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ABSTRACT

Sequence comparison is one of the most fundamental computational problems in bioinfor-

matics for which many approaches have been and are still being developed. In particular,

pairwise sequence alignment forms the crux of both DNA and protein sequence comparison

techniques, which in turn forms the basis of many other applications in bioinformatics. Pair-

wise sequence alignment methods align two sequences using a substitution matrix consisting

of pairwise scores of aligning different residues with each other (like BLOSUM62), and give

an alignment score for the given sequence-pair. The biologists routinely use such pairwise

alignment programs to identify similar, or more specifically, related sequences (having com-

mon ancestor). It is widely accepted that the relatedness of two sequences is better judged

by statistical significance of the alignment score rather than by the alignment score alone.

This research addresses the problem of accurately estimating statistical significance of pairwise

alignment for the purpose of identifying related sequences, by making the sequence comparison

process more sequence-specific.

The major contributions of this research work are as follows. Firstly, using sequence-specific

strategies for pairwise sequence alignment in conjunction with sequence-specific strategies for

statistical significance estimation, wherein accurate methods for pairwise statistical significance

estimation using standard, sequence-specific, and position-specific substitution matrices are

developed. Secondly, using pairwise statistical significance to improve the performance of the

most popular database search program PSI-BLAST. Thirdly, design and implementation of

heuristics to speed-up pairwise statistical significance estimation by an factor of more than

200. The implementation of all the methods developed in this work is freely available online.

With the all-pervasive application of sequence alignment methods in bioinformatics using
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the ever-increasing sequence data, this work is expected to offer useful contributions to the

research community.
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1. INTRODUCTION

Motivation for Present Research

Pairwise sequence alignment is an extremely important and common application in the

analysis of DNA and protein sequences [52, 12, 65, 13, 50, 48, 40, 24]. It forms the basic step

of many other bioinformatics applications like multiple sequence alignment, database search,

finding protein function, protein structure, phylogenetic analysis, etc. for making various high

level inferences about the DNA and protein sequences. Biological sequence data is also far

more abundant as compared to other kinds of biological data, for example, protein structure

data or microarray data.

In all applications making use of pairwise sequence alignment, the pairwise alignment step

is primarily used to identify related sequences, i.e., sequences evolved from a common ances-

tor. A typical pairwise alignment program aligns two sequences and constructs an alignment

with maximum similarity score. Although related sequences will have high similarity scores,

the threshold alignment score T below which the two sequences can be considered unrelated

depends on the probability distribution of alignment scores between random, unrelated se-

quences [42]. Therefore, the biological significance of a pairwise sequence alignment is gauged

by the statistical significance rather than the alignment score alone. This means that if an

alignment score has a low probability of occurring by chance, the alignment is considered sta-

tistically significant, and hence biologically significant. Of course, it is important to note here

that although statistical significance may be a good preliminary indicator of biological signifi-

cance which may be helpful in identifying potential homologs, statistical significance does not

necessarily imply biological significance [9, 48, 42, 40].

The alignment score distribution depends on various factors like alignment program, scoring
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scheme, sequence lengths, sequence compositions [42]. Fig. 1.1 shows two alignment score

distributions (probability density functions) X and Y . Consider scores x and y in the score

distributions X and Y respectively. Clearly x < y, but x is more statistically significant than

y, since x lies more in the right tail of the distribution and is less probable to have occurred by

chance. The shaded region represents the probability that a score equal or higher could have

been obtained by chance. Therefore, instead of simply using the alignment score as the metric

for homology, it is very useful to estimate the statistical significance of an alignment score to

comment on the relatedness of the two sequences being aligned.

Figure 1.1 Two alignment score distributions depicting the advantage of
statistical significance over alignment scores. x < y, but x

is more statistically significant than y. A more statistically
significant score is less likely to have occurred by chance, and
hence is considered potentially biologically significant as well.
The shaded region represents the probability that a score equal
or higher could have been obtained by chance.

For ungapped alignments, rigorous statistical theory for the alignment score distribution

is available [34]. However, no precise statistical theory currently exists for the simplest ex-

tension of ungapped alignment, which is alignment with gaps, although there exist a couple

of good starting points for statistically describing gapped alignment score distributions for

simple scoring schemes [36, 25]. But a complete mathematical description of the optimal score

distribution remains far from reach [25]. Accurate statistics of the alignment score distribu-
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tion from newer and more sophisticated alignment programs using difference blocks [32] and

multiple parameter sets [31] therefore is not expected to be straightforward.

With the all-pervasive application of sequence alignment methods in bioinformatics using

the ever-increasing sequence data, and the development of more sophisticated alignment meth-

ods whose statistics are not expected to be straightforward, we think that new approaches for

accurate estimation of statistical significance of pairwise alignment would be highly useful for

the bioinformatics community. This motivates the present research.

Nature of the Problem

The evolution of DNA and proteins in living organisms is influenced by a number of random

factors, and observed patterns in DNA or protein sequences may be due to such factors, rather

than from the selective pressure maintaining a certain function [40]. This means that not all

sequence pairs which resemble each other will be homologs. Therefore, usually for the purpose

of homology detection, the biologist is interested in finding if there are any biologically relevant

targets sharing important structural and functional characteristics, which are common to the

two sequences. Thus, pairwise local alignment [63] is more commonly used for this purpose

which finds highly similar regions between two sequences, rather than global alignment [45]

which are optimized along the whole length of the two sequences. Local pairwise sequence

alignment methods align two sequences using a substitution matrix consisting of pairwise

scores of aligning different residues with each other (like BLOSUM62), and give an alignment

score for the given sequence-pair. The question here arises how likely it is that a high local

similarity score is obtained by chance, which gives importance to the concept of statistical

significance.

Statistical significance of a pairwise alignment score is commonly assessed by its P-value,

which denotes the probability that an alignment with this score or higher occurs by chance

alone. The notion of a P-value stems from the general statistical methodology of hypothesis

testing [37]. Here, the test statistic is the alignment score, the null hypothesis is that the

aligned sequences are unrelated, and the alternate hypothesis is that the sequences are related
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(homologous). Therefore, the P-value is the probability of seeing an alignment score as extreme

as the observed value, assuming that the null hypothesis is true. Thus, a close to zero P-value

for an alignment score suggests that it could not have arisen by chance, and the sequences

are, with good probability related. In Fig. 1.1, the shaded region represents the P-value. It is

easy to see that estimation of the P-value for an alignment score requires the knowledge of the

distribution of the local alignment scores. Since, the related sequences will (generally) have

high scores, the right tail behavior of the score distribution is most crucial.

Score distribution for ungapped local alignment is known to follow a Gumbel-type EVD

[34], as shown in Fig. 1.1 with analytically calculable parameters. For the gapped alignment,

no perfect statistical theory has yet been developed, although there is ample empirical evidence

that the gapped alignment score distribution also closely follows Gumbel-type EVD [65, 11,

50, 41, 46, 44, 31].

A good pairwise alignment based sequence comparison strategy should therefore, have the

following characteristics:

1. Sequence-specificity : Since the distribution of alignment scores and hence the statistical

significance depends on various factors like alignment program, scoring scheme, sequence

lengths, sequence compositions [42], a good statistical significance estimation strategy

should take all these factors for the specific sequence-pair being aligned into account.

2. Statistical significance accuracy : The approach should be able to estimate the P-values

for high scores in the tail region of the distribution accurately.

3. Retrieval accuracy : Most importantly, the approach should be able to perform well for

the central application of sequence comparison - identifying related sequences. Thus,

it should assign lower P-values to pairs of related sequences than to pairs of unrelated

sequences, which is commonly measured by retrieval accuracy (also known as coverage).

4. Speed : The estimation process should be fast enough to be usable in practice.
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Recent Research Relevant to the Problem

It is a well-known result in statistics that the distribution of the sum of a large number

of independent identically distributed (i.i.d) random variables tends to a normal distribution

(central limit theorem). Similarly, the distribution of the maximum of a large number of

i.i.d. random variables tends to an extreme value distribution (EVD) [26, 35]. This fact is

theoretically well-founded for the ungapped local sequence alignment, where the distribution of

Smith-Waterman local alignment score between random, unrelated sequences is known to follow

a Gumbel-type EVD [34], as shown in Fig. 1.1. In the limit of sufficiently large sequence lengths

m and n, the statistics of HSP (High-scoring Segment Pairs which correspond to ungapped

local alignment) scores are characterized by two parameters, K and λ. The probability that

the optimal local alignment score S exceeds x is given by the P-value:

Pr(S > x) ∼ 1− e−E ,

where E is the E-value and is given by

E = Kmne−λx .

For E-values less than 0.01, both E-value and P-values are very close to each other. The above

formulae are valid for ungapped alignments [34], and the parameters K and λ can be computed

analytically from the substitution scores and sequence compositions.

For the gapped alignment, no perfect statistical theory has yet been developed, although

there is ample empirical evidence that the gapped alignment score distribution also closely

follows Gumbel-type EVD [65, 11, 50, 41, 46, 44, 40, 31]. Therefore, the frequently used

approach has been to fit the score distribution to an extreme value distribution to get the

parameters K and λ. In general, the approximations thus obtained are quite accurate [40].

The currently available theoretical results [60, 61] also support the assumption that gapped

alignment score distribution follows Gumbel-type EVD. As mentioned before, there exist a

couple of good starting points for statistically describing gapped alignment score distributions

for simple scoring schemes [36, 25]. But currently, no rigorous statistical theory is available for

the general case of local gapped pairwise alignments [40].
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Some excellent reviews on statistical significance in sequence comparison are available in

the literature [48, 53, 42, 40]. Here, we discuss some of the recent key developments in the

field related to the problem. The HMMER program [21] uses maximum likelihood fitting [22]

of extreme value distribution and also allows for censoring of data left of a given cutoff, for

fitting only the right tail of the histogram. In addition to direct distribution fitting methods,

a popular method is the island method [46, 10], which derives multiple island scores from a

single optimal alignment, which are subsequently used to estimate the statistical parameters.

Although efficient than numerical simulation, these methods are still known to be rather time-

consuming [18] and hence the parameters K and λ have to be pre-computed for some specific

scoring schemes. The latest versions of the widely popular database search program BLAST

[57] uses the island method, along with a rescaling technique where the substitution matrix

is scaled by an appropriate factor to take into account the variation in sequence composition,

so that the relative entropy of the scaled matrix is close to that of the matrix originally used

to numerically derive K and λ for gap penalties being used. Subsequently the corresponding

originally derived K and λ are used for statistical significance estimation. An importance

sampling based method for estimating λ was used in [18] and was shown to be at least five

times faster than traditional methods. The method was further theoretically justified in [25].

[14] developed a maximum likelihood for the simultaneous estimation of K, λ, and H, where H

is the relative entropy of the scoring system. The work in [43, 41] uses heuristic approximations

used to derive approximate formulae for gapped K and λ from ungapped K and λ, taking into

account the sequence length and composition for arbitrary gap penalties and substitution

matrices. Recently, researchers have also looked closely at the low probability tail distribution,

and the work in [66] applied a rare-event sampling technique earlier used in [27] and suggested a

Gaussian correction to the Gumbel distribution to better describe the rare event tail, resulting

in a considerable change in the reported significance values. However, for most practical

purposes, the original Gumbel distribution has been widely used to describe gapped alignment

score distribution [65, 11, 50, 41, 46, 44, 31].

Most of the above mention approaches are designed to estimate statistical significance in
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context of a database search. Database search programs typically use heuristics to obtain a

sub-optimal local alignment in less time. Popular database search programs are BLAST [13],

FASTA [49, 51, 50], SSEARCH (using full implementation of Smith-Waterman algorithm [63]),

and PSI-BLAST [13, 57]. The database statistical significance so obtained for a pairwise com-

parison is dependent on the database, and will be different for different database, and even

for the same database at different times, since the size of the database keeps on changing. In

particular, BLAST2.0 [13] reports the statistical significance as the likelihood that a similar-

ity as good or better would be obtained by two random sequences with average amino-acid

composition and lengths similar to the sequences that produced the score. However, if either

of the two sequences has amino acid composition significantly different from the average, the

statistical significance may be an over or underestimate. Similarly, the statistical estimates

provided by the FASTA package [49, 50] report the expectation that a sequence would obtain

a similarity score against an unrelated sequence drawn at random from the sequence database

that was searched, which again is dependent on the average sequence composition of the entire

database and not on the specific sequence pair.

In contrast to database statistical significance, the approach of fitting an extreme value

distribution to a empirically generated score distribution from random shuffles of a specific

pair has also been used to obtain pairwise statistical significance. The PRSS program in the

FASTA package [49, 51, 50] calculates the statistical significance of an alignment by aligning

them, shuffling the second sequence up to 1000 times, and estimating the statistical significance

from the distribution of shuffled alignment scores. It uses maximum likelihood to fit an EVD

to the shuffled score distribution. In addition to maximum likelihood fitting, linear regression

has also been used [31] to fit score distributions to estimate statistical parameters. Some of

the methods described earlier reporting database statistical significance can also be tweaked

to estimate pairwise statistical significance by giving the second sequence as the database. For

example, there exist the BL2Seq program [64], which uses the BLAST engine to align two

sequences. Another example is ARIADNE program [41] which uses a formula for gapped K

and λ.
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Research Problem Statement

The research problem statement is ”to use sequence-specific strategies for pairwise sequence

alignment and statistical significance estimation to accurately and quickly estimate the statis-

tical significance of pairwise local sequence alignment for the purpose of identifying related

sequences by using computational, statistical, and heuristic methods”. In accordance with the

characteristics of a good pairwise sequence alignment based sequence comparison strategy

outlined before, this work pursues the goal in terms of the following intermediate goals:

1. Comparing existing approaches for estimating pairwise statistical significance in terms

of statistical significance accuracy.

2. Comparing pairwise statistical significance with database statistical significance in terms

of retrieval accuracy.

3. Using sequence-specific strategies for pairwise sequence alignment.

(a) Multiple parameter sets.

(b) Sequence-specific substitution matrices.

(c) Position-specific substitution matrices.

4. Using sequence-specific strategies for statistical significance estimation

(a) Using pairwise statistical significance instead of database statistical significance.

(b) Using multiple shuffle spaces for generating empirical distribution.

5. Refining the results of a fast database search program like PSI-BLAST using pairwise

statistical significance.

6. Speeding up pairwise statistical significance

(a) Derived distribution points heuristic.

(b) Database search heuristic.
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Thesis organization

The thesis is organized as follows:

1. Chapter 1: Introduction

It gives a general introduction to the thesis, presenting the motivation for present re-

search, nature of the problem, recent relevant research, research problem statement and

solution strategy, and thesis organization.

2. Chapter 2: Pairwise statistical significance and empirical determination of effective gap

opening penalties for protein local sequence alignment

This chapter compares different methods for estimating pairwise statistical significance

in terms of statistical significance accuracy, and compares the best method (censored

maximum-likelihood fitting) with database statistical significance in terms of retrieval

accuracy. It also presents an application of pairwise statistical significance to empirically

determine the most effective gap opening penalties for protein local sequence alignment.

3. Chapter 3: Pairwise statistical significance of local sequence alignment using multiple

parameter sets and empirical justification of parameter set change penalty

This chapter uses the censored maximum-likelihood fitting method in conjunction with

dynamic use of multiple parameter sets (substitution matrix, gap opening penalty, gap

extension penalty) to estimate pairwise statistical significance. Further, it also provides

empirical justification of parameter set change penalty, which is an alignment parameter

used for alignment with multiple parameter sets.

4. Chapter 4: Conservative, non-conservative and average pairwise statistical significance

of local sequence alignment

This chapter presents and demonstrates the usefulness of novel sequence-specific strate-

gies for pairwise statistical significance estimation of a pairwise alignment of sequence

pair by using shuffle spaces specific to both the sequences.

5. Chapter 5: Pairwise statistical significance of local sequence alignment using sequence-
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specific and position-specific substitution matrices

This chapter furthers the approach of using sequence-specific pairwise sequence alignment

strategies for pairwise statistical significance estimation by using sequence-specific and

position-specific substitution matrices. One possible approach to construct sequence-

specific substitution matrices is shown to improve retrieval accuracy results as compared

to using standard substitution matrices. Using position-specific substitution matrices for

pairwise statistical significance estimation further improves the results significantly.

6. Chapter 6: PSIBLAST PairwiseStatSig: Reordering PSI-BLAST hits using pairwise sta-

tistical significance

This chapter uses pairwise statistical significance to reorder the hits obtained by a

BLAST/PSI-BLAST database search, thereby giving more accurate estimates of sta-

tistical significance after quickly filtering potentially unrelated sequences using a fast

database search program.

7. Chapter 7: Fast pairwise statistical significance estimation using derived distribution

points and database search heuristics

This chapter proposes and implements two heuristics to speedup pairwise statistical

significance estimation. The heuristics are designed taking advantage of the nature of

pairwise statistical significance estimation, and are shown to give a speedup of more that

200 without significant loss in retrieval accuracy.

8. Chapter 8: Conclusions

This final chapter presents the conclusions and some future ideas.



11

2. PAIRWISE STATISTICAL SIGNIFICANCE AND EMPIRICAL

DETERMINATION OF EFFECTIVE GAP OPENING PENALTIES FOR

PROTEIN LOCAL SEQUENCE ALIGNMENT

A paper published in International Journal of Computational Biology and Drug Design

Ankit Agrawal, Volker P. Brendel and Xiaoqiu Huang

Abstract

We evaluate various methods to estimate pairwise statistical significance of a pairwise local

sequence alignment in terms of statistical significance accuracy and compare it with popular

database search programs in terms of retrieval accuracy on a benchmark database. Results

indicate that using pairwise statistical significance using standard substitution matrices is

significantly better than database statistical significance reported by BLAST and PSI-BLAST,

and that it is comparable and at times significantly better than SSEARCH. An application

of pairwise statistical significance to empirically determine effective gap opening penalties for

protein local sequence alignment using the widely used BLOSUM matrices is also presented.

Introduction

Sequence alignment is a very important and common application in the analysis of DNA

and protein sequences [52, 12, 13]. The primary application of sequence alignment is homology

detection, i.e., identifying sequences evolved from a common ancestor. Homology detection

further forms the basis of many other bioinformatics applications for making various high level

A conference version of this paper appeared in the Proceedings of 4th Intl. Symposium on Bioinformatics
Research and Applications, 2008 [1]
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inferences about the sequences, like finding protein function, protein structure, deciphering

evolutionary relationships, drug design, etc. There exist several programs for sequence align-

ment that use well known algorithms [63, 58] or their heuristic versions [13, 49, 51]. Recently,

some enhancements in alignment program features have also become available [32, 31] us-

ing difference blocks and multiple scoring matrices, in an attempt to capture more biological

features in the alignment algorithm.

Why Statistical Significance?

Usually, the sequence alignment programs report alignment scores for the alignments con-

structed, and related (homologous) sequences will have higher alignment scores. But the

threshold alignment score T below which the two sequences can be considered unrelated de-

pends on the probability distribution of alignment scores between random, unrelated sequences

[42]. Therefore, the biological significance of a pairwise sequence alignment is gauged by the

statistical significance rather than the alignment score alone. This means that if an alignment

score has a low probability of occurring by chance, the alignment is considered statistically

significant, and hence biologically significant. The alignment score distribution depends on

various factors like alignment program, scoring scheme, sequence lengths, sequence composi-

tions [42]. It is thus possible to have two alignment scores x and y with x < y, but x more

statistically significant than y. Therefore, instead of simply using the alignment score as the

metric for homology, it is very useful to estimate the statistical significance of an alignment

score to comment on the relatedness of the two sequences being aligned. Of course, it is im-

portant to note here that although statistical significance may be a good preliminary indicator

of biological significance which may be helpful in identifying potential homologs, statistical

significance does not necessarily imply biological significance [9, 42].

For ungapped alignments, rigorous statistical theory for the alignment score distribution

is available [34]. However, no precise statistical theory currently exists for the gapped align-

ment score distribution and for score distributions from alignment programs using additional

features like difference blocks [32] or multiple parameter sets [31]. The problem of accurately
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determining the statistical significance of gapped sequence alignment has attracted a lot of

attention in the recent years [65, 11, 50, 43, 41, 18, 10, 57, 59, 54, 68]. There exist a couple

of good starting points for statistically describing gapped alignment score distributions for

simple scoring schemes [36, 25], but a complete mathematical description of the optimal score

distribution remains far from reach [25]. Some excellent reviews on statistical significance in

sequence comparison are available in the literature [48, 53, 42, 40].

Database statistical significance

The commonly available pairwise protein local sequence alignment programs give the op-

timal or suboptimal alignment of two given sequences. Database searches are a special case of

pairwise local sequence alignment, where one sequence is the query sequence, and the second

sequence is a database consisting of many component sequences. Many approaches exist cur-

rently to estimate the statistical significance of a database hit (match of the query sequence

with a sub-sequence of the database). For database searches, the statistical significance of a

pairwise alignment score is reported in terms of the E-value, which is the expected number of

hits in the database with a score equal to or higher than arising by chance, or the P-value,

which is the probability of getting at least one score equal or higher arising by chance. These

E-values and P-values for a database hit are corresponding to the database, and generally not

for the specific pairwise alignments.

BLAST2.0 [13] reports the statistical significance as the likelihood that a similarity as good

or better would be obtained by two random sequences with average amino-acid composition

and lengths similar to the sequences that produced the score. However, if either of the two

sequences has amino acid composition significantly different from the average, the statistical

significance may be an over or underestimate. Similarly, the statistical estimates provided by

the FASTA package [49, 50] report the expectation that a sequence would obtain a similarity

score against an unrelated sequence drawn at random from the sequence database that was

searched, which again is dependent on the average sequence composition of the entire database

and not on the specific sequence pair.
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There have been a lot of improvements to the BLAST programs in the last few years, pri-

mary of which is the use of composition-based statistics and substitution matrices [57, 67, 68].

These methods have resulted in an increase in accuracy of database searches by rescaling the

substitution matrices for individual alignments [57] and combining different measures of simi-

larity by deriving pairwise statistical significance values from database statistical significance

values [68]. These methods have intelligently avoided time-consuming simulations of individual

sequence pairs by using pre-computed statistical parameters and substitution matrix rescaling

techniques, which may not always be able to estimate the true pairwise statistical significance

as it is derived from database statistical significance without generating the score distribution

for individual sequence pairs, but generally give good results in context of a database search.

Pairwise statistical significance

Pairwise statistical significance is the statistical significance of the specific pairwise align-

ment under consideration and is independent of any database. Accurate estimates of the

statistical significance of pairwise alignments can be very useful to comment on the relatedness

of a pair of sequences aligned by an alignment program independent of any database. And thus,

pairwise statistical significance can also be used to compare different combination of alignment

parameters - like the alignment program itself, substitution matrices, gap costs. In addition

to the standard local alignment programs [63, 58], some recent programs have been developed

[32, 31] that take into account other desirable biological features in addition to gaps - like

difference blocks or the use of multiple parameter sets (substitution matrices, gap penalties).

These features of the alignment programs enhance the sequence alignment of real sequences by

suiting to different conservation rates at different spatial locations of the sequences. As pointed

out earlier, rigorous statistical theory for alignment score distribution is available only for un-

gapped alignment, and not even for its simplest extension, i.e., alignment with gaps. Accurate

statistics of the alignment score distribution from newer and more sophisticated alignment

programs therefore is not expected to be straightforward. For comparing the performance of

newer alignment programs, accurate estimates of pairwise statistical significance are needed.
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The statistical significance of a pairwise alignment depends upon various factors: sequence

alignment method, scoring scheme, sequence length, and sequence composition [42]. The

straightforward way to estimate statistical significance of scores from an alignment program for

which the statistical theory is unavailable is to generate a distribution of alignment scores using

the program with randomly shuffled versions of the pair of sequences and compare the obtained

score with the generated score distribution, either directly or by fitting an extreme value

distribution (EVD) curve to the generated distribution to calculate the statistical significance

of the obtained score (as described in the next section).

There exist quite a few approaches to estimate pairwise statistical significance of a pairwise

alignment. The PRSS program in the FASTA package [49, 51, 50] calculates the statistical

significance of an alignment by aligning them, shuffling the second sequence up to 1000 times,

and estimating the statistical significance from the distribution of shuffled alignment scores. It

uses maximum likelihood to fit an EVD to the shuffled score distribution. A similar approach

is also used in HMMER [21]. It also uses maximum likelihood fitting [22] and also allows

for censoring of data left of a given cutoff, for fitting only the right tail of the histogram. In

addition to maximum likelihood fitting, linear regression has also been used [31] to fit score

distributions to estimate statistical parameters, and hence statistical significance. A heuristic

approximation of the gapped local alignment score distribution is also available [43], and based

on these statistics, accurate formulae for statistical parameters K and λ for gapped alignments

are derived and implemented in a program called ARIADNE [41]. These methods can provide

an accurate estimation of statistical significance for gapped alignments, but currently do not

incorporate the additional features of sequence alignment, like using difference blocks and

multiple parameter sets [32, 31].

Contributions

There contribution of this paper is three-fold. First, we compare various existing methods

for statistical significance accuracy and determine the most accurate method to be maximum

likelihood fitting of score distribution censored left of peak (fitting right of peak). Secondly,
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we compared this method with database statistical significance reported by common database

search programs like BLAST, PSI-BLAST, and SSEARCH in terms of retrieval accuracy (of

homologs) using a benchmark database earlier used in [62]. Comparison of pairwise statistical

significance results with database statistical significance show that pairwise statistical signifi-

cance gives significantly better retrieval accuracy compared to BLAST and PSI-BLAST, and

comparable and at times significantly better accuracy than SSEARCH as well. BLAST and

PSI-BLAST are heuristic based methods for database search whereas SSEARCH uses a full

implementation of Smith-Waterman algorithm [63], and hence takes much more time. Compa-

rable and at times significantly better retrieval accuracy than SSEARCH makes it feasible to

get statistical significance estimates at least as good as database statistical significance without

doing a time-consuming database search. Thirdly, we use pairwise statistical significance to

empirically determine the effective gap opening penalties under an affine gap penalty model

for pairwise protein comparison with the most commonly used BLOSUM substitution matri-

ces [28] - BLOSUM45, BLOSUM50, BLOSUM62 and BLOSUM80, using the same benchmark

database. A similar empirical study for database searches using SSEARCH with PAM matrices

[20] is available in the literature [55]. The first two contributions of this paper with preliminary

results were earlier presented in the conference version of this paper [1].

The remainder of the paper is organized as follows: In Section 2, an introduction to the

extreme value distribution in the context of estimating statistical significance for gapped and

ungapped alignments is presented. Section 3 describes the existing tools and programs used

in this work, followed by the experiments and results in Section 4, which contains the main

contributions of this paper. Finally, the conclusion and future work is presented in Section 5.

The Extreme Value Distribution for Ungapped and Gapped Alignments

Just as the distribution of the sum of a large number of independent identically distributed

(i.i.d) random variables tends to a normal distribution (central limit theorem), the distribution

of the maximum of a large number of i.i.d. random variables tends to an extreme value

distribution (EVD) [35]. This is an important and useful fact, because in principle it allows
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us to fit an EVD to the score distribution from any local alignment program and use it for

estimating statistical significance of scores from that program. The distribution of Smith-

Waterman local alignment score between random, unrelated sequences is approximately a

Gumbel-type EVD [34]. In the limit of sufficiently large sequence lengths m and n, the statistics

of HSP (High-scoring Segment Pairs which correspond to ungapped local alignment) scores are

characterized by two parameters, K and λ. The probability that the optimal local alignment

score S exceeds x is given by the P-value:

Pr(S > x) ∼ 1− e−E ,

where E is the E-value and is given by

E = Kmne−λx .

For E-values less than 0.01, both E-value and P-values are very close to each other. The

above formulae are valid for ungapped alignments [34], and the parameters K and λ can

be computed analytically from the substitution scores and sequence compositions. For the

gapped alignment, no perfect statistical theory has yet been developed, although there exist

some good starting points for the problem as mentioned before [36, 25]. Recently, researchers

have also looked closely at the low probability tail distribution, and the work in [66] applied

a rare-event sampling technique earlier used in [27] and suggested a Gaussian correction to

the Gumbel distribution to better describe the rare event tail, resulting in a considerable

change in the reported significance values. However, for most practical purposes, the original

Gumbel distribution has been widely used to describe gapped alignment score distribution

[65, 11, 50, 41, 46, 44, 31].

From an empirically generated score distribution, we can directly observe the E-value E

for a particular score x, by counting the number of times a score x or higher was attained.

Since this number would be different for different number of random shuffles N (or number of

sequences in the database in case of database search), a normalized E-value is defined as

Enormalized =
E

N

It is clear that in theory, this normalized E-value is same as the P-value (for large N).
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Tools and Programs Used

We worked with the alignment programs SIM [33], which is an ordinary alignment pro-

gram (similar to SSEARCH), GAP3 [32], which allows dynamically finding similarity blocks

and difference blocks, and GAP4 [31], which can also use multiple parameter sets (scoring ma-

trices, gap penalties, difference block penalties) to generate a single pairwise alignment. For

estimating the statistical parameters K and λ, we used several programs. First is PRSS from

the FASTA package [49, 51, 50], which takes two protein sequences and one set of parameters

(scoring matrix, gap penalty), generates the optimal alignment, and estimates the K and λ

parameters by aligning up to 1000 shuffled versions of the second sequence and fitting an EVD

using maximum likelihood. In addition to uniform shuffling, it also allows for windowed shuf-

fling. We also used ARIADNE [41], that uses an approximate formula to estimate gapped K

and λ from ungapped K and λ. Both these methods are currently applicable only for alignment

methods using one parameter set. We also used the linear regression fitting program described

in [31] to estimate K and λ from an empirical distribution of alignment scores. Finally, we

also used the maximum likelihood method [22] and corresponding routines in the HMMER

package [21] to fit an EVD to the empirical distribution.

Experiments and Results

Accurate estimation of K and λ for a specific sequence pair

For each sequence pair, we need to find accurate estimates of the statistical parameters K

and λ. Here, we are not too much concerned with the time taken for estimating K and λ since

we are interested in determining the method which gives the most accurate estimates of the

parameters.

To decide on the method for estimating statistical parameters for a sequence pair, we used

the following approach: a pair of remotely homologous protein sequences was selected using

PSI-BLAST by giving a G protein-coupled receptor sequence (GENE ID: 55507 GPRC5D) as

query and running two iterations of PSI-BLAST. The second sequence was selected from the
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new results after the second iteration that were not present in the results of the first iteration.

The sequence was a novel protein similar to vertebrate pheromone receptor protein, Danio

rerio (emb|CAM56437.1|). We used this pair of real protein sequences to generate eleven

large scale simulations of alignment score distributions using different alignment programs

and scoring schemes described in Section 3. Each of the eleven simulations involved aligning

one million pairs of randomly shuffled versions of the sequence pair (with different seeds for

the random number generator). Because we are mostly interested in the tail distribution of

scores, we looked at the distribution of scores for which the normalized E-value was less than

0.01. We got eleven empirically derived random distributions, and although theoretically they

should have been same, there was slight variation within the eleven distributions (because of

random sampling). Here we combined the eleven distributions by taking the mean of the E-

values for each score from each of the eleven distributions. This is equivalent to doing one big

simulation with eleven million shuffles. We assume that the resulting mean distribution is the

most accurate representation of the actual distribution and subsequently used this distribution

to validate the predicted E-values from different methods of estimating K and λ. Fig. 2.1

shows the mean score distribution (complementary cumulative distribution function in terms

of statistics) based on the simulations, which is same as the normalized E-value, for three

alignment schemes. The solid line curve shows the mean of the normalized E-values from the

eleven different simulations. The vertical bars for each alignment score indicates the variation

in normalized E-values observed within the eleven different simulations.

For evaluating various methods of estimating statistical parameters, the K and λ estimates

from different programs for the same sequence pair were examined. For the PRSS program,

both uniform and windowed shuffling was used with two values of window size: 10 and 20. The

ARIADNE program was also used to estimate gapped K and λ. Because we are interested in

accurate fitting of the tail distribution, for the curve fitting methods like maximum likelihood

(ML) and linear regression (LR), we used the censored distribution for fitting. Here type-I

censoring is defined as the one in which we fit only the data right of the peak of the histogram

[22], and type-II censoring is defined as one where the cutoff is set to the score that corre-
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(a)

(b)

(c)

Figure 2.1 Distribution of alignment scores generated (a) using SIM pro-
gram and BLOSUM62 matrix, (b) using SIM program and
BLOSUM100 matrix and (c) using GAP4 program and BLO-
SUM62 and BLOSUM100 matrices. The solid line curve repre-
sents the mean of the eleven distribu1tions generated, and the
vertical bars represent the variation within the eleven distribu-
tions.
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Table 2.1 Comparison of the Sum of Squares of Differences (SSD) between
predicted normalized E-values and actual normalized E-values
for different methods and alignment schemes. Maximum likeli-
hood fitting with type-I censoring (censoring left of peak) gives
the minimum SSD in most comparisons.

Program: SIM Matrix: BLOSUM62 GapOpenPen.: 14, GapExtPen.: 3
Statistic Ariadne PRSS Maximum Likelihood LinRegr Minimum

Uniform -w 10 -w 20 Full Censor-I Censor-II Censor-II
Min(SSD) 8.05E-09 9.11E-09 2.67E-08 8.58E-08 8.05E-09
Max(SSD) 5.6× 3.46× 4.22× 7.5× 6.03E-07 2.75E-07 2.15E-06 5.20E-06 2.75E-07
Avg(SSD) E-04 E-05 E-02 E-03 3.02E-07 7.91E-08 6.08E-07 1.48E-06 7.91E-08

Program: SIM Matrix: BLOSUM100 GapOpenPen.: 16, GapExtPen.: 4
Statistic Ariadne PRSS Maximum Likelihood LinRegr Minimum

Uniform -w 10 -w 20 Full Censor-I Censor-II Censor-II
Min(SSD) 1.88E-09 1.76E-09 8.16E-10 8.27E-09 8.16E-10
Max(SSD) 1.02× 4.58× 8.3× 4.38× 3.90E-08 2.50E-08 1.62E-07 4.20E-07 2.50E-08
Avg(SSD) E-05 E-05 E-04 E-04 8.51E-09 9.18E-09 4.54E-08 1.13E-07 8.51E-09

Program: GAP4 Matrix: BL62,BL100 GapOpen:14,16 GapExt:3,4
Statistic Ariadne PRSS Maximum Likelihood LinRegr Minimum

Uniform -w 10 -w 20 Full Censor-I Censor-II Censor-II
Min(SSD) 2.20E-07 2.05E-08 1.35E-08 9.34E-08 1.35E-08
Max(SSD) NA NA NA NA 1.62E-06 6.86E-07 2.97E-06 9.77E-06 6.86E-07
Avg(SSD) 9.88E-07 2.42E-07 6.49E-07 2.83E-06 2.42E-07

sponds to a normalized E-value of 0.01. We also show results for uncensored fitting with ML

method, applied to the eleven empirical distributions (with a million shuffles each) to make a

realistic comparison of other fitting schemes with the methodology used in PRSS, which also

uses maximum likelihood method, but only up to 1000 shuffles. Since we generated eleven

independent score distributions, we used them individually to estimate eleven pairs of K and

λ using both ML and LR, so that we can perform the best case, worst case and average case

prediction analysis for fitting methods. The estimated K and λ values from each program are

used to predict the E-values for different alignment scores using the EVD formula, and the

resulting distribution is compared with the mean empirical distribution generated from eleven

independent simulations as described above.

Table 2.1 shows the comparison of the sum of squares of differences (SSD) between pre-

dicted normalized E-values and actual normalized E-values for different methods and alignment

schemes. Because we had eleven estimates of K and λ for the ML and LR methods, we report

the minimum, maximum and average SSD for these methods. PRSS and ARIADNE report
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one set of parameters, and thus there is only one SSD corresponding to these methods. Fur-

ther, for alignment method GAP4 which can use multiple parameter sets, there is no entry

corresponding to ARIADNE and PRSS, as these methods do not currently support the use of

multiple parameter sets. The last column gives the minimum SSD obtained, and its second

and third entries correspond to the minimum worst case and minimum average case error in

prediction. We can see that the minimum SSD is obtained for the ML method in all cases.

Specifically, ML fitting with type-I censoring gives the minimum Max(SSD), (i.e. minimum

worst case error) for all the three cases. Therefore, we conclude that ML fitting with type-I

censoring gives the most accurate estimates of statistical parameters K and λ.

Pairwise statistical significance versus database statistical significance for homol-

ogy detection

More important than statistical significance accuracy of alignment scores is their retrieval

accuracy for homology detection since it is the primary application of sequence alignment. To

evaluate pairwise statistical significance and compare it with database statistical significance,

we used a typical homology detection experiment setup as follows. We used a non-redundant

subset of the CATH 2.3 database (Class, Architecture, Topology, and Hierarchy, [47]) provided

by [62] and available at ftp://ftp.ebi.ac.uk/pub/software/unix/fasta/prot sci 04/, which was

earlier selected in [62] to evaluate seven structure comparison programs and two sequence

comparison programs. As described in [62], this dataset consists of 2771 domain sequences

and includes 86 selected test query sequences, each representing at least five members of their

respective CATH sequence family (35% sequence identity) in the data set. This domain set is

considered as a valid benchmark for testing protein comparison algorithms [56].

We used this database and query set for experimenting with pairwise statistical significance.

For each of the 86×2771 comparisons, we used the maximum likelihood method with type-

1 censoring with 1000 shuffles to fit the score distribution from the GAP3 program with

a very high difference block penalty (to not use that feature), which essentially reduces it

to an ordinary alignment program like SIM implementing the Smith-Waterman algorithm.
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Alignments were obtained using the BLOSUM50 substitution matrix (in 1/3 bit units as used

by SSEARCH) with gap open penalty as 10, and gap extension penalty as 2. The same

combination of parameters was used in [62] to report the results using the SSEARCH program.

The parameters K and λ resulting from each censored ML fitting were then used to find the

pairwise statistical significance of the corresponding pairwise comparison, and the P-value

was recorded. Following [62], Errors per Query (EPQ) versus Coverage plots were used to

present the results. To create these plots, the list of pairwise comparisons was sorted based

on statistical significance, and subsequently, the lists were examined, from best score to worst.

Going down the list, the count of true homologs detected is increased by one if the two members

of the pair are homologs, and the error count is increased by one if they are not. At a given

point in the list, errors per query (EPQ) is the total number of errors incurred so far, divided

by the number of queries; and coverage is the fraction of homolog pairs so far detected. The

ideal situation would be to go from 0% to 100% coverage, without incurring any errors, which

would correspond to the curve being a straight line on the x-axis. Therefore, the more the

curve is towards the right, the better it is.

We compare the performance of pairwise statistical significance with database statistical

significance reported by popular database search programs like BLAST, PSI-BLAST, and

SSEARCH in terms of retrieval accuracy. BLAST and FASTA are heuristic based database

search approaches and SSEARCH is a rigorous database search program using full implementa-

tion of Smith-Waterman algorithm [63]. PSI-BLAST is an iterative approach to BLAST, where

position-specific scoring matrices (PSSMs) are constructed and refined over multiple iterations.

The performance of SSEARCH is significantly better than BLAST and FASTA at the cost of

search time. PSI-BLAST results depend heavily on the quality of the PSSMs but usually are

significantly better, because of its use of position-specific scoring matrices constructed and

refined over multiple iterations of BLAST. We performed experiments with PSI-BLAST both

using the benchmark database used in our experiments and using good-quality pre-trained

PSSMs constructed against non-redundant protein database.

Since the EPQ vs. Coverage curves on the complete dataset can be distorted due to poor
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performance by one or two queries (if those queries produce many errors at low coverage levels)

[62], we examine the performance of the methods with individual queries, following the work

in [62]. The coverage of each of the 86 queries at the 1st, 3rd, 10th, 30th, and 100th error was

recorded, and percentile analysis was done for each error level across the 86 queries, which is

presented in Fig. 2.2. Fig. 2.2(a) shows the 25th percentile coverage level at the 1st, 3rd, 10th,

30th, and 100th false positive for homologs (i.e. 21 of the queries have worse coverage, and 65

have better coverage). Fig. 2.2(b) shows the same results for 50th percentile of coverage, i.e.

the median coverage (43 queries performed better, 43 worse), and Fig. 2.2(c) shows the same

results for 75th percentile of coverage (i.e. 65 of the queries have worse coverage, and 21 have

better coverage). The curves for SSEARCH in Fig. 2.2(a) and Fig. 2.2(b) are derived from

the figures 2A and 2B in [62]. The results for SSEARCH corresponding to Fig. 2.2(c) were

not available in [62].

Because the experiments with BLAST, SSEARCH, and PairwiseStatSig were conducted us-

ing a standard substitution matrix, the results indicate that pairwise statistical significance per-

forms significantly better than database statistical significance with heuristic based database

search approaches (like BLAST and FASTA), and at least comparable to database statistical

significance with rigorous database search approach like SSEARCH. This implies that statisti-

cal significance estimates at least as good as database statistical significance can be obtained

by pairwise statistical significance without having to do a time-consuming database search.

This can be very useful to estimate accurate pairwise statistical significance of two (or a few)

sequences, which is a common scenario in many pairwise alignment based applications like

phylogenetic tree construction, progressive multiple sequence alignment.

The results further indicate that on the benchmark database used in our experiments,

pairwise statistical significance also gives better results than PSI-BLAST, which uses position-

specific scoring matrices, even though the experiments with pairwise statistical significance

were conducted using standard substitution matrices. Since PSI-BLAST results heavily depend

on the quality of PSSMs, we also conducted experiments with PSI-BLAST using pre-trained

PSSMs against the non-redundant protein database provided along with the BLAST suite of
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programs. The similar PSI-BLAST results with pre-trained PSSMs presented in the conference

version of this paper [1] were taken from [62], but here we present the results obtained by

repeating the experiments with the new version (2.2.17) of the PSI-BLAST program and the

non-redundant database. As it is clear from the Errors per Query vs. Coverage plots, using

PSI-BLAST with pre-trained PSSMs gives significantly better results than SSEARCH and

pairwise statistical significance with standard substitution matrices, which is not surprising

since pre-trained PSSMs use much more information than just a pair of sequences.

It is important to note here that the PairwiseStatSig program is not a database search

program but a pairwise statistical significance estimation program, and its comparison with

database search programs like BLAST, PSI-BLAST, and SSEARCH as presented in this paper

is of their statistical significance estimation strategies.

Using pairwise statistical significance to evaluate alignment parameter combina-

tions

Similar experiments as reported in the previous subsection can be used to evaluate and

compare different parameter combinations for sequence alignment - like alignment program,

substitution matrix, gap penalties. And therefore, it can be used to empirically determine

the optimal value of a specific parameter, given other parameters. We conducted a series of

experiments on the same benchmark database (a subset of CATH 2.3 database) with differ-

ent alignment parameters to determine the effective gap opening penalties for the commonly

used BLOSUM matrices - BLOSUM45, BLOSUM50, BLOSUM62 and BLOSUM80 (in 1/3 bit

units). Clearly, both the extreme cases of very low gap penalty and very high gap penalty

(corresponding to gapless alignment) should give poor coverage. Therefore, if we plot coverage

vs. gap opening penalty curves for any specific substitution matrix, it should be able to give

us the range of best gap opening penalties, on either side of which the coverage decreases.

A related study was done earlier [55] to determine effective gap penalties for database search

application with SSEARCH using PAM matrices. Here we attempt to do a similar analysis

for the application of pairwise sequence alignment using four of the commonly used BLOSUM
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matrices.

Fig. 2.3(a), 2.3(b), 2.4(a) and 2.4(b) show the coverage vs. gap open penalty curves at

different errors per query for the four substitution matrices BLOSUM45, BLOSUM50, BLO-

SUM62 and BLOSUM100. All the pairwise comparisons in the experiments were conducted

using the PairwiseStatSig program with 1000 random shuffles. Apart from the variable align-

ment parameters (substitution matrix, gap open penalties), the other important parameter, the

gap extension penalty, was set to 2, which is the default in FASTA and SSEARCH programs.

Although the number of shuffles used is not very large, due to which the curves are quite noisy,

they still clearly show a concave downward behavior as expected. The coverage is poor with

both the extremes of gap opening penalties - too low and too high. The curves suggest that

at least on the benchmark database that we used, for each substitution matrix there exists

a small range of gap opening penalties [gl, gh] within which the coverage is nearly constant,

below which the coverage is very poor, and above which the coverage gradually decreases to the

minimum coverage at infinite gap penalty, corresponding to the gapless alignment. We report

the gl and gh values for each of the four substitution matrices under consideration. Let the

best gap opening penalty for a given matrix be gm. Based on the above graphs we also choose

a gm ∈ [gl, gh] for each matrix which seems to give the best aggregate coverage and should be

used for pairwise alignment with the corresponding matrix. It is important to emphasize here

that the values for gm reported in this paper have been empirically determined by performing

experiments with the subset of CATH 2.3 database, and may not be the best values univer-

sally. But since this database is a valid benchmark for protein comparison, we believe that the

reported values should hold good for many pairwise sequence alignment applications.

Table 3.1 lists the range of effective gap opening penalties determined for pairwise protein

sequence alignment by the above experiments. Because PAM and BLOSUM matrices can be

related based on their relative entropy [28], we also list the effective gap opening penalties for

the corresponding PAM matrices as obtained from [55]. [55] gave a formula for effective gap

penalties for PAM matrices for distances 20 to 200, which is not valid for distances greater than

200, and hence the first entry for PAM250 is not available. Although the effective gap opening
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penalties for pairwise alignments determined in this work are close to those reported in [55]

for database search application, for some substitution matrices the values are quite different.

In addition to different applications (pairwise sequence alignment in this work and database

search in [55]), the difference in the results may also be because of different databases used for

the experiments.

Table 2.2 Effective gap opening penalties for commonly used BLOSUM matrices determined on a bench-
mark database.

BLOSUM matrix [gl, gh] gm ∈ [gl, gh] Equivalent PAM matrix gm from Reese et.al,’02

BLOSUM45 [6,12] 7 PAM250 NA

BLOSUM50 [6,12] 9 PAM200 5

BLOSUM62 [8,14] 11 PAM160 9

BLOSUM80 [10,17] 13 PAM120 13

Running Time Analysis

The time required to estimate pairwise statistical significance for a given pair of sequences

certainly depends on the number of random shuffles generated for constructing alignment

score distribution and the length of the two sequences. We used the same value (1000) for the

number of shuffles for this experiment as was used for the homology detection and effective

gap opening penalty determination experiments. To get an idea of the average time needed

to estimate pairwise statistical significance using the proposed method, we used the following

approach. We took six real sequences from the CATH 2.3 database of varying length - from

59 to 512, and estimated the pairwise statistical significance of each of them with other real

sequences from the database for one hour. Fig. 2.5 shows the average time per comparison for

each of the six sequences. As expected, the relation between length of sequence and running

time is linear. All computations were done on an Intel processor 2.8GHz. It can be seen that

PairwiseStatSig program can estimate pairwise statistical significance for two sequences in a

few seconds. Certainly, this is much faster than a database search, if we are only interested in

a specific (or a few) pairwise comparison(s), but will take a huge amount of time if applied for

all pairwise comparisons in a large database search.

As mentioned earlier, PairwiseStatSig is not a database search program like SSEARCH



28

or PSI-BLAST, but is useful in quickly estimating pairwise statistical significance for two (or

a few) sequences. Thus, it can be used in conjunction with a fast database search program

like BLAST, where the top hits from BLAST can be further ranked according to the pairwise

statistical significance estimates from PairwiseStatSig program.

Conclusion and Future Work

This paper explores the use of pairwise statistical significance, and compares it with

database statistical significance for the application of homology detection. Large scale experi-

mentation was done to determine the most accurate method for determining pairwise statistical

significance. The results show that pairwise statistical significance performs significantly better

than database statistical significance using BLAST and PSI-BLAST, and comparable and at

times significantly better than SSEARCH as well, but still the accuracy of retrieval results is

better for PSI-BLAST when used with pre-trained PSSMs. Further, the program PairwiseS-

tatSig was used in multiple homology detection experiments with several different alignment

schemes, on a benchmark database (a subset of CATH 2.3 database) to determine the effective

gap opening penalties for the commonly used substitution matrices BLOSUM45, BLOSUM50,

BLOSUM62 and BLOSUM80.

Regarding the comparison of pairwise statistical significance and database statistical signif-

icance, significantly better performance than heuristic-based database search approaches like

BLAST and PSI-BLAST, and comparable performance to rigorous database search approach

(SSEARCH) indicates the clear advantage of pairwise statistical significance over database sta-

tistical significance. Using pairwise statistical significance with standard substitution matrices

is shown to be better than database statistical significance using both standard substitution

matrices (BLAST) and query-specific substitution matrices (PSI-BLAST), and thus, we believe

that the results of pairwise statistical significance can be further improved by using sequence

specific substitution matrices, which is a significant part of our future work. Another impor-

tant contribution can be to estimate the pairwise statistical significance accurately in less time,

as the method used in this paper was to use maximum likelihood to fit a score distribution
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generated by simulation, which is not time-efficient. Faster methods for determining pairwise

statistical significance would be very useful. Another aspect of future work is to experiment

with other sample spaces for shuffling of protein sequences for generating score distribution,

which may provide better significance estimates.

As mentioned in the paper, the PairwiseStatSig program can be used to test and validate

different combinations of alignment parameters - alignment program, substitution matrix, gap

penalties, and/or any other parameters that the alignment program may use. In this work,

we have only experimented with varying the gap opening penalties for common substitution

matrices. This can be further extended to determine other optimal parameters for pairwise

alignment. Further, the PairwiseStatSig program can be used for pairwise sequence alignment

based applications like multiple sequence alignment and phylogenetic tree construction. It

can also be used in conjunction with fast database search programs like BLAST to refine the

results.
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Figure 2.2 Errors per Query vs. Coverage plots at individual query level.
(a) The 25th percentile coverage level for 86 queries; (b) 50th
percentile (median) coverage level; (c) 75th percentile cover-
age level. PairwiseStatSig performs significantly better than
BLAST and PSI-BLAST, and comparable and at times sig-
nificantly better than SSEARCH as well, but poorer than
PSI-BLAST using pre-trained PSSMs.
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Figure 2.3 Coverage vs. Gap Opening Penalty plots using PairwiseStat-
Sig at different errors per query for BLOSUM matrices: (a)
BLOSUM45, (b) BLOSUM50. The curves show the expected
concave downward behavior, with poor coverage at very low
and very high gap opening penalty values. These graphs can be
used to determine the range of best gap opening penalties for
each substitution matrix.
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Figure 2.4 Coverage vs. Gap Opening Penalty plots using PairwiseStat-
Sig at different errors per query for BLOSUM matrices: (a)
BLOSUM62, (b) BLOSUM80. The curves show the expected
concave downward behavior, with poor coverage at very low
and very high gap opening penalty values. These graphs can be
used to determine the range of best gap opening penalties for
each substitution matrix.
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Figure 2.5 Time per comparison vs. Sequence length plot using Pairwis-
eStatSig program with sequences of different length.
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3. PAIRWISE STATISTICAL SIGNIFICANCE OF LOCAL SEQUENCE

ALIGNMENT USING MULTIPLE PARAMETER SETS AND

EMPIRICAL JUSTIFICATION OF PARAMETER SET CHANGE

PENALTY

A paper published in BMC Bioinformatics

Ankit Agrawal and Xiaoqiu Huang

Abstract

Background: Accurate estimation of statistical significance of a pairwise alignment is

an important problem in sequence comparison. Recently, a comparative study of pairwise

statistical significance with database statistical significance was conducted. In this paper, we

extend the earlier work on pairwise statistical significance by incorporating with it the use of

multiple parameter sets.

Results: Results for a knowledge discovery application of homology detection reveal that

using multiple parameter sets for pairwise statistical significance estimates gives better cov-

erage than using a single parameter set, at least at some error levels. Further, the results

of pairwise statistical significance using multiple parameter sets are shown to be significantly

better than database statistical significance estimates reported by BLAST and PSI-BLAST,

and comparable and at times significantly better than SSEARCH. Using non-zero parameter

set change penalty values give better performance than zero penalty.
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Conclusions: The fact that the homology detection performance does not degrade when

using multiple parameter sets is a strong evidence for the validity of the assumption that

the alignment score distribution follows an extreme value distribution even when using mul-

tiple parameter sets. Parameter set change penalty is a useful parameter for alignment using

multiple parameter sets. Pairwise statistical significance using multiple parameter sets can

be effectively used to determine the relatedness of a (or a few) pair(s) of sequences without

performing a time-consuming database search.

Background

Local sequence alignment plays a major role in the analysis of DNA and protein sequences

[52, 12, 13]. It is the basic step of many other applications like detecting homology, finding

protein structure and function, deciphering evolutionary relationships, etc. There exist several

local sequence alignment programs that use well-known algorithms [63, 58] or their heuristic

versions [13, 49, 51]. Database search is a special case of pairwise local sequence alignment

where the second sequence is a database in itself consisting of many sequences. Recently, there

have been many enhancements in alignment program features [32, 31] using difference blocks

and multiple scoring matrices, in an attempt to incorporate more biological features in the

alignment algorithm.

Why statistical significance?

The local sequence alignment programs report alignment scores for the alignments con-

structed, and related (homologous) sequences will have higher alignment scores. But the

definition of high depends strongly on the alignment score distribution, which gives impor-

tance to the concept of statistical significance. An alignment score is considered statistically

significant if it has a low probability of occurring by chance. Since the alignment score distri-

bution depends on various factors like alignment program, scoring scheme, sequence lengths,

sequence compositions [42], it implies that it is possible to have two alignments of different

sequence pairs with scores x and y with x < y, but x more significant than y. Therefore,
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instead of using the alignment score for detecting homology, the statistical significance of an

alignment score is more widely accepted as a metric to comment on the relatedness of the two

sequences being aligned. Of course, it is important to emphasize here that although statistical

significance is a good preliminary indicator of biological significance, it does not necessarily

imply biological significance [9, 42].

Accurate statistical theory for the ungapped alignment score distribution is available [34].

However, no precise statistical theory currently exists for the gapped alignment score distribu-

tion and for score distributions from alignment programs using additional features. Accurate

estimation of statistical significance of gapped sequence alignment scores has attracted a lot of

attention in the recent years [65, 11, 50, 43, 41, 10, 57, 59, 68]. Although there exists some un-

derstanding of the statistics of gapped alignment score distributions for simple scoring schemes

[36, 25], but a complete mathematical description of the optimal score distribution remains

far from reach [25]. There exist some excellent reviews on statistical significance in sequence

comparison in the literature [48, 53, 42, 40].

Database statistical significance versus pairwise statistical significance

Recently, a study of pairwise statistical significance and its comparison with database

statistical significance [1] was conducted. In summary, the database statistical significance

reported by most database search programs like SSEARCH, FASTA, PSI-BLAST is database-

dependent, and hence, the same alignment of two sequences with the same alignment score

can be evaluated as having different significance values in database searches with different

databases, and even with the same database at different times, as the database size can be

variable. On the other hand, pairwise statistical significance is specific to the sequence pair

being aligned, and is database-independent. In [1], various approaches to estimate pairwise

statistical significance were compared to find that maximum likelihood fitting with censoring

left of peak is the most accurate method for estimating pairwise statistical significance. Fur-

ther, this method was compared with database statistical significance in a homology detection

experiment to find that pairwise statistical significance performs comparably to and sometimes
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significantly better than database statistical significance.

Accurate statistical significance estimates for pairwise alignments can be very useful to

comment on the relatedness of a pair of sequences aligned by an alignment program inde-

pendent of any database. And thus, it can also be used to compare different combination

of alignment parameters - like the alignment program itself, substitution matrices, gap costs.

A comparison of different gap opening penalties for four commonly used BLOSUM matrices

using pairwise statistical significance was presented in [2]. In addition to the standard local

alignment algorithms [63, 58], some recent algorithms have been developed [32, 31] that take

into account other desirable biological features in addition to gaps - like difference blocks or

the use of multiple parameter sets (substitution matrices, gap penalties). These features of

the alignment programs enhance the sequence alignment of real sequences by better suiting

to different conservation rates at different spatial locations of the sequences. As pointed out

earlier, accurate statistical theory for alignment score distribution is available only for un-

gapped alignment, and not even for its simplest extension, i.e., alignment with gaps. Accurate

statistics of the alignment score distribution from newer and more sophisticated alignment

programs therefore is not expected to be straightforward. For comparing the performance of

newer alignment programs, accurate estimates of pairwise statistical significance can be very

useful. Further, quick and accurate estimates of pairwise statistical significance can also be

helpful for applications like multiple sequence alignment and phylogenetic tree construction

which are based on pairwise sequence alignment to select most related pairs of sequences, for

example, in a progressive multiple sequence alignment.

The extreme value distribution for ungapped and gapped alignments

Just as the distribution of the sum of a large number of independent identically distributed

(i.i.d.) random variables tends to a normal distribution (central limit theorem), the distribution

of the maximum of a large number of i.i.d. random variables tends to an extreme value

distribution (EVD) [35]. This is an important and useful fact, because in principle it allows

us to fit an EVD to the score distribution from any local alignment program and use it for
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estimating statistical significance of scores from that program. The distribution of Smith-

Waterman local alignment score between random, unrelated sequences is approximately a

Gumbel-type EVD [34]. In the limit of sufficiently large sequence lengths m and n, the statistics

of HSP (High-scoring Segment Pairs which correspond to ungapped local alignments) scores

are characterized by two parameters, K and λ. The probability (P-value) that the optimal

local alignment score S exceeds x is estimated by:

Pr(S > x) ∼ 1− e−E ,

where E is the E-value and is given by

E = Kmne−λx .

For E-values less than 0.01, both E-value and P-values are very close to each other. The

above formulae are valid for ungapped alignments [34], and the parameters K and λ can be

computed analytically from the substitution scores and sequence compositions. For gapped

alignments, no perfect statistical theory has yet been developed, although there exist some

good starting points for the problem as mentioned before [36, 25]. Recently, researchers have

also looked closely at the low probability tail distribution, and the work in [66] applied a

rare-event sampling technique earlier used in [27] and suggested a Gaussian correction to

the Gumbel distribution to better describe the rare event tail, resulting in a considerable

change in the reported significance values. However, for most practical purposes, the original

Gumbel distribution has been widely used to describe gapped alignment score distribution

[44, 65, 11, 50, 41, 46, 31, 1].

From an empirically generated score distribution, we can directly observe the E-value E

for a particular score x, by counting the number of times a score x or higher was attained.

Since this number would be different for different number of random shuffles N (or number of

sequences in the database in case of database search), a normalized E-value is defined as

Enormalized =
E

N

In theory, this normalized E-value is same as the P-value (for large N).
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Contributions

In this paper, we extend the existing work on pairwise statistical significance [1] to incor-

porate in it the use of multiple parameter sets, and evaluate it on an important knowledge

discovery application - homology detection. We conducted similar experiments as reported in

[62], and later in [1] on a subset of the CATH 2.3 database to compare pairwise statistical

significance with single and multiple parameter sets. This benchmark database was earlier

created in [62] to evaluate seven protein structure comparison methods and two sequence com-

parison programs: SSEARCH and PSI-BLAST. SSEARCH uses the original Smith-Waterman

algorithm [63], and is considered the most sensitive algorithm in terms of retrieval accuracy,

better than the heuristic versions like BLAST and FASTA [15, 17]. PSI-BLAST is a modifi-

cation to the BLAST program, where position specific scoring matrices are constructed over

multiple iterations of BLAST algorithm. Comparison of pairwise statistical significance results

using multiple parameter sets with pairwise statistical significance using a single parameter set

shows that at least for some error levels, using multiple parameter sets is significantly better

than using a single parameter set. This is because sequences can have different conservation

rates at different spatial locations, which can be better aligned using multiple parameter sets

(substitution matrices, gap penalties, etc.). Comparison with database statistical significance

results show that pairwise statistical significance with multiple parameter sets gives signifi-

cantly better performance than the statistical significance estimates reported by BLAST and

PSI-BLAST, and comparable and at times significantly better performance than the SSEARCH

program. Further, the results also give concrete evidence that for the practical application of

homology detection, the score distribution from alignment program using multiple parameter

sets can also be assumed to follow an extreme value distribution. This is an important and use-

ful finding since it is in general difficult to accurately determine statistics of alignment scores

from enhanced alignment programs. Finally, experiments with different values of parameter

set change penalties indicate that it is indeed important to use a non-zero parameter set change

penalty while performing alignment using multiple parameter sets.
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Methods

Pairwise statistical significance estimation

Consider the pairwise statistical significance described in [1] to be obtainable by the follow-

ing function: PairwiseStatSig(Seq1, Seq2, SC, N) where Seq1 is the first sequence, Seq2 is

the second sequence, SC is the scoring scheme (substitution matrix, gap penalties), and N is

the number of shuffles. The function PairwiseStatSig, therefore generates a score distribution

by aligning Seq1 with N shuffled versions of Seq2, fits the distribution to an extreme value

distribution using censored maximum likelihood fitting to obtain the statistical parameters

K and λ, and returns the pairwise statistical significance estimate of the pairwise alignment

score between Seq1 and Seq2 using the parameters K and λ in the P-value formula. More

details on pairwise statistical significance can be found in [1]. In this paper, we dynamically

use multiple parameter sets instead of a single scoring scheme SC for estimation of pairwise

statistical significance.

Dynamic use of multiple parameter sets in sequence alignment

Usually, pairwise sequence alignment is done with a single parameter set (substitution

matrix, gap penalties). But to suit the different levels of conservation between sequences,

there exists an algorithm [31] which can dynamically use multiple parameter sets and generate

a single optimal alignment with possibly different parameter sets used in different regions of

the alignment. The algorithm is implemented in a program named GAP4. The algorithm uses

a dynamic programming approach as explained in [31]. Consider alignment of two sequences

A = a1, a2, ..., am and B = b1, b2, ...bn using p parameter sets P1, P2, ..., Pp. Let Ai and Bj be

the subsequences a1, a2, ...ai and b1, b2, ..., bj respectively. For each alignment position (i, j)

and each parameter set Pk, the algorithm keeps track of the optimal alignment score of the

subsequences Ai and Bj where the last component (substitution, gap, or difference block)

is scored using Pk. Dynamic programming is used to get optimal alignment for progressive

alignment positions, until i becomes m and j becomes n. Appropriate modification of the

algorithm also allows it to calculate the optimal local alignment. More details about using
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multiple parameter sets for pairwise sequence alignment can be found in [31].

Evaluation methodology

To evaluate the performance of pairwise statistical significance using multiple parameter

sets, we used a non-redundant subset of the CATH 2.3 database (Class, Architecture, Topology,

and Hierarchy, [47]) provided by [62] and available at ftp://ftp.ebi.ac.uk/pub/software/unix/

fasta/ prot sci 04/. This database was selected in [62] to evaluate seven structure comparison

programs and two sequence comparison programs. As described in [62], this dataset consists

of 2771 domain sequences and includes 86 selected test query sequences. This domain set is

considered as a valid benchmark for testing protein comparison algorithms [56].

We used this database and query set for experimenting with pairwise statistical significance

using multiple parameter sets. For each of the 86×2771 comparisons, we used the maximum

likelihood method with censoring left of peak with 1000 shuffles to fit the score distribution

from the GAP4 program with substitution matrices BLOSUM45, BLOSUM50, BLOSUM62,

BLOSUM80, and their all possible combinations (24 − 1 = 15 in number). All matrices were

used in 1/3 bit scale. The gap opening penalties for each of these matrices was set to the

values empirically determined to be the best for this database in [2]. These are listed in Table

3.1. The gap extension penalties were set to 2 for all the four matrices.

Table 3.1 Effective gap opening penalties for commonly used BLOSUM matrices deter-
mined for the benchmark database used

BLOSUM matrix Gap opening penalty
BLOSUM45 7
BLOSUM50 9
BLOSUM62 11
BLOSUM80 13

Following [62, 1], Error per Query (EPQ) versus Coverage plots were used to present the

results. To create these plots, the list of pairwise comparisons was sorted based on decreasing

statistical significance (increasing P-values). Going down the list, the coverage count is in-

creased by one if the two sequences of the pair are homologs, and the error count is increased
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by one if they are not. At a given point in the list, Errors Per Query (EPQ) is the total

number of errors incurred so far, divided by the number of queries; and coverage is the fraction

of total homolog pairs so far detected. In the ideal case, the curve would go from 0% to 100%

coverage, without incurring any errors, which would correspond to a straight line on the x-axis.

Therefore, the more the curve is towards the right, the better the curve is.

Just as gap opening and gap extension penalties are dynamically charged during the align-

ment process whenever a gap is inserted and extended respectively, the GAP4 [31] program

allows the use of a parameter set change penalty, which is dynamically charged whenever the

parameter set mapping is changed during the alignment process. To see the effect of parameter

set change penalty on the coverage performance, we conducted a series of homology detection

experiments with one of the substitution matrix combinations (BLOSUM45 and BLOSUM62)

with different parameter set change penalties. Coverage vs. parameter set change penalty

curves were plotted at different error levels to find the usefulness of the parameter set change

penalty, as reported in the next section.

Results

Comparison with pairwise statistical significance using single parameter set

Out of the 15 substitution matrix combinations, 4 are using single parameter sets, 6 are

using two parameter sets, 4 are using three parameter sets, and 1 is using all four parameter

sets. The EPQ vs. Coverage curves using pairwise statistical significance with two, three,

and four parameter sets are presented in Figures 3.1,3.2, and 3.3 respectively. For comparison

purposes, the EPQ vs. Coverage curves using corresponding single parameter sets are also

presented in the same figures. The y-axis (error-axis) in all these graphs is in log-scale, and

hence there is more information in the upper part of the graphs. These figures suggest that

pairwise statistical significance using multiple parameter sets performs comparably to and

sometimes significantly better than pairwise statistical significance using a single parameter

set for most instances of using a single parameter set, and at most error levels.
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Figure 3.1 Pairwise statistical significance using two parameter sets. Er-
rors per Query vs. Coverage plot for pairwise statistical signif-
icance using two parameter sets, along with the curves using
corresponding single parameter sets. (a) BLOSUM45, BLO-
SUM50; (b) BLOSUM45, BLOSUM62; (c) BLOSUM45, BLO-
SUM80; (d) BLOSUM50, BLOSUM62; (e) BLOSUM50, BLO-
SUM80; (f) BLOSUM62, BLOSUM80. In 5 panels (b) through
(f) out of 6, using two parameter sets leads to better coverage
than using single parameter set at most error levels.

Comparison with database statistical significance

Since the EPQ vs. Coverage curves on the complete dataset can be distorted due to poor

performance by one or two queries (if those queries produce many errors at low coverage levels)

[62], to compare the performance of pairwise statistical significance using multiple parameter

sets with database statistical significance, we examined the performance of the methods with

individual queries, following the work in [62]. The coverage of each of the 86 queries at the

1st, 3rd, 10th, 30th, and 100th error was recorded, and the median coverage for each error

level across the 86 queries was plotted to obtain EPQ vs. Coverage curves for the sequence

comparison method to be evaluated. Fig. 4.3 shows the median coverage level at the 1st, 3rd,

10th, 30th, and 100th false positive for homologs (i.e. 43 of the queries have worse coverage,

and 43 have better coverage). The curve for SSEARCH in Fig. 4.3 is derived from the Fig.
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Figure 3.2 Pairwise statistical significance using three parameter sets. Er-
rors per Query vs. Coverage plot for pairwise statistical sig-
nificance using three parameter sets, along with the curves
using corresponding single parameter sets. (a) BLOSUM45,
BLOSUM50, BLOSUM62; (b) BLOSUM45, BLOSUM50, BLO-
SUM80; (c) BLOSUM45, BLOSUM62, BLOSUM80; (d) BLO-
SUM50, BLOSUM62, BLOSUM80. In all 4 panels, using three
parameter sets leads to better coverage than using single pa-
rameter set at most error levels for at least two instances of
using single parameter set.

2A in [62]. The curves for BLAST and PSI-BLAST were obtained by experimentation. It is

clear that the proposed pairwise statistical significance using multiple parameter sets performs

significantly better than BLAST and PSI-BLAST at all error levels, comparable to SSEARCH

at low error levels, and significantly better than SSEARCH at higher error levels.

Empirical justification of parameter set change penalty

The coverage vs. parameter set change penalty plot for the substitution matrix combination

of BLOSUM45 and BLOSUM62 is illustrated in Fig. 3.5. The curve shows a poor coverage

performance for the case when the parameter set change penalty is not charged, i.e., when the

alignment algorithm is freely allowed to change the parameter set during alignment without

charging any penalty. This can be explained by the fact that the algorithm would try to
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Figure 3.3 Pairwise statistical significance using four parameter sets. Er-
rors per Query vs. Coverage plot for pairwise statistical sig-
nificance using four parameter sets BLOSUM45, BLOSUM50,
BLOSUM62, BLOSUM80 along with the curves using corre-
sponding single parameter sets. Using four parameter sets re-
sults in better coverage than using single parameter set at most
error levels for at least three instances of using single parameter
set.

mathematically maximize the alignment score by changing the parameter set as frequently as

possible, which may produce more biologically irrelevant alignments. A similar phenomenon

is also observed when very low gap penalty is used [2]. The coverage performance clearly

improves for non-zero values of parameter set change penalty, which provides its empirical

justification.

Discussion

As pointed out earlier, SSEARCH employs the original Smith-Waterman algorithm for

alignment, and is considered more sensitive than its heuristic implementations like BLAST

and FASTA. PSI-BLAST uses an iterative approach with query-specific substitution matri-

ces, and its performance mainly depends on the quality of position-specific scoring matrices
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Figure 3.4 Comparison with database statistical significance. Compari-
son of pairwise statistical significance (using multiple param-
eter sets) and database statistical significance. All parameter
combinations are significantly better than database statistical
significance estimates reported by BLAST and PSI-BLAST at
all error levels, and better than SSEARCH especially at higher
error levels.

(PSSMs) constructed iteratively. The results show that PSI-BLAST gave poorer performance

than pairwise statistical significance using multiple parameter sets, even with PSSMs con-

structed against the benchmark CATH database used in our experiments. However, using

PSSMs derived against BLAST non-redundant protein database has been shown to give bet-

ter results [62] as it uses much more information than just a pair of sequences. Comparable

and at times significantly better results than SSEARCH using pairwise statistical significance

with multiple parameter sets implies that statistical significance estimates at least as good

as database statistical significance can be obtained by pairwise statistical significance using

multiple parameter sets without having to do a time-consuming database search. This can be

very useful to estimate accurate pairwise statistical significance of two (or a few) sequences,

which is a common scenario in many pairwise alignment based applications like phylogenetic
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Figure 3.5 Empirical justification of parameter set change penalty. Cov-
erage vs. Parameter Set Change Penalty plots at different er-
rors per query for the substitution matrix combination of BLO-
SUM45 and BLOSUM62. Poor coverage is obtained if the pa-
rameter set change penalty is zero. The coverage is better and
steady for non-zero values of parameter set change penalty.

tree construction, progressive multiple sequence alignment.

It is important to note that the proposed method is not a database search method but

statistical significance estimation method for pairwise local alignment, and the comparison

with database search programs like BLAST, SSEARCH, and PSI-BLAST is of their statistical

significance estimation strategies. The proposed method, as of now is not scalable to a database

search, but can be used to refine the results from a fast database search program like BLAST.

Since pairwise alignment using multiple parameter sets takes more computational time

than using a single parameter set, pairwise statistical significance estimation using multiple

parameter sets also takes more time than pairwise statistical significance estimation using a

single parameter set. In general, using k parameter sets increases the computation time by

a factor little more than k. Therefore, faster methods for significance estimation can be very

helpful.
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Conclusions

This paper extends the work on pairwise statistical significance by incorporating in it

the use of multiple parameter sets (substitution matrices, gap penalties, etc.), and compares

it with database statistical significance for the knowledge discovery application of homology

detection. The results show that pairwise statistical significance using multiple parameter

sets performs better than pairwise statistical significance using a single parameter set. It

also performs significantly better than database statistical significance using BLAST and PSI-

BLAST, and comparable and at times significantly better than database statistical significance

using SSEARCH. Further, an empirical justification of the use of parameter set change penalty

is provided.

Since PSI-BLAST results can be improved by using better quality PSSMs derived from

larger protein databases, we believe that the performance of pairwise statistical significance

can also be improved using sequence-specific/position-specific substitution matrices, which is

a significant part of our future work. Another important contribution can be to estimate the

pairwise statistical significance accurately in less time, since using multiple parameter sets

increases the significance estimation time. Faster methods for determining pairwise statistical

significance would be very useful.
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Abstract

Estimation of statistical significance of a pairwise alignment is an important problem in

sequence comparison. Recently, it was shown that pairwise statistical significance does better

in practice than database statistical significance in terms of retrieval accuracy of homologs. In

this paper, we introduce the concept of conservative, non-conservative, and average pairwise

statistical significance which can be easily derived from original pairwise statistical signifi-

cance estimates and use more information specific to the sequence pair under consideration

using multiple shuffle spaces. Experimental results for homology detection reveal that the pro-

posed measures give at least comparable or significantly better retrieval accuracy than original

pairwise statistical significance and database statistical significance reported by BLAST, PSI-

BLAST, and SSEARCH. The use of the proposed measures is further shown to be extremely

useful when using sequence-specific substitution matrices.
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Introduction

Statistical Significance of Sequence Alignment Scores

Sequence alignment is an underlying application in the comparison of DNA and protein

sequences [13]. There exist programs for sequence alignment that use popular algorithms [63]

or their heuristic versions [13, 51]. The local sequence alignment programs typically report

alignment scores for the alignments constructed, and related (homologous) sequences will have

higher alignment scores. But whether a given score is high enough or not depends on the

alignment score distribution, and hence estimating statistical significance of an alignment score

is very useful. An alignment score is considered statistically significant if it has a low probability

of occurring by chance. Since the alignment score distribution depends on various factors like

alignment program, scoring scheme, sequence lengths, sequence compositions [42], it is possible

to have two alignments of different sequence pairs with scores x and y with x < y, but x more

significant than y. Therefore, compared to alignment score, the statistical significance of an

alignment score is considered a better indicator of (potential) biological significance.

Database statistical significance versus pairwise statistical significance

Recently, a study of pairwise statistical significance and its comparison with database

statistical significance was conducted [1]. In summary, the database statistical significance

which is commonly reported by most database search programs is database-dependent, and

hence the same pairwise alignment with same alignment score can be assessed different sig-

nificance values in different database searches. Pairwise statistical significance, on the other

hand is database-independent and specific to the sequence pair being aligned. In [1], various

approaches to estimate pairwise statistical significance were compared to find that maximum

likelihood fitting with censoring left of peak is the most accurate method for estimating pair-

wise statistical significance. Further, comparison with database statistical significance revealed

that pairwise statistical significance performs comparable to and sometimes marginally bet-

ter than database statistical significance using SSEARCH, and hence significantly better than

BLAST and FASTA.
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Conservative, Non-Conservative, and Average Pairwise Statistical

Significance

In this paper, we introduce the concept of conservative, non-conservative, and average pair-

wise statistical significance, which can be derived using simple functions from original pairwise

statistical significance estimates [1], and give better results. Consider the pairwise statistical

significance defined in [1] to be obtainable by the following function:

PairwiseStatSig(Seq1, Seq2, SC, N) where Seq1 is the first sequence, Seq2 is the second

sequence, SC is the scoring scheme, and N is the number of shuffles. The function Pairwis-

eStatSig, therefore generates a score distribution by aligning Seq1 with N shuffled versions of

Seq2, fits the distribution to an extreme value distribution using censored maximum likelihood

fitting to obtain statistical parameters K and λ, and returns the pairwise statistical signifi-

cance estimate of the pairwise alignment score between Seq1 and Seq2 using the parameters

K and λ. More details on pairwise statistical significance can be found in [1].

Using this function two times with different ordering of sequence inputs, we can define

conservative, non-conservative, and average pairwise statistical significance. Let

S1 = PairwiseStatSig(Seq1, Seq2, SC, N)

S2 = PairwiseStatSig(Seq2, Seq1, SC, N)

Then,

Conservative Pairwise Statistical Significance

= max{S1, S2}

Non-Conservative Pairwise Statistical Significance

= min{S1, S2}

Average Pairwise Statistical Significance

= avg{S1, S2}
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Using the PairwiseStatSig function two times in this way makes sure that both sequences

are shuffled separately to generate two different distributions to get two different pairwise

statistical significance estimates for the same sequence pair (S1 and S2), and the final reported

pairwise statistical significance estimate is a simple function of these two individual estimates.

Conservative pairwise statistical significance is termed as ’conservative’ because it reports the

maximum of S1 and S2, which means that two sequences would be declared as related only if

both S1 and S2 are low enough. Similarly, non-conservative pairwise statistical significance is

termed as ’non-conservative’ because it reports the minimum of S1 and S2, which means that

even if one of S1 or S2 is low enough, Seq1 and Seq2 would be declared related. The definition

of average pairwise statistical significance follows naturally as the average of S1 and S2.

This very simple modification of using the PairwiseStatSig function two times with differ-

ent shuffle spaces is expected to capture more information specific to the sequence pair being

aligned, and hence give better performance in terms of retrieval accuracy. Intuitively, this

approach is expected to be most effective when the individual estimates S1 and S2 are suffi-

ciently different, since if they are almost equal, all the three proposed estimate measures would

be roughly the same. Note that this approach facilitates the use of sequence-specific/position-

specific substitution matrices, and further enhances its benefits. Since during the calculation

of S1, only Seq2 is shuffled, the sequence-specific substitution matrix for Seq1 can be used

for generating the empirical score distribution, even if it is position-specific. Similarly, during

the calculation of S2, only Seq1 is shuffled, and the sequence-specific substitution matrix for

Seq2 can be used for generating the score distribution. Since S1 and S2 are expected to be

most different when using sequence-specific substitution matrices for alignment, this approach

is expected to be very useful when sequence-specific substitution matrices are available for

both the sequences being aligned.

Experiments and Results

To evaluate the performance of the proposed significance measures, we used the experiment

setup used earlier in [62], and subsequently in [1]. A non-redundant subset of the CATH 2.3
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database (Class, Architecture, Topology, and Hierarchy, [47]) available at ftp://ftp.ebi.ac.uk/

pub/software/unix/fasta/prot sci 04/ was selected in [62] to evaluate seven structure compar-

ison programs and two sequence comparison programs. This benchmark dataset consists of

2771 domain sequences and includes 86 query sequences.

Following [62], Error per Query (EPQ) versus Coverage plots were used to visualize the

results. To create these plots, the list of pairwise comparisons was sorted based on decreasing

statistical significance (increasing P-values). Traversing the sorted list from top to bottom,

the count of true homologs detected is increased by one if the two sequences of the pair are

homologs, else the error count is increased by one. At any given point in the list, EPQ is

the total number of errors incurred so far, divided by the number of queries; and coverage is

the fraction of total homolog pairs so far detected. Te ideal curve would go from 0% to 100%

coverage, without incurring any errors, which would correspond to a straight line on the x-axis.

Therefore, a curve more to the right is better.

The EPQ vs. Coverage curves for the proposed significance measures using four BLOSUM

substitution matrices are presented in Fig. 4.1. For comparison purposes, the corresponding

curves using original pairwise statistical significance is also presented in the same figures. The

curves are quite close to each other, which means that the individual estimates S1 and S2

are very close to each other as expected, because of using general substitution matrices (same

scoring scheme SC). Still, in all the four sub-figures of Fig. 4.1, the curve for original pairwise

statistical significance is towards the left at most error levels. To further demonstrate the

impact of using the proposed measures, we also present an example of using sequence-specific

substitution matrices. Fig. 4.2 shows the EPQ vs. Coverage plot for different kinds of pairwise

statistical significance using sequence-specific substitution matrices. The details of deriving

sequence-specific substitution matrices can be found in [5]. Fig. 4.2 clearly reveals the sig-

nificant improvement in retrieval accuracy using the proposed significance measures. Notably,

non-conservative pairwise statistical significance outperforms all other measures. Therefore, it

suggests that using the proposed significance measures gives performance at least comparable,

and many times significantly better than original pairwise statistical significance.
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Figure 4.1 EPQ vs. Coverage plot for original, conservative, non-conser-
vative, and average pairwise statistical significance using four
substitution matrices. (a) BLOSUM45; (b) BLOSUM50; (c)
BLOSUM62; (d) BLOSUM80. Although the curves are very
close to each other, in all the four figures, the curve for original
pairwise statistical significance is towards the left for most error
levels.

Since the EPQ vs. Coverage curves on the complete dataset can be distorted due to poor

performance by one or two queries (if those queries produce many errors at low coverage

levels) [62], to compare the performance of the proposed measures with database statistical

significance, we examined the performance of the methods with individual queries, following

the work in [62]. The coverage of each of the 86 queries at the 1st, 3rd, 10th, 30th, and 100th

error was recorded, and the median coverage for each error level across the 86 queries was

plotted to obtain EPQ vs. Coverage curves for the method to be evaluated. Fig. 4.3 shows

the median coverage level at the 1st, 3rd, 10th, 30th, and 100th false positive for homologs

(i.e. 43 of the queries have worse coverage, and 43 have better coverage). The curve for

SSEARCH in Fig. 4.3 is derived from the figure 2A in [62]. All other curves were obtained by

experimentation. The curves suggest that using the proposed variants gives significantly better
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Figure 4.2 EPQ vs. Coverage plot for different kinds of pairwise statistical
significance using sequence specific substitution matrices. Non–
conservative pairwise statistical significance outperforms other
variants of pairwise statistical significance. All the three vari-
ants proposed in this paper are better than original pairwise
statistical significance.

results than database statistical significance using BLAST and PSI-BLAST at all error levels,

and better than SSEARCH only at higher error levels. Further, non-conservative pairwise

statistical significance using sequence-specific substitution matrices is significantly better than

all three. According to experiments reported in [62], it is possible to improve PSI-BLAST

results by using position-specific scoring matrices (PSSMs) derived against the BLAST non-

redundant protein database rather than against the (smaller) benchmark database.

Conclusion and Future Work

This paper extends the work on pairwise statistical significance by introducing the concept

of conservative, non-conservative, and average pairwise statistical significance, and compares

them with database statistical significance for the knowledge discovery application of homology

detection. Results indicate that deriving more sequence-pair-specific information by using the

proposed measures is slightly better than original pairwise statistical significance and also

better than database statistical significance using BLAST, PSI-BLAST and SSEARCH, but

the accuracy of PSI-BLAST can be further improved using more information from larger



57

Comparison with 
database statistical 

significance

0

20

40

60

80

100

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Coverage (median)

E
rr

o
rs

 p
er

 Q
u

er
y 

   
 

BL50_Conservative
BL50_NonConservative
BL50_Average
SSSM_NonConservative
Database Stat. Sig. (BLAST)
Database Stat. Sig. (SSEARCH)
Database Stat. Sig. (PSI-BLAST)

Figure 4.3 Comparison of proposed significance measures with database
statistical significance using BLAST, PSI-BLAST and
SSEARCH. The proposed measures are significantly better
than BLAST and PSI-BLAST. With general substitution ma-
trices, the performance of the proposed measures is significantly
better than SSEARCH only for higher error levels. Using
sequence-specific substitution matrices with non-conservative
pairwise statistical significance is better than SSEARCH at all
error levels.

universal databases.

Since PSI-BLAST results can be improved by using better quality PSSMs derived from

larger universal protein databases, we believe that the performance of pairwise statistical signif-

icance can also be improved using position-specific substitution matrices, which is a significant

part of our future work. Another important contribution can be to speed up the estimation

process, since the variants proposed in this work take about twice the time compared to original

pairwise statistical significance.
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Abstract

Pairwise sequence alignment is a central problem in bioinformatics which forms the basis of

many other applications. Two related sequences are expected to have a high alignment score,

but relatedness is usually judged by statistical significance rather than by alignment score. Re-

cently, it was shown that pairwise statistical significance is better and quicker than database

statistical significance for getting individual significance estimates of pairwise alignment scores.

The improvement was mainly attributed to making the statistical significance estimation pro-

cess sequence-specific and database-independent. In this paper, we use sequence-specific and

position-specific substitution matrices to derive the estimates of pairwise statistical significance,

which is expected to use more sequence-specific information in estimating pairwise statistical

significance. Experiments with sequence-specific substitution matrices at different levels of

sequence-specific contribution were conducted, and results confirm that using sequence-specific

substitution matrices for estimating pairwise statistical significance is significantly better than

using a standard matrix like BLOSUM62, and than database statistical significance estimates

reported by popular database search programs like BLAST, PSI-BLAST and SSEARCH on

a benchmark database, but PSI-BLAST results can be significantly improved by using pre-

trained PSSMs. Further, using position-specific substitution matrices for estimating pairwise
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statistical significance gives significantly better results even than PSI-BLAST using pre-trained

PSSMs.

Introduction

Sequence alignment is an underlying application in the analysis and comparison of DNA

and protein sequences [52, 12, 13]. Although a computational problem, its primary application

in bioinformatics is homology detection, i.e., identifying sequences evolved from a common an-

cestor, generally known as homologs or related sequences. Homology detection further forms

the key step of many other bioinformatics applications making various high level inferences

about the DNA and protein sequences - like finding protein function, protein structure, deci-

phering evolutionary relationships, drug design, etc. There exist several programs for sequence

alignment that use popular algorithms [63, 58] or their heuristic versions [49, 13, 51, 39, 38].

The heuristic implementations of sequence alignment are especially useful for database search

application, where one sequence is the query sequence, and the other sequence is a database.

A lot of enhancements in alignment program features are also available [19, 32, 31] using dif-

ference blocks and multiple scoring matrices, in an attempt to capture some more biological

features in the alignment algorithm.

Why Statistical Significance?

Sequence alignment programs invariably report alignment scores for the alignments con-

structed, and related (homologous) sequences will have higher alignment scores. But the

threshold score above which the score can be considered high depends on the alignment score

distribution, and hence estimating statistical significance of an alignment score is very useful

in sequence comparison. An alignment score is considered statistically significant if it has a

low probability of occurring by chance. The alignment score distribution depends on various

factors like alignment program, scoring scheme, sequence lengths, sequence compositions [42],

which means that it is possible that two sequence pairs have optimal alignment scores x and y

with x < y, but x is more statistically significant than y. Therefore, instead of using the align-
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ment score alone as the metric for homology, it is a common practice to estimate the statistical

significance of an alignment score to comment on the relatedness of the two sequences being

aligned. Of course, it is important to note here that although statistical significance may be

a good preliminary indicator of biological significance, it does not necessarily imply biological

significance [9, 42].

The knowledge of accurate statistics for score distribution of ungapped alignments is avail-

able [34]. However, till now there is no precise statistical theory for the gapped alignment

score distribution and for score distributions from enhanced alignment programs using addi-

tional features like difference blocks [32] or multiple parameter sets [31]. Accurate estimation

of statistical significance of gapped sequence alignment has attracted a lot of attention in the

recent years [65, 11, 50, 43, 41, 18, 10, 57, 59, 54, 68, 1, 3]. There exist a couple of good start-

ing points for statistically describing gapped alignment score distributions for simple scoring

schemes [36, 25], but a complete mathematical description of the optimal score distribution

remains far from reach [25]. There exist many excellent reviews on statistical significance in

sequence comparison in the literature [48, 53, 42, 40].

Database statistical significance versus pairwise statistical significance

Recently, a thorough study of pairwise statistical significance and its comparison with

database statistical significance was conducted [1, 2]. In summary, the database statistical sig-

nificance which is commonly reported by most database search programs like BLAST, FASTA,

SSEARCH, PSI-BLAST is dependent on the database, and hence the same pairwise alignment

with same alignment score can be assessed different significance values in different database

searches, and even with the same database at different times, since the size of the database

keeps on changing. Pairwise statistical significance, on the other hand is specific to the sequence

pair being aligned, and is independent of any database. In [1, 2], various approaches to estimate

pairwise statistical significance like ARIADNE [41], PRSS [51], censored-maximum-likelihood

fitting [22], linear regression fitting [31] were compared to find that maximum likelihood fit-

ting with censoring left of peak (described as type-I censoring in [22]) is the most accurate
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method for estimating pairwise statistical significance. Further, this method was compared

with database statistical significance in a homology detection experiment to find that pairwise

statistical significance performs better than database statistical significance using BLAST and

PSI-BLAST on a benchmark database and comparable to SSEARCH, but PSI-BLAST results

can be significantly improved by using pre-trained PSSMs (position-specific scoring matrices).

In another related work [3], a simple extension of pairwise statistical significance was shown to

be better than ordinary pairwise statistical significance, where the concept of conservative, non-

conservative, and average pairwise statistical significance was introduced. This corresponds to

estimating two different values of pairwise statistical significance for the same pair of sequences

by shuffling each sequence independently to generate separate score distributions, and reporting

the final pairwise statistical significance estimate as the maximum, minimum, and average of

the two values respectively. In [3], non-conservative pairwise statistical significance was shown

to perform better than the other two variants of pairwise statistical significance and original

pairwise statistical significance. Pairwise statistical significance using multiple parameter sets

[4] and sequence-pair-specific distanced substitution matrices [6] has also been explored, which

give slightly better results than original pairwise statistical significance, but not comparable

to the methods described in this paper.

Relevance

Accurate statistical significance estimates for pairwise alignments can be very useful to

comment on the relatedness of a pair of sequences independent of any database. Further, it

can also be used to compare different combination of alignment parameters - like the alignment

program, substitution matrices, gap costs. A comparison of different gap opening penalties for

four commonly used BLOSUM matrices using pairwise statistical significance was presented

in [2]. There has been a lot of recent development in alignment programs [32, 31] taking into

account other desirable biological features of a sequence alignment in addition to gaps - like

difference blocks and the use of multiple parameter sets (substitution matrices, gap penalties).

These features of the alignment programs enhance the sequence alignment of real sequences by
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better suiting to different rates of conservation at different spatial locations of the sequences.

As pointed out earlier, accurate statistical theory for alignment score distribution is available

only for ungapped alignment, and not even for its simplest extension, i.e., alignment with

gaps. Accurate statistics of the alignment score distribution from more sophisticated alignment

programs therefore is not expected to be straightforward. For comparing the performance

of newer alignment programs, accurate estimates of pairwise statistical significance can be

extremely useful. Further, accurate estimates of pairwise statistical significance can also be

highly valuable for many other pairwise-alignment-based applications - like multiple sequence

alignment (in particular progressive MSA), phylogenetic tree construction, etc. With the all-

pervasive use of sequence alignment methods in bioinformatics making use of ever-increasing

sequence data, and with development of more and more sophisticated alignment methods

with unknown statistics, we believe that computational and statistical approaches for accurate

estimation of statistical significance of pairwise alignment scores would prove to be very useful

for computational biologists and bioinformatics community.

Contributions

In this paper, we explore the use of sequence-specific and position-specific substitution

matrices with pairwise statistical significance, which is expected to be still more specific to

the sequence-pair being aligned, and hence yield better performance. To evaluate the results

of using sequence-specific substitution matrices with pairwise statistical significance, we con-

ducted similar experiments as reported in [62], and later in [1, 3] on a subset of the CATH 2.3

database. [62] had earlier created this database to evaluate seven protein structure compar-

ison methods and the two sequence comparison programs. In the current work, experiments

were conducted with different levels of sequence-specific contribution (using sequence-specific

substitution matrices with different levels of sequence-specific contribution), and the results

confirm that deriving more sequence-specific information by using sequence-specific substitu-

tion matrices gives better coverage performance than using a standard substitution matrix like

BLOSUM62. A sequence-specific substitution matrix for a given sequence is derived using the
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alignments obtained from a BLAST search with the given sequence as the query. More details

are provided later. Further, the optimal level of sequence-specific contribution was identi-

fied for the benchmark database used for the experiments (a subset of CATH 2.3 database).

Also, the comparison with database statistical significance shows that using sequence-specific

substitution matrices with pairwise statistical significance gives significantly better estimates

of statistical significance than database statistical significance estimates using BLAST, PSI-

BLAST and even SSEARCH, which is considered most sensitive as it uses original imple-

mentation of Smith-Waterman algorithm (and subsequently takes large amount of time for

database search). Although using sequence-specific substitution matrices for estimating pair-

wise statistical significance gives significantly better performance than PSI-BLAST on the

benchmark database, PSI-BLAST results can be significantly improved by using pre-trained

PSSMs (position-specific scoring matrices). To fairly compare database statistical significance

using PSI-BLAST with pairwise statistical significance, we also conducted experiments with

pairwise statistical significance using the same pre-trained PSSMs used with PSI-BLAST,

which indeed gives significantly better performance than PSI-BLAST. It is important to note

that the methods proposed in this paper are for estimating pairwise statistical significance and

not for general database search application, and the comparison with database search methods

like BLAST, PSI-BLAST, SSEARCH is of their statistical significance estimation strategies.

The rest of the paper is organized as follows: In Section 2, an introduction to the extreme

value distribution in the context of estimating statistical significance for gapped and ungapped

alignments is presented, followed by the description of the methods used to create sequence-

specific substitution matrices and modifying the Smith-Waterman algorithm to use position-

specific substitution matrices in Section 3. Experiments and results are reported in Section 4,

and finally the conclusion and future work is presented in Section 5.

The Extreme Value Distribution for Ungapped and Gapped Alignments

It is a well-known fact that the distribution of the sum of a large number of independent

identically distributed (i.i.d) random variables tends to a normal distribution (central limit
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theorem). Similarly, the distribution of the maximum of a large number of i.i.d. random vari-

ables tends to an extreme value distribution (EVD) [35]. The distribution of Smith-Waterman

local alignment score between random, unrelated sequences is known to follow a Gumbel-type

EVD [34]. In the limit of sufficiently large sequence lengths m and n, the statistics of HSP

(High-scoring Segment Pairs which correspond to ungapped local alignment) scores is charac-

terized by two parameters, K and λ. The probability that the optimal local alignment score

S exceeds x is given by the P-value, which is defined as:

Pr(S > x) ∼ 1− e−E ,

where E is the E-value and is given by

E = Kmne−λx .

From an empirically generated score distribution, we can directly observe the E-value E for a

particular score x, by counting the number of times a score x or higher was attained. Since this

number would be different for different number of random shuffles N (or number of sequences

in the database in case of database search), a normalized E-value is defined as

Enormalized =
E

N

In theory, this normalized E-value is same as the P-value (for large N). For E-values less

than 0.01, both E-value and P-values are very close to each other. The above formulae are

valid for ungapped alignments [34], and the parameters K and λ can be computed analytically

from the substitution scores and sequence compositions. For the gapped alignment, no perfect

statistical theory has yet been developed, although there exist some good starting points for

the problem as mentioned before [36, 25]. Recently, researchers have also looked closely at the

low probability tail distribution, and the work in [66] applied a rare-event sampling technique

earlier used in [27] and suggested a Gaussian correction to the Gumbel distribution to better

describe the rare event tail, resulting in a considerable change in the reported significance

values. However, for most practical purposes, the original Gumbel distribution has been widely

used to describe gapped alignment score distribution [65, 11, 50, 41, 46, 44, 31, 1, 3].
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Methods

Creating Sequence-Specific Substitution Matrix for a Given Sequence

The entries of a typical substitution matrix like BLOSUM62 are essentially log-odds scores.

The score s(a, b) for aligning two residues a and b is:

s(a, b) = c× log2

p(a, b)
π(a)π(b)

where p(a, b) denotes the probability that the residues a and b are correlated because they

are homologous, π(a) is the equilibrium probability of residue a, and c is the scaling factor.

Therefore, p(a, b) is the target frequency: the probability of observing residues a and b aligned

in homologous sequence alignments, and π(a)π(b) is the probability that the two residues are

uncorrelated and unrelated, occurring independently. The resulting substitution matrix is said

to be in 1/c bit units. An excellent introduction to fundamental concepts of substitution

matrices is provided in [23].

Further, the probabilities p(a, b) and π(a) can be easily estimated from a count matrix C,

where the entry C(a, b) gives the count of the number of times residue a was seen aligned

to b in a set of alignments (both pairwise or multiple sequence alignments) of homologous

sequences. Usually, the count matrix is added to its transpose to ensure symmetry, and hence,

C(a, b) = C(b, a). Then,

p(a, b) =
C(a, b)∑

c

∑
d C(c, d)

π(a) =
∑

b C(a, b)∑
c

∑
d C(c, d)

Therefore, the task of generating sequence-specific substitution matrices reduces to obtain-

ing sequence specific count matrices. For a given sequence S, a sequence-specific count matrix

can be obtained using the simple procedure as follows: Run BLAST program with S as the

query sequence against non-redundant protein database (provided with the BLAST suite of

programs) with a sufficiently high e-value threshold so that more alignments can be obtained.

The entries of the sequence-specific count matrix CS can be obtained by counting the number

of times residue a is aligned with b. Subsequently, CS is added to its transpose to ensure

symmetry.
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Just as a count matrix can be used to get the substitution matrix, one can also back-

calculate the count matrix for a given substitution matrix and equilibrium frequencies. Cal-

culating the probabilities p(a, b) from scores s(a, b) and equilibrium frequencies π(a) involves

solving for a non-zero λ in
∑

ab π(a)π(b)eλs(a,b) = 1, and a C implementation of this procedure

is available in the supplementary notes of [23]. Subsequently, these probabilities can be multi-

plied by a suitably large integer to get a representative count matrix C. Let the count matrix

this obtained for the BLOSUM62 matrix be CBL62.

This can be used to derive sequence-specific substitution matrices with different levels of

sequence-specific contribution. We define α ∈ [0, 1] as the sequence-specific contribution. Then,

for a given sequence S, sequence-specific count matrix with sequence-specific contribution α

can be obtained as follows:

CS,α = αCS + (1− α)CBL62

which can be subsequently used to obtain a sequence-specific substitution matrix for sequence

S at sequence-specific contribution α using the procedure described earlier in this section. This

is one of the many possible approaches to get a sequence-specific substitution matrix that we

tried for our experiments. Results presented in the next section demonstrate the potential of

the approach.

Using Position-Specific Substitution Matrices with Smith-Waterman algorithm

The Smith-Waterman algorithm [63] produces an optimal local alignment of two sequences.

In its original form, it is designed to work for a standard substitution matrix with substitution

scores for all possible pairs of residue substitutions. The algorithm can be trivially modified

to work with position-specific substitution matrix for one of the two sequences being aligned.

Let A = a1, a2, ..., am and B = b1, b2, ..., bn be two sequences of length m and n. Without

loss of generality, let the position-specific scoring matrix be available for sequence A, given by

a m× |Σ| matrix S, where |Σ| is the number of different residues in the alphabet (e.g. 20 for

protein sequences). S(i, b) represents the substitution score of aligning the ith residue of A (i.e.

ai) with residue b. Let q be the non-negative gap opening penalty, and r be the non-negative
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gap extension penalty, so that the score of a gap of length k is −(q + k× r). The optimal local

alignment of A and B is the global alignment of the subsequences α of A and β of B, whose

similarity is maximal, i.e., which has maximum alignment score for the given scoring scheme

(substitution matrix and gap penalties).

A local alignment of A and B consists of two types of configurations: substitutions and

gaps. A substitution associates a residue of A with a residue of B. A gap consists only of

residues from one sequence with each residue associated with the symbol −. There are two

kinds of gaps. A deletion gap with respect to sequence A consists only of residues from A and

an insertion gap with respect to sequence A consists only of residues from B.

Let Ai = a1, a2, ...ai and Bj = b1, b2, ..., bj be initial segments of A and B of length i

and j respectively. Define V (i, j) to be the score of the optimal local alignment of Ai and

Bj . Define G(i, j) to be the score of the optimal local alignment of Ai and Bj where ai and

bj are aligned with each other. Define I(i, j) to be the score of the optimal local alignment

of Ai and Bj that end with an insertion gap with respect to A. Similarly, define D(i, j) to

be the score of the optimal local alignment of Ai and Bj that end with an deletion gap with

respect to A. Then, the following recurrences are used to calculate the optimal local alignment:

Base Conditions:

V (0, 0) = 0

V (i, 0) = 0 ∀i

V (0, j) = 0 ∀j

I(i, 0) = −q ∀i ≥ 0

D(0, j) = −q ∀j ≥ 0

Recurrence relations:

V (i, j) = max {G(i, j), I(i, j), D(i, j), 0}

G(i, j) = max {V (i− 1, j − 1) + S(i, bj)}
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I(i, j) = max {I(i, j − 1)− r, V (i, j − 1)− q − r}

D(i, j) = max {D(i− 1, j)− r, V (i− 1, j)− q − r}

The score of the optimal local alignment of A and B is given by V (i′, j′) = max1≤i≤m,1≤j≤n

V (i, j).

Note that the only difference in the above algorithm and the standard Smith-Waterman

algorithm adapted to work with affine gap penalties (provided in Appendix) is in the recursion

for matrix G. Both time and space complexity of the algorithm is O(mn). The actual align-

ment can be calculated by following a trace-back procedure from V (i′, j′) as described in [63].

The space-complexity can be reduced to O(min{m,n}) using a divide-and-conquer strategy

developed by Hirschberg [29] after identifying the starting and ending indices of the optimal

local alignment.

Experiments and Results

We use sequence-specific and position-specific substitution matrices to estimate the pair-

wise statistical significance of a pairwise alignment score, which is expected to be more specific

to the sequence pair being aligned, and hence give better performance. Statistical significance

estimates can be evaluated in terms of statistical significance accuracy or retrieval accuracy.

Statistical significance accuracy is a measure of how accurate the significance estimates are,

in relation to the true score distribution. Retrieval accuracy is a measure of the ability of

significance estimates to distinguish between true homologs and false homologs, which is prac-

tically very useful for the primary application of local sequence alignment, which is homology

detection. A good sequence comparison strategy, therefore, should assign higher significance

values (lower P-values) to true homolog pairs, and lower significance values (higher P-values)

to false homolog pairs. [1] examined the statistical significance methods both in terms of sta-

tistical significance accuracy and retrieval accuracy. Here, we evaluate the performance of the

proposed methods and existing methods in terms of retrieval accuracy because firstly, it is

far more important than statistical significance accuracy and secondly, here we use the same
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method that was found in [1] to be most accurate in terms of statistical significance accuracy

(maximum-likelihood fitting of score distribution censored left of peak).

To evaluate the performance of using sequence-specific and position-specific substitution

matrices for estimating pairwise statistical significance in terms of retrieval accuracy and com-

pare it with using a general matrix for pairwise statistical significance and with database

statistical significance, we used the same experiment setup as used in [62], and later in [1, 3].

A non-redundant subset of the CATH 2.3 database (Class, Architecture, Topology, and Hierar-

chy, [47]) available at ftp://ftp.ebi.ac.uk/ pub/software/ unix/fasta/prot sci 04/ was selected

in [62] to evaluate seven structure comparison programs and two sequence comparison pro-

grams. As described in [62], this dataset consists of 2771 domain sequences and includes

86 query sequences. This domain set is considered as a valid benchmark for testing protein

comparison algorithms [56].

Sequence-specific substitution matrices were obtained for each of the 2771 sequences in the

database using the method described in the previous section. We used to BLAST program

(version 2.2.17) with a relatively high e-value threshold of 1000 (-e 1000) so that we can collect

enough alignments for filling the count matrix. Further, to view 1000 best alignments in

the output, the ’-b 1000’ option was used. The BLAST alignments were used to generate

the count matrix, and subsequently the substitution matrix for different values of sequence-

specific contribution α. The scaling factor c was chosen to be 3, and hence, all substitution

matrices were generated in 1/3-bit scale. We used these sequence-specific substitution matrices

for estimating pairwise statistical significance [1]. Here, we used non-conservative pairwise

statistical significance, which has been shown to be more effective compared to other variants

of pairwise statistical significance [3]. Non-conservative pairwise statistical significance involves

estimation of two different pairwise statistical significance estimates obtained by independent

shuffling each of the two sequences in the sequence pair being aligned, and the final significance

reported is the minimum of the two values.

For each of the 86×2771 comparisons, we estimated the non-conservative pairwise statistical

significance using the sequence-specific substitution matrices at different levels of sequence-
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specific contribution. The number of shuffles to generate the empirical distribution was set to

1000. The gap opening and gap extension penalties were set to 10 and 2 respectively.

Following [62, 1, 3], Error per Query (EPQ) versus Coverage plots were used to visualize

and compare the results. To create these plots, the list of pairwise comparisons was sorted

based on decreasing statistical significance (increasing P-values). While traversing the sorted

list from top to bottom, the coverage count is increased by one if the two sequences of the pair

are homologs, else the error count is increased by one. At any given point in the list, EPQ

is the total number of errors incurred so far, divided by the number of queries; and coverage

is the fraction of total homolog pairs so far detected. The ideal curve would go from 0% to

100% coverage, without incurring any errors, which would correspond to a straight line on the

x-axis. Therefore, a better curve is one which is more to the right.
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Figure 5.1 EPQ vs. Coverage plot for different levels of sequence-specific
contribution α. The left-most curve is for α = 0, i.e., 0% se-
quence-specific contribution, which corresponds to using a gen-
eral substitution matrix (BLOSUM62). For all values of α > 0,
the coverage performance is significantly better than the perfor-
mance with α = 0, suggesting that using sequence-specific sub-
stitution matrices for estimating pairwise statistical significance
is significantly better than using general substitution matrices.

The EPQ vs. Coverage curves for different levels of sequence-specific contribution α are

presented in Fig. 5.1. The left-most curve is for α = 0, i.e., 0% sequence-specific contribution,

which corresponds to using a general substitution matrix (BLOSUM62). For all values of
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Figure 5.2 Coverage vs. sequence-specific contribution (α) plot for three
different error levels. The coverage performs increases as α

increases, reaches a maximum, and decreases a little for high
values of α. α = 0.65 is identified to be the best value for the
benchmark dataset used.

α > 0, the coverage performance is significantly better than the performance with α = 0,

suggesting that using sequence-specific substitution matrices for estimating pairwise statistical

significance is significantly better than using general substitution matrices. The curves are

quite close to each other, and it is difficult to determine the best value of α for this dataset

from this graph. Therefore, we further use Coverage vs. Sequence-specific contribution plots

at different error levels to determine the optimal value of α for this dataset, as presented in Fig.

5.2. It shows the coverage values at three different error levels for different values of α. There

is a clear improvement in coverage performance as α increases from 0. But for values of α close

to 1.0, the coverage performance decreases slightly, which is expected since some sequences in

the database may not get sufficient hits in the BLAST search, which would leave the count

matrix very sparse, and without sufficiently filled count matrix, the corresponding substitution

matrix would not be of good quality, which would affect the coverage performance. From Fig.

5.2, we can determine a range of α values which gives the best performance. Clearly, for this

dataset it can be safely considered to be [0.5, 0.8]. Further, within this range, α = 0.65 is

visually identified to be the best value for this dataset. It is important to note here that these

results are obtained on the subset of CATH 2.3 database which is a benchmark database for
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protein comparison, but the results and best value of α may not be generalized to all databases.

Since the EPQ vs. Coverage curves on the complete dataset can be distorted due to poor

performance by one or two queries (if those queries produce many errors at low coverage levels)

[62], for comparing the performance across different comparison methods, we examine the per-

formance of the methods with individual queries, following the work in [62]. The coverage of

each of the 86 queries at the 1st, 3rd, 10th, 30th, and 100th error was recorded, and percentile

analysis was done for each error level across the 86 queries. A comparison of pairwise sta-

tistical significance using sequence-specific substitution matrices (PairwiseStatSig SSSM) and

database statistical significance reported by BLAST, PSI-BLAST and SSEARCH is presented

in Fig. 5.3. Fig. 5.3(a) shows the 25th percentile coverage level at the 1st, 3rd, 10th, 30th,

and 100th false positive for homologs (i.e. 21 of the queries have worse coverage, and 65 have

better coverage), Fig. 5.3(b) shows the same results for 50th percentile of coverage, i.e. the

median coverage (43 queries performed better, 43 worse), and Fig. 5.3(c) shows the same

results for 75th percentile of coverage (i.e. 65 of the queries have worse coverage, and 21 have

better coverage). The curves for SSEARCH in Fig. 5.3(a) and Fig. 5.3(b) are derived from

the figures 2A and 2B in [62]. The results for SSEARCH corresponding to Fig. 5.3(c) were

not available in [62].

The curves suggest that using more sequence-specific information for statistical significance

estimation (by using sequence-specific substitution matrices) gives significantly better results

than database statistical significance using BLAST, PSI-BLAST and even SSEARCH.

In the above described experiments, only the benchmark database was used to construct

the PSSMs (position-specific scoring matrices) over a maximum of 5 iterations. Since PSI-

BLAST allows the use of pre-constructed PSSMs for the query sequence, we derived PSSMs

for all the 86 test queries against the non-redundant protein database (provided along with

the BLAST package) over a maximum of 5 iterations. Subsequently, these pre-trained PSSMs

were used as starting PSSMs for PSI-BLAST searches of each of the 86 queries against the

benchmark database, further refined for a maximum of 5 iterations. Using better quality pre-

trained PSSMs in this way is expected to give superior performance for PSI-BLAST. For a fair
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comparison of pairwise statistical significance with PSI-BLAST using pre-trained PSSMs, we

also conducted experiments with pairwise statistical significance using the same pre-trained

PSSMs used as starting PSSMs for PSI-BLAST searches on the benchmark database. For

this purpose, the popular Smith-Waterman algorithm [63] was trivially modified to calculate

the optimal local alignment using a position-specific substitution matrix instead of a general

substitution matrix, as described in the previous section. The implementation of the GAP3

program [32] was suitably modified to get the optimal alignment score of a pairwise alignment

using position-specific substitution matrix. Again, the number of shuffles was set to 1000. Gap

opening and gap extension penalties were set to 11 and 1 respectively, since these were the

default values using which the PSI-BLAST PSSMs were constructed. A comparison of pairwise

statistical significance using position-specific scoring matrices (PairwiseStatSig PSSM) and

PSI-BLAST is presented in Fig. 5.4. There are two comparisons: one using the PSSMs

derived against the benchmark database (a subset of CATH), and the other using pre-trained

PSSMs derived against the non-redundant protein database (NRP) provided with the BLAST

package. Fig. 5.4(a), Fig. 5.4(b), and Fig. 5.4(c) show the 25th percentile, 50th percentile, and

75th percentile coverage level at the 1st, 3rd, 10th, 30th, and 100th false positive for homologs

in a Errors per Query vs. Coverage plot. As is clear from these figures, using position-specific

substitution matrices for estimating pairwise statistical significance is significantly better than

database statistical significance using PSI-BLAST, for both kinds of PSSMs.

Finally, in Fig. 5.5, we present the combined comparison results of Fig. 5.3 and Fig.

5.4, with sub-figures Fig. 5.5(a), Fig. 5.5(b), and Fig. 5.5(c) showing the 25th percentile,

50th percentile, and 75th percentile coverage level as shown in earlier figures. There are three

observations that can be made from the figures: Firstly, for all relevant comparisons, pair-

wise statistical significance performs at least comparable or significantly better than database

statistical significance. Secondly, in general, position-specific sequence comparison is supe-

rior to sequence-specific analysis, which is better than sequence-independent analysis (using

general substitution matrix), which is expected. Thirdly, depending on the quality of sequence-

specific and position-specific substitution matrices, there are some exceptions to the second
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observation. For example, using PSI-BLAST on the benchmark database gives inferior perfor-

mance than using sequence-specific substitution matrices with pairwise statistical significance,

although PSI-BLAST uses position-specific substitution matrices. Also, pairwise statistical sig-

nificance using sequence-specific substitution matrices (derived from BLAST searches against

non-redundant protein database) performs comparable to pairwise statistical significance using

position-specific substitution matrices (derived from PSI-BLAST searches against the bench-

mark database).

As mentioned earlier, SSEARCH employs the original Smith-Waterman algorithm for

alignment, and is considered more sensitive than its heuristic implementations like BLAST

and FASTA. PSI-BLAST uses an iterative approach with position-specific scoring matrices

(PSSMs), and its accuracy depends heavily on the quality of PSSMs. BLAST, PSI-BLAST

and SSEARCH are database search methods which report database statistical significance.

Significantly better results than these database search methods by using sequence-specific and

position-specific substitution matrices, at least on one benchmark database implies that sta-

tistical significance estimates significantly better than database statistical significance can be

obtained by using sequence-specific substitution matrices with pairwise statistical significance.

This can be very useful to estimate accurate pairwise statistical significance of a (or a few)

pair of sequences, which is a common situation in many pairwise alignment based applications

like phylogenetic tree construction, progressive multiple sequence alignment.

Since the computation time for finding an optimal local sequence alignment is more or

less the same for the cases of using a standard substitution matrix, sequence-specific sub-

stitution matrix, and position-specific substitution matrix, it is highly recommended to use

sequence-specific and position-specific substitution matrices for estimating pairwise statistical

significance, if they are available. Further, since the significant improvement of results using

the proposed methods is mainly due to the use of sequence-specific and position specific substi-

tution matrices, this research is also expected to motivate researchers to develop better quality

sequence-specific and position-specific substitution matrices.

Another important contribution of this work is the evidence of the applicability of Karlin-
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Altschul statistics for local alignment scores using sequence-specific and position-specific sub-

stitution matrices, where the statistical parameters K and λ can be estimated by fitting an

Gumbel-type extreme value distribution to the observed score distribution. As discussed ear-

lier, accurate statistics are available only for ungapped local sequence alignment scores [34],

which is theoretically applicable only when using a single standard substitution matrix and

infinite length sequences; and accurate statistics of newer and more sophisticated alignment

methods is not expected to be straightforward. The results presented in this work support the

assumption that the score distribution from the newer alignment methods considered in this

paper also follows extreme value distribution, wherein the statistical significance of an align-

ment score and be accurately estimated for a practical application of separating true homologs

from false homologs (homology detection - measured in terms of retrieval accuracy).

It is important to note that the methods described in this paper are for estimating pairwise

statistical significance and not for general database search application, and the comparison with

database search methods like BLAST, PSI-BLAST, SSEARCH is of their statistical significance

estimation strategies. The proposed method can be used to estimate the pairwise statistical

significance of a pair (or few pairs) of sequences quickly, but will take impractically long time

for all pairwise comparisons in a large database search. Since the performance of pairwise

statistical significance is shown to be superior than database statistical significance, it can be

used in conjunction with a fast database search program like BLAST or PSI-BLAST to refine

their results. This can be especially useful since no extraneous computation would be required

to get the BLAST output file or PSI-BLAST PSSM file.

An implementation of the proposed method and related programs in C are available for

free academic use at www.cs.iastate.edu/∼ankitag/PairwiseStatSig SSSM.html and

www.cs.iastate.edu/∼ankitag/PairwiseStatSig PSSM.html

Conclusion

This paper extends the work on pairwise statistical significance by exploring the use of

sequence-specific and position-specific substitution matrices for estimating pairwise statistical
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significance, and compares them with database statistical significance in a homology detection

experiment. Results indicate using sequence-specific substitution matrices performs signifi-

cantly better than using general substitution matrices with pairwise statistical significance,

and also significantly better than database statistical significance (using BLAST, PSI-BLAST

and SSEARCH), but the accuracy of PSI-BLAST can be improved using pre-trained position-

specific scoring matrices (PSSMs). Pairwise statistical significance using position-specific sub-

stitution matrices is significantly better than PSI-BLAST using pre-trained PSSMs.

Although pairwise statistical significance has been shown to give significantly better results

than database statistical significance in terms of retrieval accuracy, the pairwise statistical

significance estimation methods described in this paper can be used only for estimating the

pairwise statistical significance of a few pairs of sequences in a reasonable time, and hence,

cannot be used as a method for all pairwise comparisons in a large database search. It, however

can be used in conjunction with fast heuristic-based database search programs like BLAST and

PSI-BLAST to refine their results.

The current work provides for a lot of scope for future work. Significant improvement in

retrieval accuracy with pairwise statistical significance using sequence-specific and position-

specific substitution matrices underscores the influence of substitution matrices in sequence

comparison. Hence, better quality sequence-specific and position-specific substitution matrices

can be extremely useful. Also, faster methods for pairwise statistical significance estimation

will be quite helpful.
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Figure 5.3 Comparison of using sequence-specific substitution matrices
for estimating pairwise statistical significance with database
statistical significance. Using sequence-specific substitution
matrices for estimating pairwise statistical significance is sig-
nificantly better than database statistical significance using
BLAST, PSI-BLAST and even SSEARCH, on the benchmark
database.
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Figure 5.4 Comparison of using position-specific substitution matrices for
estimating pairwise statistical significance with database sta-
tistical significance using PSI-BLAST. Using position-specific
substitution matrices for estimating pairwise statistical signif-
icance is significantly better than database statistical signifi-
cance using PSI-BLAST, for both types of PSSMs (derived
against the benchmark database and against non-redundant
protein database provided with the BLAST package).
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Figure 5.5 Comparison of using sequence-specific and position-specific sub-
stitution matrices for estimating pairwise statistical significance
with database statistical significance. For all relevant com-
parisons, pairwise statistical significance performs significantly
better than database statistical significance using BLAST,
PSI-BLAST and SSEARCH.
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6. PSIBLAST PairwiseStatSig: REORDERING PSI-BLAST HITS

USING PAIRWISE STATISTICAL SIGNIFICANCE

A paper published in Bioinformatics

Ankit Agrawal and Xiaoqiu Huang

Abstract

Summary: We present an add-on to BLAST and PSI-BLAST programs to reorder their

hits using pairwise statistical significance. Using position-specific substitution matrices to esti-

mate pairwise statistical significance has been recently shown to give promising results in terms

of retrieval accuracy, which motivates its use to refine PSI-BLAST results, since PSI-BLAST

also constructs a position-specific substitution matrix for the query sequence during the search.

The obvious advantage of the approach is more accurate estimates of statistical significance

because of pairwise statistical significance, along with the advantage of BLAST/PSI-BLAST

in terms of speed.

Availability: The implementation as a C library is freely available at www.cs.iastate.edu/

∼ankitag/PSIBLAST PairwiseStatSig.html

Contact: ankitag@cs.iastate.edu

Introduction

Database search is one of the most important applications of pairwise sequence alignment.

The most popular heuristic-based methods for database search are the BLAST and PSI-BLAST
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programs [13]. PSI-BLAST uses an iterative approach to BLAST using position-specific substi-

tution matrices which are refined with every iteration, and its performance can be significantly

better than BLAST. Another slightly slower but more accurate database search program than

BLAST is FASTA [51], which also employs heuristics to obtain a sub-optimal alignment. There

also exists the SSEARCH program, which uses the full implementation of the Smith-Waterman

algorithm [63]. Although more accurate, it can take many hours to days for a modest database

search.

The hits of a database search are ranked according to statistical significance of the align-

ment scores rather than by alignment score themselves. An alignment score is considered

statistically significant if it has a low probability of occurring by chance. The alignment score

distribution (and hence statistical significance) depends on various factors like alignment pro-

gram, scoring scheme, sequence lengths, sequence compositions [42]. Accurate estimation of

statistical significance of alignment scores is an important aspect of sequence comparison.

The methods to estimate the statistical significance of a pairwise alignment can be catego-

rized into two primary methods. The statistical significance of the hits reported by database

search programs is called database statistical significance, which is in general dependent on

the size and composition of the database being searched. An alternative method to estimate

statistical significance of a pairwise alignment independent of any database is to estimate pair-

wise statistical significance, which uses statistical parameters specific to the sequence-pair to

estimate statistical significance.

In the last few years there have been considerable improvements to the BLAST and PSI-

BLAST programs [57, 67, 68], which have been shown to improve database search performance

by using composition-based statistics and substitution matrix rescaling techniques, together

with pre-computed statistical parameters for a wide range of alignment parameters. Recently,

a study of pairwise statistical significance was conducted [2]. It compared various approaches

to find that maximum likelihood fitting of an empirical distribution with censoring left of peak

is most accurate for estimating pairwise statistical significance. Further, using position-specific

substitution matrices to estimate pairwise statistical significance [5] gives the best results in
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terms of retrieval accuracy since it uses maximal sequence-specific information. Relevant details

on pairwise statistical significance can be found in the supplementary notes (Appendix B).

Proposed Approach

The advantage of using position-specific substitution matrices (PSSMs) with pairwise sta-

tistical significance strongly motivates its use to refine PSI-BLAST results, since PSI-BLAST

naturally constructs a PSSM for the query sequence, which can be used for estimating pairwise

statistical significance. In this application note, we present an add-on to the BLAST and PSI-

BLAST programs to refine their results using pairwise statistical significance. The proposed

approach is implemented as a program named PSIBLAST PairwiseStatSig which takes a query

sequence, a database, the PSI-BLAST output file, and the PSI-BLAST constructed PSSM (if

available), and gives the new pairwise statistical significance estimates.

To evaluate PSIBLAST PairwiseStatSig, we used the same benchmark database (a non-

redundant subset of CATH2.3 database of 2771 sequences, and its subset of 86 query sequences)

as earlier used in [62, 2, 5]. For refining BLAST results, the BLSOUM62 matrix was used for

the alignments as it is the default substitution matrix for the BLAST program. For refining

PSI-BLAST results, the PSI-BLAST constructed PSSM was used. To further take advantage

of PSSMs, non-conservative pairwise statistical significance was also estimated (see supple-

mentary notes (Appendix B)). Note that for non-conservative pairwise statistical significance

estimation with PSSMs, we would need PSSMs for both the sequences being aligned. But in

general, after a PSI-BLAST run, we get a PSSM for only the query sequence, and not for the

hits obtained. Therefore, here we use the standard substitution matrix BLOSUM62 instead of

PSSM for second sequence, hoping that the PSSM for query sequence is significantly different

from BLOSUM62 to take advantage of non-conservative pairwise statistical significance. The

number of shuffles N was set to 1000.

The two evaluation methodologies used to compare the results are explained in detail

in the supplementary notes (Appendix B). Here we only present the results using the stan-

dard methodology (earlier used in [16, 62]) due to limited space. Fig. 6.1 shows the Er-
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ror Per Query vs. Coverage curves for BLAST and PSI-BLAST with and without reorder-

ing their hits using pairwise statistical significance, depicting the improvement in perfor-

mance using PSIBLAST PairwiseStatSig (a curve more towards the right is better). The

PSIBLAST PairwiseStatSig program is tested to work with BLAST/PSI-BLAST output files

for BLAST 2.2.17, but is expected to work for other versions as well.
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Figure 6.1 Errors per Query vs. Coverage plots comparing the perfor-
mance of (a) BLAST and BLAST PairwiseStatSig (reorder-
ing BLAST results using pairwise statistical significance),
and (b) PSIBLAST, PSIBLAST PairwiseStatSig, and PSI-
BLAST NCPairwiseStatSig (reordering PSI-BLAST results us-
ing non-conservative pairwise statistical significance). Reorder-
ing BLAST/PSI-BLAST hits using pairwise statistical signifi-
cance leads to superior performance in terms of retrieval accu-
racy.

Assuming that BLAST/PSI-BLAST output file is already available, the running time of

the proposed method is dependent on the number of hits given by BLAST/PSI-BLAST. For

a single sequence-pair, the pairwise statistical significance estimation time depends on the
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length of the two sequences. For typical protein sequence lengths (248 and 255), it took 0.45s

to estimate pairwise statistical significance on a 2.8 GHz Intel processor.

An obvious disadvantage of the proposed approach is that its performance is upper-bounded

by the number of true homologs detected by BLAST/PSI-BLAST. It can only reorder the hits

with an attempt to rank the true homologs higher, but cannot recover any more homologs.

However, considering this limitation, PSIBLAST PairwiseStatSig has been demonstrated to

give better results than BLAST and PSI-BLAST just by reordering the hits using pairwise

statistical significance. It is also important to note that the proposed method is studied in

context of protein database searches and not DNA, which may require substantial modification

considering the arbitrary lengths of the DNA sequences.
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7. FAST PAIRWISE STATISTICAL SIGNIFICANCE ESTIMATION

USING DERIVED DISTRIBUTION POINTS AND DATABASE

SEARCH HEURISTICS

A paper to be submitted

Ankit Agrawal and Xiaoqiu Huang

Abstract

Evaluation of statistical significance of a pairwise sequence alignment is crucial in homology

detection. A major recent development in the field is the use of pairwise statistical significance

as an alternate to database statistical significance. Although pairwise statistical significance

has been shown to be comparable and at times significantly better than database statistical

significance in terms of homology detection retrieval accuracy, it is also much time consuming

since it involves generating an empirical score distribution by alignment of one sequence with

random shuffles of the other sequence. In this paper, we devise heuristics to speed up pairwise

statistical significance estimation taking advantage of the nature of the estimation procedure.

Both the proposed derived distribution points heuristic and a specific application of database

search heuristic have been individually shown to give significant speedup compared to normal

pairwise statistical significance with negligible loss of accuracy. Using both the heuristics in

conjunction can give a speed up of more than 200, without significant loss of accuracy.

Introduction

Sequence alignment is an underlying application in the analysis and comparison of DNA and

protein sequences [52, 12, 13], which forms the basis of numerous applications in bioinformatics,
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beginning with homology detection, i.e., identifying sequences evolved from a common ancestor,

generally known as homologs or related sequences. Homology detection further forms the key

step of many other bioinformatics applications making various high level inferences about

the DNA and protein sequences - like finding protein function, protein structure, deciphering

evolutionary relationships, drug design, etc. There exist classical algorithms for optimal local

sequence alignment [63], based on which, there exist many other algorithms [32, 31], which try

to model sequence comparison in a better way by incorporating more biological features, like

different conservation level along the length of the sequence, etc. Several heuristics have also

been proposed [49, 13, 51, 39, 38] which are extremely useful in database search application

where it is impractical to use exact algorithms for sequence alignment.

Since the chief application of sequence alignment is homology detection, sequence align-

ment methods can be compared in terms of their ability to distinguish between pairs of related

and unrelated sequences. Although homologous pairs (pairs of related sequences) are expected

to have high alignment score, the potential relatedness of two sequences is judged by statistical

significance rather than by alignment score alone. An alignment score is considered statistically

significant if it has a low probability of occurring by chance. Since the alignment score distri-

bution depends on various factors like alignment program, scoring scheme, sequence lengths,

sequence compositions [42], it is possible that two sequence pairs have optimal alignments with

scores x and y with x < y, but x more statistically significant than y. Of course, it is impor-

tant to note here that although statistical significance may be a good preliminary indicator of

biological significance, it does not necessarily imply biological significance [9, 42].

A good sequence comparison strategy should assign lower probabilities (higher statistical

significance) for related sequence pairs, and higher probabilities (lower statistical significance)

for unrelated sequence pairs. Recently, a study of pairwise statistical significance and its

comparison with database statistical significance was conducted [1, 2], and its use with mul-

tiple parameter sets [7] and sequence-specific/position-specific substitution matrices [5] was

explored, which depicted a clear advantage of pairwise statistical significance as compared to

database statistical significance. Pairwise statistical significance has also been used to reorder
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the hits from a fast database search program like PSI-BLAST [8]. However, since estima-

tion of pairwise statistical significance involves generating a score distribution specific to the

sequence-pair by aligning one sequence by multiple shuffles of the other sequence, it is very

time consuming and can be impractical for estimating pairwise statistical significance of a large

number of sequence pairs.

In this paper, we devise suitable heuristics to speed up pairwise statistical significance

estimation, taking advantage of the nature of the estimation procedure. Both the proposed

derived distribution points heuristic and a specific application of the database search heuristic

have been individually shown to give significant speedup with negligible loss of accuracy. When

used together, these heuristics can give a speedup of more than 200 without significant loss of

accuracy.

The rest of the paper is organized as follows: Section 2 presents a description of the features

of pairwise statistical significance estimation that motivated the design and application of the

heuristics, which are discussed in Section 3 of the paper. Experiments and results are presented

in Section 4, followed by the conclusion and future work in Section 5.

Pairwise Statistical Significance

As mentioned earlier, statistical significance of alignment score is more commonly used

to comment on the relatedness of sequence-pairs than alignment score. The distribution of

Smith-Waterman local alignment score between random, unrelated sequences is approximately

a Gumbel-type EVD [34]. In the limit of sufficiently large sequence lengths m and n, the

statistics of HSP (High-scoring Segment Pairs which correspond to ungapped local alignment)

scores are characterized by two parameters, K and λ. The probability that the optimal local

alignment score S exceeds x is given by the P-value:

Pr(S > x) ∼ 1− e−E ,

where E is the E-value and is given by

E = Kmne−λx .
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The above formulae are theoretically valid only for ungapped alignment, and the corresponding

statistical parameters K and λ can be analytically determined for given sequence lengths,

compositions and scoring scheme. For gapped alignments, however, no precise theory exists,

but the gapped score distribution has been widely observed to follow the same distribution,

even when using multiple parameter sets [7] and position-specific substitution matrices, as used

by PSI-BLAST. Thus, the corresponding statistical parameters K and λ can be estimated by

fitting an EVD to experimentally generated score distribution.

Pairwise statistical significance is an attempt to make the statistical significance estimation

process more specific to the sequence pair being compared. Recently a study of pairwise

statistical significance and its comparison with database statistical significance was conducted

[1, 2]. It compared eight different schemes of estimating pairwise statistical significance in terms

of statistical significance accuracy, i.e., their ability to predict the P-value in the extreme right

tail of the distribution. It was found that maximum likelihood fitting of the censored score

distribution (censored left of peak/fitting only the right tail) is the most accurate method.

Further, comparison with database statistical significance revealed that pairwise statistical

significance performs comparable to and sometimes marginally better than database statistical

significance using SSEARCH, and hence significantly better than BLAST and FASTA.

Consider the pairwise statistical significance defined in [1] to be obtainable by the following

function: PairwiseStatSig(Seq1, Seq2, SC, N) where Seq1 is the first sequence, Seq2 is the

second sequence, SC is the scoring scheme (substitution matrix, gap penalties), and N is

the number of shuffles. The function PairwiseStatSig, therefore generates a score distribution

by aligning Seq1 with N shuffled versions of Seq2, fits the distribution to an extreme value

distribution using censored maximum likelihood fitting to obtain statistical parameters K and

λ, and returns the pairwise statistical significance estimate of the pairwise alignment score

between Seq1 and Seq2 using the parameters K and λ. More details on pairwise statistical

significance can be found in [1].

It is easy to see that the number of shuffles used to generate the empirical score distribu-

tion has an obvious effect on statistical significance accuracy. Higher the number of shuffles,
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smoother the empirical distribution obtained, better the maximum-likelihood fitting, and hence

better the statistical significance accuracy. However, it has been reported that improving the

statistical significance accuracy may not necessarily improve retrieval accuracy [68], which is

clearly more important for bioinformatics applications.

Since the estimation of pairwise statistical significance of the optimal alignment score of

two sequences of length m and n involves computing N alignment scores, where N is the

number of shuffles, the time complexity of the estimation procedure is O(Nmn).

These features of pairwise statistical significance estimation strategy lead to the following

observations which can help in speeding up the estimation process:

1. Scores in the right tail are more important than those in the left tail.

2. It should be possible to reduce number of shuffles without losing too much on retrieval

accuracy.

3. Rather than using the time consuming dynamic programming algorithm to get the scores

for the score distribution, fast heuristic-based methods can be used.

Proposed Heuristics

Based on the observations made in the previous section, two heuristics are described in this

section to speed up the pairwise statistical significance estimation process.

Derived Distribution Points

This heuristic attempts to generate a score distribution faster by reducing the number of

effective shuffles without adversely affecting the right tail of the distribution. Given the number

of shuffles N and a derived distribution points set DDP =
{
DDP1, DDP2, . . . , DDPNddp

}

with Nddp = |DDP |, this heuristic reduces the number of shuffles from N to N/Nddp, and

the alignment score s from each actual shuffle contributes Nddp alignment scores (s + DDPi,

1 ≤ i ≤ Nddp) in the histogram, making a total of N alignment scores. The choice of the

set DDP is such that it contributes a decreasing mini-histogram for every alignment score s
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centered around s, which adversely affects the left tail of the distribution but not the right tail.

This heuristic is expected to give a speedup of Nddp. Figure 7.1 shows three DDP sets used

in this work, including the special case of DDP = {0}, which effectively disables the DDP

heuristic.

0

DDP={0}, |DDP|=1
-1     0 1      2     3 

DDP={-1,-1,-1,0,0,1,1,2,2,3}, |DDP|=10

-2    -1     0 1      2     3     4     5     6 

DDP={-2,-2,-2,-2,-1,-1,-1,0,0,0,1,1,2,2,3,3,4,4,5,6}, |DDP|=20

Figure 7.1 Three DDP sets used in this work. Each alignment score con-
tributes |DDP | scores to the histogram around itself thereby
adversely affecting the score distribution only left of peak but
not right of peak. The special case of DDP = {0} essentially
disables the DDP heuristic.

Database Search Heuristic

To construct the empirical distribution to estimate PairwiseStatSig(Seq1, Seq2, SC,N),

we propose to do a database search with Seq1 as the query against a database constructed of

N random shuffles of Seq2. This approach is expected to give high scores quickly, which would

constitute the right tail of the score distribution which we are interested to fit.

A basic heuristic-based database search approach can be outlined as follows:

1. Find short exact matches of length w between the query and the database.

2. Extend the matches in either direction allowing for mismatches in an attempt increase

the score to get segments of score at least ic.
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3. Combine the segments allowing for gaps by chaining segments across different diagonals

in an attempt to increase the score to get chains of score at least fc.

The commonly used database search program BLAST [13] uses the above basic approach

interweaved with much more intricate heuristics. The time required to get the score distribution

for statistical significance estimation depends primarily on the parameter w, and also on ic.

Smaller the word length w, more the number of exact matches, and hence higher the execution

time. Similarly, lower the parameter ic, more the segments, and higher the execution time.

BLAST uses a default value of 3 for the word size (for protein comparisons). Instead of

the cutoff ic on the score of the segments, BLAST places a cutoff on statistical significance of

segment scores (known as E-value cutoff, with default value 10). It is known that the average

expected score of optimal pairwise alignment of two sequences increases proportional to the

logarithm of the product of the sequences, and hence, for the purpose of estimating pairwise

statistical significance, we make the parameter ic dependent on the lengths of the sequences

accordingly.

The above approach can generally give more than one hit corresponding to a single sequence

in the database. To be consistent with the earlier definition of PairwiseStatSig function, we

select the best (highest) score corresponding to each sequence in the database. With proper

values of the parameters w and ic, it is expected that at least right half of the distribution is

obtained.

Algorithm for Fast Pairwise Statistical Estimation

The two heuristics discussed in the previous section are independent of each other, and can

be used both individually and collectively. Here we outline the proposed algorithm for fast

pairwise statistical significance estimation using these heuristics.

Input: Sequence 1 Seq1 with length len1, Sequence 2 Seq2 with length len2, Substitution

matrix S with entropy H and bit-scale c, Gap opening penalty p, Gap extension penalty r,

Number of shuffles N , Derived distribution points set DDP with |DDP | = Nddp.

Output: Pairwise statistical significance pss of pairwise alignment score pas of Seq1 and Seq2.
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1. Initialization

(a) minlen = min(len1, len2)

(b) µ = c× log2(len1× len2)

(c) fc = min(0.5×minlen×H, 0.75× µ) #minimum chain score

(d) ic = fc/2 #minimum segment score

(e) w = (minlen < 50)?2 : 3 #word size

2. pas = SWAlignmentScore(Seq1, Seq2, S, p, r) #get pairwise alignment score using Smith-

Waterman algorithm

3. Construct empirical score distribution

(a) Neffective = N/Nddp

(b) DB = Seq2DB(Seq2, Neffective) #create database of N shuffles of Seq2

(c) scores[ ] = (useDBSearchHeuristic) ?

DBSearch(Seq1, DB, S, p, r, w, ic, fc) : SWAlignmentScores(Seq1, DB, S, p, r) #get

up to Neffective scores either by searching Seq1 against DB with scoring scheme SC,

word size w, segment score cutoff ic and chain score cutoff fc, or by aligning Seq1

with all Neffective sequences in database DB using Smith-Waterman algorithm

(d) Hist = createHistogram(scores, DDP ) #for each available score (up to Neffective),

add Nddp alignment scores (s + DDPi, 1 ≤ i ≤ Nddp) to the histogram

4. Perform a censored-maximum likelihood fitting of the histogram

(a) peak = Peak(Hist) #find the peak of the histogram

(b) peak = peak −mini {DDPi} 1 ≤ i ≤ Nddp #correct for error in peak due to DDP

(c) if nRightScores(Hist, peak) < 100, {N = 2×N ; goto step 3} #increase N if have

too less scores to fit

(d) [K,λ] = EV DCensoredMLFit(Hist, peak) #get statistical parameters K and λ

5. pss = 1− exp(−Kmn ∗ exp−λ×pas) #pairwise statistical significance
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Experiments and Results

In this section we present the timing and retrieval accuracy results of fast pairwise statistical

significance. For the derived distribution points heuristic, we used two DDP sets with |DDP |
as 10 and 20, as shown in 7.1. Note that the special case of DDP = {0} corresponds to

not using the DDP heuristic for pairwise statistical significance estimation. For the database

search heuristic, we used a variation of the DPS (DNA-Protein Search) program [30], which

we would refer to as PPS (Protein-Protein Search). The PPS program can be thought of as a

basic implementation of the fundamental database search heuristic described in the previous

section, which although much less complex than BLAST, is significantly faster than currently

available versions of BLAST, and is good enough for our purposes of getting the right half of

the score distribution. We present results for both the heuristics both when used individually

and when used together.

All experiments were performed on an Intel 2.8GHz processor. The timing and speedup

results using FastPairwiseStatSig are presented in Table 7.1 and Fig. 7.2. The first row in

Table 7.1 with |DDP |=1, PPS=0 corresponds to normal pairwise statistical significance, with

both proposed heuristics disabled. The times represent the time taken to estimate the optimal

pairwise alignment score of two sequences of length around 250 and its pairwise statistical

significance. The substitution matrix, gap opening, and gap extension penalties used were

BLOSUM62, 11, and 1 respectively (default used in BLAST), and the number of shuffles N

was set to 1000. In addition to reporting the time in seconds, the execution time is also reported

in Alignment Time Units (ATUs) to better visualize the speedup independent of underlying

processor used. 1 ATU is defined as the time required to align two sequences of length around

250 using Smith-Waterman algorithm. When used alone, the DDP heuristic gives the expected

speedup of close to |DDP | (10 and 20), and the database search heuristic (hereafter referred

to as PPS heuristic) gives a speedup of more than 25. When both heuristics are used together,

the overall speedup is more than 200.

To evaluate the performance of FastPairwiseStatSig in terms of retrieval accuracy and

compare it with PairwiseStatSig, we used the same experiment setup as used in [62], and later
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Table 7.1 Execution time and Speedup with FastPairwiseStatSig.
|DDP |=1,PPS=0 corresponds to normal pairwise statistical
significance. One ATU (Alignment Time Unit) is defined as
the time required to align two sequences of length 250 using
Smith-Waterman algorithm

|DDP | PPS Time (s) Time (ATU) Speedup
1 0 3.405 1000 1
10 0 0.345 101.32 9.87
20 0 0.172 50.51 19.80
1 1 0.12 35.24 28.38
10 1 0.017 4.99 200.29
20 1 0.012 3.52 283.75

in [2]. A non-redundant subset of the CATH 2.3 database (Class, Architecture, Topology, and

Hierarchy, [47]) available at ftp://ftp.ebi.ac.uk/ pub/software/ unix/fasta/prot sci 04/ was

selected in [62] to evaluate seven structure comparison programs and two sequence comparison

programs. As described in [62], this dataset consists of 2771 domain sequences and includes

86 query sequences. This domain set is considered as a valid benchmark for testing protein

comparison algorithms [56].

For each of the 86×2771 comparisons, we used all the above compared methods to estimate

pairwise statistical significance. Following [62, 1, 5], Error per Query (EPQ) versus Coverage

plots were used to visualize and compare the results. To create these plots, the list of pairwise

comparisons was sorted based on decreasing statistical significance (increasing P-values). While

traversing the sorted list from top to bottom, the coverage count is increased by one if the

two sequences of the pair are homologs, else the error count is increased by one. At any given

point in the list, EPQ is the total number of errors incurred so far, divided by the number of

queries; and coverage is the fraction of total homolog pairs so far detected. The ideal curve

would go from 0% to 100% coverage, without incurring any errors, which would correspond to

a straight line on the x-axis. Therefore, a better curve is one which is more to the right.

The advantage of the speedup using FastPairwiseStatSig is expected to incur a loss of

retrieval accuracy. In Fig. 7.3, we present the comparison results of fast pairwise statisti-

cal significance and normal pairwise statistical significance in terms of retrieval accuracy. All
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Figure 7.2 Execution time (s) and Speedup with Fast Pairwise Statistical
Significance. |DDP |=1,PPS=0 corresponds to normal pairwise
statistical significance with both the proposed heuristics dis-
abled. A speedup of more than 200 is achieved by using both
the heuristics together.

the curves are quite close to each other (except the curve for |DDP |=20,PPS=1). This indi-

cates that the heuristics proposed in this work speed up the pairwise statistical significance

estimation without a significant loss of retrieval accuracy.

Conclusion and Future Work

In this paper, we propose, implement and incorporate two independent heuristics for fast

pairwise statistical significance estimation, which takes advantage of the nature of pairwise

statistical significance estimation process. The two heuristics have been shown to give signif-

icant speedup of up to 200 without significant loss of retrieval accuracy, which is expected to

be extremely useful in the wide variety of applications based on sequence comparison.

Future work includes application of the proposed heuristics for estimating pairwise statisti-

cal significance using position-specific substitution matrices, and improvement of the proposed

heuristics to further speedup the pairwise statistical significance estimation process using in-

telligent methods to select heuristic parameters, especially the set DDP , and word size w.

Fast pairwise statistical significance can also be used to design a database search method to
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Figure 7.3 Comparison of FastPairwiseStatSig and PairwiseStatSig in
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normal pairwise statistical significance with both the proposed
heuristics disabled. All the curves are quite close to each other
except the curve for |DDP |=20, PPS=1 which gives the max-
imum speedup. FastPairwiseStatSig performs comparable to
PairwiseStatSig at least up to |DDP |=10,PPS=1 which gives
a speedup of 200.

recover the hits missed by BLAST.
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8. CONCLUSIONS

In this research, we have made significant contributions to ”accurately and quickly estimate

the statistical significance of pairwise local sequence alignment for the purpose of identifying

related sequences by using computational, statistical, and heuristic methods”. This has been

done using sequence-specific strategies for pairwise sequence alignment and pairwise statisti-

cal significance estimation. Sequence-specific sequence comparison indeed improves retrieval

accuracy as it is evident from the fact that retrieval accuracy increases as the sequence com-

parison process is made more and more specific to the sequence pair being compared. Using

pairwise statistical significance to refine the results of a fast database search program like PSI-

BLAST, and the design of suitable heuristics to make the estimation process faster also makes

it practical for large number of sequence pairs.

Given the all-pervasive utility of sequence comparison in many bioinformatics applications

like database search, protein structure and function identification, multiple sequence align-

ment, phylogenetic tree construction, etc., this research has opened up multiple avenues of

applications for future work. Apart from improving upon the methods described in this work,

this research is expected to motivate researchers to develop efficient methods for constructing

more accurate position-specific substitution matrices, which can greatly aid in sequence com-

parison applications. Fast pairwise statistical significance estimation can be used to develop

an efficient database search method. Pairwise statistical significance can also be used to con-

struct the guide tree in phylogenetic tree construction and for progressive multiple sequence

alignment.
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APPENDIX A. SMITH-WATERMAN ALGORITHM FOR PAIRWISE

LOCAL SEQUENCE ALIGNMENT

The Smith-Waterman algorithm [63] is a popular algorithm for performing local sequence

alignment of two nucleotide or protein sequences for a given gap penalty function. Under an

affine gap penalty model, the algorithm can be described as follows.

Let A = a1, a2, ..., am and B = b1, b2, ..., bn be two sequences of length m and n. The

optimal local alignment of A and B is the global alignment of the subsequences α of A and β

of B, whose similarity is maximal, in terms of a scoring scheme (pairwise substitution scores

and gap penalties).

A local alignment of A and B consists of two types of configurations: substitutions and

gaps. A substitution associates a residue of A with a residue of B. A gap consists only of

residues from one sequence with each residue associated with the symbol -. There are two

kinds of gaps. A deletion gap with respect to sequence A consists only of residues from A and

an insertion gap with respect to sequence A consists only of residues from B. Let the scoring

scheme be as follows. Substitution matrix S is a square matrix consisting of scores for each

possible substitution between residue pairs, with S(a, b) representing the substitution score of

aligning residue a with residue b. Let q be the non-negative gap opening penalty, and r be the

non-negative gap extension penalty, so that the score of a gap of length k is −(q + k × r).

Let Ai = a1, a2, ...ai and Bj = b1, b2, ..., bj be initial segments of A and B of length i

and j respectively. Define V (i, j) to be the score of the optimal local alignment of Ai and

Bj . Define G(i, j) to be the score of the optimal local alignment of Ai and Bj where ai and

bj are aligned with each other. Define I(i, j) to be the score of the optimal local alignment

of Ai and Bj that end with an insertion gap with respect to A. Similarly, define D(i, j) to
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be the score of the optimal local alignment of Ai and Bj that end with an deletion gap with

respect to A. Then, the following recurrences are used to calculate the optimal local alignment:

Base Conditions:

V (0, 0) = 0

V (i, 0) = 0 ∀i

V (0, j) = 0 ∀j

I(i, 0) = −q ∀i ≥ 0

D(0, j) = −q ∀j ≥ 0

Recurrence relations:

V (i, j) = max {G(i, j), I(i, j), D(i, j), 0}

G(i, j) = max {V (i− 1, j − 1) + S(ai, bj)}

I(i, j) = max {I(i, j − 1)− r, V (i, j − 1)− q − r}

D(i, j) = max {D(i− 1, j)− r, V (i− 1, j)− q − r}

The score of the optimal local alignment of A and B is given by V (i′, j′) = max1≤i≤m,1≤j≤n

V (i, j).

Both time and space complexity of the algorithm is O(mn). The actual alignment can be

calculated by following a trace-back procedure from V (i′, j′) as described in [63]. The space-

complexity can be reduced to O(min{m,n}) using a divide-and-conquer strategy developed by

Hirschberg [29] after identifying the starting and ending indices of the optimal local alignment.
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APPENDIX B. Supplementary Notes for PSIBLAST PairwiseStatSig:

REORDERING PSI-BLAST HITS USING PAIRWISE STATISTICAL

SIGNIFICANCE

Pairwise Statistical Significance

Consider the pairwise statistical significance described in [2] to be obtainable by the follow-

ing function: PairwiseStatSig(Seq1, Seq2, SC, N) where Seq1 is the first sequence, Seq2 is

the second sequence, SC is the scoring scheme, and N is the number of shuffles. The function

PairwiseStatSig, therefore, generates a score distribution by aligning Seq1 with N shuffled

versions of Seq2, fits the distribution to an extreme value distribution using censored maxi-

mum likelihood fitting to obtain the statistical parameters K and λ, and returns the pairwise

statistical significance estimate of the pairwise alignment score between Seq1 and Seq2 using

the parameters K and λ. Using this function two times with different ordering of sequence

inputs, non-conservative pairwise statistical significance was introduced in [3]. Let

S1 = PairwiseStatSig(Seq1, Seq2, SC1, N)

S2 = PairwiseStatSig(Seq2, Seq1, SC2, N)

Then, non-conservative pairwise statistical significance is defined as minS1, S2. SC1 and

SC2 signifies that a scoring scheme specific to Seq1 and Seq2 can be used to estimate S1

and S2 respectively, since Seq1(Seq2) is not shuffled during estimation of S1(S2). Pairwise

statistical significance using sequence-specific and position-specific substitution matrices [5]

indicates that best results are obtained by using position-specific substitution matrices as it

uses maximal sequence-specific information.
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Evaluation methodology

Errors per Query vs. Coverage curves

Plotting Errors per Query vs. Coverage curves to represent and compare the results of a

homology detection experiment is one of the standard methods as used in [16, 62]. For plotting

such curves, the list of all pairwise comparisons are sorted in decreasing order of statistical

significance (increasing order of E-values/P-values). Subsequently, the list is traversed from

top to bottom and the count of true homologs detected and errors incurred so far is kept track

of at every point. Finally coverage (fraction of true homologs detected) and errors per query

(number of errors divided by total number of queries) are plotted on x and y axis respectively.

Ideally, all true homologs should be at the top of the list, which would correspond to a straight

line on the x-axis, as 100% coverage is achieved at 0 EPQ. Therefore, the more the curve is

towards the right, the better it is. The comparison results with this evaluation strategy are

presented in the main manuscript.

Average Error Rate vs. Coverage curves

Rather than constructing a single list of comparisons combining the results from all the queries,

another approach is to analyze the list of each query separately, and aggregate the results. For

this approach, the number of errors incurred for each query at different levels of attained

coverage was calculated, and the average number of errors incurred at different coverage levels

was plotted. To the best of our knowledge, this method has not been used in this form in any

previous work to compare performance of sequence-comparison/database search programs.

Fig. B.1 (a) gives the avg. error rate vs. coverage curves comparing the results of BLAST

and BLAST PairwiseStatSig, and Fig B.1 (b) gives the corresponding curves comparing the

results for PSI-BLAST, PSIBLAST PairwiseStatSig, and PSIBLAST NCPairwiseStatSig (re-

ordering PSI-BLAST results using non-conservative pairwise statistical significance). The

curves are not non-decreasing since most of the queries saturate at a certain coverage level,

i.e., their maximum possible coverage is achieved. This is because as explained in the main

manuscript, the results of all the approaches compared here are upper-bounded by the num-

ber of true homologs detected by BLAST/PSI-BLAST. For instance, suppose a query has10
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homologs in the searched database, and the PSI-BLAST search gives 10 hits, out of which 5

are true homologs and 5 are erroneous hits. Therefore, the maximum possible coverage for this

query is 50%, and reordering the hits by pairwise statistical significance can only alter how

soon this maximum coverage is attained. Therefore, at each coverage level, only the errors

from unsaturated queries are used to compute the average error. Thus, because of different

denominators used to calculate the average error, the curves are not necessarily supposed to

be non-decreasing Since the average error rate is plotted on the y-axis, the lower the curve,

the better it is. It is important to note that such a comparison is valid in this case since all the

methods compared on a single plot have exactly same saturated queries at different coverage

levels. This is because the maximum coverage for a given query is determined by the number of

true homologs detected in the BLAST/PSI-BLAST searches. But if a method were to have the

ability to extract more true homologs missed by BLAST/PSI-BLAST, then this comparison

methodology would not have been fair.

As expected, these curves show more irregularity than EPQ vs. Coverage curves with

the proposed method doing better than BLAST/PSI-BLAST at certain coverage levels and

worse at other coverage levels. However, for most coverage levels (0.01 to 0.5, 0.68 to 0.87

for BLAST PairwiseStatSig, and 0.01 to 0.4, 0.5 to 1.0 for PSIBLAST PairwiseStatSig), the

proposed method performs comparable to or better than BLAST/PSI-BLAST.

As mentioned earlier, at each coverage level, the average of error counts is calculated only

across those queries which are not saturated, which means that different denominators are

used at different coverage levels to calculate the average error. Thus, some coverage levels may

have very few unsaturated queries, and the resulting curve may be highly susceptible to noise

and may not show a definitive trend, as found here. Although the results from this evaluation

methodology by and large support the results from the earlier evaluation methodology, these

curves do not seem to be as conclusive of the superiority of one method over the other as EPQ

vs. Coverage curves.
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