to build predictive models. In particular, Caragea et al. [Caragea (2004); Caragea

et al. (2004a)] introduced a general strategy for transforming a broad class of standard learning

algorithms that assume in memory access to a dataset into algorithms that interact with the

data source(s) only through statistical queries. In the case of decision trees and Naive Bayes

classifiers , statistical queries generated by the learning algorithms take the form of queries

for counts of data instances that match specific constraints on the values of certain attributes

and class labels. Such counts are easy to obtain from a relational database or other types of

1A statistic is simply a function of a dataset; A statistical query returns a statistic (e.g., the number of
instances in the dataset that have a specified value for a specified attribute.)
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data repositories that support such count queries. Hence, these predictive models can be built

if the data source provide the relevant counts(say via queries) even if it denies access to the

entire data set. In addition, this approach also addresses the problem of the inability of the

learner to load the entire data set in memory (since, in general the size of statistics required is

much smaller than size of the entire dataset). Based on these observations we present, Indus

Learning Framework (ILF), a system that learns from data using only statistical queries. The

framework assumes no access to underlying data and does not depend on execution of user

defined functions or stored procedures on the data sources. It handles missing values and

application of filters by dealing with their equivalent effect on the statistics obtained over the

data and as such does not need access to the underlying data set. Subsequently, we extend

the ILF with an integration framework (called Indus Integration Framework) that extends the

capability of ILF to learn from semantically disparate data sources that are fragmented from

the learner’s point of view.

2.2.1 Indus Learning Framework

In the Indus Learning Framework, we assume that each data source D has a data descriptor

Desc(D) that describes the structure of the data (attributes and their domains) over which the

predictive model is to be built. Formally Desc(D) =< A,C,V > where A = {a1, a2, . . . , an}

is the set of attributes, C /∈ A a special attribute corresponding to the class label, V =

{Va1 , · · ·Van , VC} a set of domains where Vai = {vi1 · · · vimi} is the set of possible values of

attribute ai (mi = |Vai |) and VC the set of possible class labels. To keep things simple, we

assume that all the attributes are nominal. Given Desc(D) the instance space I = Va1 ×Va2 ×

Va3 · · ·Van . We assume that the data source is a relational database and Desc(D) implicitly

specifies the schema of the database as follows: the dataset is stored in a table named D

and it has columns {a1, a2, . . . , an} corresponding to the attributes in A, and the column C

corresponds to the class label. A dataset D is a multiset whose elements belong to I × VC .

Desc(D) is used to formulate the queries that are posed against the dataset D. Suppose the

data source D supports a set of primitive queries QD. We assume the primitive queries in QD
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are posed in κ, the query language supported by the data source. In our setting the primitive

queries correspond to count queries against D. When D is a relational database, κ is SQL

and the count queries take the form: Select Count(*) from D where C = ck AND ai = vij

represented as S(D,C = ck, ai = vij). Similarly the count query Select Count(*) from D is

represented as S(D).

We assume that the learner expresses statistical queries against D in its own statistical

query language Λ. The ILF includes a query planner Π that transforms a query q(sD) expressed

in Λ for a statistic sD into a plan for answering sD using some subset of the primitive statistical

queries QD. We assume that the query planner Π has at its disposal, a set of operators ⊕

that can be used to combine the answers to queries in QD to obtain a statistic sD. In the case

where QD correspond to count queries, ⊕ may include +,−,.

Definition 1 A query plan for a statistic sD is an expression tree in which each leaf node

corresponds to a primitive query in QD and each non-leaf nodes corresponds to an operator in

⊕ such that the evaluation of the expression tree returns the value of the statistic sD

We assume that the planner Π is guaranteed to produce a correct plan for every statistic sD

that is expressible in Λ. In general, there might be multiple query plans that can produce

a given statistic sD. For example, the plans Select Count(∗) from D where C = ck and∑
vij∈Vi

S(D,C = ck, ai = vij) yields the same statistic. While the first of these two plans may

seem like the obvious one to choose, if all answers to the primitive queries used by the second

plan are available to the system (perhaps because of other queries that have been executed and

the results cached), it might be preferable to simply reuse the available results by choosing the

second plan. We denote by Q(p(sD) the primitive queries used by the plan p for statistic sD.

Let SL(D) be the set of statistics required by learning model L to build a predictive

model over L. In general the calculation of SL(D) can be divided into n steps where SLi (D)

is the statistics in the ith step and ∀1 > i > n, SLi+1(D) cannot be calculated before step

SLi (D). However, the learning algorithm L, when executed against a dataset D, generates

a series of steps in order with the ith step generating a set of statistical queries SLi (D) =

{sD(i, 1) · · · sD(i, ni)} where each query in SLi is expressed in Λ.
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Definition 2 A Query Plan P1 for the statistics generated by L at the ith step, SLi (D) =

{sD(i, 1) · · · sLD(i, ni)}, is the set of query plans represented by P1(SLi (D)) = {P1,1(sD(i, 1)),

· · ·P1,ni(SD(i, ni))} where P1,j(sD(i, j)) is a query plan to compute the statistic sD(i, j).

Definition 3 A Query Plan P for SL(D), the statistics generated by L, is the set P (SL(D)) =

{P1(SL1 (D), . . . Pn(SLn (D)} where Pi(S
L
i (D)) is the Query Plan for the set of statistics generated

by L in the ith step.

It follows that Q(P1(SLi (D))) = ∪nij=1Q(P1, j(sD(i, j))) denotes the subset of primitive queries

against D that are required by a query plan P1 for the ith step of L. Similarly Q(P (SL(D)) =

∪ni=1Q(Pi(S
L
i (D)) denotes the subset of primitive queries against D that are required by a plan

P for SL(D). We define the query complexity of a plan P (SL(D)), denoted by QC(P (SL(D))),

as |Q(P (SL(D)))|. The task of the query planner is to generate a plan P (SL(D)) so as to

minimize the query complexity QC(P (SL(D))) which may be important in settings where the

data source imposes a cost for answering each primitive query. In addition to take advantage

of the cache as outlined above, at each step i, the set of plans Pi(S
L
i (D)) can be optimized by

sharing primitive queries across the query plans for individual statistical queries in the query

set SLi (D). We now introduce a few representative algorithms for learning from data sources

in the ILF.

2.2.1.1 Naive Bayes Learner

Naive Bayes [Mitchell (1997)] is a simple learning algorithm that often yields classifiers

with satisfactory performance in many applications. Naive Bayes classifier assigns an instance

x =< x1 · · ·xn > to the most probable class label under the assumption that the attributes of

the instance are independent given the class:

CNB(x) = arg maxck∈VC P (ck)

n∏
j=1

(P (xi)|ck)

During the learning phase, we need to estimate the class probabilities:

P (ck) =
S(D,C = ck)

S(D)
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and the probability of each possible value of each possible attribute for each class. That is

probabilities of the form:

P (ai = vij |C = ck) =
S(D,C = ck, ai = vij)

S(D,C = ck)

where Vai denotes the domain of attribute ai and vij ∈ Vai denotes the jth possible value

in the domain Vai of the attribute ai. Because learning Naive Bayes classifier requires, in

the setting where the learner has direct access to the dataset, only a single pass through the

dataset, in our setting, the learner needs to pose only a single set of queries against D, that

is, a set of all queries of form S(D), S(D, ck) and S(D, ck, ai = vij). A Plan Pdefualt which

poses all the possible queries of form S(D), S(D, ck) and S(D, ck, ai = vij) over Desc(D) has

QC(Pdefault) = 1 + |Vc|+
∑|A|

i=1 |Vc| × |Vai |.

2.2.2 Decision Tree Learner

Decision Tree algorithms [Quinlan (1993), Clark and Niblett (1989), Breiman (1984)] are

among some of the most widely used machine learning algorithms for building classifiers from

data. A decision tree learner recursively chooses at each step an attribute that yields the

most information regarding the class label (e.g., as measured by the reduction in entropy).

The choice of an attribute at a node in the decision tree partitions the dataset based on the

values of the chosen attribute. This process is repeated until a desired termination criterion is

satisfied. Hence, each path π from the root to a given node in the decision tree has associated

with it, a subset of the data Dπ. Extending the path π requires identifying an attribute that

provides the maximal information about the class membership of instances in Dπ. Given a

dataset Dπ the information gain for an attribute ai, denoted by Gain(Dπ, ai) is given by

H(Dπ) −
∑

aij∈Vai
H(Dπ

aij
) ×

|Dπ
ai
j

|

|Dπ | where Dπ
aij

represents the sub data set of Dπ where the

attribute ai takes the jth value (vij) in its domain Vai . H(Dπ) denotes the entropy of the class

distribution in DπQuinlan (1993). We need to compute Gain(Dπ, ai) using statistical queries

against D. Let S(Dπ
aij , C = ck, ai = vij) represent the count query over the dataset Dπ

aij
where
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the class label is ck and the attribute ai takes the value vij . We have:

H(Dπ
aij

) = −
∑
ck∈Vc

S(Dπ, C = ck, ai = vij)

|Dπ
aij
|

log2

S(Dπ, C = ck, ai = vij)

|Dπ
aij
|

H(Dπ) = −
∑
ck∈Vc

S(Dπ, C = ck)

|Dπ|
log2

S(Dπ, C = ck)

|Dπ|

So queries of the form S(Dπ, ck, ai = vji ), S(Dπ, ck) and ones corresponding to |Dπ| i.e.

S(Dπ) and |Dπ
aji
| i.e. S(Dπ, ai = aji ) constructed over Desc(Dπ) allow us to determine the

next node to be added to the decision tree. However, because Desc(Dπ) is not available

to the system, we need to compute it from Desc(D) and the path π. Initially, the path

π is empty, and the corresponding Desc(Dφ) = Desc(D) = 〈A,C,V〉. Consider a path π

which is a one-step extension of a path ψ and obtained by appending an arc ai = aji to ψ.

Then Descπ = 〈Aπ, C,Vπ〉 where Aπ = Aψ − {ai} and Vπ = Vψ − {Vi}. For a path (π)

in the construction of the decision tree that corresponds to attribute aπ1 , a
π
2 . . . a

π
mπ taking

the values v(aπ1 ), v(aπ2 ) . . . v(aπmπ) respectively, let Clause(π) be a SQL fragment of the form

aπ1 = v(aπ1 ) AND aπ2 = v(aπ2 ) AND . . . aπmπ = v(aπmπ). It is easy to see that a query q over

Dπ can be expressed in terms of a query over D by simply adding to q, a clause Clause(π).

For example, S(Dπ, C = ck, aj = vjl ) as Select Count(*) From D Where C = ck AND aj = vjl

AND Clause(π). Note the resulting query is a query against the data set D.

Consider a plan Pdefault in which the step associated with dataset Dπ poses all the queries

of the form S(Dπ, ck, ai = vji ), S(Dπ, ck), S(Dπ) and S(Dπ, ai = aji ). The query complexity

QC(Pdefault) depends of the structure of the resultant decision tree T (D). Let Ω(T (D)) =

{π1, π2 . . . πp} be the paths (including empty path) in the resulting tree T (D) and l(π) be the

length of the path π in T (D) with the length of the empty path being zero. The Table 1.1

specifies the number of queries various type that are required for finding the attribute with

the most information gain for Dπ. We assume the leaf nodes also need to pose the same type

of queries. Then summation over the types of queries in Table 1 for all the paths in Ω(T (D)))

is QC(Pdefault) = (1 + |VC |) × (|Ω(T (D))| +
∑

π∈Ω(T (D))

∑
Vai∈Vπ−{VC}

|Vai |). If |Vai | = m for
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all attributes in A, then QC(Pdefault) = (1 + |VC |)(|Ω(T (D))|+
∑

π∈Ω(T (D))(|A| − l(π)))m.

Table 2.1 Number of queries by Pdefault for Dπ.

Query Type Number of Queries

S(Dπ) 1

S(Dπ, C = ck) |VC |
S(Dπ, ai = aji )

∑
Vai∈Vπ−{VC}

|Vai |
S(Dπ, C = ck, ai = aji )

∑
Vai∈Vπ−{VC}

|VC ||Vai |

Decision Stump Learner: A decision stump [Ai and Langley (1992)] is a decision tree

with a single node that is often used as a base learner in many ensemble approaches to learning

[Kotsiantis et al. (2006), Mart́ınez-Muñoz et al. (2007), Polikar (2006)]. It is straightforward

to see that the queries required to build a decision stump are those required to split the

root node in a decision tree and correspond to queries of the form S(D), S(D,C = ck) and

S(D,C = ck, ai = aji ). Since these set of queries are the same as required for a building a Naive

Bayes classifier, the plan Pdefault for Naive Bayes (presented earlier) can be used to build a

decision stump.

We now proceed to describe the application of filters in ILF.

2.2.3 Application of Filters

The ability to apply filters is an important step in the preprocessing of data and may have

a critical bearing on the performance of the learner. In ILF we define the following types of

filters:

• Attribute Filter : This filter, denoted by Faremove , removes the attribute aremove from the

data set D. The application of this filter is equivalent to updating Desc(D) so that

the value aremove is removed from A. The application of this filter does not change the

number of instances in D.

• Class Value Filter : This filter, denoted by Fcremove , removes all the instances from the
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data set in which the class label takes the value cremove. The application of this filter

is equivalent to updating Desc(D) such that value cremove is removed from VC and and

modifying S(D) as Select Count(*) From D where C! = cremove. The modification to

S(D) is required since the application of this filter changes the number of instances in

D.

• Attribute Value Filter : This filter, denoted by Far=aremover
, removes those instances in the

dataset D where the attribute ar takes the value aremover in its domain. The application of

this filter is equivalent to updating Desc(D) such that value aremover is removed from Var ,

modifying the query S(D) as Select Count(*) From D where ar! = aremover and modifying

the query S(D, ck, ai = aji ) as Select Count(*) from D where C = ck AND ai = aji AND

ar! = aremover . The modification to S(D, ck, ai = aji ) is necessary to prevent counting the

instances removed on the basis of Fai=aremover
when getting the counts for an attribute ai

that is different from ar.

• Missing Value Instance Filter. This filter, denoted by F?, removes all instances from the

dataset which have a missing value (indicated by marker ?). Given the set of attributes

is A = {a1, a2 . . . an} the application of this filter involves appending of a clause(ε) to

all the queries submitted where ε corresponds to the SQL fragment a1! =? AND a2! =

? . . . an! =?.

Note that application of the above filters in a decision tree corresponds to replacing D with Dπ

in the formulas outlined above (for each subdataset Dπ associated with the π in the decision

tree).

2.2.4 Dealing with Missing Values

The presence of missing values for some of the attributes in some of the instances in the

dataset D requires modifications to the basic procedures described above for learning in ILF

using statistical queries. The techniques for dealing with missing values that have been well

studied in the literature [Liu et al. (1997), Quinlan (1993)] assume direct access to the dataset
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D. In contrast, in our setting, we assume that access to the underlying dataset is unavailable.

However, we assume that the database uses a designated marker (e.g., ?) to indicate a missing

value and that the missing values occur only in attributes and not in the class label. The

first approach to handling missing values is to remove from the dataset D all the instances

that have a missing value. This approach, in the our setting , corresponds to applying the

Missing Value Instance Filter F? described in section 2.2.3. Another approach to missing

value is to treat the missing value marker (?) as an another possible value for the attributes.

This approach corresponding to changing the Desc(D) by updating Vai to Vai ∪ {?} for all ai.

However, this approach increases the query complexity since |Vai | increases by one (recall the

query complexity is dependent on |Vai |).

Another approach to handle missing values is to replace the missing value for an attribute

with the value that occurs most frequently for the attribute in the dataset over which the

predictive model is to be built . In the rest of the thesis we refer to this approach as mode

Imputation. For, each ai ∈ A let mode(ai, D)) return the value that occurs most frequently in

D (in case of more than one possible value, the function returns one of the possible values and

the choice may be based on some user preference). Since number of instance where an attribute

ai takes value aji in dataset D is S(D, ai = aji ) =
∑

ck∈VC S(D,C = ck, ai = aji ), the calculation

of mode(ai, D)) in plan Pdefault (for Naive Bayes) does no entail any additional queries. The

imputation with the most likely value in Naive Bayes corresponding to updating the counts

of the form S(D,C = ck, ai = mode(ai, D)) to S(D,C = ck, ai = mode(ai, D)) + S(D,C =

ck, ai =?). Since this requires additional queries of the form S(D,C = ck, ai =?), it increases

the query complexity of Pdefault for Naive Bayes by |A| × |VC |.

Another imputation approach to handling missing values involves replacing the missing

values probabilistically. In this technique the probability that a missing value for attribute

ai in D is aji is the proportion in which the value aji occurs for ai in the dataset D (denoted

by P (ai = aji |D)). We refer to this approach as probabilistic imputation. For Naive Bayes

the probabilistic imputation, in our setting , corresponds to updating the counts of the form

S(D,C = ck, ai = aji to S(D,C = ck, ai = aji ) + S(D,C = ck, ai =?) × P (ai = aji |D) where



19

P (ai = aji |D) =

∑
ck∈VC

S(D,C=ck,ai=a
j
i )∑

ai∈A
∑
a
j
i
∈Vai

∑
ck∈VC

S(D,C=ck,ai=a
j
i )

. However, as before, queries of form

S(D,C = ck, ai =?) are required and it increases the query complexity of Pdefault for Naive

Bayes by |A|×|VC | (see optimization section on how to reduce the query complexity in presence

of missing values).

For a decision tree handling missing values by mode imputation, in our setting, requires

modification of clause(π) associated with the subdatasetD(π). Let path (π) in the construction

of the decision tree corresponds to attribute aπ1 , a
π
2 . . . a

π
mπ taking the values v(aπ1 ), v(aπ2 ) . . . v(aπmπ)

respectively. For each case where the value v(aπi ) is mode(aπi , D) we modify the corresponding

SQL fragment in clause(π) from aπi = v(aπi ) to aπi IN {?, v(aπi )}. Such an approach has the

same query complexity as Pdefault in absence of missing values. Recall handling missing values

by probabilistic imputation, involves the following procedure: during the construction of the

decision tree when the attribute on which to perform the split (i.e. having the most infor-

mation gain) has a missing value, it is probabilistically assigned to each subset based on the

proportion of the possible values for the attributes. In the case when access to the underlying

data is denied, this process requires the counts for each query posed over Dπ to be modified

appropriately to account for the probabilistic assignment of the missing value. Let A(π) be

the set of attributes that are part of π and l(π) = |A(π)| be the length of the path π. For an

instance that is part of dataset Dπ, the attribute aπi ∈ A(π) could either have one of the two

possible values (i.e. v(aπi ) or ?). Each instance will contribute a different amount to the count

based on whether an attribute aπi ∈ A(π) has a missing value or v(aπi ) for that instance. For a

path π there are 2l(π) possible combination of clause(π) (since there l(π) attributes and each

attribute take can take one of two possible values). Let clause(πr), 1 ≤ r ≤ 2l(π) represent the

different possible combinations of the attributes in π taking the missing value or the actual

value in the path. Let A(πr, ?) be the attributes that take the value ? in clause(πr). Then

S(Dπ, C = ck, ai = aji ) =
∑2l(π)

r=1 wr × S(D,C = ck, ai = aji ) clause(πr) where

wr =

 1 when A(πr, ?) = φ∏
ai∈A(πr,?) P (ai = vπ(ai)|D) otherwise

(2.1)
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and P (ai = vπ(ai)|D) is the proportion in which the attribute ai takes the value vπ(ai) in D

and is calculated as before. Similarly, S(Dπ) =
∑2mπ

r=1 wr × S(D)clause(πr) and S(Dπ, ai =

aji ) =
∑2mπ

r=1 wr × S(D, ai = aji )clause(πr) . The technique as described, to calculate a single

count of the form S(Dπ, C = ck, ai = aji ) or S(D) or S(Dπ, ai = aji ) poses exponential (2l(π))

queries in the length of π (as opposed to a single query in absence of missing values). In general

probabilistic imputation (without access to underlying data) is feasible only when Ω(T (D) is

small and in practice may require use of optimization techniques.

2.2.5 Optimization Techniques

We now describe optimization techniques that can be used to reduce the query complexity of

the Plan Pdefault that has been introduced earlier to compute the necessary statistics required

to build Naive Bayes and decision trees.

2.2.5.1 Optimization Techniques for Constructing Naive Bayes Classifier

For a Naive Bayes the plan Pdefault poses all queries of the form S(D), S(D,C = ck) and

S(D,C = ck, ai = aji ). Consider the case when D has no missing values. In such a case

the results to the queries of the form S(D,C = ck) can be computed from the queries of

form S(D,C = ck, ai = aji ) as
∑

aji∈Vai
S(D,C = ck, ai = aji ). Similarly, result of the query

S(D) can be computed as
∑

ck∈Vc
∑

aji∈Vai
S(D,C = ck, ai = aji ). However, in our setting,

the dataset D cannot be inspected in a straightforward manner absence of missing values (as

access to it is unavailable). Let δai(D) = S(D)−
∑

ck∈Vc
∑

aji∈Vai
S(D,C = ck, ai = aji ). Then

if ∀ai ∈ Vai , δai = 0, it implies D has no missing values (note this require the query for S(D)

to be explicitly submitted). Let the optimizations described above be named opt1 and Popt1

denote an plan the improves the default plan Pdefault using optimizations opt1. Hence, for a

Naive Bayes and decision stump, QC(Popt1) = 1 +
∑

ai∈A |Vai ||VC |.

When the dataset D contains missing values, the optimization opt1 cannot be applied.

Consider case when D contains missing values, but there exists an attribute a1 ∈ Vai such that

δa1(D) = 0. In such case the result to S(D,C = ck) can be computed as
∑

aj1∈Va1
S(D,C =
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ck, a1 = aj1). In addition, since D contains missing values, the plan Pdefault to handle missing

values (for either mode imputation or probabilistic imputation) needs to pose additional queries

of the form S(D,C = ck, ai =?). However, S(D,C = ck, ai =?) can be computed as S(D,C =

ck)−
∑
ai ∈ A

∑
aji∈Vai

S(D,C = ck, ai = aji ). In the case when there exists no attribute a1 ∈ A

such that δa1(D) = 0, to optimize the number of queries submitted to D, pose queries of the

form S(D,C = ck) (|VC | in number) and then use them to calculate results to the queries of

the form S(D,C = ck, ai =?) (|VC | × |A| in number). Let Popt1+ denote a plan that improves

on the plan Pdefault using the optimizations described above. Hence, for a Naive Bayes and

decision stump, QC(Popt1+) is 1 +
∑

ai∈A |Vai ||VC | when ∃a1 ∈ A|δa1(D) = 0 and QC(Popt1+)

is 1 + |VC |+
∑

ai∈A |Vai ||VC | when ∀a1 ∈ A|δa1(D)! = 0.

2.2.6 Optimization Techniques for Constructing Decision Tree Classifier

For a decision tree, in absence of missing values in D, the results to the queries of the form

S(Dπ, C = ck), S(Dπ) and S(Dπ, ai = aji ) can be computed from the results to the queries of

the form S(Dπ, C = ck, ai = aji ) (on lines similar to described for Naive Bayes). In addition the

queries posed to extend a node (corresponding to path π) can be computed from the results

of queries needed to extend the siblings of π and of the parent (this optimization can be seen

as getting the results to the queries needed to be posed to the last sibling node for free).

Let the optimizations described by named opt2 and Popt2 be a plan that improves Pdefault

by using optimizations opt2. For a decision tree T (D), let Z(D) be the set of nodes that is

formed for Ω(T (D)) by removing one child node for each no leaf node. Then QC(Popt2) = 1 +∑
π∈Z(T (D))

∑
Vai∈Vπ−{VC}

|Vai |× |VC |. Note to handle missing values by mode imputation, the

query complexity of Popt2 will also be same (recall handling missing values by mode imputation

has no additional penalty in terms of query complexity).

For handling missing values by probabilistic imputation, the plan Pdefault to calculate the

result to a query of the form S(Dπ, C = ck, ai = aji ) poses 2l(π) primitive queries to D. Recall

this is due to absence of access to underlying data D and hence inability to pose a query to Dπ

in a straightforward manner. Let Xπ = {ai|ai ∈ A(π)andδai = 0} be the set of attributes in π



22

that do not have any missing values in D. Hence query of form S(D,C = ck, ai = aji )clause(πr)

where πr contains an fragment where an attribute in Xπ takes value ? is zero and need not be

posed. This optimization reduces the number of queries to calculate S(Dπ,C = ck, ai = aji )

to 2l(π) − 2|Xπ |. This optimizations may make feasible probabilistic imputation under certain

conditions (e.g. ∀π, l(π) is close to |Xπ|). Note optimization opt2 can be used once the values

for S(Dπ, ck, ai = aji ) have been updated according to the technique described earlier to handle

missing values.

2.3 Implementation and Results

The prototype implementation was written in Java and uses Java Database Connectivity

(JDBC) API to establish communication with the relational database (e.g. MySQL) that

contains the data set over which the predictive model is to be built. A class diagram of

major classes in the implementation is shown in Figure 2.1. The implementation can be

extended to add new classifiers. Any extension to the implementation that wants to add a new

classifier needs to implement the interface Classifier. Any new type of data source (besides

relational database) can be added by implementing the interface SSDataSource. The system

also includes utilities to support learning from data contained in an Attribute-Relation File

Format (ARFF)(an ARFF file is an ASCII text file that describes a list of instances sharing

a set of attributes (see Witten and Frank (2005))). Essentially, this involves reading the

instances in the ARFF file one at a time and inserting them in a database after which then

learning proceeds as before (i.e. using SQL count queries). This approach allowed us to

compare our system with WEKA [ Witten and Frank (2005)] in a transparent way and in

our experiments we were able to handle, in every case, datasets on which WEKA ran out of

memory (the experiments were run on an Intel T2050 CPU T2050 with a 1.60 GHz processor

and 1.24GB of RAM). This is an expected result since theoretically a sufficient statistics based

approach to learning should be limited only by the size of the data repository (assuming there

is enough RAM to hold the sufficient statistics).
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Figure 2.1 Class diagram of core classes in ILF implementation.

2.4 Summary and Related Work

In this chapter we have presented a system that learns from data using only sufficient

statistics. We described techniques for handling missing values and filters without the need to

access underlying data or execution of user defined code on the data repositories. We presented

an implementation of Naive Bayes and decision trees and precisely described the type of queries

required to build these classifiers. We also studied the effect of missing values in the dataset

on the number of queries required to build the Naive Bayes and decision tree classifier.

The related work in this area has primarily focused on scaling up to large data sets ei-

ther by parallelizing specific algorithms [Jin and Agrawal (2003), Tveit and Engum (2003),

Zaki (1999)], using distributed learning [Provost (2000), Provost and Kolluri (1999)] or pro-

viding support for disk resident data as in SPRINT [Shafer et al. (1996),Hsu et al. (2008)]

and CLOUDS [Alsabti et al. (1998)]. Sufficient statistics based approaches to learn decision

trees from large data sets have been suggested in [Moore and Lee (1998), Bar-Or et al. (2005)].
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However, open source implementations of popular learning algorithms that scale to large data

sets having been lacking. WEKA [Witten and Frank (2005)] an open source implementation

of popular machine learning algorithms assumes in memory access to dataset and cannot scale

to large data sets. WekaDB [Zou et al. (2006)] that described adding RDBMS support to

WEKA does resemble our approach but our model differs in that it learns using only sufficient

statistics and hence is applicable even in scenarios which preclude access to underlying data or

execution of user supplied code at the individual data sources. Further we deal with data pre-

processing (filters, handling missing values) at the statistics level rather than at instance level

as is the case in WekaDB. There are several interesting directions for further development of

the Indus Learning Framework. At the implementation level we assumed that all the attributes

have a multi nominal distribution and need to extend it to case of attributes with continuous

probability distributions (i.e. handle real valued attributes). One approach to handling real

valued attributes may be to convert the continuous values into discrete values (see approach

in Fayyad and Irani (1992)] but it will require the data source to provide additional statistics

which can be used as cut-offs to convert the real values into binary bins. Further enhancements

to the system include incorporating a data integration component that will allow learning from

heterogeneous distributed data sources.
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CHAPTER 3. Design and Implementation of a Query Planner for Data

Integration

Emerging data-intensive applications e.g., in health informatics, security informatics, so-

cial informatics, etc. require integrated access to multiple distributed, autonomous, and often

semantically disparate, data sources. Addressing this data integration challenge calls for tech-

niques for bridging the semantic gap between the user and the data sources and for decomposing

a user query into queries that can be processed by the individual data sources and for com-

bining the results to produce the answer to the user query. This chapter describes the design

and implementation of a system for data integration that solves these two problems.

3.1 Introduction

Recent advances in high throughput data acquisition technologies in many areas have led

to a proliferation of a multitude of physically distributed, autonomous, and often semantically

disparate data sources. Effective use of such data in data-driven knowledge acquisition and de-

cision support applications e.g., in health informatics, security informatics, social informatics,

etc. presents a data integration challenge. Addressing this data integration challenge requires

techniques for bridging the semantic gap between the user and the data sources with respect

to both the data schema and the data content (see Doan and Halevy (2005) for a survey). In

a distributed setting, this also requires techniques for coping with horizontal and/or vertical

data fragmentation. In the case of horizontal fragmentation, each data source (e.g., economic

data for different states) contains a subset of data tuples that make up the data source of in-

terest (e.g., economic data for the nation). In the case of vertical fragmentation, the different

data sources contain subtuples of data tuples make up the data source of interest. Solving the
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data integration problem in such a setting presents us with a query planning problem, that is,

the problem of decomposing a user query q into queries that can be processed (in the order

specified by a query plan) by the individual data sources D1, D2 · · ·Dp and for combining the

results to produce the answer to the user query q. In general, there can be multiple query plans

for answering a query query q from a collection of data sources D1, D2 · · ·Dp, with some plans

being more optimal than others (e.g., the cost of execution). This chapter describes the design

and implementation of a query planner for data integration that solves these two problems.

The resulting query planner has been integrated into INDUS , an open source suite of algo-

rithms for learning predictive models from autonomous, distributed, semantically disparate

data sources in settings where it is not practical to access the underlying data in a centralized

data warehouse.

We introduce the data integration problem through an example. Consider two universities

U1 and U2 that collect information about their student employees (such as id, name, salary,

the number of years in the university and academic status). Suppose at U1, the registrar’s

office provides access to the collected information through a data source D1. Suppose at U2,

similar information is gathered by the admissions department (which records the status of a

student) in data source D2. and a payroll department (records information such as salary,

number of years in the university) in data source D3. Further assume that the two universities

use different underlying ontologies to describe student employees (see Figure 3.1). The schema

associated with the data sources are given below :

1. Schema for D1 is: D1 Table(id(int), student-status(status-AVH ), compensation(float),

alias(varchar), serviceLength(int))

2. Schema for D2 is: D2 Table(SSN (int), student-type(student-type-AVH ))

3. Schema forD3 is: D3 Table(social(int), salary(float), nickName(varchar), serviceYears(int))

Let the ontologies for attribute student-status in D1 and student-type in D2 be as shown in

Figure 3.1.
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Figure 3.1 Ontologies associated with attributes position, student-status
and student-type.
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DU 7→ D1 7→ D2 7→ D3

key id SSN social

position status type -

benefits compensation - salary

firstName alias - nickName

timeHere serviceLength - serviceYears

Table 3.1 Schema mappings for introduced example.

Consider a user, e.g. a statistician, interested in constructing predictive model based on the

data from these two universities. Suppose the statistician needs integrated access to the data in

D1, D2 and D3 through a single (virtual) data source DU with schema: EMPLOYEETABLE (

key(int), position(position-AVH ), benefits(float), firstName(varchar), timeHere(int)) with the

ontology for attribute position as in Figure 3.1. The schema associated with D1, D2 and D3

differ from each other and from the schema associated with DU . The data sources describe

student employees using different ontologies (e.g. student-type, student-status versus position).

Furthermore, from the statistician’s perspective, the dataset of interest is fragmented across

the three data sources D1, D2 and D3. Hence, when the statistician poses a query q against

DU , it needs to be translated to queries that can be answered by the individual data sources

and the results appropriately combined to produce the answer to q. The query translation

requires mappings from the schema and the the ontology associated with DU to the schema

and ontologies associated with D1, D2 and D3. Suppose the schema mappings and ontology

mappings be as specified in Table 3.1 and Table 3.2 respectively. Note that in general the

mappings between ontologies may be incomplete. We now proceed to show how to solve the

said data integration problem.

3.2 Solving the Data Integration Problem

3.2.1 Problem Description

We associate with each data source, a data source description (i.e., the schema and on-

tology of the data source) yielding an ontology extended data sources (OEDS). Formally An
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status-AVH 7→ position-AVH student-type-AVH 7→
position-AVH

junior = jun junior > redshirt

graduate > M.S fresh < undergradu-

ate

freshman = fe

Table 3.2 Mappings between ontologies associated with attribute status,
attribute position and attribute type.

OEDS is a tuple D = {D,S,O}, where D is the actual data set in the data source, S the

data source schema and O the data source ontology Caragea et al. (2005). The formal se-

mantics of OEDS are based on ontology-extended relational algebra Bonatti et al. (2003). Let

D1 = {D1, S1, O1},D2 = {D2, S2, O2} . . .Dp = {Dp, Sp, Op} be a set of p ontology extended

data sources. Let DU = {DU , SU , OU} be a (virtual) integrated data source from the user’s

perspective. A user’s perspective is specified by PU = {DU ,MU ,ΨU} where MU is the set

of mappings from the user schema SU to the data source schema S1 . . . Sp and ΨU a set of

semantic correspondences from user ontology OU to the data source ontologies O1, O2 . . . Op.

For simplicity, we consider case when the schema mappings are one to one (i.e. every attribute

in SU has a corresponding attribute in schema Si), the ontologies are attribute value hierar-

chies and the semantic correspondences take the form of x < y (x is semantically subsumed

by y i.e. a subclass relationship), x > y (x semantically subsumes y i.e. a superclass rela-

tionship), x = y (x is semantically equivalent to y i.e. equivalent class relationship) and the

individual data sources are either horizontal or vertical fragments of the the data from the

user’s perspective. Let Q be the set of all possible queries that a user can pose against DU .

We use an SQL like syntax (called SQLindus) to describe the queries in Q. In SQLindus a

query q ∈ Q is expressed as 〈s, f, w〉 where s is the set of attributes in the Select clause, f

is the set corresponding to the tables in the From clause and w is an expression representing

the Where clause. The clause w is expressed using the grammar w = ε|watomic|w AND w|w

OR w and watomic = column.name op1 column.value where op1 ∈ {> | < | = |! =}. When

the column.name has an ontology (attribute value hierarchy) associated with it, we overload
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the operators >,< and = to imply superclass, subclass and equivalent class respectively. The

query 〈s, f, ε〉 represents the case in which the where clause is absent. For aggregate queries we

restrict our discussion to count queries as certain classifiers (e.g. Naive Bayes) over a dataset

stored in a Relational Database Management Systems (RDBMS) can be learned using only

SQL count queries (see Koul et al. (2008)). A data integration problem in this setting can be

seen as the triple 〈D∗, PU , Q〉 where D∗ = {D1,D2 . . .Dp}, PU = {DU ,MU ,ΨU} is the user

perspective and Q is the set of possible queries that can be posed by the user. We say that

the data integration problem is well-specified if the data sources combine to form a user view

of the data using the mappings specified (an arbitrary set of data sources and mappings may

not form the user view of the data). In this thesis we restrict ourselves to well-specified data

integration problems.

3.2.2 Overview of Solution

We proceed to describe a solution to the data integration problem using a data structure

called DTree. A DTree is a binary tree in which the leaf nodes correspond to the actual data

sources. Each internal node is a virtual data source that combines information from its two

children. The structure of the DTree specifies the constraints on the order in which the data

from the individual data sources are combined with the root node denoting a virtual data

source that corresponds to DU . A query against DU is submitted to the root of the DTree and

recursively divided into sub-queries such that the leaf nodes receive the queries to be executed

against the respective individual data sources. The results from the leaf nodes are recursively

combined up the tree with the root node receiving the answer to the query. The leaf nodes

in DTree cope with the problem of bridging the semantic gap between the user and the data

sources (see below) whereas the internal nodes cope with data fragmentation (by combing the

results from their respective children). A DTree for the introduced example is shown in Figure

3.2.
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3.2.3 DTree

Let Φ−1(Si) denote the set of attributes in SU that are mapped to corresponding attributes

in Si (recall the schema mappings between SU and Si are one to one).

Definition DTree: A DTree τ(π) that solves a well-specified data integration problem π =

〈D∗, PU , Q〉, is a binary tree with the following properties:

• There are |D∗| leaf nodes in the τ(π) and ∀Di ∈ D∗ there is a leaf node labeled Di and

has an associated set Φ−1(Si).

• A non leaf node with children labeled Di and Dj is labeled Di Dj and the associate set

is Φ−1(Si) ∪ Φ−1(Sj).

• For each non leaf node Di Dj either Φ−1(Si) = Φ−1(Sj) (i.e. horizontal fragmentation)

or ∃a ∈ Φ−1(Si)∩Φ−1(Sj) (i.e. vertical fragmentation) and a is the attribute over which

Di and Dj can be combined (join identifier).

• The associated set with the root node is SU .

The procedure in Algorithm 1 outlines the steps to construct a DTree τ(π) for a well-specified

integration problem π.

Algorithm 1: DTree Construction.

Input: A well-specified data integration problem π = 〈D∗, PU , Q〉
Output: A DTree τ(π) that solves π

N 7→ emptyset

∀Di = 〈Di, Si, Oi〉 ∈ D∗ construct a node labeled Di and associate with it the set

Φ−1(Si) and add it to N .

repeat

while ∃Di,Dj ∈ N such that Φ−1(Si) = Φ−1(Sj) do

begin
Replace nodes Di and Dj in N by a node named Di Dj and associated it

with the set Φ−1(Si)

if ∃Di,Dj ∈ N and no Dk ∈ N such that Φ−1(Si) ∪ Φ−1(Sk) ⊆ Φ−1(Sj) OR

Φ−1(Sj) ∪ Φ−1(Sk) ⊆ Φ−1(Si) then
Replace nodes Di,Dj ∈ N by a node named Di Dj and associate it with the set

Φ−1(Si) ∪ Φ−1(Sj)

until until no change in |N |
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Figure 3.2 DTree for the motivating example.

It is easy to see that a DTree exists for a well specified data integration problem; and that

in general, given a well specified data integration problem, there can be more than one DTree

that solves it. Consider for example a dataset that has three horizontal fragments D1, D2 and

D3; There are two possible DTrees in this case: one that combines D1 with D2 first followed

by D3 and one that combines D2 with D3 first followed by D1. Our algorithm outputs one of

the possible DTrees that solves the given data integration problem. However, the algorithm

can be modified to output an optimal DTree (based on some user-specified criteria).

3.2.4 Query Planner

A query posed by the user against DU is submitted to the root node of the DTree τ(π) that

solves the data integration problem 〈D∗, PU , Q〉. A query planner is invoked at each non leaf

node of τ(π) to compute the set of plans that can be used to answer the query submitted to

the node. Suppose a query q is submitted to a node n in the DTree τ(π). The task of the the

query planner is is to output a set of plans P such that each p ∈ P is of the form {qln, qrn,⊕}

where qln and qrn are the queries submitted to the left and right child of node n and ⊕ is a
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binary operator applied to the results of qln and qrn to obtain the results to q.

Intuitively, the operator ⊕ specifies how to aggregate the results obtained from the children

of the current node and we refer to ⊕ as as aggregation strategy. For simplicity, we initially

assume that there is no data overlap among the p data sources (we later show how to remove

this constraint). Denoting by rl and rr the results obtained from the left and the right child

of a node, we specify the following aggregation strategies:

t : t(rl, rr) denotes a multiset of all the rows/tuples in rl and rr. We overload the operator t

to denote the addition of counts in the case of count queries.

./:./id (rl, rr) denotes an inner join of rl and rr on id.

↑: denotes that there is no need for aggregation which is the case when a query is submitted

to only one child.

〈φ, qlocal〉 where φ ∈ {t, ./id, ↑} : obtain rtemp = φ(rl, rr) and then obtain the final results by

running the query qlocal on rtemp.

〈φ, qremote〉 where φ ∈ {t, ./id, ↑} : obtain rtemp = φ(rl, rr). Use rtemp to construct query

qremote from a template and generate a new plan for this qremote. This corresponds to a two

step plan in which the results in the first step are used to compose the query qremote for which

a planner is again invoked.We now introduce some notation used in describing the Planner

Algorithm. Given 〈q, n, τ(π)〉 where q = 〈s, f, w〉, we define the following functions:

sig(x) returns the set of attributes that appear in x where x ∈ {q, s, w}. For n , sig(n) returns

Φ−1(n).

Fjoin(n) returns the join column for the children of n (applicable for vertical fragments only).

F lchild(n) and Frchild(n) returns the left and right child of the node n respectively.

sln = sig(s) ∩ sig(F lchild(n)) and srn = sig(s) ∩ sig(Frchild(n)) returns the select columns that

are present in the left and right child of n respectively.

q+ = 〈s ∪ Fjoin(n), f, w〉 adds a join column to the select clause of the query.

TallData(q, n, l) =〈(sig(q+) ∩ sig(F lchild(n))), f, ε〉 retrieves the data corresponding to columns

of the query q+ that are present in the left child of n. Similarly we define TallData(q, n, r) =

〈(sig(q+) ∩ sig(Frchild(n))), f, ε〉.
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Result(q) represents the result of the query q. singlePath(q, n) returns true if all the columns

in q are present in one child of n. WLOG (without loss of generality) we assume when the

functions returns true, all the columns are present in F lchild(n).

horizontalFragmentation(n) returns true if F lchild(n) and Frchild(n) form the horizontal frag-

ments of n. As an illustration for the motivating example it will return true for node D1 D2 D3

and false for node D2 D3.

For a node n we define a template for a where clause as Wn
temp = Fjoin(n) IN $values$. The

function Replace(Wn
temp, vals) replaces the place holder $values$ in the template Wn

temp by a

comma separated list of values in vals. This template is used in a two step plan, where the

results of the first step are used in the template to construct the query for the second step.

Once a query q is submitted to a node n in the DTree, the plan(s) generated to answer the

query depends on how the attributes in s and w clause are distributed (based on how the data

is fragmented) among the children of node n. We specify the the different data fragmentation

scenarios using the functionM(q, n) 7→ 〈C0, C1, C2, C3〉 where C0 is set to 1 when the attributes

of the select clause are distributed among the two children of the node. That is,

C0 =


1 sig(s) ⊃ sig(F lchild(n)) and

sig(s) ⊃ sig(Frchild(n))

0 otherwise

C1 is set to 1 when the attributes in the where clause are distributed among the two children

of the node.

C1 =


1 sig(w) ⊃ sig(F lchild(n)) and

sig(w) ⊃ sig(Frchild(n))

0 otherwise

In this case it has to be w = wl opwr where op ∈ {AND, OR}. C2 is set to 1 when C1 = 1 and

w = wl opwr and the attributes in wl and wr occur individually in the two children. Assuming

WLOG that the signature of the left child includes the signature of wl whereas the signature
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of the right child includes the signature ofwr, we have:

C2 =



1 when C1 = 1 and w = wl op wr and

sig(wl) ⊆ sig(F lchild(n)) and

sig(wr) ⊆ sig(Frchild(n))

0 otherwise

C3 is set to 1 when C1 is 1, C2 = 0 and w = wlopwrl and the attributes in wl occurs completely

in one child and attributes in wrl are distributed over the two children. Assuming WLOG that

the signature of the left child includes the signature of wl we have:

C3 =



1 when C1 = 1, C2 = 0 and w = wl op wrl and

sig(wl) ⊆ sig(F lchild(n)) and

sig(wrl) ⊃ sig(F lchild(n)) and

sig(wrl) ⊃ sig(Frchild(n)) and

0 otherwise

The value 〈C1, C2, C3〉 describes how the attributes in the where clause w are fragmented

among the two children of the current node. The value 〈0, 0, 0〉 corresponds to no fragmenta-

tion, 〈1, 1, 0〉 corresponds to clean fragmentation, 〈1, 0, 1〉corresponds to partial fragmentation

and 〈1, 0, 0〉 corresponds to full fragmentation. It follows from the definitions above that no

other values of 〈C1, C2, C3〉 are possible. Since our goal is to effectively minimize data fragmen-

tation, among the multiple equivalent ways of expressing w, we choose one that corresponds

to the least amount of fragmentation (no fragmentation is preferred over clean fragmentation

which in turn is preferred over partial fragmentation which in turn is preferred over full frag-

mentation). This is achieved by the function DeFrag(n,w) which returns an equivalent where

clause for w that has the least fragmentation. Consider for example, a query submitted to the

node D2 D3 in the DTree in Figure 3.2 with the where clause being (position=’Ph.D’ AND

benefits > 300 ) OR (benefits > 300 AND timeHere > 2 ). This form of the where clause cor-

responds to partial fragmentation. However, DeFrag function produces an equivalent where

clause, (position=’Ph.D’ AND timeHere > 2 ) OR ( benefits > 300 ) which corresponds to
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clean fragmentation. Using the notation introduced above, the Query Planner is outlined in

Algorithm 2.

Algorithm 2: Query Planner

Input: q posed to a node n in DTree τ(π) such that sig(q) ⊃ sig(n)

Output: Set of Plans to answer q

if horizontalFragmentation(n) then

Add Plan 7→ qnl = qnr = q; ⊕ = t;

Add Plan 7→ DefaultPlan(q, n)

else

〈C0, C1, C2, C3〉 =M(q, n) ; w = DeFrag(n,w)

if C0 == 0 then

switch 〈C1, C2, C3〉 do

case 〈0, 0, 0〉

Plans 7→ NoFragmentation(q, n)

case 〈1, 1, 0〉

Plans 7→ CleanFragmentation(q, n)

case 〈1, 0, 1〉

Plans 7→ PartialFragmentation(q, n)

case 〈1, 0, 0〉

Plans 7→ DefaultPlan(q, n)

otherwise

throw Exception(”Not a Possible Case”)

else

Plans 7→ SelectFragmented(q, n)
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Function DefaultPlan(q, n)

qnl = 〈TallData(q, n, l)〉; qnr = 〈TallData(q, n, r)〉

if horizontalFragmentation(n) then

⊕ = 〈t, qlocal〉; where qlocal = q;

else

⊕ = 〈./Fjoin(n) , qlocal〉 where qlocal = q;

Function NoFragmentation(q, n)

if singlePath(q,n) then

Add Plan 7→ qnl = q; qnr = null; ⊕ =↑

else

/*WLOG assume attributes in s in right child and w in left child */

Add Plan 7→

qnl = 〈Fjoin(n), f, w〉; qnr = null;

⊕ = 〈↑, qremote〉 qremote = 〈s, f,Replace(Wn
temp, Result(q

n
l ))〉;

Add Plan 7→

qnl = 〈Fjoin(n), f, w〉; qnr = 〈s ∪ Fjoin(n), f, ε〉; ⊕ = {./Fjoin(n)};
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Function CleanFragmentation(q, n)

q = 〈s, f, wl op wr〉

Add Plan 7→

qnl = 〈Fjoin(n), f, wl〉; qnr = null; ⊕ = 〈↑, qremote〉

qremote = 〈s, f, wr op Replace(Wn
temp, Result(q

n
l ))〉

Add Plan 7→

Mirror of Plan Above (switch l and r in Plan Above )

Add Plan 7→

qnl = 〈Fjoin(n), f, wl〉; qnr = 〈Fjoin(n), f, wr〉;

if op == AND then φ = u; else φ = t;

rtemp = φ(Result(qnl ), Result(qnr ));

⊕ = 〈φ, qremote〉;

qremote = 〈s, f,Replace(Wn
temp, rtemp)〉

Add Plan 7→ /*applicable if op is AND */

if op == AND then

qnl = q+; qnr = 〈Fjoin(n), f, wr〉; ⊕ = {./Fjoin(n)};

Add Plan 7→ DefaultPlan(q, n);
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Function PlansSelectFragmented(q, n)

〈C0, C1, C2, C3〉 =M(q, n)

/*Function only called when C0 == 1 */

switch 〈C1, C2, C3〉 do

case 〈0, 0, 0〉

Add Plan 7→

qnl = 〈sln,∪Fjoin(n), f, w〉; qnr = 〈srn,∪Fjoin(n), f, φ〉; ⊕ = 〈./Fjoin(n) , qlocal〉;

qlocal = q;

Add Plan 7→

Assuming w occurs completely in left child. qnl = 〈Fjoin(n), f, w〉; qnr = null;

⊕ = 〈↑, qremote〉; qremote = 〈s, f,Replace(Wn
temp, Result(q

n
l ))〉;

Add Plan 7→ DefaultPlan(q, n)

case 〈1, 1, 0〉

Add Plan 7→

q = 〈s, f, wlopwr〉

if op == AND then φ = u; else φ = t;

ql = 〈Fjoin(n), f, wl〉; qr = 〈Fjoin(n), f, wr〉; ⊕ = 〈φ, qremote〉;

rtemp = φ (Result(qnl , Result(q
n
r ))) ; qremote = 〈s, f,Replace(Wn

temp, rtemp)〉;

Add Plan 7→ DefaultPlan(q, n);

case 〈1, 0, 1〉

Add Plan 7→ DefaultPlan(q, n);

case 〈1, 0, 0〉

Add Plan 7→ DefaultPlan(q, n);

otherwise

throw Exception(”Not Applicable”);
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Function PartialFragmentation(q, n)

Add Plan 7→ DefaultPlan(q, n);

Add Plan 7→

q = 〈s, f, wl op wrl〉.

if (wrl == wll op2wrr such that wrr occurs completely in right child and wll occurs

completely in left child, AND s occurs completely in left child) then

w = (wl op wll)op2(wl op1 wrr)

/*op and op2 are different as otherwise DeFrag operation would have

resulted in clean fragmentation */

if op == AND then φ = u; else φ = t; qnl = 〈Fjoin(n), f, wl〉;

qnr = 〈Fjoin(n), f, wrr〉; ⊕ = 〈φ, qremote〉; rtemp = φ(Result(qnl ), Result(qnr ));

qremote = 〈s, f, (wl opwll) op2 Replace(W
n
temp, rtemp)〉;

The correctness of the plans generated by the query planner follows from the manner in

which the results are combined at each node of the DTree. It can further be shown that the

plans produced by the query planner ensure that each data source is queried at most twice.

This follows from the observation that a data source is queried more than once when the

aggregation strategy is 〈φ, qremote〉 (recall this aggregation strategy corresponds to a two step

plan in which the results in the first step are used to compose the query qremote for which a

planner is again invoked). An straightforward analysis of the Planner algorithm shows that

qremote constructed in the first step, in each case, is such that any possible plan for it never

has an aggregation strategy of the type 〈φ, qremote〉 . Hence, a data source is queried at most

twice to obtain a result to a query.

The preceding description of the Query Planner assumes that the data sources do not

overlap. When this is not the case, we assume the existence of a primary key key in the

schema SU and that there is an one-to-one mapping between domain of key and the domain

of the attribute that key is mapped to (via schema mappings) in each of the data sources; and

user query q = 〈s, f, w〉 is changed to 〈s ∪ key, f, w〉 before it is submitted to the root node

of the DTree. The primary key allows the algorithm to detecting and dealing with the data
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tuples that are duplicated among the data sources.

Note that for a given user query q, the query planner is executed (and produces a set of

query plans) at each node in the DTree. Answering the query q requires choosing one such

plan at each of the non leaf nodes of the DTree. This choice can be made so as to optimize

some desired criterion (e.g., estimated cost of answering the query q for each possible choice

of plans).

3.2.5 Query Binding

Once a query plan is chosen for each node of the DTree, answering the user query reduces

to recursively combining the answers to the sub queries that are passed to the leaf nodes of the

DTree . To bridge the semantic gap between DU and the individual data sources, sub query

received by each leaf node needs to be expressed in a form that can be executed against the

corresponding data source. We call this process Query Binding. It consists of three steps:.

Translation, Renaming and Rewriting. Let Φ←(Si) be a renaming of the schema Si by using

the the one to one schema mapping between SU and Si. The process of Translation converts

a query q in schema SU and ontology OU into a query against schema Φ←(Si) and ontology

Oi. Interested readers are referred to Bao et al. (2007) for details of the translation process.

The process of Renaming converts the translated query q1 (now in schema Φ−1(S1)) to a

query q2 that is against the schema Si of the corresponding data source Di . This process is

straightforward since Φ−1(S1) is a sub-schema of SU (by construction) and the mapping (MU )

between SU and Si is one to one. After Renaming the query q2 is still in SQLindus syntax

and may include ontological relations (e.g. subclass and superclass) in the where clause of the

query. The process of Rewriting converts the query q2 in SQLindus syntax into a query q3 in

the language understood by the data source while preserving the query semantics. For RDBMS

data source the only non trivial operation in this process is to convert the subclass, superclass

and equivalentclass relations (within the corresponding data source ontology) that appear in the

where clause w (if any) of the query in SQLindus syntax into appropriate expressions in SQL.

We do this as follows: ∀watomic = column.name op1 value where the attribute column.name
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Figure 3.3 Indus with query planner.

has an AVH associated with it, replace watomic by a SQL fragment of the form column.name

IN valueSet where valueSet = {x|x ∈ Oi and x op1 value is true}. Thus, status > freshman

in SQLindus posed against D1 in the example shown in Section 1 is rewritten as: status IN {’

undergraduate’}.

3.3 Implementation and Results

The proposed approach to data integration has been implemented in Java as part of IN-

DUS, a system that we developed in our lab to enable an application to query a collection

of semantically disparate relational data sources from a user’s perspective. The overall archi-

tecture of the system is shown in Figure 3.3. The data sources are assumed to be ontology

extended wherein an ontology is associated with each attribute in the data source. A mapping

repository holds the schema mappings between the user view and the data source view as well

as inter ontology mappings. The query answering engine (which incorporates the planner) is

responsible for generating plans for a user submitted query, select a plan for execution and re-

turn results to the user. The current implementation restricts ontologies to be attribute value

hierarchies, schema mappings as one to one and a priori selects a plan for execution (among

multiple available plans).

The output (executed plan) for the query select firstname from EMPLOYEETABLE where
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position > ’redshirt’; in the example described in Section 1 is shown below.

node D1 D2 D3 plan:

q (query to node): select firstname from EMPLOYEETABLE where position > ’redshirt’;

qln (sub-query for node D1): select firstname from EMPLOYEETABLE where position > ’red-

shirt’;

qlr (sub-query for node D2 D3): select firstname from EMPLOYEETABLE where position >

’redshirt’;

⊕ (Aggregation Strategy) : t

node D2 D3 plan

q (query to node): select firstname from EMPLOYEETABLE where position > ’redshirt’;;

qln (sub-query for node D2): select key from EMPLOYEETABLE where position > ’redshirt’;

qlr (sub-query for node D3): select firstname, key from EMPLOYEETABLE;

⊕ (Aggregation Strategy) : ./key

After query binding for D1: select alias from D1 Table where student-status IN (’undergradu-

ate’, ’freshman’);

After query binding for D2 : select ssn from D2 Table where student-type IN (’junior’);

After query binding for D3: select nickname, social from D3 Table;

Similarly the executed plan for the count query select count(firstname) from EMPLOYEETABLE

where position > ’redshirt’; is shown below

node D1 D2 D3 plan:

q (query to node): select count(firstname) from EMPLOYEETABLE where position > ’red-

shirt’;

qln (sub-query for node D1): select count(firstname) from EMPLOYEETABLE where (position

> ’redshirt’);

qlr (sub-query for node D2 D3): select count(firstname) from EMPLOYEETABLE where (po-

sition > ’redshirt’);

⊕ (Aggregation Strategy) : t

node D2 D3 plan:
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q (query to node): select count(firstname) from EMPLOYEETABLE where position > ’red-

shirt’;

qln (sub-query for node D2): select key from EMPLOYEETABLE where (position > ’redshirt’);

qlr (sub-query for node D3): no query submitted

⊕ (Aggregation Strategy) : ↑

After query binding for D1: select count(alias) from D1 Table where (student-status IN (’un-

dergraduate’, ’freshman’));

After query binding for D2: select ssn from D2 Table where (student-type IN (’junior’));

After query binding for D3: no query submitted

Interested readers are referred to the implementation of the system, open sourced at Koul

(2008a), that includes JUNIT test cases for some additional queries that can be posed against

the example introduced in Section 1. The implementation when used with the Indus Learn-

ing Framework (see Koul et al. (2008), Koul (2008b)), an open source implementation of an

approach to learn classifiers from a data source using SQL count queries , enables the Indus

Learning Framework to learn classifiers from multiple semantically disparate data sources.

3.4 Summary and Related Work

Summary: Emerging data-intensive applications e.g., in health informatics, security infor-

matics, social informatics, etc. require integrated access to multiple distributed, autonomous,

and often semantically disparate, data sources. Addressing this data integration challenge calls

for techniques for bridging the semantic gap between the user and the data sources and for

decomposing a user query into queries that can be processed by the individual data sources

and for combining the results to produce the answer to the user query. This chapter describes

the design and implementation of a system for data integration that solves these two problems.

The resulting query planner has been integrated into INDUS, an open source suite of algo-

rithms for learning predictive models from autonomous, distributed, semantically disparate

data sources in settings where it is not practical to access the underlying data in a centralized
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data warehouse.

Related Work: The problem of data integration (see Lenzerini (2002) for theoretical overview

) has received significant attention in literature (see Doan and Halevy (2005) for a survey).

Most of this work has focused on bridging semantic differences between schema and ontologies

associated with the individual data sources (see Shvaiko and Euzenat (2005),Wache et al.

(2001) for surveys of approaches that address schema heterogeneity). Aspects of data content

heterogeneity are addressed in Wache and Stuckenschmidt (2001), Goh et al. (1999). The

approach in SIRUP [Ziegler and Dittrich (2004)] resembles our approach since the ontologies are

added on top of data. However, the ontologies in SIRUP, built with IConcepts, are data schema

ontologies. Users are required to build semantic perspectives from a selected subset of the

data source IConcepts. As such SIRUP primarily addresses schema heterogeneity and does not

need explicit mappings to convert from user view to a data source view. The handling of data

content heterogeneity in COIN [Goh et al. (1999)] is limited to unit conversions (e.g.,dollars into

euros) and term substitutions. BUSTER [Visser et al. (2000)] handles both schema and data

heterogeneity but assumes an existence of a global ontology with each data source ontology

being a refinement of the global ontology. In contrast our solution focuses on integrating

ontology extended data sources that are fragmented and semantically heterogeneous from a

user point view. It does not assume existence of a global ontology and uses mappings to handle

schema and data content heterogeneity.
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CHAPTER 4. Scalable, Updatable Predictive Models for Sequence Data

The emergence of data rich domains has led to an exponential growth in the size and num-

ber of data repositories, offering exciting opportunities to learn from the data using machine

learning algorithms. In particular, sequence data is being made available at a rapid rate. In

many applications, the learning algorithm may not have direct access to the entire dataset

because of a variety of reasons such as massive data size or bandwidth limitation. In such

settings, there is a need for techniques that can learn predictive models (e.g., classifiers) from

large datasets without direct access to the data. We describe an approach to learn from mas-

sive sequence datasets using statistical queries. Specifically we show how Markov Models can

be constructed from sequence databases that answer only count queries. We analyze the query

complexity (a measure of the number of queries needed) for constructing classifiers in such

settings and outline some techniques to minimize the query complexity. We also outline how

a Markov Model can be updated in response to addition or deletion of subsets of sequences

from the underlying sequence database.

4.1 Introduction

Advances in high throughput sequencing and other data acquisition technologies have re-

sulted in gigabytes of DNA, protein sequence data, and gene expression data being gathered

at steadily increasing rates. These developments have resulted in unprecedented opportunities

for learning from such data. Most machine learning techniques assume direct access to data.

However, in many practical applications, the massive size of the data being made available

coupled with memory and bandwidth constraints prohibit direct access to data. In addition,

it is not difficult to envision settings in the near future, such as personalized medicine where
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privacy concerns may prohibit direct access to the data (e.g. DNA sequence of patients un-

der treatment). Further, in settings where data is being made available at a rapid rate (e.g.

sequence data), a local copy of the data may quickly become out of date. Hence, there is an

urgent need for approaches to learning predictive models, from large datasets (that cannot

fit in the memory available on the device where the learning algorithm is executed), that are

scalable, able to cope with frequent data updates and do not require access to the underlying

dataset.

Caragea et al. (2004b) have introduced a general strategy for transforming a broad class

of standard learning algorithms that assume in memory access to a dataset into algorithms

that interact with the data source(s) only through statistical queries or procedures that can

be executed on the remote data sources. This involves separating a learning algorithm into

two components: (i) a statistical query 1 generation component that poses a set of statistical

queries to be answered by a data source and (ii) a hypothesis construction component that uses

the resulting statistics to modify a partially constructed hypothesis (and may further invoke

the statistical query component as needed). Inspired by this work we extend this strategy to

the setting of building predictive models from large sequence datasets by interacting with the

data source that holds the dataset only through means of certain count queries. This approach

allows us to cope with the challenges of massive data size (since in general the statistics of the

data are much smaller than the size of the data), no access to underlying dataset (because it

interacts with data source only through statistical queries) and in certain cases, data source

updates (additions, deletions of large subsets of data).

We focus our attention on a class of Markov Property based class of predictive models

for sequences: Markov Models, Probabilistic Suffix Trees, Interpolated Markov Models that

are among some of the most widely used in sequence classification (e.g. Bejerano and Yona

(2001)), text analysis (e.g. McCallum et al. (2000)) and related applications. We describe the

specific type of queries that the data source should answer in order to build the predictive

model, and precisely calculate the number of queries that are posed to a data source to build

1A statistic is simply a function of a dataset; A statistical query returns a statistic (e.g., the number of
instances in the dataset that have a specified value for a specified attribute.)
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the predictor. The number of queries posed (called the query complexity in our model) is a

measure of steps required to build the model and may be important in the cases where the

data source associates a cost with answering a query or in the setting where bandwidth is at

a premium. We describe certain optimization techniques that can be used to minimize the

query complexity and in particular describe a lazy approach to classifying a test dataset that

can be used to ameliorate the exponential query complexity associated with a Markov Model.

The rest of the chapter is organized as follows. Section 4.2 covers the preliminaries. Section

4.3 describes a statistical query based approach to constructing Markov Model based sequence

classifier and outlines some optimization techniques to minimize the query complexity. Section

4.4 describes an extension of this approach to Probabilistic Suffix Trees. Section 4.5 describes

an approach to updating Markov model based predictors using statistical queries. Section 6.5

concludes with a brief summary and description of related work.

4.2 Preliminaries and Notation

Let Σ be the alphabet from which the sequences are constructed and C be the set of

classes to which the sequences can be assigned. Given a sequence s = σ1σ2 . . . σn and a symbol

σ ∈ Σ, let sσ represent the sequence σ1σ2 . . . σnσ, let σs represent the sequence σσ1σ2 . . . σn

and suffix(s) represent the sequence σ1σ2 . . . σn−1. We associate with each dataset D of

sequences a descriptor Descs(D) = 〈Σ, C〉 where Σ is the alphabet from which the sequences

in D are constructed and C is the classes (e.g. protein family classes) to which the sequences

in D can be assigned. Let P (s) be the probability of observing a sequence s and P (σ|s) be the

probability of observing the symbol σ right after the subsequence s. The empirical values for

P (s) and P (σ|s) are represented by P̂ (s) and P̂ (σ|s) respectively.

Suppose the data source D supports a set of primitive queries QD expressed in a query

language supported by the data source holding D (e.g. if D is a RDBMS such as Oracle the

query language will be SQL). To build a predictive model, we assume that the system expresses

statistical queries against D in its own statistical query language Λ. A query planner Π that

transforms a query q(sD) expressed in Λ for a statistic sD into a plan for answering sD using
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some subset of the primitive statistical queries QD. We assume that the query planner Π has

at its disposal, a set of operators O that can be used to combine the answers to queries in QD

to obtain a statistic sD. In the case where QD correspond to count queries, O may include

+,−. A query plan for sD, denoted by plan(sD), is simply an expression tree that successively

combines the answers to the primitive queries to obtain the answer to query sD (expressed in

the query language that is understood by the query planner): Each leaf node corresponds to

a primitive query in QD and each non-leaf nodes corresponds to an operator in O. We assume

that the planner Π is guaranteed to produce a correct plan plan(sD) for every statistic sD that

is expressible in Λ.

The learning algorithm L (say PST), when executed against a dataset D, generates at

each step i, a set of statistical queries Si(D) = {sD(i, 1) · · · sD(i, ni)} where each query in Si

is expressed in Λ. Let Plan(Si(D)) = {plan(sD(i, 1)) · · · plan(SD(i, ni))} be the set of plans

generated by the query planner for the set of queries Si(D). We denote by Q(plan(sD(i, j))),

the set of the primitive queries used in the plan plan(sD(i, j)). Note that Q(Plan(Si(D)))

denotes the subset of primitive queries against D that to answer the set of queries Si(D).

Let Q(Plan(Si(D))) =
∑ni

j=1Q(plan(sD(i, j))). Let QL =
∑

iQ(Plan(Si(D))). Clearly,

∀j Q(plan(sD(i, j))) ⊆ Q(Plan(Si(D))) ⊆ QL ⊆ QD. Consider a sequence of sets of statistical

queries S1(D) · · ·Si(D) generated by L when it is executed against a dataset D. Let φi be

the corresponding sequence of sets of query plans Plan(S1(D)), P lan(S2(D)) · · ·Plan(Si(D))

produced by the query planner. Let Q̂(φi) = ∪il=1Q̂(Plan(Sl(D))) denotes the set of prim-

itive queries retrieved as a result. Assuming that L generates a sequence of m query sets

S1(D) · · ·Sm(D) prior to terminating with a learned hypothesis, we can define the query com-

plexity of φm, denoted by QC(φm), as
∣∣∣Q̂(φm)

∣∣∣, that is the total number of primitive queries

that are posed to the data source based on φm. The task of the query planner is to generate a

sequence of sets of query plans φm so as to minimize the query complexity QC(φm) which can

be important in settings where the data source imposes a cost for answering each primitive

query .
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4.3 MM(k-1): Markov Model of order k -1

Markov Models have been used successfully in literature to address sequence based tasks

(see Borodovsky and McIninch (1993), Burge and Karlin (1997), Begleiter et al. (2004)). Often

it is assumed that the learner that builds the Makov Model has access to the training dataset

D. In many applications, the learning algorithm may not have direct access to the entire

dataset because of massive size of data, access restrictions, or bandwidth requirements. To

address this setting, we assume that local acess to D is unavailable. However, we assume that

the learner has access to the descriptor of the data (i.e. Descs(D) = 〈Σ, C〉) and the data

source holding D answers certain count queries over the dataset D. In particular, we assume

the data source answers the following three types of queries: (1) the query to compute the

count of sequences in D that have the subsequence s (including overlaps), denoted by S(D, s);

(2) the query to compute the count of the sequences in D that belong to the class ck and

have the subsequence s (including overlaps), denoted by S(D, s,C = ck) and (3) the query

to compute the count of sequences in D that belong to the class ck and have subsequences of

length |s| (including overlaps), denoted by S(D, |s|, C = ck).

In the MM(k-1), the estimate of the probability that a given sequence (unlabeled) s =

σ1σ2 . . . σn belongs to the class cj is given by

P̂MM(k−1)(s, cj) =
n∏
i=k

P̂ (σi|σi−1 . . . σi−k+1, C = cj) (4.1)

In the sufficient statistics model, the required terms in equation (4.1) can be computed

using the supported queries as

P̂ (σi|σi−1 . . . σi−k+1, C = cj) =
S(D,σi−k+1 . . . σi−1σi, C = cj)

S(D, |s|, C = cj)
(4.2)

The Naive Bayes for sequence classification is special case of the MM(k-1) with k = 1 and

as such can be implemented in the sufficient statistics model in a straightforward way. A

straightforward approach to classify any given sequences using MM(k − 1) would be to pre-

compute the results for all possible queries that may be needed to classify the set of sequences

in Σ∗. It is clear from equations (4.1) and (4.2) that this involves all queries of the form
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S(D, s, C = cj) where |s| = k and S(D, |s|, C = cj) that can be posed over Descs(D). Since

the total number of unique subsequences of length (k) is |Σ|k, the Query Complexity of this

approach is |C|(|Σ|k + 1). As, the number of queries posed in this approach is exponential in

k, it is often not feasible for large k. Hence, it is of interest to explore optimization techniques

that minimize the number of queries posed to the data source D.

4.3.1 Optimization Techniques for MM(k-1)

In what follows, we give some examples of optimizations that can help reduce the query

complexity of sequence classification. Let Σk ⊂ Σ∗ be the set of all possible sequences of length

k over the alphabet Σ. It follows that S(D, |s|, C = cj) =
∑

si∈Σ|s| S(D, si, C = cj). Hence,

the queries of form S(D, |s|, C = cj)(where|s| = k) needed in equation (4.2) need not be posed

and can be computed from the queries of the form S(D, s, C = cj). With this optimization

QC(MM(k − 1) = |C||Σ|k. However, the query complexity is still exponential in k. An ap-

proach to ameliorate this exponential explosion in the number of queries is to use the lazy

approach to classify sequences, where instead of precomputing the results for all the possible

queries ahead of time, only the answers to the queries needed to classify a given dataset of

sequences are retrieved. Consider a test dataset T = {s1, s2, . . . st} of t sequences that need

to be classified. Given a sequence s, let Λ(s, k) be the set of unique subsequences of length

k in s. From equation (4.1) it follows that the required queries to classify a sequence s is

|C|(1+ |Λ(s, k)|). Hence, the query complexity of the lazy approach to classify the dataset T is

|C|(1+
∑|T |

i=1 |Λ(si, k)|). Since Λ(s, k) is atmost |s|−k+1 (i.e. when all subsequences of length

k in s are unique), the query complexity QC(MM(k − 1)) ≤ |C|
(

1 +
∑|T |

i=1 (|si| − k + 1)
)
.

The query complexity QC(MM(k− 1)) can be further reduced through the use of caching

wherein the system maintains a cache of answers to primitive queries answered during the

execution of L against D. Before querying the data source D we can check if the answer to

the query is available in the cache. Assuming that the sequences to be classified arrive in the

order s1, s2 . . . st, let cachei contain the answers to queries answered by D in the course of
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classifying sequences s1 through si−1. Because the cache is initially empty, cache1 = φ. Let

Λ(si, k,D) denote the results to the queries for the counts, as obtained fromD, of corresponding

sequences in Λ(si, k). Hence, cachei+1 = {Λ(s1, k,D) ∪ Λ(s2, k,D) . . . ∪ Λ(si, k), D}. The

additional queries needed to be posed to the data source D to classify sequence si given

that the sequences s1 . . . si−1 have been already classified correspond to obtaining the set of

counts ∆(si, k,D) = Λ(si, k,D) − {Λ(s1, k,D) ∪ Λ(s2, k,D) . . . ∪ Λ(si−1, k,D)}. Hence, the

query complexity of the resulting approach is QC(MM(k − 1)) = |C|(1 + Σ
|T |
i=1|Λ(si, k)|) −

{|Λ(si−1, k)∪Λ(si−2, k) . . .Λ(s0, k)|} with Λ(s0, k) = φ. Observation: The lazy approach for

sequence classification is equivalent to the Markov Model based approach to classification that

has access to the underlying dataset D. This follows from the fact that both approaches use

equation (4.1) to compute the probability of a given sequence belonging to the class and this

probability is the same when computed in the traditional way or through the use of statistical

queries as in equation (4.2).

4.3.2 Interpolated Markov Models

Higher order Markov Models have a greater expressive power than their lower order coun-

terparts. However, the higher the order of the Markov model, the less reliable are the estimates

of the model parameters. The Interpolated Markov Models provide a means of dealing with

this problem using a weighted combination of Markov models with several different choices

of k (see Zhu et al. (2006a), Salzberg et al. (1998)). Given a sequence s = σ1σ2 . . . σn let

si = σ1σ2 . . . σi be the subsequence ending at position i and si,j = σi−jσi−j+1 . . . σi−1 be se-

quence composed of the j positions that precede σi. Then the estimate of the probability of a

sequence s belonging to the class cj using an Interpolated Markov Model of order k is denoted

by P̂IMM(k)(s, cj) and

P̂IMM(k)(s, cj) = Σn
i=1IMMk(si, cj)

where IMMk(si, cj) = λk(si−1)P̂MM(k)(si, cj)+(1−λk(si−1))IMMk−1(si, cj) and λk(si−1) is

the numeric weight associated with the k-mer ending at position i−1 in sequence s (i.e. si,k) and
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P̂MM(k)(si, cj) is the estimate obtained from training data with the kth order Markov model

(see Salzberg et al. (1998), Salzberg et al. (1999) for details). The estimate P̂MM(k)(si, cj)

required to build the Interpolated Markov Models (IMMs) can be computed, in the sufficient

statistics model, as described earlier in section 4.3. Hence we need a way to compute the

numeric weight λk(si−1) using only statistical queries. Consider for example, the computation

of λk(si−1) in Glimmer [Salzberg et al. (1999)]. These weights can be computed in our setting

using statistical queries of the form S(D, si,k, C = cj) and S(D, si,kσ,C = cj) where σ ∈ Σ.

Specifically, λk(si−1) = 1 when S(D, si,k, C = cj) is greater than some threshold (for Glimmer

the threshold is 400). When the count is less than the threshold, we compare the observed

frequencies of S(D, si,kσ,C = cj) (σ ∈ Σ) with those predicted by IMM of order k − 1. Using

a statistical test we compute the confidence (say d) that the observed frequencies are not

consistent with those predicted by P̂IMM(k−1)(si,kσ, cj). When d < 0.5, λk(si−1) = 0 and for

d ≥ 0.5, λk(si−1) = d/400 × S(D, si,k, C = cj) . Thus Interpolated Markov Models can be

implemented using statistical queries against the data source D.

4.4 Probabilistic Suffix Trees

The Probabilistic Suffix Trees (PSTs) originally introduced by Ron et al. [Ron et al.

(1996)] have been successfully used to model and predict protein families [Bejerano and Yona

(2001), Sun and Deogun (2004)]. The PSTs exploit the so called short memory feature of

natural sequences wherein the probability distribution of the next symbol given the preceding

sequence can be approximated by observing at most L preceding symbols of the sequence (L

being the memory length of the PST). To use PSTs for sequence classification, we need to

train a PST for each class; To classify an unlabeled sequence, we compute the probability

of the sequence given the class (i.e., the corresponding PST) and assign it to the class with

the largest probability. We first describe the algorithm to build a PST (say for class label

C = cj) using an available training dataset. The specific construction algorithm, Build-PST,

is adapted from Bejerano and Yona (2001) and is described below. The procedure uses five

external parameters: L the memory length, Pmin the minimum probability which subsequences
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are required to occur and three parameters α, γmin and r with values between zero and one

(refer Bejerano and Yona (2001) for details). The procedure uses T̄ to denote the PST and T̄ is

constructed iteratively starting with the root node. Each node (say labeled with s) maintains

a vector γ̄s which encodes the probability distribution (over the next symbol) associated with

the node s (we use γ̄s(σ) to denote the probability of the symbol σ in the distribution γ̄s).

Algorithm: Build-PST(Pmin, α, γmin, r, L)

(1) Initialization: let T̄ consists of a single root node (with an empty label), and let

S̄ ← {σ|σ ∈ Σ and ˆP (σ) ≤ Pmin}

(2) Building the PST skeleton: while S̄ 6= φ, pick any s ∈ S̄ and do:

(a) Remove s from S̄

(b) If there exists a symbol σ ∈ Σ such that

P̂ (σ|s) ≥ (1 + α)γmin

and

P̂ (σ|s)
P̂ (σ|suffix(s))



≥ r

or

≤ 1/r

then add to T̄ the node corresponding to s and all the nodes on the path to s from the

deepest node in T̄ that is a suffix of s.

(c) If |s| ≤ L then add the strings {σ́s|σ́ ∈ Σ and P̂ (σ́s) ≥ Pmin} (if any) to S̄.

(3) Smoothing the prediction probabilities For each s labeling a node in T̄ , let

γ̄s(σ) = (1− |Σ|γmin)P̂ (σ|s) + γmin

Note the final step (step(3)) of the algorithm corresponds to a parameter smoothing step.
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Build-PST iteratively adds nodes (step (2)) to obtain a PST. The terms calculated in step

(2) are P̂ (σ|s), P̂ (σ́s) and P̂ (σ|suffix(s)). These terms can be calculated using statistical

queries as follows:

• P̂ (σ|s) =
S(D,sσ,C=cj)
S(D,|sσ|,C=cj)

• P̂ (σ́|s) =
S(D,σ́s,C=cj)
S(D,|σ́s|,C=cj)

• P̂ (σ|suffix(s)) =
S(D,suffix(s)σ,C=cj)
S(D,|suffix(s)σ|,C=cj)

Since |sσ| = |σ́s|, it follows that the query S(D, |sσ|, C = cj) is the same as S(D, |σ́s|, C =

cj). Hence, in each iteration of step (2), requires five different queries to be answered by D.

If r(D, ci) is the number of times the step (2) is executed during the construction of the PST

for class ci ∈ C, then QC(PST ) = 5
∑|C|

i=1 r(D, ci). In practice r(D, ci) and hence the Query

Complexity depends on the dataset D as well as choice of Pmin. However, in the worst case the

number of queries submitted is bounded by the number of queries needed to to build Markov

Models of length through 1 and L. Hence, the query complexity QC(PST ) ≤ |C|
∑L

k=1 |Σ|k.

4.5 Updatable Predictive Models

The advent of automated high throughput sequencing techniques has resulted in an expo-

nential increase in the rate at which genomic sequence data is being generated. Many practical

applications call for techniques that allow the predictive models to be updated without the

need to regenerate the model from scratch. The update can either be additive wherein new

data needs to be incorporated into the model or subtractive wherein the contributions of some

of the old data need to be discarded from the model.

Given a dataset D and a learning algorithm ψ, let ψ(D) be a predictive model (e.g., a

Markov model) built from the data set D using a learning algorithm ψ. In the sufficient statis-

tics model, let θψ(D) be the set of primitive queries required over dataset D to build ψ(D).

In order for the built model ψ to incorporate new data (without rebuilding the model from
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scratch) it should be able to able to build a model over the combined dataset using additional

statistical queries posed only over the new data. A similar argument holds for removing a

subset of the data from the model. We formalize this notion in terms of an Updatable Model.

Definition 1 Updatable Model : Given datasets D1 and D2 such that D1 ⊆ D2 , we say

that the predictive model constructed using ψ is updatable iff we can specify functions f and g

such that

1. θψ(D2) = f(θψ(D2 −D1), θψ(D1))

2. θψ(D1) = g(θψ(D2), θψ(D2 −D1))

Theorem 1 Markov Models are updatable by a statistical query based learning algorithm.

Proof 1 For a Markov Model queries of the form S(D, s,C = cj) and S(D, |s|, C = cj) over

Descs(D) form the set θψ(D) (see equations (4.1) and (4.2)). Given datasets D2 and D1 such

that D1 ⊆ D2, it is easy to see that S(D2, s, C = cj) = S(D2−D1, s, C = cj)+S(D1, s, C = cj).

Similarly, S(D2, |s|, C = cj) = S(D2 − D1, |s|, C = cj) + S(D1, |s|, C = cj). As a result

the set θψ(D2) can be constructed from θψ(D2 − D1) and θψ(D1). Similarly, S(D1, s, C =

ck) = S(D2, s, C = ck) − S(D2 − D1, s, C = ck) and S(D1, |s|, C = ck) = S(D2, |s|, C =

ck) − S(D2 − D1, |s|, C = ck). Consequently the set θψ(D1) can be constructed from θψ(D2)

and θψ(D2 −D1).

The theorem above shows that the Markov Model is updatable in the statistical query model

and hence provides a natural way to incorporate new data or remove unwanted data in setting

of building Markov Model using statistical queries.

Observation: The PST built using the Build-PST procedure is not updatable. This is

due to the fact that in step 2(c) a string is added to set S̄ only if it probability is greater than

Pmin. It is possible that this condition is satisfied for a string (say x) in D2 −D1 but not in

D1 (say when x never occurs in D1 but occurs in D2−D1). As a result the queries to estimate

P (σ|x) from dataset D1 are never posed while being posed for the dataset D2 − D1. Hence,
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the PST is not updatable since it is not possible to compute P̂ (σ|x) for the dataset D2 only

from queries posed to compute P̂ (σ|x) for dataset D2 −D1

4.6 Discussion

In the preceding sections, we focused on the Markov property based classifiers that can

learn from sequence data using only count queries of the form S(D, s, C = ck). However, one

of the important classifiers in this family is the Hidden Markov Model based classifier (see

Rabiner (1990) for an overview). Hidden Markov Model (HMM) based approaches have been

used to address a variety of learning tasks from sequence data [Rabiner (1990), Stanke and

Waack (2003), Martin et al. (2005), Zhu et al. (2006a)]. We do not address the HMM based

approach since the implementation of Baum-Welch algorithm in the statistical query approach

is not straightforward. We beleieve it will involve certain simplifying assumptions (say fixing

the number of hidden states) and additional type of queries besides S(D, s, C = ck) (say in

the Gene finding approach, the queries to compute the transition matrix between the states).

In our setting of computing the Markov Property based class of predictors using statistical

queries we assumed that the data source holding the dataset answers queries of the form

S(D, s, C = ck). In practice the sequence data is often accessible via the web and the data

source provider often provides a variety of tools to access the data and it is not difficult

envision support for such type of queries. However, we show that supporting these types of

queries is fairly straightforward for a dataset stored in an RDBMS. Note that we acknowledge

existing commercial RDBMS may not be an efficient choice for efficiently storing and querying

sequence data [Stonebraker (2005), Stein (2010)] . In fact, there is a pressing need for storage

solutions to the massive amount of sequence data that is being generated at an enormous

rate. An approach to address a related problem (Web indexing) that generates Petabytes

amount of text data is BigTable [Chang et al. (2006)]. However, assuming that dataset is

stored in a RDBMS the queries of the form S(D, s,C = ck) can be easily supported. Given

Descs(D), let us assume the data is stored in a RDBMS with the following schema: the

data is stored in a table named D with the attributes id, sequenceData, and class where
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id is a unique identifier of the sequence (primary key), the attribute sequenceData contains

the representation of the sequence as a string and the attribute class specifies the family to

which the particular sequence belongs (note that it is fairly straightforward to dump FASTA

or XML formatted data into this schema). In such a setting, the support for queries of the

format S(D, s, C = cj) and S(D, |s|, C = cj) can be added by the user by writing appropriate

constructs using a procedural language (say PL/SQL) supported by the database. However,

in general the data sources holding D may not allow user written code to be executed on their

system. In such a case, the support for these queries needs to be provided in terms of standard

SQL queries. We propose the use of the regular expression support in SQL queries provided

by RDMS. Let R(D,C = cj , expr) represent the SQL query corresponding to the count of the

number of instances in D that have the value of the attribute class as cj and the sequenceData

matches the regular expression expr. The exact syntax of R(D,C = cj , expr) will depend on

the particular RDBMS under use. For Oracle 10g database, the R(D,C = cj , expr) will be the

SQL statement Select count(id) from D where REGEX LIKE (sequence expr) AND class = cj .

Similarly for MySQL R(D,C = cj , expr) be the SQL statement Select count(id) from D where

sequenceData REGEX expr AND class = cj . Consider the regular expression [̂.]{n}s which

matches any n characters followed by the string s. Assuming lmax is the maximum possible

length of a sequence, we have

S(D, s, C = cj) =
∑

n∈{0,1...lmax}

R(D,C = cj ,̂ [.]{n}s)

Similarly, the regular expression̂[.]{n+ k} matches any n+k characters starting from the

beginning of the line. Then,

S(D, |s|, C = cj) =
∑

n∈{0,1...lmax}

R(D,C = cj ,̂ [.]{n+ k})

As a result to calculate a single query of the form S(D, s,C = cj) (or S(D, |s|, C = cj),

lmax number of SQL queries are submitted to the database. Hence, the computed Query

Complexity is increased by a factor of lmax. However, the preceding discussion demonstrates

that it is possible to provide support for the type of queries required to build Markov Models

using only statistical queries.
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Observation: It is possible to compute the answer to the query from answers to the

queries of the form S(D, |s|, C = cj) as S(D, |s|, C = cj) =
∑

x∈Σ|s| S(D,x,C = cj). However,

it requires |Σ|s|| queries as opposed to lmax queries using the approach suggested earlier and

may be useful only in cases when results to queries of the form S(D, s, C = cj) are already

available (say in cache).

4.7 Summary and Related Work

Summary: Due to the exponential increase in the rate at which sequence data are being

generated, there is an urgent need for efficient algorithms for learning predictive models of

sequence data from large sequence databases and for updating the learned models to accom-

modate additions or deletions of data in settings where the sequence database can answer only

a certain class of statistical queries.

In this chapter we presented an approach to learning predictive models from sequence data

using sufficient statistics by posing count queries against a sequence data source. This ap-

proach can be used to build the predictive model without access to the underlying data as long

the data source is able to answer a class of count queries. In addition, this approach scales

well to settings where the dataset is very large in size because it does not need to load the

entire dataset in memory. We have also outlined some optimization techniques to minimize

the number of queries submitted to the data source. In addition, we showed how the class of

Markov model based predictors can be updated in response to addition or deletion of subsets

of the data.

Related Work: The approach to learning Markov models and their variants presented in

this chapter builds on the statistical query based approach to learning from large datasets

(including distributed data sets) introduced by Caragea et al. (2004b). Markov Models have

been successfully used in a broad range of applications in computational biology including

gene finding (e.g. GeneMark [Borodovsky and McIninch (1993)], GenScan [Burge and Karlin

(1997)]), protein classification [Yuan (1999), Yakhnenko et al. (2005), Fischer et al. (2004)] ,
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among others. Salzberg et al. (1998) have used Interpolated Markov Models for gene finding.

Bejerano and Yona (2001) and Sun and Deogun (2004) have used Probabilistic Suffix Trees for

protein classification. Begleiter et al. (2004) discuss Variable order Markov Models. Abouel-

hoda et al. (2004) have investigated approaches to reducing the memory requirements of suffix

tree construction algorithms. Koul et al. (2008) describe approaches to build Naive Bayes and

Decision Trees from databases using SQL queries.
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CHAPTER 5. Learning In Presence of Ontology Mapping Errors

The widespread use of ontologies to associate semantics with data has resulted in a growing

interest in the problem of learning predictive models from data sources that use different

ontologies to model the same underlying domain (world of interest). Learning from such

semantically disparate data sources involves the use of mapping to resolve semantic disparity

among the ontologies used. Often, in practice, the mapping used to resolve the semantic

disparity may contain errors and as such the learning algorithms used in such a setting must

be robust in presence of mapping errors. We reduce the problem of learning from semantically

disparate data sources in the presence of mapping errors to the problem of learning in the

presence of nasty classification noise. This reduction allows us to transfer theoretical results

and algorithms from the latter to the former.

5.1 Introduction

Recent advances in high throughput data acquisition technologies in many applications

have resulted in a proliferation of autonomous and distributed data sources. Different data

sources often use disparate vocabularies (e.g., M.S. student versus Masters student), units

(e.g., temperature measured in degrees Centigrade versus Fahrenheit), and levels of detail (e.g.

graduate student, student) to describe the objects of interest in the world being modeled.

In such a setting, different data sources represent different conceptual models of the same

underlying world. In the semantic web vision this typically translates to each data source

assuming a particular ontology to model objects, properties and relationships in the world of

interest.

Hence, learning from such data sources requires reconciling the semantic differences between
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the learner’s conceptual model of the world (i.e., learner’s ontology) and the models of the world

associated with the the disparate data sources (i.e., the data source ontologies). This is achieved

through a data integration step [Lenzerini (2002), Hull (1997)] that presents to the learning

algorithm, a single view of the different data sources. Data integration involves mapping the

terms in the data source ontologies to the corresponding terms in the learner’s ontology (see

Kalfoglou and Schorlemmer (2005) for a survey). However, this mapping process is often error

prone. Errors in mappings can be due to human error, errors in the automated mapping

algorithm used, or by lack of exact correspondences between terms in a source ontology and

the target ontology. Hence, it is of interest to characterize the effect of mapping errors on the

accuracy of the predictive models (e.g., classifiers) learned in such a setting.

Consider for example, the problem of learning boolean conjunctions. The target function

f : {0, 1}n −→ {0, 1} to be learned is a conjunction of literals drawn from x1, x2 . . . xn and their

negations. The learner L expects the training examples of the form (x, y) where x ∈ {0, 1}n

and y ∈ {0, 1}. Suppose the learner receives the training data (labeled examples) from two

different sources D1 and D2. Let each instances from D1 (as well as D2) correspond to an n

valued attribute value vector, and an ontology associated with each attribute (and the label)

specify the possible values that the attribute can take. Let the ontology associated with each

attribute and the class label in D1 be such that each attribute as well as the class label can

take either then boolean value True or False. Hence, the data from D1 is of the form (x, y)

where x ∈ {True, False}n and y ∈ {True, False}. Similarly, let the ontologies associated

with the attributes and the class label in D2 be such that the data from D2 is of the form

(x, y) where x ∈ {−5V,+5V }n and y ∈ {Off,On} (Note data in D2 can be seen as record

of the input voltages, and output to boolean circuit that encodes the function f). Now in

order for the learner to be able to learn from data from both D1 and D2, the vocabularies

used by D1 and D2 have to be mapped to the vocabulary used by the learner. Thus, suppose

-5V, +5V, Off, On in D2 map to 0, 1, 0, 1 (respectively) from the learner’s point of view.

Similarly, False and True in D1 map to 0 and 1 (respectively) from the learner’s point of

view. These mappings transform examples from D1 and D2 into examples from which L can
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learn the unknown target function f. While in this example, the mappings were relatively

simple, in real-world applications, establishing such mappings and ensuring that they preserve

the intended semantics can be a complex, and error-prone process. Suppose in our example

because of human error, the On is incorrectly mapped to 0 instead of 1. As a consequence of

this mapping error, some of the instances from D1 are incorrectly labeled from the learner’s

point of view.

Against this background, this paper reduces the problem of learning from semantically

disparate data sources in the presence of mapping errors to a variant of the problem of learning

in the presence of nasty classification noise in a PAC-like framework (see Valiant (1984), Kearns

and Vazirani (1994) for background on PAC learning). This reduction allows us to transfer

results and algorithms from latter to the former. This reduction proves to be very useful in

practice as techniques to deal with noise have been well studied in literature and can be applied

to the setting of learning in presence of mapping errors.

The rest of the paper is organized as follows. Section 5.2 introduces a formal model of

learning from disparate data sources. Section 5.3 presents the main result of the paper: that

learning from disparate data sources in the presence of mapping errors can be modeled by

learning from a single data source in the presence of noise. Finally Section 6.5 concludes with

a summary, significance, and a brief discussion of related work.

5.2 Learning from Semantically Disparate Data Sources

We now introduce the notion of a k -Delegating Oracle to model learning from multiple

data sources. We then extend the model to a mapping aware k -Delegating Oracle to model

learning from semantically disparate data sources.

5.2.1 k-Delegating Oracle

Let X be an instance space, D a probability distribution over X , F a function space and

f : X −→ {0, 1} the target function to be learned (f ∈ F). An oracle EX(f,X ,D) is a

procedure that returns a labeled example 〈x, f(x)〉 where x is drawn from X according to D.
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We use the notation Prx∈D[x] to indicate the probability of drawing an instance x from X

according to the distribution D. The classical model of supervised learning, consisting of a

learner L with access to an Oracle EX(f,X ,D), is not expressive enough to model learning

from multiple data sources. Consequently we introduce the notion of a k -Delegating Oracle to

model learning from multiple data sources.

A k-delegating oracle kEX(f,X ,D) invokes subordinate oracles EX1(f,X ,D1), . . . EXk(f,X ,Dk)

with probabilities p1 . . . pk respectively. The ith oracle EXi(f,X ,Di) when invoked returns an

example of the form 〈x, f(x)〉 where x is drawn from X according to Di. The distribution D

of the k -delegating oracle is Prx∈D[x] =
∑k

i=1 pi × Prx∈Di [x]

A classical oracle can be seen as a special case of the k -delegating oracle with k = 1.

5.2.2 Mapping Aware k-Delegating Oracle

Let Xs1 ,Xs2 . . .Xsk be k instances spaces; Let D1,D2 . . .Dk be probability distributions

over Xs1 ,Xs2 . . .Xsk respectively and F1,F2 . . .Fk be k functions spaces defined over the cor-

responding instance spaces where each function in F i labels instances in Xsi with a label in

the set Ci.

A mapping aware k-delegating oracle has access to a mapping set M = {m1,m2 . . .mk}

where mi = {mx
i ,m

c
i}; mx

i : Xsi −→ X is an attribute mapping function; and mc
i : Ci −→ C is

a class mapping function where Ci = Range(fi) and C = Range(f). It invokes subordinate

oracles EX1(f1,Xs1 ,D1) . . . EXk(fk,Xsk ,Dk) where the ith subordinate oracle EXi(fi,Xsi ,Di)

returns examples of the form 〈xsi , fi(xsi)〉 where xsi is drawn from Xsi according to Di and

fi ∈ F i. It uses the mapping mi to convert an instance 〈xsi , fi(xsi)〉 received form the ith

subordinate oracle to 〈mx
i (xsi),m

c
i (fi(xsi))〉 before passing it to the learner. We assume the

mappings mi are computable and satisfy the following conditions: ∀xsi ∈ Xsi ,mx
i (xsi) ∈ X ;

∀l ∈ Ci,mc
i (l) ∈ C and whenever x ∈ Xsi ,Xsj , mx

i (x) = mx
j (x). These conditions ensure that

the examples returned by the mapping aware k -delegating oracle are of the form 〈x, l(x)〉 where

x ∈ X and l(x) ∈ C.

Ideally the mappings should ensure that the examples returned to the learner are labeled
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k-Delegating Oracle

M
apping M

Figure 5.1 A schematic representation of mapping aware k-delegating or-
acle.

according to the target function f . However, in practice mappings may have errors and con-

sequently the instances may labeled according to φ which may be different from f . We denote

the mapping aware k -delegating oracle by kEX(φ,X ,D,M) where φ is the labeling function.

A schematic representation of mapping aware k -delegating oracle is shown in Figure 5.1.

Let Y x
si

be a set that consists of all the elements in Xsi that are mapped to an element

x ∈ X using the mapping mx
i . Then the distribution D over X is given by

Prx∈D[x] =
k∑
i=1

∑
y∈Y x

si

pi × Pry∈Di [y] (5.1)

Note that the sampling distribution D now depends on mappings mx
1 . . .m

x
k (because of de-

pendence on Y x
si

).
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5.3 Learning in the Presence of Mapping Errors

We now proceed to describe (formally) what it means for a mapping to be correct (and

correspondingly to have errors) and establish an equivalence between learning in the presence

of mapping errors and learning from noisy data.

5.3.1 Mapping Errors

The sets of class labels C1 . . . Ck as well C partition the corresponding instance spaces

Xs1 . . .Xsk and X respectively. Each cell in a partition corresponds to a set of instances that

share the same class label. The mapping mc
i establishes a correspondence between the cells of

the partition of Xsi and those of the partition of X . We define errors in mappings relative to

a reference set of mappings mc
1,expert(l) . . .m

c
k,expert(l) (e.g., provided by an expert).

Definition 4 (Correct Class Mapping) A class mapping mc
i is said to be correct if ∀l ∈ Ci

mc
i (l) = mc

i,expert(l).

Definition 5 (Correct Attribute Mapping) An attribute mapping mx
i is said to be correct

whenever ∀x ∈ Xsi, fi(x) = l and mc
i,expert(l) = l1 −→ f(mx

i (x)) = l1

Definition 6 (Correct Mapping Set) A mapping set M = {m1,m2 . . .mk} is said to be

correct if ∀i ∈ {1, 2, . . . , k} mx
i and mc

i are correct.

In the rest of the paper, we assume that a correct class label mapping is available (say from a

domain expert) and all mapping errors are attribute mapping errors. Figure 5.2 and Figure 5.3

show an example of a correct mapping and an incorrect mapping respectively. The following

observation follows directly from the above definitions.

Observation 1: Given a correct attribute mapping mx
i it follows that mc

i,expert(fi(xsi)) =

f(mx
i (xsi))

Suppose the k -delegating oracle invokes the ith subordinate oracle. Then the labeled exam-

ple passed to the learner is of the form 〈mx
i (xsi),m

c
i (fi(xsi))〉 where xsi ∈ Xsi . Because mc

i is

assumed to be the same as mc
i,expert, it follows from Observation 1 that 〈mx

i (xsi),m
c
i (fi(xsi))〉
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Figure 5.2 An example of a correct mapping.

= 〈mx
i (xsi), f(mx

i (xsi))〉 = 〈x, f(x)〉 where x ∈ X since mx
i (xsi) ∈ X . Hence we have the

following observation.

Observation 2: Given a correct mappings set M , for each labeled example of the form

〈x, φ(x)〉 ∈ X × C provided by kEX(φ,X ,D,M), it must be the case that φ(x) = f(x) where

f is the target function.

Observation 2 shows that when the mappings have no errors the instances passed to the

learner are labeled according to the target function f .

5.3.2 Mapping Errors as Noise

We now proceed to show that the mapping errors result in the incorrectly labeled examples

being provided to the learner and hence can be seen as introducing classification noise in the

examples. Let Prx∈D[e = 〈x, f(x)〉] denote the probability that a labeled example e = 〈x, f(x)〉

is obtained by a single call to the oracle EX(f,X ,D).

Definition 7 (Equivalent Oracles) The oracles EX1(f1,X ,D1) and EX2(f2,X ,D2) are

said to be equivalent whenever ∀e ∈ X × Range(f1) ∪ Range(f2), P rx∈D1 [e = 〈x, f1(x)〉] =

Prx∈D2 [e = 〈x, f2(x)〉]



68

Instances with 
Label 0

Instances with 
Label 1

Instances with 
Label 0

Instances with 
Label 1

Figure 5.3 An example of a mapping with errors.

The following observation follows directly from Observation 2 and the definition of equiv-

alent oracles.

Observation 3: A k -delegating oracle kEX(φ,X ,D,M) is equivalent to a classical oracle

EX(f,X ,D) whenever the mapping set M is correct with respect to target function f .

Definition 8 (Noisy Oracle) Let ηx : X 7→ [0, 1] be an instance dependent classification

noise rate. A noisy oracle EX1ηx(f,X ,Deq) operates as follows: It calls a classical oracle

EX(f,X ,Deq) to obtain a labeled example 〈x, f(x)〉 and returns to the learner the example

〈x, f(x)〉 with a probability 1− ηx and 〈x, 1− f(x)〉 with probability ηx.

Given a k -delegating oracle kEX(φ,X ,D,M), let β(x) be the probability that an instance

x obtained by a single call to kEX(φ,X ,D,M) has the label φ(x) which is different from f(x).

Let γ(x) be the probability that an instance x obtained by a single call to kEX(φ,X ,D,M)

has the label φ(x) which is same as f(x).

Theorem 2 A k-delegating oracle kEX(φ,X ,D,M) is equivalent to a noisy oracle EX1ηx

(f,X ,Deq) when the distributions D and Deq are identical and ηx = β(x)
β(x)+γ(x)
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Proof 2 From (5.1), the distribution D over X of the given k-delegating oracle is

Prx∈D[x] =
k∑
i=1

∑
y∈Y x

si

pi × Pry∈Di [y]

We define αi(x) =
∑

y∈Y x
si
Pry∈Di [y], then

Prx∈D[x] =
k∑
i=1

pi × αi(x)

Now αi(x) can be seen as the weight (sum of probabilities) of instances drawn from Xi
s ac-

cording to Di that is mapped to x ∈ X . In presence of mapping errors let the set Y x
si

=

Ax
si
∪ Bx

si
where Ax

si
is subset of instances in Y x

si
that are correctly mapped to x ∈ X while

Bx
si

is the subset of instances in Y x
si

that get mapped to x ∈ X due to mapping errors. Let

γi(x) =
∑

y∈Ax
si
Pry∈Xsi ,Di [y] and βi(x) =

∑
y∈Bx

si
Pry∈Xsi ,Di [y]. Note that βi(x) and γi(x) (re-

spectively) are the weights of instances drawn from Xi
s according to Di that are incorrectly and

correctly mapped to x ∈ X . Recall that x ∈ Xi
s is correctly mapped using mx

i if the following

holds

fi(x) = l1 and m
c
i,expert(l1) = l −→ f(mx

i (x)) = l.

It follows that

αi(x) = βi(x) + γi(x)

In addition γ(x) =
∑k

i=1 pi × γi(x) and β(x) =
∑k

i=1 pi × βi(x). Note that β(x) is the

probability that given the instance x is drawn (from X according to D), it is labeled incorrectly

. Similarly γ(x) is the probability that given the instance x is drawn (again from X according

to D), it is labeled correctly. Hence

Prx∈D[x] = γ(x) + β(x)

To avoid cluttering the notation we will abbreviate kEX(φ,X ,D,M) and EX1ηx(f,X ,Deq) by

kEX and EX1ηx respectively when the parameters are obvious from the context. Consider a

labeled example e = 〈x, l(x)〉 ∈ E = X × {0, 1} where l(x) is the label associated with x. The

labeled example e = 〈x, l(x)〉 can be sampled either from kEX or EX1ηx and since the class
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labels are binary l(x) is either f(x) of 1− f(x).

case : l(x) = f(x)

Prx∈Deq [e = 〈x, f(x)〉] = (1− ηx)Prx∈Deq [x]

Prx∈D[e = 〈x, f(x)〉] = γ(x)

case: l(x) = 1− f(x)

Prx∈Deq [e = 〈x, 1− f(x)〉] = ηxPrx∈Deq [x]

Prx∈D[e = 〈x, f(x)〉] = β(x)

When the noisy oracle EX1ηx(f,X ,Deq) is such that

Prx∈Deq [x] = Prx∈D[x] = γ(x) + β(x) =

k∑
i=1

pi × αi(x)

and

ηx =
β(x)

β(x) + γ(x)

it follows that for either case

Prx∈Deq [e = 〈x, f(x)〉] = Prx∈D[e = 〈x, f(x)〉] (5.2)

This establishes the equivalence of oracles EX1ηx and kEX.

The theorem shows that the effect of the mapping errors in the k -delegating oracle kEX

can be simulated by the noise function ηx associated with EX1ηx .

5.3.3 Mapping Errors as Nasty Noise

We now argue that the noise model ηx associated with EX1ηx(f,X ,D) can be simulated

by the nasty classification noise Bshouty et al. (1999) model which in turn can be simulated

by the nasty sample noise model Bshouty et al. (1999).

Definition 9 (Instance Dependent Classification Noise(IDCN) Oracle): An Instance

Dependent Classification Noise Oracle, denoted by IDCN(m, ηx, f,X ,D), is one where an
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intermediary obtains a dataset Dm of m i.i.d examples by making m calls to a noisy oracle

EX1ηx(f,X ,Deq). The resulting dataset is then provided to the learner.

Definition 10 (km-delegating Oracle ): A km-delegating Oracle, denoted by

kEXm(φ,X ,D,M), is one where an intermediary obtains a dataset Dm of m i.i.d examples

by making m calls to a k-delegating oracle kEX(φ,X ,D,M). The resulting dataset is then

provided to the learner.

Definition 11 (Nasty Sample Noise (NSN) Oracle (adapted from Bshouty et al.

(1999))): A Nasty Sample Noise Oracle, denoted by NSN(m, η, f,X ,D), is one where an

adversary obtains a dataset Dm of m i.i.d examples by making m calls to a classical oracle

EX(f,X ,D). The adversary then picks n out of m instances of its choosing from Dm (where

n is distributed according to a binomial distribution with parameters m and nasty noise rate η)

and replaces them with any examples of its choice from X × Range(f). The resulting dataset

is then provided to the learner.

Definition 12 (Nasty Classification Noise (NCN) Oracle (adapted from Bshouty

et al. (1999))): A Nasty Classification Noise Oracle, denoted by NCN(m, η, f,X ,D), is one

where an adversary obtains a dataset Dm of m i.i.d examples by making m calls to a classical

oracle EX(f,X ,D). The adversary then picks n out of m instances of its choosing from Dm

(where n is distributed according to a binomial distribution with parameters m and nasty noise

rate η) and flips their class labels. The resulting dataset is then provided to the learner.

Nasty Classification Noise (NCN) is a weaker case of NSN where the adversary is

constrained such that it can modify only the class labels of n instances selected from Dm in a

manner identical to that in the case of NSN

Consider a dataset obtained from IDCN(m, ηx, f,X ,D). Let λ =
∑

x∈X ηx × Prx∈D[x].

The value λ represents the probability that a random example in the dataset obtained by a

single call to EX1ηx(f,X ,D) is mislabeled. The number of examples in the dataset obtained

from IDCN(m, ηx, f,X ,D) that have incorrect labels with respect to f can be viewed as

number of successes in a sequence of m independent binary experiments each with a success
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probability λ. In the case of NCN(m, η, f,X ,D), if we choose η = λ =
∑

x∈X ηx × Prx∈D[x],

it follows that the number of incorrectly labeled examples in the dataset can also be viewed

as number of successes in a sequence of m independent binary experiments each with a suc-

cess probability λ. However, the n examples that are mislabeled in the dataset obtained from

IDCN(m, ηx, f,X ,D) are determined by function ηx whereas in the case of a dataset obtained

from NCN(m, η, f,X ,D) any n of the m instances can be mislabeled (For example the la-

bel of an instance x for which ηx = 0 will never be mislabeled in a dataset obtained from

IDCN(m, ηx, f,X ,D) whereas it is possible that the same instance can be mislabeled in a

dataset obtained from NCN(m, η, f,X ,D)). The preceding argument leads to the following

observation:

Observation 4: The IDCN model can be simulated by the NCN model and hence also by

the NSN model.

The IDCN oracle uses a noisy oracle EX1ηx(f,X ,Deq) while the kEXm(φ,X ,D,M) oracle uses

a k -delegating oracle kEX(φ,X ,D,M). However, Theorem 1 states that every k -delegating

Oracle has an equivalent Noisy Oracle. This leads to the following observation:

Observation 5: The kEXm(φ,X ,D,M) Oracle can be simulated by the IDCN model.

Observation 4 and observation 5 results in a hierarchy of Oracles and is depicted in Figure 5.4.

It follows in a straightforward way from Observation 4 and Observation 5 (depicted in

Figure 5.4) that learning in presence of ontology mapping errors can be seen as a weaker

case of learning with nasty classification noise. As a result a learner can apply the same

techniques to deal with mapping errors that it applies to deal with nasty classification noise.

This result proves to be very useful in practice, since techniques to deal with noise have been

studied extensively in literature and can be ported in a straightforward way to the setting

of learning in presence of mapping errors. For example, similar to learning from noisy data,

learning in presence of mapping errors is prone to overfitting and may be addressed by pruning

[John (1995), Mansour (1997), Quinlan (1993)]. Similarly, on the lines of eliminating class

noise (to improve performance of the learned classifier) filtering instances with mapping errors

may be used to improve the performance of the classifiers learned in presence of mapping
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Delegating Oracle

IDCN  Oracle

NCN  Oracle

NSN  Oracle

Figure 5.4 A schematic representation of hierarchy between types of oracles
(the arrows denote can be simulated by).

errors. Based on the approach in [Verbaeten and Assche (2003), Zhu et al. (2003), Gamberger

et al. (1999)] , the training set D is partitioned into n subsets and a classifier built on each

subdataset. A set of classifiers Hy from the aggregation of any n − 1 subsets is used to

classify the excluded subset, and the instances that are incorrectly labeled are marked as

one with mapping errors and filtered out. This approach can be readily extended to detect

mapping errors in the distributed setting using a technique similar to described by Zhu et al.

(2006b). Other approach to filter class noise (and correspondingly mapping errors) include

a boosting based filter [Verbaeten and Assche (2003), Karmaker and Kwek (2005)]. In this

approach, after a certain number of iterations in AdaBoost [Freund and Schapire (1997)],

instances whose weights exceed a a certain threshold are marked as having mapping errors. In

addition, insights from noisy learning are also applicable to the setting of learning in presence

of mapping errors, e.g. AdaBoost [Freund and Schapire (1997)], whose performance is known

to degrade in presence of classification errors (see Dietterich (2000b)), is not a good choice to
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learn in the setting of mapping errors (a good choice may be Robust Alternating AdaBoost

[Allende-Cid et al. (2007)], an noise-tolerant version of AdaBoost and hence also tolerant to

mapping errors).

5.3.4 Learning in the Presence of Mapping Errors

We now proceed to present some theoretical results for learning in presence of mapping

errors in a PAC like setting.

Definition 13 (PAC Learnability (from Kearns and Vazirani (1994))) A class F of

boolean functions is PAC-learnable using hypothesis class H in polynomial time if there ex-

ists an algorithm that, for any f ∈ H, any 0 < ε < 1/2, 0 < δ < 1 and any distribution D on

X , when given access to the PAC oracle, runs in time polynomial in log|X |, 1/ε, 1/δ and with

probability at least 1− δ outputs a function h ∈ H for which Prx∈D[h(x) 6= f(x)] ≤ ε.

Definition 14 (Mapping Error Rate) The mapping error rate of a k-delegating oracle

kEX(φ,X ,D,M) is defined as the probability that an example 〈x, φ(x)〉 obtained by making a

call to kEX(φ,X ,D,M) has a label that is different from that assigned by the target function

f .

Observation 6: The mapping error rate of a k -delegating oracle kEX(φ,X ,D,M) =∑
x∈X β(x)× Prx∈D[x].

PAC learning is information theoretically impossible in the case when the probability that

a randomly drawn example from an oracle has an incorrect label ≥ 0.5. Hence PAC learning

is not possible in the case of Noisy oracle EX1ηx(f,X ,Deq) when ∀x, ηx > 0.5 or in the case

of NCN(m, η, f,X ,D) when η ≥ 0.5. Correspondingly, PAC learning is also not possible

when the mapping error rate β ≥ 0.5. This result provides an upper bound on the amount

of mapping errors that can be tolerated. Consider the case of a k -delegating oracle in which

mapping associated with one of the subordinate oracle has errors (we need not which them is

erroneous). If in each run of the delegating oracle there is an equal chance of selecting each

sub ordinate oracle, then β ≤ 1
k . Hence, for PAC learning, it needs to be the case that k > 2

which ensures β < 0.5.
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Consider NastyConsistent, a PAC learning algorithm under the NSN model [Bshouty et al.

(1999)].

Algorithm NastyConsistent

Input: certainty parameter δ > 0, the nasty error rate η < 1
2 and required accuracy ε = 2η+∆.

begin

1. Request a sample S = {〈x, l(x)〉} of size m > c
∆2 (d+ log2/δ) from the NSN oracle.

2. Output any h ∈ F such that |{x ∈ S : h(x) 6= l(x)}| ≤ m(η + ∆/4) (if no such h exists,

output any h ∈ F).

end

Theorem 3 ( restatement of theorem 4 in Bshouty et al. (1999)) Let C be any class of VC-

dimension d. Then, there exists a choice of the constant c for which NastyConsistent is a PAC

learning algorithm under nasty sample noise of rate η.

Proof 3 See proof of Theorem 4 in Bshouty et al. (1999).

Consider the following variant of the NastyConsistent algorithm which uses kEXm(φ,X ,D,M)

Oracle to return the sample S to the learner (as opposed to NCN Oracle in NastyConsistent).

Algorithm MappingErrorTolerantConsistent

Input: certainty parameter δ > 0, the mapping error rate β < 1
2 and required accuracy

ε = 2η + ∆.

begin

1. Request a labeled dataset S = {〈x, φ(x)} of sizem > c
∆2 (d+log2/δ) from kEXm(φ,X ,D,M)

.

2. Output any h ∈ F such that |{x ∈ S : h(x) 6= φ(x)}| ≤ m(η + ∆/4) (if no such h exists,

output any h ∈ F).
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end

Theorem 4 Let C be any class of VC-dimension d. Then, there exists a choice of the constant

c for which MappingErrorTolerantConsistent is a PAC learning algorithm under the mapping

error rate β.

Proof 4 The algorithm MappingErrorTolerantConsistent differs NastyConsistent in that it

uses a kEXm(φ,X ,D,M) instead of a NCN Oracle to get the labeled dataset. Since we have

shown that the kEXm(φ,X ,D,M) can be simulated by the NCN oracle, the statement of the

theorem follows from Theorem 2.

We now proceed to present an open problem in the setting of learning in presence of

mapping errors.

Definition 15 (Non-Trivial Concept Class (adapted from Bshouty et al. (1999)))

A concept class F over an instance space X is called non-trivial if there exist two points

x1, x2 ∈ X and two concepts f1, f2 ∈ F , such that f1(x1) = f2(x1) and f1(x2) 6= f2(x2).

Consider the following negative result concerning PAC learnability in the NCN model.

Theorem(restatement of theorem 3 in Bshouty et al. (1999)) Let C be a non-trivial concept

class, η be a noise rate and ε ≤ 2η be an accuracy parameter. Then, there is no algorithm that

learns the concept class C with accuracy ε under the NCN model (with rate η).

This raises the open question as to whether such a non-trivial concept class is PAC learnable

in the restricted case of IDCN and hence in the presence of mapping errors.

5.4 Summary and Discussion

5.4.1 Significance

The rapid proliferation of autonomous, distributed data sources in many emerging data-rich

domains (e.g., bioinformatics, social informatics, security informatics) coupled with the rise in

the use of ontologies to associate semantics with the data has led to a growing interest in the

problem of learning predictive models from semantically disparate data sources. Many practical
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approaches to this problem rely on mapping the instance descriptions used by the individual

data sources into instance descriptions expressed in a common representation assumed by the

learner (As an example G02 (2009) lists mappings between 20 different ontologies to the gene

ontology). Establishing such mappings is a complex and inevitably error-prone process. Hence

there is a need for approaches to learning from such data in the presence of mapping errors.

In this paper we have established that the problem of learning from semantically disparate

data sources in the presence of mapping errors can be reduced to the problem of learning from

a single data source in the presence of nasty classification noise within a PAC-like framework.

It should be noted that reduction to any arbitrary noise model is not applicable. For example,

in general, learning in the presence of mapping errors cannot be reduced to the problem of

learning in presence of random classification noise. In the random classification noise model,

the label of each instance can get flipped with a fixed probability η. In contrast, in the case

of a k -delegating oracle model, a given instance always gets assigned the same label. This is

because the mappings regardless of whether they are correct or not are fixed prior to sampling

and will result in an instance (when sampled) always being assigned the same label. Hence,

it is possible that a dataset D generated from an Oracle with random classification noise can

include two examples of the form 〈x, 0〉 and 〈x, 1〉 (i.e. D contains the same instance with two

different labels). The dataset D can never be generated by a k -delegating oracle model since

it will always label the instance x in the same way (even if x occurs multiple times in D).

The reduction of learning in the presence of mapping errors and learning in the presence of

nasty classification noise opens up the possibility of applying existing results and approaches

to learning in presence of classification noise to the problem of learning in the presence of

mapping errors. In our opinion this reduction is important since it provides a theoretical basis

for solving practical issues that arise in learning in the semantically disparate setting. Based

on this reduction, we outlined some of the techniques that can be used to cope with errors

in mappings in this setting. We believe these techniques will prove do to be very useful in

practice as the use of ontologies becomes even more widespread. On a theoretical side, we also

presented an algorithm that can be used to learn in presence of mapping errors in a PAC like
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setting.

5.4.2 Related Work

There is growing interest in the problem of learning predictive models from distributed

data sources [Park and Kargupta (2003)]. Caragea et al. (2005) have described algorithms

that given correct mappings, provide rigorous performance guarantees (relative to their single

data source counterparts) for learning from distributed, semantically disparate data sources

when the mappings are semantic preserving. Crammer et al. (2008) have examined the problem

of learning predictors from a set of related data sources. Ben-david et al. (2002) have analyzed

the sample complexity of learning from semantically disparate data sources in a setting where

classifiers trained on data sources D1 · · ·Dn−1 are used to predict the class labels of instances

from a data source Dn. However, none of these works have considered the effect of errors in

mappings between the representations used by the individual data sources.

The problem of learning predictive models from in the presence of noise in the data has

received considerable attention in the literature. A variant of PAC learning to model learning

in the presence of random classification noise was introduced in [Angluin and Laird (1998)].

Other variants of PAC learning that have been considered to model learning from noisy data

include PAC learning in the presence of malicious errors [Kearns and Li (1993)], learning in

the presence of attribute noise (but not classification noise) [Shackelford and Volper (1988),

Goldman and Sloan (1995)], learning under the nasty (or adversarial) noise model [Bshouty

et al. (1999)]. Several different types of noise in data have been been examined in the context

of the PAC learning framework in Sloan (1995). A quantitative study of classification noise

and attribute noise is given in Zhu and Wu (2004). Wilson and Martinez (2004) provide an

overview of approaches to cope with noise in data. Karmaker and Kwek (2005) have described

a boosting based approach to detect outliers in data which is closely related to the problem of

detecting mislabeled examples in a noisy dataset.

There has been very little work on detecting mapping errors in the setting of learning from

heterogeneous data sources. Of related interest is the work in ontology mapping field [Kalfoglou
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and Schorlemmer (2005), Euzenat and Shvaiko (2007)]. However, the primary focus in this

area is aligning ontologies (through use of mappings), merging related ontologies or detecting

logical inconsistencies in mappings [Meilicke et al. (2007)]. However, a consistent mapping

need not be correct in the sense described in this paper and in addition the focus of this paper

is to learn in presence of mapping errors.

5.4.3 Future Work

There are several interesting directions along which the analysis presented in this paper

can be extended including in particular, consideration of the effect of mapping errors in multi-

relational learning multiple instance learning, multi-label and structured label learning, among

others. Also of interest are theoretical and experimental studies of alternative approaches to

learning from semantically disparate data in the presence of mapping errors.
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CHAPTER 6. RELATIONSHIP BETWEEN LEARNING CLASSIFIERS

FROM DISPARATE DATA AND DOMAIN ADAPTATION

Current approaches to learning predictive models (e.g., classifiers) from semantically dis-

parate data sources rely on mappings between the corresponding data source ontologies (i.e.,

logical specification of abstractions of the underlying data model that capture knowledge of

individuals, their attributes, and their relationships to other individuals). Such mappings

should ideally establish semantic correspondences between the learner’s data model and the

data models associated with the individual sources. Because specifying such mappings, or for

that matter, even choosing an optimal mapping from among as set of alternative mappings

is a tedious and often error-prone process, and because the accuracy of the learned predictive

model depends on the quality of the mappings used, it is important to understand (a) how

errors in mappings affect the accuracy of the learned model and (b) how to choose an optimal

mapping from among a set of alternative expert-supplied or automatically generated mappings.

Towards this end, we introduce a notion of reducibility among classes of supervised learning

tasks and show that several aspects of learning from semantically disparate data sources can

be reduced to, and hence understood in terms of the theoretically well-studied problem of

domain adaptation (i.e., adapting a model that is trained on data sampled according to a

distribution that is different from the distribution from which the test data are obtained).

Furthermore, we introduce the notion of probabilistic mappings and show that there exists a

specific probabilistic mapping that facilitates domain adaptation.
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6.1 Introduction

The proliferation to autonomous, and hence often semantically disparate data sources

presents several significant challenges in learning from data [Caragea et al. (2005); Honavar

and Caragea (2008)]. As a result,different data sources often use disparate vocabularies (e.g.,

M.S. student versus Masters student), measurement units (e.g., temperature measured in de-

grees Centigrade versus Fahrenheit), and levels of abstraction (e.g. graduate student, student)

to describe the individuals of interest in the world being modeled. Hence, learning a pre-

dictive model from such multiple data sources based on disparate (yet semantically related)

data models requires reconciliation of their semantic differences between the corresponding

ontologies (i.e., logical specifications of abstractions of the respective data models that capture

knowledge of individuals, their attributes, and their relationships to other individuals) and the

ontology that corresponds to the learner’s conceptualization of the world. This reconciliation

is often achieved through the use of mappings that establish semantic correspondences between

the learner’s data model and the data models associated with the individual sources [Caragea

et al. (2005); Kalfoglou and Schorlemmer (2005); Doan et al. (2002)]. Such mappings are either

provided by a domain expert with an intimate knowledge of both the learner’s ontology as well

the data source ontologies or generated using automated techniques for ontology alignment

[Euzenat and Shvaiko (2007)]. As we shall show later, such mappings influence the the at-

tributes as well as distribution of samples seen by the learning algorithm, and thus, ultimately,

the predictive model that is learned. Because the task of establishing mappings between dis-

parate ontologies is necessarily an error-prone process, it is important to understand how errors

in a mapping MU relative to a ”correct” or ”ideal” mapping Mtrue impact the accuracy of the

learned model. A related problem has to do with choosing an optimal mapping from among

a set of available candidate mappings (either provided by different experts or generated using

one of the several available ontology alignment methods). To answer these questions, we intro-

duce a notion of reducibility among classes of supervised learning problems and use it to show

that several aspects of learning from semantically disparate data sources can be reduced to,

and hence understood in terms of the theoretically well-studied problem of domain adaptation
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(i.e., adapting a model that is trained on data sampled according to a distribution that is

different from the distribution from which the test data are obtained) [Blitzer et al. (2007a);

Mansour et al. (2008); Daumé III and Marcu (2006)]. Furthermore, we show that there exists

a transformation (which we call a probabilistic mapping) between the instances spaces of two

different domains that facilitates domain adaptation. These results allow the transfer of theo-

retical results as well as practical algorithms between two areas of data mining that have so far

been studied separately: learning predictive models from semantically disparate data sources

and domain adaptation.

The rest of the chapter is organized as follows. Section 6.2 describes an approach to model

various classes of supervised learning tasks. Section 6.3 introduces the notion of reducibility

among classes of supervised learning tasks and uses it to establish relationships between as-

pects of learning predictive models from semantically disparate data and aspects of domain

adaptation. Section 6.4 shows how probabilistic mappings can be used for domain adaptation.

Section 6.5 concludes with summary, discussion of related work, and a brief outline of some

directions for further research.

6.2 Modeling Learning Tasks

We first introduce some notation that we will use throughout rest of the chapter. Let

X be an instance space and H be an hypothesis space. In supervised learning the task of a

learner L is to learn a target function f : X 7→ {0, 1} given a set of instances drawn from

X (according to a fixed but unknown distribution D) and labeled according to f . Note for

simplicity we restrict our setting to binary classification with class labels 0 and 1. Given a

training dataset S ⊆ X × {0, 1} the learner L outputs a hypothesis h ∈ H so as to minimize

some error function. Let SX denote the subsets of X × {0, 1}. Hence, a learning algorithm

L can be seen as function L : SX 7→ H that maps a training dataset to a hypothesis in H.

Given a training dataset S ⊆ X × {0, 1} we also denote the hypothesis output by the learner

using the training dataset S as L(S). In our setting, the error of a hypothesis h ( output by

L) is denoted by εDt(h, f) and is the expectation that hypothesis h and f do not label an
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example drawn randomly from X according to distribution Dt. We use the notation Prx∈Dt [x]

to indicate the probability of drawing an instance x from X according to the test distribution

Dt (which, in general, may differ from the training distribution Ds). Similarly we use Ex∈Dt(x)

to indicate the expectation of x taken with respect to probability measure Dt. It follows that

εDt(h, f) = Ex∈Dt(|h(x)− f(x)|).

Let EX〈f,X ,D〉 denote an oracle that when invoked by a learner L returns a labeled

example 〈x, f(x)〉 where x is drawn from X according to a fixed but unknown distributionD.

Supervised learning is traditionally modeled by assuming that the learner L has access to

the oracle EX〈f,X ,D〉 that the learner L invokes multiple time to obtain a training dataset

[Kearns and Vazirani (1994)]. The said approach of a learner L with access to the oracle

EX〈f,X ,D〉 can model neither domain adaptation nor learning from semantically disparate

date sources. As such, in the next section, we present an extension to the classical model

of supervised learning that allows to model both learning from semantically disparate data

sources as well as domain adaptation. Subsequentally, we use the said model to show that

several aspects of learning from semantically disparate sources can e reduced to the well studied

problem of domain adaptation.

6.2.1 Learning from Semantically Disparate Data Sources

Let us introduce a very simple example to bring forth the setting of learning from seman-

tically disparate data sources. Consider the problem of learning boolean conjunctions. The

target function f : {0, 1}n −→ {0, 1} to be learned is a conjunction of literals drawn from

x1, x2 . . . xn and their negations. The learner L expects the training examples of the form (x,

y) where x ∈ {0, 1}n and y ∈ {0, 1}. Suppose the learner receives the training data (labeled

examples) from two different sources D1 and D2. Let each instances from D1 (as well as D2)

correspond to an n valued attribute value vector, and an ontology associated with each at-

tribute (and the label) specify the possible values that the attribute can take. Let the ontology

associated with each attribute and the class label in D1 be such that each attribute as well

as the class label can take either then boolean value True or False. Hence, the data from
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D1 is of the form (x, y) where x ∈ {True, False}n and y ∈ {True, False}. Similarly, let the

ontologies associated with the attributes and the class label in D2 be such that the data from

D2 is of the form (x, y) where x ∈ {−5V,+5V }n and y ∈ {Off,On} (Note data in D2 can be

seen as record of the input voltages, and output to boolean circuit that encodes the function

f). Now in order for the learner to be able to learn from data from both D1 and D2, the

vocabularies used by D1 and D2 have to be mapped to the vocabulary used by the learner.

Thus, suppose -5V, +5V, Off, On in D2 map to 0, 1, 0, 1 (respectively) from the learner’s

point of view. Similarly, False and True in D1 map to 0 and 1 (respectively) from the learner’s

point of view. The described mappings between ontologies can be used to construct function

that transform examples from D1 and D2 into examples from which L can learn the unknown

target function f. While in this example, the mappings were relatively simple, in real-world

applications, establishing such mappings and ensuring that they preserve the intended seman-

tics can be a complex, and error-prone process. Suppose in our example because of human

error, the On is incorrectly mapped to 0 instead of 1. As a consequence of this mapping error,

some of the instances from D1 are incorrectly labeled from the learner’s point of view. Hence,

in general, the learner L must be robust in presence of mapping errors. Another problem the

occurs in this setting is the problem of multiple available mappings. Consider two mappings

(say developed independently by two competing groups) where in the first -5V, +5V, Off, On

in D2 is mapped to 0, 1, 1, 0 (respectively) in the learner’s view whereas the second mapping

(say obtained from another group) maps Off, On in D2 to 1, 0, 0, 1 (respectively) in learner’s

view. As such the learner need to handle this scenario of multiple available mappings (say by

choosing the best among the multiple available mappings).

It is straightforward to observe that the classical oracle EX〈f,X ,D〉 cannot model ex-

amples being drawn in the setting of learning from disparate data sources. We introduce a

kDelegating oracle , an extension of the classical oracle EX〈f,X ,D〉, that can be used to model

learning from disparate data sources.
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k-Delegating Oracle

M
apping M

Figure 6.1 A kDelegating oracle with Di denoting the oracle
EXi〈fi,Xsi ,Di〉.

6.2.2 kDelegating oracle

A kDelegating oracle is a procedure which when invoked by a learner in turn invokes subordi-

nate oracles EX1〈f1,Xs1 ,D1〉 . . . EXk〈fk,Xsk ,Dk〉 with probabilities p1 . . . pk respectively. The

kDelegating oracle has access to a mapping set M = {m1,m2 . . .mk} where mi = {mx
i ,m

c
i};

mx
i : Xsi −→ X is an attribute mapping function; and mc

i : Ci −→ C is a class mapping func-

tion where Ci = Range(fi) and C = Range(f). It uses the mapping mi to convert an instance

〈xsi , fi(xsi)〉 received form the ith subordinate oracle to 〈mx
i (xsi),m

c
i (fi(xsi))〉 before passing it

to the learner. A mapping aware k-delegating oracle is represented by EX〈φ,X+,D+,M,X〉,

where X+ = {X1,X2 . . .Xk} is the set of instance spaces, D+ = {D1,D2 . . .Dk} is the set

of distributions, M is a mapping set and φ is the labeling function with which instances are

returned to the learner. A schematic representation of learning using a kDelegating oracle is

shown in Figure 6.1.

The mapping mi = {mx
i ,m

c
i} is said to be admissible if it satisfies the following conditions:
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∀xsi ∈ Xsi ,mx
i (xsi) ∈ X ; ∀l ∈ Range(fi), m

c
i (l) ∈ Range(f) and whenever x ∈ Xsi ,Xsj ,

mx
i (x) = mx

j (x). A mapping set M is said to be admissible if ∀mi ∈M, mi is admissible. An

admissible mapping set M ensures that the examples returned by the k -delegating oracle are

of the form 〈x, l(x)〉 where x ∈ X and l(x) ∈ C. We denote the set of all possible admissible

mappings by M∗ and assume in the rest of the chapter that a given mapping is admissible.

Consider the case of learning a function f using a kDelegating oracle kEX〈φ,X+,D+,M,X〉.

A straight-forward analysis shows that the total number of admissible mappings is |M ∗ | =∏k
i |X ||Xsi | (we assume two mappings are different if they differ on mapping atleast one instance

from the instance space of any one of the subordinate oracles).

Let the ideal mapping set Mtrue = {m1,true,m2,true . . .Mk,true,} where mi,true =

{mx
i,true,m

c
i,true}. The ideal mapping set is assumed to satisfy the following conditions: (a)

Mtrue ∈ M∗ and (b) 〈x, l(x)〉 the labeled instance returned to L (obtained after applying

relevant mappings in Mtrue to the labeled instance sampled from the subordinate oracle) is

the same as 〈x, f(x)〉. The condition (b) requires that instances returned to the learner are

labeled according to the target function f .

Definition 2 Semantics Preserving Class Mapping : A class mapping mc
i is said to be

semantics preserving if ∀l ∈ Ci mc
i (l) = mc

i,true(l).

Definition 3 Semantics Preserving Attribute Mapping: An attribute mapping mx
i is

said to be semantics preserving whenever ∀x ∈ Xsi, fi(x) = l and mc
i,true(l) = l1 implies

f(mx
i (x)) = l1

Definition 4 Semantics Preserving Mapping Set : A mapping set M = {m1,m2 . . .mk}

is said to be correct if ∀i ∈ {1, 2, . . . , k} mx
i and mc

i are semantics preserving.

Definition 5 Identity Mapping A mapping set M is said to be an identity mapping if

∀mi = {mx
i ,m

c
i} ∈M,mx

i (x) = x and mc
i (l) = l.

A semantics preserving mapping guarantees that the instances returned to the learner are

labeled with the target function f . Hence, given a kDelegating oracle kEX〈φ,X+,D+,M,X〉
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Figure 6.2 An example of a mapping with errors and a semantics preserv-
ing mapping.

with semantics preserving mapping M , it is the case that φ = f where f is the target function.

It is the case that Mtrue is semantics preserving. A mapping set M is said to have errors if it

is not semantics preserving. Errors in a mapping set can either be due to errors in attribute

mappings or errors in class mappings. Since the class mappings are fairly straightforward

(being between the binary class labels 0 and 1), we will assume throughout the chapter that

only possible errors are in attribute mappings. Figure 6.2 shows an example mapping with

errors and a semantics preserving mapping.

Remark A straight-forward analysis shows that the total number of semantics preserving

mappings is
∏k
i |X+||Xsi

+| × |X−||Xsi
−|
.

The remark above shows that, in general, there are multiple available semantics preserving

mappings each of which returns examples to the learner that are labeled with the target func-

tion. We now show that difference between using different semantics preserving mappings man-

ifests itself in terms of difference in distribution with which examples are returned to the learner.

Given a mapping mx
i , let [mx

i (y 7→ z)] be a indicator function that returns 1 when mx
i (y) = z

(for y ∈ Xsi) and returns 0 otherwise. Given a kDelegating oracle kEX〈φ,X+,D+,M,X〉 the

distribution over X with which instances are returned to the learner L is

Pr[z] =

k∑
i=1

pi
∑
y∈Xsi

[mx
i (y 7→ z)]pry∈Di [y]

Hence, given a kDelegating oracle kEX〈φ,X+,D+,M,X〉 the distribution with which in-
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stances are returned to the learner L depends on the set P = {p1 . . . pk} (the probabilities of

selecting the subordinate oracles), the distribution set D+ and the mapping set M (through

dependence on indicator function [mx
i (y 7→ z]) and is denoted by MP(D+). For easing clutter

of notation we drop the parameter P in the notation and denote it by M(D+).

While a learner L with access to a kDelegating oracle can easily model learning from

semantically disparate data (including modeling errors in mappings), it is the case that a learner

with access to a kDelegating oracle cannot model domain adaptation. We now introduce, in

the next section, an approach to model domain adaptation.

6.2.3 Modeling Domain Adaptation

Consider a learner L whose task is to a learn a target function f : X 7→ {0, 1} using an

oracle EX〈f,X ,D〉. In such a case EX〈f,X ,D〉 denotes a family of oracles for the various

values of the parameter D. A specific value of D defines a specific instantiated oracle. Similarly,

for a kDelegating oracle kEX〈φ,X+,D+,M,X〉 various values of the parameters X+,D+ and

M describe specific instantiated oracle. We use the notation EX〈θ〉 to denote a family of

oracles with the parameter θ. The notation, EX〈θ〉, will be used to denote both the classical

oracle and the kDelegating oracle. We use the notion of family of oracles to describe a class of

supervised learning problems.

Definition 6 Learning Scenario: A learning scenario for a learner L is a two-tuple

T = {EX〈θ1〉, EX〈θ2〉} where the during the training phase the learner L has access to labeled

examples drawn from the oracle EX〈θ1〉 (called the training oracle) while the error of the

hypothesis output by L at the end of the training phase is computed with respect to an example

to be drawn from oracle EX〈θ2〉 (called the test oracle). The error of the hypothesis computed

by L in this setting is denoted by R(θ1, θ2).

Intuitively, the Learning Scenario can be seen as traditional classroom teaching , wherein the

teacher teaches the course material to the students and then tests their performance by means

of an examination.
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A learning scenario, in the case, where the training and test oracles represent a family

oracles corresponds to a class of problems. An instantiation of the training and the test oracles

defines a specific problem in this class. The notion of the learning scenario is powerful enough to

model a significant class of supervised learning tasks. We describe below the learning scenarios

that correspond to some well known types of supervised learning.

• Classical Supervised learning: This corresponds to T = (EX〈f,X ,D〉, EX〈f,X ,D〉).

• Distributed Learning: This corresponds T = (kEX〈f,X+,D+,M,X〉, EX(f,X ,D))

where for the kDelegating training oracle the ith subordinate oracle is EX〈f,X ,D〉 and

M is an identity mapping.

• Learning from disparate data sources [Caragea (2004); Ben-david et al. (2002)]:

This corresponds to the learning scenario T = (kEX〈f,X+,D+,M,X〉, EX〈f,X ,D〉)

where for the training oracle the ith subordinate oracle is EX〈f,Xsi ,Di〉.

• Learning Under Covariate Shift and Sample Selection Bias: Learning under

Covariate shift [Bickel et al. (2009)] corresponds to T = (EX〈f,X ,Ds〉, EX〈f,X ,Dt〉).

Sample selection bias [Zadrozny (2004); Heckman (1979); Cortes et al. (2008)] which

corresponds to the setting where each training instance is originally drawn from the

test distribution, but is then selected into the training sample with some probability, or

discarded otherwise can also be modeled by the same learning scenario.

• Learning With Auxiliary Data Sources [Wu and Dietterich (2004); Liao et al.

(2005)]: This corresponds to learning scenario T = (2EX〈f,X+,D+,M,X〉, EX〈f,X ,Dt〉)

where M is an identity function. The two subordinate oracles of the 2 Delegating test

oracle are EX〈fs,X ,Ds〉 and EX〈ft,X ,Dt〉 with P = {p, 1− p} controlling the amount

of auxiliary data available. Recall the elements of the set P represents the probabilities

of selecting the subordinate oracles.

• Domain Adaptation [Ben-David et al. (2007); Blitzer et al. (2007b)]: This corresponds

to the learning scenario T = (EX〈fs,X ,Ds〉, EX〈ft,X ,Dt〉).



90

• Transfer Learning: This corresponds to the learning scenario T = EX〈fs,Xs,Ds〉 and

EX〈ft,Xt,Dt〉 (see survey Pan and Yang (2010) ).

The learning scenario can be easily extended to the setting of Semi-Supervised Learning

[Chawla and Karakoulas (2005); Chapelle et al. (2006); Singh et al. (2008)] where both labeled

and unlabeled data is used in learning. This is achieved by introducing the notion of specialized

subordinate oracle in the kDelegating oracle that returns unlabeled examples. It is interesting

to note the use of a learning scenario allows to model classes of problems that have not been

explicitly mentioned in literature. For example, T = (2EX〈f,X+,D+,M,X〉, EX〈f,X ,Dt〉)

where M is an semantics preserving admissible mapping corresponds to the problem of adapt-

ing semantically disparate domains. We now proceed to introduce the notion of reducibility

between learning scenarios.

6.3 Reducibility between learning tasks

Definition 7 Indistinguishability For a learner L whose task is to learn a function f :

X 7→ {0, 1} two instantiated oracles EX〈θ1〉 and EX〈θ2〉 are said to be indistinguishable if

∀S ∈ X ×{0, 1} the probability of the dataset S being drawn with |S| calls to oracle EX〈θ1〉 or

oracle EX〈θ2〉 is the same.

Intuitively, given two indistinguishable oracles EX〈θ1〉 and EX〈θ2〉, a learner L will not be

able to distinguish whether a given dataset S was drawn from EX〈θ1〉 or EX〈θ2〉. This notion

is useful since a techniques that a learner applies to learn using an oracle EX〈θ1〉 (and any

applicable bounds and guarantees) will port in a straightforward manner to learning using the

oracle EX〈θ2〉.

Definition 8 Subclass Oracles For a learner L, a family of oracles EX〈θ1〉 is said to be

subclass of family of oracles EX〈θ2〉, denoted by EX〈θ1〉 ⊂ EX〈θ2〉, if for all possible instan-

tiations of the parameters θ1 there exists an instantiation of the parameters θ2 such that the

corresponding instantiated oracles EX〈θ1〉 and EX〈θ2〉 are indistinguishable with respect to

the learner L.
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The following observation follows directly from the definition of subclass Oracles: EX〈θ1〉 ⊂

EX〈θ1〉.

Definition 9 Reducibility A learning scenario T1 = (EX〈θ1〉, EX〈θ2〉) is said to be reducible

to a learning scenario T2 = (EX〈θ3〉, EX〈θ4〉), denoted by T1 ⊂ T2, if EX〈θ1〉 ⊂ EX〈θ3〉 and

EX〈θ2〉 ⊂ EX〈θ4〉

Reducing a learning scenario T1 to a learning scenario T2 shows that, in general, that problem

T2 is as hard as T1. As a result techniques to solve T2 can be used to solve T1. In addition any

negative results applicable to T1 are also applicable to T2.

6.3.1 Learning when available mapping is different from the true mapping

We now proceed to show that learning with a semantics preserving mapping (say MU ∈

M∗) instead of a true mapping Mtrue is reducible to the Domain Adaptation problem. We

first present the following lemma.

Lemma 5 Learning under Covariate Shift is reducible to Domain Adaptation. Formally, T1 =

(EX〈f,X ,Ds〉, EX〈f,X ,Dt〉) ⊂ T2 = (EX〈fs,X ,Ds〉, EX〈ft,X ,Dt〉)

Proof 5 Since that task of the learner L is to learn a function f : X 7→ {0, 1}, it follows that

for the family of oracles EX〈fs,X ,Ds〉 the parameters are Ds and fs. Note that fs is a param-

eter since the function to be learned is f and not fs. Hence EX〈f,X ,Ds〉 ⊂ EX〈fs,X ,Ds〉

corresponding to fs = f . Similarly, EX〈f,X ,Ds〉 ⊂ EX〈ft,X ,Dt〉 corresponding to ft = f .

Hence, by definition of reducibility between learning scenarios, the statement of the lemma

follows.

Lemma 6 Learning from disparate data sources using a semantics preserving mapping (MU )

that is different from the true mapping Mtrue is reducible to learning under covariate shift.

Formally, T3 = (kEX〈f,X+,D+,MU ,X〉, kEX〈f,X+,D+,Mtrue,X〉) ⊂ T2 = (EX〈f,X ,Ds〉,

EX〈f,X ,Dt)
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Proof 6 Consider an instantiation of the oracle kEX〈f,X+,D+,MU ,X〉 where MU has been

chosen from the set of semantics preserving mappings. Consider a corresponding instanti-

ation of the oracle EX〈f,X ,Ds〉 where Ds = MU (D+). Hence, kEX〈f,X+,D+,MU ,X〉

is indistinguishable from EX〈f,X ,Ds〉 (with respect to the learner L) since both draw in-

stances from X according to distribution MU (D+) and label them according to f . Hence,

kEX〈f,X+,D+,MU ,X〉 ⊂ EX〈f,X ,Ds〉. Similarly, kEX〈f,X+,D+,Mtrue,X〉 ⊂ EX〈f,X ,

Dt〉. Hence, by definition of reducibility between learning scenarios, the statement of the lemma

follows.

Theorem 7 Learning with a user provided semantics preserving mapping MU (that is as-

sumed to be different from the true mapping Mtrue) is reducible to domain adaptation. For-

mally, T1 = (kEX〈f,X+,D+,MU ,X〉, kEX〈f,X+,D+,Mtrue,X〉) ⊂ T2 = (EX〈fs,X ,Ds, 〉,

EX〈ft,X ,Dt〉)

Proof 7 The statement of the proof follows directly from from lemma 5 and lemma 6 and

the following observation: given learning scenarios T1, T2 and T3, it follows that T3 ⊂ T2 and

T2 ⊂ T1 implies that T3 ⊂ T1.

The reduction of the learning using an user provided semantics preserving mapping MU

that is different from true mapping Mtrue to domain adaptation turns out to be useful as it

implies that any positive bounds applicable to domain adaptation (see Ben-David et al. (2010);

Mansour et al. (2009); Blitzer et al. (2007a)) are applicable to this setting.

6.3.2 Learning in presence of Mapping errors

We now address the problem of learning when the available admissible mapping has errors

by reducing it to the problem of learning in presence of nasty noise Bshouty et al. (1999).

Definition 10 (Nasty Sample Noise (NSN) oracle (adapted from Bshouty et al.

(1999))): A Nasty Sample Noise oracle, denoted by NSN〈m, η, f,X ,D〉, is one where an

adversary obtains a dataset Dm of m i.i.d examples by making m calls to a classical oracle

EX〈f,X ,D〉. The adversary then picks n out of m instances of its choosing from Dm (where
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n is distributed according to a binomial distribution with parameters m and nasty noise rate η)

and replaces them with any examples of its choice from X × Range(f). The resulting dataset

is then provided to the learner.

Definition 11 (km-delegating oracle ): A km-delegating oracle, denoted by kEXm〈φ,X+,

D+,M,X〉, is one where an intermediary obtains a dataset Dm of m i.i.d examples by making

m calls to a k-delegating oracle kEX〈φ,X+,D+,M,X〉. The resulting dataset is then provided

to the learner.

Theorem 8 Learning in presence of mapping with errors is reducible to learning with nasty

noise. Formally, The learning scenario T1 = (kEXm〈φ,X+,D+,M,X〉, kEX〈φ,X+,D+,Mtrue,

X〉) ⊂ T2 = (NSN〈m, η, f,X ,D〉, EX〈f,X ,D〉).

Proof 8 Let the instance space of the ith subordinate oracle Xsi = {x1, x2 . . . x|Xsi |}. The

mapping M = {mx,mc} where mx = {mx
1 ,m

x
2 . . .m

k
i }. Let Ω(mx

i ) = {m1
i ,m

2
i . . .m

|Xsi |
i } be

the set of atomic attribute mappings such that when the instance 〈xj , l(xj)〉 is sample from

the ith subordinate oracle, the applicable atomic mapping mj
i is exercised to convert the in-

stance xj into the instance space X and is labeled by φ before returning to the learner. Let

Ω(M) = ∪ki=1Ω(mx
i ). Similarly for the true mapping Mtrue we have the set Ω(Mtrue). Let

Ω(M+) be the subset of atomic mappings in Ω(M) which when exercised to the applicable in-

stance have the same result as when the corresponding atomic mapping is applied from the set

Ω(Mtrue). Then Ω(M−) = Ω(M)− Ω(M+) is the subset of atomic mappings in Ω(M) which

differ in behavior from the corresponding mappings in Ω(Mtrue). Intuitively, Ω(M+) is the

part of the mapping M that is same as the true mapping Mtrue.

Consider an instantiation of the oracle kEX〈φ,X+,D+,M,X〉. An atomic mapping in Ω(M)

is exercised every time an example is returned to the learner by a single run of the oracle

kEX〈φ,X+,D+,M,X〉. As a result a distribution is induced on the set Ω(M). Let DM

denote the resulting induced distribution on the set Ω(M). Let β =
∑

m∈Ω(M−) Prm∈DM [m].

Hence β can be seem as the probability that in a given run of the oracle kEX〈φ,X+,D+,M,X〉

the element returned to L is different than if Mtrue was used. Hence, in the dataset obtained
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from kEXm〈φ,X+,D+,M,X〉 the number of times an atomic mapping in Ω(M) was exer-

cised that was different from the corresponding atomic mapping in Ω(Mtrue) can be seen as

the number of success in a sequence of m independent binary experiments each with a prob-

ability β. Now consider an instantiation of NSN〈m, η, f,X ,D〉 where D = Mtrue(D+) and

η = β. In this setting the number of samples that can be modified by the adversary can be

seen as number of successes in a sequence of m independent binary experiments each with

a probability η. Since η = β and because the adversary can modify these examples in any

possible way, the learner cannot distinguish whether the examples were modified by using an

incorrect mapping or by the adversary (which can mimic the behavior of the atomic mappings

in Ω(M−)). Hence, kEXm〈φ,X+,D+,M,X〉 ⊂ NSN〈m, η, f,X ,D〉 i.e. the training oracle

in T1 is subclass of training oracle in T2. Now consider an instantiation of the test oracle (in

T1) kEX〈φ,X+,D+,Mtrue,X〉. Since, Mtrue is assumed to be semantics preserving it is the

case that φ = f . A corresponding instantiation of test oracle (in T2 ) EX〈f,X ,D〉 where

D = Mtrue(D+) is indistinguishable from kEX〈φ,X+,D+,Mtrue,X〉 since they both draw

instances from the same distribution and label them according to same function f . Hence,

kEX〈φ,X+,D+,Mtrue,X〉 ⊂ EX(f,X ,D) i.e. the test oracle in T1 is subclass of test oracle

in T2. Hence the statement of the theorem follows from the definition of the subclass relation

among learning scenarios.

Theorem 9 Learning using a mapping M (with errors) is reducible to Domain Adaptation.

Formally, T3 = (kEX〈φ,X+,D+,M,X〉, kEX〈f,X+,D+,Mtrue,X〉) ⊂ T2 = (EX〈fs,X ,Ds〉,

EX〈ft,X ,Dt).

Proof 9 The proof is straightforward and follows from the following two observations:

(1) kEX〈φ,X+,D+,M,X〉 ⊂ EX〈fs,X ,Ds〉 corresponding to fs = φ and Ds = M(D+) and

(2) kEX〈f,X+,D+,Mtrue,X〉 ⊂ EX〈ft,X ,Dt corresponding to ft = fandDt = Mtrue(D+) .

A representation of reduction between the various learning tasks is shown in Figure 6.3.

These reductions can prove to be useful in practice. For example, the reduction of learning in

presence of mapping errors to learning in presence of noise allows for porting of results and
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techniques from the latter to the former. In particular, Bshouty et al. present a PAC learning

algorithm under the NSN model (refer NastyConsistent in Bshouty et al. (1999)). Hence, the

same algorithm can be used for PAC style learning in the setting of learning in presence of

mapping errors wherein the training dataset instead of being drawn from NSN oracle is now

drawn from km-delegating oracle.

6.3.3 Choosing among multiple available mappings

Recall that, in general, it is possible to have multiple admissible as well multiple semantics

preserving mappings. Hence, it is conceivable to have the following setting: learning from

disparate data sources when there are two available admissible mappings M1 and M2. The

mappings may have been developed by different groups (independent of each other) and hence

differ from each other and possibly from the true mapping Mtrue. An obvious approach to deal

with this scenario is to use an ensemble based approach (Rokach, 2010) where each individual

classifier in the ensemble is built using a training dataset obtained by exercising a separate

mapping in the set of available mappings. However, it may also be of interest to chose an

appropriate mapping between M1 and M2 to learn in the setting of disparate data sources.

This requires approach to find which of the two mappings M1 and M2 is a better proxy for the

true mapping Mtrue.

Definition 12 The degree of adaptability of an instantiated oracle EX〈θ1〉 to another instan-

tiated oracle EX〈θ2〉 with respect to a learning algorithm L is |R(θ1, θ2) − R(θ2, θ2)| and is

denoted by δ(θ1, θ2).

An oracle EX〈θ1〉 is said to be perfectly adaptable to an oracle EX〈θ2〉 if δ(θ1, θ2) = 0. In-

tuitively the degree of adaptability captures the notion of how well an oracle can serve as proxy

for another oracle. This notion is useful in our setting since we want to know that between

the two oracles kEX〈φ,X+,D+,M1,X〉 and kEX〈φ,X+,D+,M2,X〉 which is a better proxy

for the oracle kEX〈f,X+,D+,Mtrue,X〉. Consider the following learning scenarios:

(1) T1 = (kEXm〈φ,X+,D+,M1,X〉, kEX〈f,X+,D+,Mtrue,X〉) with the associated loss de-

noted by R(T1) and (2) T2 = (kEXm〈φ,X+,D+,M2,X〉, kEX〈f,X+,D+,Mtrue,X〉) with the
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Figure 6.3 A schematic representation of reduction between various learn-
ing tasks.
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associated loss denoted by R(T2). Define α = R(T1) − R(T2). Choosing among the map-

pings M1 and M2 reduces to problem of checking whether α > 0. This can be easily done

using standard statistical hypothesis testing techniques (see DeGroot (2001),Crawley (2005)).

Briefly, the null hypothesis is α < 0. The mapping M1 is chosen when null hypothesis is re-

jected and the mapping M2 is chosen the null hypothesis is accepted. Note that this technique

does assume that some labeled test examples are available from kEX〈f,X+,D+,Mtrue,X〉.

In general, this may not be the case (e.g. in the case of new domain where labeling instances

is expensive). However, in general, it can be assumed unlabeled examples are available from

the target domain (which in this case corresponds to unlabeled examples obtained from or-

acle kEX〈f,X+,D+,Mtrue,X〉). In such a case an approach to choosing between M1 and

M2 involves checking which of the induced distributions M1(D+) and M2(D+) is closer to

the distribution Mtrue(D+). The notion of closeness between two distributions D1 over D2 is

captured by means of A-distance ( introduced in Kifer et al. (2004) and again in Ben-David

et al. (2007)) which can be estimated from a finite number of unlabeled samples drawn from

D1 and D2 (Kifer et al., 2004).

6.4 Mappings to address Covariate Shift and Domain Adaptation

In the previous section we showed that the problem of learning from disparate data using

an available semantic preserving mapping which, in general, is different from the true mapping,

is reducible to the problem of covariate shift which in turn is reducible to domain adaptation.

As a result techniques to address the problem of covariate shift can be ported to the setting

of learning from disparate data. However, now we show that mappings can be used as a

tool to address covariate shift. Henceforth, unless otherwise specified we will assume that

all the oracles are instantiated oracles. Consider the covariate shift learning scenario: T1 =

(EX〈f,X ,Ds〉, EX〈f,X ,Dt)〉. Alternatively the covariate shift can be modeled by the learning

scenario T2 = (1EX〈f,X+,D+,M,X〉, EX〈f,X ,Dt〉) where the subordinate oracle for the

1Delegating training oracle is EX〈f,X ,Ds〉 and M is an identity function. In contrast to T1

where the user has no control over the parameters of the oracle, in T2 the user can a select
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any mapping M ∈ M∗. Since the user can vary M in T2, let T2(M) represent the learning

scenario for a specific choice of M . A natural question arises that does there exist M ∈ M∗

such that 1EX〈f,X+,D+,M,X〉 is indistinguishable from EX(f,X ,Dt) in which case the

covariate problem is addressed completely. We now present a result which shows that, in

general, there does not exist M ∈ M∗ such that 1EX〈f,X+,D+,M,X〉 is indistinguishable

from EX(f,X ,Dt).

Theorem 10 There exists an oracle EX〈f,Dt,X〉 (|X | is finite and greater than 1) and no

mapping M ∈ M∗ such that 1Delegating oracle 1EX〈φ, {X}, {D},M,X〉 is indistinguishable

from EX〈f,D,X〉

Proof 10 Since X is finite the number of admissible mappings is finite. As a result there are

a finite number distributions that can be induced over X by varying that mapping M in the

kDelegating oracle 1EX〈φ, {X}, {D},M,X〉. Let these distributions be M1(D+),M2(D+) . . .

M|M∗|(D+). Consider the following distribution over X ( x1, x2 ∈ X ): Pr[x1] = r, Pr[x2] =

1− r and Pr[x /∈ {x1, x2}] = 0. Since r can take any value between 0 and 1 there are infinite

possible distributions over X when |X | > 1. Hence, by pigeon hole principle there exists a

distribution over X which cannot be induced by kDelegating oracle 1EX〈φ,X+,D+,M,X〉.

The theorem (10) shows that, in general, there does not exist a mapping that can be

used to make the oracle EX〈f,Ds,X〉 indistinguishable from EX〈f,Dt,X〉. However, the co-

variate shift problem can be still addressed to a certain degree by choosing an appropriate

mapping M1 ∈ M∗ such that EX1〈φ,X+,D+,M1,X〉 is most adaptable to EX〈f,Dt,X〉.

We formalize this problem as follows: find mapping M1 ∈ M∗ such that ∀ M ∈ M∗,

δ(EX1〈φ,X+,D+,M1,X〉, EX〈f,X ,Dt〉) ≤ δ(EX1〈φ,X+,D+,M,X〉, EX〈f,X ,Dt〉). An ap-

proach to solve this problem is as follows: let A = M∗ be a set of candidate mappings.

Repeatedly choose between any two mappings in A using the approach described in section

6.3.3 and at each step remove the discarded mapping from A until |A| = 1. Return the final

mapping in A as the solution. In practice, since the number of mappings is large, some user
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guidance may be required to restrict the candidate set of mappings A (instead of initializing

it to the set M∗).

6.4.1 Probabilistic Mappings

The theorem (10) shows that, in general, there does not exist an attribute mapping mx :

X 7→ X that can be used to make the oracle EX〈f,Ds,X〉 indistinguishable from EX〈f,Dt,X〉.

We now introduce a more general type of mapping, called probabilistic mapping, and show

that there exists an probabilistic mapping that guarantees such indistinguishability and hence

perfect adaptability.

Let ∆n = {(t1 . . . tn) ∈ Rn|∀i, ti ≥ 0}.

Definition 13 Probabilistic Mapping: Given finite instance space XS and XT , a prob-

abilistic mapping from XS to XT is the function m : XS 7→ ∆|XT | where given x ∈ XS ,

m(x) = {ψm(x, y1), ψm(x, y2) . . . ψm(x, y|XT |)} ∈ ∆|XT | implies that when x is sampled from

XS according to some distribution (say DS) the element returned to the learner L is yi with

probability ψm(x, yi).

The probabilistic mapping m and the distribution DS is said to induce a distribution m(DS)

over the instance space XT . A mapping Mx : XS 7→ ∆|XT | is said to be admissible iff ∀x ∈

XS ,
∑

y∈XT Ψ(x, y) = 1.

Observation An admissible probabilistic mapping ensures that given an element is sampled

from XS according to a valid probability distribution (say Ds), the induced distribution (say

M(Ds)) with which an instance is returned from XT to L is also a valid probability distribution.

We now introduce a k-Delegating oracle with probabilistic mappings. Let EX1〈f1,Xs1 ,D1〉 . . .

EXk〈fk,Xsk ,Dk〉 be k subordinate oracles. A probabilistic mapping k-delegating oracle has

access to a mapping set M = {m1,m2 . . .mk} where mi = {mx
i ,m

c
i}; mx

i : Xsi −→ ∆|X |

is an admissible probabilistic mapping function (called attribute mapping function); and

mc
i : Ci −→ C is a class mapping function where Ci = Range(fi) and C = Range(f). It

invokes subordinate oracles EX1〈f1,Xs1 ,D1〉 . . . EXk〈fk,Xsk ,Dk〉 where the ith subordinate

oracle EXi〈fi,Xsi ,Di〉 returns examples of the form 〈xsi , fi(xsi)〉 where xsi is drawn from Xsi
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according to Di and fi ∈ F i. The labeled example returned to the learner is 〈y,mc
i (fi(xsi))〉

with probability ψmxi (xsi , y) ( where y ∈ X ). The mapping mi is said to be semantics preserv-

ing if ∀xsi ∈ Xsi ψmxi (xsi , y)! = 0 implies f(y) = mc
i (fi(xsi)). The mapping set M is said to be

semantics preserving if ∀m ∈ M, m is semantics preserving. Intuitively, a semantics preserv-

ing mapping ensures that the examples returned to the learner are labeled according to the

target function f . A probabilistic mapping oracle is denoted by EX1〈φ,X+,D+,M,X〉 where

φ is the labeling function and and M is a probabilistic mapping set.

Consider a distribution Ds over the instance space Xs. The distribution Ds can be seen as

the function Ds : X 7→ R+ that associates with each instance x ∈ Xs a positive real number,

denoted by wDs(x), called the weight of the instance x in the distribution Ds. The distribution

Ds is a probability distribution if
∑

x∈Xs wDs(x) = 1.

Lemma 11 Given a fixed distribution Ds over the finite instance space Xs and a possible

distribution Dt over the finite instance space Xt such that
∑

x∈Xs wDs(x) =
∑

x∈Xt wDt(x),

there exists a probabilistic mapping mx : Xs 7→ ∆|Xt| such that mx(Ds), the distribution induced

by mx and Ds over Xt is the same as the distribution Dt.

Proof 11 See Appendix A

Theorem 12 Let Xs and Xt be finite instances spaces. Given oracles EX〈ft,Xt,Dt〉 and

EX(fs,Xs,Ds) where ft : Xt 7→ {0, 1} and fs : Xs 7→ {0, 1} and
∑

x∈X+
s
Prx∈Ds [x] =∑

x∈X+
t
Prx∈Dt[x] there exist a probabilistic mapping M = {mx,mc} where mx : Xs 7→ ∆|Xt|

and mc : Range(fs) 7→ Range(ft) such that the 1Delegating oracle 1EX〈φ, {Xs}, {Ds},M,X〉

is indistinguishable from EX〈ft,Xt,Dt〉.

Proof 12 Intuitively, the proof uses Lemma 11 to construct a probabilistic attribute mapping

between X+
s and X+

t (i.e. instances with label 1) and again a probabilistic attribute mapping

between X−s and X−t (i.e instances with label 0). It then combines these mappings to construct

a required semantics preserving probabilistic mapping M that ensures that 1Delegating oracle

1EX〈φ, {Xs}, {Ds},M,X〉 is indistinguishable from EX〈ft,Xt,Dt〉. For complete details of

proof see Appendix B.
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The theorem 12 shows that there exists a probabilistic mapping that solves the domain adapta-

tion problem T1 = (EX〈fs,X ,Ds〉, EX〈ft,X ,Dt〉) when it is the case that
∑

x∈X+
s
Prx∈Ds [x] =∑

x∈X+
t
Prx∈Dt [x]. However, the requirement that

∑
x∈X+

s
Prx∈Ds [x] =

∑
x∈X+

t
Prx∈Dt [x] is a

strong constraint and, in practice, will often not be satisfied. To solve T1, in the most general

sense, we introduce an another type of the probabilistic mapping called probabilistic instance

mapping that maps a labeled instances drawn from a subordinate oracle to a labeled instance

that is returned to the learner. In contrast the earlier introduce mappings have two compo-

nents: (1) the attribute mapping function and (2) the class mapping function, that are used

in conjunction to convert a labeled instance from the subordinate oracle to a labeled instance

that is passed to the learner.

A k-Delegating oracle with probabilistic instance mappings is a k-delegating oracle which

has access to a mapping set Mx = {mx
1 ,m

x
2 . . .m

x
k} where mx

i : Xsi×Range(fi) 7→ ∆|X |+1 is

an admissible probabilistic mapping function and given the selected subordinate oracle sam-

ples the labeled example 〈xsi , fi(xis)〉, the labeled exampled returned to L is y ∈ X with

probability ψ(〈xsi , fi(xsi)〉, y). We denote k-Delegating oracle with instance mappings by

EX1〈φ,X+,D+,Mx,X〉 where φ is the labeling function and Mx is a probabilistic instance

mapping set. Note that we use Mx to denote a probabilistic instance mapping set as opposed

to M that we used to denote probabilistic mapping set.

Theorem 13 Let Xs and Xt be finite instances spaces. Given oracles EX〈ft,Xt,Dt〉 and

EX〈fs,Xs,Ds〉 where ft : Xt 7→ {0, 1} and fs : Xs 7→ {0, 1} there exist a probabilistic instance

mapping Mx = {mx} where mx : Xs × {0, 1} 7→ ∆|Xt|+1 such that the 1Delegating oracle

1EX〈φ, {Xs}, {Ds},Mx,X〉 is indistinguishable from EX〈ft,Xt,Dt〉.

Proof 13 The distribution Ds and function fs induce a distribution over Xs × {0, 1} the in-

stance space of the labeled examples drawn from EX(fs,Xs,Ds). Let this distribution be denoted

by Dfst . Similarly, let Dftt be the distribution induced over Xt×{0, 1} by Dt and function ft. By

Lemma 11 there exists a probabilistic mapping Mx : Xs × {0, 1} 7→ ∆|Xs|+1 such that Mx and

Dfst induce Dftt . Hence, EX〈φ, {Xs}, {Ds},M,X〉 is indistinguishable from EX〈ft,Xt,Dt〉.
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A straightforward implication of Theorem 13 (for the case Xs = Xt) is that there exists a

probabilistic instance mapping that solves the domain adaptation problem. Consequentially,

it is theoretically possible to learn about a given domain using training examples available

from some other domain. However, the Theorem 13 is an existence result and finding such an

probabilistic mapping is an open problem. However, it turns out that some known approaches

to achieve domain adaptation can be viewed in terms of probabilistic mappings. Consider ap-

proaches to correcting sample bias and domain adaptation that involve reweighing of instances

(Cortes et al., 2008; Jiang and Zhai, 2007). In general, reweighing can be seen as means of

changing the underlying distribution. Hence, it can accomplished in a straightforward man-

ner by using an appropriate probabilistic mapping. Reweighing of instances is also a critical

component in AdaBoost (Freund and Schapire, 1997) where the weights associated with each

instances in the dataset are increased or decreased (for the next iteration) based of whether

they were correctly or incorrectly classified (in the current iteration) by a base classifier. Hence,

AdaBoost can be seen as an ensemble classifier each with a different probabilistic mapping.

A variation of AdaBoost has been used to address domain adaptation in Dai et al. (2007).

The use of AdaBoost for domain adaptation is hardly surprising in the light that it can be

explained in terms of probabilistic mappings and that probabilistic mappings can be used to

solve domain adaptation.

6.5 Summary and Related Work

There is growing interest in the problem of learning predictive models from distributed

data sources [Park and Kargupta (2003); Caragea (2004)]. Caragea et al. (2005) have de-

scribed algorithms that provide rigorous performance guarantees (relative to their single data

source counterparts) for learning from distributed, semantically disparate data sources when

the mappings are semantics preserving. Crammer et al. (2008) have examined the problem of

learning predictors from a set of related data sources. Ben-david et al. (2002) have analyzed

the sample complexity of learning from semantically disparate data sources in a setting where

classifiers trained on data sources D1 · · ·Dn−1 are used to predict the class labels of instances
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from a data source Dn. There has been very little work on detecting mapping errors in the

setting of learning from disparate data sources. Of related interest is the work in ontology

mapping field [Kalfoglou and Schorlemmer (2005); Euzenat and Shvaiko (2007)]. However, the

primary focus in this area is aligning ontologies (through use of mappings), merging related

ontologies or detecting logical inconsistencies in mappings [Meilicke et al. (2007)]. In contrast,

the focus of our work is on the challenges that arise in learning from disparate data sources

once a mapping or a set of mappings is available.

Domain Adaptation and Transfer Learning have been studied extensively in literature with

the terms often being used interchangeably (see Pan (2010) for a comprehensive list of papers

in this field). Pan and Yang (2010) provide a good survey on Transfer Learning. Domain

Adaptation has been used extensively in a variety of applications including text classification

and sentiment analysis (Jiang, 2008; Blitzer et al., 2007b). Techniques to apply transfer learn-

ing in novel domains (besides text classification) are presented in Yang (2009). A statistical

formulation of the Domain Adaptation problem and several straightforward techniques to solve

it to address the domain adaptation are presented by Daumé III (2007) Learning bounds for

Domain Adaptation have been studied in detail in literature [Blitzer et al. (2007a); Ben-David

et al. (2010); Mansour et al. (2009)]. Ben-David et al. (2007) show that a good feature represen-

tation is a crucial factor in the success of domain adaptation. Mansour et al. (2008) present a

theoretical analysis of the problem of domain adaptation with multiple sources. Reduction be-

tween learning tasks have been used previously in other contexts [Kearns and Vazirani (1994)].

The work that closely resembles ours is the notion of error limiting reductions introduced in

Beygelzimer et al. (2005). However, except in Koul and Honavar (2010) which relates mapping

errors to noise, there has been no work (to the best of our knowledge) in reducing the problems

in the setting of learning from disparate data sources to some aspect of supervised learning.

In this chapter we introduced the notion of a learning scenario to model some well know

class of supervised problems. In addition, we introduce a notion of reducibility among classes

of supervised learning tasks and showed that several aspects learning from semantically dis-

parate data sources can be reduced to, and hence understood in terms of the theoretically
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well-studied problem of domain adaptation. Furthermore, we showed that there exists a prob-

abilistic instance mapping that facilitates domain adaptation. To the best of our knowledge

there is no work that aims to relate aspects of learning from semantically disparate data sources

to domain adaptation. This analysis has lead some interesting open problems in this setting.

On application side, it is an open problem to explore approaches to compute the probabilistic

mapping (or an good approximation in a PAC like setting) that facilitates domain adaptation

from a sample of instances available from the two domains. On the theory side it is an open

problem to figure out that does a probabilistic mapping (that facilitates domain adaptation)

exist between two domains with infinite instance spaces (and laying out any additional assump-

tions that may be required in this setting). Further, there are several interesting directions

along which the analysis presented in this chapter can be extended. We want to describe (and

compute) an appropriate notion of closeness between mappings that can be used to bound the

error of using a semantics preserving mapping as a proxy for the true mappings (see Appendix

C where we describe the notion of µ closeness between mappings and use it an error bound

that inspired by similar bound for domain adaptation in Blitzer et al. (2007a)). In addition,

we want study the effect of mapping errors in multi-relational learning and multiple instance

learning.
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CHAPTER 7. SUMMARY AND CONTRIBUTIONS

7.1 Thesis Summary

Machine learning approaches offer some of the most successful techniques for constructing

predictive models from data. However, applying such techniques in practice requires overcom-

ing several challenges: infeasibility of centralized access to the data because of the massive size

of some of the data sets that often exceeds the size of memory available to the learner, dis-

tributed nature of data, data fragmentation, access restrictions and data sources that evolve

spatially, temporally, or spatio-temporally (e.g. data streams and genomic data sources in

which new data is being submitted continuously). Further, often data about related domains

is collected by independent entities in the context of the problem they are addressing and as

such the resultant data sources differ not only in structure and organization but also in the se-

mantics associated with the data. In the Semantic Web vision this corresponds to autonomous

data sources using similar but different ontologies to associate meaning with data. Hence, this

setting requires the development of techniques and algorithms to learn in presence of semantic

disparity introduced due the use of different but related ontologies by data sources of interest

to a learner. Additional challenges in this setting include the ability of learners to cope with

errors in the mappings that are used to resolve semantic disparity and the ability to select

among multiple available mappings. Consequentially, there is a pressing need for learning al-

gorithms that are scalable, don’t assume direct access to data, are able to cope with frequent

data updates and are able to handle data fragmentation and semantic disparity.

In this dissertation we show that learning from datasets using statistical queries and se-

mantic correspondences that present a unified view of disparate data sources to the learner

offer a powerful general framework for addressing some of the challenges that occur in the set-
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ting of learning from disparate data sources. Building on the work of Caragea et al. to learn

decision trees from horizontally distributed data sources we precisely described the SQL count

queries required to build Naive Bayes and Decision Trees from datasets stored in Relational

Database Management Systems . We described approaches to minimize the number of queries

submitted to a database and show that imputation approaches to handling missing values

can be applied in setting of learning using statistical queries by addressing their effect on the

statistics required to build Naive Bayes and decision trees. Our analysis showed that sufficient

statistics based approach allowed us to cope with massive data size since instead of loading

the entire dataset in the memory, it is only required to load the answers to the required sta-

tistical queries. We extended the sufficient statistics based approach to the setting of learning

and updating Markov Property based predictors for sequence classification. We described a

planner to answer count queries from semantically disparate data sources that are fragmented

(horizontally and/or vertically) from a user point of view. This planner in conjunction with

the approach of learning from data using statistical queries allows for knowledge acquisition

from semantically disparate data.

We introduced an extension to classical oracle based model of supervised learning to model

learning from disparate data sources and used it to demonstrate the theoretical equivalence of

a certain class of inter-ontology mapping errors and noise models, and hence the problem of

learning in the presence of mapping errors from semantically disparate data to the problem of

learning from noisy data. Furthermore, we showed that several aspects learning from seman-

tically disparate data sources such as how to choose an optimal mapping from among a set of

alternative expert-supplied or automatically generated mappings can be reduced to, and hence

understood in terms of the theoretically well-studied problem of domain adaptation. Finally,

we introduced the notion of probabilistic mappings and showed that there exists a specific

probabilistic mapping that facilitates domain adaptation.
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7.2 Contributions

This thesis focused on several aspects of the problem of learning predictive models from

semantically disparate data sources. The key elements of our approach to this problem include:

(1) Taking advantage of the general strategy for transforming a broad class of standard learning

algorithms that assume in memory access to a dataset into algorithms that interact with the

data source(s) only through statistical queries, (2) using a data integration system that presents

a unified view of disparate data sources to the learner and (3) reduction of several problems

that occur in the setting of learning from disparate data (e.g. learning in presence of mapping

errors) to some previously studied problem in literature. The main contributions of this thesis

include:

• Development of approaches to deal with missing values in the statistical query based

algorithms for building decision trees and the techniques to minimize the number of

queries in such a setting.

• Development of planner to answer count queries from semantically disparate data sources

that are fragmented (horizontally and/or vertically) from a user point of view.

• Development and open-source implementation of an ontology-based system for querying

multiple semantically disparate data sources from a user’s point of view.

• Development of sufficient statistics based algorithms for constructing and updating se-

quence classifiers.

• Demonstration of the theoretical equivalence of a certain class of inter-ontology mapping

errors and noise models, and hence the reduction of the problem of learning in the

presence of mapping errors from semantically disparate data to the problem of learning

from noisy data.

• Reduction of several aspects of learning from semantically disparate data sources (such as

(a) how errors in mappings affect the accuracy of the learned model and (b) how to choose

an optimal mapping from among a set of alternative expert-supplied or automatically
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generated mappings) to the well studied problem of domain adaptation (i.e., adapting a

model that is trained on data sampled according to a distribution that is different from

the distribution from which the test data are obtained).

7.2.1 Published Work

The work carried out during this thesis resulted in the following publications:

• Learning Classifiers from Large Databases Using Statistical Queries (Koul

et al. (2008)). In this paper, published in Web Intelligence 2008, we describe a frame-

work to learn Naive Bayes and decision trees predictors from datasets stored in Relational

Database Management Systems (such as mySQL) using SQL count queries. In such a

setting, we describe techniques for handling missing values in the dataset without the

need to access the underlying dataset or the execution of the user defined code in the data

repositories. We described the the effect of missing values in the dataset on the number

of queries required to build the Naive Bayes and decision tree classifier and outlined some

optimizations techniques to minimize the number of queries required.

• Design and implementation of a Query Planner for Data Integration (Koul

and Honavar (2009)). In this paper, published in ICTAI 2009, we present a query

planner that allows a user to answer statistical queries from a set of distributed data

sources addressing the twin problems of data fragmentation (horizontal and/or vertical)

and semantic disparity (schema heterogeneity as well data content heterogeneity).

• Scalable, Updatable Predictive Models for Sequence Data (Koul et al. (2010)).

In this paper, published in BIBM 2010, we describe an approach to learn from massive

sequence data sets using statistical queries. Specifically we show how Markov Models

and Probabilistic Suffix Trees(PSTs) can be constructed from databases that answer

specific count queries. We analyze the query complexity (a measure of the number of

queries needed) for constructing classifiers in such settings and outline some techniques

to minimize the query complexity. In addition, we described how Markov model based

predictors can be updated in response to addition or deletion of subsets of the data.
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• Learning in Presence of Ontology Mapping Errors (Koul and Honavar (2010))

In this paper, published in Web Intelligence 2010, we address the problem on learning

from disparate data in the setting when the available ontology mappings used to resolve

semantic disparity have errors. We introduce an extension to the classical oracle based

model of learning that allows us to model learning from disparate data sources. We use

this extended model to show that learning from semantically disparate data sources in

the presence of mapping errors can be reduced to the problem of learning from a single

data source in the presence of nasty classification noise within a PAC-like framework.

This reduction, of learning in the presence of mapping errors to learning in the presence

of nasty classification noise, opens up the possibility of applying existing results and

approaches to learning in presence of classification noise to the problem of learning in

the presence of mapping errors.

• On the Relationship between Learning Classifiers from Semantically Dis-

parate Data and Domain Adaptation (to be submitted). In this paper we

introduce the notion of a learning scenario to model several well studied problems in

supervised learning such as Learning from Disparate Data, Learning under Covariate

Shift, Domain Adaptation and Transfer Learning. In addition, we introduce a notion of

reducibility among classes of supervised learning tasks and showed that several aspects

learning from semantically disparate data sources such as (a) how errors in mappings

affect the accuracy of the learned model and (b) how to choose an optimal mapping from

among a set of alternative expert-supplied or automatically generated mappings can be

reduced to, and hence understood in terms of the theoretically well-studied problem of

domain adaptation. Furthermore, we introduce the notion of probabilistic mappings and

show that there exists a specific probabilistic mapping that facilitates domain adaptation

(i.e., adapting a model that is trained on data sampled according to a distribution that

is different from the distribution from which the test data are obtained)
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7.2.1.1 Published work not included in the thesis

Other published work not included in the thesis are:

• Identifying and Eliminating Inconsistencies in Mappings across Hierarchical

Ontologies. In this paper, published in ODBASE 2010, we consider the problem of

identifying the largest consistent subset of mappings in the restricted, yet practically

important setting of hierarchical ontologies. Specifically, we consider mappings that

assert that a concept in one ontology is a subconcept, superconcept, or equivalent concept

of a concept in another ontology. We show that even in this simple setting the task of

identifying the largest consistent subset is NP-hard. We explore several polynomial

time algorithms for finding suboptimal solutions including a heuristic algorithm to this

problem. We present results of experiments using several synthetic as well as real-world

ontologies and mappings that demonstrate the usefulness of the proposed algorithm.

• Complexes of On-Line Self Assembly. The Tile Assembly Model (TAM) is an

abstract mathematical model of nanoscale self-assembly [Rothemund (2001)]. In this

paper, published in EIT 2008, we introduced variations of the TAM called Fair On-line

Assembly (FOAF) and explored certain properties that a TAM must possess in order for

it to be a FOAF.

• ANEXdb:An integrated Animal aNnotation and microarray EXpression Database.

This paper, published in Mammalian Genome 2009, describes an open-source web appli-

cation that supports integrated access of two databases that house microarray expression

and EST(Expressed sequence tag) annotation data . The web application is currently

available at http://www.anexdb.org.

The thesis resulted in the following open source software.

• Indus Learning Framework:

A suite of machine learning algorithms that learn from datasets using sufficient statis-

tics. The current implementation includes Naive Bayes and Decision Tree classifiers,
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and can be extended to incorporate more classifiers that are amenable to the suffi-

cient statistics approach. The code is open sourced at http://code.google.com/p/

induslearningframework/.

• Indus Integration Framework:

A data integration system that allows a user to pose count queries over a collection of

physically distributed, autonomous, semantically heterogeneous data sources as though

they were a collection of tables structured according to an ontology supplied by the user.

The framework is extensible to use multiple ontology formats (at present OWL and

custom format supported ), data source types (e.g. RDBMS , ARFF files, Web Services

) and reasoners (at present Pellet and internal reasoner supported). The framework

in conjunction with Indus Learning framework allows for knowledge acquisition from

semantically disparate data sources. The code is open sourced at http://code.google.

com/p/indusintegrationframework .

7.3 Future Work

Some promising directions for future work include:

1. Extension of Learning using Statistical Queries Paradigm to RDF Data. The Resource

Description Framework (RDF) is a language for representing information about resources

in the World Wide Web [Manola and Miller (2004)]. The rise of Semantic Web has re-

sulted in increasing availability of data in RDF format. Even data in relational databases

is being made available in RDF format as tools for publishing relational databases on

the Semantic Web become available (see W3C (2010a)). For example, the DBLP bib-

liography database is now available in RDF format (see DBLP (2010)). Learning from

RDF data presents challenges similar to those that have been discussed in this thesis.

These challenges include a learner’s ability to handle massive data size (e.g. Tauberer

(2010) lists a census dataset with one billion RDF Triples). Learning from RDF data

using statistical queries provides a straightforward approach to handle massive data size.

Most RDF data source provide the ability to query the RDF data using SPARQL (the
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standard query language for RDF data). Though the first version of RDF data did not

contain support for count queries, the current version (SPARQL 1.1 [W3C (2010b)]) does

include support for aggregate operations. This opens up the possibility of extending the

approach of learning using statistical queries to RDF data. We believe it should be pos-

sible to learn Relational Bayesian Classifiers [Neville et al. (2003)] from RDF data using

SPARQL 1.1 aggregate queries in a straightforward manner.

2. Incorporate more Expressive Mappings to the Setting of Learning from Disparate Data.

The approach to learning from disparate data sources discussed in this thesis is restricted

to the case when attribute mappings are one to one. Hence, the possible ontology map-

pings are restricted to those between concepts in the ontologies associated with the

mapped attributes. An interesting direction for future work would be to extend the de-

scribed approach (of learning from semantically disparate data sources) to handle more

expressive schema and ontology mappings such as the case when an attribute in a user

view can be mapped to two or more attributes in the data source view. In such as case,

a concept in an ontology associated with an attribute in user view can be composed

from concepts in multiple ontologies (each of which may be associated with an unique

attribute in the datasource view). For example, a concept AdultMale in an ontology

associated with an attribute in user view could be composed as an intersection of the

Male Concept (say present in an ontology associated with attribute Sex ) and the Adult

concept (say associated with attribute Age).

3. Incorporating Ontology Evolution Ontologies evolve over time resulting in different ver-

sions of the same ontology being available [Shaban-Nejad and Haarslev (2009), Flouris

et al. (2008)]. An interesting direction for future research could to be explore learning

predictive models in presence of evolving ontologies and mappings without needing to

rebuild the predicted models from scratch.
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APPENDIX A.

Lemma Given a fixed distribution Ds over the finite instance space Xs and a possible

distribution Dt over the finite instance space Xt such that
∑

x∈Xs wDs(x) =
∑

x∈Xt wDt(x),

there exists a probabilistic mapping mx : Xs 7→ ∆|Xt| such that mx(Ds), the distribution

induced by mx and Ds over Xt is the same as the distribution Dt.

Proof 14 Given the distribution Ds over Xs, let Prx∈Ds [x] = wDs(x). Recall wDs(x) is the

weight of instance x in distribution Ds. Consider a possible distribution Dt over Xt such that

Pry∈Dt [y] = wDt(y). Since Xs and Xt are finite it is possible to arrange the elements in

increasing order of their weights in distribution Ds and Dt. WLOG let Xs = {x1, x2 . . . x|Xs|}

be such an ordering. Similarly, let Xt = {y1, y2 . . . y|Xt|} be an ordering of elements in Xt in

increasing order of their weights in distribution Dt. The statement of the lemma exists if there

exists a probabilistic mapping mx such that

Pry∈Dt [y] = Pry∈mx(Ds)[y] (A.1)

Given that for an x ∈ Xs,mx(x) = {ψmx(x, y1), ψmx(x, y2) . . . ψmx(x, y|XT |)} the equation (A.1)

is equivalent to

wDt(y) =
∑
x∈Xs

ψxm(x, y)wDs(x) (A.2)

Hence, the lemma holds if there exists an mapping m such that equation (A.2) holds. The

Algorithm 3 describes a procedure to construct a mapping for which equation (A.2) is true.

An straightforward analysis of the construction procedure shows that the constructed map-

ping mx indeed satisfies equation (A.2). Intuitively, construction involves taking an instance

in Xt one at a time and finding the set of instances in Xs ( taken in increasing order of their

weights) whose weight equals or exceeds the weight (under distribution Dt) of chosen instance
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Algorithm 3: Procedure to construct a probabilistic mapping that satisfies equation
(A.2)

Data: Require Xs = {x1, x2 . . . x|Xs|} to be an ordering of elements in Xt in increasing

order of their weights in distribution Ds and (2) Xt = {y1, y2 . . . y|Xt|} to be an

ordering of elements in Xt in increasing order of their weights in distribution Dt.
Result: Mapping mx that satisfies equation (A.2)

Initialize mx as: ∀q ∈ {1, 2 . . . |Xs|} and ∀r ∈ {1, 2 . . . |Xt|} set ψmx(xq, yr) = 0 ;

Initialize variable is = 1 and it = 1 ;

while it ≤ |Xt| do

Find least j ≥ is such that
∑j

p=is
wDs(xp) ≥ wDt(yit) ;

if j > is then

partial =
wDt (yit )−

∑j−1
p=is

wDs (xp)

wDs (xj)

elseThe weight of instances between is and j exactly matches

partial =
wDt (yit )

wDs (xj)
;

for p = is; p < j; p+ + do

ψmx(xp, yit) = 1 ;

ψm(xj , yit) = partial ;

Update wDs(xj) = (1− partial)wDs(xj) ;

if partial == 1 then

is = j + 1 ;

else

is = j ;

it = it + 1 ;

in Xt. Then the entire weight of each instance in this chosen subset of Xs (except the last one

with has the greatest weight) is assigned to the chosen instance in Xt. An appropriate amount

of weight (corresponding to value of partial in the algorithm) of the last instance in the chosen

subset is assigned to the element in Xt. This process is repeated for rest of instances in Xt (one

at a time) while the possible choice of subset of Xs is restricted to those elements that have not

yet been selected or only have part of their weight assigned in the previous step. The procedure

is guaranteed to work for each instance in Xt since
∑

x∈Xs wDs(x) =
∑

x∈Xt wDt(x).
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APPENDIX B.

Theorem Let Xs and Xt be finite instances spaces. Given oracles EX〈ft,Xt,Dt〉 and

EX(fs,Xs,Ds) where ft : Xt 7→ {0, 1} and fs : Xs 7→ {0, 1} and
∑

x∈X+
s
Prx∈Ds [x] =∑

x∈X+
t
Prx∈Dt[x] there exist a probabilistic mapping M = {mx,mc} where mx : Xs 7→ ∆|Xt|

and mc : Range(fs) 7→ Range(ft) such that the 1 Delegating oracle 1EX〈φ, {Xs}, {Ds},M,X〉

is indistinguishable from EX〈ft,Xt,Dt〉.

Proof 15 Intuitively, the proof uses Lemma 11 to construct a probabilistic mapping between

X+
s and X+

t (i.e. instances with label 1) and again a probabilistic mapping between X−s

and X−t (i.e instances with label 0). It then combines these mappings to construct a re-

quired semantics preserving probabilistic mapping M that ensures that 1Delegating oracle

1EX〈φ, {Xs}, {Ds},M,X〉 is indistinguishable from EX〈ft,Xt,Dt〉

Given Ds over Xs, let D+
s and D−s be the resulting distribution over X+

s and X−s respectively.

Similarly, let D+
t and D−t denote the distribution over X+

t and X−t respectively. By Lemma 11

there exists a probabilistic mapping m+ : X+
s 7→ ∆|X

+
t | such that m+ and D+

s induce D+
t . Again

by Lemma 11 there exists a probabilistic mapping m− : X−s 7→ ∆|X
−
t | such that m and D−s induce

D−t . WLOG let X+
t = {y1, y2 . . . y|X+

t |
} and X−t = {y|X+

t |+1, . . . y|Xt|}. Given x ∈ X+
s ,m+(x) =

{ψm+(x, y1) . . . ψm+(x, y|X
+
s |)} and given x ∈ X−s ,m−(x) = {ψm+(x, y|X+

t |+1) . . . ψm+(x, y|Xt|)}.

Now consider a mapping mx : Xs 7→ ∆|Xt| constructed in the following way:

∀x ∈ X+
s , ψmx(x, yi) =

 ψm+(x, yi) if yi ∈ X+
t

0 if yi ∈ X−t

∀x ∈ X−s , ψmx(x, yi) =

 ψm−(x, yi) if yi ∈ X−t

0 if yi ∈ X+
t
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The class mapping function mc is trivial and is assumed to map the label zero to the label

zero and the label one to label one. By construction when x ∈ X+
s , ψmx(x, y) = 0 for all

y ∈ X−t . Similarly, for x ∈ X−s , ψmx(x, y) = 0 for all y ∈ X+
t . As a result the probability

that an instance with incorrect label is passed to the learner is zero and hence M = {mx,mc}

is semantics preserving. Consider the case when y ∈ X+
t . It follows that Pry∈mx(Ds)[y] =∑

x∈Xs ψmx(x, y) =
∑

x∈X+
s
ψmx(x, y) =

∑
x∈X+

s
ψm+(x, y) (we used the following facts: (1)

ψmx(x, y) = 0 ∀x ∈ X−s when y ∈ X+
t ; and (2)

∑
x∈X+

s
ψmx(x, y) =

∑
x∈X+

s
ψm+(x, y) when

y ∈ X+
t ).

Again consider y ∈ X+
t . Observing that M is semantics preserving and by construction

of M it follows that ∀y ∈ X+
t , P ry∈Dt [y] = Pry∈D+

t
[y] =

∑
x∈X+

s
ψm+(x, y). Since we

have already shown that when y ∈ X+
t , P ry∈mx(Ds)[y] =

∑
x∈X+

s
ψm+(x, y) it follows that for

y ∈ X+
t , P ry∈Dt [y] = Pry∈mx(Ds)[y]. Proceeding in a similar way it can be shown that for

y ∈ X−t , P ry∈Dt [y] = Pry∈mx(Ds)[y]. Hence the constructed mapping mx and Ds induce Dt.

Consider the 1Delegating oracle 1EX〈φ, {Xs}, {Ds},M,X〉. As M is semantics preserving (by

construction) it follows that φ = f. Since we showed that mx and Ds induce Dt it follows

that 1Delegating oracle 1EX〈φ, {Xs}, {Ds},M,X〉 samples from Xt according to Dt and la-

bels the sampled instance with f . Hence, 1EX〈φ, {Xs}, {Ds},M,X〉 is indistinguishable from

EX(f,X ,Dt).
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APPENDIX C.

Often, in practice, there is a single available user mapping (say MU assumed to be semantics

preserving) that is used as a proxy for the true mapping Mtrue. In such a case it may be useful

to get a bound on the error of using the mapping MU as a proxy for the true mapping Mtrue.

Since learning with a user provided mapping MU instead of the true mapping Mtrue is the

scenario T = {kEXm〈φ,X+,D+,MU ,X〉, EX〈f,X+,D+,Mtrue,X〉}, the error for which we

are interested to provide a bound is R(T ) i.e. the error of the learning scenario T . Since

the learning scenario T is reducible to learning under domain shift by theorem (7), all the

applicable positive bounds in domain adaptation (see Blitzer et al. (2007a); Ben-David et al.

(2010)) are also applicable to T . However, in our setting it is appropriate to provide a bound

in terms of some notion of similarity between the mappings MU and Mtrue.

Given s(MU ) is a dataset obtained from a kDelegating oracle kEXm〈φ,X+,D+,MU ,X〉

using the mapping MU , let s(MU ←Mtrue) denote the dataset if the mapping Mtrue was used

instead of MU . Recall the notation that SX is the set of all possible subset of X and L(s) is

the hypothesis output by L when provided with dataset s.

Definition 14 µ-close Mapping: Given a learning algorithm L and kDelegating Oracles

EX1〈φ1,X+,D+,MU ,X〉 and EX2〈φ2,X+,D+,ME ,X〉, the mapping MU is said to be µ-close

to ME iff ∀s ∈ SX , εMU (D+)(L(s(ME)),L(s(ME ←MU ))) ≤ µ
2

Observation. It follows directly from the definition that MU being µ-close to ME does not

imply that ME is µ-close to MU .

Another quantity that we will use to bound R(T ) is the A-distance that has been intro-

duced and used in the setting of domain adaptation (Kifer et al., 2004; Blitzer et al., 2007a).
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Given a hypothesis space H, let AH be the set of subsets of X that support some hypothesis in

H. Hence, for every h ∈ H, {x|x ∈ X and h(x) = 1} ∈ AH. Given a set A ⊆ X let PrD[A] be

the probability of obtaining set A when drawing randomly from X according to distribution

D over X

Definition 15 A-distance (from Blitzer et al. (2007a)): The A-distance between two

distributions D1 and D2 over instance space X is defined as : dH(D1,D2) = 2 sup
A∈AH

|PrD1 [A]−

PrD2 [A]|

Definition 16 Symmetric Difference Hypothesis Space (from Blitzer et al. (2007a)):

Given a hypothesis space H, the symmetric difference hypothesis space H∆H as {h(x) ⊕

h′(x)|h, h′ ∈ H} where ⊕ is the XOR operator.

It follows that given a hypothesis space H, each hypothesis g ∈ H∆H labels as positive all

points x on which a given pair of hypotheses in H disagree. We can then define AH∆H as the

set of all sets A such that A = {x|x ∈ X , h1(x) 6= h2(x)} for some h1, h2 ∈ H. We know state

a useful inequality that has been first introduced in Blitzer et al. (2007a).

|εD1(h, h′)− εD2(h, h′)| ≤ 1

2
dH∆H(D1,D2) (C.1)

Theorem Given a learning algorithm L and a scenario T = {kEXm〈f,X+,D+,MU ,X〉,

EX〈f,X+,D+,Mtrue,X〉} such that MU is µ close to Mtrue and f ∈ H where H has VC-

dimension v, then with probability 1− δ

R(T ) ≤ ε̂MU (D+)(L(s(MU )), f)+µ+dH∆H(MU (D+),Mtrue(D+))+

√
v(log(2m/v)+1)+log(4/δ)

m

Proof 16 Let hU and hT be the hypothesis output by L with access to oracles kEX〈f,X+,D+,

MU ,X〉 and kEX〈f,X+,D+,Mtrue,X〉 respectively . To ease notation clutter let us represent

the distribution MU (D+) by DU and Mtrue(D+) by DT . The proof relies on the use of triangle

inequality for classification error: for a given distribution D and functions f1, f2 and f3, it

is the case that εD(f1, f2) ≤ εD(f1, f3) + εD(f2, f3) (see similar approach in Crammer et al.

(2008); Blitzer et al. (2007a)). Hence,
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εDT (hU , f) ≤ εDT (hU , hT ) + εDU (hT , f)

≤dH∆H(DU ,DT ) + εDU (hU , hT ) +

εDU (hT , f) (using C.1 twice)

≤ dH∆H(DU ,DT ) + 2εDU (hT , hU )+

εDU (hU , f) (using triangle inequality)

≤ dH∆H(DU ,DT ) + µ + εDU (hU , f)

(using Mtrue and MU are µ close)

≤ dH∆H(DU ,DT ) + ε̂DU (hU , f) +√
(v(log(2m/v+1))−log(δ/4))

m + µ

(using VC-dimension to relate

training error with true error)

Since R(T ) = εDT (hU , f), the statement of the theorem follows.

It is interesting to note that bound in Theorem depends on ε̂DU (hU , f) (the training error),

µ (that captures how close MU is to Mtrue) and dH∆H(DU ,DT ) the symmetric hypothesis

distance between the induced distributions by MU and Mtrue.

Remark: We want to acknowledge that the bound in the stated theorem is inspired by

similar domain adaptation bound in Blitzer et al. (2007a) (although our bound differs in that

it incorporates the notion of closeness between mappings).
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