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ABSTRACT

In this thesis, we presents a new algorithm that finds the longest partial match between two
space curves. The algorithm iteratively extends an initial matching portion of two curves within
some tolerance over the matching quality. Each iteration adjusts the matching transformation
(rotation, scale, and translation) to handle noisy data more robustly and to enlarge the matched
portion. To control the matching accuracy, a statistical threshold is introduced to stop the
iterative extension. Experiment shows that the algorithm has a comparable accuracy to that
of the well known ICP algorithm [3] but its efficiency is improved by an order of magnitude.
The algorithm has been demonstrated over synthetic and range data. Experiment shows that it
adjusts well to noise distributions and performs effectively over curves of complex shapes.
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CHAPTER 1. INTRODUCTION

Finding the matching segment of two data curves is one of the classical problems in pattern
recognition, computer vision, and robotics. A range of recognition and localization tasks in
these areas can be transformed into this problem or rely on its solution. In particular, recon-
struction of an object from patches of data may be carried out by matching the segments of
the boundary curves of these patches. Examples include assembly of an antique pot from a
few broken fragments [18, 24], reconstruction of an entire document from the ripped pieces
of a paper [42], building of 3-D shape of a scene by matching curves in images [35], or mo-
saicing of images by piecing together their edges [39]. Additionally, there are many studies
to recognize an object by curve matching [2, 17, 19, 20, 25, 26, 29, 28]. The pose of a 3-D
object can be estimated by matching a “characteristic” surface curve with the corresponding
one on its model [9]. In such a case, the capability of handling partial matches and occlu-
sions with noisy data [21, 33] is important because most observable data from sensing devices
are noisy and may be occluded. Furthermore, the curve matching algorithm has been applied
to various applications: vision-based robot control [23], hand-written signature and character
recognitions [1, 22], and protein structure alignment [4].

We find the longest matching segment of two space curves which are similar: one curve
can be superposed to the other by scaling, rotating and translating it. We assume that initial
information is given: a small portion of the matching segment and a transformation superpos-
ing it onto the other curve. In this case, the longest matching segment can be obtained by
gradually extending the initially given segment while adjusting its transformation, as long as
its matching quality is tolerable. The extension can be performed using the ICP1 algorithm in
O(n2) time with allowing scaling the matching segment [41].

The goal of this research is to find an algorithm that gradually extends the matching seg-
ment to find its longest extension in such a case. Additionally, we hope to achieve a compa-
rable accuracy to that of the ICP algorithm but is more efficient by achieving O(n) time while
aligning the two matching segments using the similarity transformation.

1It finds the optimal transformation (rotation and translation) superposing a set P of entire data points onto a
model X by iteratively minimizing the sum of squared distances from the points to the model. The detail of the
ICP algorithm will be provided in Appendix C.
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1.1 Related Work

A number of approaches have been introduced for finding matching curve segments. One
of them divides each curve to be matched into small sections for piecewise comparison to
achieve efficiency by reducing redundancies [12, 16, 17, 31, 34, 40]. Here length and local
properties such as curvature and torsion are utilized in the segmentation. However, the major
drawback is that the behavior heavily depends on the outcome of segmentation. If the segmen-
tation is not fine enough, a large portion of a matching segment could be neglected [16, 34]. A
second drawback is that it allows two curves to match despite accumulating difference [34].

Segmentation often requires smoothing a data curve in the preprocessing to reduce the
degradation of results due to noise [6, 14, 17, 31, 33, 40]. Especially, if a curve is given as
a list of noisy points, which is common for range and tactile data, fitting with a differentiable
curve like a B-spline is used to extract features such as length, curvature and torsion. However,
it is difficult to achieve a certain level of accuracy given the possible distortion of the curve
caused by over-smoothing. In particular, smoothing can blunt sharp corners of the curve.

One issue in finding the matching segment lies in what range of transformations should
be considered. Some work has been done on registering 3-D sensory data under rigid body
transformations (rotations and translations) [9, 10]. To attain accuracy, a certain amount of
freedom in scaling should be allowed because it is hard to determine the scale of the observed
data precisely output from sensing devices. Furthermore, in a case like object recognition, the
expected range of scale may not be given. To deal with scaling, finding a similarity transforma-
tions (rotations, scales, and translations) has been studied [11, 41]. In [41], scalability is added
to the ICP algorithm [3], which is well-known for registering 3-D objects under rigid body
transformations. However, the method needs lower bounds for scales to avoid the situation of
shrinking all data points into a point on the model.

In the following sections, we list the prior researches that find the longest common segment
of two planar curves in Section 1.1.1, and two space curves in Section 1.1.2. Additionally, we
summarize prior researches that register 3-D shapes under rigid body, similarity, and other
transformations in Section 1.1.3.

1.1.1 Planar Curve Matching

B. Thomas et al. [34] proposed an algorithm matching two largely deformable planer
curves using dynamic programming and their intrinsic formulation. In the algorithm, a ta-
ble is filled with the cost of deforming an infinitesimal segment of one curve to that of the
other using the intrinsic formulation, and dynamic programming is used to find the optimal
path in the table which minimizes the cost aligning two curve by deforming one of them. The
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algorithm allows recognizing largely deformed shapes like the hand written characters and the
outlines of different animals in figures.

Arie Pikaz and Its’hak Dinstein [32] proposed an algorithm that finds the partial match
of two curves. It finds two ends of the longest matching segments of the two curves using
dynamic programming; in each iteration of the dynamic programming, it extends both ends of
the matching segment as long as the total curvatures (and the ratios of increased lengths) of the
segments are the same. The approach achieves the similarity transformation (rotations, scales,
and translations), but is constrained to the planar curves because of using the total curvature.

H. J. Wolfson [38] utilized the string matching algorithm, the dynamic programming al-
gorithm to find the longest common sequence of alphabet in two different strings, to find the
longest common segment of two curves. To adjust the curve matching problem into the string
matching problem, he first divides each curve into several equidistant curve segments, and
then assigns to each segment the value of the local shape signature which is invariant to the
translation and rotation like curvature. However, the method could be sensitive to the length
of each segment and the value assigned to it.

Aristeidis Diplaros and Evangelos Milios [31] presented an approach to match distorted
and possibly occluded shapes using the dynamic programing. The approach uses inflection
points of a curve, which are invariant to translation, scaling, rotation and starting point; the
dynamic programming of the approach merges the matched concave segments of two curves,
which are determined in between the inflection points. However, the approach works only
when one curve belongs to the other, or both curves are fully matched.

Minghui Xia and Bede Liu [39] proposed a method to match and align curves for accurate
image registration by finding a super-curve. It is a single B-spline approximation to two point
sequences to generate their best superposition under affine transformation. Contrast to other
methods, their method uses raw data points instead of intermediate smoothed curves, to ensure
the accuracy of its main algorithm. However, it has to find a partial match of two curves to
feed into the main algorithm, in order to polish the accuracy of two aligned curves as the
super-curve.

Farzin Mokhtarian and Alan Mackworth [27] presented the Curvature Scale Space (CSS)
image which uniquely represents a curve with a limited number of data. To generate CSS
image, their algorithm finds the list of inflection points on the curve that is smoothed by the
Gaussian kernel with different width ρ, and then draws hat-shaped curves on the t-ρ image
with the ρ value and the index t of the inflection points normalized by arc-length. Matching
two different curves are performed by comparing the t-ρ images of them. In [37], Yue Wang
and Eam Khwang Teoh reduced the matching error of the CSS image using B-spline fitting
instead of the Gaussian kernel.
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Dong Xu and Wenli Xu [40] presented a descriptor of an object contour using arc length
and tangent orientation, in order to find a matching object in a database. The descriptor uses
arc length variance function (ALVF) which measures the variation of arc length as the tangent
angle changes; it is different to another function measuring the variation of tangent angle as
the arc length increase. They recognized a query object in the database by comparing the
correlation of two ALVFs of the query and an object contours in the database.

I. Cohen and I. Herlin [7] studied the method to match curves using geodesic paths. It
finds the match of multiple curves by iteratively minimizing their geodesic distance error.
Contrast to other methods, it allows the topological change of matching curves, and therefore
was applied to track a cloud structure in a sequence of images depicting a tropical storm [8].

1.1.2 Space Curve Matching

B. Kamgar-Parsi and B. Kamgar-Parsi [16] proposed a closed form solution that determines
the rigid body transformation (rotations and translations) to superpose one polyline onto an-
other polyline. Its computational cost is proportional to the number of line segments connected
in the polyline. Because it is designed to match two whole curves, if one curve is a part of the
other, it sequentially shifts the small curve over the long curve to find the matching portion; it
is not appropriate when both curves are partially matched.

Stan Z. Li [21] designed the similarity-invariant coordinate system (SICS), which describes
the shape of a curve segment with few variables. They segmented a curve at its vertexes in
order to build a list of SICS, and represented the curve as a form of the attributed relational
graph (ARG) where nodes are defined using SICS. To find the longest common segment of two
curves, they employed MAP-MRF (maximum a posteriori - Markov random fields) labeling
method. Their method is robust against complex shape of curves, but may be sensitive to the
result of the curve segmentation.

E. Kishon et al. [17] studied the method to recognize an object using a curve matching
method. They built hash table in order to efficiently find curve segments similar to a query
segment in their database; the key of the hash table is defined as the curvature-torsion based
shape signature of a curve segment. To find the queried object in the database, they searched
the curve that has the longest common sequence of shape signatures with a curve in the object.

T. Pajdla and L. Van Gool [30] proposed the semi-differential invariants of a curve to rec-
ognize an object using another curve matching method. The invariants of an arbitrary point on
the curve are defined as one distance and two cosine angles by the comparison with a given
reference point on the curve; the invariants of several curves on different object surfaces are
stored in a hash table. To recognize an object with a queried curve, they listed candidates
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of matching curves by searching invariants of the queried curve on the hash table and count-
ing reference points of invariants; and then, they trimmed candidates and selected one curve
with its recognized object using the least mean square motion estimation and the modified ICP
(Iterative Closest Point) algorithm, respectively.

J. T. Schwartz and M. Sharir [33] presented a method that matches partially obscured and
noisy curves in 2-D and 3-D. It samples a sequence of evenly spaced points on a smoothed
curve. From two point sequences p1, ..., pm and q1, ..., qn which are sampled on two different
curves, it finds an offset d and the Euclidean transformation T that superposes pi onto qi+d,
1 ≤ i ≤ m ≤ n. It uses the fast Fourier transform to achieve O(n log n) time complexity while
determining d and T that minimize the superposition error.

1.1.3 Transformations to Register 3-D Shapes

Faugeras and Hebert [9] presented an algorithm that registers 3-D sensory data under rigid
body transformations (rotations and translations). They represented an object as a set of seg-
mented data such as corner points, line segments, and surface patches; in their object repre-
sentation, each data is stored as the feature values that compress the data information. For the
object registration, they found the rigid body transformation that minimizes sum of squared
differences of feature values under the transformation. The algorithm is robust to the occlu-
sions and the initial positions of the two objects, but the performance of the algorithm may
depend on the object segmentation.

P. Besl et al. [3] proposed the well known ICP (Iterative Closest Point) algorithm. They
distinguished objects as two types: data shape and model shape. The data shape is a set of
points, and the model shape is any of type; the closest point on the model shape to the data
point is assumed to be determined. The algorithm finds the optimal ridge body transformation
superposing the data shape onto the model shape by iteratively minimizing the sum of square
distances from points of the superposed data shape to the model shape. The detail of this
algorithm will be provided in Appendix C.

Yang Chen and Gérard Medioni [5] improved the computation speed of the ICP algorithm.
They assumed that finding the closest point to the model shape at a data point is an optimization
problem. Therefore, instead of solving the optimization problem, they approximated the result
by finding the closest point to one tangent plane to the model shape, which is determined by
the data point.

Shihui Ying et al. [41] incorporated a scale factor into the ICP algorithm [3] to achieve
the similarity transformation (rotations, scales, and translations) to register the model and data
shapes. However, it has the degenerate case that all data points are shrunk into a point on the
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model to minimize the sum of square distances from points of the superposed data shape to the
model shape, while iterating its procedure. To avoid the case, they also proposed a method to
determine the allowed range of scale using the statistics of the data point distribution.

A. Gruen and D. Akca [11] presented a generalized method that finds any type of transfor-
mation by iteratively superposing two surfaces under the transformation. They demonstrated
their method by finding a similarity transformation that superposes two surfaces of an object
scanned in different orientations. To find the transformation by minimizing the superposition
error of the two surfaces, they reformulated the Taylor expansion of the error as the linear
combination of 7 transformation parameters, and then solved the reformulated error using a
Gauss-Markoff estimation model. Additionally, they demonstrated matching a space curve
onto a 3-D surface in a similar way.

J. Feldmar and N. Ayache [10] proposed a method that finds the local affine transformation
to register free-form surfaces. The method determines the local affine transformation to super-
pose two surfaces using curvatures and principal frames by sequentially finding (1) the rigid
body transformation and (2) the global affine transformation.

R. Szeliski [36] studied a method that matches 3-D surfaces with non-rigid deformations.
They used the volumetric transformation to allow the deform of an object surface, and used
the precomputed distance map using an octree spline in order to achieve the trade-off between
the accuracy and the computing speed.
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CHAPTER 2. ONLINE SPACE CURVE MATCHING ALGORITHM

In this section, we explain details of the algorithm that gradually extends the initial match of
two curve segments to its longest match in O(n) time while aligning the two matching segments
using the similarity transformation. It also stops the extension to control the matching quality
considering the noise distribution of raw data points.

The remainder of this thesis is organized as follows. Section 2.1 gives the overview of the
algorithm. Sections 2.2, 2.3, and 2.4 describe details of iterative extension of a matching seg-
ment, accuracy handling, and similarity transformation, respectively. We will use the notation
d(S, p), throughout this thesis, to denote the distance from a point p to a shape S.

2.1 Overview

We investigate the problem of finding the longest matching segment of two space curves.
One of the curves is referred as the “model curve” and the other as the “data curve”. The
model curve M can be of any type. The data curve D is a polyline joining n data points
p1, ..., pn, subject to Gaussian noise. Denote by Dk..l the segment of D composed of the data
points pk, pk+1, ..., pl. Suppose that they were originally sampled from the unknown points
rk, rk+1, ..., rl on the model curve, and then underwent some transformation. Figure 2.1 illus-
trates the relationship between the model curveM and the data points p1, p2, ..., pn.

f
1

e
1

Figure 2.1: Model curveM and a transformed “data curve” (T p1, T p2, ..., T pn). Each data point pi is
sampled from ri which is unknown. The distance d(M, T pi) was originally estimated from tangent Li

toM at qi, 1 ≤ i ≤ n.
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We would like to measure the dissimilarity between the model curveM and the data seg-
ment Dk..l which is superposed onto it under some transformation. Suppose the real transfor-
mation T ∗ is known. The noise of sampling ri is then ξi = ri − T ∗pi, k ≤ i ≤ l. However, it
cannot be measured because the position ri on the model curve is unknown. Here, we try to
approximate the distance ∥ξi∥ using that of T ∗pi from the tangent line Ki at ri, except that this
line is also unknown. Again, we approximate Ki using the tangent line K i toM at the closest
point to T ∗pi. Summarizing the above steps, the dissimilarity between M and Dk..l under a
transformation T is then measured as

∑l
i=k d(K i, T pi)2. If the sum is less than a pre-determined

threshold ε, we deemDk..l as a matching data segment under the transformation T . The thresh-
old ε is to be chosen as the maximum value that

∑l
i=k d(Ki, T pi)2 can have statistically, as will

be explained in Section 2.3.
In a real situation, K i cannot be determined either because it depends on T ∗, where k ≤

i ≤ l. Therefore, we approximate Ki using the tangent line Li toM at some point qi ∈ M; the
point qi will be explained soon. In Figure 2.1, d(K1, T pi) is close to the distance e1 from T p1

to a tangent line L1 obtained at q1. The dissimilarity error, which estimates
∑l

i=k d(Ki, T ∗pi)2,
is defined as follows:

e(⟨k..l⟩, T ) =
l∑

i=k

d(Li, T pi)
2. (2.1)

Since the data source ri, k ≤ i ≤ l, and the transformation T ∗ are unknown, Ki is best
approximated by the tangent line L∗i toM at the closest point q∗i ∈ M to T pi. This forces us
to find the closest point q∗i for all k ≤ i ≤ l in order to evaluate the error e(⟨k..l⟩, T ) whenever
T changes. The ICP algorithm does this.

However, if the transformation T changes slightly, then T pi and its new closest point on
M would stay in the almost same places and its corresponding tangent line would be similar
to L∗i near T pi. Relaxing the “closest point” condition q∗i = argminq∈M ∥q − T pi∥2 saves the
heavy computation because the tangent L∗i can be reused. Define the relaxed condition error

as follows:

f (⟨k..l⟩, T ) =
l∑

i=k

∥qi − T pi∥2, (2.2)

and postpone updating Li until f (⟨k..l⟩, T ) exceeds a pre-determined threshold ρ. Here ρ is
selected to be the maximum value that

∑l
i=k ∥qi − T pi∥2 is allowed. We will discuss it in Sec-

tion 2.3.2.
LetDk..l andDk..l+1 be the matching data segments toM under transformations Tl and Tl+1,

respectively. The relaxed condition (2.2) allows reuse of tangents Lk, ...,Ll, as we extendDk..l

toDk..l+1 as long as f (⟨k..l + 1⟩, Tl+1) < ρ. In this case, the curve dissimilarity e(⟨k..l + 1⟩, Tl+1)
and the relaxed condition f (⟨k..l + 1⟩, Tl+1) are obtained in O(1) time from e(⟨k..l⟩, Tl) and
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f (⟨k..l⟩, Tl). Additionally, the transformation Tl+1 that minimizes the error (2.1) is polished
from Tl in average O(1) time. In a similar way, extension of Dk..l to Dk−1..l can be achieved in
constant time. This allows us to find the longest matching data segment extended fromDk..l in
O(n) time. Figure 2.2 illustrates the scenario of iteratively extending the matching segment of
model and data curves when the extension begins with the data segment D1..2 and the initial
transformation T0. In the figure, it is assumed that f (⟨1..i⟩, Ti−2) < ρ for all 2 ≤ i ≤ 6.

In the above method, it is assumed that the initial information be given: the initial matching
data segment Dk..l and the transformation T to superpose it onto its corresponding segment of
M. If the prior knowledge of the longest matching segment ofM and D is given, the initial
information will be selected using the prior knowledge. However, when it is not available,
the initial information can be obtained using two arbitrary vertices2 v and v′ on M and D,
respectively, as follows:

• Select the starting point s and ending point e of the initial model segment inM such that
two line segments sv and ve have the same length and the total curvature of the arc õse is
a constant, like say, π/3.

• Similarly, select the starting pk and ending pl points of the initial data segment Dk..l in
D.

• Determine the initial similarity transformation T that superposes pk (and pl) onto s (and
e) and places v′ on the plane constructed from the points s, v and e.

The algorithm finds the longest matching extension of Dk..l with the initial transformation T .
If D andM have n and m vertices, respectively, there are

(
n
m

)
combinations of initial matches.

The longest common segment ofD andM is selected from their extensions.

2.2 Iterative Extension of a Matching Segment

The previous section overviews iterative extension of the matching segment of two curves.
The following is the procedure that does so in linear time. It starts with an initial matching
data segmentDk0..l0 and a transformation T0:

1. Determine Lk0 , ...,Ll0 , e(⟨k0..l0⟩, T0), and f (⟨k0..l0⟩, T0).

2. Let pk, ..., pl and T be the current matching data points and transformation, respectively.
Select pi ∈ {pk−1, pl+1} minimizing the error d(Li, T pi)2, and get a tangent line Li toM
at the closest point qi to T pi.

2A vertex of a curve is a point of where the curvature is a local maximum or minimum.



10

p1

p2

p4

p3

p5

p6

data curve

model curve

T *

T * T *
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(a) The superposition of the data curve onto the model
curve under the real transformation T ∗. Each data point
pi is sampled at ri, 1 ≤ i ≤ 6.

initial matching data segment

initial matching model segment

r1

r2

(b) Initial matching information. Initial matching
model (and data) segment is highlighted on the model
(and data) curve.

L2

L1 T0

T0 model curve

data curve

p1

p2q1

q2

(c) Initial configuration, and two tangentsL1 andL2 for
their corresponding data points p1 and p2, respectively.
Tangent Li is obtained at point qi ∈ M, 1 ≤ i ≤ 2.

q1

q2 L2

L1

L3

T0

T0

T0

p1

p2

p3

q3

(d) New tangent L3 for the extending data point p3.
Point q3 ∈ M is the closest to T0 p3.

L2

L1

L3

T1

T1

T2

p3

p1

p2

q1

q2 q3

(e) Updated transformation T1 that minimizes dissimi-
larity error e(⟨1..3⟩, T1)

L2

L1

L3

L4

T2

T2

p3

p4

q1
q2 q3

q4

(f) Updated transformation T2 minimizing e(⟨1..4⟩, T2)

L2

L1

L3

L4
L6

L5

T4

T4

p5

p6q1
q2 q3

q4

q5

q6

(g) Updated transformation T4 minimizing
e(⟨1..6⟩, T4)

transposed matching data segment

matching model segment

T4

T4

T4

T4T4

T4 p4

p5

p6

p3p2

p1

(h) Final result of the longest matching segment. The
matching model segment is highlighted as the bold
black line.

Figure 2.2: Scenario of iteratively extending matching segment. The data point pi, 1 ≤ i ≤ 6,
underwent the real transformation T ∗ and its source ri are shown in (a); the initial matching model and
data segments are highlighted in (b); the data segment is superposed onto the model curve with the
initial matching information in (c); the tangent L3 to the model curve for the extending data points p3 is
shown in (d) as the intermediate extending step; the results of extending the matching segment with p3,
p4, and p6 are displayed in (e)-(g); and in the final match (f) the matching model segment is highlighted.
Here it is assumed that f (⟨1..i⟩, i − 2) < ρ for all 2 ≤ i ≤ 6 in (c)-(h).
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3. Let k′ and l′ the min and max of {k, l, i}, respectively. Determine T ′ that minimizes
e(⟨k′..l′⟩, T ′).

4. If e(⟨k′..l′⟩, T ′) > ε or f (⟨k′..l′⟩, T ′) > ρ, then update Lk′ , ...,Ll′ and T ′.

5. If e(⟨k′..l′⟩, T ′) > ε, stop and reportDk..l as the longest matching extension ofDk0..l0 with
T0.

6. Otherwise, go back to step 2.

We will see that each iteration step takes constant time in the following sections except
updating Lk′ , ...,Ll′ in step 4. Section 2.2.1 describes in detail how to evaluate the errors
e(⟨k′..l′⟩, T ′) and f (⟨k′..l′⟩, T ′) using e(⟨k..l⟩, T ) and f (⟨k..l⟩, T ). Sections 2.2.2 and 2.2.3
present an iterative procedure to polish a similarity transformation T ′ from T , formally in-
troduced in Section 2.4 which minimizes e(⟨k′..l′⟩, T ′). Section 2.3 discusses the statistical
analysis, on which this approach is based, and the choice of tolerances ε and ρ.

2.2.1 Error Update

Here, we denote pn the nth extended point of the matching data segment ofD, Ln : ant+ qn

the tangent line toM at qn ∈ M that corresponds to pn, and Tn the transformation matrix that
minimizes

∑n
i=1 d(Li, Tn pi)2. Here pn and qn are represented in homogeneous coordinates of

the form (x, y, z, 1)t, the tangent direction an is (x, y, z, 0)t with ∥an∥ = 1, and Tn is a 4 × 4
transformation matrix whose last row is (0, 0, 0, 1).

Denote the minimum curve similarity error (2.1) after the addition of pn as en =
∑n

i=1 d(Li, Tn pi)2.
Notice that the squared distance between a point pi and a line Li : ait + qi is d(Li, pi)2 =

(qi − pi)t(I − aiat
i)(qi − pi), where I is the 4 × 4 identity matrix. Hence,

en =

n∑
i=1

(qi − Tn pi)
t(I − aiat

i)(qi − Tn pi). (2.3)

Write the above error in terms of that over the first n − 1 points:

en = en−1 + d(Ln, Tn−1 pn)2 +

n∑
i=1

(
d(Li, Tn pi)

2 − d(Li, Tn−1 pi)
2
)

= en−1 + d(Ln, Tn−1 pn)2 +

n∑
i=1

(
2 tr

(
(I − aiat

i)qi p
t
i(Tn−1 − Tn)t

)
+tr

(
pi p

t
iT

t
nTn

)
− tr

(
pi p

t
iT

t
n−1Tn−1

)
− tr(ai pt

iT
t
n)2 + tr(ai pt

iT
t
n−1)2

)
. (2.4)
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It is obvious that atb = tr(abt). Denote by vec (A) the vector version3 of a square matrix
A. The trace tr(ABt) is equal to the inner product vec (A) · vec (B). In a similar way, tr(ABt)2 =

vec (A ⊗ A) · vec (B ⊗ B), where ⊗ denotes the Kronecker product4. Using those notations, the
second and fourth summands in the last summation in (2.4) can be rewritten as below:

n∑
i=1

tr
(
pi p

t
i · T t

nTn

)
=

( n∑
i=1

vec
(
pi p

t
i
)) · vec

(
T t

nTn
)
,

n∑
i=1

tr
(
ai pt

i · T t
n

)2
=

( n∑
i=1

vec
(
ai pt

i ⊗ ai pt
i
)) · vec (Tn ⊗ Tn).

Similarly, the transformations Tn and Tn−1 can be separated from other terms in en, yielding
a recurrence form:

en = en−1 + d(Ln, Tn−1 pn)2 + 2 · αn · vec (Tn−1 − Tn)

+ βn ·
(
vec

(
T t

nTn
) − vec

(
T t

n−1Tn−1
))

+ γn ·
(
vec (Tn−1 ⊗ Tn−1) − vec (Tn ⊗ Tn)

)
, (2.5)

where

αn = αn−1 + vec
(
(I − anat

n)qn pt
n
)
,

βn = βn−1 + vec
(
pn pt

n
)
,

γn = γn−1 + vec
(
an pt

n ⊗ an pt
n
)
. (2.6)

Note that the Kronecker products in (2.5) and (2.6) are independent of the number of points
and can therefore be carried out in constant time. Therefore, αn, βn, γn and en can be evaluated
in O(1) time from pn and Ln : ant + qn.

3We denote vec (A) = (a11, a21, a31, ..., an1, a12, a22, ..., ann)t when

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


4The Kronecker product A ⊗ B of an m × n matrix A and an k × l matrix B is an km × ln matrix, such that:

A ⊗ B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB
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We rewrite the relaxed condition error (2.2) as fn =
∑n

i=1 ∥qi − Tn pi∥2, and formulate its
computation as a recurrence:

fn = ηn − 2 · δn · vec (Tn) + βn · vec
(
T t

nTn
)
,

ηn = ηn−1 + qt
nqn,

δn = δn−1 + vec
(
qn pt

n
)
. (2.7)

Here ηn, δn and fn can be obtained in O(1) with pn and Ln.

2.2.2 Update of Transformation Data

Error Update

Αn

qn

p

u

u
�

mi, j

an

Φn Fn

Ωn jn Qn

Yn, j Ψn, j

Βn∆n

Ηn

Γn

enfn

Tn-1

pn

D T

T Tn

Transformation Updatenth
exten-

Φn-1 Fn-1

Ωn-1 jn-1 Qn-1
Yn-1, j Ψn-1, j

Αn-1

Βn-1∆n-1

Ηn-1

Γn-1

en-1

sion

Figure 2.3: The transformation Tn is iteratively polished initially from Tn−1 with the intermediate data
(ū, ũ, mi, j, and p̄), and then the errors en and fn are determined using the updated transformation Tn. In
the figure, terms ϕn, Φn, ωn, φn, Θn, Ψn, ψn, αn, βn, γn, ηn, and δn are defined as recurrence forms.

In step 5 of the procedure in the beginning of Section 2.2, it is assumed that the error en

in (2.5) is minimized by the similarity transformation Tn. We here find its scale, rotation,
and translation. For this, we initialize a transformation T as Tn−1, and repeatedly polish T

until the variation of the error
∑n

i=1 d(Li, T pi)2 vanishes. Finally, Tn is set as T . Figure 2.3
illustrates the procedure: (1) polish the transformation Tn initially from Tn−1, which minimizes∑n

i=1 d(Li, Tn pi)2, and then (2) update errors en and fn described in Section 2.2.1. We will
see that each iteration takes constant time. Since the repetition takes the constant number of
iterations on average, we consider that Tn can be obtained in O(1). In this section, we define
several recurrences; they will be used in the following section to polish T .
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Denote by ui the closest point to T pi on the tangent line Li : ait + qi, 1 ≤ i ≤ n. It can be
written to single out T as follows:

ui = qi + ai
(
ai · (T pi − qi)

)
= (I − aiat

i)qi +
(
pt

i ⊗ (aiat
i)
) · vec (T ). (2.8)

Decomposing T from ai, qi, and pi in the above equation makes it possible to find an update T ′

of the transformation T to minimize a pointwise superposition error
∑n

i=1 ∥ui − T ′T pi∥2 without
estimating the closest points u1, ..., un to T p1, ..., T pn, respectively.

Let ū and p̄ be the centroids of {u1, ..., un} and {p1, ..., pn}, respectively. The transformation
T ′ can be obtained from a scalar ũ =

∑n
i=1 ∥ui − ū∥2, vectors p̄ and ū, and a matrix

M =
n∑

i=1

(T pi − T p̄)(ui − ū)t. (2.9)

Now, the remainder of this section describes how to update M, p̄, ū and ũ in O(1) time.
To simplify the notation, denote vi = (I − aiat

i)qi and Ei = pt
i ⊗ (aiat

i). It is trivial to define
p̄ as a recurrence. We reformulate ū, ũ and M using vi and Ei. First, ū can be obtained using
recurrences as follows:

ū =
1
n

n∑
i=1

vi +
1
n

n∑
i=1

Ei · vec (T )

=
1
n
ϕn +

1
n
Φn · vec (T ), (2.10)

where

ϕn = ϕn−1 + vn,

Φn = Φn−1 + En. (2.11)

Next, ũ can be rewritten:

ũ =

n∑
i=1

ut
iui − n · ūtū (2.12)

= ωn + 2 φt
n vec (T ) + vec (T )t Θn vec (T ) − n · ūtū,

where

ωn = ωn−1 + vt
nvn,

φn = φn−1 + vt
nEn,

Θn = Θn−1 + Et
nEn. (2.13)
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Finally, we derive the entry mi, j which lies in the ith row and jth column of M. Denote by
Ak,∗ the kth row vector of a matrix A. Note that the kth entries of the vectors T pi and ui are
written as follows:

(T pi)k = Tk,∗ · pi,

(ui)k = (vi)k + (Ei)k,∗ · vec (T ).

The kth entries of T p̄ and ū can be written in similar forms. Now, we have

mi, j =

n∑
k=1

(
(T pk)i · (uk) j

)
− n · (T p̄)i · ū j

= Ti,∗
(
Ψn, j − p̄ (Φn) j,∗

)
vec (T ) + Ti,∗

(
ψn, j − p̄ (ϕn) j

)
, (2.14)

where

Ψn, j = Ψn−1, j + pn (En) j,∗,

ψn, j = ψn−1, j + pn (vn) j. (2.15)

Notice that terms ϕn, Φn, ωn, φn, Θn, Ψn, j and ψn, j in (2.11), (2.13) and (2.15) are updated
when the point pn and the tangent line Ln are considered. Then, ū, ũ and M can be obtained in
O(1) time using the terms and the transformation T independently from pi and Li, 1 ≤ i ≤ n.

2.2.3 Transformation Update

Using M, p̄, ū and ũ, we can find the transformation T ∗, composed of scale s∗, rotation R∗,
and translation b∗, that minimizes the pointwise superposition error

∑n
i=1 ∥ui − T ∗T pi∥2. The

following briefly lists the steps of computations:

R∗ = argmax
R

n∑
i=1

R(T pi − T p̄) · (ui − ū);

ŝ =
∑n

i=1 ∥ui − ū∥2∑n
i=1 R∗(T pi − T p̄) · (ui − ū)

;

s∗ =


ŝ, if smin ≤ ŝ ≤ smax;

smin, if
∣∣∣1

ŝ −
1

smin

∣∣∣< ∣∣∣ 1
ŝ −

1
smax

∣∣∣;
smax, otherwise;

b∗ = ū − s∗R∗T p̄, (2.16)

where smin and smax are the maximum and minimum scales under prior knowledge. The above
procedure minimizes

∑n
i=1 ∥ui − T ∗T pi∥2 as well as extends the arc length of a matching model

segment. Its detail will be presented in Section 2.4.
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The rotation matrix R∗ is obtained using unit quaternions [13] and principal component
analysis (PCA) [15]. The summation

∑n
i=1 R(T pi − T p̄) · (ui − ū) can be reformulated using

a matrix M̃ which is generated from mi, j in (2.14). The matrix M̃ helps decompose the unit
rotation quaternion q from the summation. The scale ŝ can be obtained from M̃ in detail as
follows:

M̃ =


m1,1 + m2,2 + m3,3 m2,3 − m3,2 m3,1 − m1,3 m1,2 − m2,1

m2,3 − m3,2 m1,1 − m2,2 − m3,3 m2,1 + m1,2 m3,1 + m1,3

m3,1 − m1,3 m2,1 + m1,2 m2,2 − m3,3 − m1,1 m3,2 + m2,3

m1,2 − m2,1 m3,1 + m1,3 m3,2 + m2,3 m3,3 − m1,1 − m2,2

 ;

q∗ = arg max
q ,∥q∥=1

(q t M̃ q);

ŝ =
ũ

q∗t M̃ q∗
. (2.17)

Here q∗ is the unit eigenvector of the matrix M̃ that corresponds to the maximum eigenvalue.
The rotation matrix R∗ is determined by q∗ [13].

The transformation Tn that minimizes the error en in (2.5) can be obtained as follows:

1. Initialize T as Tn−1.

2. Get ū, ũ, and M using (2.10), (2.12), and (2.14).

3. Polish T using ⟨s∗, R∗, b∗⟩ which are obtained from ū, ũ, and M using (2.16) and (2.17).

4. Repeat steps 2-3 until
∑n

i=1 d(Li, T pi)2 no longer varies, then set Tn as T .

The error
∑n

i=1 d(Li, T pi)2 in step 4 is obtained in a similar way to (2.5). All terms are estimated
in homogeneous coordinates, except b∗ in Cartesian coordinates because R∗ is a 3 × 3 rotation
matrix5 in (2.16). Notice that each repetition takes constant time.

In simulation, the error
∑n

i=1 d(Li, T pi)2 no longer varies within the average of 5.6 itera-
tions. Therefore, we consider the optimal transformation Tn is obtained in constant time.

5The 3 × 3 rotation matrix R∗ can be determined from the unit rotation quaternion q∗ = (r, i, j, k)t as follows:

R∗ =

 r2 + i2 − j2 − k2 2(i j − rk) 2(ik + r j)
2(i j + rk) r2 − i2 + j2 − k2 2( jk − ri)
2(ik − r j) 2( jk + ri) r2 − i2 − j2 + k2

.
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2.3 Noise Analysis

Recall the procedure described in the beginning of Section 2.2 that iteratively extends the
matching segment of the model curve M and the data curves D. In the procedure, we stop
the extension of the matching data segment or update the tangent line Li, k ≤ i ≤ l, when
the dissimilarity error e(⟨k..l⟩, T ) of (2.1) or the relaxed condition error f (⟨k..l⟩, T ) of (2.2) is
greater than the thresholds ε or ρ, respectively. Here we look at how the thresholds ε and ρ are
defined. First, we will examine the distribution of the squared distance between noise point
and an approximation of an arbitrary curve in the following section, to determine the statistics
of the dissimilarity error e(⟨k..l⟩, T ). Then, we will define the thresholds ε and ρ.

2.3.1 Analysis of Squared Distance of Noisy Point

Figure 2.4 and 2.5 summarizes the simulation results based on the Frenet frame approxi-
mation Fκ,τ : {t, κ2 t2, κτ6 t3} , the best quadratic approximation of a space curve at a point on

6Let x1, x2, . . . , xk be identically independent random variable following a normal distribution N(0, 1). The
sum of the sequence follows the chi-square distribution χ2

k with k degrees of freedom:∑k
i=1 x2

i ∼ χ2
k .

7Let f (x; k) be the probabilistic density function of χ2
k , and g(x; κ, τ) the frequency of “d(Fκ,τ, ξ)2 = x” where

ξ is a Gaussian noise with mean µ = 0 and variance σ2 = 1. The dissimilarity measure for comparing the
chi-square distribution χ2

2 and the frequency distribution of d(Fκ,τ, ξ)2 is:∫ ∞

0
( f (x; 2) − g(x; κ, τ))2 dx.
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the curve using curvature κ and torsion τ. Let ξ be random noise which follows a normal
distribution N(0, 1). Recall that d(Fκ,τ, ξ) is the distance from ξ to the Frenet frame approx-
imation Fκ,τ. Figure 2.4 plots the dissimilarity7 between the chi-square distribution6 χ2

2 and
the frequency distribution of d(Fκ,τ, ξ)2 as 1/

√
κ2 + τ2 changes. Here χ2

2 is the distribution of
the squared distance from ξ to x-axis. In the figure, the frequency distribution approximates
to χ2

2 as
√
κ2 + τ2 decreases. It is because the tangent line to Fκ,τ at the closest point to ξ ap-

proximates x-axis. Figure 2.5 gives another perspective of the dissimilarity by expanding the
statistics when 1/

√
κ2 + τ2 = 3. It overlays the probability density function (PDF) of the chi-

square χ2
2 distribution and the frequency of the squared distance d(Fκ,τ, ξ)2. In the figure, the

maximum and minimum frequencies, as the curvature κ and torsion τ vary under the condition
1/
√
κ2 + τ2 = 3, are displayed as two solid lines.

The simulation is related to the noise distribution of the data point that is sampled from
a point on the model curve. Recall the assumption in Section 2.1 that each data point pi on
the data segment Dk..l was sampled from a source ri on the model curve M under Gaussian
noise and underwent some transformation T−1, where k ≤ i ≤ l. The transformed data point
T pi, the model curveM, the source ri, and the tangent line Ki at ri correspond to the terms
ξ, Fκ,τ, the origin, and the x-axis of the Frenet frame, respectively. The simulation implies
that, when the data curve Dk..l is superposed onto its source M under the transformation T ,
the frequency distribution of d(M, T pi) can be considered as that of d(Ki, T pi), k ≤ i ≤ l, in
a certain condition because those distributions are similar. Here we further consider that the
tangent line Ki is approximated by another tangent line toM at the closest point to T pi.

2.3.2 Tolerance

Recall that the dissimilarity error e(⟨k..l⟩, T ) of (2.1) is the approximation of the dissimi-
larity

∑l
i=k d(Ki, T pi)2 betweenM and Dk..l under the transformation T . We know from Sec-

tion 2.3.1 that d(Ki, T pi)2 follows χ2
2, for all k ≤ i ≤ l. By definition, the sum

∑l
i=k d(Ki, T pi)2

follows the chi-square distribution χ2
2(l−k+1) with 2(l−k+1) degrees of freedom, when the noise

ξi of the data point pi follows a normal distribution N(0, 1), k ≤ i ≤ l.
Let us generalize the noise variance σ2 of the data points. Denote by fσ2(x; k) the probabil-

ity density function of the chi-square χ2
k distribution with k degrees of freedom and the noise

variance σ2. Let n = l − k + 1. We let Pr(e | n,σ2) be the probability that
∑l

i=k d(Ki, T pi)2 has
value e:

Pr(e | n,σ2) = c fσ2(e; 2n), (2.18)

where c is a normalizing constant to make it a probability density function. We define a
threshold that determines the statistical equivalence of Dk..l and M, using the significance
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level α meaning that
∑l

i=k d(Ki, T pi)2 unlikely has value e by chance, as

ε(n,σ2) = root e of
[(∫ ∞

e
Pr(h | n,σ2) dh

)
− α

]
= root e of

Γ
(
n, e/2σ2

)
Γ(n)

− α


= 2σ2 ·
(

root e of
[
Γ (n, e) − αΓ(n)

])
= σ2 · ε(n, 1), (2.19)

where “root e of [ f (e)]” is a root value e of an arbitrary function f (e), and Γ(x) and Γ(x, y) are
the gamma function and the upper incomplete gamma function8, respectively. In the above
equation, it is obvious that there exists a unique threshold ε(n,σ2) given n and σ2 because the
integration term

∫ e

0
Pr(h | n,σ2) dh is a monotonically increasing function of e.

Similarly, the threshold ρ of the relaxed condition error (2.2) can be defined. Recall that
f (⟨k..l⟩, T ) is the relaxed condition error

∑l
i=k ∥qi − T pi∥2, and ri is the source of pi. For the

threshold ρ, we assume that qi approximates to ri; therefore,Li approximates toKi. Now, each
summand ∥qi − T pi∥2 follows the chi-square distribution χ2

3. Similar to ε(n,σ2), the threshold
that determines the statistical accuracy of approximating Ki by Li is defined as follows:

ρ(n,σ2) = root e of
[(∫ ∞

e
c fσ2(h; 3n) dh

)
− α

]
= root e of

Γ
(
1.5 n, e/2σ2

)
Γ(1.5 n)

− α


= 2σ2 ·
(

root e of
[
Γ (1.5 n, e) − αΓ(1.5 n)

])
= σ2 · ρ(n, 1) (2.20)

The thresholds ε(n,σ2) and ρ(n,σ2) can be obtained from ε(n, 1) and ρ(n, 1) which can
be cached in advance, respectively. For both thresholds, we use α = 0.000001 so very few
matching scenarios are excluded.

For a given noise variance σ2 = 1, the threshold functions (2.19) and (2.20) are monoton-
ically decreasing, have only one root for any value of n, and converge to 2n and 3n as n in-
creases, respectively. Figure 2.6(a) plots the dependence of the threshold distribution 1

nε(n,σ2)
on n and α when σ2 = 1; Figure 2.6(b) plots that of 1

nρ(n,σ2). Each threshold curve corre-
sponds to a single significance level α, which ranges over 0.000001 to 0.2. Additionally, the
figures show that the thresholds have to increase as the significance level α decreases in order
to include more statistical cases.

8The gamma function Γ(s) is an extension of factorial function (s − 1)! to real and complex number, which
is expressed as an integration with interval [0,∞). The upper incomplete gamma function Γ(s, x) is a gamma
function with integration interval [x,∞).
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Figure 2.6: Thresholds 1
nε(n, 1) and 1

nρ(n, 1) versus the length n of a data segment. Each tolerance
curve in (a) and (b) corresponds to a single significance level α, which ranges over 0.000001 to 0.2.

2.4 Transformation Minimizing Superposition Error

In Section 2.2.3, we described a procedure (2.16) that finds the scale s∗, the rotation R∗,
and the translation b∗. Here we look at how the procedure is made.

Let two point sets W = {wk, ..., wl} and U = {uk, ..., ul} be given. Points wi and ui, k ≤ i ≤ l,
represent a transformed data point T pi and a point on a line Li that is closest to T pi, respec-
tively. Denote by ζ the arc length of the matching model segment whose starting and ending
points are the closest to T pk and T pl, respectively. Assume that wi has noise ξi following the
normal distribution N(0,σ2). Here we find the similarity transformation T ∗ (rotation R∗, scale
s∗, and translation b∗) that minimizes a pointwise superposition error

∑l
i=k ∥ui − T ∗wi∥2 and

enlarges the arc length ζ of the matching model segment.
Define Pr(s, R, b, ζ | spri) as the probability of moving wi to ui, k ≤ i ≤ l, under a scale s

given prior knowledge spri, a rotation R, and a translation b, and enlarging the arc length ζ. The
probability can be decomposed according to the dependencies among the variables as follows:

Pr(s, R, b, ζ | spri) = Pr(s, R, b) · Pr(ζ | s) · Pr(s | spri)/Pr(s). (2.21)

Let us explain each probability component. Denote by a∗k (and a∗l ) the unit tangent vector
toM at the closest point to T pk (and T pl). The increase of the model segment length ζ under
scale s is defined, using a∗k, a∗l , and the centroid w̄ of the point set W = {wk, . . . , wl}, as

∆ζ = (s − 1)
((

(w̄ − wk) · a∗k
) − (

(w̄ − wl) · a∗l
))

. (2.22)

The detail of deriving (2.22) will be provided in Appendix A. The second factor in (2.22) can
be considered as a constant because it is independent of the scale s. Since ∆ζ is proportional
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to s, we define the probability Pr(ζ | s) of extending the model segment under scale s as

Pr(ζ | s) = c1s2. (2.23)

The constant c1 is chosen such that
∫ smax

0
Pr(ζ | s)ds = 1, assuming that there is an upper bound

smax for s.
The transformation error g(s, R, b) between two point sets W and U is defined as follows:

g(s, R, b) =
l∑

i=k

∥sR(wi − ξi) + b − ui∥2. (2.24)

The noises in the data points can be shown to cancel altogether. We define the probability
Pr(s, R, b) of the similarity between the two point sets as follows:

Pr(s, R, b) =
c2

g(s, R, b)/(l − k + 1)
, (2.25)

where the constant c2 is a normalization factor for Pr(s, R, b) under the assumption that there
is an upper bound emax of e(s, R, b).

The probability Pr(s | spri) of a scale s given the prior knowledge spri = ⟨smin, smax⟩ of the
maximum and minimum scales is defined as a filtering function:

Pr(s | spri) =


1

smax−smin
, if smin ≤ s ≤ smax,

0, otherwise.
(2.26)

The last probability term Pr(s) in (2.21) is a constant for a given scale s.
Finding the optimal transformation turns into a minimization problem as follows:

⟨s∗, R∗, b∗⟩ = argmax
s,R,b

Pr(s, R, b, ζ | spri)

= argmin
s,R,b

g(s, R, b)
s2 · 1

Pr(s | spri)
. (2.27)

In the above, we need only minimize the first factor g(s, R, b)/s2 because Pr(s | spri) is a
filtering function which bounds the scale s to be inside the allowing range [smin, smax]. Rewrite
the problem as

⟨ŝ, R̂, b̂⟩ = argmin
s,R,b

1
s2 g(s, R, b)

= argmin
s,R,b

l∑
i=k

∥∥∥∥R(wi − ξi) +
b
s
− ui

s

∥∥∥∥2
. (2.28)

Because the noise value ξi following the normal distribution N(0,σ2) is undeterminable, we
find ⟨ŝ, R̂, b̂⟩ that minimizes the average of the summation in (2.28). Recall that w̄ is the
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centroid of the point set W. Let ū be that of the point set U. Let w′i = wi − w̄ and u′i = ui − ū.
The minimization can be decomposed as follows:

⟨ŝ, R̂⟩ = argmin
s,R

l∑
i=k

E
[∥∥∥R(w′i − ξi) −

u′i
s

∥∥∥2
]

, (2.29)

b̂ = ū − ŝR̂w̄, (2.30)

where E[x] is the average value of x. The details of decomposing (2.28) into (2.29) and (2.30)
will be provided in Appendix B. Equation (2.29) shows that this problem is equivalent to find
the relative scale 1/s applied onto the model curveM. Expand the summation in (2.29) as

l∑
i=k

∥w′i∥2 −
2
s

l∑
i=k

Rw′i · u′i +
1
s2

l∑
i=k

∥u′i∥2 + 3(l − k + 1)σ2. (2.31)

In the above, the noise ξi, k ≤ i ≤ l, has been eliminated except its variance σ2. Since the
variance is a constant here, the scale ŝ in (2.29) becomes independent of the noise ξi, for all
1 ≤ i ≤ n. This prevents the case that the data set W is scaled down to a point on the model
segment M while repeatedly polishing T as described in Section 2.2.3. The prevention is
especially effective when the scale s is not bounded by smin or statistically undeterminable.
The minimization in (2.29) is thus decomposed:

ŝ =
∑l

i=k ∥u′i∥2∑l
i=k R̂w′i · u′i

, (2.32)

R̂ = argmax
R

l∑
i=k

Rw′i · u′i . (2.33)

Getting back to the initial optimization problem (2.27), because Pr(s|spri) is a filtering func-
tion, the optimal transformation ⟨s∗, R∗, b∗⟩ can be determined in multiple steps as given in
(2.16).
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CHAPTER 3. EXPERIMENTS

The matching algorithm has been tested over synthetic data and range data. Synthetic data
are sampled from splines as model curves under Gaussian noise. Range data are acquired
using a desktop 3D scanner manufactured by NextEngine, Inc. The data points are generated
by following a line of curvature9 on a 3D mesh surface output from the scanner. The model
curve is obtained by fitting a B-spline over these data points. The noise distribution for the data
points is then estimated by comparing the model curve with the data points. The 7 number of
B-splines and the 67 sequences of data points are tested as the synthetic and range data for
experiments, respectively.

3.1 Comparison with the ICP Algorithm

S
i=1

n d HM, T piL
2
-S

i=1

n d HM, T ' piL
2 � n

(a)

The ICP algorithm

The proposed algorithm

y = 2 n+52

y = 2

# call closest subroutine

(b)

Figure 3.1: Comparisons of (a) accuracies and (b) performances of the ICP algorithm and our al-
gorithm. (a) plots red (dashed), blue (solid), and green (thick) lines for the maximum, average, and
variance of matching error differences between ICP and proposed algorithms, respectively. (b) plots the
count of finding the closest point in each extending step by the ICP algorithm (dashed red) and by the
proposed algorithm (solid blue), with their asymptotes y = 2n + 52 and y = 2.

Figure 3.1 compares the accuracies and performances of our algorithm and the ICP algo-
rithm. Figure 3.1(a) plots the maximum (in a dashed red line), average (in a solid blue line),

9The tangent of the curve is always in the principal direction
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and variance (in a thick green line) of the matching error differences between two algorithms
as the number n of matching data points increases. The difference of the matching error is de-
fined as 1

n

∣∣∣∣ ∑n
i=1 d(M, T pi)2 −∑n

i=1 d(M, T ′pi)2
∣∣∣∣ , where T and T ′ are transformations returned

by our algorithm and by the ICP algorithm, respectively.
Figure 3.1(b) plots the count of subroutine calls in each algorithm while extending a match-

ing data segment D1..n−1 to D1..n. The subroutine finds the closest point to a transformed data
point on the model curve; it is an elementary operation involved in both algorithms. The
dashed (red) and solid (blue) lines represent the increases in the counts of subroutine calls by
the ICP algorithm and by the proposed algorithm, respectively. The two thin (gray) solid lines
show manually selected asymptotes of the two count increases: y = 2n + 52 and y = 2.

The two graphs imply that the accuracy of the online algorithm approximates that of the
ICP algorithm, but the online algorithm (O(n)) is more efficient than the ICP algorithm (O(n2))
when gradually extending the longest matching segment from an initially given match of two
curves.
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Figure 3.2: Initial configuration of one test case of the comparison to the ICP algorithm in (a), and its
matching result in (b).

For the experiment, data points are sampled from a B-spline (model curve) under Gaussian
noise N(0, 0.05). Since the data curve fully matches the model curve, the initial matching
data and model segments are set up as beginning parts of them with slightly different scale
ratios, as shown in Figure 3.2(a). In the figure, red points and a bold black line highlight the
initial matching data and model segments, respectively. Extension of the matching segment
continues to the ends of both curves as shown in Figure 3.2(b), with collecting the accuracy
and performance data to make the comparison with our algorithm and the ICP algorithm.
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This experiment was performed with 7 different B-splines and 400 randomly generated data
curves per B-spline. Figure 3.3 shows 7 B-splines in (a) and one of 400 data curves sets in (b)
which are randomly generated from the B-splines. Figure 3.1 is the accumulated result of the
performances and accuracies which are obtained from 7 ∗ 400 = 2800 experiments.

3.2 Initial Matches of Two Arbitrary Curves

Figure 3.4 and 3.5 show the result of finding the longest common segments of two unknown
curves. As described in Section 2.1, a list of initial matches is selected using vertices and total
curvatures of model and data curves, and the longest common segment is selected among
their longest extensions. In Figure 3.4(a), a model curve (gray) M and a noisy data curve
(orange) D are presented. The model curve is a B-spline with 15 knots. The data curve
consists of 134 points sampled from another B-spline, which partially overlaps with the model
curve (sharing the same subsequence of knots) in the middle before being scaled by a factor
of 0.6 ≈ 1/1.6667. The 10 (and 8) initial matching segments of model (and data) curve are,
respectively, in black (and red) in (a). Totally,

(
10
8

)
combinations of initial matching segments

are tested, and the configuration that draws the final result (b) is marked by dashed (blue)
circle in (a). The found longest overlapping model and data sections are colored in (b). In this
experiment, the allowed scale range is set to be [smin, smax] = [0,∞], assuming that the scale
range is unknown. The result tells that the algorithm successfully approximates the scale factor
1.6667 as 1.6998. The longest matching data segment in (b) has 42 points while the count of
calling the subroutine, finding the closest point, for this test is 81 out of the total count of 3164.

Figure 3.5 displays a case that both model and data curves are obtained from range data.
The model curve is a B-spline generated from 425 data points without changing scale, and
data curve has 519 points. The number of initial matching segments of the model and data
curves are 31 and 16, respectively. The noise variance and allowed scale range are set as
σ2 = 0.0189 and [smin, smax] = [0,∞], respectively. The initial matching segment of the data
curve in (a) is roughly overlapped to that of the model curve to present the initial transformation
that draws the final result in (b). The final result shows that the proposed algorithm finds the
longest common segment even though it is complex. The estimated output scale is s = 0.9986.
After

(
31
16

)
combination of tests, the total count of calling the subroutine is 15974. The longest

common data segment in Figure 3.5(b) has 307 points while the count of calling the subroutine
is 817.
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Figure 3.3: Data set tested for the comparison with the ICP algorithm. (a) lists 7 model curves which
are B-splines, and (b) shows some examples of noisy data points sampled from the model curves.



27

Initial Common Segments of Result (b)

(a)

10

15

20

25x

45

50

55

y

-1
0

1
2z

(b)

Figure 3.4: Partial match of a data curve D and a model curveM, all shown in (a) with their initial
matching segments. In the found match (b), the data curve is scaled 1.6998 times.
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Figure 3.5: Experiment with range data. The initial pose to extend the initial matching segment is
presented in (a), and its final matching result is displayed in (b).
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Figure 3.6: Progressive scaling and matching of a data segment against a model.
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Figure 3.7: Progressive scaling, rotating, and matching of a data segment against a model
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3.3 Progressive Matching

Figure 3.6 and 3.7 show the progress of our algorithm while extending the matching seg-
ment. In those figures, the model curve and data curve are displayed as blue and orange lines,
and the matching data segment is highlighted as red large points at the data points. In each
test, the model curve is selected among 7 B-splines in Figure 3.3(a). The data points are sam-
pled under Gaussian noise N(0, 0.02) from another B-spline, which partially overlaps with the
model curve (sharing the same subsequence of knots) in the middle before being scaled by a
factor of 0.833 ≈ 1/1.2 and being rotated by axis (1, 1, 1) and angle 0.1 radian. In each test,
the allowed scale range is set as [smin, smax] = [0,∞].

In Figure 3.6(a), the initial data curve is shown to be incorrectly scaled. However, Fig-
ure 3.6(b)-(f) show that, as iteratively extending the matching segment of the two curves, our
algorithm adjusts the scale factor to superpose the matching data segment onto the model
curve, without updating the line approximations Lk′ , ...,Ll′ of the model curveM for the data
point pk′ , ..., pl′ in the 4th step of the procedure in Section 2.2. Finally, our algorithm approx-
imates the scale factor 0.833 as 0.843, and the rotation axis (0.577, 0.577, 0.577) and angle
6.183 radian as (0.690, 0.497, 0.526) and 6.155 radian, respectively. In the test, the subroutine,
finding the closest point, is called 194 times.

Similarly, in Figure 3.7(a), the initial data curve is shown to be incorrectly scaled to and
rotated. Figure 3.7(b)-(f) show that our algorithm adjusts the scale and rotation factors to
superpose the matching data segment onto the model curve, without updating the line approxi-
mationsLk′ , ...,Ll′ in the 4th step of the procedure in Section 2.2. Our algorithm approximates
the scale factor 0.833 as 0.843, and the rotation axis (0.577, 0.577, 0.577) and angle 6.183 ra-
dian as (0.603, 0.517, 0.608) and 6.182 radian, respectively. In this test, the subroutine, finding
the closest point, is called 189 times.

3.4 Table of Test Results with Range Data

Our algorithm is tested with 67 model curves and 67 data curves, which are obtained from
range data. Totally,

(
67
66

)
different combinations of model and data curve pairs are tested except

the case that both model and the data curves are obtained from the same range data, to avoid
full matches but collect the partial matches. Among the partial matches from

(
67
66

)
combinations

of test cases, 15 selections are displayed in Figure 3.8 and 3.9.
For the test, data points are generated by following a line of curvature on a 3D mesh surface

from a random point on the surface. The model curve is obtained by fitting a B-spline over the
data points. The noise variance for the data points is estimated by comparing the model curve
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Figure 3.8: Pairs of matching range data segments (part 1)
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Figure 3.9: Pairs of matching range data segments (part 2)
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(a) bird (b) dog

(c) frog

Figure 3.10: Three data (black solid) curves superposed onto 3D mesh surfaces of (a) bird, (b) dog,
and (c) frog. In each data curve, data points are generated by following a line of curvature on its
corresponding mesh surface initially from a random (red) point on the surface. The 67 data curves
are generated from the three mesh surfaces displayed in (a), (b), and (c) to obtain partial matches in
Figure 3.8 and 3.9.



34

with these data points. In Figure 3.10, three mesh surfaces are displayed with some random
points (red large points) and their corresponding data curves (black solid line). This procedure
is repeated to obtain 67 model and data curves with the three mesh surfaces.
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CHAPTER 4. CONCLUSION AND FUTURE WORK

Finding the longest matching segment of two curves is a problem with significant appli-
cations in computer vision and robotics. In this thesis, we present an algorithm for matching
space curve data. The method finds the longest matching segment of two curves by gradually
extending an initial matching portion in linear time. Here one (model) curve is any of type,
and the other (data) curve is a polyline that joins a sequence of data points. We show that the
statistics of the distance between a data point (on the data curve) and the model curve can be
approximated to that of the distance between the point and a tangent line on the model curve.
To achieve the online algorithm, we reformulated the matching error between the model and
data segments as a recurrence. In a similar way, we determines the optimal transformation to
superpose the model and data segments using recurrences and constant repetition in average.
In the method, extending the matching segment is continued as long as its matching error is
below some statistically defined tolerance.

The algorithm is compared with the well-known iterative closest point (ICP) algorithm.
The experimental result shows that the accuracy of our algorithm is comparable to that of the
ICP algorithm, but our algorithm is less expensive, in the problem of iteratively extending the
matching segment of two space curves.

We also present a naive method that finds candidates of the initial matching segment of
two space curves without any prior knowledge of them, to find the longest matching segment
automatically. In the method, the initial matching segment of a curve is set up using vertices
and total curvatures of the curve. The experimental result shows that our algorithm finds the
longest matching segment of two curves of complex shapes and it adjusts well to noise distri-
bution. Additionally, it shows that our algorithm works well even though the prior knowledge
of scaling boundaries is unknown.

The proposed algorithm is particularly appealing when the character of the data is known
in advance, such as the noise distribution of data, the prior knowledge of scale boundaries, and
the salient region to set up the initial matching segment. Many optical and sensing devices,
like 3-D scanners, have specified accuracies. This method is applicable partially in geometry-
centered manipulations, such as robotic surgery and automated assembling of 3D objects, and
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the control of capture device like a data glove.
One potential extension of this thesis is an algorithm that matches two surfaces. This is

because equations for the surface matching problem can be formulated in the similar way to
that for the proposed algorithm: the squared distance d(Li, T pi)2 = (qi−T pi)t(I−aiat

i)(qi−T pi)
between a point p and a tangent lineLi : ait+qi of a space curve can match the squared distance
d(Hi, T pi)2 = (qi−T pi)t(nt

ini)(qi−T pi) between the point p and a tangent planeHi : ni× t+ qi

of a surface. In the case, it would be a challenge to find a way to extend the boundary of the
matching surface.
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APPENDIX A. EXTENDED MATCHING SEGMENT

Equation (2.22) in Section 2.4 estimates the increase of the model segment length ζ under
scale s. Here we provide how the equation is derived.
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Figure A.1: The increase ∆ζk (and ∆ζl) of the model segment length at its starting point u∗k (and ending
point u∗l ), which corresponds to the starting point wk (and wl) of the transformed data segment Dk..l.
In the figure, a∗k (and a∗l ) is the unit tangent to the model curve at u∗k (and u∗l ), w̄ is the centroid of the
points set {wk, ..., wl}, and w′k (and w′l) is the new position of wk (and wl) scaled by a factor s from the
centroid w̄.

Recall that wk, ..., wl are the transformed data points T pk, ..., T pl of the data segmentDk..l =

(pk, pk+1, ..., pl) which is superposed onto the model curve under the transformation T , u∗i is the
point on the model curveM closest to wi, and a∗i is the unit tangent vector toM at u∗i , where i ∈
{k, l}. In this configuration, the length ζ of a matching model segment is the arc length between
u∗k and u∗l in the model curve. Figure A.1 illustrates the configuration and the approximated
increase ∆ζ = ∆ζk + ∆ζl of the matching model segment length when the transformed data
segment (wk, ..., wl) is scaled. In the figure, w̄ is the centroid of points {wk, ..., wl} , w′k (and w′l)
is the new position of wk (and wl) scaled by the factor of s from the centroid w̄ , and ∆ζk (and
∆ζl) is the approximated increase of ζ at the point u∗k (and u∗l ) by the scale factor s. Here the
approximation ∆ζl is determined by the projection of (w′l − wl) onto a∗l as follows:

∆ζl =
(
(w′l − wl) · a∗l

)
= (s − 1)

(
(wl − w̄) · a∗l

)
(A.1)
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In a similar way, ∆ζk is determined. In sum, the approximated increase ∆ζ of the matching
model segment length is defined as follows:

∆ζ = ∆ζk + ∆ζl

= (1 − s)
((

(w̄ − wk) · a∗k
) − (

(w̄ − wl) · a∗l
))

. (A.2)
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APPENDIX B. OPTIMAL POSE AND SCALE

Equation (2.28) in Section 2.4 is decomposed to (2.29) and (2.30), which determines the
rotation R̂, scale ŝ, and translation b̂ that minimizes the pointwise superposition error of two
sets W = {wk, ..., wl} and U = {uk, ..., ul}. Here we provide how the equation is decomposed.
First, recall the equations:

⟨ŝ, R̂, b̂⟩ = argmin
s,R,b

l∑
i=k

∥∥∥∥R(wi − ξi) +
b
s
− ui

s

∥∥∥∥2
; (B.1)

⟨ŝ, R̂⟩ = argmin
s,R

l∑
i=k

E
[∥∥∥R(w′i − ξi) −

u′i
s

∥∥∥2
]

; (B.2)

b̂ = ū − ŝR̂w̄, (B.3)

where w̄ and ū are the centroids of W and U, respectively, ξi is noise, w′i = wi − w̄, and
u′i = ui − ū, k ≤ i ≤ l. Introduce a new variable h = b/s, and redefine the term ⟨ŝ, R̂, ĥ⟩ that
minimizes the summation in (B.1):

⟨ŝ, R̂, ĥ⟩ = argmin
s,R,h

l∑
i=k

E
[∥∥∥∥R(wi − ξi) + h − ui

s

∥∥∥∥2]
. (B.4)

The summation in (B.4) is quadratic in h. If we know the values ŝ and R̂, then ĥ is determined
using the partial derivative of the summation with respect to h:

ĥ = root h of

 ∂∂h
l∑

i=k

E
[∥∥∥∥R̂(wi − ξi) + h − ui

ŝ

∥∥∥∥2]
=

ū
ŝ
− R̂w̄.

In the above equation, the noise term ξi has been eliminated because E[ξt
i · RtR · ξi] = 3/σ2

and E[ξi · c] = 0 for any rotation matrix R and constant vector c.
Getting back to the original problem, we expand the summation in (B.4) as

l∑
i=k

E
[∥∥∥∥R(w′i − ξi) −

u′i
s

∥∥∥∥2
+
∥∥∥∥Rw̄ + h − ū

s

∥∥∥∥2
+2

(
R(w′i − ξi) −

u′i
s

)t(
Rw̄ + h − ū

s

)]
.
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The second and third summands of the summation become zero with ŝ, R̂, and ĥ because
wk, ..., wl will be rotated and scaled at their centroid w̄. Therefore, the original problem (B.4)
is decomposed as follows:

⟨ŝ, R̂⟩ = argmin
s,R

l∑
i=k

∥∥∥∥R(w′i − ξi) −
u′i
s

∥∥∥∥2
,

b̂ = ŝ ĥ = ū − ŝR̂w̄.
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APPENDIX C. ITERATIVE CLOSEST POINT ALGORITHM

In Section 3.1, the proposed algorithm was compared with with the well-known iterative
closest point (ICP) algorithm [3]. Here we provide the detail of the ICP algorithm.

The ICP algorithm finds the optimal rigid body transformation T (rotation and translation)
superposing a shape P = {p1, p2, ..., pn} composed of the set of points onto another shape X

which can be a combination of line segments, surface patches and points. It optimizes the
transformation T from its initial one T0 by iteratively minimizing the sum of squared distances
from points p1, p2, ..., pn to the model X, as the following procedure:

1. Initiate T as T0.

2. Construct the set of points {xi | xi ∈ X closest to T pi, 1 ≤ i ≤ n}.

3. Estimate a transformation T ′ minimizing the error
∑n

i=1

∥∥∥xi − T ′pi

∥∥∥2
, and update the

transformation T using T ′,

4. Repeat from the second step until the error converges.

In the third step, the rotation R∗ and translation t∗ of the transformation T ′ are determined by
the steps of computation, which is the subset of (2.16), as follows:

R∗ = argmax
R

n∑
i=1

R(T pi − T p̄) · (xi − x̄);

t∗ = x̄ − R∗T p̄, (C.1)

where p̄ and x̄ are the centroids of point sets {p1, ..., pn} and {x1, ..., xn}, respectively. For the
proper comparison of the accuracy and performance differences between the proposed and
ICP algorithms in Section 3.1, we used (2.16) instead of (C.1) in step three in order to find the
optimal rotation R∗, translation t∗, and scale s∗ of the transformation T ′.
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