
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

An experimental study of the effectiveness of
Panorama as a maintenance tool
Renish Palapetty
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Palapetty, Renish, "An experimental study of the effectiveness of Panorama as a maintenance tool" (2009). Graduate Theses and
Dissertations. 11059.
https://lib.dr.iastate.edu/etd/11059

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11059?utm_source=lib.dr.iastate.edu%2Fetd%2F11059&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

An experimental study of the effectiveness of Panorama as a maintenance tool

by

Renish Palapetty

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Computer Science; Information Assurance

Program of Study Committee:

Simanta Mitra, Co-major Professor

Carl K. Chang, Co-major Professor

Shashi K. Gadia

Iowa State University

Ames, Iowa

2009

Copyright © Renish Palapetty, 2009. All rights reserved.

ii

TABLE OF CONTENTS

List of Figures iv

List of Tables v

Abstract vi

1. Introduction 1

2. Related Works 4

2.1. Development Tools 4

2.2. Experimental Studies 7

2.3. Documentation Tools 9

3. Panorama Design 10

3.1. Overview 10

3.2. Design 11

3.2.1. Panorama Plug-In extensions 12

3.2.2. GUI 16

3.3. Using Panorama 17

3.3.1. Concern management 17

3.3.2. Concern interpretation 19

4. Study 21

4.1. Study Definition 21

4.2. Study Design 23

4.2.1. The poker project 23

4.2.2. Designing Maintenance Tasks 24

4.2.3. Instrumentation 25

4.3. Conducting the Study 26

4.4. Data Collection 27

5. Result Interpretations 29

5.1. Analysis of Task1 29

5.1.1. Defects Repaired 29

5.1.2. Skill Levels 30

5.2. Analysis of Task2 31

5.2.1. Defects Repaired 31

5.2.2. Skill Levels 32

5.3. Summary Analysis 33

5.4. Threats to validity of the study 35

5.4.1. Conclusion validity 35

5.4.2. Internal Validity 35

5.4.3. Construct Validity 36

iii

5.4.4. External Validity 36

6. Conclusion and Future Work 37

References 40

Appendix-1 Pre-Session Questionnaire 45

Appendix-2 Post-Session Feedback 47

Acknowledgements 48

iv

List of Figures

Figure 1: Eclipse Extensions 11

Figure 2: Extending Eclipse Views 12

Figure 3: Visualizer View 13

Figure 4: Visualizer Menu View 13

Figure 5: Extending the Visualizer plug-in 14

Figure 6: Panorama View 16

Figure 7: Concern Creation Screen 17

Figure 8: Adding Lines to Concerns 18

Figure 9: Viewing Concerns 19

Figure 10: Task1 - Defects Repaired 29

Figure 11: Task 1- Skill Level Breakdown 30

Figure 12: Task2 - Defects Repaired 31

Figure 13: Task2 - Skill Level Breakdown 32

Figure 14: Difference in Means 34

v

List of Tables

Table 1: Data for Experimental Group 27

Table 2: Data for Control Group 28

vi

Abstract

It is a well known fact that the amount of time and money spent debugging and

maintaining software far outstrips the amount spent developing it. Reports suggest that a

majority of this effort is related to information-seeking, concept-location, and software

comprehension. In addition to being inherently complex activities, these problems are

exacerbated due to the fact that the original developers are often unavailable to help with the

maintenance activities. To perform a maintenance task programmers first form dynamic and

static mental models of the program based on their prior knowledge of programming and on

information available about the program. Aside from high level design documents, Javadoc-

like documentation has been the primary means of obtaining such information about

programs. There are two severe shortcomings of this form of documentation: a) as

recognized by proponents of AOP, the code for many of the concerns of interest to the

maintainer are scattered across different classes and files and b) there are a lot of classes and

files for large systems leading to information overload and it is very hard and time-

consuming to identify the few segments of code and documentation that are relevant for a

specific maintenance activity.

To address these problems, we have developed an Eclipse plug-in, Panorama, which

allow master developers to document sections of code related to a specific developer concern

and provides ways to make such information readily available to maintainers. This tool helps

directly with information-seeking, concept location, and software comprehension activities

and focuses maintainer's attention on the specific code and guidance necessary for a

particular task. To validate the tool and our approach, we conducted an experimental study

with 19 subjects assigning them several maintenance tasks on a fairly complex application (a

multi-user Poker game). The study showed that the experimental group who had access to

Panorama was able to complete more maintenance tasks in less time than the control group

who did not have access to the tool. In addition, preliminary results indicate that the tool will

have more impact on productivity of persons new to the application and programming

environment than on experts.

1

1. Introduction

The problem

It is estimated that software maintenance costs around 60% to 80% of total software life-

cycle costs [1, 4, 5, 6, 16, 38]. Maintenance tasks are time-consuming, expensive, and error

prone. To make changes to a few lines of code the developer has to often hunt through the

entire code base to find the different sections of related code. This is often due to the fact that

the developer has to first understand the software and then perform the maintenance task [7].

The problem is exacerbated by the fact that typically the programmer assigned the

maintenance task is not the one who developed it. Often software maintenance tasks cross-

cut different classes and do not fall into any particular module. The modification task can

affect a concern or multiple concerns. A concern can be described as any conceptual unit of

the project. For example, a feature in software can be a concern. Concerns can be code

specific to non-functional requirements such as performance, security etc or just about

anything the developer thinks as a conceptual unit.

Current software development tools overwhelm the programmer with details – with data

and not with information or knowledge. The intentions of the original developer are not easy

to understand and although modular issues are usually documented in javadoc format - the

handling of crosscutting concerns is typically not well documented. Our survey of existing

tools shows that although many prototype tools have been developed to find the different

parts of concerns, the problem is still largely unresolved.

Work Done: Tool Development

We have developed a tool called Panorama with the specific intention of helping

maintainers with the information necessary to perform specific tasks pertaining to concerns

of interest. In first pass, developers with a thorough understanding of the software use the

tool to quickly add information about different concerns and their related code segments.

Later, maintainers, trainees, and others can use the tool to browse through the selected parts

of code and documentation and to make changes as necessary.

2

One way to view the tool is that it provides a layer of information on top of existing

documentation – and that it helps the maintainer to focus entirely on only the few elements of

code and documentation necessary for a specific maintenance task. Information which cannot

be captured by traditional software documentation techniques can be captured here.

 We do not put any restrictions on the type of the concern that can be created nor are any

restrictions placed on the type of file that can be part of the concern. For example, a part of

an XML file can be an element of a concern. Concerns can be organized in a hierarchical

manner allowing developers a further structuring mechanism to ease understanding.

Key benefits of the tool are:

• Creation of concerns

o allows arbitrary lines to be selected from arbitrary types of file to be added

to concerns.

o addresses concerns involving both code scattering and code tangling.

o hierarchy of concerns can be created.

• Documentation of concerns

o provides an expert-guided (the expert creates concerns of interest) learning

tool for a new developer/student and for maintainers. Panorama is targeted

to facilitate changes to code and debugging.

o Users do not have to make any changes to the original code base – it

provides an additional layer of documentation for the code.

• Navigation and Visualization

o The visualiser[3] provides the ability to select concerns of interest for

viewing.

o Users can easily navigate to the lines of code pertaining to a concern with

the help of the visualiser.

• Reduction of burden on maintainer

o makes the code easier to reason about – and does not introduce any change

in flow of execution of the code.

o Developers do not require knowledge of any new language constructs.

3

Work Done: Experimental Study

For the purpose of measuring the effectiveness of Panorama as a maintenance tool, an

experimental study was conducted. The study was designed and performed as per the

guidelines proposed by [26] and [45] and was conducted on a group of 19 subjects of which

we had 16MS/PhD students and 3 doctorates. The target application, a Texas Hold-em Poker

game, was selected because of the fairly complex nature of the code. The game is a client

server application where in there can be multiple clients and one server, with 7 packages and

with a total of 69 classes and over 6000 lines of code. The project uses Java SWT for GUI,

SSLSocketFactory for sockets, and MySQL for data management.

 The following is a summary of the results obtained.

• Question 1: Did the tool help all subjects of all skill levels in performing the

maintenance tasks?

Yes, in the study, subjects’ using panorama does perform better than those

without the tool.

• Question 2: Was the tool more helpful to novice/intermediate programmers than

the experts?

The tool was more helpful for intermediate level programmers than expert level

programmers. The study did not show the tool being more helpful for novice over

intermediate programmers. Further studies are needed to explore this.

• Question 3: Did the tool help more in crosscutting tasks versus less scattered

tasks?

The study seems to indicate this. Further studies are needed to decide this.

The rest of this document is organized as follows. In Chapter 2, we discuss related works

– i.e. related development tools, related studies, and related documentation tools. In Chapter

3, we present information about the design of Panorama. In Chapter 4, we present details of

the experimental study, followed by Chapter 5 in which we discuss the results. Finally, in

Chapter 6 we present conclusions and future works.

4

2. Related Works

We have divided up this chapter into three parts: a section on research tools to help

with maintenance tasks, a section on documentation tools, and a section on experimental

studies on software maintenance task.

2.1. Development Tools

There are many tools (for example: Mylar, ConMan, Fluid AJ, Jasper, FEAT, JQuery,

ConcernMapper, Mismar, Suade, Ferret, and Cosmos) that have been built to help developers

cope with information overload and/or to deal with crosscutting concerns in code. The tools

most related to Panorama are Jasper[12] and Mismar [14] and then FEAT[40], ConMan[19],

and JQuery[21]. Common features of these tools are:

• a representation scheme used to organize information about code,

• a search mechanism used to find relevant sections for the task at hand,

• a navigation mechanism, and

• a visualization mechanism used to view only the relevant sections.

Mylar[23] automatically collects frequently used artifacts (based on user activities) and

reduces information overload by displaying only the items that are relevant to the task at

hand. There is no way for the user to specify particular items of interest, no way to save the

results, and no way to view all the items at the same time. Thus, this tool does not help with

work on crosscutting concerns.

FluidAJ[24] uses pointcuts to search for different types of joinpoints (the block linking

joinpoint and the overlay linking joinpoint) and similar code with the goal of being able to

view all of these sections of code at the same time as well as to make changes in one place to

affect all the sections of code. This tool helps to identify such crosscutting sections and to

view them dynamically as a module. Note that it is not possible to find all types of

crosscutting concerns using pointcuts.

5

The FEAT tool [40] uses a Concern graph representation[34][35] (which represents

structural dependencies) and allows users to create, query, manipulate, and traverse concern

graphs. User starts with a single class and then makes queries (such as what is the superclass

of this class) on the program structure in an iterative manner to build up the concern graph. It

automatically finds dependencies. The information is presented as a forest of trees to help

with navigation. It does not allow users to view all the selected segments at the same time

and does not allow selection at a finer grain (for example – the user cannot select an arbitrary

section of code). Note that a drawback to automatic detection of dependencies is that will

result in an explosion of information and typically a lot of the dependencies may not be

relevant to the task at hand.

ConcernMapper [41], a newer prototype tool built by the same group that built

FEAT[40], supports only fields and methods as elements of concerns – but allows saving of

concerns built based on a combination of text queries and dependency queries. It does not

allow organization of relationship between the elements and focuses on gathering of elements

rather than their documentation.

The JQuery tool [21] is very similar to FEAT[40]. Unlike FEAT’s own query and

representation mechanism, it uses a logic query language to help the user query the syntax

tree for the program and allows the user to extend the result by further queries. Like FEAT, it

provides information as a forest of trees to help with navigation. It too does not allow users to

view all the segments at the same time – and does not allow selection of arbitrary segments

of code.

Like JQuery, the Ferret tool [8] also provides a querying mechanism – but it allows for a

higher level querying mechanism (called conceptual querying) and attempts to unify different

concrete queries available in different tools under one tool.

CME [11][39] comprises of a suite of Eclipse-based tools that aid in identification,

encapsulation, extraction, and composition of new and existing concerns in software, and an

6

integrating platform on which AOSD technology providers can build new tools. However,

the notion of concern is more formally used here as first-class entities that can be explicitly

represented and encapsulated as modules – rather than our loosely defined notion of concerns

as a topic of interest. One such tool, ConMan [19], describes support for multiple,

overlapping, concurrent concerns – but we were unable to find details.

Jasper (built at CMU) [12], like Mylar[23], was built to help developers collect relevant

artifacts into a working set. Unlike, Mylar’s automatic selection – Jasper allows the user to

add or remove items from the working set – including arbitrary sections of code. It allows

simultaneous viewing of the separate items in the working set by opening and arranging

separate windows for each of them. Their goal is to facilitate progress on current tasks by

allowing developers to save elements of interest that they have already navigated to – thus

reducing the time needed to make redundant navigations and the recovery of context. The

saved working set allows recovery from interruptions, continuation by other users, and

sharing of information. Although related, our research goals are different and our idea is to

provide a means to select and document items for a crosscutting concern and to provide

maintainers with different views of the items for a concern to help facilitate their work. The

focus is on documenting purpose and relationships between items in a concern.

Suade [17] attempts to help maintainers by automatically generating suggestions based

on analysis of the structural dependencies in a software system. For a context specified by a

developer, it generates a list of other elements that are likely to be relevant.

Mismar [14] is also a concern-oriented approach to documentation like ours. They have a

notion of active concerns – where the idea of the documentation is to provide a guide to

developers performing some concern related activity. The guide has active steps that

associates with elements – for example could be “extend a Class” – and the system will

automatically start up a new Class wizard on eclipse when at that step.

7

Our survey reveals that although a lot of work has been done on identifying elements of

concerns, their composition, and their representation – there is plenty of scope for further

work in their documentation and in representation and discovery of useful relationships

between the elements of concerns.

2.2. Experimental Studies

Guidance

Before conducting our study, we looked up several similar studies in the literature for

guidance in how to conduct the study. In [10] and [26], checklists and preliminary guidance

are provided for conducting empirical studies in Software Engineering. In [44],

questionnaires were used to measure effectiveness of learning – and we have adapted that

approach to our study. In [13], a survey of empirical studies in software engineering led to

the observation that only 1.9% of all software engineering articles report controlled

experiments like ours. The large effort and resources needed to run well-designed

experiments were cited as the reason.

Cognitive Levels

The study by [22] suggests that some subtasks within software maintenance are difficult

in part because of the higher cognitive levels (based on Bloom’s taxonomy) that

programmers must work at. On the other hand, the study by [32] shows the need to interleave

information from multiple sources to help with maintenance tasks. A study by [33] shows

that programmers desire a wide range on information content in different diagrams that

depend on the context of use.

Wasteful activities

[29] performed a study on how programmers spend their time during maintenance tasks

and found that the majority of the time was spent on developers having to constantly

rediscover knowledge known by past developers because they don’t write down knowledge

8

in design documents. Interrupted developers lose track of parts of their mental model

resulting in laborious reconstruction.

A study by [27] found that during the performance of a maintenance task, developers

spent a lot of time rediscovering relevant code that were discovered earlier. Conventional use

of Eclipse’s navigation tools resulted in a lot of overhead.

A study by [31] explores the issue of maintaining visual momentum and how badly

designed navigation mechanisms can cause visual disorientation. [36] reports on a controlled

study of the use of three specialized software exploration tools (Ferret[8], JQuery[21], and

Suade[17]) to make changes to medium sized code by professional programmers. They found

that those tools had little apparent effect – and instead the styles and strategies of individuals

and the characteristics of the tasks themselves had more of an impact. This is an interesting

contrast to our findings that our tools had an impact on the maintainers’ productivity.

Information and Navigation Needs

Recently, there have been several studies with the goal of finding out what information

and tools programmers need to perform maintenance tasks. A study by [28] compares how

experts and novices approach maintenance tasks. [30] performed a study on what developers

had to do to make changes to a segment of code that affected one or more crosscutting

concerns.

One major study at the University of Calgary [37] observed programmers making

changes to medium and large sized code bases and catalogued the questions that

programmers asked during the activity. They then describe how well tools supported the

programmers in answering the questions and what features are missing from the existing

tools. They found that programmers need better tool support for asking more precise

questions, to maintain context, and to connect the pieces of information together.

9

2.3. Documentation Tools

Javadoc and Doxygen are the most common documentation tools that are in use today.

[20] extends javadocs (by use of tags) to also provide information about aspects along with

interface description. Similarly, [43] presents another tool that documents patterns using tags.

Elide [9] is a tool that introduces modifiers in the Java language to provide support for

making crosscutting concerns explicit. In [15], Java code is annotated with the goal of

making the Eclipse editor presentation more expressive.

progDoc[42] is a documentation tool that espouses the idea of elucidative programming.

The authors’ opinion is that nowadays programs are best written with sophisticated IDEs and

documentation is best written with powerful word processors, where both of these tools are

best suited for their own specific task – while keeping source code and documentation

synchronized by connecting them through links.

10

3. Panorama Design

3.1. Overview

The goal of Panorama is to help software maintainers quickly isolate the parts of code

necessary for a task, assist in comprehension, and help navigate quickly to desired sections of

code thereby save time in performing maintenance tasks like bug fixing and code

enhancements. Panorama is implemented as an Eclipse plug-in. One advantage is that all

Eclipse projects irrespective of the programming language in which they are written can

make use of the Panorama plug-in.

The tool is used in two phases. In the first phase, a master programmer familiar with the

code base identifies and documents segments of code associated with a concern. In the

second phase, maintainers use the tool to locate crosscutting concerns and to make the

changes necessary to the code for the maintenance tasks. Some of the key capabilities of the

tool are:

1. Creation of Concerns: Using Panorama tool, the user can create concerns and add

lines of code/text to the concern by selecting lines from the project files. The

selection doesn’t restrict the user based on the type of the file. The description of

the concerns and stripes can be added. Detailed comments can be associated with

each concern in the hierarchy. This is very useful for comprehension purposes.

2. Editing of Concerns/Stripes: Concerns are editable. Stripes in a concern can be

added/deleted and also the descriptions can be edited.

3. View Concerns: The concern files can be viewed in the editor.

4. Delete Concerns: Concerns can be deleted.

5. View Concern Hierarchy: The hierarchy of concerns can be viewed.

6. View Concern in Visualiser: The concerns can be viewed using the visualiser[3]

component. Each file related to the concerns is shown as a bar and the lines of

code pertaining to the concern are marked as stripes. Clicking on the stripe will

open the particular file with the line numbers of the stripe highlighted.

3.2. Design

The Eclipse SDK is a collection of plug

contributing to the functionality of the IDE

Environment (PDE) which provides a rich set of tools to create, develop, test, debug and

deploy Eclipse plug-ins, fragments, features, update sites and RCP products.

wants other plug-ins to extend or utilize its functionalities, it does so by declaring an

extension point. Panorama hooks on to these extensions points provided by th

plug-ins in Eclipse SDK to implement/extend their functionalities.

extension can be seen as similar to a socket and a plug respectively. Extend a plug

extension point by plugging into that extension poin

Figure 1: Eclipse Extensions

11

SDK is a collection of plug-ins built around a small core, with each plug

contributing to the functionality of the IDE. Eclipse comes with a Plug-in Development

provides a rich set of tools to create, develop, test, debug and

ins, fragments, features, update sites and RCP products.

ins to extend or utilize its functionalities, it does so by declaring an

extension point. Panorama hooks on to these extensions points provided by th

ins in Eclipse SDK to implement/extend their functionalities. The extension point and

extension can be seen as similar to a socket and a plug respectively. Extend a plug

extension point by plugging into that extension point (See Figure 1).

: Eclipse Extensions

ins built around a small core, with each plug-in

in Development

provides a rich set of tools to create, develop, test, debug and

ins, fragments, features, update sites and RCP products. When a plug-in

ins to extend or utilize its functionalities, it does so by declaring an

extension point. Panorama hooks on to these extensions points provided by the different

The extension point and

extension can be seen as similar to a socket and a plug respectively. Extend a plug-in’s

12

3.2.1. Panorama Plug-In extensions

Extension for the View plug-in extension point

Panorama implements 2 views by extending the ‘org.eclipse.ui.views’ extention-point as

shown in Figure 2. The Panorama view provides functionality to create/view/edit concerns.

The PanoramaHierarchy view shows the hierarchy structure of concerns.

Extension for the Visualiser plug-in extension point

The Visualiser[3] is an extensible Eclipse plug-in that can be used to visualize anything

that lends itself to a 'bars and stripes' style representation. Visualiser was a part of AspectJ

Development Tools[2] that was originally created to visualize how aspects were affecting

classes in a project. It has been given extension points in order that other types of information

can be visualized. The panorama plug-in extends the visualiser to provide its own

functionality. The visualiser is used to view the concerns created. The ‘Visualiser’ and the

‘Visualiser Menu’ views are given below in Figures 3 and 4. Concerns can be selected for

viewing by using the ‘Visualiser Menu’ view. Clicking on the colored stripe will open the

file corresponding to the member and highlight the lines of the files related to the stripe.

Figure 2: Extending Eclipse Views

13

Extending the Visualiser plug-in

In Visualiser plug-in, the extension point is declared as <extension-point id="providers"

name="%visualiserProviders" schema= "schema/providers.exsd"/>. The visualiser has an

Member

Stripe

Figure 3: Visualizer View

Figure 4: Visualizer Menu View

14

extension point with id “providers” that can be extended by other plug-ins. To extend the

visualiser, the extender plug-in should implement 2 interfaces:

• IContentProvider- implementation of this interface provides information about

the bars that appear in the Visualiser view.

• IMarkUpProvider- implementation of this interface provides information about

the colored stripes that appear on the bars.

The output of plugin.xml file after extending the visualiser plug-in is given in Figure 5.

Panorama plug-in provides the implementation of IContentProvider and

IMarkUpProvider interface in the classes PanoramaContentProvider and

PanoramaMarkUpProvider respectively. The field ‘name="Panorama Provider"”’ specifies

the name of the provider that is displayed on the preferences page.

‘point="org.eclipse.contribution.visualiser.providers"’ specifies that the plug-in is extends

the org.eclipse.contribution.visualiser.providers extension point.

Methods that are implemented in the PanoramaContentProvider class are:

• loadVisContents(InputStream in):- The information pertaining to the bars and

stripes are stored in the file Content.vis and MarkUp.mvis respectively. The

method public static void loadVisContents(InputStream in) reads the contents of

Figure 5: Extending the Visualizer plug-in

15

the Content.vis file and initializes the bars. When the plug-in loads, the initialize

method is called which in turn calls the method loadVisContents(InputStream in).

• Similarly for PanoramaMarkUpProvider, the method loadMarkups(InputStream

in) method is called to define the stripes and markups.

Refreshing the Visualiser Contents dynamically

The Visualiser plug-in is static, i.e. it does not update the contents of the visualiser when

the contents of the file are changed. The information for bars and stripes are loaded from the

respective files when the plug-in is initialized. To make the plug-in to dynamically update the

contents of the visualiser, the method VisualiserPlugin.refresh() should be called. The refresh

method reloads the groups and members and updates the Visualiser contents. Before calling

the refresh() method, the groups and members have to be updated with the latest information.

I.e. we have to load the contents of the Contents.vis and MarkUp.mvis and update the groups,

members and markups. A call to the loadVisContents(InputStream in) and

loadMarkups(InputStream in) method will update the groups and markups. Now the refresh()

method of the VisualiserPlugin class will update the contents of the visualiser. Note that the

methods are all static; this makes sure that we are working on the same instance of the object.

Processing Mouse Clicks on bars and stripes

processMouseclick(IMember member, boolean markupWasClicked,int buttonClicked):

This method processes a mouse click on a member belonging to this provider. The default

implementation of the Visualiser is to open the member view if the user clicks on the bar

from the group view; it doesn’t do anything if it is in the member view. The

PanoramaContentProvider implements this method to open the file to which the member

belongs to. When the user clicks on the stripe, the provider opens the file to which the

member belongs to and also highlights the starting line of the stripe.

Marker

The Panorama Plug-in also makes use of the marker to show the lines of the selected

stripe in the editor.

16

3.2.2. GUI

Panorama GUI implementation uses standard elements of Java Standard Widget Toolkit

(SWT) that are familiar and easy to use.

Panorama view

The panorama plug-in view is as shown in Figure 6. There are several controls in the

Panorama view. These controls allows user to switch between different panels that provide

different features and functionality. Here is the list of the controls (more details for each

panel will be provided later in the report):

• Create Concern: allows user to do create new concern.

• Editor: allows user to open the Panorama editor. Panorama editor allows user to

add, see and modify the content of a selected, previously created concern.

• About Panorama: basic information about the plug-in.

• Hierarchy: Shows the hierarchy view of the concerns created.

1 2

3

4

Figure 6: Panorama View

17

3.3. Using Panorama

3.3.1. Concern management

Creation of concern: On clicking the ‘create concern’ button, Figure 7 appears.

The concern name, parent concern and concern description is taken as input. On clicking

the ‘Add’ button, the concern is created and is shown in the hierarchy view.

Adding lines to the concern: To add lines to the concern , (1) open the editor by clicking

on the ‘Editor’ button, (2) select the lines of text to be added as a stripe, (3) highlight the

concern to which the lines are to be added in the hierarchy view, and (4) click on ‘Add Lines

To Concern’ button (See Figure 8).

Figure 7: Concern Creation Screen

18

View the Concern: Double click on the concern in the hierarchy tree. The concern file is

opened in the Panorama Editor. The concern file can also be viewed by right clicking on the

concern in the hierarchy and then selecting the ‘Show Concern’ Menu Item from the popup

menu (See Figure 9).

Delete Concern: Right Click on the concern to be deleted in the hierarchy tree and click

on the ‘Delete Concern’ item in the popup menu.

1

2

3 4

Figure 8: Adding Lines to Concerns

19

3.3.2. Concern interpretation

Once the concerns are created for a project, the software maintainers can use them to

understand the project better to aid them in performing maintenance tasks. The concern file

contains information about the concern description and definition of stripes related to that

concern. The concern file output can be viewed using the PanoramHierarchy View. Sample

contents of the concern file are as below.

Figure 9: Viewing Concerns

20

The parent concern, concern description and the stripe definition is given in the concern

file. Let us take a closer look at the stripe definition. The line ‘Stripe

:GUI.java:403:/PokerProject/src/clientGUI/GUI.java:152:9’ gives information about the

stripe. The file the stripe belongs to is GUI.java and the relative path to the file is

‘/PokerProject/src/clientGUI/GUI.java’ .The stripe starts at line 152 and the depth is 9 which

means that lines 152-162 pertains to the stripe. The user can then use the visualiser view to

click on the corresponding stripe in the bar to navigate to the part of code described in the

stripe. The description of the stripe is also given so as to make it easier for the user to

comprehend. This is in addition to the comments that can be given in the program.

The stripes are written to the concern file in a hierarchical form, i.e. the first stripe is the

first step/action corresponding to the concern and the second stripe follow the first and so on.

This helps the user in navigating the stripes in a step by step manner helping in understanding

the concern better. The PanoramaHierarchy view is used in conjunction with the Visualiser to

understand the concerns. Clicking on the particular stripe in the visualiser will open the

corresponding file and highlight the lines corresponding to the stripe. This makes it easier for

the user to navigate to the corresponding parts of code pertaining to the concern.

21

4. Study

A survey of empirical studies in software engineering [13] led to the observation that

only 1.9% of all software engineering articles report controlled experiments. They

hypothesized that the large effort and resources needed to run well-designed experiments was

the reason for the dearth of similar experiments. The study emphasized the importance of

controlled experiments as the classical scientific method for identifying cause-effect

relationships. To check the effectiveness of Panorama plug-in as a maintenance tool a

controlled experiment was conducted. This study was designed and performed as per the

guidelines proposed by [26] and [45] and was conducted on a group of 19 subjects of which

we had 16MS/PhD students and 3 doctorates. All of them were reasonably capable

programmers.

The goals of the study were:

1. To test whether the Panorama tool helps in performing maintenance tasks in a

better way when compared to performing of the tasks without using the tool.

2. To quantify the time and defects repaired.

4.1. Study Definition

Hypotheses

The following hypotheses were formulated to be tested in the experiment:

1. The Panorama tool does help the subjects of all skill levels in performing the

maintenance tasks.

2. The Panorama tool is more useful to novice/intermediate level programmers than

experts.

3. Panorama tool helps in performing tasks involving more scattered code across

classes than tasks with less scattered code

22

Variables of the Experiment

Panorama tool support is the only factor of this experiment. This factor is measured in the

nominal scale, at two levels: exists, not exists.

There are 2 dependent variables in the study.

1. Time taken for performing the maintenance task measured in minutes: The time is

measured as the time taken by the subject to perform task 1 and task 2 with the

maximum time of 45 and 30 minutes allowed for subjects to perform task 1 and

task 2 respectively.

2. Number of defects repaired: This is measured by examining the code to see the

number of defects repaired.

Selection of Subjects

The subjects participated in the study on a voluntary basis. All the subjects were

informed about the details of the study and were informed on the nature of tasks they will be

asked to perform. An initial questionnaire [Appendix 1] was given to subjects to assess their

programming skills.

Self Assessment Questionnaire Evaluation

The questionnaire presented to the subjects is evaluated to assess the skill level of the

subject. The skill level is ranked as novice, intermediate and expert. Each subject will be

categorized into any of the three levels. It so turned out upon evaluation of the questionnaire

that for the experimental group, we have 4 in the novice group, 3 in the intermediate group

and 3 in the expert group. In the case of the control group, the number was 4 in novice, 3 in

intermediate and 2 in expert group. Remember that we had assigned subjects to the study

group randomly and that the self assessment scores were evaluated upon completion of the

tasks.

23

4.2. Study Design

The study was designed to measure the effectiveness of the tool, so the only factor

relevant is the tool support. For the control group, this factor does not exist and for the

experimental group this factor exists. The duration of the study was 2 hours.

The subjects were divided into 2 groups. The grouping of the subjects into control and

experiment group was done randomly. This was done to ensure that we have the same

(almost) number of participants in both the groups. The control group had 9 students and

they were asked to perform the maintenance tasks without the help of Panorama tool. The

experiment group consisted of 10 subjects who were asked to perform the maintenance tasks

with the help of the Panorama tool.

4.2.1. The poker project

For the purpose of measuring the effectiveness of Panorama, the project selected was the

code which simulated the “Texas Hold ‘em Poker” game. This project was selected because

of the fairly complex nature of the code. The game is a client server application where in

there can be multiple clients and one server. There are 7 packages in the project with a total

of 69 classes and over 6000 lines of code. The project uses Java SWT for the GUI,

SSLSocketFactory for sockets, and MySQL for data management. So the subjects should

have a good knowledge of these technical aspects in order to understand the working of the

code.

Concerns for the poker project were created using the Panorama tool after getting a

thorough understanding of the implementation details. Concerns can be any aspect of the

project like error logging, user login functionality, user change password functionality,

client-server communication etc. For the purpose of our study those concerns were created

which will help the subject to understand the code and also help in performing the tasks

given as part of the study. The concerns created and their descriptions are given below.

1. Concern Name: Communication. Concern Description: This concern acts as the

parent concern for all code related to communication.

2. Concern Name: User Login. Concern Description: The concern details the code

pertaining to the Login functionality.

24

3. Concern Name: Change Password. Concern Description: The concern details the

code pertaining to the Change Password functionality.

All the above concerns had code spread over many classes.

4.2.2. Designing Maintenance Tasks

Task 1

The first task was to fix the login functionality of the poker code. To play the poker game

the user should be authenticated first by the server. For that, the user is provided a dialog box

asking the username and password which is then validated by the server.

 Bugs were injected in 4 different places along the execution path of the login code. The

subject has to identify them and fix them. The details of the injected bugs are given below.

1. Username: when the user enters the username, the input is converted to Upper

Case making the server not recognize the username.

2. Password: when the user enters the password, the input is converted to Upper

Case making the server not recognize the password.

3. The Command message takes a parameter for recognizing and interpreting the

command. For the login functionality, it is ‘login’. This was changed to ‘Login’ at

2 places (Notice the ‘L’ in login is changed to uppercase). When the client sends

server the message , the command parameter was changed to ‘Login’ and also

when the server sends the reply message back to the client , the command

message parameter was ‘Login’ instead of ‘login’.

To fix these above bugs the subjects should understand how the login functionality works

and should also be familiar with the code pertaining to server-client communication and vice-

versa.

Task 2

The second task was to fix the ‘Change Password’ functionality. The user can change

his/her password once logged in.

25

Again bugs were injected in 4 different places along the line of execution of the code.

The details of the bugs injected are given below.

1. GUI: The GUI for change password doesn’t appear when the clicks on the

‘change password’ menu. The shortcut key in the program was changed from ‘Alt

+ P’ to ‘Alt + Y’. The accelerator for the MenuItem ‘Change Password’ is set to

‘Alt + P’ whereas the listener is implemented for the accelerator ‘Alt + Y’.

2. Old Password: The old password when entered by the user is changed to upper

case which makes the server declare it as invalid.

3. Command Message: For the change password functionality, it is

‘reset_password’. This was changed to ‘resetPassword’ at 2 places. When the

server sends the reply message back to the client, the command message

parameter was ‘resetPassword’ instead of ‘reset_password’ in both the password

accepted and rejected cases.

In order to successfully complete the task the subjects should be able to understand the code

pertaining to the change password functionality and also should be familiar with the basics of

Java SWT and socket communication.

4.2.3. Instrumentation

The instruments of this study were:

• the eclipse IDE with the poker game code into which defects were injected

• the design documents and javadocs of the poker projects

• the tools (Panorama Hierarchy View, Visualiser Menu, Visualiser) for the

experiment group

• the tutorial slides presented to the participants to familiarize them with the poker

project

• the tutorial slides presented to the participants in the experiment group to

familiarize them with the Visualiser plug-in

• the task list detailing the problem and the desired output

26

4.3. Conducting the Study

This section details how the experiment was conducted and the data was collected.

1. Pre Study preparation: To prepare the subjects for the study a tutorial detailing the

basic GUI screens and functionality was presented. This was followed by

familiarizing the design documents and javadocs of the poker project by the

subject for 10 minutes. The experimental group was then given another tutorial to

help them familiarize with the Visualiser plug-in and Panorama tool. Subjects

were then asked to familiarize themselves with the Communication aspect of the

code using the communication concern in Panorama. A time of 20 minutes was

given to each subject. The subjects of the control group were asked to familiarize

with the communication aspect of the code without the help of the tool for 20

minutes.

2. Task 1: A slide detailing the first task was given to the subjects. The maximum

time allowed for performing the task was 45 minutes at the end of which the

source code is examined to determine the number of defects repaired by the

subject. The experimental group made use of the concerns provided to them by

the tool in fixing the defects.

3. Task 2: Similarly the task 2 was given to the subjects and the maximum time

given was 30 minutes.

4. Post Session Questionnaire: A post session questionnaire was given to the

subjects of the experimental group to get the feedback on the use of the tool.

Subjects were asked questions whether they found the Panorama tool helpful in

understanding the poker project, whether they found the tool useful in performing

the maintenance tasks and also additional comments about the tool.

5. Data Validation: The time on the system clock was noted before and after each

task was performed and the subject was not allowed to change the time on the

system clock. The defects corrected were measured by examining the code after

the completion of each task or after the stipulated maximum time allowed for that

particular task whichever is earlier.

27

4.4. Data Collection

In Table 1 and Table 2, we present the data collected from the study. It was found that the

total number of repaired defects is more in the experimental group (with the help of

Panorama) than the control group (without Panorama). Further analyses are provided in

Chapter 5.

Table 1: Data for Experimental Group

Experimental Group Category

Task1

Bugs

Fixed Time

Task2

Bugs

Fixed Time

1 Expert 4 29 4 17

2 Expert 4 25 4 15

3 Expert 4 30 0 30

4 Intermediate 4 26 4 18

5 Intermediate 3 45 4 15

6 Intermediate 2 45 2 30

7 Novice 3 45 1 30

8 Novice 0 45 2 30

9 Novice 2 45 3 30

10 Novice 4 15 2 30

Mean 3 35 2.6 24.5

10% trimmed mean 3.25 2.75

28

Table 2: Data for Control Group

Control Group Category

Task1

Bugs

Fixed Time

Task2

Bugs

Fixed Time

1 Expert 4 45 2 30

2 Expert 0 45 1 30

3 Intermediate 0 45 1 30

4 Intermediate 0 45 1 30

5 Intermediate 2 45 1 30

6 Novice 0 45 0 30

7 Novice 3 45 2 30

8 Novice 2 45 1 30

9 Novice 0 45 1 30

Mean 1.222222 45 1.111111 30

10% trimmed mean 1 1.14286

In this chapter, we analyze the data obtained from the study and present the

5.1. Analysis of Task1

5.1.1. Defects Repaired

As shown in the figure below

experimental group for Task1 is 3 (

1.22 for the control group. This suggests that for Task1 the subjects using the tool repaired

more defects than the subjects without the tool.

Out of the 10 subjects in the experimental group 5 could repair all the defects for Task1

whereas out of 9 subjects in the control group only 1 could repair all the defects. The

minimum time taken for completing Task1 in experimental group is 15 minutes whereas it is

45 minutes for the control group. The mean time taken for the completion of Task1 for

experimental group is 25 minutes whereas in the case of the control group it is 45 minutes.

Figure

29

5. Result Interpretations

In this chapter, we analyze the data obtained from the study and present the

below, the mean number of defects repaired in the case of the

experimental group for Task1 is 3 (total number of defects introduced was 4) whereas it is

1.22 for the control group. This suggests that for Task1 the subjects using the tool repaired

more defects than the subjects without the tool.

n the experimental group 5 could repair all the defects for Task1

whereas out of 9 subjects in the control group only 1 could repair all the defects. The

minimum time taken for completing Task1 in experimental group is 15 minutes whereas it is

or the control group. The mean time taken for the completion of Task1 for

experimental group is 25 minutes whereas in the case of the control group it is 45 minutes.

Figure 10: Task1 - Defects Repaired

In this chapter, we analyze the data obtained from the study and present the results.

he mean number of defects repaired in the case of the

4) whereas it is

1.22 for the control group. This suggests that for Task1 the subjects using the tool repaired

n the experimental group 5 could repair all the defects for Task1

whereas out of 9 subjects in the control group only 1 could repair all the defects. The

minimum time taken for completing Task1 in experimental group is 15 minutes whereas it is

or the control group. The mean time taken for the completion of Task1 for

experimental group is 25 minutes whereas in the case of the control group it is 45 minutes.

We can say from the subjects who completed Task1 that the amount of time taken with the

tool is 44% less than the time taken without the tool.

Zero defects were corrected by 5 subjects in the control group whereas the number is

only 1 for the experimental group.

The 10% trimmed mean of number of defects repaired for Task1 is 3.25 for the

experimental group and 1 for the control group. The 10% trimmed mean gives us a better

idea because it trims the top and bottom extremes.

5.1.2. Skill Levels

Now let us analyze the results taking into account the skill level of the subjects calculated

from the self assessment questionnaire.

As per the above figure, a

completed Task1 whereas 1 subject out of 2 who are experts in the con

complete Task1. The mean time taken for completion is 45 minutes in the case of the control

group and 28 minutes for the experimental group. The mean number of defects corrected is 4

in the case of experimental group and 2 for the control

effectiveness of the tool even though the subjects involved are expert level programmers.

Figure

30

We can say from the subjects who completed Task1 that the amount of time taken with the

ol is 44% less than the time taken without the tool.

Zero defects were corrected by 5 subjects in the control group whereas the number is

only 1 for the experimental group.

The 10% trimmed mean of number of defects repaired for Task1 is 3.25 for the

imental group and 1 for the control group. The 10% trimmed mean gives us a better

idea because it trims the top and bottom extremes.

Now let us analyze the results taking into account the skill level of the subjects calculated

assessment questionnaire.

As per the above figure, all the 3 expert level subjects in the experimental group

completed Task1 whereas 1 subject out of 2 who are experts in the control group could

complete Task1. The mean time taken for completion is 45 minutes in the case of the control

group and 28 minutes for the experimental group. The mean number of defects corrected is 4

in the case of experimental group and 2 for the control group. This is indicative of the

effectiveness of the tool even though the subjects involved are expert level programmers.

Figure 11: Task 1- Skill Level Breakdown

We can say from the subjects who completed Task1 that the amount of time taken with the

Zero defects were corrected by 5 subjects in the control group whereas the number is

The 10% trimmed mean of number of defects repaired for Task1 is 3.25 for the

imental group and 1 for the control group. The 10% trimmed mean gives us a better

Now let us analyze the results taking into account the skill level of the subjects calculated

ll the 3 expert level subjects in the experimental group

trol group could

complete Task1. The mean time taken for completion is 45 minutes in the case of the control

group and 28 minutes for the experimental group. The mean number of defects corrected is 4

group. This is indicative of the

effectiveness of the tool even though the subjects involved are expert level programmers.

For the intermediate level, there were 3 each in experimental and control groups. 1

subject experimental group could complete Task1 a

is 3 whereas no intermediate level programmer could complete Task1 in the control group

and the mean number of defects corrected was .67.

The novice level had 4 subjects each for experimental and control groups. One

the experimental group completed Task1. The mean number of defects corrected for the

novice level in experimental group is 2.25 and it is 1.25 for the control group.

Therefore we can see that the tool performs better with all levels of program

although we cannot say that the grouping of the programmers is foolproof.

5.2. Analysis of Task2

5.2.1. Defects Repaired

As per the below figure, t

experimental group for Task2 is 2.6 (total number of defects

control group. This suggests that for Task2 the subjects using the tool repaired more defects

than the subjects without the tool.

31

For the intermediate level, there were 3 each in experimental and control groups. 1

subject experimental group could complete Task1 and the mean number of defects corrected

is 3 whereas no intermediate level programmer could complete Task1 in the control group

and the mean number of defects corrected was .67.

The novice level had 4 subjects each for experimental and control groups. One

the experimental group completed Task1. The mean number of defects corrected for the

novice level in experimental group is 2.25 and it is 1.25 for the control group.

Therefore we can see that the tool performs better with all levels of program

although we cannot say that the grouping of the programmers is foolproof.

As per the below figure, the mean number of defects repaired in the case of the

experimental group for Task2 is 2.6 (total number of defects is 4) whereas it is 1.11 for the

control group. This suggests that for Task2 the subjects using the tool repaired more defects

than the subjects without the tool.

Figure 12: Task2 - Defects Repaired

For the intermediate level, there were 3 each in experimental and control groups. 1

nd the mean number of defects corrected

is 3 whereas no intermediate level programmer could complete Task1 in the control group

The novice level had 4 subjects each for experimental and control groups. One subject in

the experimental group completed Task1. The mean number of defects corrected for the

novice level in experimental group is 2.25 and it is 1.25 for the control group.

Therefore we can see that the tool performs better with all levels of programmers

he mean number of defects repaired in the case of the

is 4) whereas it is 1.11 for the

control group. This suggests that for Task2 the subjects using the tool repaired more defects

The lower mean when compared to Task1 could be because of the nature of Task2. As

described earlier Task2 requires the subjects to have basic knowledge about Java SWT and

this could be a reason for the lower mean. Also the amount of time given for performing

Task2 is 30 minutes as compared to 45 minutes given for Task1. The assumption that less

time would be required to perform Task2 was based on the lesser number of classes that were

related to the ‘Change Password’ functionality. This assumption did not prove to be right.

Out of the 10 subjects in the experimental group 4 could repair all the defects for Task2

whereas none in the control group could repair all the defects. The minimum time taken for

completing Task2 in experimental group is 15 minutes. The mean time taken for

completion of Task2 for experimental group is 16.25 minutes.

1 subject from each group couldn’t correct any of the defects.

The 10% trimmed mean of number of defects repaired for Task2 is 2.75 for the

experimental group and 1.14 for the control group.

5.2.2. Skill Levels

Figure

32

ompared to Task1 could be because of the nature of Task2. As

described earlier Task2 requires the subjects to have basic knowledge about Java SWT and

this could be a reason for the lower mean. Also the amount of time given for performing

s as compared to 45 minutes given for Task1. The assumption that less

time would be required to perform Task2 was based on the lesser number of classes that were

related to the ‘Change Password’ functionality. This assumption did not prove to be right.

of the 10 subjects in the experimental group 4 could repair all the defects for Task2

whereas none in the control group could repair all the defects. The minimum time taken for

completing Task2 in experimental group is 15 minutes. The mean time taken for

completion of Task2 for experimental group is 16.25 minutes.

1 subject from each group couldn’t correct any of the defects.

The 10% trimmed mean of number of defects repaired for Task2 is 2.75 for the

experimental group and 1.14 for the control group.

Figure 13: Task2 - Skill Level Breakdown

ompared to Task1 could be because of the nature of Task2. As

described earlier Task2 requires the subjects to have basic knowledge about Java SWT and

this could be a reason for the lower mean. Also the amount of time given for performing

s as compared to 45 minutes given for Task1. The assumption that less

time would be required to perform Task2 was based on the lesser number of classes that were

related to the ‘Change Password’ functionality. This assumption did not prove to be right.

of the 10 subjects in the experimental group 4 could repair all the defects for Task2

whereas none in the control group could repair all the defects. The minimum time taken for

completing Task2 in experimental group is 15 minutes. The mean time taken for the

The 10% trimmed mean of number of defects repaired for Task2 is 2.75 for the

33

As per the above figure, 2 out of the 3 expert level subjects in the experimental group

completed Task2. Note that no subject in the control group could complete Task2. The mean

number of defects corrected by the expert level subjects in experimental group is 2.67 and it

is 1.5 for the control group.

Again, 2 out of 3 intermediate subjects in the experimental group could complete Task2.

The mean number of defects corrected by the intermediate level subjects in experimental

group is 3.34 and it is 1 for the control group.

None in the novice level in both groups could complete Task2.The mean number of

defects corrected by the novice level subjects in experimental group is 2 and it is 1 for the

control group.

We see a better performance in terms of defects corrected when using the Panorama tool

than without in the case of Task2 also.

5.3. Summary Analysis

Q1: Did the tool help all subjects of all skill levels in performing the maintenance tasks?

Yes, the subjects’ using panorama tool does perform better than those without the tool.

Thus we can say that our first hypothesis holds true.

The mean number of defects corrected by the subjects is 5.6(Task1 and Task2 combined)

with the help of Panorama. The mean for subjects who performed the tasks without the tool

is 2.33.

This shows that the time it takes to correct defects is lesser than what it takes without the

help of Panorama. Remember that Task1 was given a maximum time of 45 minutes and

Task2 was given a maximum time of 30 minutes to complete.

Furthermore, we saw that the results in each skill level are better for subjects with tool

support than without.

34

Q2: Was the tool more helpful to novice/intermediate programmers than the experts?

Maybe! From the below figure, the difference of mean number of defects corrected

between the groups for expert level for Task1 is 2, 2.33 for intermediate level, and 1 for

novice. For Task2 it is 1.17 for expert level, 2.33 for intermediate and 1 for novice. We can

see the difference is more in the case of intermediate level for both the tasks. It can be said

that the tool is more helpful for intermediate level programmers than expert level

programmers. Therefore programmers with intermediate level skills will find the tool more

useful. Also, we can say that the Panorama tool has the potential to be used for training

purposes. Unfortunately the same cannot be said about the tool for novice level

programmers. The reason for this can attributed to the fact that the skill levels of

programmers were self assessed. Further studies can throw more light into this.

Q3: Did the tool help more in crosscutting tasks versus less scattered tasks?

 Maybe! Definitely the results for Task1 are better than Task2 and we know that

Task1 has more scattered code than Task2. But we cannot say conclusively say that the tool

helped in performing Task1 better than Task2 because of time allotted for the tasks. Task2

was allotted 30 minutes as compared to 45 minutes for Task1. This was due to the fact that

we had to keep the study time to less than 2 hours due to subject convenience and

Figure 14: Difference in Means

35

availability. Further the nature of the tasks doesn’t allow us to compare them as each task

requires different level of familiarity with different technologies.

5.4. Threats to validity of the study

This section discusses the four types of issues [44] that can threaten the validity of our

study.

5.4.1. Conclusion validity

To obtain good statistical power, we used a reasonably large sample size (19), used a

10% trimmed mean during analysis of results, and ensured that the tasks were reasonably

hard to complete. To obtain good reliability, we standardized our procedures. The treatment

given to all the subjects in the experimental group were the same. Similarly, the same set of

instructions and tutorials were given to all the subjects in the control group. To obtain good

implementation, we standardized the protocols for administering the study to different

subjects. One weakness in our study is that we could not conduct the study for all the subjects

at the same time due to time constraints.

5.4.2. Internal Validity

. Internal validity threat due to selection was avoided by randomly assigning students to

the experimental and control groups (so as to avoid bias). Although validity threat due to

history was possible because the study was not conducted at the same time for all the subjects

(thus subjects can communicate with each other), this was not considered to be probable

given that there was no compensation given to the subjects on completion of the tasks and

subjects were generally unaware of other participants.

Internal validity threat due to maturity, i.e. naturally occurring changes over time (such as

the motivation level, mental alertness at the time of the study, familiarity with the objects of

the study etc) were also addressed as follows. Each subject was given 5 time slots from

which they could chose any one time for participation in the study. This was done ensure that

the subjects participate in the study at their convenient time. The total duration of the study

36

was designed to be 2 hours so as to avoid fatigue and boredom in the subjects. Any type of

unintended learning was avoided as the subjects were presented with the Panorama tool and

the poker project immediately before performing the actual tasks. We tried to minimize

learning effect (that learning was in progress during the study) by having a standard training

session before the actual experiment and providing everyone with the same set of documents

and the same amount of time to peruse these documents.

5.4.3. Construct Validity

The measure used here for effectiveness of the tool, i.e. the number of defects corrected

in given time, has been used in several similar studies [18]. Several other steps were taken to

address threats to construct validity. The experience level of target subjects was fixed to be at

a minimum level. The grouping of subjects into different levels of programming skills is not

foolproof and is subjective. Tasks were not designed based on the nature of the concerns.

Both the tasks were non-functional and had code scattered across classes. Task1 had code in

more classes than Task2. Both the concerns crosscut each other.

5.4.4. External Validity

There are several limiting factors that affect external validity of this study:

• Although complex, the project used for the study was a student developed project

and was not subjected to the rigorous inspection and testing typical for a

commercial application.

• Subjects were chosen from academia and were not professional software

engineers.

• The setting for the study was a relaxed academic lab and not a possibly pressure

laden environment of a typical maintenance engineer.

37

6. Conclusion and Future Work

We developed Panorama to help maintainers of code from being overwhelmed with the

information overload even when having to make changes to only a few lines of code. The

tool helps in finding the specific segments, understanding the related issues, and ability to

quickly make the necessary changes. In particular, the ability to quickly select elements of a

concern and to document these elements with explanatory comments – and conversely, to

allow viewing of the elements of the concern as a whole or in a detailed manner as needed

for understanding and performing maintenance tasks sets us apart.

A survey of related tools shows that our work is novel in a number of ways. There are

three major differences with other tools:

• Most of the other tools define a ‘concern’ formally. In Panorama, anything that

the developer wants can be incorporated into a concern. This gives the user the

flexibility to create any type of concern. For example, the user can create

concerns with arbitrary lines of text from any type of file. Panorama does not

overwhelm the user with data and shows information only relevant to the concern.

• Most of the other tools focus on automatically finding related segments of code

based on developer work context. Our tool does not try to divine developer

intentions and instead uses an expert to find and organize documentation for

related segments of code for a concern.

• Our tool focuses on documentation of each stripe in a concern and on describing

relationships of stripes in the concern.

We performed an experimental study to validate the tool and our results indicate that use

of this tool helps developers fix more bugs in less time. Our positive results were partly

unexpected because of the following reasons:

• Our prototype tool does not have some of the improved navigation mechanisms

that we thought necessary but were unable to incorporate due to lack of time.

38

• The target code was complex and huge and the time allocated for each task was

quite limited. The experimental subjects were using our tool for the first time with

very little time assigned to learning about it.

• The results from a recent study [36] indicated that use of tools similar to ours had

little effect on programmer productivity on tasks - and instead styles and

strategies of individuals had more of an impact. At the same time, it must be

noted that it is hard to compare between different studies due to several factors.

• We expected maybe a little improvement but the magnitude of the improvement

(across all levels of proficiencies) was unexpected.

Although our study clearly shows that the Panorama tool positively affects the

performance of maintenance tasks more studies are required to compare the different tools

and verify the effect these tools have on maintainers. The results of the study need to be

further validated as the same results may not hold true for a different group of subjects

(software professionals) with a different task set.

Future Work

We have several ideas for future work. Some of these ideas were obtained from feedback

from participants [Appendix 2] of the study and direct observation of their activities. Some of

the ideas are:

• Automatic creation of concerns based on use cases. This will select the lines of

code which were executed at the time of execution of a use case.

• Map PanoramaHierarchy View and Visualiser. The PanoramaHierarchy View

gives the user the flow of execution of the concern and the Visualiser helps the

user navigate to the corresponding stripe. Mapping between the two will help user

in navigating the code in the same order as given in the PanoramaHierarchy View.

• The methods calls in each concern should be highlighted.

• Concern should not get affected when the program is modified.

• Ability to automatically insert break points along the execution path of the

concern.

39

• Generation of concern document that could be printed out and read like a javadoc.

• Sequence flow graph for concerns to allow relationships between elements of

concerns to be explicitly modeled.

40

References

[1] Abran, A., Nguyemkim, H., “Analysis of Maintenance Work Categories Tough
Measurement”, Proceedings of the Conference on Software Maintenance,

Sorrento, Italy, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 104-

113.

[2] AJDT: AspectJ Development Tools Eclipse Technology Project.
http://www.eclipse.org/ajdt.

[3] AJDT: AspectJ Development Tools Eclipse Technology Project. , The Visualiser ,
http://www.eclipse.org/ajdt/visualiser/

[4] Alkhatib, G., “The Maintenance Problem of Application Software: An Empirical
Analysis”, Journal of Software Maintenance – Research and Practice, 4(2):83-
104, 1992.

[5] Artur, L. J., “Software Evolution: The Software Maintenance Challenge”, John
Wiley & Sons, New York, NY, 1988.

[6] Beath, C. N., Swanson, E. B., “Maintaining Information Systems in
Organizations”, John Wiley & Sons, New York, NY, 1989.

[7] Boehm, B. W. 1976. Software engineering. IEEE Trans. Comput. 12, 25, 1226–
1242.

[8] Brian de Alwis and Gail C. Murphy, "Answering Conceptual Queries with
Ferret",ICSE’08, May 10–18, 2008, Leipzig, Germany.

[9] A.Bryant, A. Catton, K. De Volder, and G. C. Murphy, “Explicit programming,”
pp.10-18, In Proceedings of the 1st international Conference on Aspect-Oriented
Software Development (AOSD '02), 2002.

41

[10] J. C. Carver, L. Jaccheri, S. Morasca and F. Shull,"A checklist for integrating
student empirical studies with research and teaching goals",Springer Science +
Business Media, LLC 2009.

[11] W. Chung, W. Harrison, V. Kruskal,H. Ossher, S. M. Sutton, Jr. and P.
Tarr,"Working with Implicit Concerns in the Concern Manipulation
Environment",AOSD ’05 Workshop on Linking Aspect Technology and
Evolution (LATE),2005.

[12] M. J. Coblenz, A. J. Ko, and B. A. Myers, “JASPER: an Eclipse plug-in to
facilitate software maintenance tasks,” In Proceedings of the 2006 OOPSLA
Workshop on Eclipse Technology Exchange (eclipse '06), vol. 195, pp. 65-69,
2006.

[13] Dag I.K. Sjøberg,Jo E. Hannay, Ove Hansen, Vigdis By Kampenes,Amela
Karahasanovic, Nils-Kristian Liborg, and Anette C. Rekdal, "A Survey of
Controlled Experiments in Software Engineering",IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2005

[14] B. Dagenais and H. Ossher, “Mismar: a new approach to developer
documentation”, 29th International Conference on Software Engineering
(ICSE'07 Companion),2007

[15] A. D. Eisenberg, and G. Kiczales, “Expressive programs through presentation
extension,” In Proceedings of the 6th international Conference on Aspect-
Oriented Software Development, vol. 208, AOSD '07, 2007.

[16] Foster, J. R., “Cost Factors in Software Maintenance”, Ph.D. Thesis,
Computer Science Department, University of Durham, Durham, UK, 1993.

[17] Fr´ed´eric Weigand Warr and Martin P. Robillard, "Suade: Topology-Based
Searches for Software Investigation" , 29th International Conference on Software
Engineering (ICSE'07).

[18] Gürcan Gülesir¸ Klaas van den Berg, Lodewijk Bergmans and Mehmet Aksit,
"Experimental evaluation of a tool for the verification and transformation of
source code in event-driven systems", Empir Software Eng, 2009

42

[19] W. Harrison, H. Ossher, S. Sutton Jr., P. Tarr, “Concern Modeling in the
Concern Manipulation Environment”, Workshop on Modeling and Analysis of
Concerns in Software (MACS 2005) 16 May 2005, St. Louis, MO, USA
Copyright 2005 ACM 1595931198/05/05

[20] M. Horie and S. Chiba,” An Aspect-Aware Outline Viewer”, http://dblp.uni-
trier.de/rec/bibtex/conf/ecoop/HorieC06, 2006.

[21] D. Janzen, and K. De Volder, “Navigating and querying code without getting
lost,” pp.178-187, In Proceedings of the 2nd international Conference on Aspect-
Oriented Software Development (AOSD '03), 2003.

[22] T. Kelly and J. Buckley, “An in-vivo study of the cognitive levels employed
by programmers during software maintenance”, Program Comprehension, 2009.
ICPC '09. IEEE 17th International Conference on.

[23] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for IDEs. In
AOSD ’05: Proceedings of the 4th international conference on Aspect-oriented
software development.

[24] G. Kiczales, and E. Hilsdale, “Aspect-oriented programming,” In Proceedings
of the 8th European Software Engineering Conference Held Jointly with 9th
ACM SIGSOFT international Symposium on Foundations of Software
Engineering (ESEC/FSE-9), 2001.

[25] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M., Andirwin, J. 1997. Aspect-Oriented programming. In Proceedings of the
11th European Conference on Object-Oriented Programming. Lecture Notes in
Computer Science, vol. 1241. Springer Verlag. 220–242.

[26] Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, El Emam
K, Rosenberg J (2002)Preliminary guidelines for empirical research in software
engineering. IEEE Trans Softw Eng 28(8):721–734. ISSN 0098-5589

[27] A. J. Ko, B. A. Myers, M. J. Coblenz, Htet Htet Aung, "An Exploratory Study
of How Developers Seek, Relate, and Collect Relevant Information during
Software Maintenance Tasks," IEEE Transactions on Software Engineering, vol.
32, no. 12, pp. 971-987, Dec. 2006, doi:10.1109/TSE.2006.116.

43

[28] T. D. LaToza, D.Garlan, J. D. Herbsleb, and B. A. Myers, “Program
comprehension as fact finding,” pp.361-370, In Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC-FSE
'07), 2007.

[29] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” pp. 492-501, In Proceedings of the 28th
international Conference on Software Engineering (ICSE '06), 2006.

[30] G. C. Murphy, Elisa Baniassad, C. Schwanninger, and M. Kircher, “Managing
Crosscutting Concerns During Software Evolution Tasks: An Inquisitive Study”
pp.120-126, In Proceedings of the First International Conference on Aspect-
oriented Software Development (AOSD) 2002.

[31] G. C. Murphy, B. de Alwis, "Using Visual Momentum to Explain
Disorientation in the Eclipse IDE," vlhcc, pp.51-54, Visual Languages and
Human-Centric Computing (VL/HCC'06), 2006.

[32] G. C. Murphy, T. Fritz, "Search, stitch, view: Easing information integration
in an IDE," suite, pp.9-12, 2009 ICSE Workshop on Search-Driven Development-
Users, Infrastructure, Tools and Evaluation, 2009.

[33] G. C. Murphy, S. Lee, T. Fritz, M. Allen, "How can diagramming tools help
support programming activities?," vlhcc, pp.246-249, 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing, 2008.

[34] G. C. Murphy, M. P. Robillard, "Concern Graphs: Finding and Describing
Concerns Using Structural Program Dependencies," icse, pp.406, 24th
International Conference on Software Engineering (ICSE '02), 2002.

[35] G. C. Murphy, and M. P. Robillard, “Representing concerns in source code,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol.16,
no.1, pp.3, Feb. 2007.

[36] G. C. Murphy, M. P. Robillard, and B. de Alwis, "A Comparative Study of
Three Program Exploration Tools," icpc, pp.103-112, 15th IEEE International
Conference on Program Comprehension (ICPC '07), 2007.

44

[37] G. C. Murphy, J. Sillito, and K. De Volder, "Asking and Answering Questions
during a Programming Change Task," IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 434-451, July/Aug. 2008,
doi:10.1109/TSE.2008.26.

[38] Nosek, J. T., Prashant, P., “Software Maintenance Management: The Changes
in the Last Decade”, Journal of Software Maintenance – Research and Practice,
2(3):157-174, 1990.

[39] H. Ossher,” Fundamentals of Concern Manipulation”, Workshop FOAL '07,
March 12-13, 2007 Vancouver, BC, Canada.

[40] M. P. Robillard, 2003a. FEAT: An Eclipse plug-in for locating, describing,
and analyzing concerns in source code.
http://www.cs.ubc.ca/labs/spl/projects/feat.

[41] M. P. Robillard and F WeigandWarr, “ConcernMapper:Simple ViewBased
Separation of Scattered Concerns”, eclipse’05, October 16-17, 2005, San Diego,
CA

[42] V. Simonis, and R. Weiss. “ProgDOC -- A New Program Documentation
System,” In Proceedings of Perspectives of System Informatics, Lecture Notes in
Computer Science, vol. 2890, pp. 438--449, 2003.

[43] M. Torchiano, "Documenting Pattern Use in Java Programs," icsm, pp.0230,
18th IEEE International Conference on Software Maintenance (ICSM'02), 2002.

[44] C. G. von Wangenheim, M. Thiry and J. Kochanski," Empirical evaluation of
an educational game on software measurement",Springer, LLC 2008.

[45] Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000)
Experimentation in software engineering. Kluwer Academic, Dordrecht

45

Appendix-1 Pre-Session Questionnaire

ID

Questionnaire – Please answer all the following questions.

1> at what level would you rate yourself as a java programmer?

a) Novice b) intermediate c) expert

2> How familiar are you with class diagrams, state diagrams and UML diagrams?

a) Not at all b) familiar c) very familiar

3> How frequently do you use java docs to understand a program?

a) Not at all b) sometimes c) all the time

4> Have you had any classroom level training in OO programming languages?

a) None b) one c) more than one

5> How familiar are you with using the eclipse IDE?

a) Not at all b) familiar c) very familiar

6> How would you rate your testing and debugging skills?

a) Novice b) intermediate c) expert

7> How many hours of programming on an average you do per week?

a) Less than 10 hours b) more than 10 but less than 20 c) more than 20

8> What is the maximum number of lines of code you have written for a project?

a) Less than 1000 b) 1000- 5000 c) more than 5000

9> Have you had any software development industry level experience?

46

a) Nil b) less than 2 years c) more than 2 years

10> what aspect of software development are you least interested in?

a) Design b) Implementation c) Testing d) Bug fixing e) code\feature enhancements

11> which is your favorite programming language?

12> How familiar are you with socket programming?

a) Not at all b) familiar c) very familiar

47

Appendix-2 Post-Session Feedback

1. Was the tool helpful in understanding the concerns described? Yes/No/Maybe

2. How helpful was the tool in performing maintenance tasks? Very

helpful/Helpful/Not Helpful

3. What additional feature would you like to have in the tool?

4. Additional Remarks

48

Acknowledgements

I would like to take this opportunity to express my heartfelt gratitude to all those who helped

me with the various aspects of my research work and the writing of this thesis. First and

foremost, I would like to thank Dr Simanta Mitra for his expert guidance, patience and

support throughout the course of my research. His vision and encouragement guided me in

achieving the goals of my research. I would like to thank my committee members for their

efforts and contributions to this work: Dr. Carl K. Chang and Dr. Sashi K. Gadia. I would

also like to thank my research mate Bhagvanth Ram for his invaluable contributions to my

research. Lastly, I’m grateful to all those who voluntarily participated in the study conducted

as part of my research without whom this thesis would not have been possible.

	2009
	An experimental study of the effectiveness of Panorama as a maintenance tool
	Renish Palapetty
	Recommended Citation

	Microsoft Word - $ASQ34988_supp_E86359DC-DF86-11DE-BD8F-4101D352ABB1.docx

