
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Complete coverage path planning in an agricultural
environment
Theresa Marie Driscoll
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Driscoll, Theresa Marie, "Complete coverage path planning in an agricultural environment" (2011). Graduate Theses and Dissertations.
12095.
https://lib.dr.iastate.edu/etd/12095

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12095&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12095&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12095&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12095&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12095&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12095&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F12095&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12095?utm_source=lib.dr.iastate.edu%2Fetd%2F12095&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Complete coverage path planning in an agricultural environment

By

Theresa Marie Driscoll

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Yan-Bin Jia, Major Professor

David Fernandez-Baca

Jennifer Davidson

Lie Tang

Iowa State University

Ames, Iowa

2011

Copyright © Theresa Marie Driscoll, 2011. All rights reserved.

ii

Dedication

To my husband for taking care of the children while I was studying, and for putting up with

my late hours working on this thesis.

iii

Table of Contents

Dedication ... ii

List of tables ... iv

List of figures .. v

Abstract ... vii

CHAPTER 1: INTRODUCTION ... 1

1.1 Problem Statement ... 1

1.2 Prior Research ... 2

1.3 Research Direction .. 9

CHAPTER 2: COST FORMULATION ... 10

2.1 Cost Functions in Prior Work ... 10

2.2 Preliminary Cost Formulation Findings ... 11

2.3 Chosen Cost Function ... 17

CHAPTER 3: ALGORITHM ... 25

3.1 Algorithm Overview ... 25

3.2 Sweep Direction .. 27

3.3 Trapezoidal Decomposition .. 30

3.4 Optimal Coverage for Each Region .. 35

3.5 Merge of Regions .. 35

3.6 Order of Traversal of Remaining Regions .. 42

3.7 Correctness of the Algorithm .. 43

CHAPTER 4: EXPERIMENTS AND RESULTS .. 46

CHAPTER 5. CONCLUSION.. 59

Bibliography ... 61

iv

List of tables

Table 1. Optimal angles and distances traveled………………………………………15

Table 2. Possible scenarios in which two regions can be merged …………………... 36

Table 3. Summary of results…………………………………………………………..58

v

List of figures

Figure 1. Comparison of trapezoidal decomposition with boustrophedon

decomposition Choset (2000). (a) Trapezoidal decomposition. (b) Boustrophedon

decomposition ... 4

Figure 2. Sample polygons. .. 12

Figure 3. Plot of distance traveled in polygon A when the pass width is 10. 13

Figure 4. Plot of distance traveled in polygon B when the pass width is 10. 13

Figure 5. Plot of distance traveled in polygon A when the pass width is 71. 14

Figure 6. Plot of distance traveled in polygon B when the pass width is 43. 14

Figure 7. Side by side comparison of passes 43 units apart. (a) Overall optimal angle

of 90 . (b) Turning length only optimal angle of 165.25 15

Figure 8. Plot of minimal angles as width is varied from 10 to 100 for polygon A. 16

Figure 9. Plot of minimal angles as width is varied from 10 to 100 for polygon B. 17

Figure 10. U-Turn ... 19

Figure 11. Merging regions while retaining original directions. .. 21

Figure 12. Matching passes between neighboring regions by pairing the swaths from

the inside corner. (Jin 2009) .. 22

Figure 13. Merging regions using one direction for the entire area. (a) Optimal

directions if separately covered. (b) Optimal direction if merged. ... 23

Figure 14. Two options for merging with a previously merged region. (a) The three

regions individually. (b) Regions B and C as merged. (c) Option1: merge while

covering region C in a different direction from A and B. (d) Option 2: merge while

using same direction for all. .. 24

Figure 15. Example Iowa field .. 27

Figure 16. Result of trapezoidal decomposition ... 30

Figure 17. Change in connectivity as vertical edges are created. When the left point

on the interior is encountered, polygon A is closed, and polygons B and C are opened.

When the right point on the interior is encountered, polygons B and C are closed and

polygon D is opened. .. 31

vi

Figure 18. Sample Iowa field after being subdivided. .. 34

Figure 19. Sample output of the merging phase. (a) The field just after phase 3 and

before the merging. (b) The field at the end of phase 4 after merging. 38

Figure 20. Sample Iowa field after several rounds of merging, just before merging

region A with merged region B. ... 39

Figure 21. Sample Iowa field with optimal directions for each sub region after phase

3... 44

Figure 22. Iowa field 1. (a) As fertilized by the farmer. (b) As proposed by

QuickOPP. .. 47

Figure 23. Iowa field 2 (a) As harvested by the farmer. (b) As proposed by

QuickOPP. .. 48

Figure 24. Iowa field 3 (a) As planted by the farmer. (b) As proposed by QuickOPP 50

Figure 25. North Dakota field 4 (a) As fertilized by the farmer. (b) As proposed by

QuickOPP ... 51

Figure 26. Ohio field 1. (a) Jin’s approach with pass width of 30 feet. (b) QuickOPP

result. ... 52

Figure 27. Ohio field 2: (a) Jin’s approach with pass width of 30 feet (16 min to

process) (b) QuickOPP result (3234 milliseconds to process).. 54

Figure 28 Four fields from North Dakota with a large number of interior boundaries

and data points .. 55

Figure 29. Fabre et al’s field example. (a) Jin’s results with pass width of 30 feet. (b)

Jin’s results with pass width of 20 feet. (c) QuickOPP results for both pass width of

30 feet and 20 feet. .. 57

Figure 30. A more optimal solution to Fabre et al's field example. .. 58

vii

Abstract

The problem of finding a collision-free path through a region has garnered a lot of research

over the years. One branch of this is the problem of finding a path that completely covers a

region. Solutions to the complete coverage path planning problem have applications in many

different areas, such as search and rescue, automotive painting, and agriculture. In many

cases, it is not sufficient to find any route that completely covers the field. It is desired that

the path also be optimal so as to minimize certain costs. This is especially true in the

agricultural environment. In the area of precision farming alone, the complete coverage path

planning problem exists while performing many different operations, such as harvesting,

seeding, spraying, applying fertilizer, and tillage. The fundamental concern of farmers is

reducing the costs of running the farm. Since most farming costs ultimately depend on time

in the field and area covered, the more efficient an operation can be completed, the lower the

costs. Optimality is thus typically in terms of finding the shortest complete coverage path

through the field. In this paper, we present an O(n
2
) algorithm for solving the optimal

complete coverage problem on a field boundary with n sides. This multi-phase algorithm

makes use of a plane-sweep algorithm to subdivide the field into smaller, trapezoidal regions.

The optimal paths through the subregions are then calculated. Finally there is a merge phase

where it is determined whether neighboring regions can be more efficiently covered if they

were merged together than if they were left separate.

1

CHAPTER 1: INTRODUCTION

1.1 Problem Statement

In farming operations, the farmer’s ultimate goal is to make the most use of the land so as

to bring in the most income. Over time, farming costs have increased drastically. Not only are

there the costs of seed and fertilizer, but also fuel costs and salaries of hired hands. As smaller

farms have consolidated into larger farms, farm owners require more hired hands. Often times

the hired hands were not raised on farms and do not have the same level of knowledge or

experience as the farm owners. Automating tasks and planning operations out in advance helps

to reduce these costs and eliminate mistakes. Automated solutions need to know or determine

several things: what is the task to be done, what are the steps to complete it, where is the task to

be performed, where is the machine or implement currently located, what other machines or

implements are in the field that need to be coordinated with, and what is the path through the

field to be taken. The task to be done and its steps are typically conveyed to the automated

solution as input. Global positioning systems (GPS) typically relay the current location of the

machine or implement to the algorithm. The remaining two problems to be solved are how to

coordinate multiple machines and implements (mission planning) and how to determine the

optimal path through the field (complete path planning). This research focuses on the latter

problem.

To maximize profits, it is obvious that as much of the field as possible should be put to

use. Ideally, any path through the field should attain 100% coverage. But the complete coverage

path planning problem is not as simple as finding any path that completely covers the region. As

years have gone by and family farms have gotten bigger and started competing with corporate

farms, and prices have gotten higher, another concern is the cost of farming the land. In order to

even make a profit, costs need to be kept as low as possible. In farming operations, costs come in

many forms, including cost of labor, cost of fertilizer, chemicals or seed used, gas usage, and

time. Ultimately, many these costs can be expressed in terms of time in the field – the more

efficient the farming operation, the better chance of earning profits. As a result, it is not

2

sufficient just to find a path that completely covers the field – it must be an efficient one. Thus a

second goal of the path planning problem is finding a path that is as optimal as possible.

Finally, when applying fertilizer or chemicals, or planting, double coverage should be

avoided. In such operations, paths through the field should not overlap. In addition, regardless of

the operation, there are certain regions of the farm that for one reason or another are not

passable. Further, there may be obstacles such as trees in or along side of the field. So to be

usable in the agricultural environment, any proposed path should not collide with obstacles or

enter impassable regions.

To summarize, any solution to the complete coverage path planning problem in an

agricultural environment needs to satisfy the following requirements:

1. Cover as close to 100% of the land as possible.

2. Avoid double coverage of areas.

3. Avoid obstacles and impassable areas.

4. Be as efficient as possible. Keeps costs to a minimum.

1.2 Prior Research

There are several different approaches toward solving the collision-free path planning

problems in general, and the complete coverage path planning specifically. At a high level, these

approaches can be categorized into two groups: “global” and “local”. Global approaches look to

the workspace as a whole, building a model of the entire workspace and the location of obstacles,

and searching this workspace for the optimal solution. Global approaches are typically used

when the environment is known in advance, and generally are not on-line algorithms. In contrast,

the local approach generally involves gridding the work space and searching cells local to the

robot’s current position. Heuristics computed from the area seen so far helps guide the robot. As

a result, the local approach is typically used when the environment is not known in advance, and

generally are on-line algorithms that require the use of sensors. Both approaches involve

subdividing the workspace in some fashion, either by gridding it or by partitioning the area into

3

smaller polygonal regions. Various techniques have been devised for both approaches based on

the tools available from the fields of computer science and mathematics. These techniques

include cellular decomposition, artificial potential fields, neural networks, genetic algorithms and

algorithms for solving the traveling salesman problem.

One approach typically used in global approaches is cellular decomposition. This

involves subdividing the region into subregions (typically trapezoids or triangles, but it could be

any shape), find the best way to cover each subregion, and then aggregate the results. Choset and

Pignon (1997), Choset (2000), and Atkar et al. (2001) were among the first group of researchers

to propose combining exact cellular decomposition with boustrophedon (back and forth straight

passes in alternating directions) to automatically find a path that completely covers a region.

Their approach involved a modified plane-sweep algorithm to decompose the area into

subregions. Instead of treating all points as “events” where a subdivision is to occur, subdivision

only occurs at “in” events and “out” events. At an in event, or split point, the current cell (if any)

is closed and two cells are opened. At an out event, or merge point, two cells are closed and one

cell is opened (assuming it’s not the last point on the outer boundary). At all other points, the

shape of the cell is simply updated. Figure 1 compares this type of decomposition with standard

trapezoidal decomposition. Each subregion was then covered using back and forth paths. The

order in which the regions were visited was computed using a depth first search, marking each

cell as visited until all cells are covered. The choice of the sweep direction can affect the

optimality of the solution. However, this group of researchers did not seek to find the optimal

solution – only finding a feasible complete coverage solution. As such, the sweep direction was

chosen at random.

4

Figure 1. Comparison of trapezoidal decomposition with boustrophedon decomposition

Choset (2000). (a) Trapezoidal decomposition. (b) Boustrophedon decomposition

Oksanen and Visala (2007) extended the exact cellular decomposition approach to the

agricultural environment, and to take into account the costs of traveling in a particular direction.

Oksanen and Visala formulated an iterative subdivide/merge algorithm. The field was first

subdivided using the standard plane-sweep algorithm to decompose the area into trapezoids.

Then the subregions were merged into as large as regions as possible, while retaining relatively

rectangular shapes. The “best” region was then broken off, and traveled in the same direction as

the parallel sides of the trapezoids. The algorithm repeated on the remaining subregions until the

entire area was covered. The “best” region was determined by a weighted sum of three factors:

area, distance traveled, and turning times. In each iteration, the direction to cover the field in

boustrophedon paths was calculated by computing costs on the un-subdivided region. The sweep

direction was set to be normal to the calculated optimal direction. The cost calculation was

unspecified, but to speed up running time, costs were calculated in one of six directions: 0 , 30 ,

60 , 90 , 120 and 150 . The best three directions were chosen, the step size (initially 30) was

halved, and new search directions were added on each side of the original three. This repeated

for five iterations to recursively narrow down on the best direction without actually calculating

cost in all directions. Although they did not discuss the running time of this algorithm, given that

the plane sweep algorithm runs in O(n log(n)) time and produces O(n) trapezoids, and the merge

algorithm can be implemented to run in O(n) time, it has an overall running time of O(n
2
 log (n)).

This algorithm suffers from the problem Choset and Pignon (1997) were trying to avoid: too

5

many subregions processed separately with potential overlaps on the shared edges or the need for

headlands to avoid the overlaps.

Jian Jin, a PhD graduate of Iowa State’s Agricultural and Biosystems Engineering, also

conducted research that fell in this area. Jin and Tang (2006) and Jin (2009). His approach was to

find “all possible ways” for splitting the field into two, and then to try each of the possible ways

to see if the region could be more efficiently as two separate regions instead of one. The

algorithm continued recursively on each subregion until it was no longer possible to split the

region to achieve a more optimal solution. The algorithm had a running time of O(n
3
 log n).

Although it yields reasonable solutions, the algorithm suffers from performance. It runs

reasonably well in fields with no interior obstacles, but has a significant performance hit when

interior obstacles are added to fields with more than twenty points.

Others have limited the search space or considered alternative methods of sweeping

besides boustrophedon paths. Kang et al, (2007) limited the search space by rotating the field so

that the most dominant line component of the boundary is horizontal, then doing line sweeps left

to right to find the critical points for starting and stopping the sub fields. With the field thus

rotated, they considered each of three groups of motions to find the optimal direction – left to

right passes, up and down passes and spiral passes. Of each group, four different passes were

considered, one for starting in the upper right corner, one for starting in the lower right corner,

one for starting in the lower left corner and one for starting in the upper left corner of the sub

field.

Gonzalez et al. (2005) proposed an on-line complete coverage algorithm that uses spiral

filling paths instead of back and forth paths. The algorithm subdivides the workspace into simple

regions as the area is covered. A region that can be (and is) completely covered using a single

spiral path is called a simple region. The algorithm starts from a grid of the workspace where all

cells are marked as unknown. As the robot moves, it detects whether obstacles are to the front or

one side of it, and updates the environment model and makes a move. As cells are entered, they

are marked as “virtual obstacles” so that the same area is not covered more than once. Once a

simple region is covered, a backtracking algorithm is applied to determine the next region to go

to. The algorithm assures complete coverage of non-occupied cells, but not of partially occupied

6

cells. The basic version of the algorithm attains coverage generally in the 62-67% range. Even

modified with a wall following algorithm, coverage is around 92-93%.

 Another approach to solving the path planning problem is to make use of artificial

potential fields. The main idea is to construct an attractive force at the destination and a repulsive

force on the obstacles, then let the forces “pull” the robot to the destination. Barraquand et al.

(1992) were one of the first to use potential fields to navigate a robotic arm around an

environment. Zelinsky et al. (1993) extended the use of artificial potential fields to the complete

coverage situation. The workspace is gridded and a “start” and “goal” location is picked. Instead

of propagating just a distance from the goal wave front through the free space, a wave front that

is a weighted sum of the distance from goal and distance to an obstacle is propagated. This

approach does not take into account the constraints of the vehicle, such as its turning radius, or

other costs, such as turning costs, and can yield results that are impossible for farming equipment

to follow. Sörensen (2003) developed an artificial potential field algorithm to steer a non-

holonomic vehicle along crop rows without damaging the crops. Potential fields tend to suffer

from getting trapped in local minima, and for the most part have only been applied to the point A

to point B path planning problems.

 Others have looked to the field of artificial intelligence for ways to solve the path

planning problem in a static environment. Research exists in the area of neural networks (both

learning and non-learning), genetic algorithms, ant colony algorithms and intelligent water drops

algorithms. Most of the research using neural networks was done in the mid to late 1990’s. See

e.g. Martin and Del Pobil (1994). For example, Tse et al. (1998) developed a back propagation

neural network which could generate a robot path. During the cleaning process, the robot

recorded the previously generated path, the number of grid points traveled, and the number of

turns. If something unexpected in the environment appears, the memory map had to be updated.

In more recent years, Yang and Luo (2004) developed a non-learning neural network which was

capable of generating collision free complete coverage paths in a non-stationary and unstructured

environment. Working much like an artificial potential field, each neuron represents an area –

typically a grid cell – in the workspace. The dynamics of the i’th neuron is characterized by a

shunting equation derived from Hodgkin and Huxley’s (1952) membrane equation and

constructed so that the robot is globally attracted to uncovered opened areas and locally repelled

7

from obstacles. The network is configured so that the positive neural activity propagates to the

entire space and the negative activity stays locally. The running time of the algorithm on a

workspace N x N square was O(N
2
) – i.e. squarely proportional to the resolution of the grid. It’s

worth noting that the paths generated tended to be boustrophedon paths. Guo and Balakrishnan

(2006) extended on this work to take into account the physical robot’s kinematic motion

constraints, and to generate smooth trajectories using parametric polynomials.

More recent research use neural networks only for steering the vehicle, using some other

technique for determining the optimal path. Noguchi and Terao (1997) were one of the first to

combine neural networks with genetic algorithms to plan the work path of an agricultural mobile

robot through a field. They used the neural network to describe the motion of the vehicle – to

essentially steer it – and the genetic algorithm to determine the path it would take through the

field. More recently, Du, Chen and Gu (2005) combined neural networks and genetic algorithms

by using neural networks to model the environment and a genetic algorithm to find a path from

point A to point B through the environment. Neuron Ci
k
 outputs 1 if the point (Xi, Y

i
) is in the

k’th obstacle, and outputs 0 otherwise. The set of possible points from point A to point B were

then flattened to one dimensional space so that each chromosome would represent the path in the

flattened space. The fitness of each proposed path is based on whether it intersects an obstacle

and is as short as possible.

Noting that prior research only used genetic algorithms to find a Point A to Point B path

through an environment, Ryerson and Zhang (2007) investigated the feasibility of using genetic

algorithms to solve complete coverage path planning problem in an agricultural environment.

Each chromosome was a list of 2D points. The environment was modeled as a grid, with the

assumption that if the vehicle covered the center of the grid, everything in that grid cell would be

covered. Fitness was based on a combination of whether it covered 100% of the area, whether it

intersected obstacles, whether it crossed over itself and the length of the path. Subsequent

generations were created using a combination of crossover, mutation, reordering of points,

swapping points and removal of crossings. Ryerson and Zhang were able to attain approximately

90% coverage, but not the most efficient path.

8

Yet another approach commonly taken to solve the complete coverage path planning

problem is to translate the problem to a traveling salesman problem. This generally involves

gridding the region into cells such that if the centers of all the cells are visited, 100% coverage

would be reached. Thus viewed, any algorithm that can solve the traveling salesman problem

could also solve the complete coverage path planning problem. Among such algorithms are

swarm based intelligence algorithms such as the ant colony algorithm, Dorigo and Gambardella

(1997), and intelligent water drops algorithm, Shah-Hosseini (2009). In the ant colony algorithm,

m “ants” are initially placed on randomly selected locations. At each time step, they move to a

new location, modifying the “pheromone trail” on edges used. Ants will tend to follow trails with

higher pheromone levels. A tabu list is maintained to track which locations have already been

visited so that the ants do not revisit that location. When all ants have completed a tour, the ant

that made the shortest tour deposits more pheromones along the route that ant took. Then the

algorithm repeats until the desired threshold is reached. Similar to the ant colony algorithm, the

intelligent water drops algorithm models the properties and behavior of water as it flows

downhill – namely that it prefers straight paths, only veering from straight paths if obstacles

exist, that it prefers paths with low soil, that it tries to modify its environment by relocating soil,

and that it has a speed that increases or decreases depending on the soil relocated.

Although intriguing algorithms, swarm-based algorithms can take a large number of

iterations before it converges on a solution, and the algorithm can be trapped in a local minimum.

Chibin, Xingsong, and Yong (2008) attempted to reduce the size of the traveling salesman

problem by combining it with cellular decomposition approaches. The workspace was first

decomposed into regions as in Choset (1997, 2000). Each region would be covered using

boustrophedon paths. The order in which the regions would be processed was then determined

using the ant colony algorithm. A distance matrix was then computed from the connectivity

graph of the subdivided regions and used to compute the total distance traveled.

Finally, Meuth and Wunsch (2001) presented an approach that combines cellular

decomposition, a solution to the traveling salesman problem, and genetic algorithms. It used the

divide and conquer methods from cellular decomposition first to subdivide the field. Then for

each sub field, it used a modified version of the Lin-Kernighan algorithm for the travelling

salesman problem. The Lin-Kernighan algorithm was modified so that instead of randomly

9

generating another tour in each iteration, the modified version used a genetic algorithm to

generate the next tour for the next iteration. As with some of the other algorithms mentioned

above, this approach resulted in paths with many turns. This was true even when the cost

function was modified to take into account the mobility of the vehicle. Further, as with other

genetic algorithm approaches, convergence on a near optimal solution is not guaranteed.

1.3 Research Direction

Considering all the previous research in this area, the research in the area of cellular

decomposition seems like it would have the most promise to efficiently yield a close to optimal

solution in an agricultural environment. In the agricultural scenario, the field boundaries and

obstacle locations are generally well known in advance, and as such, there is less of a need for an

on-line implementation, and less of a need to learn the environment. The goal of this research is

to find an O(n
2
) or better algorithm that finds a reasonably efficient solution to the problem of

completely covering a given field. To accomplish this, this research aims to:

1. Make use of the research of Jin (2009) as to the cost functions and headland types.

2. Build upon the work of Jin (2009) so as to improve the performance of the algorithm

while achieving similar or better results. Whereas Jin (2009) searched in all possible

directions for ways to subdivide the field, the search space is narrowed by sweeping

in the direction normal to the overall optimal direction and performing a modified

trapezoidal decomposition. Doing so, hopefully the increase in performance will not

come at the expense of giving solutions that are far from optimal.

3. Build upon the work of Oksanen (2007) by combining his subdivide and merge

phases into a single subdivide phase, and by including a new merge phase that takes

into account cost savings while merging. This should reduce the number of

subregions that are separately covered, resulting in less double-coverage and fewer

headland usages, and slightly improve the overall running time. Whereas Oksanen

(2007) iteratively applied a subdivide/merge/split off approach, the subdivision and

merge will be done only once.

4. Analyze the results of running this algorithm on various real world fields.

10

 CHAPTER 2: COST FORMULATION

2.1 Cost Functions in Prior Work

In the previous work, there have been different formulations of the cost function. Some

simply counted the number of turns – trying to keep the number of turns to a minimum. In the

TSP/genetic algorithm hybrid approach, the cost function was in terms of time: (Euclidean

distance of a straight path / speed) + (speed / vehicles acceleration capability) * vehicle agility *

(1 – cos(θ)). Meuth and Wunsch (2001) defined the vehicle agility as its ability to execute turns

without incurring extra time. So the above formula basically calculates the time to make a

straight pass plus the time in the turns.

Likewise, Jin (2007) used the time taken as the cost function. However, he focused

exclusively on the time turning in the headland, noting that time inside the field is relatively

constant. He had three parts to his cost function: the cost of straight paths to clear the boundary

between the headland and the inside of the field, one for the straight movement in the headlands

before actually turning, and one for turns in the headlands. He assigned different cost coefficients

(time / distance) for each of the three parts. In his PhD thesis, Jin (2009) thoroughly categorized

the different turn types, determined the scenarios in which each turn type applied, and presented

distance formulas for each turn type. He also considered the effect headland width had on the

turning cost.

Technically, Oksanen (2007) did not specify a cost function for determining the optimal

sweep direction at the beginning of each iteration of his algorithm. However, he did specify the

selection criteria for selecting the “best” subregion to break off the field after the sweep and

merge phases. He avoided a selection criteria based solely on the number of turns or efficiency,

noting that such a selection criteria tended to be biased towards directions parallel to the longest

direction, and may lead to final decompositions with many long and narrow cells, when other

ways of decomposing the field may be more cost efficient. To avoid this result, Oksanen (2007)

took into account three factors: area covered, distance traveled inside the field and overall

11

efficiency, where efficiency was based on distance traveled in the field plus the time spent in the

headlands. He gave relative weights of 65%, 15% and 20% respectively.

In genetic algorithm approaches, fitness scores are the closest calculations to a cost

function. In her genetic algorithm approach, Ryerson (2007) had a fitness score based on four

factors: whether the path hit obstacles, whether it was as short as possible, whether it crossed

over itself and whether it covered as much an area as possible, with different weights given to

each factor. In their neural network/genetic algorithm hybrid approach, Du et al. (2005) based

their fitness function solely on whether the path intersected itself and was as short as possible.

Complete coverage was not a concern in that scenario.

2.2 Preliminary Cost Formulation Findings

As previously mentioned, Jin (2009) only considered distance along turns in the cost

function, noting that in-field distance traveled is roughly the same because the area and pass

width is fixed. Eliminating consideration of the in-field distance would be ideal as it

considerably simplifies the calculation of the cost function. If in-field distance was included in

the cost function, then for each pass through the field, it would need to be determined which

edges of the boundaries are the opposing ends of the pass. Making that determination for each

pass obviously would drastically slow down the algorithm. Yet, distance in field can vary

depending on the placement of the first pass, the ratio of the pass width to the length of an edge,

and whether a partial pass is needed to complete the field. Before fixing on a cost function that

did not take into account in-field distance traveled, two questions therefore needed to be

answered: (1) how much of an impact does in-field distance have on the overall cost calculation,

and (2) can it safely be ignored from the cost calculation.

To see how much the in-field distance can vary and whether the variance has a significant

effect on the overall result, several experiments were run on polygons of varying sizes and pass

widths. Total distance traveled along boustrophedon paths in a given direction was evaluated at

every quarter degree on the range 0 to π. The general theme noticed is the plot of the total

distance traveled (in-field plus turning length) pretty closely tracks the curve when considering

12

distance in turns only. Although the overall optimal direction does not necessarily match exactly

with the optimal direction if only distance in turns were considered, the difference in distance

traveled in the overall optimal direction and the optimal direction when considering turns only is

relatively small.

Consider the following figures plotting the various minimum distances. Figure 2 depicts

two example polygonal shapes evaluated for their optimal directions. Throughout this thesis, a

given path direction is represented by θ, and is measured counterclockwise from horizontal.

Figure 2. Sample polygons.

Figures 3 and 4 plot the distance traveled, both in-field and on turns, when the pass width is set

to 10. In these plots, the vertical axis represents length and the horizontal axis represents the

angle at which the length in field, turning distance and total distance traveled was computed.

Notice from both these figures how the plot of the total distance traveled tracks the plot of the

distance traveled in turns. These experiments were run on trapezoids, four sided polygons, and

multi-sided polygons, and the results depicted here are typical for all polygons considered.

13

Figure 3. Plot of distance traveled in polygon A when the pass width is 10.

Figure 4. Plot of distance traveled in polygon B when the pass width is 10.

Also investigated was whether these results hold true regardless of pass width. The same

calculations were performed while changing the pass width. Figures 5 and 6 depict the results

from two different scenarios.

14

Figure 5. Plot of distance traveled in polygon A when the pass width is 71.

Figure 6. Plot of distance traveled in polygon B when the pass width is 43.

Again, the line representing the total distance traveled generally tracks the behavior of the

line representing turning distance only. However, because the turning distance remains relatively

the same between angles 80 and 100, the smaller variations in the in-field distance ended up

affecting the overall optimal direction that was calculated. Figure 7 depicts what is happening to

lead to this result.

15

Figure 7. Side by side comparison of passes 43 units apart. (a) Overall optimal angle of 90 .

(b) Turning length only optimal angle of 165.25 .

Note that the difference in in-field length is occurring because two of the passes in Figure 7(b)

just clip the corners of the polygon, while only one pass in Figure 7(a) does so. However, the

dominance of the in-field distance over the turning distance only happens when the pass width is

large in comparison to the size of the region. If the region is much larger, as is typically the case

with real world fields, the turning length ends up dominating the overall optimal solution. In the

typical scenario, the difference in total distance traveled between the two computed optimal

directions remained relatively small. Table 1 summarizes the results.

Polygon Width Overall

optimal

angle

Total distance

traveled using

optimal angle

Number

of turns

Turn

optimal

angle

Total distance

traveled using turn

optimal angle

Number

of turns

A 10 92.25 5816.91 26 91.5 5839.55 26

A 71 90 1097.10 4 179.75 1491.02 4

B 10 85.5 5013.87 23 84.5 5081.34 23

B 43 90 1515.37 6 165.25 1156.44 6

Table 1. Optimal angles and distances traveled

16

A second thing of note from these preliminary experiments is that the plots of the

distance traveled are not smooth curves. This means that there is not a nice, clean, formula

whose derivative can be taken to find the true optimal. If the absolute optimal is desired, then

costs need to be calculated for all directions between 0 and 180 . However, note that the plots of

the total distances traveled and distance traveled in turns generally have peaks and valleys

around the critical angles – i.e. the angles of the sides of the polygon and the angles of diagonals

of the polygon. For Polygon A, the critical angles are 4.57 degrees, 40.29 degrees, 90.00 degrees,

96.52 degrees, 135.00 degrees, 161.94 and degrees. For Polygon B, the critical angles are 27.51

degrees, 86.57 degrees, 90.00 degrees, 130.33 degrees, 150.95 degrees, 176.42 degrees. To speed

up the determination of the “optimal” angle, the search could be limited to areas around those

critical angles.

As an aside, another takeaway from these experiments was that as the width was varied,

the optimal angle varied drastically, as shown in Figures 8 and 9. In these two figures, the

horizontal axis represents pass width and the vertical axis represents optimal angles. This was

more an interesting observation instead of one that could be put into use to help restrict the

search area.

Figure 8. Plot of minimal angles as width is varied from 10 to 100 for polygon A.

17

Figure 9. Plot of minimal angles as width is varied from 10 to 100 for polygon B.

Finally, it should be noted that farming vehicles are less efficient in turns. (Jin 2009)

Turns are taken at slower speeds than while moving in straight lines. Therefore, from an

efficiency standpoint, distance traveled in turns should be weighted heavier than distance

traveled in the field. The above experiments were run giving both distances equal weight. Giving

the distance traveled in turns more weight, the overall optimal direction more closely tracked the

optimal when considering distance traveled in turns. As a result, these preliminary experiments

verify the assertion that the in-field distance can be ignored when computing the cost of traveling

in a given direction in a field. This does open the possibility of missing the true optimal, but the

cost difference between the chosen direction and the optimal direction is relatively small. This in

turn allows for more efficient processing of the data since the location and length of each pass

did not need to be computed.

2.3 Chosen Cost Function

Based on the findings in section 2.3, a cost formula nearly identical to that used by Jin

(2009) was chosen. Ultimately all agricultural cost concerns – minimizing overlap to optimize

amount applied, worker productivity, minimizing fuel costs – are significantly affected by

distance. Therefore, the cost formula needs to be based on distance traveled. Distance inside the

field is the usual straight line distance between two points, but was ignored for reasons discussed

18

above in section 2.3. Instead only distance traveled in turns was included in the cost formula.

Further, like Jin (2007), the distances traveled in straight sections were given less weight than

distance traveled while turning.

Where the cost formula differs from that of Jin (2009) is in the type of turns accounted

for in the formula. Jin (2009) thoroughly considered the different turning types based on

headland size, turning radius and pass width, and set forth the formulas for calculating the

respective distance traveled in turns. To simplify calculations in the experiment, it was assumed

that all turns are the basic “U-shaped” turn – i.e. that the turning radius equals one half the pass

width. However, the algorithm can relatively easily be extended to take into account scenarios

where other turning types would be warranted by using the Strategy design pattern. See Gamma

et al. (1994).

Formally, the distance traveled while making a single turn on a given edge i (DSTi) of the

boundary is expressed as:

DSTi = 2w / | tan(|Θ – βi|) | + πr

where Θ is the angle of the pass, βi is the angle of the edge i of the field, w is the pass width and r

is the turning radius. The basis for this formula can be seen from Figure 10, which depicts the

basic “U-shaped” turn scenario. Note that there are three parts to this turn: 1) the distance

traveled while moving forward to clear the boundary entirely on both sides of the pass (the part

shaded in grey), 2) the distance traveled while moving forward in the headland before making

the turn, and 3) the distance traveled in the turn. The distance traveled in the turn, using simple

trigonometry, is πr. The distance traveled in the grey area and in the straight away in the

headland likewise can be easily calculated using simple trigonometry as w / | tan(|Θ – βi|) | each.

This yields the above formula.

19

Figure 10. U-Turn

For a given edge, i, the number of turns is calculated as:

Ni = Li sin(|Θ – βi |) / 2w

 where, Li represents the length of edge i. Since the total distance traveled in turns along edge i is

DSTi * Ni, the distance traveled formula for edge i can be simplified to:

DSTi * Ni

= (w / | tan(|Θ – βi|) | + w / | tan(|Θ – βi|) | + πr) * (Li sin(|Θ – βi |) / 2w)

= (w |cos(|Θ – βi|)| / sin(|Θ – βi|) + w |cos(|Θ – βi|)| / sin(|Θ – βi|) + πw/2) *

 (Li sin(|Θ – βi |) / 2w

= (Li * |cos|Θ – βi|)| / 2) + (Li * |cos(|Θ – βi|)| / 2) + (π Li * sin(|Θ – βi |) /4)

The portion of the formula representing the distance moving straight in the headlands was kept

separate so as to allow for different weights to be assigned to the three parts of the distance

20

formula due to efficiency differences. To account for efficiency differences, each of the three

parts of the distance formula is multiplied by a cost coefficient, ck, k = 1…3 which is simply the

inverse (time/distance) of the speed in which the vehicle travels during that portion of the turn.

Thus modified, the total cost along edge i while covering region j (TCji) using parallel paths in

the direction Θj becomes:

TCji = c1 (Li * |cos| Θj – βi|)| / 2) + c2 (Li * |cos(|Θj – βi|)| / 2) + c3 (π Li * sin(|Θj – βi |) /4)

The total cost while covering a region in a given direction is simply the sum of the total costs for

each of the n edges of the field boundary:

TCj = ∑i=1…nTCji

As indicated earlier and discussed in more detail below, the proposed algorithm involves

multiple phases consisting of subdividing the field into trapezoidal regions, calculating the

optimal direction for each subregion, and merging adjoining regions. The decision whether to

merge two adjacent regions, denoted region 1 and region 2, is based on whether merging the two

regions yields a cost savings when compared to leaving the regions separate. There are two basic

ways in which two regions can be merged: merge while covering each subregion using its own

original optimal direction or merge covering the combined regions in the same direction. Each

method of merging has its own formula for calculating cost savings. In both cases, if a merge is

made, the total cost for the merged region is updated to equal the sum of the original costs of the

two regions separately minus the cost savings (CS):

TC1 + TC2 – CS

The first merge scenario, where adjacent subregions are merged while retaining the

original directions for each subregion, typically happens where it is possible to smoothly

transition a path in one direction to a path in slightly different direction. This in turn happens

when the paths intersect the same shared edge, such as in Figure 11. The vertical line in the

center represents the shared edge. A merge would be warranted in this scenario if the cost of

making the transition from the one region to the other along the original shared edge is less than

the cost of making U-turns along the shared edge when covering both regions separately. Thus

the cost savings can be expressed as:

21

CS = TC1i + TC2i – CTi

TC1i and TC2i represent the turning cost along shared edge i for regions 1 and 2, respectively, in

their optimal direction. CTi represents the transition cost along edge i from region 1 to region 2.

Figure 11. Merging regions while retaining original directions.

In order to formulate the transition cost, it must first be decided how to match up edges

from the two subregions, particularly where each region has a different number of turns on the

shared edge. There are several approaches for doing so, including leaving the original passes and

transitioning from one region to another only when progress in the first region is leading at least

one row width ahead of that in the second width, modifying the passes to allow for concentric

curves matching on the outside corner, and modifying the passes to allow for concentric curves

matching on the inside. The approach used by Jin (2009) was adopted here – namely concentric

curves matching on the inside. Figure 12 depicts how this works.

22

Figure 12. Matching passes between neighboring regions by pairing the swaths from the

inside corner. (Jin 2009)

Using this approach the length of the turn during the first transition is simply the arc

length of a circle with radius r for an angle difference of |Θ1 – Θ2|: |Θ1 – Θ2| r. The center of the

circle is fixed at the inside corner. So as to maintain a constant pass width of w, for each

subsequent transition, the radius increases by w. The number of times this transition is made is

simply the minimum of the number of turns on the shared edge for region 1 and the number of

turns on the shared edge for region 2:

 N i’ = min (Li sin(|Θ1 – βi |) / 2w, Li sin(|Θ2 – βi |) / 2w)

The total transition cost on edge i is therefore

CTi = (|Θ1 – Θ2|) * N i’ * (r + w * N i’)/2 + Ci

Here, Ci is the cost of making u-turns for the remaining passes needed to completely cover the

larger of the two regions.

The second merge scenario, where two adjacent regions are joined into a single region

which is covered using back and forth passes in the same direction, is depicted in Figure 13.

Figure 13(a) shows the optimal directions for the individual regions if covered separately. Figure

13(b) shows the optimal direction for covering the merged region.

23

Figure 13. Merging regions using one direction for the entire area. (a) Optimal directions if

separately covered. (b) Optimal direction if merged.

When merging two previously unmerged regions, the cost savings in this case is:

CS = TC1 + TC2 – (TC1Θ – TCiΘ) – (TC2Θ – TCiΘ).

TC1 and TC2 represent the total cost for region 1 and 2, respectively, using their own optimal

directions. TC1Θ and TC2Θ represent the total cost for region 1 and 2, respectively, using passes

in direction Θ. TCiΘ represents the total turning cost along shared edge i in direction Θ.

More care is needed when calculating the cost savings of merging a region (A) with a

region that was formed by merging two other regions (B and C) while retaining the original

directions. See Figure 14 for two options. Denote the left region as A, the middle region as B and

the right region as C. Suppose B and C were previously merged with B and C retaining their

original directions, as in Figure 14(a). It may be that covering the merged region ABC all in the

same direction does not yield a cost savings, but covering AB in the same direction and C in its

original direction does yield a cost savings. As a result, the cost savings of merging A with BC

must be compared with the cost savings of merging A into B alone.

24

Figure 14. Two options for merging with a previously merged region. (a) The three regions

individually. (b) Regions B and C as merged. (c) Option1: merge while covering region C in

a different direction from A and B. (d) Option 2: merge while using same direction for all.

25

CHAPTER 3: ALGORITHM

3.1 Algorithm Overview

The goal of this research is to find an efficient algorithm that is O(n
2
) or better and finds a

close to optimal solution to the path planning problem. By reduction from the Traveling

Salesman Problem, finding the optimal complete coverage solution to a general polygon has

been shown to be NP complete, meaning there is no polynomial time algorithm that finds the

exact optimal solution. Meuth (2001), Zelinsky (1993). As a result, to achieve a reasonably

efficient algorithm, finding the exact optimal solution will be sacrificed.

Two points were noted when formulating a complete coverage algorithm. First, it is

relatively easy to calculate the cost of covering the entire field using back and forth passes in a

given direction. Iterating from 0 to 180 using a sufficiently small interval would yield a

direction that is roughly the optimal direction for doing so. The coverage pattern proposed by

any complete coverage path planning algorithm should not have a cost that is greater than the

cost of covering the entire field in a single direction. In other words, the sum of the costs of the

parts should not exceed the cost of the whole. Further, regardless of the coverage pattern that is

proposed, the paths will intersect all of a subset of the edges of the boundary. It stands to reason

that if the search for the optimal coverage pattern starts in the same direction as the optimal

direction if the field were covered in a single direction using boustrophedon passes, then the

resulting solution should be fairly “good”. Second, it is much easier to calculate the optimal

coverage direction for a rectangle – the optimal being in one of the directions from 0 to 180 ,

with no subdivision needed. If the field was subdivided into relatively rectangular regions and

the optimal calculated for each subregion, the cost savings should be fairly “good.” If on top of

that all neighboring regions were merged back together if there is a way to more efficiently cover

the whole instead of the parts separately, the result would be even closer to the optimal.

Based on the foregoing, as with prior algorithms, our approach involves subdividing the

field into subregions where the problem is simpler, and then piecing the parts together, checking

at each stage whether it is more efficient to merge or leave the regions separate. To achieve a

26

better running time, instead of using a recursive divide and conquer approach such as one

proposed by Jin (2009) where all possible directions are considered when subdividing the field, a

multi-phase plane-sweep algorithm is proposed. The initial sweep direction is chosen to be the

normal to the direction in which the field as a whole can be optimally covered using identical

back and forth straight passes. From a high level perspective, the algorithm is as follows:

Algorithm: Quick Optimal Path Planning (QuickOPP)

Input: A list of n segments, sorted east to west, south to north representing the edges of the

field. The edge structure stores the start, end, and possibly additional data such as whether it

is passable or impassable. For purposes of this thesis, all sides are assumed to be passable.

In the test implementation of this algorithm, the edges of the boundary were stored as part of

a doubly connected edge list (DCEL), although other implementations are possible.

Output: A doubly connected edge list representing the subregions, the coverage path

direction for each subregion, and the total coverage cost.

1. Determine the optimal overall coverage direction. Determine the direction which attains

the minimum turning cost if the entire field was covered in the same direction using

boustrophedon paths. Set the sweep direction for the plane-sweep algorithm as the

direction normal to the optimal coverage direction. Store the minimum cost.

2. Decompose the boundary into trapezoid shaped regions. Using the plane-sweep

algorithm, sweep the field in the direction calculated in step 1 to decompose field into

(roughly) trapezoidal regions. At each vertex, assuming the width of the new region is

larger than the pass width, close the current region and start one or more new regions.

The resulting subdivision is represented by a doubly connected edge list (DCEL) and a

list of faces representing the interior regions of the field is constructed.

3. Calculate optimal coverage for each region. For each interior region that was created in

step 2, calculate the direction in which the region can be optimally covered.

4. Merge regions. Processing the adjacent regions from right to left, check adjacent regions

to determine if it is more cost effective to merge the regions or to leave them separate.

5. Return the optimal result. Compare the cost of the proposed solution at the end of step 4

with the cost of covering the entire field in the same direction, and return the solution

with the minimum cost.

The following sections describe in more detail each of the main steps in the algorithm. Example

figures are displayed to show the resulting output. Except where otherwise noted, the starting

boundary is as shown in Figure 15:

27

Figure 15. Example Iowa field

3.2 Sweep Direction

The optimality of the paths generated for each subregion is influenced by the sweep

direction. Because turns are more expensive than proceeding in a straight line, the optimal paths

will tend to follow the longest length of the trapezoid to reduce the number of turns. If the sweep

direction is not chosen wisely, the algorithm could fail to consider more optimal directions. To

counter act this, the sweeping direction should be one such that after the sweeping algorithm is

applied, the resulting subregions will be shaped so as to have optimal coverage directions

tending towards the overall optimal direction.

28

The first step of the algorithm must therefore be to determine in which direction the

sweep line in the plane-sweep algorithm should go. As noted earlier, if the entire field was

covered in the same direction using boustrophedon passes, one of the directions from 0 to 180

would be the direction it could be optimally covered. Denote this path direction as the initial

optimal direction. The algorithm should find a way to cover the field that costs no more than

covering the entire field in the initial optimal direction. Further, intuitively, the majority of the

field would most likely be optimally covered in the same direction as the initial optimal direction

given that regardless of how the field is covered, all passes must intersect a subset of the edges of

the field and the initial optimal direction represents the direction that has the least turning cost.

If the field were decomposed so that all long, narrow subregions were long in the same

direction as the initial optimal direction, then the optimal paths for each of those subregions

would also tend toward that initial optimal direction. The points on the boundary are likely to be

closer together than the length of the field. Therefore, if the sweep line was in the initial optimal

direction, then the resulting trapezoids would have their longest edges parallel to the sweep line.

Since the sweep direction is normal to the sweep line, the problem of determining the direction

to perform the plane-sweep algorithm is therefore reduced to calculating the initial optimal path

direction for the entire boundary and returning the direction that is normal to that optimal

direction. The algorithm for determining the direction to orient is as follows:

Algorithm: Compute Sweep Direction

Input: A list of n segments, sorted east to west, south to north representing the edges of the

field.

Output: The direction in which to move the sweep line when subdividing the field.

1. Call Compute Optimal Direction, passing in the list of n segments.

2. Return the normal to the optimal direction.

Algorithm: Compute Optimal Direction

Input: A list of n segments, sorted east to west, south to north representing the edges of the

field.

Output: The direction in which the entire region can be optimally covered using parallel

straight passes.

29

1. Initialize the overall minimum cost to -1 and the optimal direction to 0

2. For each direction from 0 to 180 in the desired increment level

a. Initialize the total cost to 0.

b. For each of the n sides

i. Calculate the turning cost for side i.

ii. Add the turning cost for side i to the total cost.

c. If the total turning cost is less than the overall minimum or if the minimum cost is still

in its initial state of -1, update the minimum cost and set the optimal direction to the

current direction.

3. Return the optimal direction.

Note that Compute Optimal Direction was pulled out into its own algorithm. This is in

anticipation of being able to reuse the same algorithm in section 3.4 when the optimal direction

for each subregion will need to be computed.

The running time of this phase of the algorithm is easily seen to be O(dn) time where d is

the number of discrete directions between 0 and 180 . Only step 2 takes non-constant time.

Step 2 proceeds in a brute force manner, iterating through the directions between 0 and 180 .

Obviously, given that there are an infinite number of directions in that range, all possible

directions cannot be considered. Rather a discretized subset is considered, computed using a

specified increment level. For each direction, the cost of turning on each side of the field is

calculated exactly once. Using the cost formulas specified in Chapter 2, that cost calculation can

be done in constant time for a given edge. The turning cost needs to be calculated for a total of n

sides for each of the d directions, and so this phase has a running time of O(dn). If the number of

directions checked in step 2 is held constant, the running time reduces to O(n).

Depending on the desired accuracy, the increment size could be increased or decreased.

However, care needs to be taken when selecting the increment size as the number of directions

checked can dominate the running time. To speed up this algorithm further for regions with a

smaller number of edges, use could be made of the observations in Chapter 2 that the optimal

direction tends to be the direction in which the turning cost attains a minimum. Thus instead of

iterating through all possible directions between 0 and 180 , this phase could first calculate in

O(n) time the angles of all the edges and focus on directions around those angles. Since the

number of different edge angles is still bounded by 180 , the running time would remain O(n),

but the preceding constant would be smaller.

30

3.3 Trapezoidal Decomposition

The second phase of the algorithm involves subdividing the field into trapezoidal shapes.

In this phase, a modified version of the standard plane-sweep algorithm described by Berg et al.

(2000) is used to subdivide the field. The field edges are sorted left to right, bottom to top, and

are processed in order. For each edge of the field, a vertical edge is created at the left endpoint

provided the vertical edge is in the interior of the field. For two edges that have its smallest angle

to the left side of the shared endpoint, a vertical edge is created at the right endpoint provided the

vertical edge is in the interior of the field. As in the standard plane-sweep algorithm, an active

edge list is maintained representing the list of edges, sorted top down, that intersect the sweep

line.

Figure 16 depicts the result of a literal interpretation of the plane-sweep algorithm on the

sample field.

Figure 16. Result of trapezoidal decomposition

31

As seen from this figure, the vertical lines are highly concentrated in areas where the field

boundary curves, particularly along the left and right sides of the boundary. So as to avoid

creating regions narrower than the implement, the standard plane-sweep algorithm was modified

to keep track of the last vertical line created, and not subdivide the region if the width of the

resulting region would be less than the pass (implement) width. Also note from Figure 16 that

many of the adjacent regions are rectangular in shape, and would remain rectangular in shape if

merged. Oksanen (2007) attempted to avoid this by having a second phase that goes back and

merges adjoining regions provided the merged region remained fairly rectangular. However, for

better performance, these two phases can be combined into a single decomposition phase by

simply not subdividing in the first place if the angle between proposed dividing line and the

adjoining edges is approximately 90 . This latter criteria was loosened slightly by avoiding

closing a region and starting a new region if the angle between the current edge and the previous

edge is approximately 180 . The aim here is to allow for trapezoidal regions generically instead

of just rectangular regions. This in turn allows for larger subregions and fewer regions to

subsequently merge back together.

There is an exception to the above modifications. Note that when the first point on an

interior boundary is encountered, a vertical line created at that point results in one region being

terminated and two new regions being started. Similarly, when the last point on an interior

boundary is encountered, two regions are terminated and one new region is created. Figure 17

demonstrates these scenarios. Because of the change in connectivity, it is desired that vertical

lines always be created at these two critical points.

Figure 17. Change in connectivity as vertical edges are created. When the left point on the

interior is encountered, polygon A is closed, and polygons B and C are opened. When the

right point on the interior is encountered, polygons B and C are closed and polygon D is

opened.

32

The decomposition algorithm is thus:

Algorithm: Decompose Into Trapezoids

Input: A list of n segments, sorted east to west, south to north representing the edges of the

field, and the direction to rotate the field.

Output: A doubly connected edge list (DCEL) representing the field subdivided into

trapezoidal shaped regions.

1. Initialize the active edge list to empty.

2. Initialize the list of edges to be completed to empty.

3. Initialize the location of the last vertical to “not seen”

4. For each segment in the sorted input list

a. Mark the edge as “processed”.

b. Update the location of the sweep line to the “left” endpoint.

c. If the list of new edges to be completed is not empty and the location of the

new edge list falls before the left end point of the current edge, find the index

in the active edge list of the edge the vertical comes off of, and connect the

vertical to the edges immediately above and below it in the active edge list.

d. Update the active edge list, adding the new edge and removing any edges that

are now out of scope.

e. If neither the previous nor the next edge along the boundary has been

encountered and the current edge is currently an “upper” edge (i.e, its

position in the active edge list is divisible by 2), start an exterior boundary:

i. Get the next segment in the sorted input list. This represents the

second edge on the boundary.

ii. Construct a half edge for it, storing the new half edge as the duplicate

of the original edge.

iii. Update the active edge list.

iv. Connect the two edges together.

f. Else if neither the previous nor the next edge along the boundary has been

processed yet, start an interior boundary:

i. Get the next segment in the sorted input list. This represents the

second edge on the boundary.

ii. Mark the second edge as processed.

iii. Update the active edge list.

iv. Connect the two edges together.

v. Close the current region and start two new regions. Construct an edge

connecting the left end point of the first edge on the interior boundary

to the upper exterior boundary (the edge in the active edge list

immediately before the first interior edge). Construct an edge

connecting the left end point of the first edge on the interior boundary

to the lower exterior boundary (the edge in the active edge list

immediately after the second interior edge). The two edges created in

this step should form a straight line.

33

g. Else if the current edge is the last edge to be processed on an interior

boundary (i.e. both the previous and next edges have already been processed

and the current edge isn’t the first or last edge in the active edge list)

i. Connect up the edge to the boundary, creating a new edge at the

sweep location if necessary. Details of this step are given in step i

below.

ii. Close two regions and start a new region. Construct two edges, one

from the right end point to the upper exterior boundary, and one from

the right end point of the current edge to the lower exterior boundary,

connecting the two new edges together. Leave the edges unconnected

to the upper and lower exterior boundaries as it is not yet known

which edges it would be connected to at the top and bottom. Add the

new edges to the list of new edges to be completed.

h. Else if the current edge is the last edge to be processed on the exterior

boundary

i. Build a new edge at the location of the sweep line, connecting it to the

previous edge in the active edge list (the upper exterior boundary),

and to the next edge in the active edge list (the lower exterior

boundary).

ii. Connect up the edge to the previous or next edge on the boundary, as

appropriate, so as to close the exterior boundary.

i. Else

i. If the sweep line is more than the pass width from the previous

dividing line or if an edge created at the location of the current sweep

line would fall outside the field, or if the angle between the current

edge and the edge to the left is close to 180 , connect up the edge to

the boundary without closing the current region.

ii. Else close the current region and start a new one. Construct a new

edge parallel to the sweep line, connecting the left end point of the

current edge to the previous edge in the active edge list (if the current

edge is a “lower” edge) or to the next edge in the active edge list (if

the current edge is an “upper” edge).

For purposes of the experiments, angles between 170 and 190 were considered “close to 180 ”

As thus modified, running this algorithm on the example Iowa field yields the result shown in

Figure 18.

34

Figure 18. Sample Iowa field after being subdivided.

The running time of this phase takes O(n log(n)) time using a standard plane-sweep

algorithm. Each of the n sides is processed once. For each side, there is the O(log n) time to

insert the edge in the active edge list. Otherwise, deciding whether to close a region and open

another region and connecting up the current region takes constant time. The trapezoidal

decomposition algorithm results in at most O(n) trapezoids, with at most two new edges created

for each vertex of the original boundary. Further, note that each trapezoid has at most two

trapezoidal regions adjacent to it on the left and right sides, and no regions adjacent to it on the

top or bottom sides. This will be an important fact when calculating the running times of the

remaining parts of the overall algorithm.

35

3.4 Optimal Coverage for Each Region

The third phase of the algorithm is basically a brute force calculation of the optimal

coverage direction for the subregion. Considering all angles from 0 to 180 in the desired

increment amount (the test algorithm used one degree increments), it calculates the cost of

covering the region in that direction. As a result, the algorithm is essentially identical to the

algorithm for the first phase, just repeated for each region.

Algorithm: Compute Optimal Coverage for All Regions

Input: A list of the subregions of the field. As implemented, this list was in the form of a

DCEL as calculated in phase 2.

Output: The direction in which to move the sweep line when subdividing the field.

1. For each region in the list of subregions,

Call Compute Optimal Direction, passing in the edges associated with the subregion.

a. Store the result with the region.

Figure 19(a) below depicts the results of this phase.

A superficial analysis of this phase of the algorithm would lead to the conclusion that the

running time of this phase is O(n
2
). The reasoning of such an analysis would proceed as follows:

there are O(n) regions as a result of the plane-sweep region, and worst case there are O(n) edges

to a region, and to calculate the turning cost would therefore be O(n
2
). However, note that an

edge can only belong to at most two regions, and so as all of the O(n) regions are processed, each

edge is considered at most two times. Thus the running time of this phase is actually O(n).

3.5 Merge of Regions

In the final phase, each pair of adjacent regions are checked to determine whether it is

more cost efficient to merge two subregions and cover them using a single pattern, or more cost

efficient to keep them separate. Adjoining subregions are processed from right to left. Due to the

way in which the overall field was subdivided, each subregion has at least two and at most four

adjacent neighbors.

36

Going into this phase, each subregion is already assigned an optimal direction. When

deciding whether to merge two adjoining regions, there are four ways to handle the merge:

merge keeping the original optimal directions for each subregion, merge using the optimal

direction from one of the two regions for covering the merged region, merge using an entirely

new direction, or do not merge. There are also two starting states for the adjoining regions: they

either share the same optimal direction or they do not. The following table summarizes these

scenarios, and how to handle them.

Scenario
Starting from Same Optimal

Direction

Starting from Different

Optimal Directions

Merge using existing direction

from both

Case A: Easy case – always

merge

Case B: Merge if there is a

smooth transition and more

efficient to make transition

instead of leaving separate

Merge using one direction to

cover both, that direction being

different from direction of

optimal for subparts separately

Case C: Can happen, but

typically only if the regions

separately are long and narrow

and together they are broader, in

which case the perpendicular

direction would be the optimal

Case D: Can happen, particularly

if the regions separately are long

and narrow and together they are

broader.

Merge picking one of the two

directions and using that for

both

Case E: N/A. This is essentially

the same as merge using existing

direction from both above.

Case F: Can happen if one region

is wide and the other is narrow,

and together it makes more sense

to use the direction of the wide

region.

Don’t Merge – Leaving passes

as is

Case G: Possible where there is a

change in connectivity (Figure

17). Otherwise it would always

make more sense to merge.

Case H: Possible

Table 2. Possible scenarios in which two regions can be merged

To handle these scenarios, this phase iterates through each shared edge that divides two

adjoining regions. The algorithm recursively calls itself to optimally merge the region on the

right side of the shared edge with everything to the right of it. After each recursive call, the

algorithm then proceeds to determine whether to merge the two regions abutting the shared edge.

When it has been decided whether to merge the two regions or not, control returns to the

algorithm, one level up, at which point it proceeds to determine whether not to merge the

37

preceding region with the region that was just optimally merged. For the typical pair of regions,

where there is no change in connectivity, six of the scenarios from Table 2 are considered:

1. Do the two regions have the same optimal direction? If so, compute the cost of

covering the two regions in the direction normal to the previously calculated optimal

direction and compare it to the cost of covering the two regions in the previously

calculated optimal direction. Merge using the most cost effective direction. This step

handles cases A and C from Table 2.

2. If the two regions have different optimal directions, determine if the directions

intersect the shared edge. If so, calculate the cost savings of merging while covering

each region using their own optimal direction, and smoothly transitioning between the

regions. Merge if the cost savings is positive. This step handles case B from Table 2.

3. If the two regions have different optimal directions and have not otherwise been

merged in step 2, then calculate four cost savings:

a. the cost savings for covering both regions using the left region’s optimal

direction,

b. the cost savings for covering both regions using the right region’s optimal

direction,

c. the cost savings for covering both regions using the direction normal to the

left region’s optimal direction,

d. and the cost savings for covering both regions using the direction normal to

the right region’s optimal direction.

Compare the cost savings, using the direction corresponding to the greatest cost

savings. If all cost savings are negative, then do not merge. This step handles cases D,

F and H from Table 2

4. If the left and right regions are merged based on the foregoing, and the right region is

a merged region of smaller regions, a final check is made to see if it would be more

cost effective to only merge the left region with the left part of the right merged

region, effectively splitting the merge. See Figure 14 in section 2.3.

In the case where the shared edge represents the location where one region ends and two

regions starts, the algorithm first calculates, using the above three step process, the cost savings

38

of merging the region on the left with the region on the lower right. It then computes the cost

savings of merging the region on the left with the region on the upper right instead. The region

on the left is then ultimately merged with whichever region on the right has the greatest cost

savings. The algorithm handles the case where the shared edge represents the location where two

regions end and one region starts similarly. It first calculates the cost savings of merging the

lower left region with the region on the right, and compares that cost savings with the cost

savings of merging the upper left region with the region on the right. The region on the right is

then ultimately merged with whichever region on the left has the greatest cost savings. If no

merge can be done with a positive cost savings, no merge is performed.

Figure 19 shows the before and after of this phase of the algorithm on areas where there

is a change in connectivity. Note that even though all optimal paths are in the same direction,

only the upper left and lower right triangle is merged with the middle rectangle. Due to the edges

of the field, it is not possible to process both the top and bottom regions in a single up and down,

left to right pass, and so a decision was made as to which regions to merge.

Figure 19. Sample output of the merging phase. (a) The field just after phase 3 and before

the merging. (b) The field at the end of phase 4 after merging.

39

Figure 20 shows the sample Iowa field previously depicted in Figure 18 after several

rounds of merging. Note how near the lower left corner there are two black vertical lines. These

lines represent that small portion below the small interior boundary that was not merged. Like

the upper right region in Figure 19, this area was not merged with either the region to its right or

the region to its left due to it being more cost effective to merge those regions with the larger

region above the interior boundary.

Figure 20. Sample Iowa field after several rounds of merging, just before merging region A

with merged region B.

The specific algorithms used during the merge phase are as follows:

40

Algorithm: Merge

Input: A DCEL representing the field subdivided into trapezoids. Stored with each face in the

DCEL is the merged face it is currently part of. The merged face is initialized to NULL.

Output: A DCEL representing the field “optimally” covered.

1. Set firstFace equal to the left most face in the DCEL.

2. Call MergeBestChild(firstFace, NULL)

3. Return the updated DCEL.

Algorithm: Merge Best Adjacent Region

Input: The subregion to be processed (regionToBeProcessed) and the subregion just visited

(cameFromRegion). Stored with each region is the merged region it is currently part of.

Output: The right portion of the field, starting from the subregion to be processed, with all

subregions “optimally” merged.

1. Set currentEdge equal to any edge on the subregion to be processed. The current

edge represents the common edge between two faces.

2. Mark regionToBeProcessed as visited.

3. Set startEdge equal to current edge.

4. While currentEdge is not equal to the start edge

a. Set secondRegion equal to the face of currentEdge’s twin.

b. If secondRegion is not equal to cameFromRegion and it adjoins on the right,

i. Recursively call Merge Best Adjacent Region(secondRegion,

regionToBeProcessed)

ii. Call Merge Two Regions(regionToBeProcessed, secondFace,

currentEdge).

c. Else if secondRegion is equal to the cameFromRegion and it adjoins

regionToBeProcessed on the left, add it to the list of left edges to process

later.

5. For each edge, leftEdge, in the list of left edges to process later

a. If the region on the opposite side of the edge is not NULL and it was not

already visited

i. Recursively call Merge Best Adjacent Region(the opposing region,

regionToBeProcessed);

ii. Call Merge Two Regions(regionToBeProcessed, leftEdge);

6. Return the subregion that was just processed (i.e., regionToBeProcessed)

Algorithm: Merge Two Regions

Input: Two subregions and the shared edge between the regions. Stored with each region is the

merged region that it is currently part of. The second region is already assumed to be optimally

merged for all regions to the right of it.

41

Output: The regions merged or not, depending on whether it was cost effective to do so.

1. Set previousMergedFace equal to the merged region currently assigned to the first

region

2. If the two regions have the same optimal direction. In this scenario, the regions will

be merged.

a. Calculate the cost savings if both regions were covered in the direction

perpendicular to the individual optimal direction.

b. If the cost savings is greater than 0, the regions are merged using the

perpendicular direction as the new optimal. Store with the merged region the

current cost savings for merging.

c. Otherwise the regions are merged using the original optimal direction and

store with the merged region the current cost savings – which is the amount

saved by not needing to turn along the common edge.

3. Otherwise

a. If the optimal paths covering the two regions intersect the shared edge,

calculate the cost savings for merging the two edges. Merge if the cost savings

is greater than 0.

b. If the optimal paths do not intersect the shared edge,

i. Calculate the cost savings (using the formula from step 1), for

covering the two regions using the optimal direction for region 1.

ii. Calculate the cost savings (using the formula from step 1), for

covering the two regions using the optimal direction for region 2.

iii. Calculate the cost savings (using the formula from step 1), for

covering the two regions using the direction perpendicular to the

optimal direction for region 1.

iv. Calculate the cost savings (using the formula from step 1), for

covering the two regions using the direction perpendicular to the

optimal direction for region 2.

v. Determine which of these four options yields the largest cost savings.

vi. If the largest cost savings is greater than 0, merge using the

corresponding coverage pattern and store with the merged region the

current cost savings.

4. If the regions were merged and the first region was previously associated with

another merged region

a. Compare the savings for using the current merged region with the previous

merged region.

b. If it is more cost effective to merge the first region with the second region

instead of with the regions that it was previously merged with, remove the first

region from the merged region it was previously associated with and set its

merged region to the region created in step 3.

5. If the regions were merged and the second region was previously associated with

another merged region

a. Compare the savings for using the current merged region with the previous

merged region.

42

b. If it is more cost effective to merge the second region with the first region

instead of with the regions that it was previously merged with, remove the

second region from the merged region it was previously associated with and

set its merged region to the region created in step 3.

Of all the phases of the overall algorithm, this phase has the longest running time. Each

trapezoidal region is processed in order, comparing it with at most two adjoining regions to its

right and two adjoining regions to its left. As previously mentioned in section 3.3, the trapezoidal

decomposition yields O(n) shared edges, meaning there are O(n) pairs of regions to consider. For

each pair of regions, the cost of merging the region in each of six different ways are calculated

and compared to the cost of covering the regions separately. In the case of merging a region with

a previously merged region, one more cost calculation is made to determine if it would be cost

effective to split the previously merged region. Finally, two additional costs are calculated and

compared in the cases where there is a change of connectivity. The calculation of these costs

takes O(n) time as the costs must be calculated for each side and then summed. In the worst case,

there are O(n) sides in the right region since that region could represent a merger of one or more

other regions. As a result, the overall running time of the fourth phase is O(n
2
). Since the

running time of all other phases of this algorithm is less than the running time of this phase, the

overall running time of the Quick Optimal Path Planning algorithm is also O(n
2
).

3.6 Order of Traversal of Remaining Regions

Now that there is a plan in place for covering each region of the field, and the bounding

edges of each region, the next step would be to determine the order in which each subregion

should be processed to minimize the transition time. Although not implemented in the test

program, this step can be implemented by viewing each region as a node in a binary graph and

traversing the graph in a depth-first manner. Choset (1997, 2000) Further, if we let the distance

between two adjacent regions be 1 unit, and the distance between two non-adjacent regions be 1

plus the distance between the ending point of the final pass through the first region and the

starting point of the first pass through the second region the distance between the center points of

each region, a best-first walk of the graph could be performed instead to determine the order in

43

which to process the regions. One such best-first search algorithm that could be used is the A*

search algorithm.

3.7 Correctness of the Algorithm

In order to achieve reasonable performance of the complete coverage path planning

algorithm, finding the precise optimal way for covering the entire field has willingly been

sacrificed. Nevertheless, it can be shown that the above algorithm finds a reasonable, relatively

“optimal” solution.

As discussed in section 3.2 above, the algorithm first computes the initial optimal

direction for covering the field in a single direction using parallel paths. The initial optimal

direction is computed in a brute force manner, iterating through each angle between 0 and 180

at the desired increment level, picking the direction with the minimum distance traveled as the

initial optimal direction. The total distance traveled for the actual overall optimal solution must

be less than or equal to the distance traveled covering the field in the initial optimal direction.

During the third phase of the algorithm, the optimal direction for each trapezoidal (convex)

subregion is computed, also in a brute force manner, again with the optimal direction for a

subregion being the direction with the minimum distance traveled. See Figure 21 for how the

sample Iowa field looks after the third phase of the algorithm. As with the initial optimal

direction, the sum of the distances traveled in each subregion while covering it using its own

optimal direction is also an upper bound on the actual overall optimal solution. The main idea of

the algorithm is once the optimal direction for each subregion has been determined, to try to

incrementally determine if this upper bound can be improved upon by merging adjacent regions.

44

Figure 21. Sample Iowa field with optimal directions for each sub region after phase 3.

During the merge phase of the algorithm, at the end of each call to Merge Best Adjacent

Region, the subregion being processed is relatively optimally merged (or not merged) with all

regions to the right. As a result, at the end of each call to Merge Best Adjacent Region, the total

distance traveled using the solution so far is no greater than the distance traveled if each

subregion were covered separately. To see this, consider how Merge Best Adjacent Region

operates. It first recursively calls itself passing in the adjacent region to the right as the “region to

be processed” and the current region being processed as the “came from region”. This does not

stop until the algorithm reaches the rightmost region. In the rightmost region, everything to the

right of that (which is nothing) is trivially optimally merged. Now assume that at the end of the

i’th call to Merge Best Adjacent Region, region being processed is relatively optimally merged or

45

not with everything to the right. On return from the i’th call to Merge Best Adjacent Region,

what was the region being processed is now the adjacent region to the region being processed.

Then Merge Regions gets called with the region being processed as the first region, the adjacent

region as the second region, and the shared edge. Merge Regions then determines whether two

can be merged in a manner that saves on cost (i.e. reduces the distance traveled). If so, Merge

Regions returns with the merged face. If not, it is more optimal to leave the two regions separate.

Either way, after each call to Merge Regions, the region being processed and the adjacent region

are relatively optimally merged (or not merged), and so Merge Best Adjacent Region in turn

returns with the region being processed optimally merged (or not merged) with everything to the

right. See Figure 22(b) for the results of the merging phase on the sample Iowa field. Therefore

when the merging phase is completed, the distance traveled using the proposed solution is better

than or equal to the distance traveled covering each region separately. The overall algorithm then

compares the distance traveled using this solution with the distance traveled using the initial

optimal direction, and returns the solution with the minimum distance traveled. In this manner,

the solution reached is no greater than either the initial optimal solution or the solution of

covering each region separately.

46

CHAPTER 4: EXPERIMENTS AND RESULTS

 The QuickOPP algorithm was coded in C++ using Microsoft Visual Studio 2008. All

tests were run on a laptop with a 2.80 GHz Intel Core 2(™) Dual CPU, processor with 2.96 Gb

of RAM. Real field boundaries were created from data logged by the John Deere GreenStar 2

System
TM

, and unloaded into GreenStar Apex desktop software (Apex). Images of the as-applied

or as-processed field are taken from data unloaded into Apex.

47

Figure 22. Iowa field 1. (a) As fertilized by the farmer. (b) As proposed by QuickOPP.

The QuickOPP algorithm was first tested against one of the sample fields provided with

the Apex software. Although it is a “sample” field in Apex, the field is an actual Iowa field

located in central Iowa. The boundary was auto-generated in Apex from application data logged

in 2007. Figure 22(a) shows the route the farmer took to fertilize the field. Notice that the farmer

first drove the entire boundary a couple times and made a few more vertical passes along the

right side before covering the rest of the field using horizontal passes. The pass width was

46’40”, or approximately 15 meters. Figure 22(b) shows the route proposed by QuickOPP using

the same pass width. Notice that the route proposed by QuickOPP is generally the same as the

“as driven” route, except it eliminates five turns by eliminating the vertical passes along the right

and extending the existing horizontal passes.

48

Figure 23. Iowa field 2 (a) As harvested by the farmer. (b) As proposed by QuickOPP.

49

 The second field that QuickOPP was tested against is also an actual field from Iowa

included in Apex’s sample dataset. This time, the boundary was auto-generated in Apex from

harvest data logged in the field back in 2006. Figure 23(a) shows the directions traveled while

the farmer was harvesting the field. The width of the depicted passes was approximately 20

meters. As with the previous Iowa field, the farmer here first drove the boundaries a couple times

before processing the interior. Figure 23(b) depicts the route proposed by QuickOPP. The

general direction proposed by QuickOPP is identical to the “as driven” route, not including the

driving of the headlands.

50

Figure 24. Iowa field 3 (a) As planted by the farmer. (b) As proposed by QuickOPP

The third field the algorithm was tested with was another field from Iowa included in

Apex’s sample dataset. This time, the boundary is from data points logged in the field while

driving the field boundaries. Figure 24(a) shows the directions traveled while the farmer was

planting corn. The blank spots in the middle of the field are from where there was a loss of GPS

signal, and do not indicate interior boundaries. The pass width was approximately 20 meters. The

farmer here chose to drive the northern and southern boundaries in a horizontal manner, and the

remaining of the field in a vertical manner. Figure 24(b) depicts the route proposed by

QuickOPP. QuickOPP recommends that the field be covered using horizontal straight passes

instead of vertical. The QuickOPP result has a turning cost of 9667.69 meters, while as driven by

the farmer, the turning cost is 10170.70 meters. This eliminates a significant number of turns and

results in a calculated savings of 503.01 meters.

51

Figure 25. North Dakota field 4 (a) As fertilized by the farmer. (b) As proposed by

QuickOPP

Figure 25 compares the results of QuickOPP with how a farmer fertilized a field in North

Dakota. As before, Figure 25(a) shows how the farmer drove the field. In this instance, the pass

width was approximately 13 meters. Note that the farmer drove the boundary along the north,

east and south sides, and that no headland was used along the west edge of the field. Figure 25(b)

shows the path QuickOPP would have taken. The results are fairly equivalent as due to the

turnings needed on the north, east and south sides, headlands would be required anyway.

52

Figure 26. Ohio field 1. (a) Jin’s approach with pass width of 30 feet. (b) QuickOPP result.

53

QuickOPP was also tested against some of the same fields Jin (2009) used to test his

algorithm (OPP) against. The application created by Jin (2009) was also available for side by

side performance comparisons. Figure 26 compares the results of QuickOPP and OPP. Both

algorithms ran in under a second. At first glance it would seem that the solution proposed by

Jin’s algorithm is more optimal. However, during the merge phase, QuickOPP did consider if it

were more cost efficient to use the approach in Figure 26(a), yet concluded that the approach in

Figure 26(b) was actually better assuming all turns are U-turns. The total turning cost as

calculated by QuickOPP using Jin’s proposed path is 4549.59 feet assuming all turns are U-turns.

The total turning cost using the paths recommended by QuickOPP is 4342.88 feet, a savings of

about 206.71 feet. Consider the closed “handle” portion alone, including a new edge dividing it

from the rest of the field. Although it is cheapest to cover that region in isolation using vertical

passes, when taken in context of the entire field, doing so imposes turning costs on that new edge

– costs that were avoided by covering the region horizontally. It turns out the savings of not

having to turn on this new edge when covered horizontally outweighs the savings when covering

the region vertically. This result would be different if different types of turns were taken into

account, or if the three parts of the cost formula discussed in Chapter 2 were weighted

differently. In fact, if more weight is given to the turning cost portion of the formula, QuickOPP

does return with the same solution as that proposed by OPP.

Figure 27 is a comparison of the results of OPP and QuickOPP using a second field from

Ohio. In both cases, the pass width was set to 30 feet. Note that the recommended path directions

are identical in both approaches. However, the QuickOPP algorithm only took approximately 3

seconds to reach this result in comparison, while OPP took approximately 16 minutes before the

final solution was reached. This is significant cost savings considering this dataset only contains

32 points with three interior boundaries. Depending on the local geography, actual fields can

have significantly more points and interior boundaries. For example, in parts of North Dakota

there are lots of small lakes. Figure 28 depicts four fields located in that state. These fields are

from a dataset containing twenty-three (23) farms with several fields each, and are typical of the

size and shapes of the fields in that dataset.

54

Figure 27. Ohio field 2: (a) Jin’s approach with pass width of 30 feet (16 min to process) (b)

QuickOPP result (3234 milliseconds to process)

55

Figure 28 Four fields from North Dakota with a large number of interior boundaries and

data points

Finally, Figure 29 compares the results of this algorithm with that of Jin’s using the

example from Fabre et al. (2001). The results were identical with a pass width of 30 feet, and

slightly different with a pass width of 20 feet. There are a few things worth noting here. First,

even though QuickOPP doesn’t yet account for the differing turning types, it came up with

56

identical results as Jin’s OPP algorithm for a pass width of 30 feet. Using U-turns at the field

boundaries, the OPP is the more optimal approach for a pass width of 20 feet but the distance

traveled for the QuickOPP solution is not significantly more. Second, if the sweeping algorithm

swept in the normal direction, the merging algorithm yields the same results as Figure 29(b). To

consider more options for subdividing the field, the algorithm could be run twice, once to sweep

in the overall optimal direction and once to sweep in the normal direction. Third, note that the

QuickOPP approach did not merge the two sides of the field into one. The reason is that it

assumed that all boundaries were impassible, and so a transition would need to be made to the

lower right corner of the right half so as to be able to completely cover the right half using

parallel straight paths. Finally, it turns out that neither OPP’s nor QuickOPP’s solution is the

optimal solution in the case of a 20 foot pass width. Through trial and error, it was discovered

that a yet more optimal solution is as presented in Figure 30. It is similar to the approach shown

in Figure 29(b), but the passes are parallel to the northeast instead of the southwest sides of the

upper right section. Nevertheless, the distance traveled using QuickOPP’s solution is only 61 feet

more than the distance traveled using the more optimal solution, having a turning cost of 2403.72

as compared to a turning cost of 2342.83 using the more optimal solution. Table 3 summarizes

the results of the above experiments.

57

Figure 29. Fabre et al’s field example. (a) Jin’s results with pass width of 30 feet. (b) Jin’s

results with pass width of 20 feet. (c) QuickOPP results for both pass width of 30 feet and

20 feet.

58

Figure 30. A more optimal solution to Fabre et al's field example.

Figure Field Area (acres)
Number of

Points

Time (in

milliseconds)
Savings

22
Iowa field 1 154.35

94 7807
Eliminates 5

turns

23
Iowa field 2 144.15

194 8651
0. Saves on

headlands

24 Iowa field 3 54.45 87 1969 503.01 meters

25

North Dakota

field 4

33.32

50 5016

0. Matches

what a farmer

would have

done

26 Ohio field 1 Unknown 11 873 206.71 feet

27 Ohio field 2 Unknown 32 3234 0

29

Fabre field

example

Unknown

14 834

-61 feet (pass

width of 20’)

0 feet (pass

width of 30’)

Table 3. Summary of results

59

CHAPTER 5. CONCLUSION

 The algorithm presented in this thesis has been shown to be an efficient algorithm for

finding the optimal solution for covering the field. QuickOPP yields results similar to those

produced by Jin (2009), and on fields tested, produced no worse results than approaches taken by

the farmers themselves. More importantly, the algorithm is significantly faster than previous

algorithms proposed for solving the complete coverage path planning problem in an agricultural

environment. Whereas prior algorithms took as long as O(n
3
 log (n)) time, the algorithm

proposed here runs in O(n
2
) time. The approach of Jin (2009) suffered from significant

performance problems once the boundary size exceeded 20 points and interiors were added.

Since most field boundaries tend to have more than 20 points, the algorithm was not yet ready

for use in the real world. The algorithm presented here has no such boundary size limitation,

being capable of handling large fields with hundreds of points. All tests were run on a laptop

with a 2.80 GHz Intel Core 2(™) Dual CPU, processor with 2.96 GB of RAM. A solution was

found for all fields tested, including those with hundreds of points and several interior

boundaries, in less than 60 seconds.

 There are some limitations, however, with this algorithm and areas for further research.

First, there are some scenarios where the first phase of the algorithm chooses a sweep direction

that is not as good as it could be. This typically only happens, though in fields such as that

depicted in the lower right corner of Figure 26 where there is a long narrow strip in one

direction, and the rest of the field is fairly compact in a different direction. The long narrow strip

may force the orientation of the sweep line to be parallel to the long side. However, this can be

easily handled without compromising the running time by also considering sweeping in two

directions: first as calculated for the field as a whole, and second in the normal direction.

A second limitation has to do with the fact the gain in performance was achieved at the

risk of potentially missing the true optimal solution. This occurred because the search space for

ways to decompose the field was restricted to subdividing the field parallel to the initial optimal

direction. The algorithm assumes that dividing lines in other directions would most likely yield

sub-optimal coverage directions. There may, however, be a scenario where that is not the case,

60

depending on the orientation and location of interior boundaries, and this algorithm would not

find the more optimal solution.

Several variations can be made to this algorithm to improve the optimality. Given that

each run of the algorithm only takes seconds, instead of confining the sweep to the overall

optimal direction, the sweep and merge phases can be repeated once for each edge of the field,

sweeping normal to the angle of the edge. This will increase the running time to O (n
3
).

Alternatively (or in addition), during the merging phase instead of confining the comparisons to

four principle pass directions, the optimal direction for a merged region can be calculated using

the same brute force method used to determine the initial optimal direction. Treating the number

of discrete intervals as constant, this will increase the running time by a constant. Finally, during

the sweeping phase, the tolerance for determining whether a trapezoid should be ended and a

new one started can be increased from 170 to the desired tolerance so as to reduce further the

number of trapezoids generated. The tolerance can even be modified so as to avoid ending a

region so long as the region remains convex.

Regarding areas for further research, this algorithm only operates in two dimensions. It

does not take into account the effect of hills in finding the optimal direction. If the hills are

particularly steep, then it would not be practical to travel in certain directions due to the slope. In

addition, hills introduce additional costs such as soil erosion that is not accounted for in an

efficiency/distance based cost formula. Finally, this algorithm does not solve the problem of

coordinating the work of several machines in the field, nor does it account for determining when

it would be most optimal to stop and refuel. Such an algorithm would be useful, for example,

while harvesting fields. In that scenario, there is typically a harvester moving through the field

harvesting, with a tractor alongside pulling a wagon into which the harvest crop is loaded.

Eventually the wagon gets full and either needs to unload or be replaced by another wagon.

Finding the most optimal path that allows for efficient loading and unloading of the following

vehicle would also be useful, but is not accounted for here.

61

Bibliography

Atkar, P. N., H. Choset, A. A. Rizzi and E. U. Acar. Exact Cellular Decomposition of Closed

Orientable Surfaces Embedded in R
3
. In Proceedings of International Conference on

Robotics and Automation, pp. 699-704, Seoul, Korea, 2001.

Barraquand, J., B. Langlois, and J-C Latombe. Numerical Potential Field Techniques for Robot

Path Planning. IEEE Transactions on Systems, Man and Cybernetics, 22(2): 224-241

(1992)

Berg, M. D., M. V. Kreveld, M. Overmars and O. Schwarzkopf. Computational Geometry. 2
nd

ed. Springer – Verlag Berlin Heidelberg 1997, 2000.

Chibin, Z., W. Xingsong, and D. Yong. Complete Coverage Path Planning Based on Ant Colony

Algorithm. In 15
th

 International Conference on Mechatronics and Machine Vision in

Practice, pp. 357 – 361, Auckland, New Zealand. December 2008.

Choset, H. Coverage of Known Spaces: The Boustrophedon Cellular Decomposition.

Autonomous Robots, 9: 249-253, 2000.

Choset, H. and P. Pignon. Coverage Path Planning: The Boustrophedon Cellular Decomposition.

In Proceedings of International Conference on Field and Service Robotics, Canberra,

Australia, 1997.

Dorigo, M and L.M. Gambardella. Ant colonies for the traveling salesman problem. Biosystems

(1997).

Du, X, H. Chen and W Gu. Neural Network and Genetic Algorithm Based Global Path Planning

in a Static Environment. Journal of Zhejian Univeristy SCIENCE 64(6): 549-554, 2005.

Fabre, S., P. Soures, M. Taix and L. Cordesses. Farmwork path planning for field coverage with

minimum overlapping. In Proceedings of the 2001 IEEE International Conference, pp.

691-694, 2001.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wessley (1994).

González, E., O. Álvarez, Y. Díaz, C. Parra, and C. Bustacarra. BSA: A Complete Coverage

Algorithm. In Proceedings of the 2005 IEEE International Conference on Robotics and

Automation, pp. 2040-2044, Barcelona, Spain, April 2005.

Guo, Y and M. Balakrishnan. Complete Coverage Control for Nonholonomic Mobile Robots in

Dynamic Environments. In Proceedings of the 2006 IEEE International Conference on

Robotics and Automation, pp. 1704-1709, Orlando, Florida, May 2006.

Jin, J. and L. Tang. Optimal Path Planning for Arable Farming. 2006 ASABE Annual

International Meeting, Paper No. 0611581-12, Portland, Oregon, 2006.

62

Jin, J. Optimal Field Coverage Path Planning on 2D and 3D Surfaces. A dissertation submitted to

the graduate faculty in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, Agricultural Engineering. Iowa State University, Ames, Iowa, 2009.

Kang, J. W., S. J. Kim, M. J. Chung, H. Myung, J. H. Park and S. W. Bang. Path Planning for

Complete and Efficient Coverage Operation of Mobile Robots. In Proceedings of the

International Conference on Mechatronics and Automation, pp. 2126-2131, Harbin,

China, 2007.

Martin, P., and A.P. del Pobil. Application of artificial neural networks to the robot path

planning problem. Transactions on Information and Communications Technologies. Vol

6, 1994. WIT Press.

Meuth, R. J. and D. C. Wunsch II. Divide and Conquer Evolutionary TSP Solution for Vehicle

Path Planning. 2001.

Oksanen, T. and A. Visala. Path Planning Algorithms for Agricultural Machines. Agricultural

Engineering International: the CIGR Ejournal. Manuscript ATOE 07 009. Vol. IX. July

2007.

Noguchi, N. and H. Terao. Path Planning of an Agricultural Mobile Robot by Neural Network

and Genetic Algorithm. Computers and Electronics in Agriculture 18: 187-204, 1997.

Rimon, E. Exact Robot Navigation Using Artificial Potential Fields. IEEE Transactions on

Robotics and Automation, 8(5): 501-518 (1992)

Ryerson, A. E. F. and Q. Zhang. Vehicle Path Planning for Complete Field Coverage using

Genetic Algorithms. Agricultural Engineering International: the CIGR Ejournal. 9:

Manuscript ATOE 07 014, July 2007.

Sörensen, M. J. Artificial Potential Field Approach to Path Tracking for a Non-Holonomic

Mobile Robot. In 11
th

 Mediterranean Conference on Control and Automation, June 2003.

Shah-Hosseini, H. The intelligent water drops algorithm: a nature-inspired swarm-based

optimization algorithm. In International Journal of Bio-Inspired Computation, 1(1/2):

71-79, 2009.

Sorensen, C. G., T. Bak, and R. N. Jorgensen. Mission Planner for Agricultural Robotics.

Tse, P.W., S. Lang, K.C. Leung and H.C. Sze. Design of a navigation system for a household

mobile robot using neural networks. In Proceedings of the International Conference on

Neural Networks, Anchorage, AK, 1998, pp 2151-2156.

Yang, S. X. and C. Luo. A neural network approach to complete coverage path planning. IEEE

Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics. 34(1): 718-725,

2004.

63

Zelinsky, A., R.A. Jarvis, J.C. Byrne and S. Yuta. Planning Paths of Complete Coverage of an

Unstructured Environment by a Mobile Robot. In Proceedings of International

Conference on Advanced Robotics. 1993.

Zhang, C, X. Wang and Y. Du. Complete Coverage Path Planning Based on Ant Colony

Algorithm. In Proceedings of the 15th International Conference on Mechatronics and

Machine Vision in Practice, pp. 357-361, Auckland, New Zealand, December 2008.

	2011
	Complete coverage path planning in an agricultural environment
	Theresa Marie Driscoll
	Recommended Citation

	tmp.1335711608.pdf.JOsqM

