
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

Ontology-guided extraction of structured
information from unstructured text: Identifying
and capturing complex relationships
Sushain Pandit
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Pandit, Sushain, "Ontology-guided extraction of structured information from unstructured text: Identifying and capturing complex
relationships" (2010). Graduate Theses and Dissertations. 11524.
https://lib.dr.iastate.edu/etd/11524

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11524&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11524&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11524?utm_source=lib.dr.iastate.edu%2Fetd%2F11524&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Ontology-guided extraction of structured information from unstructured text:

Identifying and capturing complex relationships

by

Sushain Pandit

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Vasant Honavar, Major Professor

Dimitris Margaritis
Samik Basu

Iowa State University

Ames, Iowa

2010

Copyright c© Sushain Pandit, 2010. All rights reserved.

ii

DEDICATION

Dedicated to Supreme God, my parents and Sachin Tendulkar’s world record double-hundred.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . viii

ABSTRACT . ix

CHAPTER 1. OVERVIEW AND MOTIVATION 1

1.1 Information Extraction . 1

1.2 Extracting Domain-specific Semantic Information from Text 2

1.3 Open Problems and Challenges . 2

1.3.1 Issues in NLP-based Relationship and Entity Extraction 2

1.3.2 Issues in Semantic Mapping and Validation 3

1.3.3 Issues in Generic Representation . 3

1.4 Motivation for Creating a Novel Information Extraction Framework 4

1.5 Goals . 5

1.6 Thesis Outline . 7

CHAPTER 2. PRELIMINARIES AND RELATED WORK 8

2.1 Derivative Structures: Parse Trees and Dependency Graphs 8

2.1.1 Parse Tree . 8

2.1.2 Dependency Graph . 9

2.2 Formal Specifications for Validation and Representation 11

2.2.1 Domain Ontology, Instances and Knowledge Base 11

2.2.2 Validation Process . 12

iv

2.3 Generic Representation . 13

2.3.1 Resource Description Format(RDF) . 13

2.4 Problem Definition . 13

2.5 Related Work . 14

2.5.1 Different Flavors of Information Extraction from Text 14

2.5.2 Complex Relationship Extraction from Text 16

CHAPTER 3. A NOVEL FRAMEWORK FOR EXTRACTING INFOR-

MATION FROM TEXT . 18

3.1 Approach Overview . 18

3.2 Text Processing and Generation of Derivative Structures 18

3.3 Composite Rule Framework for Entity and Relationship Extraction 20

3.3.1 Terminology . 20

3.3.2 Identifying and Defining the Relationship Types 21

3.3.3 Formulating Rules for Complex Relationship and Entity Extraction . . 29

3.3.4 Formulating Rules for Simple Relationships 36

3.4 Semantic Validation Framework . 38

3.4.1 Performing Validation against the Domain Ontology Model 39

3.4.2 Discussion on Basic Validation . 40

3.4.3 Performing Enrichments . 40

3.5 Representation Framework . 44

3.5.1 Transformation of Information Constructs into Graph Formalism 44

3.5.2 Primitive Transformation for Representing Simple Information 45

3.5.3 Transformations for Representing Complex Information 46

3.5.4 Existential Claims based on our Information Extraction Framework . . 48

3.6 Discussion on Algorithms . 49

3.6.1 Pronoun Resolution in Algorithm 1 . 50

CHAPTER 4. SEMANTIXS: SYSTEM ARCHITECTURE AND OVERVIEW 51

4.1 SEMANTIXS Architectural Overview . 51

v

4.1.1 SEMANTIXS Component Interaction 54

4.2 Design and Implementation Details . 56

4.2.1 Service Request/Response Framework 57

4.2.2 Core Text Processing and Information Extraction Framework 58

4.2.3 User Interface, Visualization and Analysis Framework 59

CHAPTER 5. EMPIRICAL EVALUATION AND ANALYSIS USING SE-

MANTIXS . 62

5.1 Evaluation Scenario . 62

5.2 Experimental Setup: Text, Ontology and Instances 63

5.2.1 Text . 63

5.2.2 Ontology and Instance Data . 64

5.3 Results and Interpretation . 64

5.3.1 Interpretation . 66

5.3.2 Discussion on Errors . 66

5.4 Querying the Graph . 67

5.4.1 Formulating Complex Questions . 68

5.4.2 Formulating a Query-plan . 69

CHAPTER 6. CONCLUSION . 71

6.1 Summary . 71

6.2 Contributions . 71

6.3 Further Work . 72

APPENDIX A. EXPERIMENTAL TEXTS AND EXTRACTED INFOR-

MATION . 74

A.0.1 Sample Text Fragment . 74

A.0.2 Sample Generated RDF Sub-graph . 75

A.0.3 RDF Serialization for Graph 3.11 . 76

A.0.4 RDF Serialization for Graph 3.12 . 76

A.0.5 RDF Serialization for Graph 3.13 . 77

vi

BIBLIOGRAPHY . 78

vii

LIST OF TABLES

Table 5.1 Overview of Experimental Texts: Counts of Positive and Negative In-

stances . 63

Table 5.2 Correctly Classified Information: Counts of Positive and Negative In-

stances . 64

Table 5.3 C.M. for Simple . 65

Table 5.4 C.M. for Type 1 . 65

Table 5.5 C.M. for Type 2 . 65

Table 5.6 C.M. for References . 65

Table 5.7 C.M. for Type 3 . 65

Table 5.8 Results: Precision, Recall and F-measure 66

Table 5.9 Answers to Complex Questions . 69

viii

LIST OF FIGURES

Figure 2.1 A Simple Dependency Graph . 10

Figure 3.1 Dependency Graph with Application of a Simple Extraction Rule . . . 19

Figure 3.2 Example for a Relationship with Internal Clauses 23

Figure 3.3 Example Illustrating the Intuitive Motivation behind Case 2 25

Figure 3.4 Example for a Relationship with a Qualifying Modifier 26

Figure 3.5 Example with a Simple Placement of Conjunction 28

Figure 3.6 Example with a Complex Placement of Conjunction 28

Figure 3.7 Dependency Graph for the Sentence in Figure 3.2 30

Figure 3.8 Extraction Rule for a Relationship with Internal Clauses 31

Figure 3.9 Dependency Graph for the Sentence in Figure 3.4 33

Figure 3.10 Extraction Rule Application for a Relationship with Qualifying Modifiers 34

Figure 3.11 RDF representation of Simple Information 45

Figure 3.12 RDF representation of Reified Internal Clauses 46

Figure 3.13 RDF representation of Qualified Relationships 48

Figure 4.1 SEMANTIXS Architectural Diagram 52

Figure 4.2 UML Representation of Service Request Delegation Framework 57

Figure 4.3 UML Representation of Information Extraction Framework 58

Figure 4.4 Text Processing View . 59

Figure 4.5 Semantic Graph View . 60

Figure 5.1 RDF Sub-graph for the Entity “Dow Jones” 68

ix

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to everyone who helped me

in conducting the research leading to this thesis. Firstly, I would like to thank my advisor,

Dr. Vasant Honavar for his guidance throughout the period of this research work. I would also

like to thank my committee members, Dr. Dimitris Margaritis and Dr. Samik Basu for their

thoughtful insights and pointers. Further, I would like to acknowledge useful discussions with

Neeraj Koul, Heyong Wang and Ganesh Ram Santhanam, members of the Artificial Intelligence

Research Laboratory. I would also like to warmly thank my parents for all those intangible

bits of reassurance given at key moments. Finally, I would like to express my gratefulness to

the Center for Integrated Animal Genomics and the Center for Computational Intelligence,

Learning, and Discovery for the research assistantship that provided partial support for me

during my graduate studies at Iowa State University.

x

ABSTRACT

Many applications call for methods to enable automatic extraction of structured infor-

mation from unstructured natural language text. Due to the inherent challenges of natural

language processing, most of the existing methods for information extraction from text tend

to be domain specific. This thesis explores a modular ontology-based approach to informa-

tion extraction that decouples domain-specific knowledge from the rules used for information

extraction. Specifically, the thesis describes:

1. A framework for ontology-driven extraction of a subset of nested complex relationships

(e.g., Joe reports that Jim is a reliable employee) from free text. The extracted relation-

ships are semantically represented in the form of RDF (resource description framework)

graphs, which can be stored in RDF knowledge bases and queried using query languages

for RDF.

2. An open source implementation of SEMANTIXS, a system for ontology-guided extraction

and semantic representation of structured information from unstructured text.

3. Results of experiments that offer some evidence of the utility of the proposed ontology-

based approach to extract complex relationships from text.

1

CHAPTER 1. OVERVIEW AND MOTIVATION

This chapter provides an introduction to the main topics and the motivation behind the

thesis. A brief overview of our contributions and the outline of the overall structure of the

thesis is also provided.

1.1 Information Extraction

Information-driven advanced AI problems as well as semantic computing issues dealing

with linked-data and semantic web, have long warranted the need of domain-specific, struc-

tured and consumable information. Keeping with the philosophical point of view of Stoll and

Schubert, “Data is not information, Information is not knowledge, Knowledge is not under-

standing, Understanding is not wisdom”, it is fairly easy to draw contrasts [1] between such

domain specific and consumable information and raw data that is often openly available and

constantly generated at the rate of over a tera-bytes per day. In essence, the constantly growing

data becomes rather useless if we are unable to extract meaningful, relevant and consumable

information out of it.

This overarching need for extracting structured information from raw data has motivated

various systematic processes for information extraction. For a while such processes were largely

manual, with domain experts semi-automatically extracting relevant information constructs

from data sources (web, text, images, publicly available structured data, etc), validating them

against their predefined set of domain-specific rules, and organizing them into a useful formal

representation.

Recently, however, there has been a lot of attention on building systems that try to au-

tomatically (semi or fully) extract information from free text, validate it against a domain

2

description and make a coherent representation out of it. Our work in this thesis focuses on

this particular paradigm and we describe it in more detail in following sections.

1.2 Extracting Domain-specific Semantic Information from Text

The general problem of interpretation of natural language texts is very difficult [12], however

there have been significant improvements that directly relate to the feasibility of such inter-

pretations: (i) Natural Language Processing (NLP) to enhance parsing and sentence-specific

semantic interpretations; and (ii) formal representations to capture domain knowledge, such

as ontology, taxonomies, etc.

Advances in NLP have enabled us to extract relationships and entities, which are essential

building blocks of any sort of information that is extracted from text. Further, the growth

and acceptance of open World Wide Web Consortium (W3C) [47] standards for encoding and

representing knowledge, such as Web Ontology Language (OWL) [43] and resource descrip-

tion framework (RDF) [40], have made it easier to express domain-specific information in a

consumable form.

Overall, structured information extraction encompasses three fundamental steps: (i) NLP-

based relationship and entity extraction, (ii) semantic mapping and validation of the extracted

constructs, and (iii) representation of the extracted constructs in a generic formalism. However,

each of these steps has numerous open issues and inherent challenges, and we discuss some of

them in the next section, followed by our motivations to address them.

1.3 Open Problems and Challenges

1.3.1 Issues in NLP-based Relationship and Entity Extraction

Generally, information extraction algorithms extract relations as: (i) simple verbs based on

speech tagging [7], (ii) complex associations based on dependency parses [2], or (iii) induced

relations through term co-occurrence in large text corpora. Similarly, entities are generally

extracted as: (i) simple nouns, (ii) modified, complex nouns. These algorithms make use of

3

certain extraction patterns, which may be statically encoded in the form of rules, or dynami-

cally induced by various machine learning approaches on large text corpora.

Some of the challenges encountered by conventional algorithms utilizing static rules, in-

clude: (i) over-dependence on parse trees, resulting in inability to extract indirect, implicit

and complex relationships, and (ii) the need for named-entities to guide relationship extrac-

tion. On the other hand, approaches based on rule-induction require enormous amount of

textual resources across a fairly wide-range of text corpora, to be able to induce generic rules.

1.3.2 Issues in Semantic Mapping and Validation

A domain-specific information extraction process needs to make sure that the extracted re-

lationships and entities (information constructs) are semantically mapped and validated against

a domain description. This domain description is often described in the form of an ontology

[46], capturing the underlying relations and concepts occurring within the domain. This step

raises a number of challenges, some of which are: (i) operating in an incomplete description

of the domain, viz., the case when the ontology description does not capture all the relations

and concepts, and (ii) enriching the ontology with new found knowledge without introducing

inconsistencies.

1.3.3 Issues in Generic Representation

Finally, we need to represent the extracted information using a specification that is widely

accepted and consumable. This step is critical in the overall process of information extrac-

tion since in its absence, the extracted information will exist in an independent world, which

is highly undesirable, considering the amount of recent attention that linked data [42] and

knowledge integration [10], [11] have received.

One of the most common mechanisms for representing information in machine consumable

form, is the W3C family of specifications: RDF, RDF schema, and OWL. Thus, it becomes

an interesting issue to be able to represent the extracted information constructs within the

existing W3C specifications.

4

With these issues in mind, we motivate the need for our work in the following section.

1.4 Motivation for Creating a Novel Information Extraction Framework

1. Our main overarching motivation stems from the need to identify, extract, validate and

represent complex relationships (e.g., Joe reports that Jim is a reliable employee) in order

to facilitate comprehensive information extraction from unstructured text.

Such relationships often occur in a non-standard form where one part of the sentence

refers to the other part through an inherent dependency relationship, or the underlying

information in the sentence is not suitable for a straightforward extraction task. The

issue with such complex relationships is that at least one of the three steps in the process

of information extraction becomes problematic. In our experiments, we saw one or more

of the following problem patterns: (i) the first step required special rules to be able to

identify and extract the relationships, (ii) the validation step required enrichment of the

existing ontology since it made sense to capture the information construct correspond-

ing to the extracted relationship, however, the existing definitions in the given domain

ontology were not sufficient to do that, and (iii) the representation step required certain

finesse to express the complex relationship within the given set of specifications.

In chapter 3, we describe some interesting examples that motivated the need for capturing

these complex relationships in spite of the inherent difficulty of the task, and clearly

identify the subset of complex nested relationships that we intend to handle.

Encapsulated within this main motivation, there are several ideas that we elaborate

below:

• A common approach for extracting new relationship patterns is to utilize rule-

induction algorithms [30] that induce rules in a semi-supervised manner to capture

newly found relationships. However, we believe that such automatic rule induction

is not the best way to deal with complex relationships because of their complexity,

uniqueness, the amount of text corpora and time required to figure out whether the

5

induced rule is generic enough to capture the corresponding complex relationship

pattern occurring across a significant enough collection of texts. Instead, we try to

experimentally arrive at generic rules to capture our subset of complex relationship

patterns.

• Similarly, one of the more common approaches to handle information constructs

that can not be validated against a given domain ontology, is to simply ignore

them. However, we argue that there are simple ontological extensions that can be

made without losing consistency, to be able to capture such cases.

• Finally, there are many highly-expressive logics, such as description logic [48] (OWL-

DL [43], OWL-Full [43]), F-logic [44], which may be utilized to express complex

extracted information. However, we argue that such formalisms become an overkill

while trying to express free text and thus, to the extent possible, we try to capture

complex information while retaining the simplicity of RDF specification.

2. Our second motivation follows from the first one in that we hope to formulate the set of

rules that would work best to extract certain complex relationship types. In order to do

this, it is necessary to have a suitable information extraction system that allows us to

run experiments and test the performance on large text documents.

3. Our third motivation is to enable complex queries in order to answer certain questions

about the information expressed within unstructured text. Since we intend to extract

complex relationships using our proposed framework, it becomes interesting to experi-

mentally analyze and determine the kind of questions that can be answered once we have

extracted a large set of linked information through these relationships and entities.

1.5 Goals

Against this set of background, challenges and motivations, we formulate various frame-

works and algorithms in this thesis, to address some of these concerns as briefly described

below:

6

1. Complex Relationships: We identify a subset of complex relations (e.g., Joe reports

that Jim is a reliable employee) that are especially interesting from the perspective of

structured information extraction (out of the many complicated sentential structures

that occur in free text) and have an above average likelihood of occurrence in a random

sample of free-text. We clearly define their scope w.r.t what we intend to cover within

our extraction framework.

2. Entity and Relationship Extraction: Having clearly defined the type and nature of

complex relationship patterns that we intend to extract, we precisely formulate the sets

of extraction rules that can identify and extract them. We also formulate an algorithm

that utilizes these rules to extract relationships and entities (information constructs)

from unstructured text.

3. Semantic Validation: Further, we propose methodology to validate and semantically

associate the extracted information constructs against a given domain description cap-

tured in an ontology. We also include ways to perform ontology enrichment with newly

found relationships, whenever possible.

4. Representation: We formulate a methodology to represent these extracted and vali-

dated information constructs using existing (non-extended) Resource Description Frame-

work (RDF) specification. We especially introduce mechanism to represent the complex

relationships in a way that enables the possibility of complex querying on the extracted

information.

5. Implementation and Empirical Evaluation: Based on our analysis and algorithms,

we provide implementation of an information extraction system, called SEMANTIXS

(System for Extraction of doMAin-specific iNformation from Text Including compleX

Structures), which can be utilized to extract and semantically represent structured infor-

mation from free text. We describe the architectural and design details of the system. We

also report results of some experiments that offer evidence of the utility of the proposed

ontology-based approach to extraction of complex relationships from text. The system

7

implementation is open-source (under GNU General Public License), and is available at

http://sourceforge.net/projects/semantixs/.

1.6 Thesis Outline

The remainder of this thesis is organized as follows:

• In Chapter 2, general terminology related to the steps in structured information extrac-

tion is introduced. Preliminary concepts for domain ontologies, knowledge bases, RDF

specification, etc are also provided. A brief survey of related work is also given.

• In Chapter 3, we present our information extraction from text framework along with

the complex relations that we intend to extract. We also present the corresponding

rules to extract those relations. Further, we talk about the frameworks that take care

of validation and enrichment, and the RDF representation that we utilize for expressing

extracted information. We conclude the chapter with a discussion on the algorithms

incorporating these frameworks.

• In Chapter 4, we describe the system architecture, design and other details of SEMAN-

TIXS, an information extraction system implemented based on the above analysis and

algorithms.

• In Chapter 5, we describe our experiments and results achieved using SEMANTIXS and

free text processing.

• We conclude the thesis work in Chapter 6. We summarize the work done in the thesis

along with the main contributions. We also provide a number of interesting future threads

of investigation that directly relate to this research.

8

CHAPTER 2. PRELIMINARIES AND RELATED WORK

This chapter provides preliminaries, definitions and problem formulations for this thesis.

We also give an overview of the related work in the area of information extraction from text.

2.1 Derivative Structures: Parse Trees and Dependency Graphs

Due to complete lack of semantics in unstructured text, for any task involving information

extraction from text, it becomes crucial to work with an intermediate representation of text.

For this purpose, any such task employs linguistic parsers to perform syntactic analysis of text

to determine its grammatical structure with respect to a formal grammar for the language1

that it is operating in.

The parsing process results in the generation of parse trees and optionally, dependency

graphs that are data structures derived from the text itself, which capture the implicit structure

within the tokens in the input text. In the remainder of this section, we give a brief overview

of the terminology related to these data structures. We limit our discussion to the scope of

this thesis.

2.1.1 Parse Tree

A parse tree is an ordered and rooted tree that represents the syntactic structure of a

sentence. In this section, we describe the Penn Treebank Notation utilized by most parsers

for tagging the sentence before generating the parse tree. These tags are often utilized in

information extraction systems to formulate rules based on which they perform extraction.
1In this work, we always assume that the text is from the English language; more specifically, all that is

captured by the englishPCFG.ser provided by with the Stanford Parser package

9

2.1.1.1 Penn Treebank Notation

These are simplified forms of the definitions found in the Penn Treebank manual2.

• S: Simple declarative clause

• NP: Noun Phrase. Phrasal category that includes all constituents that depend on a head

noun.

• VP: Verb Phrase. Phrasal category headed a verb.

2.1.2 Dependency Graph

A dependency graph is a data structure that captures the implicit dependencies (sentential

semantics) between tokens (words) in a sentence. In this section, we give a formal definition

of dependency graph that is useful for our analysis, and define various dependency relations

that we use in our work.

Definition: (Dependency Graph) Given an English language sentence T comprising of a word-

set W representing the words in the sentence, a dependency graph, G of the sentence T is

defined as a directed graph with node-set W and a labeled edge-set connecting the nodes in W

s.t. for any two connected nodes, the label on the edge represents the dependency relationship

between the words represented by the nodes.

Figure 2.1 shows a dependency graph for the sentence - “Heart attack causes reduced

average lifespan”.

For purposes of our work, we describe the following set of dependencies that are necessary

for understanding our rule framework in Chapter 3. These are simplified forms of the definitions

found in the Stanford typed dependencies manual3.

• amod: adjectival modifier - An adjectival modifier of an NP is any adjectival phrase

that serves to modify the meaning of the NP.
2Refer - ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/notation.tex for a complete list
3Refer - http://nlp.stanford.edu/software/dependencies manual.pdf for a complete list

10

Figure 2.1 A Simple Dependency Graph

• ccomp: clausal complement - A clausal complement of a VP or an ADJP is a clause

with internal subject which functions like an object of the verb or of the adjective;

a clausal complement of a clause is the clausal complement of the VP or of the ADJP

which is the predicate of that clause. Such clausal complements are usually finite (though

there are occasional remnant English subjunctives).

• conj: conjunct - A conjunct is the relation between two elements connected by a co-

ordinating conjunction, such as “and”, “or”, etc. We treat conjunctions asymmetrically:

The head of the relation is the first conjunct and other conjunctions depend on it via the

conj relation.

• dobj : direct object - The direct object of a VP is the noun phrase which is the

(accusative) object of the verb; the direct object of a clause is the direct object of the

VP which is the predicate of that clause.

11

• neg: negation modifier - The negation modifier is the relation between a negation

word and the word it modifies.

• nn: noun compound modifier - A noun compound modifier of an NP is any noun

that serves to modify the head noun.

• nsubj : nominal subject - A nominal subject is a noun phrase which is the syntactic

subject of a clause. The governor of this relation might not always be a verb: when the

verb is a copular verb, the root of the clause is the complement of the copular verb.

• parataxis: parataxis - The parataxis relation (from Greek for “place side by side”)

is a relation between the main verb of a clause and other sentential elements, such as a

sentential parenthetical, a clause after a “:” or a “;”.

• pobj : object of a preposition - The object of a preposition is the head of a noun

phrase following the preposition. (The preposition in turn may be modifying a noun,

verb, etc.)

• prep: prepositional modifier - A prepositional modifier of a verb, adjective, or noun

is any prepositional phrase that serves to modify the meaning of the verb, adjective, or

noun.

2.2 Formal Specifications for Validation and Representation

As briefly mentioned in the previous chapter, a structured information extraction task re-

quires a formal specification in order to be able to make sense of the extracted constructs

(entities and relationships). There are various representation mechanisms utilized for express-

ing a domain description, however, one of the most widely used is an ontology specification.

We give a brief overview of this next.

2.2.1 Domain Ontology, Instances and Knowledge Base

Definition 1: (Ontology) An ontology is a structure O = (R, C) such that:

12

• The sets R and C are disjoint and their elements are called relations and concepts re-

spectively.

• The elements of R induce a strict partial order ≺ on the elements in C. This ordering of

the form, ci ≺ cj , ci, cj ∈ C, is called the concept hierarchy.

Since the ontology merely defines the concepts and relationships in the domain, for a

process intending to extract domain-specific information, it is highly desirable that there be a

specification of assertions that may occur in the domain.

As an example, consider a sentence within the Sports domain - Sachin Tendulkar scored

200 runs. An ontology for Sports may have a concept Cricketer and a relation scoredRuns

with domain Cricketer and range Numeric. However, unless there is another specification that

asserts Sachin Tendulkar as a Cricketer, an information extraction system can not correctly

extract this as a domain-specific construct.

With this motivation, we define the notion of a domain ontology with instances (a.k.a

knowledge base), which is a combination of a domain description (in the form of an ontology

with concepts and relations) and certain concrete assertions (instances of those concepts) about

it.

Definition 2: (Domain Ontology with Instances) A domain ontology with instances is defined

with respect to an ontology O, as a structure DOI = (O, I) such that:

• I is a set, whose elements are called instances.

• There exists a function h : I −→ P(C), where P(C) is the power-set of the set of concepts

for the ontology O.

2.2.2 Validation Process

Given a sentence as input, the process of information extraction extracts certain words

from the sentence, which it identifies as possible information candidates. In this thesis, we

always refer to them as candidate information constructs. These candidates are then validated

against the input domain description specified as an ontology. Upon validation, they become

13

information constructs ready to be represented using a formalism. We describe the validation

process in detail when we present our frameworks in Chapter 3.

2.3 Generic Representation

Information extraction systems utilize various formalisms to represent the information con-

structs. In this section, we present a brief overview of one of the popular representation

mechanisms, specified by W3C.

2.3.1 Resource Description Format(RDF)

RDF utilizes the idea of representing statements in subject-predicate-object format. Each

such realization is called an RDF triple. As an example, lets reconsider the representation of

example from section 2.2.1. Once the information extraction process extracts and validates the

constructs from the sentence - Sachin Tendulkar scored 200 runs, this extracted information

can be simply represented in the triple format as - Sachin Tendulkar-scoredRuns-200.

RDF also provides advanced capability to make assertions about statements instead of

entities. This process is called RDF Reification [41]. We make use of this capability to

represent our complex relationships described in Chapter 3.

2.4 Problem Definition

With this background, we can now define the problem of structured information extraction

from free text in a somewhat concrete manner as follows.

Definition 3: Given a text fragment, Z, consisting of sentences {Ti} with word-sets {Wi},

a domain description captured in an ontology O(R,C), a set of instances Y , and a function

h : Y −→ P(C), where P(C) is the power-set of C, structured information extraction on Z is

defined as a process that must do the following:

1. Determine a set TCTR of candidate triples using an extraction algorithm.

14

2. Validate TCTR to find a set {K = {si, pi, oi}} of triples with respect to O(R,C), Y and

h.

3. Represent triples in K using a suitable representation mechanism.

This process is a hybrid of in-formalism (free-text, NLP, extraction algorithms, etc) and

formalism (ontology-based validation, etc). In the next chapter, we discuss our formulation of

each of these steps and make this hybrid notion more clear. We now give a brief overview of

related work.

2.5 Related Work

There have been varied efforts around the problem of information extraction from text.

We move forward to a discussion of different approaches to information extraction task and

distinguish our work in context of the present state-of-art. Further, we also present an overview

of representative approaches in complex relationship extraction from text since that is our main

motivation to formulate a novel framework for information extraction from text.

2.5.1 Different Flavors of Information Extraction from Text

There are two main approaches to information extraction distinguished by whether they rely

on manual engineering to discover extraction rules by inspection of a corpus, or use statistical

methods to learn rules from annotated corpora. The key advantage of the former approach is

that it does not require large amounts of training corpora (which is often expensive to acquire)

and that the best performing systems have been known to be hand-crafted [35]. On the flip

side, the rule formation process is often laborious and in case of domain-specific rules (for

instance, rules that are tightly coupled with the ontology specification), domain adaptation

may require significant re-configuration. In case of latter, domain portability (in principle)

is relatively straightforward due to automatic rule induction, however training data may be

hard to acquire, and changes in domain specification may require re-annotation of the entire

training data.

15

Due to the availability of well-represented descriptions of concepts, relations and instances

in certain domains, like Biomedicine [39], [38], there has been significant effort on extracting

domain-specific information from text. Recently, there have also been large-scale efforts [37]

to extract entity mentions, facts and/or events from text. Although statistical approaches

to information extraction have shown decent results for entity mentions, such as identifying

genes names in Biomedical literature [refer 14], they are not as effective in case of relationship

identification due to lack of annotated test corpora. This problem is further aggravated in

case of complex relationships (e.g., Joe reports that Jim is a reliable employee) that occur

in implicit and non-standard form as we shall see in the next chapter. As a result, there

has been considerable focus on rule-based techniques that, even though being labor-intensive

and requiring a lot of manual formulation, prove to be more effective and transparent in

capturing the semantic criteria. Further, systems that utilize rule-based approaches, in a

domain-independent manner, are easier to extend using a modular design.

As indicated above, rule-based approaches can be broadly divided into two genres based

on whether the rule-formulation is tightly coupled with the domain description or not. Author

in [18] presented an approach to build a dictionary of extraction patterns, called concepts or

conceptnodes. However, the extraction patterns are triggered by domain-specific triggering

words. Similarly, [19] and [20] generate multi-slot extraction rules and learn extraction pat-

terns respectively, however both require a specification of at least one domain-specific word.

Although [21] allows more expression power than [20], it still relies on exact word matches

to some extent. Besides inducing rules coupled with the domain in some manner, all these

approaches operate at a different level of granularity than our approach in that we are inter-

ested in extracting a subset of nested complex relationships (e.g., Joe reports that Jim is a

reliable employee) that are completely independent of a domain and can be entirely identified

by looking at a dependency graph or parse tree of a sentence. In some cases, we use trigger

words, however, they are language constructs (like propositions, conjunctions, etc) and not

specific to a domain.

Authors in [13] proposed an ontology-based approach to extract relationships and com-

16

pound entities from Biomedical text using rules that operate on parse trees. They further

suggested an unsupervised approach [16] to joint extraction of compound entities and relation-

ships using information theoretic measures. Although the structured information extraction

framework that we have proposed in our work is similar to [13] in that we also utilize a rule-

based algorithm for entity and relationship identification and extraction, followed by validation

against an ontology, the purpose of our work is quite different due to (i) the focus on complex

relationship structures (e.g., Joe reports that Jim is a reliable employee), and (ii) formulation of

rules in an entirely domain-independent manner. Similarly, [15] proposed a rule-based system

to extract regulatory mechanisms from Biomedicine literature and [17] presents an ontology-

based information extraction tool that extracts data with the aid of context words defined in

the ontology. There are many similar efforts, such as [22], [23] that focus on domain-specific in-

formation extraction. Although these approaches capture many relationship forms and suggest

a general paradigm of relationship extraction using rules, all of them are broadly motivated

by extraction purposes specific to their domain of discourse. In contrast, our rule-framework

is meant to capture complex relationships of very general form that have correlations with

linguistic structures and not with any specific domain of discourse.

2.5.2 Complex Relationship Extraction from Text

In this section, we give an overview of representative approaches within the field of complex

relationship extraction from text. A comprehensive survey of relation extraction mechanisms is

given in [36]. In line with the approaches described above for the larger problem of information

extraction, some of the common supervised approaches to relationship extraction formulate the

problem as that of classification in a discriminative framework (naturally requiring positive and

negative training examples). Issues with these approaches are that they are difficult to extend

to new relationship-types (especially complex ones) due to lack of labeled data.

As an alternative, semi-supervised approaches to address the task of relationship extraction

from text, are often based on pattern induction (or slot filling), with the implicit assumption

that terms belonging to a common linguistic context would occur in relationships with certain

17

common semantics. For example, [24], [30] make use of this paradigm to learn taxonomic rela-

tions and induce patterns respectively. Other popular systems using semi-supervised approach

to relationship extraction include [33], [34]. Further, there are rule-based systems that fall

within the genre of semi-supervised approaches (as mentioned in the previous subsection) that

make use of extraction-rules on intermediate syntactic structures, like dependency graphs and

parse trees, to achieve similar goals.

For complex relationships, the general statistical (or machine learning) approach is to factor

them into binary relationships, train binary classifiers for capturing relatedness of entities

and then form complex relationships using related entities and the binary relationships they

participate in. For example, a representative approach described in [31] utilizes this approach

to identify binary relationships in news text. [32] utilizes similar notions and a scoring metric

on maximal cliques to discover complex relationship instances.

In most of these approaches, the working definition of a complex relationship has been taken

as any n-ary relation in which some of the arguments may be unspecified. However, as we

illustrate in the next chapter, not all candidates in our identified set of complex relationships

conform to this definition. We intend to capture such cases when, on surface, we may have a

case of binary relationship, however its arguments are not simple or compound entities, but

another relationship instance. Modeling this problem within the discriminative framework

raises intricate issues, such as non-uniform feature spaces in case of an entity being related

to a fact (combination of entities). Although, there has been work on designing kernels to

capture non-linear feature spaces, we still run into the same issue of manually labeling corpora

for appropriate test-set creation. Thus, to handle this flavor of complexity, we resorted to the

rule-based approaches based on intermediate syntactic structures.

It may be noted that apart from the differences pointed above, our work can be distin-

guished from the general task of relationship extraction from text in that we are formulating

a structured information extraction framework, and relationship extraction is one of its many

parts (entity and relationship extraction, semantic validation and representation).

18

CHAPTER 3. A NOVEL FRAMEWORK FOR EXTRACTING

INFORMATION FROM TEXT

In the previous chapter, we introduced the necessary background to enable us to begin

discussion of our proposed framework for information extraction from text. In this chapter, we

describe our work in detail. We start with an overview of our approach, and proceed towards

an elaboration of each of the individual steps in the overall process.

3.1 Approach Overview

As per definition 2.4, our overall methodology for information extraction from text is di-

vided into three main parts: (i) processing the text sentence-by-sentence, generating the parse

tree and dependency graph for each sentence and applying extraction rules to identify and ex-

tract candidate relationships and entities, (ii) validating these candidates against the domain

ontology model and optionally enriching the model by new concepts and relationships that

capture these candidates in a consistent manner, and (iii) representing the validated candi-

dates in RDF notation leveraging the existing W3 syntax specification. We now address each

of these parts in detail.

3.2 Text Processing and Generation of Derivative Structures

As indicated in the previous chapter, we intend to utilize both dependency graphs and

parse trees in our approach to information extraction. The dependency graphs would help in

extraction of complex, nested and implicit relationships, and parse trees can be leveraged for

simpler relationships or whenever a finer analysis of individual entities is necessary.

19

For these purposes, we wanted to utilize a third-party Parsing library, which could provide

both these structures out-of-the-box. After a brief evaluation of some of the popular parsing

libraries [28], [26], [29], we decided to go ahead with Stanford Parser, because of its flexibility,

ease of usage, speed and precision.

As a first step, we utilize the Stanford Parser to get the dependency graph and parse tree

representations of a candidate sentence. These structures are then consumed by the extraction

algorithm to extract candidate relationships and entities in accordance with the rule framework

described in the next section.

Figure 3.1 Dependency Graph with Application of a Simple Extraction
Rule

20

3.3 Composite Rule Framework for Entity and Relationship Extraction

An extraction rule is a simple statement encapsulating a set of premises and consequents.

By definition, a rule warrants the execution of actions defined in the consequents whenever the

conditions defined in the premises hold. For simplicity of explanation, we will use action and

consequent interchangeably. Similarly, we would use condition and premise interchangeably.

For instance, an informally specified extraction rule for the dependency graph in Figure 2.1

can be - If “labels nsubj, dobj occur along a path in the graph”, then “extract that path as an

information construct”. This rule, when utilized by an information extraction algorithm, would

result in the extraction of - “Causes-reduced-lifespan” as a candidate information construct as

illustrated in Figure 3.1. With this intuitive notion in mind, we formally define the terminology

that we will be using throughout the chapter.

3.3.1 Terminology

We utilize the following notations to describe the framework and algorithms that we have

formulated.

pi : ith condition or premise for a rule (defined below).

cj : jth action or consequent for a rule, corresponding to a set of premises {pi}.

G(V,E) : A dependency graph with vertex-set V and edge-set E.

GS(V ′) : Subgraph of G induced by the vertex-set V ′.

D : A set of labels denoting the typed dependency relations defined for the English language

(refer Section 2.1.2)

l : E −→ D : A label function that defines a specific label from the set D, for edges of the

graph G.

P{ei} : A labeled path in the graph G, comprising of the edge-set {ei}.

The information extraction rules, utilized by the algorithms that we will be eventually

describing, are of the following form:

21

Definition 4: (Extraction Rule) For a dependency graph G, we define an extraction rule as,

ri : {pi} −→ {ci}, meaning If {pi}holds, perform {ci}.

This generic definition of extraction rule can have various realizations based on the usage

scenario and complexity of the relationships encountered in the information extraction task

being performed, one of which is described below for illustration.

ri : {∃P{ei} | {l(ei)} = D′, D′ ⊂ D} −→ {Extract all the vertices associated with the edge-

set {ei}}

Here, ri encodes the rule that if there exists a specific sequence of dependency labels without

considering the order (defined by the set D) along some path in the dependency graph of

the given sentence, then the sequence of nodes (which represent words in the corresponding

sentence) forms an information construct and thus, the algorithm is recommended to extract

them.

3.3.2 Identifying and Defining the Relationship Types

In this section, we try to clearly identify and define the subset of complex relationships

that we intend to capture by our rules. Since relationships can not exist without the entities

that they are associating, we also give a description of the entities that we expect to identify

and extract.

Given an English language sentence, t, we define the complexity of the relationship(s)

expressed between the entities in t, by analyzing the type, nature and number of dependencies

that exist within the words of t.

22

3.3.2.1 Simple Relationships

Intuitively, a simple relationship is expected to have a single verb connecting two entities,

which may or may not have a modifier. It is not expected to have internal clauses, implicit

dependencies, multiple subjects or objects. Formally, we say that a sentence contains a simple

relationship if all of the following conditions hold for the dependency graph G generated from

the sentence T :

• It contains no more than one subject and object each. This further implies that it has

at most one dependency of type nsubj and one from the set {dobj, pobj}.

• It does not contain any clause-level dependencies, conjunctions, or a clausal subject.

Further, it can only contain noun-compound, or adjectival modifiers. In terms of Stan-

ford dependencies, this implies that it does not contain any dependencies from the set

{ccomp, xcomp, acomp, compl, conj, csubj, csubjpass}. Also, it can only have {amod,

quantmod, nn} as modifiers.

It is conceded that due to the extremely diverse nature of English language sentence

construction, there may be many sentences that satisfy our intuitive notion of simple

relationships and yet, they may not be captured by the conditions stated above. We are

indeed cognizant of this fact and thus, do not claim the above conditions to be exhaustive

in nature. We arrived at these conditions following an experimental approach in which

we manually analyzed the dependency graphs emerging from varied sentences and tried

to determine common patterns. However, for the purposes of this thesis, we limit the

scope of definition of simple relations to the conditions above.

3.3.2.2 Complex Relationships

Intuitively, the set of complex relationships should be expected to capture every relation

that is not simple. However, for purposes of this thesis, we limit the scope of complex rela-

tions to the following specific cases. For ease of understanding, we illustrate these cases with

descriptive examples.

23

Figure 3.2 Example for a Relationship with Internal Clauses

1. Case when the relationship has internal clauses

This type of relationship is distinguished by the fact that it has a main subject that

refers to an internal clause through a verb. Such an internal clause is often interpreted

as the object of the verb that it is dependent upon. These relationships make for very

interesting candidates as far as information extraction from text is concerned because

they implicitly encapsulate relationships between entities and facts, instead of two simple

entities. We illustrate the essence of this notion through the example shown in Figure

3.2. The sentence taken from an online article1, makes an assertion about Macintosh PCs

(Macs). A information extraction system, operating in the PC and Technology domain,

may capture this assertion as an information construct about the entity, Macintosh PC.

However, it is clear that the assertion is an opinion, expressed by another Technology

vendor (Microsoft). For a generic information extraction system, it is important to

capture this inter-clausal dependency and thus, we selected this relationship type in our

subset of complex relationships.

Before we go further into our analysis using the example above, it is important to note
1http://www.macworld.com/article/139691/2009/03/

24

that it captures the general structure of this relationship type comprehensively. This is

since the verb relating the main clause with the inner clause (in this case, says) may as

well be any other verb, or modified verb. Similarly, the main clause (in this case the

main subject) may as well be any other noun, modified noun, or a pronoun (we perform

simple pronoun resolution in our algorithm). Further, we do not constraint the inner

clause in any way. Thus, this example, although specific in nature, captures any such

generic sentence with an inter-clausal relationship.

One of the most troubling issues in handling natural language texts is its varying nature

leading to different representations that all imply the same fact. For instance, here are a

few other representations of the sentence in Figure 3.2, in the order of increasing difficulty

with respect to information extraction task:

(a) “That Macs are too cool for its customers, says Microsoft ad.”

(b) “Microsoft ad says: Macs are too cool for its customers.”

(c) “Macs are too cool for its customers –Microsoft ad.”

(d) “Hey, listen to what Microsoft ad says.. Macs are too cool for its customers !...”

(e) “Macs are too cool for its customers.. I do not say this, Microsoft ad does.. see for

yourself.”

These instances made us quickly realize that it would be highly improbable to formulate

rules to identify complex relationships out of sentences that contain extraneous words,

which are not directly related to the main theme captured in the sentence (c, d and e

above). This is since, unlike with simple relationships where we can base our analysis

on the main (unique) verb, complex relationships can have multiple verbs, subjects and

objects with complex and implicit dependencies that can be hard to identify and extract

in cases when there are extraneous words. This is since these extraneous words introduce

dependencies that are not directly related to the underlying information captured in the

sentence.

25

Thus, we specifically restrict the scope for our rule-coverage to the forms captured by

cases a and b above, apart from the main sentential form illustrated in Figure 3.2. The

other motivation for the restriction of scope is that we were able to identify suitable

Stanford dependency relations for each of these cases, which formed the basis of our rule

formulation.

2. Case when modifiers implicitly qualify the meaning of the relationship

In this type of relationship, there is a main clause whose meaning is either being qualified

by a prepositional modifier, or the presence of the modifier gives an entirely different

context to the main clause. These relationships are again interesting candidates for

information extraction since they contain qualified information, which may or may not be

true on its own at the time of extraction, however their extraction can lead to interesting

new discoveries at a later point. This is since there may be a point in future when the

previously qualified piece of information becomes true without the qualification and it

may be possible to assert certain credibility to the source that had originally claimed

the qualified information (the source claiming the qualified information could have been

captured using the extraction rules for the relationship type 1).

Figure 3.3 Example Illustrating the Intuitive Motivation behind Case 2

26

As an example, lets consider the sentence - AnonymousSportingNewsChannel claims that

Sachin Tendulkar may score a double-hundred with high probability. It may be observed

that this sentence contains a main clause (AnonymousSportingNewsChannel claims that)

referring an internal clause. The internal clause can be captured by extraction rules for

relationship of case 1. Further, if we are able to identify and extract the internal clause

(Sachin Tendulkar may score a double-hundred) with the qualification (high probability),

we would be able to develop interesting insights about the source (AnonymousSport-

ingNewsChannel at a later point in time as discussed above. This idea is concisely

illustrated in the Figure 3.3.

Figure 3.4 Example for a Relationship with a Qualifying Modifier

With this motivating example in mind, we decided that it is important to capture the

qualified structure expressed in such relationships, and thus, we selected this relationship

type as the second case for our subset of complex relations. In rest of this section, we

will be referring to the sentence shown in Figure 3.4.

Before we go further into our analysis using the example above, we need to make sure that

the example captures the general structure of this relationship type. Unfortunately, this

case is not as straightforward as the previous one and we need to consider some variations.

First of all, we would need to generalize the connector for the modifying qualifier (in this

27

example, with). Most obvious choice is to consider the set of all common prepositions.

However, we need to only consider those, which can (i) have an associated adjective

that can act as the value of the qualification (in this case, high, and (ii) be relevant in

the sense of capturing a relational modification (iii) be supported by consistent Stanford

typed dependency labels. With these observations and for the sake of reduced overall

complexity, we restricted our set to the following prepositions - {with, of, in, for}.

Further, after performing some experiments to understand the effect of verb-clause (in

this example, may score) variation, we found that there are subtle variations in the de-

pendency graphs generated from very similar sentences. For instance, all of the following

sentences lead to slightly varying dependency graphs when compared with our original

sentence of Fig 3.4:

(a) “There is a high probability that Sachin Tendulkar may score a double-hundred.”

(b) “Sachin Tendulkar visits USA with his entire family.”

(c) “Sachin Tendulkar scores a hundred with absolute masterclass.”

In contrast, if we keep the verb-clause unchanged, we get similar dependency graphs,

even though we may vary the overall representation of the main sentence. For instance,

all of the following sentences lead to similar dependency graphs:

(a) “With high probability, Sachin Tendulkar may score a double-hundred.”

(b) “Sachin Tendulkar, in superb form, led the charge.”

(c) “Sachin Tendulkar, with high probability, may score a double hundred.”

Since we utilize dependency graphs to formulate our rules, the case with same verb-clause

presents no real challenge. In fact, it results in better sentential coverage for our rules.

However, to handle the case of varying dependency graphs, we had to slightly generalize

our rules so that they could accommodate subtle variations in dependency graphs. We

elaborate on this in the following subsection when we discuss the rule construction.

28

3. Case where multiple relations are formed by coordinating conjunctions

This type of relationship represents all the sentences with at least one conjunction and,

but, or, yet, for, nor, so. For reducing the complexity of the representation step, we only

handle the case with the and-conjunction.

Figure 3.5 Example with a Simple Placement of Conjunction

Figure 3.6 Example with a Complex Placement of Conjunction

The simplest case of this relationship occurs when the conjunction separates two simple

or complex clauses. In this case, the extraction task simply requires the separation of

the sentence about the conjunction, followed by usual processes required for individual

simple/complex clauses (refer Figure 3.5). However, in many other cases, the second

clause is dependent on the subject or predicate of the first clause. This is illustrated

in Figure 3.6. The latter case requires special handing with respect to the information

29

extraction task. Further, these relationships generally contain two or more of the other

relationship types described in this section and thus, we thought it to be relevant to

include them in our set of complex relationships.

Complex relationship types 1 and 2 are often encountered in complex literature (such as

Biomedicine) and an effective approach for such domains is to interpret the internal clause

as a single complex object in a modified form. Although this may work for certain highly

specialized domains, as we saw through the examples above, it can easily overlook some inter-

esting information constructs that our approach would be able to extract. We make this more

concrete in chapter 5, where we do some evaluations and report interesting results achieved

from utilizing our approach.

Having clearly defined the type and nature of relations that we intend to extract, we now

turn our attention to the rules that can identify and extract them. For ease of analysis and

discussion, we logically group the rule formulation by complex and simple relationship types.

3.3.3 Formulating Rules for Complex Relationship and Entity Extraction

In 3.3.2.2, we observed that most of the complex relationships are characterized by implicit

and explicit dependencies between parts of the sentence. Since such dependencies are nicely

captured by the dependency graph (refer chapter 2 for an overview of dependency graph), we

focus on it to formulate our rules. For this, we follow the methodology described below.

1. Refer to the dependencies described in section 2.1.2 and choose the ones that fit the

structure for each type of complex relationship described in previous subsection.

2. Form conditions based on whether a dependency label (or a sequence of labels) is found

along a set of edges in the dependency graph.

3. Form actions by deciding which nodes to extract as constructs.

4. Express premises and consequents to form the extraction rule.

We now apply these steps for each of the complex relationship types.

30

3.3.3.1 Rule Formulation for Case 1

Figure 3.7 Dependency Graph for the Sentence in Figure 3.2

1. For this case, we base our rule on two main clausal dependencies from the overall set of

Stanford dependency relations - Clausal complement (ccomp) and Parataxis (parataxis)

(For a definition of these dependencies, refer Chapter 2, Section 2.1.2). Clausal comple-

ment and Parataxis capture the structure of the main relationship form as illustrated in

Figure 3.2 (as well as form 1a) and form 1b of case 1 respectively.

2. For understanding the conditions based on which we would extract constructs, lets ob-

serve the dependency graph for the sentence in Figure 3.2, as illustrated in Figure 3.7.

The main observation to be made is that ccomp nicely captures the clause-level depen-

dency between the verbs of the sentence.

31

Figure 3.8 Extraction Rule Application for a Relationship with Internal
Clauses

3. Further, we want to capture the information that the main subject (Microsoft ad) has

a relation (says) with the composite object, which is an inner clause and thus, has its

own subject (Macs), relation (coolness), and object (customers). In case of the main

subject, we extract the modifiers as well as the main subject. This is easily achieved by

looking for the noun compound modifier dependency (nn) or quantitative phrase modifier

(quantmod) in our extraction rule.

4. Thus, we would like to extract the following constructs for this case:

pred1 = {Node with two outgoing edges with labels “nsubj” and “ccomp”}

sub1 = {Node1=Node that is connected to the pred1 node by an edge with label “nsubj”,

Node connected to Node1 by an edge with label “nn” or “quantmod”}

32

In a similar manner, we would extract the constructs when parataxis dependency appears

in the graph instead of ccomp. We do not illustrate this with an example since it generates

very similar dependency graph to the one shown in Figure 3.7, other than the fact that

ccomp is replaced by parataxis.

We leave out the constructs within the inner clause for now since it only comprises a

simple relationship, which can be easily extracted using the rules for simple relationships

described later in this section.

Expressing this formally using first-order logic notation, the general rule-set for this case

is described as follows.

Extraction Rule 1: (Extraction Rule for Relationships with Internal Clauses) Given a

dependency graph G(V,E) with a label function l, for an English-language sentence T ,

the information extraction rule-set to identify and extract the complex relationship with

internal clauses as described in case 1, is given as,

• rRIC1 : {∃u, v, w ∈ V,∃e1(u, v), e2(v, w) ∈ E | l(e1) = “nsubj′′ ∩ (l(e2) = “ccomp′′ ∪

l(e2) = “parataxis′′)} −→ {pred1 = {v}, sub1 = {u}}

• rRIC2 : {∃u, v, w, t ∈ V,∃e1(u, v), e2(v, w), e3(u, t) ∈ E | l(e1) = “nsubj′′ ∩ (l(e2) =

“ccomp′′ ∪ l(e2) = “parataxis′′) ∩ l(e3) ∈ {“nn′′, “quantmod′′}} −→ {sub1 =

sub1 ∪ {t}}

Result of application of this rule to the sentence in Figure 3.2 is shown in Figure 3.8

3.3.3.2 Rule Formulation for Case 2

1. For this case, we base our rule on two modifier dependencies - Prepositional modifier

(prep) and Adjectival modifier (amod) (For a definition of these dependencies, refer

Chapter 2, Section 2.1.2). Prepositional and Adjectival modifiers capture the modifying

qualifier and value of qualification respectively.

33

Figure 3.9 Dependency Graph for the Sentence in Figure 3.4

2. For understanding the conditions based on which we would extract the information con-

structs, we again observe the dependency graph for the sentence in Figure 3.4, as il-

lustrated in Figure 3.9. The main observation to be made is that prep identifies a

qualification associated with the main clause and amod identifies the value (in this case,

the degree).

Recall that we need to take care of subtle differences in dependency graphs with respect

to verb variations. This variation is basically around the placement of edge labeled prep,

viz. it may be connected to either of the three head-nodes in the main-clause (subject,

predicate or the object). To account for this, we simply ignore the placement of prep.

We observe that as long as we have identified a prep–amod pattern in the graph, we can

get all the qualifying information that we need to be able to perform extraction of the

qualified relationship.

3. Now, for reasons that will be clear when we get to the validation and enhancement

steps, we intend to capture the following information - “There is a qualified relationship

with the subject Sachin Tendulkar, relationship may score, object double century, and

probability high”. Similar to the previous case, we extract the modifiers as well as the

34

main subject/object by looking for any modifier dependency (nn, quantmod, etc) in our

extraction rule.

4. In all, we would like to extract the following constructs for this case:

pred1 = {Node with two outgoing edges with labels “nsubj” and “dobj”}

sub1 = {Node1=Node that is connected to the pred1 node by an edge with label “nsubj”,

Node connected to Node1 by an edge with label “nn” or “quantmod”}

obj1 = {Node1=Node that is connected to the pred1 node by an edge with label “dobj”,

Node connected to Node1 by an edge with label “nn” or “quantmod”}

qual1 = {Node with two edges with labels “prep” and “amod”}

val1 = {Node that is connected to qual1 by an edge with label “amod”}

Figure 3.10 Extraction Rule Application for a Relationship with Qualify-
ing Modifiers

Extraction Rule 2: (Extraction Rule for Relationships with Qualifying Modifiers) Given

a dependency graph G(V,E) with a label function l, for an English-language sentence T ,

the extraction rule-set to identify and extract the complex relationship with qualifying

modifiers as described in case 2, is given as,

35

• rRIC1 : {∃u, v, w, x, y ∈ V,∃e1(u, v), e2(v, w), e3(w, x), e4(x, y) ∈ E | l(e1) = “nsubj′′

∩ l(e2) = “dobj′′ ∩ l(e3) = “prep′′ ∩ l(e4) = “amod′′} −→ {pred1 = {v}, sub1 =

{u}, obj1 = {w}, qual1 = {x}, val1 = {y}}

• rRIC2 : {∃u, v, w, x, y, t ∈ V,∃e1(u, v), e2(v, w), e3(w, x), e4(x, y), e5(u, t) ∈ E | l(e1) =

“nsubj′′ ∩ l(e2) = “dobj′′ ∩ l(e3) = “prep′′ ∩ l(e4) = “amod′′

∩ l(e5) ∈ {“nn′′, “quantmod′′}} −→ {sub1 = sub1 ∪ {t}}

• rRIC3 : {∃u, v, w, x, y, t ∈ V,∃e1(u, v), e2(v, w), e3(w, x), e4(x, y), e5(w, t) ∈ E | l(e1) =

“nsubj′′ ∩ l(e2) = “dobj′′ ∩ l(e3) = “prep′′ ∩ l(e4) = “amod′′

∩ l(e5) ∈ {“nn′′, “quantmod′′}} −→ {obj1 = obj1 ∪ {t}}

Result of application of this rule to the sentence in Figure 3.4 is shown in Figure 3.10

3.3.3.3 Rule Formulation for Case 3

In the case of relations with conjunctions, we do not formulate extraction rules based on

dependency graphs. This is since conjunctions are words that connect parts of a sentence and

thus, do not necessarily have an implicit or explicit dependency on any but their immediate

successor and predecessor in the sentence. In such a scenario, use of a dependency graph can

be avoided.

Instead, we take care of this as an auxiliary case in our extraction algorithm itself by

analyzing the structure of the parse tree representation. We basically look at the parse of the

part of the sentence to the right of the conjunction, and apply the the rules described below.

Note that these are not similar to the extraction rules that we have been using since in this

case, we are referring to the already extracted constructs from the left clause and utilizing

them directly for extraction information from the right part. In this process, if we figure that

the right part does not have any references from the left, we simply utilize our pre-existing

36

rule-framework for extracting information from it as if it was a distinct sentence, and thus, we

do not require any extraction rules for this case at all.

The rules we follow for analyzing conjunctions are as follows:

• If the parse tree for the right part contains a simple declarative clause (S), treat it as a

distinct sentence and utilize the pre-existing rule-framework for extracting information.

• If the parse tree contains a verb phrase (VP) and noun phrase (NP), append the extracted

subject of the left part to the right part and treat it as a distinct sentence and utilize

the pre-existing rule-framework for extracting information.

• If the parse tree contains only a noun phrase (NP), append the extracted subject and

the predicate of the left part to the right part and treat it as a distinct sentence and

utilize the pre-existing rule-framework for extracting information.

3.3.4 Formulating Rules for Simple Relationships

In case of simple relationships, we extract the following constructs:

pred1 = {Node with two outgoing edges with labels “nsubj” and “dobj”}

sub1 = {Node1=Node that is connected to the pred1 node by an edge with label “nsubj”,

Node connected to Node1 by an edge with label “nn” or “*mod”}

obj1 = {Node1=Node that is connected to the pred1 node by an edge with label “dobj”, Node

connected to Node1 by an edge with label “nn” or “*mod”}

Here, “*mod” is a shorthand notation, used only for this case, to denote any modifier type

dependency.

Expressing these rules formally using first-order logic notation, the general rule-set for this

case is described as follows.

Extraction Rule 3: (Extraction Rule for Simple Relationships) Given a dependency graph

G(V,E) with a label function l, for an English-language sentence T , the extraction rule-set to

identify and extract the simple relationship as described in section 3.3.2.1, is given as,

37

Algorithm 1 Extracting Candidate Information Constructs

1: procedure ExtractConstructs(p, G,R, l)
2: rawConstructs = CALL ExecuteRules(G, R)
3: if flagclausal is true then
4: Break p about pred1 into pl with node-set V1 and pr with V2

5: GS(V2, E2) = Subgraph of G induced by V2

6: innerConstructs = CALL ExtractConstructs(pr, GS , R, l)
7: for all ele in innerConstructs do
8: Form an outerConstruct using (sub1, pred1, element)
9: Add outerConstruct to the List of outerConstructs

10: end for
11: Cache first element from outerConstructs

12: return outerConstructs

13: else if flagconj is true then
14: Break p about conjand into pf with node-set V1 and ps with V2

15: GS1(V1, E2) = Subgraph of G induced by V1

16: GS2(V2, E2) = Subgraph of G induced by V2

17: outerConstructs1 = CALL ExtractConstructs(pf , GS1, R, l)
18: Cache first element from outerConstructs1

19: if ps contains ‘S’ then
20: outerConstructs2 = CALL ExtractConstructs(ps, GS2, R, l)
21: else if ps contains ‘VP’ and ‘NP’ then
22: Append sub from the Cache to ps

23: outerConstruct2 = CALL ExtractConstructs(ps, GS2, R, l)
24: else if ps contains ‘NP’ then
25: Append sub and pred from the Cache to ps

26: outerConstruct2 = CALL ExtractConstructs(ps, GS2, R, l)
27: end if
28: Add outerConstructs1, outerConstructs2 and outerConstruct2 to outerConstructs

29: return outerConstructs

30: else if flagenrich is true then
31: outerConstructs = CALL PerformEnrichments(rawConstructs, ‘qualify’, l)
32: return outerConstructs

33: else
34: Create a construct Using (sub1, pred1, obj1) and Cache to resolve any pronouns
35: Add the construct to outerConstructs

36: return outerConstructs

37: end if

38

• rRIC1 : {∃u, v, w ∈ V,∃e1(u, v), e2(v, w) ∈ E | l(e1) = “nsubj′′ ∩ l(e2) = “dobj′′} −→

{pred1 = {v}, sub1 = {u}, obj1 = {w}}

• rRIC2 : {∃u, v, w, t ∈ V,∃e1(u, v), e2(v, w), e3(u, t) ∈ E | l(e1) = “nsubj′′ ∩ l(e2) =

“dobj′′ ∩ l(e3) ∈ {“nn′′, “ ∗mod′′}} −→ {sub1 = sub1 ∪ {t}}

• rRIC3 : {∃u, v, w, t ∈ V,∃e1(u, v), e2(v, w), e3(w, t) ∈ E | l(e1) = “nsubj′′ ∩ l(e2) =

“dobj′′ ∩ l(e3) ∈ {“nn′′, “ ∗mod′′}} −→ {obj1 = obj1 ∪ {t}}

An example of the application of only rRIC1 is shown in Figure 3.1.

For sake of simplicity in validation and representation framework, we do not extract and rep-

resent relationships with negation modifiers in this work. We simply perform a negation check

by looking for the presence of neg dependency, and if found, we skip the sentence from further

processing.

The rule framework described in this section is used by algorithm 1 when it calls Exe-

cuteRules. Next, we discuss our validation framework.

3.4 Semantic Validation Framework

For this section, we split our discussion into two subsections. In the first one, we de-

tail the steps taken to perform validation of the extracted information constructs using the

domain ontology model. In the next section, we describe the special case where we handle

enrichments for information constructs that were extracted from sentences comprising certain

special relationship cases (such as, qualified).

39

3.4.1 Performing Validation against the Domain Ontology Model

Our basic approach (for advanced approach, refer 3.4.3) for validating candidate informa-

tion constructs (subject, predicate, object) against a domain description captured in an ontology

model, and a set of instances is as follows:

1. Find an instance match for the subject and the object. For determining these matches, we

perform simple syntactic comparisons sequentially on the entire set of subject (similarly

object) candidates starting with the extracted head sub1 or obj1.

2. If a match for subject and object is found, find a matching property for the predicate

in the domain ontology model. For this, we perform syntactic comparisons on domain

ontology relationships and the predicate.

3. If we are able to find these matches, we check if the class concepts to which the instances

for subject and predicate are asserted lie respectively in domain and range of the property

matched.

If all these conditions hold, we add the construct (instance for subject, property, instance

for object) to the set of validated constructs. The above conditions are captured formally in

the validation criteria specified below.

Validation Rule: For a text fragment Z consisting of sentences {Ti} with word-sets {Wi}, a

set TCTR of candidate constructs extracted by an extraction algorithm, a domain description

captured in an ontology O(R,C), a set of instances Y , a function h : Y −→ P(C), and a

mapping F from the set W to R ∪ Y that is able to type the words in the sentence to an

instance in Y or a relationship in R (whenever such a mapping is intuitive based on the domain

of discourse), the validation process must result in a set {K = {si, pi, oi}} of 3-tuples si, pi, oi

(validated constructs) s.t. the following holds:

{∃y1i, y2i ∈ Y, ∃ri ∈ R| (y1i, ri, y2i) ∈ K ⇐⇒ (∃w1i, w2i, w3i ∈ Wi, c1i, c2i ∈ C |{w1i, w3i, w2i} ∈

TCTR ∩ (w1i, y1i) ∈ F ∩ (w2i, y2i) ∈ F ∩ (w3i, ri) ∈ F ∩ c1i ∈ h(y1i) ∩ c2i ∈ h(y2i) ∩ c1i ∈

40

Domain(ri) ∩ c2i ∈ Range(ri)}

3.4.2 Discussion on Basic Validation

In our experiments, we found that condition in step 3 causes rejection of a lot of triples,

even in cases where the extracted construct actually made sense as per the domain. The reason

for this is an incomplete description of the domain as captured by the ontology. While in most

cases, it is best to reject potential constructs based on this condition, there may be a need to

behave opportunistically and have some flexibility in these criteria, especially in cases when

we find a matching property, but do not find a match for the subject or the object. Similarly,

there may be cases when we find matching instances for the subject and the object, but not the

predicate. We consider these cases along with some other enrichments in the next subsection.

3.4.3 Performing Enrichments

In this section, we describe the process2 that we undertake for handling the constructs

extracted from relationships with qualifying modifiers as well as other enrichments that help

improve the performance of our extraction algorithm.

1. In the case of qualifications, we create new definitions in the ontology model to account for

the qualifying relationships. In this case, extraction algorithm 1 invokes the enrichment

module before the validation is performed on the constructs.

2. We also handle a few selective cases where one of the matches in the basic validation

approach described in 3.4.1 does not work. For these cases, the enrichment module is

invoked after the validation process determines that an enrichment is required.

Thus, overall, the enrichment process needs to ensure that it (i) invokes the validation

module to validate the constructs passed to it depending on the case it is handling (ii) enriches
2This part of the validation framework is yet to be included within our SEMANTIXS system (refer Chapter

4) at the time of writing this thesis

41

Algorithm 2 Performing Validation and Enrichments

1: procedure PerformValidation(construct, level)
2: Perform basic validation in 3.4.1 and store result in returnV alue

3: if returnV alue is not null then
4: return returnV alue

5: end if
6: if level is ‘2’ or ‘3’ then
7: Perform the enrichments in 3.4.3.2 and store result in returnV alue

8: if returnV alue is not null then
9: return returnV alue

10: end if
11: end if
12: if level is ‘3’ then
13: Special case
14: end if
15: return null

1: procedure PerformEnrichments(construct, action, level)
2: if level is ‘1’ then
3: return
4: end if
5: if action is ‘qualify’ then
6: Perform the steps given in 3.4.3.1
7: else if action is ‘generalize’ then
8: Perform the steps given in 1
9: else if action is ‘add’ then

10: Perform the Steps given in 2
11: end if

42

the ontology so that it is able to capture the qualified relationship construct, and (iii) returns

a list of validated and enriched constructs.

We discuss each of these steps below for the two cases described above.

3.4.3.1 Handling Qualifications

Recall that the rule for this relationship type extracted the following constructs {sub, pred,

obj, {quali, vali}} (refer section 4).

1. Validating the constructs being qualified

(a) We utilize the validation rule given in the basic approach 3.4.1 to validate {sub,

pred, obj}.

(b) Further, we find a match for val within the set of instances. For this, we utilize

syntactic comparisons as before.

If a match for the val is found, we proceed to the next step of enrichment. In case, no

match is found, we do not perform any enrichment.

2. Enriching the ontology

For capturing the extra qualifications, we make the following additions to the domain

ontology.

(a) As a one-time enhancement, it creates a new concept, QualifiedRelationship. We also

create three new relationships hasQualifiedSubject, hasQualifiedPredicate, hasQuali-

fiedObject, all with the domain QualifiedRelationship and range as the most general

concept in the given ontology hierarchy.

(b) Further, each time the enrichment module is asked to perform enrichment for qual-

ifications, it creates a new instance (say QualifiedRelationship 1) of type Quali-

fiedRelationship, creates a new property named qualifier with domain QualifiedRela-

tionship and range as the concept of which the instance (that we found for value)

is asserted. It creates such a property for each {qualifier, value} pair.

43

3. Returning enriched constructs

Finally, it returns the following constructs in {subject, predicate, object} notation.

(a) {QualifiedRelationship 1, hasQualifiedSubject, sub}, {QualifiedRelationship 1,

hasQualifiedpPredicate, pred}, {QualifiedRelationship 1, hasQualifiedObject, obj}.

(b) Further, for each {qualifier, value} pair, it returns the triple,

{QualifiedRelationship 1, qualifier, value}

3.4.3.2 Handling Mismatches in Validation

We try to address two cases of mismatches in the basic validation process.

1. Mismatch resolved by property generalization

This type of mismatch is caused when the validation framework finds a match for all the

three constructs, however the domain/range check in 3 fails.

(a) Enriching the ontology

We handle this case by creating a generalization of the matched property with

extended domain and range containing the concepts for matched subject and object

respectively. The naming scheme used is - matched property name Generalized.

(b) Returning enriched constructs

With the above addition, we can now capture the information constructs in our

model and thus, we return the tuple {subject, matched property name Generalized,

object}

2. Mismatch resolved by property addition

This type of mismatch is caused when the validation framework finds find a match for

the subject and object, however the predicate match in 2 fails.

(a) Enriching the ontology

44

We handle this case by creating a new property with domain and range containing

the concepts for the matched subject and object respectively. The naming scheme

used is - matched property name Created.

(b) Returning enriched constructs

With the above addition, we can now capture the information constructs in our

model and thus, we return the tuple {subject, matched property name Created,

object}

This validation framework is used by algorithm 2.

Algorithm 3 Representing Validated/Enriched Information Constructs

1: procedure RecursiveValidateAndRepresent(construct, level)
2: if obj from construct is a list then
3: validatedConstruct = CALL RecursiveValidateAndRepresent(obj, level)
4: if validatedConstruct is not null then
5: Reify validatedConstruct as a RDF Statement
6: Create RDF triple using sub, pred and the Reified Statement
7: end if
8: else
9: validatedConstruct = CALL PerformValidation(construct, level)

10: if validatedConstruct is not null then
11: Create an RDF triple using validatedConstruct

12: return triple

13: end if
14: end if

3.5 Representation Framework

In this section, we describe the process to represent the extracted and validated constructs

in Resource Description Framework.

3.5.1 Transformation of Information Constructs into Graph Formalism

For representation purposes, we seek a set of transformations from the set of extracted and

validated information constructs, {K = {si, pi, oi}} (determined as per our extraction, rRICi

and validation (refer 1) rules described in previous sections) to an RDF graph GRDF . We

45

provide a description of the actual transformation process that we employed in our framework,

followed by formalization of the notion.

3.5.2 Primitive Transformation for Representing Simple Information

Simple information is extracted from sentences comprising simple relationships, with or

without the enrichment that handles mismatches in validation. Since enrichment that handles

mismatches in validation, replaces the extracted predicate by a new one (refer section 3.4.3.2),

it does not make a difference to the representation of the information constructs.

We represent simple information using RDF triple notation. An example of this is shown

in Figure 3.11 (refer appendix A for serialization in xml format). This figure shows the RDF

representation of the information extracted from the sentence in the example discussed in

section 2.2.1, using a suitable domain ontology with instances.

We now formalize this transformation.

Primitive Transformation: For a set {K = {si, pi, oi}} of 3-tuples si, pi, oi (validated infor-

mation constructs), a primitive transformation is defined on the elements of

Ksimple = {{si, pi, oi}|{si, pi, oi} ∈ K ∩ |oi| = 1} as follows:

TransformPrimitive({si, pi, oi}) −→ GRDF , which creates a graph GRDF consisting of node-

set {si, oi} and edge-set {pi} such that the only edge connects the two nodes.

Figure 3.11 RDF representation of Simple Information

46

3.5.3 Transformations for Representing Complex Information

Structurally complex information is extracted from sentences comprising complex relation-

ships (with or without enrichments that handle mismatches in validation). In this case, we also

cover the enrichments that handle qualifications since they comprise of complex relationship.

We discuss these cases individually below.

1. Representation of information extracted from relationships with internal clauses

(refer 1)

Figure 3.12 RDF representation of Reified Internal Clauses

Recall from 3.3.3.1 that the information constructs extracted from these relationship

types are: {pred1, sub1}. Further, there is an internal clause that is dependent on pred1.

For purposes of explaining our representation, we can assume (without loss of generality)

that the internal clause does not consist of a complex relationship form other than a

qualified relationship. In other words, it consists of a simple relationship, a qualified

relationship, or some other relationship form that we did not cover in our framework.

This assumption holds because we can recursively utilize our extraction rule-framework

until we get to a clause with one of those relationship types. We use this idea in Algorithm

1.

47

Thus, we need to represent a subject associated with another fact (extracted from the

inner clause), which, in turn, may be associated with some other fact and so on. We

model this dependence using reified statements in RDF as done in Algorithm 3. We reify

the internal fact as a statement in RDF and then create a triple using the subject and

the predicate with this statement as the object.

Refer figure 3.12 for an example (refer A for serialization in xml format). This figure

shows the RDF representation of the information extracted from the sentence in Fig 3.8.

We now formalize this transformation.

Composite Transformation: For a set {K = {si, pi, oi}} of 3-tuples si, pi, oi (vali-

dated information constructs), a composite transformation is defined on the elements of

Kcomplex = {{si, pi, oi}|{si, pi, oi} ∈ K ∩ |oi| > 1} as follows:

TransformComposite({si, pi, oi}) −→ TransformPrimitive({si, pi, t})

∩TransformPrimitive({t, obj, ooi}) ∩ TransformPrimitive({t, pred, poi})

∩TransformPrimitive({t, sub, soi}) ∩ TransformPrimitive({t, stmt, id}), where t is

a special node, called blank node, sub, obj and pred are special edges, poi , soi and ooi are

internal elements of oi.

This composite transformation triggers five primitive transformations creating subgraphs

for each.

2. Representation of information extracted from relationships with qualifica-

tions (refer 2)

Recall from 3.3.3.2 that the information constructs extracted from these relationship

types are: {pred, sub, obj, qual, val}. Recall also from 3 that the enrichment module

returns the following enriched constructs:

• {QualifiedRelationship 1, hasQualifiedSubject, sub}, {QualifiedRelationship 1,

48

Figure 3.13 RDF representation of Qualified Relationships

hasQualifiedpPredicate, pred}, {QualifiedRelationship 1, hasQualifiedObject, obj}.

• Further, for each {qual, val} pair, it returns {QualifiedRelationship 1, qual, val}

Since all of these are simple information pieces, we can easily represent them using the

primitive transformations described in 3.5.2.

An example of this is shown in Figure 3.13 (refer A for serialization in xml format). This

figure shows the RDF representation of the information extracted from the sentence in

Fig 3.10.

This representation framework is used by algorithm 3.

3.5.4 Existential Claims based on our Information Extraction Framework

We now make the following claims and justify them against the analysis done so far.

• Claim 1: The resulting graphs from TransformPrimitive and TransformComposite are

valid RDF fragments.

The correctness of this claim follows from the definitions of TransformPrimitive and

TransformComposite and their one-to-one correlation with triples and reified statements

in RDF.

49

• Claim 2: There always exists a transformation from a natural language sentence con-

taining at least one of the relationship types identified by us, to a graph formalism such

that the underlying information expressed in the relationship is captured in a query-able

form in the graph.

Proof Sketch: For proving the correctness of this claim, we show the existence of such

a transformation for an arbitrary natural language sentence. Consider a sentence T with

word-set {Wi}. Assuming the sentence falls within the scope of the English language

grammar3, there exists a transformation from {Wi} to (p, G), where p is a parse tree

and G is a dependency graph. Using (p, G), we can use ExtractConstructs (refer

1) to get a set of extracted information constructs, TCTR. Using this set and applying

the validation rule (refer 1 and algorithm 2), we can get a set of extracted and validated

information constructs, K. Once we get this set, we can use TransformPrimitive and

TransformComposite to get a set of graphs and from validity of claim 1, it then follows

that those graphs are valid RDF fragments, which can be queried using query-languages

for RDF (like SPARQL [45]).

3.6 Discussion on Algorithms

In this section, we briefly describe our algorithms that make use of the frameworks described

above to extract information from domain-specific text.

The main algorithm 4 controls the overall information extraction task by invoking the ex-

traction, validation and representation procedures. It takes a document as input, tokenizes

it into individual sentences, generates the derivative structures for analysis and invokes the

entity and relationship extraction module 1. It also takes an argument level as input to give

its caller a better control of the overall information extraction process. Based on the level,

it optionally turns off the the enhancement module and behaves opportunistically in terms of

validation. We elaborate on this in the next Chapter when we discuss implementation details
3In this work, we always assume that the text is from the English language; more specifically, all that is

captured by the englishPCFG.ser provided by with the Stanford Parser package

50

Algorithm 4 Information Extraction from a Text Source

1: procedure ExtractInformation(D, level)
2: Tokenize document about sentence boundaries to get a Set, Sentences

3: for all T in Sentences do
4: (p, G) = Get Parse Tree and Dependency Graphs from T

5: outerConstructs = CALL ExtractConstructs(p, G,R, level)
6: for all construct in outerConstructs do
7: CALL RecursiveValidateAndRepresent(construct, level)
8: end for
9: end for

of SEMANTIXS.

The extraction module 1 uses our rule framework to analyze the sentence for potential in-

formation constructs. It also invokes the procedure to enrich 2 if recommended by the rule-

execution. Finally, it returns the list of candidate information constructs (outerConstructs

in 4). These constructs are then passed on to the composite validation and representation

module 3 that recursively analyzes the structure of the information construct to invoke the

validation/enrichment module and decide the representation method to use. The result of

this process is an RDF graphs (or a set of graphs depending on the size and nature of the

document) of the form illustrated in Figure 3.11, 3.12 and 3.13.

3.6.1 Pronoun Resolution in Algorithm 1

The extraction procedure ExtractConstructs is formulated in a way such that it is

able to perform simple cases of pronoun resolution (refer line 33 for the candidate information

constructs extracted by the rule framework. This extra functionality greatly improves the recall

of the overall algorithm on generic texts, which usually contain a lot of pronoun references.

This will become more clear when we present our results in Chapter 5. We will see that this

feature, together with our rule framework for complex dependencies, enable our algorithms to

resolve and extract fairly complicated cross-sentential dependency situations.

———————–

51

CHAPTER 4. SEMANTIXS: SYSTEM ARCHITECTURE AND

OVERVIEW

In this chapter, we describe the technical details of SEMANTIXS (System for Extraction

of doMAin-specific iNformation from Text Including compleX Structures)1, which has been

implemented based on the analysis and algorithms presented in the previous chapter. In the

first section, we describe the architectural overview of SEMANTIXS, followed by the design

and implementation details in the next section.

4.1 SEMANTIXS Architectural Overview

SEMANTIXS is a system for ontology-guided extraction and semantic representation of

structured information from unstructured text, implemented as a web application, that can

extract, represent and visualize domain-specific information from free-text in the form of com-

plex (and simple) relationships. It does this by applying rule-based extraction algorithms to

free-text and identifying key entities and relations, referring to certain background knowledge

that is given as input, validating the extracted constructs against this background knowledge in

order to achieve coherent results as per the given domain, and finally, representing the results

in the form of RDF graph(s), which can be analyzed using an in-built visualizer.

Besides incorporating our novel framework for extracting, validating and representing com-

plex relationships, there are several salient features that make SEMANTIXS unique. Some of

these are described below.

• SEMANTIXS provides multiple operating modes out-of-the-box, based on the desired
1An open-source, ready-to-deploy implementation of the system as a web application as well as the corre-

sponding source code is available at http://sourceforge.net/projects/semantixs/

52

Figure 4.1 SEMANTIXS Architectural Diagram

complexity of analysis and exhaustiveness of domain description.

Since our original intent has been to create a ontology-guided information extraction

system, in the default setting, SEMANTIXS expects a file in .rdf or .owl format as input,

which is assumed to define the domain of discourse completely. In most cases, this would

mean that the file is expected to contain the domain ontology (class concepts + rela-

tionships) as well as instance assertions that one expects in text. With this assumption,

SEMANTIXS works within the given domain description and it does not try to extract

any information that is not relevant to the description as defined in the uploaded file.

This assumption works fairly well in case of expert users with a detailed knowledge of

their domains or for well-defined domains that have a fairly exhaustive ontology (such as

53

UMLS [38]) and glossary of pre-defined terms or instances (such as MESH [39]). In this

default setting SEMANTIXS works as per algorithm 4 without utilizing the module for

enrichments, defined in 2.

However, it would be often unreasonable to assume such exhaustive domain descriptions

in case of a naive user, given the inherent difficulty in modeling a domain correctly. Thus,

we decided to slightly abuse our concrete definition of information extraction from text

(refer 2.4) and provide some extra flexibility as follows.

For the partially-specified domain description option, SEMANTIXS works as per algo-

rithm 4 utilizing the module for performing enrichments as defined in 2. For the option

when there is no domain description assumption, SEMANTIXS works as per algorithm 4,

again utilizing the module for performing enrichments 2. However, this time, it behaves

opportunistically by creating new relations and concepts from unknown constructs.

• SEMANTIXS expresses the extracted information constructs in the form of a set of

graphs.

Since the output of SEMANTIXS always conforms to the W3C guidelines for RDF, it

automatically becomes a graph specification that can be consumed by any algorithm that

expects a set of graphs as an input. This makes SEMANTIXS an invaluable platform

for numerous research query-based investigations on semantic graphs such as knowledge

discovery, question answering, opinion mining, etc. We elaborate on some of these in

chapter 6.

• SEMANTIXS provides extensive functionality to visualize and analyze the extracted

RDF graphs.

SEMANTIXS provides a reference to visualize the extracted semantic graph(s) using

W3C’s open visualization service. In addition, SEMANTIXS also provides an extensive

analysis tool that can be used to visualize parts of the graph(s). This allows a user to

analyze subgraphs associated with certain key entity or relationship, while ignoring the

54

rest. Such a feature becomes invaluable when the resulting semantic graph is very large

in size.

Figure 4.1 shows the architectural diagram of SEMANTIXS, which can be divided into

three key components: (i) service request/response framework to handle service requests from

the client and return the appropriate response (handled by the SEMANTIXS Main Con-

troller), (ii) the core text processing and information extraction framework (handled by the

SEMANTIXS Service Controller) (iii) the visualization and analysis framework including part

of the UI (handled by the SEMANTIXS Visualization Controller). We describe the design and

implementation-level details of these frameworks in the next section. In the remaining part

of this section, we go through the high-level architecture and explain the interaction between

components.

4.1.1 SEMANTIXS Component Interaction

An end user interacts with SEMANTIXS client by uploading an ontology, setting the

desired Analysis Complexity Level and using a text fragment for processing. In all, within

SEMANTIXS environment, the user can (i) upload the ontology file to the server, (ii) view

the response in terms of the extracted information, (iii) visualize the response in the form of

RDF graphs, and (iv) Analyze the response in the form of RDF subgraphs. We discuss each

of these component interactions separately below.

• Upload interaction:

1. When the user tries to upload the ontology file, the SEMANTIXS client immediately

sends an HTTP request to the SEMANTIXS server. This request is intercepted by

the servlet container, which redirects it to the appropriate controller (in this case,

upload service). The controller performs the file upload and sends a response back

to the server depending on whether the operation was a success or failure.

2. This ontology stays on the server until the user exits the workspace. Upon exit, the

SEMANTIXS client sends another request to the server to delete the file, which is

55

again handled in the same way as the previous request.

• Viewing the response in terms of the extracted information:

1. When the user sends a text fragment for processing SEMANTIXS client application

invokes the validation module to certify that the text is good enough for further

processing. This comprises basic validation on the size of text as well as the character

encoding. Once done, the client sends a request to the server with the text and the

Analysis Complexity Level.

2. This request is again intercepted by the servlet container within which the SEMAN-

TIXS application resides and the control is delegated to the SEMANTIXS service

controller.

3. The service controller delegates the request to the generator, which is the module

implementing algorithm 4. It invokes the input processor to process the input text,

calls Stanford parsing libraries to generate parse trees and dependency graphs, and

passes those structures to the rule-engine.

4. The rule-engine has two separate modules that handle the dependency graph and

parse tree respectively. The rule engine implements algorithm 1 to extract the infor-

mation constructs for a particular sentence and passes these back to the generator.

5. Next, the generator invokes the rdf processor which handles the validation and

representation part as per the algorithms in 2. The processor interacts with the

Jena libraries and generates a new RDF model based on the extracted information

constructs.

6. Finally, the generator serialized the RDF model in XML format and persists it on

the file system. It also returns the serialization back to the user through an HTTP

response.

• Visualizing the response in the form of RDF graphs:

56

1. When the user selects this option from the UI menu, the SEMANTIXS client sends

a request to an open service from W3C. This service allows anyone to visualize a

well-formed RDF document as a graph. Since the RDF generated by SEMANTIXS

conforms to the W3C specifications, a user can directly utilize the service to visualize

the complete RDF graph(s). The client opens up a new window with the service

and instructs the user to paste the generated semantic metadata into appropriate

textbox within the service page. Following this the user can select the option to

visualize the graphs.

• Analyzing the response in the form of RDF sub-graphs:

1. When the user selects this option from the UI menu, the SEMANTIXS client sends

another request to the server. This time it request the visualization service and

thus, the servlet container delegates the request to the visualization controller. This

controller creates a visualization of RDF graph that is persisted on the filesystem

in the previous step 4.1.1.

2. With different interactions from the user on the UI, the visualization controller

responds with the appropriate response that user sees back on the UI.

4.2 Design and Implementation Details

SEMANTIXS is developed as a Java-based web application deployed in a Apache Tomcat2

server. This ensures ease of portability in different environments. It incorporates a number of

open-source toolkits and services to provide a distinctive experience to the user. Its seman-

tic processing capability comes from Jena Semantic Web Toolkit[27], parsing capability from

Stanford Parser[26], visualization capability from a SVG visualizer from HP Labs and it uti-

lizes Google Web Toolkit(GWT)3 to provide an impressive look-and-feel to the user-interface.
2http://tomcat.apache.org/
3http://code.google.com/webtoolkit/

57

Figure 4.2 UML Representation of Service Request Delegation Framework

In this section, we delve deeper into the implementation of SEMANTIXS and describe various

aspects of the design and implementation approaches employed during its development.

4.2.1 Service Request/Response Framework

The Request-response framework comprises of the following key classes:

• SemtusServiceImpl that implements the SemtusService interface. This is the class that

handles the service requests from the client. It has dependencies on a few GWT frame-

work libraries since the client UI was developed using GWT.

• Main, ServiceController and Generator, which handle the chain-of-responsibility in the

delegation process emerging from SemtusServiceImpl.

58

Figure 4.3 UML Representation of Text Processing and Information Ex-
traction Framework

• UploadServiceController and HttpVisualizeHandler, which are the servlets handling the

upload and visualization capabilities respectively.

The interaction between these classes is captured in the UML class diagram in Figure 4.2.

4.2.2 Core Text Processing and Information Extraction Framework

This framework is responsible for the bulk of the work in SEMANTIXS. It comprises of

the following classes:

• RuleEngine that generalizes the specialized functionalities provided by the ParseTree

RuleEngine and DependencyGraphRuleEngine classes, and conforms to the contract spec-

ified by the IRuleEngine interface.

59

Figure 4.4 Text Processing View

• RDFProcessor that utilizes the Jena Libraries to validate and represent the extracted

information constructs.

• Triple that is a class representing an extracted information construct with a subject,

predicate, object.

• Generator that has a composition relation with RuleEngine, RDFProcessor and Triple,

and brings together the functionality offered by all these classes to implement the algo-

rithm 4.

The interaction between these classes is captured in the UML class diagram in Figure 4.3.

4.2.3 User Interface, Visualization and Analysis Framework

The UI is created using the rich GWT libraries. GWT allowed us to write all our code in

Java, while it took care of conversion of that code to UI widgets, Javascript, HTML, etc. The

60

Figure 4.5 Semantic Graph View

UI comprises of the following main parts:

• Workspace: A snapshot of SEMANTIXS workspace while processing the text is shown

in Figure 4.4. It consists of a tabbed-view pane containing text-areas for text input and

displaying the response. The usage is quite intuitive.

• Menu Options: SEMANTIXS UI provides options for the selection of Analysis Com-

plexity Levels, based on which it requests the information extraction operation. There

are three different complexity levels based on whether the user has (i) an exhaustive

ontology description and does not want to sacrifice correctness at any cost (level 1), (ii)

partially-specified ontology and wants to have enrichments, whenever possible (level 2),

and (iii) does not have a good ontology specification and thus, would be fine with all the

information that SEMANTIXS can extract (level 3).

The visualization and analysis module is responsible for all of the visualization ability

provided by SEMANTIXS. It mainly provided the following two features:

• Visualizing the extracted RDF Graphs: As mentioned previously, the visualization

service invokes an openly-available servlet from W3C, which can directly consume the

61

output from SEMANTIXS. This results in descriptive (and possibly very large) graphs

as illustrated in Figure 4.5.

• Analyzing the extracted RDF Sub-graphs: For analyzing parts of the graph, in-

stead of the entire graph (which can turn out to be very large), SEMANTIXS provides

another visualization service that focuses only on subgraphs formed out of the entire

graph by focusing on certain entities or relationships.

62

CHAPTER 5. EMPIRICAL EVALUATION AND ANALYSIS USING

SEMANTIXS

In previous chapters, we presented our frameworks for information extraction from text

and associated system implementation. We also elaborated on how our algorithms are based

on extraction rules to identify and extract candidate information constructs from a sentence.

The performance of our algorithms critically depends on the ability of those rules to extract

the information as a fraction of the total information present in the text input. In this chapter,

we discuss some of our experiments and present the results in a coherent manner that clearly

highlight the effectiveness of our approach towards complex relationship extraction.

5.1 Evaluation Scenario

We planned our evaluation in such a way that the relevance of our complex relationship

subset, extraction rules as well as representation framework is demonstrated in a clear way. We

randomly selected a few text fragments from web articles, each with high levels of complexity

with respect to the sentential forms. The reason for selecting random online articles (and

not a pre-annotated, well-defined text corpora) was that we wanted to test the relationship

extraction capability of our system on free text and did not want to have any anticipation of

what to expect in the input. We processed these articles with SEMANTIXS operating in level

3 (4.1) so that it would extract as much information as it can and perform enrichments. We

chose the widely used DBpedia knowledge-base for domain specification. We elaborate more

on our experimental setup in the next section.

63

5.2 Experimental Setup: Text, Ontology and Instances

5.2.1 Text

In order to test our system on some of the most complex sentences that can naturally

occur in text, we decided to run it on text extracted from online news articles. Further, we

also wanted to demonstrate the feasibility of our framework to perform complex queries in

order to answer certain questions about the information expressed within unstructured text.

We queried1 CBS News.com with the keyword “Dow Jones”. At the time of our experiment,

this query resulted in about 5228 articles, videos and other related material. We randomly

selected a few text articles from the results of the query, totaling over 80 long and complex

sentences, and used them for our experiments. The idea was to extract information focused

around a few entities (“Dow Jones” would always feature with some other key entities) and

then query the resulting RDF graph to discover interesting facts about them.

Table 5.1 Overview of Experimental Texts: Counts of Positive and Nega-
tive Instances

Text # Simple Type 1 Type 2 Type 3 References
1 7/6 7/1 1/2 2/1 4/2
2 13/0 6/0 3/0 3/0 2/2
3 23/5 12/2 2/0 2/1 6/2
4 18/14 5/0 1/0 2/0 1/2

Total 61/25 30/3 7/2 9/2 13/8

Before running our experiments, we manually analyzed the text to ensure that it indeed

comprised of a significant number of complex sentential forms. We found that the experimen-

tal texts were not rich enough in relationship types 2 and 3, and thus, we augmented some

of the texts with those relationships. Table 5.1 shows an overview of the counts of relation-

ships manually discovered in the texts after augmentation. The counts indicate the number

of positive/negative instances of relationships found in text. Positive instances comprise re-

lationships that we expect to be identified and extracted as per the domain description, and

negative instances comprise those which we do not.
1http://www.cbsnews.com/1770-5 162-0-4.html?query=Dow+Jones&searchtype=cbsSearch&tag=mncol;pageb

64

5.2.2 Ontology and Instance Data

For capturing a good-enough domain-specification, we chose DBpedia since it has one of the

most comprehensive set of ontology and types available online. We utilized the latest DBpedia

ontology2 and a subset of instances3 to perform our experiments. We also used a custom-made

FOAF dataset for capturing some extraneous names that were expected to occur in the texts,

but were not captured in the DBpedia type definitions. This can be thought of as a logical

extension to the DBpedia types without references in the DBPedia ontology.

Further, since we operate SEMANTIXS in level 3, we get quite a few GenericRelations that

SEMANTIXS extracts and adds on its own irrespective of whether there is a corresponding

definition in the DBpedia ontology or not. Our intention in doing this is to be able to extract

a decent-sized RDF graph, so that we can demonstrate complex querying on it. Since the

complexity lies in the structure of the captured information and not the content, we chose to

go ahead with this approach.

Table 5.2 Correctly Classified Information: Counts of Positive and Nega-
tive Instances

Text # Simple Type 1 Type 2 Type 3 References
1 7/3 5/1 0/2 2/1 3/0
2 13/0 5/0 2/0 3/0 2/0
3 22/3 10/1 1/0 2/1 5/1
4 16/10 4/0 1/0 2/0 1/1

Total 58/16 24/2 4/2 9/2 11/2

5.3 Results and Interpretation

The results from our information extraction are presented in Table 5.2. This table reveals

the counts for correctly classified information (extracted, validated and represented correctly, or

rejected at some stage as appropriate). For a listing of the texts utilized for these experiments,

refer appendix A.
2http://wiki.dbpedia.org/Downloads34#dbpediaontology
3http://wiki.dbpedia.org/Downloads34#ontologytypes

65

p n
p’ 58 9
n’ 3 16

Table 5.3 C.M. for Simple

p n
p’ 24 1
n’ 6 2

Table 5.4 C.M. for Type 1

p n
p’ 4 0
n’ 3 2

Table 5.5 C.M. for Type 2

p n
p’ 11 6
n’ 2 2

Table 5.6 C.M. for References

As pointed out in Chapter 3, the sentences comprising complex relationship often contain

one or more simple relationships. Thus, in coming up with Table 5.2, we used the following

methodology on a per-sentence basis:

• If the information extracted comprised a complex relationship of type 1 or 2, then the cor-

rectness would be judged based on whether (i) the correct structural representation was

extracted for complex relationship (ii) the correct semantic representation was extracted

for the simple relationship within.

• If the information extracted was correct and complete (in the sense of extracting all the

relationships present in the sentence), it would contribute to all the corresponding counts

for the extracted relationships.

• If the information extracted was partially-correct and not complete (in the sense of ex-

tracting all the relationships present in the sentence), it would still contribute to the

corresponding counts for the correct relationship(s) that have been extracted by SE-

MANTIXS.

For consistency, we used analogous methodology while creating the reference Table 5.1.

p n
p’ 9 0
n’ 0 2

Table 5.7 C.M. for Type 3

66

Table 5.8 Results: Precision, Recall and F-measure

Text # Simple Type 1 Type 2 Type 3 References
Precision 0.86 0.96 1.0 1.0 0.65

Recall 0.95 0.80 0.57 1.0 0.85
F-measure 0.90 0.87 0.73 1.0 0.74

5.3.1 Interpretation

Confusion matrices for individual relationship types are reported in Tables 5.3, 5.4, 5.7 and

5.6, and the precision, recall and f-measures are reported in Table 5.8.

From the results, we observe that the algorithm achieves 86% precision in extraction of

simple relationships. Its high recall is explained by the fact that we operated in the advanced

(level 3) mode for our experiments (created new relationships). Further, it had 80% recall in

identifying and extracting complex relationships of type 1. In case of complex relationships,

precision value does not provide much insight into the performance since we base our correct-

ness measure on the structure extracted. In case of type 2, the recall degraded due to extra

complexity leading to false positives (refer next section). In case of type 3, the correctness is

based entirely on whether the steps in rule 3.3.3.3 are carried out correctly, and not on the

analysis of right and left fragments. Thus, as expected, the precision and recall are 100% for

this type.

We now give an analysis of the errors and probable causes.

5.3.2 Discussion on Errors

In case of simple relationships, most false positives and false negatives were caused due

to shallow syntactic comparisons to determine matches between the candidate information

constructs and ontology concept, relationships or instances. For instance, not interpreting

General Motors as a related words and thus, failing to match with the instance definition for

it. In case of relationship type 1, most false negatives were caused due to multi-level dependency

structures and cross-sentential references. For example, But she acknowledged that with that

gain came pain, on the backs of taxpayers. Although our extraction routine is designed to

67

handle recursive structures, it found hard to correlate implicit referrants (that gain) with their

correct references. This resulted in a performance hit in terms of the recall. The algorithm

was, however, able to handle these cases when they occurred alone, correctly resolving about

65% of pronoun references with 85% recall. Further, in case of type 1, algorithm encountered

problems similar to the case when it was handling simple relationships. This happened when it

tried to find matches for the outer subject and predicate. This resulted in some false positives

leading to less than 100% precision that we had originally expected for complex relationships.

In case of type 2, most false negatives occurred again due shallow syntactic comparisons

to determine a match for the extracted qualification and value. Further, there were a few

outliers that contained relevant information, which should have been extracted, however, the

generated dependency graphs did not have the pattern that the algorithm was expecting. In

case of references, the algorithm achieves high recall, but low precision since we use rather

naive pronoun resolution methodology. Due to this, it resolves pronouns aggressively, leading

to many false positives and resulting in a decrease in the precision.

Apart, many of the failing cases were co-references (example - Jill Schlesinger and Mrs.

Schlesinger) and our algorithm is not designed to handle them. About 1% of the sentences

contained negations, conjunctions other than and, or dependency structures that we had not

originally identified while defining our rules.

5.4 Querying the Graph

We now turn our attention to the extracted RDF metadata, which forms a semantic graph

and demonstrate how our information extraction framework can enable complex querying in

order to answer certain questions about the information expressed within unstructured text.

In Figure 5.1, we have only shown that fragment of the generated graph(s), which is related to

the entity Dow Jones in some way. Refer appendix A for some more examples of the extracted

information (in RDF).

68

Figure 5.1 RDF Sub-graph for the Entity “Dow Jones”

5.4.1 Formulating Complex Questions

We now give an outline of a generic question-asking paradigm and a query-plan for the

graphs extracted by our framework. For illustrative purposes, we also give concrete examples

of these questions that are fairly interesting from the perspective of our extracted information.

1. Finding the subjects of assertions that were made about an entity: Who made

any assertions about Dow Jones ?

2. Finding entities based on complex criteria: What are the entities that Dow Jones

made qualified statements about ?

3. Finding entities based on relationship participation: Which entity appears in

most facts ?

4. Finding entities based on participation in reified statements: Which entity is

most talked about ?

69

5.4.2 Formulating a Query-plan

We now give an outline of the approach that can be taken to answer these questions by

forming SPARQL queries. These queries can be fired on a single Jena model, loaded with all

the generated RDF graphs.

Table 5.9 Answers to Complex Questions

Question # Answer #
1 Bancrofts, Schlesinger
2 General Motors, Citi
3 (Murdoch’s) News Corp
4 Dow Jones

1. For answering 1, we look for reified statements with the entity (Dow Jones) as the subject

and find all the triples that have this statement as its object. The subjects of such triples

give us an answer to the question. We can also find what was actually asserted by simply

returning the statement (object) of the triples that we found.

2. For answering 2, we look for triples with Dow Jones as the subject and from those,

we find all such triples that have a reified statement as their object. From these state-

ments, we find all those that have a QualifiedRelationship instance as their subject and

hasQualifiedSubject as predicate. Then, we return the object of these statements as our

answer.

3. For answering 3, we simply return the resource that appears most number of times as

the object of simple triples (not statements).

4. For answering 4, we group all the reified statements by their subjects. Then, we find the

group whose statements appear as the object in triples most number of times. We return

the common subject of the statements of that group as our answer.

Some of the answers to the questions in 5.4.1 from querying on the graphs generated from

our experiments are enlisted in Table 5.9.

70

It is clear from the above analysis that our information extraction framework can be quite

useful in extracting complex information that can eventually be used to ask fairly complex

questions that relate entities to statements and facts. This can have numerous applications

from question answering to domain-specific expert systems. We discuss some of these in the

next chapter.

71

CHAPTER 6. CONCLUSION

6.1 Summary

Many applications call for methods for automatic extraction of structured information

from unstructured natural language text. Due to the inherent challenges of natural language

processing, most of the existing methods for information extraction from text tend to be do-

main specific. In this thesis, we explore a modular ontology-based approach to information

extraction that decouples domain-specific knowledge from the rules used for information ex-

traction. Specifically, we describe an ontology-driven extraction of a subset of nested complex

relationships (e.g., Joe reports that Jim is a reliable employee) from free text. The extracted

relationships are represented in the form of RDF (resource description framework) graphs

which can be stored in RDF knowledge bases and queried using query languages for RDF. We

have also designed and performed analytical experiments that offer some evidence of the util-

ity of the proposed ontology-based approach to extraction of complex relationships from text.

For being able to do this, we have implemented our algorithms and rule-engine in the form

of SEMANTIXS (System for Extraction of doMAin-specific iNformation from Text Including

compleX Structures).

6.2 Contributions

The main contributions of this thesis include:

1. We have identified a subset of nested complex relationship patterns and formulated ex-

traction rules to identify them.

2. Next, we have formulated the following set of algorithms:

72

(a) An algorithm that utilizes the sets of extraction rules to extract the relationships

and entities (information constructs) from unstructured text.

(b) An algorithm that validates and semantically associates the extracted constructs

with the given domain ontology, and perform ontology enrichment with newly found

relationships, whenever possible.

(c) An algorithm to represent these constructs using existing (non-extended) RDF spec-

ification.

(d) An algorithm that utilizes the above three to perform the task of information ex-

traction from textual sources.

3. Based on the above analysis and algorithms, we have implemented SEMANTIXS, a sys-

tem for ontology-guided extraction and semantic representation of structured information

from unstructured text. The system is available as an open-source software under GNU

General Public License at SEMANTIXS home. We have also designed and performed

certain analytical experiments and reported the results in order to clearly demonstrate

the significance of our overall framework.

6.3 Further Work

Besides being a significant extension of the current state of the art for complex relationship

extraction, the work presented in this thesis provides an extensible meta-level framework on

top of which numerous applications and research threads can be based. Some of these are

outlined below:

• Enhancements to Improve Precision and Recall: As we mentioned in section 3.4.1,

we perform simple syntactic comparisons to determine matches between extracted can-

didate information constructs and ontology elements (concepts, relationships, instances,

etc). This approach is limited in many ways and can be improved upon by considering

synonyms, or referring external resources (like [8]), performing indirect resolutions, etc.

The precision can be further improved by incorporating better algorithms for pronoun

73

resolution and adding a module that resolves co-references. All of these and other similar

linguistic enhancements are separate research tracks in themselves and can be used to

improve any system for information extraction from text.

• Complex Knowledge Discovery and Question Answering: In information re-

trieval, question answering refers to the general task of automatically answering a ques-

tion posed in natural language. There have been recent efforts [25] that utilize conceptual

graph formalism to address this task. As briefly illustrated in 5.4.1, our framework can

be utilized to capture relationships between entities and facts (with qualifications) in an

RDF graph. Once such a linked information structure has been extracted for a specific

domain, it can then be queried upon using SPARQL. Alternatively, knowledge discov-

ery algorithms can be applied to it, in order to extract paths between entities as newly

discover knowledge. A few examples of such efforts are [3] and [4].

• Opinion Mining and Recommendation Systems: Since our framework is able to

extract relationships between entities and facts, it can be easily extended to build infor-

mation graphs comprising entirely of opinions or recommendations (said, feels, claims,

recommends, etc). Once such an RDF graph has been extracted, methodologies similar

to those mentioned under the second point (above) can be employed to mine opinions.

• Ontology-building and Domain Analysis: The module used to handle mismatches

(3.4.3.2) in validation enriches the ontology by generalizing or adding new properties.

This can be extended further to build the domain ontology from scratch, or analyze the

domain in general. A few examples of methodologies for ontology building from text that

utilize similar techniques are [5] and [6].

74

APPENDIX A. EXPERIMENTAL TEXTS AND EXTRACTED

INFORMATION

Text Fragments Used in Experiments

Article 1 - http://www.cbsnews.com/sections/earlyshow/living/money/main500173.shtml

Article 2 - http://www.cbsnews.com/8301-503983 162-5054220-503983.html

Article 3 - http://www.cbsnews.com/stories/2007/06/01/business/main2873658.shtml

Article 4 - http://www.cbsnews.com/stories/2006/10/05/business/main2069040.shtml

Sample Extracted Information in the Form of RDF Metadata

A.0.1 Sample Text Fragment

With Wall Street closing yesterday at 10,552, CBSMoneywatch.com editor-at-large Jill

Schlesinger said the Dow Jones Industrial Average is up over 61% over the past year. “That

is the best one-year since the Depression, the best 12 months,” she said on CBS’ “The Early

Show” this morning, also noting that the Nasdaq is up 83%, and Standard & Poors is up 68%.

“I really want to point out one thing that’s a little scary: The S&P 500 is still at the same level

as 1998 - we still are 27% below where we were in 2007,” Schlesinger said. Schlesinger said the

sectors which recovered most in the last year were business services (publishing, advertising,

consulting) up +210%; media business (“thankfully for us!”) up 138%; and a 155% jump in

financial services - “all those taxpayer-bailed out companies, the banks, the mutual fund com-

panies, the big insurance companies,” she said. Schlesinger also said the numbers bode well for

the recovery of 401(k)s.

75

A.0.2 Sample Generated RDF Sub-graph

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:j.0="http://edu.iastate.airl/semtus/GenericRelation#"

xmlns:j.2="http://dbpedia.org/ontology/" >

<rdf:Description rdf:about="http://myfoafdata#1271393537">

<j.0:want rdf:resource="http://edu.iastate.airl/semtus/Thing#scary"/>

<j.0:said rdf:nodeID="A0"/>

<j.0:said rdf:nodeID="A1"/>

<j.0:said rdf:nodeID="A2"/>

</rdf:Description>

<rdf:Description rdf:nodeID="A1">

<rdf:subject rdf:resource="http://dbpedia.org/page/Dow_Jones

_Industrial_Average"/>

<rdf:predicate rdf:resource="http://edu.iastate.airl/semtus/GenericRelation

#is up"/>

<rdf:object rdf:resource="http://edu.iastate.airl/semtus/Thing#61"/>

<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns

#Statement"/>

</rdf:Description>

<rdf:Description rdf:nodeID="A2">

<rdf:subject rdf:resource="http://dbpedia.org/page/NASDAQ"/>

<rdf:predicate rdf:resource="http://edu.iastate.airl/semtus/GenericRelation

#is up"/>

<rdf:object rdf:resource="http://edu.iastate.airl/semtus/Thing#83"/>

<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns

#Statement"/>

</rdf:Description>

<rdf:Description rdf:nodeID="A0">

76

<rdf:subject rdf:resource="http://dbpedia.org/page/Standard_%26_Poor’s"/>

<rdf:predicate rdf:resource="http://edu.iastate.airl/semtus/GenericRelation

#is up"/>

<rdf:object rdf:resource="http://edu.iastate.airl/semtus/Thing#68"/>

<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns

#Statement"/>

</rdf:Description></rdf:RDF>

A.0.3 RDF Serialization for Graph 3.11

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:j.0="http://edu.iastate.airl/semtus/GenericRelation#">

<rdf:Description rdf:about="http://myfoafdata#534485411">

<j.0:scoredRuns rdf:resource="http://edu.iastate.airl/semtus/Thing#200"/>

</rdf:Description>

</rdf:RDF>

A.0.4 RDF Serialization for Graph 3.12

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:j.0="http://edu.iastate.airl/semtus/GenericRelation#">

<rdf:Description rdf:about="http://edu.iastate.airl/semtus/Thing

#Microsoft ad">

<j.0:says rdf:nodeID="A0"/>

</rdf:Description>

<rdf:Description rdf:nodeID="A0">

<rdf:subject rdf:resource="http://dbpedia.org/resource

/Macintosh_Business_Unit"/>

<rdf:predicate rdf:resource="http://dbpedia.org//ontology/coolingSystem"/>

<rdf:object rdf:resource="http://edu.iastate.airl/semtus/Thing#customers"/>

77

<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns

#Statement"/>

</rdf:Description>

</rdf:RDF>

A.0.5 RDF Serialization for Graph 3.13

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:j.0="http://edu.iastate.airl/semtus/GenericRelation#"

xmlns:j.1="http://edu.iastate.airl/semtus/QualifiedRelationship#" >

<rdf:Description rdf:about="http://edu.iastate.airl/semtus/

QualifiedRelationship#QualifiedRelationship_1">

<j.0:probability rdf:resource="http://edu.iastate.airl/semtus/Thing#high"/>

<j.1:hasQualifiedPredicate rdf:resource="http://edu.iastate.airl/semtus/

GenericRelation#scoredRuns"/>

<j.1:hasQualifiedObject rdf:resource="http://edu.iastate.airl/semtus/

Thing#200"/>

<j.1:hasQualifiedSubject rdf:resource="http://myfoafdata#534485411"/>

</rdf:Description>

</rdf:RDF>

78

BIBLIOGRAPHY

[1] Data, Information, Knowledge, and Wisdom, http://www.systems-

thinking.org/dikw/dikw.htm. URL http://www.systems-thinking.org/dikw/dikw.htm.

[2] M. C. Marneffe, B. MacCartney and C. D. Manning. Generating Typed Dependency

Parses from Phrase Structure Parses. In LREC, 2006.

[3] K. Anyanwu, A. P. Sheth. Rho-Queries: enabling querying for semantic associations on

the semantic web. WWW : 690-699, 2003.

[4] C. Ramakrishnan, W. H. Milnor, M. Perry and A. P. Sheth. Discovering informative

connection subgraphs in multi-relational graphs. SIGKDD Explorations 7(2): 56-63, 2005.

[5] P. Gawrysiak, et al. Text Onto Miner A Semi Automated Ontology Building System.

Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Vol. 4994/2008, 2008.

[6] R. Valencia-Garcia, et al. An Approach for Ontology Building from Text Supported by

NLP Techniques. Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Vol.

3040/2004, 2004.

[7] Part-of-speech tagging, http://en.wikipedia.org/wiki/Part-of-speech tagging. URL

http://en.wikipedia.org/wiki/Part-of-speech tagging.

[8] G. A. Miller. WordNet: A Lexical Database for English. Communications of the ACM,

Vol. 38, No. 11: 39-41, 1995.

[9] Learning by Reading, http://userweb.cs.utexas.edu/users/mfkb/RKF/projects/lbr.html/.

URL http://userweb.cs.utexas.edu/users/mfkb/RKF/projects/lbr.html/.

79

[10] D. S. Kim, K. Barker and B. Porter. Knowledge integration across multiple texts. Pro-

ceedings of the fifth international conference on Knowledge capture: 49-56, 2009.

[11] D. S. Kim and B. Porter. Integrating declarative knowledge: Issues, algorithms and future

work. Proceedings of the Spring AAAI Symposium Series, 2008.

[12] M. Bates, R. M. Weischedel. Challenges in natural language processing. Cambridge Uni-

versity Press.

[13] C. Ramakrishnan, K. J. Kochut and A.P. Sheth. A Framework for Schema-Driven Re-

lationship Discovery from Unstructured Text. International Semantic Web Conference:

583-596, 2006.

[14] Critical Assessment of Information Extraction Systems in Biolog,

http://www.mitre.org/public/biocreative/. URL http://www.mitre.org/public/biocreative/.

[15] J. Saric, L. J. Jensen, R. Ouzounova, I. Rojas and P. Bork. Extraction of regulatory

gene/protein networks from Medline. Bioinformatics, Vol. 22 no. 6: 645650, 2006

[16] C. Ramakrishnan, P. N. Mendes, S. Wang and A. P. Sheth. Unsupervised Discovery

of Compound Entities for Relationship Extraction. Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, Vol. 5268/2008: 146-155, 2008.

[17] Q. N. Rajput, S. Haider, N. Touheed. Information Extraction from Unstructured and

Ungrammatical Data Sources for Semantic Annotation. World Academy of Science, En-

gineering and Technology, 2009.

[18] E. Riloff. Automatically constructing a dictionary for information extraction tasks. Pro-

ceedings of the 11th National Conference on Artificial Intelligence, AAAI-93: 811816,

1993.

[19] S. Huffman. Learning information extraction patterns from examples. Workshop on new

approaches to learning for natural language processing, IJCAI-95: 127142, 1995.

80

[20] J. Kim and D. Moldovan. Acquisition of linguistic patterns for knowledge-based informa-

tion extraction. IEEE Transactiops on Knowledge and Data Engineering, 7(5): 713724,

1995.

[21] S. Soderland, et al. Crystal: Inducing a conceptual dictionary. Proceedings of the 14th

International Joint Conference on Artificial Intelligence, IJCAI-95: 13141319, 1995.

[22] K. Fundel, R. Kuffner and R. Zimmer. RelExRelation extraction using dependency parse

trees. Bioinformatics, Vol. 23 no. 3: 365371, 2007

[23] C. Friedman, et al. GENIES: a natural-language processing system for the extraction of

molecular pathways from journal articles. Bioinformatics, Vol. 17 Suppl. 1: 1367-4803,

2001

[24] P. Cimiano, A. Pivk, L. Schmidt and S. Staab. Learning taxonomic relations from het-

erogeneous evidence. Ontology Learning from Text: Methods, evaluation and applications,

IOS Press, 2005

[25] W. Salloum. A Question Answering System based on Conceptual Graph Formalism. KAM,

2009.

[26] The Stanford Parser: A statistical parser, http://nlp.stanford.edu/software/lex-

parser.shtml. URL http://nlp.stanford.edu/software/lex-parser.shtml.

[27] An Introduction to Jena RDF API, http://jena.sourceforge.net/.

URL http://jena.sourceforge.net/tutorial/RDF API/index.html.

[28] R. McDonald, K. Lerman, and F. Pereira. Multilingual Dependency Parsing with a

Two-Stage Discriminative Parser. Tenth Conference on Computational Natural Language

Learning (CoNLL-X), 2006.

[29] Natural Language Toolkit (NLTK), http://www.nltk.org/. URL http://www.nltk.org/.

81

[30] S. Blohm and P. Cimiano. Scaling up pattern induction for web relation extraction through

frequent itemset mining. Proc. of the KI 2008 Workshop on Ontology-Based Information

Extraction Systems, 2008

[31] D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction. JMLR,

2003

[32] R. McDonald, et al. Simple algorithms for complex relation extraction with applications to

biomedical IE. Proceedings of the 43rd Annual Meeting on Association for Computational

Linguistics: 491-498, 2005

[33] A. Yates, et al. TextRunner: open information extraction on the web. Proceedings of

Human Language Technologies: The Annual Conference of the North American Chapter

of the Association for Computational Linguistics: 25-26, 2007

[34] E. Agichtein and L. Gravano. Snowball: extracting relations from large plain-text collec-

tions. Proceedings of the fifth ACM conference on Digital libraries: 85-94, 2000

[35] G. Neumann and F. Xu. Intelligent Information Extraction. LT-lab, DFKI, Germany,

2004

[36] N. Bach and S. Badaskar. A survey on relation extraction. Language Technologies Institute,

Carnegie Mellon University, 2007

[37] Calais, http://en.wikipedia.org/wiki/Calais (Reuters Product).

URL http://en.wikipedia.org/wiki/Calais (Reuters Product).

[38] Unified Medical Language System, http://www.nlm.nih.gov/research/umls.

URL http://www.nlm.nih.gov/research/umls.

[39] Medical Subject Headings, http://www.nlm.nih.gov/mesh.

URL http://www.nlm.nih.gov/mesh.

82

[40] Resource Description Framework (RDF), http://www.w3.org/RDF.

URL http://www.w3.org/RDF.

[41] RDF Semantics, http://www.w3.org/TR/rdf-mt/#Reif.

URL http://www.w3.org/TR/rdf-mt/#Reif.

[42] Linked Data, http://linkeddata.org.

URL http://linkeddata.org.

[43] Web Ontology Language (OWL), http://www.w3.org/TR/owl-features.

URL http://www.w3.org/TR/owl-features.

[44] F-logic, http://en.wikipedia.org/wiki/F-logic.

URL http://en.wikipedia.org/wiki/F-logic.

[45] SPARQL, http://www.w3.org/TR/rdf-sparql-query.

URL http://www.w3.org/TR/rdf-sparql-query.

[46] Domain and upper ontologies.

URL http://en.wikipedia.org/wiki/Ontology (information science).

[47] World Wide Web Consortium (W3C), http://www.w3.org/standards.

URL http://www.w3.org/standards.

[48] Description Logics, http://dl.kr.org. URL http://dl.kr.org.

	2010
	Ontology-guided extraction of structured information from unstructured text: Identifying and capturing complex relationships
	Sushain Pandit
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW AND MOTIVATION
	1.1 Information Extraction
	1.2 Extracting Domain-specific Semantic Information from Text
	1.3 Open Problems and Challenges
	1.3.1 Issues in NLP-based Relationship and Entity Extraction
	1.3.2 Issues in Semantic Mapping and Validation
	1.3.3 Issues in Generic Representation

	1.4 Motivation for Creating a Novel Information Extraction Framework
	1.5 Goals
	1.6 Thesis Outline

	2. PRELIMINARIES AND RELATED WORK
	2.1 Derivative Structures: Parse Trees and Dependency Graphs
	2.1.1 Parse Tree
	2.1.2 Dependency Graph

	2.2 Formal Specifications for Validation and Representation
	2.2.1 Domain Ontology, Instances and Knowledge Base
	2.2.2 Validation Process

	2.3 Generic Representation
	2.3.1 Resource Description Format(RDF)

	2.4 Problem Definition
	2.5 Related Work
	2.5.1 Different Flavors of Information Extraction from Text
	2.5.2 Complex Relationship Extraction from Text

	3. A NOVEL FRAMEWORK FOR EXTRACTING INFORMATION FROM TEXT
	3.1 Approach Overview
	3.2 Text Processing and Generation of Derivative Structures
	3.3 Composite Rule Framework for Entity and Relationship Extraction
	3.3.1 Terminology
	3.3.2 Identifying and Defining the Relationship Types
	3.3.3 Formulating Rules for Complex Relationship and Entity Extraction
	3.3.4 Formulating Rules for Simple Relationships

	3.4 Semantic Validation Framework
	3.4.1 Performing Validation against the Domain Ontology Model
	3.4.2 Discussion on Basic Validation
	3.4.3 Performing Enrichments

	3.5 Representation Framework
	3.5.1 Transformation of Information Constructs into Graph Formalism
	3.5.2 Primitive Transformation for Representing Simple Information
	3.5.3 Transformations for Representing Complex Information
	3.5.4 Existential Claims based on our Information Extraction Framework

	3.6 Discussion on Algorithms
	3.6.1 Pronoun Resolution in Algorithm 1

	4. SEMANTIXS: SYSTEM ARCHITECTURE AND OVERVIEW
	4.1 SEMANTIXS Architectural Overview
	4.1.1 SEMANTIXS Component Interaction

	4.2 Design and Implementation Details
	4.2.1 Service Request/Response Framework
	4.2.2 Core Text Processing and Information Extraction Framework
	4.2.3 User Interface, Visualization and Analysis Framework

	5. EMPIRICAL EVALUATION AND ANALYSIS USING SEMANTIXS
	5.1 Evaluation Scenario
	5.2 Experimental Setup: Text, Ontology and Instances
	5.2.1 Text
	5.2.2 Ontology and Instance Data

	5.3 Results and Interpretation
	5.3.1 Interpretation
	5.3.2 Discussion on Errors

	5.4 Querying the Graph
	5.4.1 Formulating Complex Questions
	5.4.2 Formulating a Query-plan

	6. CONCLUSION
	6.1 Summary
	6.2 Contributions
	6.3 Further Work

	A. EXPERIMENTAL TEXTS AND EXTRACTED INFORMATION
	A.0.1 Sample Text Fragment
	A.0.2 Sample Generated RDF Sub-graph
	A.0.3 RDF Serialization for Graph 3.11
	A.0.4 RDF Serialization for Graph 3.12
	A.0.5 RDF Serialization for Graph 3.13

	BIBLIOGRAPHY

