
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

A framework for multimedia playback and analysis
of MPEG-2 videos with FFmpeg
Anand Saggi
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Saggi, Anand, "A framework for multimedia playback and analysis of MPEG-2 videos with FFmpeg" (2010). Graduate Theses and
Dissertations. 11755.
https://lib.dr.iastate.edu/etd/11755

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11755?utm_source=lib.dr.iastate.edu%2Fetd%2F11755&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A framework for multimedia playback and analysis of MPEG-2 videos with FFmpeg

by

Anand Saggi

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Wallpak Tavanapong, Co-Major Professor

Johnny Wong, Co-Major Professor

Wensheng Zhang

 Iowa State University

Ames, Iowa

2010

Copyright © Anand Saggi, 2010. All rights reserved.

 ii

TABLE OF CONTENTS

ABSTRACT iv

ACKNOWLEDGEMENTS v

CHAPTER 1: INTRODUCTION............................ .. 1

1.1. Problem Statement .. 1

1.2 Proposed Approach ... 2

1.3 Organization .. 3

CHAPTER 2: BACKGROUND 4

2.1 Principles of Video Encoding and Decoding ... 4

2.2 MPEG-2 Standard ... 6

2.3 Packet Structures in MPEG Streams ... 9

2.4 MPEG-2 Profiles and Levels ... 16

2.5 Other Products Comparison .. 16

2.6 FFmpeg.. 17

CHAPTER 3: FRAME LEVEL SEEK LIBRARY 20

3.1 Limitations of FFmpeg Seek ... 20

3.2 Frame Level Seek Library ... 20

3.3 Design of Frame Level Seek Library .. 22
3.3.1 State Machine of FFmpeg Frame Level Seek Library .. 23

3.4 Frame Level Seek Library File Structure .. 25

3.5 Seek Table ... 26

3.6 API Implementation Details .. 28
3.6.1 Frame Level Seek Library (Fast) .. 29
3.6.2 Frame Level Seek Library (Slow) .. 31
3.6.3 Frame Level Seek Library Structure ... 34
3.6.4 Frame Level Seek Library Data Dependency ... 35

CHAPTER 4: ENCODING/DECODING EXTENSION LIBRARY 36

4.1 Limitations of FFmpeg Encoding .. 36

4.2 Encoding Library ... 37

4.3 Design of Encode Library ... 37
4.3.1 Encode Library in Operating System .. 38
4.3.2 Encode Library State Machine ... 38

4.4 Encode Library File Structure ... 41

4.5 API Implementation Details .. 41
4.5.1 Encode Library Engine ... 44
4.5.2 Encode Library Data Dependency .. 45

 iii

CHAPTER 5: MOTION VECTOR EXTRACTION LIBRARY 46

5.1 Limitations of Motion Vector Extraction in FFmpeg .. 46

5.2 Motion Vector Extraction Library ... 46

5.3 Design of Motion Vector Extraction Library .. 48
5.3.1 Motion Vector Extraction Library State Machine .. 48

5.4 Motion Vector Extraction Library File Structure .. 50

5.5 API Implementation Details .. 51
5.5.1 Motion Vector Library Engine ... 55
5.5.2 Motion Vector Library Data Dependency .. 56

CHAPTER 6: EXPERIMENTATION AND PERFORMANCE MEASUREM ENT 57

6.1 Experimental Environment .. 57

6.2 Performance of Frame Level Seek FFmpeg .. 60

6.3 Performance of FFmpeg Encode Library .. 61

6.4 PSNR Comparison between MC* and FFmpeg ... 62

6.5 Frame Level Seek and Encoding Comparison between MC* and FFmpeg 65

6.6 Upfront Load Time Comparison between FFmpeg Frame Level Seek Fast and Slow 67

6.7 Integration with Applications .. 68

CHAPTER 7: CONCLUSION AND FUTURE WORK 71

APPENDIX A: FFmpeg COMPILATION 73

APPENDIX B: DEFINITIONS 80

APPENDIX C: API IMPLEMENTATION DETAILS 94

APPENDIX D: ADDITIONAL EXPERIMENTAL RESULTS 104

BIBLIOGRAPHY 115

 iv

ABSTRACT

Fast Forward Motion Pictures Expert Group (FFmpeg) is a well-known, high

performance, cross platform open source library for recording, streaming, and playback of

video and audio in various formats, namely, Motion Pictures Expert Group (MPEG),

H.264, Audio Video Interleave (AVI), just to name a few. With FFmpeg current licensing

options, it is also suitable for both open source and commercial software development.

FFmpeg contains over 100 open source codecs for video encoding and decoding.

Given the complexities of MPEG standards, FFmpeg still lacks a framework for (1)

seeking to a particular image frame in a video, which is needed for accurate annotation at

the frame level for applications in fields such as medical domain, digital communications

and commercial video broadcasting and (2) motion vectors extraction for analysis of

motion patterns in video content. Most importantly, FFmpeg code base is not well

documented, which has raised a significant difficulty for developing an extension.

As our contributions, we extended FFmpeg code base to include new APIs and

libraries support accurate frame-level seek, motion vector extraction, and MPEG-2 video

encoding/decoding. We documented FFmpeg MPEG-2 codec to facilitate future software

development. We evaluated the performance of our implementation against a high-

performance third-party commercial software development kit on videos captured from

television broadcasts and from endoscopy procedures. To evaluate the usability of our

libraries, we integrated them with some commercial applications. In the following sections,

we will discuss our software architecture, important implementation details, performance

evaluation results, and lessons learned.

 v

ACKNOWLEDGMENTS

I am grateful to my major advisor, Dr. Wallapak Tavanapong. During the last two

years, she gave me invaluable guidance and support with endless patience. Also, I would

like to say thanks to Dr. Johnny Wong and Dr. Wensheng Zhang for serving on the

committee and providing valuable feedbacks on this thesis. I appreciate Dr. Piet C. de

Groen at Mayo Clinic Rochester for providing all the colonoscopy videos. I want to thank

my colleagues Sean Stanek and Kihwan Kim, for their discussions and help. Lastly, I am

forever indebted to the love and support of my parents and brother during all these years

when I am far away from home.

 1

CHAPTER 1: INTRODUCTION

MPEG standards are a set of standards developed by the Moving Pictures Expert

Group (MPEG). We focus on MPEG-2, the second of the MPEG standards. MPEG-2 is

widely used as a format for digital television signals that are broadcast by terrestrial (over-

the-air), cable, and direct broadcast satellite TV systems. It is also used as a format for

distribution of movies and other programs on DVD and similar media. As such, TV

receivers, DVD players, and other equipment are often designed to support this standard.

Parts 1 and 2 of MPEG-2 were developed jointly with Telecommunication Standardization

Sector of International Telecommunication Union (ITU-T), and they have a respective

catalog number in the ITU-T Recommendation Series. The Video section of MPEG-2, is

similar to the previous MPEG-1 standard, but also includes support for interlaced video and

high quality video. With some enhancements, MPEG-2 is also used in some High

Definition television transmission systems.

FFmpeg is a complete, cross-platform solution to record, convert, and stream audio

and video. It provides plethora of encoders, decoders, parsers, muxers, etc. FFmpeg

supports several MPEG standards including MPEG-2. FFmpeg is licensed under GNU

General Public License (GPL) with some portions of it (including MPEG-2) licensed under

GNU Lesser General Public License (LGPL). FFmpeg is an extremely popular library

accepted in the Google Summer of Code for the past three years. The library is a complete

solution that meets most multimedia needs. Nevertheless, there are some important features

that are missing from FFmpeg.

1.1. Problem Statement

First, FFmpeg does not provide ability to request a particular frame based on frame

numbers. This feature is desirable for content-based video analysis and for users of video

player applications to jump to a specific frame for annotation and comparison of content

among frames. This “frame level seek” ability is important for applications used in medical

 2

image research, video content analysis, and digital video broadcasting. FFmpeg

implementation of the MPEG standard requires parsing of an entire video file to record

locations (file offsets) of important frames (termed “I-frames” hereafter) before frame level

seek can be performed. Parsing frame headers of a complete video file causes initial load

time to be directly proportional to the length of the video. Long initial load time is a major

drawback for any software requiring interactions with users.

Second, FFmpeg lacks APIs for extracting motion vectors from MPEG video files.

Motion vectors are key results of motion compensation process that exploits similarity

between neighboring frames for video compression by storing the location difference and

the pixel value difference of similar blocks of pixels between neighboring frames instead of

storing pixel values of individual frames redundantly. Motion vectors are often used for

recognition of various motion patterns in a video such as camera motions and object

motions. Motion estimation and compensation are essential to many modern video

compression algorithms. FFmpeg internally uses eight motion estimation algorithms, but

lacks the APIs for application developers to easily select the desired algorithm and extract

motion vectors for subsequent motion analysis and display.

Finally and most importantly, extending FFmpeg code base to provide additional

functionality is difficult and time consuming because of (1) lack of support from

development community, (2) evolving APIs, and (3) lack of documentation for the FFmpeg

library code. These reasons cause delay in development, integration, testing and time to

market, for applications utilizing the FFmpeg library despite its flexible software licensing

options. Lack of documentation for over a million lines of FFmpeg code is a major reason

that deters application developers from taking full advantage of FFmpeg.

1.2 Proposed Approach

To extend the usability of FFmpeg for applications needing frame level seek, we

propose an adaptation layer library, providing frame level seek based on frame numbers.

This approach includes (a) a new set of APIs in addition to the current seek API based on

time stamp in FFmpeg, and (b) two frame level seek algorithms for videos encoded with

MPEG-2. To reduce the development, integration, testing and time to market for using

 3

FFmpeg in multimedia applications, we propose a simple, stable set of APIs reusing what

are available in FFmpeg as much as possible. The new APIs will simplify the task of

application developers for integrating FFmpeg with their respective applications to support

features such as encoding, transcoding, splitting video files into smaller clips, and joining

different video clips into a single file.

 To support research in motion analysis, we propose a motion vector extraction

framework for FFmpeg to extract motion vectors from MPEG-2 videos. To support

FFmpeg developers and application developers using FFmpeg in their application, we set

up an FFmpeg support Web-Wiki to be used as a reference for an individual or a group

trying to understand, enhance, or integrate the FFmpeg library.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 provides background on

MPEG standard, FFmpeg, and other commercial codec products. Chapter 3 presents our

design, architecture, and implementation of Frame Level Seek library in detail. Chapter 4

discusses the new enhanced framework for encoding, the new set of APIs provided to

application developers and implementation, integration and usage of these APIs in detail.

In Chapter 5, we describe the design and implementation of the motion vector extraction

library. We discuss the details of the approach used by FFmpeg MPEG encoder to compute

motion vectors. We present performance evaluation of our library and a third party

commercial software development kit in Chapter 6. The last chapter summarizes our work

and describes future extensions. We describe FFmpeg compilation and installation

procedures under GPL and LGPL licenses for Microsoft Windows Operating Systems.

 4

CHAPTER 2: BACKGROUND

This chapter provides background on principles of generic video compression and

decompression and principles of MPEG-2 codec that are relevant to our work. We discuss

video packets, packet header, packet start codes, and terminology used in the MPEG-2

standard henceforth. We explain different types of formats/profiles within the standard. We

compare FFmpeg with various other products currently available in the market based on

cost, support, feature availability, and usability.

2.1 Principles of Video Encoding and Decoding

Video encoding removes redundant and less important information from an input

signal. Video decoding reconstructs an approximation or exact visual frames and audio

frames from the encoded file.

Types of redundancy are as follows. (1) Spatial Redundancy: Pixel values are

correlated with those of neighbors, within the same frame. The value of a given pixel is

predictable to a certain extent given the values of its neighboring pixels. (2) Temporal

Redundancy: Pixel values are correlated with neighbors across frames. The value of a

pixel is predictable to some extent given the values of neighboring pixels from the previous

or next frame. (3) Entropy Redundancy: For any non-randomized digitized signal, some

code values occur more frequently than others. Entropy encoding encodes frequent values

with shorter code words than those generated from rare values. (4) Psycho Visual

Redundancy: Human eyes do not respond equally to all visual information. The human

visual system does not rely on quantitative analysis of individual pixel values when

interpreting an image – an observer searches for distinct features and mentally combines

them into recognizable groupings. In this process certain information is relatively less

important than other – this information is called psycho visually redundant.

Depending on the application requirements, which could range from size of

encoded data, quality of audio/video, bit rate, etc., we may envisage two types of coding.

(1) Lossless coding: The aim of "lossless" coding is to reduce image or video data for

 5

storage and transmission while retaining the quality of the original images - the decoded

image quality is required to be identical to the image quality prior to encoding. Examples

include Huffman coding, Arithmetic coding, and Shanon-Fano coding. (2) Lossy coding:

This is relevant to the applications envisioned by MPEG-2 video standards - is to meet a

given target bit rate for storage and transmission. Examples include linear prediction and

transform coding.

Some applications require constrained and efficient storage of videos. In these

applications high video compression is achieved by degrading the video quality - the

decoded image "objective" quality is reduced compared to the quality of the original

images prior to encoding. The smaller the required size the higher the compression is

necessary and usually more coding artifacts become visible. The ultimate aim of lossy

coding techniques is to optimize image quality for a given target bit rate subject to

"objective" or "subjective" optimization criteria. The degree of image degradation (both the

objective degradation as well as the amount of visible artifacts) depends on the complexity

of the image or video scene as much as on the sophistication of the compression technique.

For simple textures in images and low motion activity a good image reconstruction with no

visible artifacts may be achieved even with simple compression techniques.

Sub-sampling reduces the dimension of the input video (horizontal dimension and/

or vertical dimension) and thus the number of pixels to be encoded prior to the encoding

process. For some applications video is also sub-sampled in temporal direction to reduce

frame rate prior to coding. At the receiver decoded images are interpolated for display.

Specific physiological characteristics of the human eyes are utilized to remove

subjective redundancy contained in the video data. For instance, the human eye is more

sensitive to changes in brightness than to chromaticity changes. Therefore, pixel values are

divided into YUV components (one luminance and two chrominance components). Next

the chrominance components are sub-sampled relative to the luminance component with a

Y: U: V ratio specific to particular applications.

A discrete cosine transform (DCT) expresses a sequence of finitely many data

points in terms of a sum of cosine functions at different frequencies. It is a “lossy”

compression technique. The discrete cosine transform, is often used in signal and image

processing, especially for “lossy” data compression, because it has a strong "energy

 6

compaction" property. That is, most of the signal information tends to be concentrated in a

few low-frequency components of the discrete cosine transform for signals based on certain

limits of Markov processes.

Motion compensation is a powerful tool to reduce temporal redundancies between

frames and is used extensively as a prediction technique for temporal coding. The concept

of motion compensation is based on the estimation of motion between video frames, i.e., if

all elements in a video scene are approximately spatially displaced, the motion between

frames can be described by a limited number of motion parameters (i.e., by motion vectors

for translatory motion of pixels).

Usually both prediction errors and motion vectors are transmitted to the receiver.

However, computing one motion vector per pixel is generally neither desirable nor

necessary. Since the spatial correlation between motion vectors is often high, it is

sometimes assumed that one motion vector is representative for the motion of a "block" of

adjacent pixels. Motion vectors are used to compress video by storing the changes to an

image from one frame to the next. The process is a bi-dimensional pointer that

communicates to the decoder how much left or right and up or down, the prediction macro

block is located from the position of the macro block in the reference frame or field. The

syntax and scale of the motion vectors depend on information that is included in the picture

header and picture coding extension header.

2.2 MPEG-2 Standard

MPEG-2 is a standard for "the generic coding of moving pictures and associated

audio information". It describes a combination of “lossy” video compression and “lossy”

audio data compression that permit storage and transmission of files using currently

available storage media and transmission bandwidth. The MPEG standard makes use of the

fact the human sensory system is less acutely aware of certain aspects of imagery.

Therefore, some data can be removed with little or no impact to viewing experience. It also

combines run-length bit compression and standard Huffman encoding techniques to take

the resultant data where information has been removed, and turn it into a small bit-stream.

 7

MPEG-2 is a packet based data encoding standard. Data is divided into packets of a

specific size, which are distinguished by header information, a constant number of fixed

size packets are further encapsulated into Pictures, which are further grouped into a group

of pictures (GOP). A video picture is conceptually a frame. It is made up of a number of

data packets, containing PTS (presentation timestamp) and DTS (decoding timestamp)

values (explained later in this section) in the picture header. To reach a particular frame, the

PTS and DTS values for the first and the last data packets forming that frame are required,

as there is no concept of frame numbers in the MPEG standard, but PTS and DTS

information fields.

The two different timestamps, PTS and DTS, are needed because of the presence of

three different types of frames in an MPEG encoded video: I-frame, P-frame, and B-frame.

Intra frame, also called I-frame, requires no other frames for decoding. P-frame or

Predicted frame is deduced from the previous frame (I or P) and cannot be decoded if the

decoder has not decoded the previous frames. B-frame or Bi-Predictive frame is decoded

from the previous and next I-frames or P-frames. Since B-frames depend on both past and

future pictures, the decoder needs future I-frames or P-frames before B-frames can be

decoded.

PTS could be thought of as display frame number. It is a 33-bit number coded in

three separate fields. It indicates the intended time of presentation in the system target

decoder of the presentation unit that corresponds to the first access unit that commences in

the packet. In simple words it is the time at which the decompressed packet will be

presented to the user. PTS value must be larger or equal to DTS value for each frame since

a frame cannot be displayed before the frame is decoded.

DTS is a 33-bit number coded in three separate fields. It indicates the intended time

of decoding in the system target decoder of the first access unit that commences in the

packet that is the decoding frame number, the time at which the packet is decompressed.

According to the MPEG standards, DTS shall appear in a packet header if and only if the

following two conditions are met.

• PTS is present in the packet header

• The decoding time differs from the presentation time.

 8

PTS may be present in any packet header with the following exception. If no access

unit commences in the packet data, PTS shall not be present in the packet header. If a PTS

is present in a packet header it shall refer to the presentation unit corresponding to the first

access unit that commences in the packet data. The PTS and DTS fields are generated by

the encoding system.

PTS and DTS fields are used for synchronization of audio and video in addition to a

clock reference field. The use of a common time base, the system time clock (STC), to

unify the measurement of the timing of coded data and the timing of the presentation of the

data (the PTS and DTS fields), ensures correct synchronization. PTS and DTS fields are

not necessarily encoded in each picture or audio packet unit. However, these fields are

required to occur with intervals not exceeding 0.7 seconds. In video streams, for I-frames

and P-frames, the DTS values are nominally equal to the PTS value minus the number of

picture periods of video reordering delay multiplied by the picture period.

Table 1: Sample PTS/ DTS Values
Input Picture Index
and Type (in coded

order)

End-of-picture
delivery time (msec)

Decoding / Presentation
time (msec)

 0 ----
1I 109 210/250
4P 178 250/370
2B 194 290
3B 211 330
7P 280 370/490
5B 297 410
6B 313 450
10P 382 490/610
8B 399 530
9B 427 570
13I 548 610/730

Another important concept in MPEG video encoding is interlacing, which uses two

fields to create a frame. One field contains all the odd lines in the image; the other contains

all the even lines of the image. A PAL based television display, for example, scans 50

fields every second (25 odd and 25 even). The two sets of 25 fields work together to create

a full frame every 1/25th of a second, resulting in a display of 25 frames per second. Such a

 9

scan of every second line is called interlacing. An interlaced video reduces the signal

bandwidth by a factor of two, for a given line count and a refresh rate. The human visual

system averages the rapidly displayed still pictures into moving picture images. So

interlace artifacts (described below) are not usually objectionable when viewed at the

intended field rate, on an interlaced video display.

The process of converting interlaced video into progressive video is called de-

interlacing. If done poorly, de-interlacing can introduce image degradation. De-interlacing

requires the display to buffer one or more fields and recombine them into a single frame. In

theory this would be as simple as capturing one field and combining it with the next field to

be received, producing a single frame. However, the originally recorded signal was

produced as a series of fields and any motion of the subjects during the short period

between the fields are encoded into the display. When combined into a single frame, the

slight differences between the two fields due to this motion resulting in a "combing" effect

where alternate lines are slightly displaced from each other. Most de-interlacing techniques

can be broken up into three different groups, all using their own exact techniques. The first

group is called Field Combination De-Interlacers because they take the even and odd fields

and combine them into one image or frame, which is then displayed. The second group is

called Field Extension De-Interlacers because each field (with only half the lines) is

extended to the entire screen to make a frame. The third type uses a combination of both

groups and fall under the banner of motion compensation.

2.3 Packet Structures in MPEG Streams

Container or a wrapper class is a specification that dictates how data is stored (not

encoded) within a file and how much metadata is effectively stored whereas no specific

codification of the data is implied or specified. The most relevant family of wrappers is, in

fact, to be found among multimedia file formats, where the audio and/or video streams can

effectively be coded with hundreds of different alternative algorithms, whereas they are

stored in fewer file formats. In this case the algorithm (or algorithms, as in the case of

mixed audio and video contents in a single video file format) used to actually store the data

is called a codec, e.g., AVI, MPEG (ES), MPEG (TS), Mp4, MOV, etc.

 10

An elementary stream within a container class contains only one kind of data, e.g.,

audio, video or closed caption. An elementary stream is often referred to as "elementary"

"data", "audio", or "video” streams. The format of the elementary stream depends upon the

codec or data carried in the stream. A video elementary stream contains compressed video

frames, plus sequence headers, group-of-picture (GOP) headers, and other data needed to

decode the stream.

Table 2: Header for MPEG-2 Video Elementary Stream

Field Name Size (bits) Description

Start code 32 0x000001B3
Horizontal size 12 Width
Vertical size 12 Height
Aspect ratio 4

Frame rate code 4
Bit rate 18 Actual bit rate = bit rate * 400

Marker bit 1 Always 1

VBV buf size 10
Size of video buffer verifier =

16*1024*vbv buf size
Constrained parameters

flag
1

Load intra quantizer
matrix

1
If bit set then intra quantizer
matrix follows, otherwise use

default values.
Intra quantizer matrix 0 or 512

Load non intra quantizer
matrix

1
If bit set then non intra

quantizer matrix follows.

A Packetized Elementary Stream (PES) defines how elementary streams are

arranged in packets within a MPEG program stream. The elementary stream is packetized

inside PES packet by encapsulating sequential data bytes of the elementary stream. A

typical method of transmitting elementary stream data from a video or audio encoder is to

first create PES packets from the elementary stream data and then to encapsulate these PES

packets inside Program Stream (PS).

An elementary stream is broken up into packets of variable length, forming a PES.

Each PES packet includes a header. In many applications, the audio and video are

multiplexed, thus combining the two elements. Packetized and multiplexed elementary

streams may take the form of single program streams. The PES header contains

 11

information about the content of the data bytes, allowing a decoder to process the packets.

The PES packets can be of variable length, typically up to 64 Kbytes, but they can be

longer. The important note is that if information carried in the header is corrupted, the

entire PES packet is lost.

Table 3: PES Packet Header
Name Size (Bits) Description

Packet start code prefix 3 bytes 0x000001

Stream id 1 byte
Examples: Audio streams

(0xC0-0xDF), Video streams
(0xE0-0xEF)

PES Packet length 2 bytes

Can be zero. If the PES packet
length is set to zero, the PES
packet can be of any length. A
value of zero for the PES
packet length can be used only
when the PES packet payload
is a video elementary stream.

Optional PES header Variable length
Stuffing bytes Variable length

Data

Table 4: Optional PES Header
Name Size (Bits) Description

Marker bits 2 10 binary or 0x2 hex
Scrambling control 2 00 implies not scrambled

Priority 1

Data alignment indicator 1
1 indicates that the PES packet
header is immediately followed
by the video start code

Copyright 1 1 implies copyrighted
Original or Copy 1 1 implies original

PTS DTS indicator 2
11 = both present, 10 = only
PTS

Additional copy info flag 1
CRC flag 1

PES header length 8
Gives the length of the
remainder of the PES header

Optional fields Variable length
Presence is determined by flag

bits above
Stuffing Bytes Variable length 0xff

 12

 Figure 1: PES Packet Header Structure

 Program stream (PS) is a container format for multiplexing digital audio, video and

more. Program streams are created by combining one or more PES with a common time

base into a single stream.

13

Table 5: Program Stream Packet Header Format
Name Size (Bits) Description

Sync bytes 32 0x000001BA
Marker bits 2 01b

System clock [32…30] 3 System Clock Reference
Marker bit 1 1 Bit always set.

System clock [29…15] 15 System clock bits 29 to 15
Marker bit 1 1 Bit always set.

System clock [14…0] 15 System clock bits 14 to 0
Marker bit 1 1 Bit always set.

SCR extension 9
Marker bits 2 11 Bits always set.
Reserved 5 Reserved for future use

Stuffing length 3
Stuffing bytes 8*stuffing length

System header (optional) 0 or more
If system header start code

follows: 0x000001BB

In a video stream based on the MPEG standard, the highest syntactic structure of

the coded video bit stream is the video sequence. A video sequence commences with a

sequence header, which may optionally be followed by a group of pictures header and then

by one or more coded frames. The order of the coded frames in the coded bit stream is the

order in which the decoder processes them, but not necessarily in the correct order for

display. The video sequence is terminated by a sequence end code. At various points in the

video sequence a particular coded frame may be preceded by either a repeat sequence

header or a group of pictures header or both. Program streams have variable size records

and minimal use of start codes, which would make over the air reception difficult, but has

less overhead. The program stream coding layer allows only one program of one or more

elementary streams to be combined into a single stream, in contrast to a transport stream,

which allows multiple program streams.

Transport streams offer features for error correction for transportation over

unreliable media. Transport streams are used in broadcast applications such as DVB

(Digital Video Broadcasting). Transport streams are contrasted with MPEG Program

Stream (PS), designed for more reliable media such as DVDs.

14

Figure 2: Structure of Coded Video Data

Start or end codes are specific bit patterns that do not otherwise occur in the video

stream. Each start code consists of a start code prefix followed by a start code value. The

start code prefix is a string of twenty three bits with the value zero followed by a single bit

with the value one. The start code prefix is the bit string ‘0000 0000 0000 0000 0000

0001’. Start code is an eight bit integer that identifies the type of the start code. Most types

of start code have just one start code value. All start codes shall be byte aligned. This shall

be achieved by inserting bits with the value zero before the start code prefix such that the

first bit of the start code prefix is the first (most significant) bit of a byte.

15

Table 6: Start Codes
Name Start Code Value (hex)

picture_start_code 00
slice_start_code 01 through AF

user_data_start_code B2
sequence_header_code B3
sequence_error_code B4
extension_start_code B5
sequence_end_code B7
group_start_code B8

Figure 3: Structure of GOP Header

Figure 4: Structure of Frame Header

16

2.4 MPEG-2 Profiles and Levels

MPEG-2 defines 4 profiles and 4 levels. The profile defines the color space

resolution and scalability of bits stream. The level defines the maximum and minimum of

image resolutions, Y (Luminance) samples per second, the number of video and audio

layers supported for scalable profiles, and the maximum bit rate per profile. The video

decoder will depend on its availability and need to handle a particular bit stream. Table 7

describes the four available profiles currently supported by FFmpeg.

Table 7: MPEG Profiles and Levels

Abbr. Name
Frame
rates
(Hz)

Picture
Coding
Types

Chroma
Format

Max
horizontal
resolution

Max
vertical

resolution

Max bit
rate

(Mbit/s)

LL
Low
Level

23.976,
24, 25,
29.97,

30

I, P 4:2:0 352 288 4

ML
Main
Level

23.976,
24, 25,
29.97,

30

I, P, B 4:2:0 720 576 15

H-14
High
1440

23.976,
24, 25,
29.97,
30, 50,
59.94,

60

I, P, B 4:2:0 1440 1152 60

HL
High
Level

23.976,
24, 25,
29.97,
30, 50,
59.94,

60

I, P, B
4:2:2 or
4:2:0

1920 1152 80

2.5 Other Products Comparison

17

Many products are currently available in the market to support video editing,

playback and streaming needs. These products have good performance and product

support. Considering specific requirements of frame level seek, ease of usability and

motion vector extraction, we found four other products comparable with the current

FFmpeg library. Except from FFmpeg, none of these are open source. Table 8 shows

comparison of FFmpeg with these other products.

Table 8: Other Product Comparison

Abbr. Name
Operating
Systems

Supported

License
Cost

Video
Format

Supported

Multi
Threaded

Application
Support

FFmpeg
MPEG-
1,2, AVI

Windows,
Macintosh,

Linux
$00.00 SD, HD YES

MainConcept
MPEG-

1,2
Windows $519.00 SD, HD YES

LEADTOOLS
MPEG-2

MPEG-
1,2

Windows,
Macintosh

$400.00 SD, HD YES

Etymonix
SoftReel

AVI Windows $20.00 SD, HD NO

Real Magic
NetStream

2000

MPEG-
1,2, AVI

Windows $99.99 SD NO

2.6 FFmpeg

FFmpeg is an open source Linux library for recording, streaming and playing

multimedia. It is written in GNU-C and it’s licensed under GPL, but certain parts of it are

licensed under LGPL, which makes it a suitable candidate for a low cost - high

performance multimedia library. It is a complete, cross-platform solution to record, convert

and stream audio and video data.

There are numerous projects known to incorporate work from FFmpeg in

Entertainment and Healthcare industry. VLC Media Player, Mplayer, Dr.DivX, Frogger,

KMediaFactory, PlayStation Portable Video Converter, PSP Media Player, Quick View

18

Pro, WMA codec for Mac OS X, Xine, etc are currently using the FFmpeg framework for

building media players, video editing software and video streaming. AMIDE, a Medical

Imaging data analyzer and EM-Manual both use FFmpeg libraries for their audio/video

encoding, decoding and analyzing features. FFmpeg has been successfully ported to all

Operating Systems including: Linux (all flavors), UNIX, Windows and MAC.

FFmpeg framework also provides a command line tool, called ffmpeg to convert

one video file format to another. It can also be used for grabbing and encoding in real time

from a TV card. ffserver, a FFmpeg tool is an HTTP (RTSP is being developed)

multimedia streaming server for live broadcasts. It can also time shift live broadcast.

ffplay, is a simple media player based on SDL and the FFmpeg libraries.

FFmpeg is licensed under the GPL or LGPL depending on the choice of

configuration options. Using FFmpeg or its constituent libraries, we must adhere to the

terms of the license in question. FFmpeg can be hooked up with a number of external

libraries to add support for more formats. FFmpeg is freely downloadable from SVN and

the directory structure of the distribution is explained in Figure 5.

19

 Figure 5: FFmpeg Directory Structure

20

CHAPTER 3: FRAME LEVEL SEEK LIBRARY

In the last chapter, we described background of MPEG-2 standard and FFmpeg

code base. We now present our new Frame Level Seek library developed to further enhance

FFmpeg usability. In particular, we describe the architecture of the Frame Level Seek

library, its detailed design and APIs for application developers. We describe

implementation details of two different approaches and contrast their advantages and

disadvantages.

3.1 Limitations of FFmpeg Seek

FFmpeg provides only a timestamp-based seek API av_seek_frame

(AVFormatContext *, int stream_index, int64_t timestamp, int flags). This API accepts

timestamp as input, and seeks to its nearest I-frame. For MPEG, these frames are I-frames.

The internal data structures required for accessing the I-frames are populated, with DTS

value, PTS value, the current stream pointer, etc. after a call to this API. There is no

decoding of data packets involved to perform seek except for the data packets comprising

the last frame. The application has to completely decode the packets which comprise the

frame pointed to by the timestamp passed and displays it. The API is flexible enough to be

used for all registered container classes and codecs. Its functionality is to dynamically

select an appropriate API amongst internal seek APIs previously registered for the

particular container/codec at the time of configuration. The internal APIs can be based on

the byte position, timestamp, etc. The API gets called based on the type of container and

codec the video file is encoded with. This current API lacks support for seeking to a

specific inter-coded frame (P-frame or B-frame).

3.2 Frame Level Seek Library

Currently there is no support for seeking to a specific P-frame or B-frame in MPEG

container in the FFmpeg library. Frame level seek is useful for applications in the field of

21

image processing, video broadcasting, medical image research, etc. This has motivated us

to provide the Frame Level Seek library extending the current FFmpeg code base.

We implement two Frame Level Seek libraries: Slow Frame Level Seek

(FAS_SLOW) and Fast Frame Level Seek (FAS_FAST). The major difference between the

two libraries lies in the algorithm used to obtain the location of the target frame in the input

video file. FAS_SLOW first generates a seek table filled with the location of every I-frame

in the video. In this process, it uses FFmpeg av_seek_frame() which decodes the picture

header of every single frame. After the index table is built for the entire stream, seeking to

a particular frame is accomplished by searching the seek table for the closest I-frame prior

to the target frame. Additional computation is done to seek to the target frame if the frame

is not an I-frame. FAS_SLOW therefore has high upfront video load time; however, it is

flexible to handle different GOP structures in the same video file. Also it can support

Frame level seek with audio stream included in the file. FAS_FAST version generates a

seek table on the fly. It uses the header information of first and last GOP and video stream

metadata to compute the timestamp of the nearest I-frame before using av_seek_frame() to

seek to that timestamp. Subsequent decoding is performed to compute the location in the

file of the target frame if it is not an I-frame.

 Table 9: Major Differences between FAS_Slow and FAS_Fast
 Features FAS Slow FAS Fast

1. Handle Open GOP Yes No

2
Handle In- consistent

GOP
Yes No

3. Load Time High Negligible

4. Accuracy High
Marginally

less
5. Generate seek table Yes Partially

Both versions are part of the FAS layer which is distributed in the form of dlls in

Windows system. The APIs exposed to the application are consistent and do not undergo

any changes with incremental releases which makes it easier for application integration.

22

3.3 Design of Frame Level Seek Library

The Frame Level Seek library lies in-between the FFmpeg middleware and the

application layer as shown in Figure 6. Application uses public APIs exposed by the Frame

Level Seek library, which uses references to the underlying data structures provided by

FFmpeg and implements its own data structures. The APIs exposed to application do not

maintain internal data structures, but calls private Frame Level Seek functions to perform

the actual work.

Frame Level Seek library implements its own seek index table to provide frame

accurate seek. The functions provided to access the seek index table are called by public

Frame Level Seek APIs and functions provided to maintain the seek index table are called

by private Frame Level Seek functions. We mainly focus on the two FFmpeg libraries (1)

libavformat.dll and (2) libavcodec.dll. These two libraries provide most of the functions

and data structures required for frame level-seek. FFmpeg library works as a middleware

between the application and the native operating system. It easily accesses the native

system calls to interact with the operating system.

Figure 6: Frame Level Seek Library Layer

The major design decisions for Frame Level Seek library are (1) using static

internal frame buffers, (2) using most of the underlying FFmpeg APIs, (3) generation of the

seek table to keep track of offsets of I-Frames, (4) providing different sets of APIs for the

Frame Level Seek Private

Functions

Application
Layer

FFmpeg (libavformat, libavcodec)

Operating System (Linux/Windows/Mac)

 System Calls

 FFmpeg

 OS

Virtual

File System

FAS/FFmpeg

Specific
Data Structures

Frame Level

Seek
Library

 Application

Index Table

Frame Level Seek Public API’s

 Index Table
APIs

23

index table maintenance and access, and (5) separating public APIs to access underlying

data structures and private functions to modify them.

• Using static internal buffers allocated during initialization gives two inherent

advantages over flexibility of providing memory management to the application

layer: (1) Reduced memory fragmentation caused by avoiding calls to malloc() and

free() from the application layer, and (2) increased performance by reducing the

overhead of memory allocation during runtime.

• Reusing the underlying FFmpeg APIs is advantageous since (1) we do not need to

redo the code, which reduces implementation time and (2) the APIs are tested and

used by the FFmpeg development community. We use FAS to denote Frame Level

Seek library function and FFmpeg to denote FFmpeg library function hereafter.

• Since it is not possible to seek to a particular P-frame or B-frame in the current

FFmpeg implementation, offsets of I-frames are maintained in the seek index table

to support this feature.

• The APIs to access and maintain the seek index table for bookkeeping tasks are

implemented in a separate module that can be used in both Frame Level Seek Fast

and Slow libraries.

• Separation of visibility in APIs on the basis of its nature, mainly maintenance and

access, provides security inherently. All public APIs are used by the application to

access the internal data structures. The data structures are maintained by private

functions, which cannot be called by the application.

3.3.1 State Machine of FFmpeg Frame Level Seek Library

We maintain five states in the frame level seek library as shown in Figure 7. These

states are as follows: (1) Initialize, when all the data structures are initialized, memory

allocation of internal data structures is completed, or registration of requisite codecs is

done, etc.,(2) Idle, which is the state after initialization, or when a seek or a play command

is expected, or after the data has been sent to the application for display.,(3) Seeking, which

involves two sub states: seeking to a GOP and seeking to a specific frame.,(4) Frame

Extraction, after seeking to a frame, it has to be converted into the requisite format for

24

displaying., and(5) Display, when a frame is sent to the application for display. After that,

internal buffers are flushed and the system again enters the idle state.

We implemented Frame Level Seek library using one thread. This is because frame

numbers are not explicitly coded in the video. They are obtained sequentially by

incrementing a counter by one after a frame is found. It is possible to use a multithreading

approach with a number of threads; each processing its own non-overlapping portion of a

file to generate it’s seek table. However, this approach is complex as the separate seek

tables need to be merged into one table at the end. Furthermore, it has to handle the case

where a partition does not start or end at the GOP boundary. Lastly, different threads access

disk in a non-linear manner can incur significant disk head movement. The extra time to

handle these issues may offset the time gained from multithreading. Therefore, we use a

one thread sequential design.

Figure 7: Frame Level Seek State Machine

The major data structures implemented for Frame Level Seek are (1)

fas_context_typeFAS (2) fas_vid_info_typeFAS (3) seek_table_typeFAS (4) seek_entry_typeFAS.

The fas_context_typeFAS structure can be divided into four categories.

25

 Table 10: fas_context_type Structure Members
Category Members
1 FFmpeg Reference format_context, codec_context, stream_idx.

2
Memory

Management
frame_buffer, rgb_frame_buffer, rgb_buffer,

deinterlace_buf, raw_frame_buffer

3
Seek Table

Maintenance
current_dts, previous_dts,

keyframe_packet_dts, first_dts

4 Playback
current_frame_index, seek_table, vid_info,
rgb_already_converted, is_video_active,

is_frame_available

 Table 11: fas_vid_info_type Structure Member Description
Member Description
1 frame_rate Frame rate of a stream
2 img_convert_ctx Information for scaling

3 Fas_timestamp Start time of the stream
4 fas_frame_count Exact frame count of a stream
5 Fas_gop_size Actual GOP size
6 fas_offset GOP size without I frames

7 fas_frame_buffer_count
Number of extra frames which are not

flushed (still in the buffer)
8 key Number of packets in a I-frame

9 is_hd
True is video is High Definition; false

otherwise

10 flush
Flag set to true if flush packets are in the last

GOP

3.4 Frame Level Seek Library File Structure

Frame Level Seek (Fast or Slow) code is currently distributed in 6 files,

ffmpeg_fas.c, ffmpeg_fas.h, inttypes.h, private_errors.h, seek_indices.c and seek_indices.h.

Files ffmpeg_fas.c and ffmpeg_fas.h expose most APIs required by the application

layer.

Files private_errors.h and inttypes.h are responsible for portability between C99

(supported on Linux) and ANSI-C (supported by Windows).

Files seek_indices.c and seek_indices.h provide APIs for the seek table generation,

seek table maintenance, and book-keeping tasks.

26

3.5 Seek Table

The seek table is used in both Frame Level Seek fast and slow libraries. The slow

version generates the complete seek table before playback, whereas the fast version

partially generates the table reducing the upfront load time. The seek table is a simple

structure consisting of the field types shown in Table 12. It has a pointer to an array of

elements of type seek_entry_type shown in Table 13. The APIs for maintaining and

accessing the seek table are divided into categories and shown in Table 14. The Fast Frame

level seek (FAS_FAST) accesses only DTS value of the frames in first and the last GOP

and generates on the fly the DTS value of the rest of the frames in between. On the

contrary, the Slow Frame Level Seek (FAS_SLOW) library accesses the entire seek table

linearly to jump to an I-frame prior to the requested frame. The seek table is initialized with

a size of 100 fields, but if at any moment during playback a need for more space for fields

is felt, the size is made two times of the size at that instant.

Table 12: Description of seek_table_type Structure Member
Member Description
1 Seek_entry_type Reference to the seek table
2 Completed Flag set to true if the table is complete

3 Num_frames Number of frames in the stream
4 Num_entries Current number of frames entered
5 Allocated_size Size of the seek table in bytes

Table 13: Description of the seek_entry_type Structure Member
Member Description
1 display_index Index of a frame in a display order
2 first_packet_dts DTS of the first packet of a frame

3 last_packet_dts DTS of the last packet of a frame

27

Table 14: API’s Exposed by Seek Index Table Library; depreciated function denoted
by ^

Category API Return Value Parameter’s

1
Initialization

seek_init_table () seek_table_type int
2 Seek_release_table () void seek_table_type*

3

Seeking

seek_copy_table () seek_table_type seek_table_type

4
seek_append_table_entry () seek_error_type seek_table_type,

seek_entry_type

5
seek_get_nearest_entry ()^ seek_error_type seek_table_type,

seek_entry_type,
int

6

Support

compare_seek_tables () int seek_table_type,
seek_table_type

7 seek_show_table () seek_error_type seek_table_type

8
seek_show_raw_table () seek_error_type FILE *,

seek_table_type
9 read_table_file () seek_table_type char *

The APIs in the initialization category are for initialization and de-allocation of data

structures. We describe the usage of important APIs from different categories: (1)

error_type seek_append_table_entry (seek_table_type *table, seek_entry_type entry) FAS is

for appending a new entry into the seek table. This API requires pointer to the table

allocated during opening of file and an entry value denoted by a structure containing 3

objects int display_index FAS, the frame_index FAS of the I-frame in the video stream, int64_t

first_packet_dts FAS, denoting the first packet of the I-frame, int64_t last_packet_dts FAS

denoting the last packet of I-frame is primarily responsible for all the bookkeeping tasks

required by FFmpeg FAS (Fast). This API returns seek_error_type FAS. (2) seek_error_type

private_resize_table (seek_table_type *table, int new_size) FAS to resize the table. The

current policy is to double the seek table every time we run out of space for entry. (3) char

* seek_show_table (seek_table_type) is part of the support category. It can be used for

debugging to compare the seek table generated with actual DTS/PTS values of I-frames in

the video.

28

3.6 API Implementation Details

Currently there are fifteen APIs exposed by the Frame Level Seek library. These

can be divided into three main categories: (1) Initialization APIs for opening a video,

closing a video, registration of codecs, container classes, muxers, demuxers, etc.,(2)

Seeking APIs for frame level seek using the FFmpeg middleware. These APIs are for

extracting frame data in the internal memory of Frame Level Seek library but not to

display, which is the task of the application using the APIs, and (3) Support APIs for

accessing the internally maintained data structures. These APIs are not responsible for data

maintenance adhering to the design policy.

Table 15: APIs of the Frame Level Seek Library
Category API Return Value Parameter’s

1

Initialization

fas_initialize() Void Void

2
fas_open_video() fas_error_type fas_context_type*,

char *
3 fas_close_video() fas_error_type fas_context_type*

4

Seeking

fas_frame_available() fas_boolean_type fas_context_type*

5 fas_get_frame_index() uint64_t fas_context_type*

6 fas_step_forward() fas_error_type fas_context_type*

7 Fas_get_frame() fas_error_type fas_context_type*

8
fas_seek_to_frame() fas_error_type fas_context_type*,

uint target index

9

Support

fas_get_frame_count() uint64_t fas_context_type*

10 fas_get_frame_rate() Float fas_context_type*

11 fas_get_bit_rate() Int fas_context_type*

12 fas_get_codec_type() Int fas_context_type*

13 fas_get_current_width () Int fas_context_type*

14 fas_error_type char * Int

15 fas_get_current_height() Int fas_context_type*

29

3.6.1 Frame Level Seek Library (Fast)

The fast Frame Level Seek library (FAS_FAST) is developed to reduce the upfront

load time of a video file, which is a major drawback of the slow Frame Level Seek library

(FAS_SLOW). FAS_SLOW before opening a video file generates the entire seek table

containing the DTS value of I-frames, their display index, etc. but FAS_FAST does

calculation of the seek index on the fly. It first decodes the first GOP and last GOP to

compute the GOP size. As we make sure that GOP is closed and its size remains the same

throughout the content, we calculate the DTS value of I-frames from first till last GOP on

the fly. The calculation of DTS value without decoding the video stream headers eliminates

the upfront load time. The requirements for FAS_FAST to accurate frame seek without

upfront load time is as follows: (1) Video stream must consist of only closed group of

pictures (GOP) of the same size throughout the video, (2) The maximum number of B-

frames in a GOP should be consistent, and (3) A video file contains only a single video

stream. The entire framework uses underlying APIs provided by FFmpeg, implements

certain APIs of its own, and exposes these to the application. The library is initialized by

calling fas_initialize()FAS before any other API is called. This API is a wrapper over the

underlying av_register_all ()FFmpeg API, which registers the codecs, parsers, muxers, etc,

and streaming protocol support: gopher, HTTP, etc, specified during the initialization of the

application. If required to initialize the specified components individually which reduces

the memory footprints, void avcodec_register(AVCodec *)FFmpeg, performs the required job.

The next step is to open the video file by calling fas_open_video()FAS ,which

extracts the required information from the video stream and populates the fas_context_type

FAS structure. This API acts as a wrapper API over six FFmpeg APIs and also some utility

functions developed for this purpose. All the private functions have been declared static

and start with private_* keyword to distinguish them from exposed APIs to application.

The pseudo code is shown in Figure 8.

30

Figure 8: Pseudo Code for fas_open_video()FAS_FAST API

Seeking to a particular frame the application is required to call fas_error_type

fas_seek_to_frame (fas_context_ref*, uint64_t target_index) FAS, which jumps to the frame

given by target_index FAS. This API performs the task of seeking to a frame and decoding

the frame in the internal buffer. The pseudo code for this API is described in Figure 9.

Figure 9: Pseudo Code for fas_seek_to_frame() API

 To extract a particular frame we execute fas_error_type fas_get_frame

(fas_context_type) FAS. It is responsible for decoding the requisite amount of packets which

fas_seek_to_frame (fas_context_ref*, uint64_t target_index) {

1. Get current frame index.
2. Is Target index in First or Last GOP?

a. YES:
i. Seek to frame through Index table.

ii. Goto 4.
b. NO:

i. Is Target Index in current GOP?
1. NO:

a. Compute timestamp of nearest Index Frame less than Target
Index.

b. Jump to Nearest Index Frame less than Target Index through
timestamp computed.

c. Goto 1.
2. YES:

a. Jump (Target Index – Current Frame Index) times frames.
3. Is Current Frame Index equal to Target Index?

a. NO:
i. Is Current Frame Index greater than Target Index?

1. YES:
a. Return FAS_SEEK_ERROR.

2. NO:
a. Goto 1.

b. YES:
1. Goto 4.

4. Decode the frame and store it in internal buffer.
5. Return FAS_SUCCESS.

 }

fas_open_video (fas_context_ref*, uint64_t target_index){

1. Initialize a seek table
2. Allocate memory for context
3. Fill data in context
4. Search for video stream
5. Display information
6. Allocate internal buffer memory
7. Find and open the corresponding decoder
8. Fill references in context
9. Extract the first frame
10. Save DTS of frames in first GOP in the Index table
11. Compute and save exact frame count and dts of last GOP of frames
12. Return

}

31

make a complete frame, rescale according to the parameters passed and scale them

according to the requirements of application. The pseudo code is given in Figure 10.

Figure 10: Pseudo Code for fas_get_frame() API

The internal function static void

private_fas_pre_process_video_frame(fas_context_ref* , AVPicture *, void **) FAS is

responsible for de-interlacing the interlaced video files generated. To close the video at any

moment, the API fas_error_type fas_close_video (fas_context_ref*) FAS is called, which

cleans up the memory allocated and closes all the decoders, parsers, etc opened during the

lifetime of execution of the program.

3.6.2 Frame Level Seek Library (Slow)

The slow Frame Level Seek (FAS_SLOW) is developed to provide very high

Frame Accuracy. It does a linear file walk, saving the I-frame number and corresponding

DTS values in seek_table FAS.

Generation of an entire seek_table FAS prior to opening a video file increases the

upfront time to load the video for playback. The APIs exposed to the application by

FAS_SLOW have the same signature as the APIs for FAS_FAST in order to maintain the

scalability among them.

The major difference lies in implementation of fas_error_type fas_open_video

(fas_context_ref_type *context_ptr, char *file_path) FAS API from FAS_FAST API. The

pseudo code for this API is given in Figure 11 below.

fas_error_type fas_get_frame(fas_context_ref_type context) {

1. Check if Video is High Definition?
a. NO:

i. De-interlace the video frame.
b. YES:

i. Goto 2.
2. Scale according to the required input for application.
3. Invert the frame, required by Windows System
4. Return fas_error.

}

32

Figure 11: Pseudo Code for fas_open_video() FAS_SLOW API

The FAS_SLOW version of this API calls the same set of FFmpeg functions and

internal private functions as FAS_FAST version before the internal memory allocation as

indicated in Step 6 of Figure 11. After which this API calls the internal function

fas_error_type private_generate_index_table (fas_context_ref_type *context_ptr) FAS which

is responsible for opening a codec for parsing the video file headers only. The parameters

passed are hurry_up FFmpeg (deprecated in the current FFmpeg release). parse_only FFmpeg,

which ensures that if true, only parsing is done. skip_bottom FFmpeg parameter ensures to

skip the specified number of bottom strides for decoding and skip_top FFmpeg parameter

ensures to skip the top strides specified for decoding. The lowres FFmpeg parameter ensures

to decode packets with specified resolution. Minimum values of the parameter can be 1,

which stands for resolution half the size and value 2, which stands for resolution of quarter

size. This function is responsible for populating the entire seek_table FAS with the codec

capabilities applied to ensure the quickest possible generation.

Since in FFmpeg, properties of a codec opened on the fly cannot be changed, i.e.

since a previously opened video with skip_top FFmpeg, skip_bottom FFmpeg fields set, the

codec needs to be closed and a new codec opened to extract the frames. Before leaving this

function, the codec and format context need to be closed.

We call the internal function fas_error_type private_open_video

(fas_context_ref_type *context_ptr, char *file_path) FAS, which opens the MPEG-1 or

MPEG-2 codec with proper parameters in order to extract the complete frames.

fas_open_video(context*, filename){

1. Initialize seek table,
2. Allocate memory for context,
3. Fill data in context,
4. Search for video stream,
5. Display information,
6. Allocate internal buffer memory,
7. Find Decoder.
8. Set Decoder to parse headers only.
9. Open Decoder.
10. Parse Packet headers to generate Index Table.
11. Close Input file.
12. Search for video stream,
13. Find Decoder and open with regular parameters.
14. Return.

}

33

Once the complete seek table is generated, the rest of the implementation of FAS

_SLOW is similar to FAS_FAST. During playback, the FAS_SLOW version extracts I-

frame DTS value from the generated seek table in contrast to FAS_FAST version, which

computes it on fly. It then extracts the requisite frame pointed to by the DTS value from

seek table in the statically allocated internal frame buffer and provides it to the application

layer.

34

3.6.3 Frame Level Seek Library Structure

Figure 12: Frame Level Seek Library Structure Overview

35

3.6.4 Frame Level Seek Library Data Dependency

Figure 13: Frame Level Seek Library Data Dependency

Custom FAS

36

CHAPTER 4: ENCODING/DECODING EXTENSION LIBRARY

FFmpeg has a wide range of open source container formats, encoders and decoders

available which can be used for encoding raw data stream into various encoded streams.

Preference can be specified in the .configure file prior to compiling the code base to

include or exclude certain encoders, decoders, muxers and de-muxers reducing the library

footprint. Also, certain encoders are available in the GPL licensed version only. But the

MPEG-1 and MPEG-2 encoders along with MPEG container format are licensed under

LGPL license.

In this chapter, we will be focusing on the FFmpeg MPEG-1 and MPEG-2 encoders

along with MPEG container. Our emphasis will be on implementation and use of the

encoding APIs provided to the application developer by the developed encode library, the

internal state machine implemented to support this feature and the data structures

maintained. We will also discuss the implementation and use of FFmpeg MPEG-2 related

encoding APIs.

4.1 Limitations of FFmpeg Encoding

FFmpeg provides an API “int avcodec_encode_video(AVCodecContext *, uint8_t

*, int , const AVFrame *)FFmpeg” which is responsible for encoding the data pointed to by

the second parameter of type uint8_t*. The limitations of this API specific to our

requirements are (1) A complex pattern of function calls to be followed before execution of

the API, (2) Loss of the last three frames during encoding due to data left in internal

FFmpeg buffers, and (3) Lack of an integrated API supporting both pre-encoded and

decoded input data.

37

4.2 Encoding Library

In the current library, we have provided a set of four APIs to application

developers, eliminating the three limitations of FFmpeg encode APIs as discussed above.

The set of APIs will significantly reduce the development, integration and testing time for

video editing applications as it provides a flexible and simple framework. The drawback of

loss of the last three frames during encoding has also been fixed. In the current distribution,

support for MPEG-PS container with MPEG-1 and MPEG-2 encoder has been provided.

We have also integrated this library with the FFmpeg Frame Level Seek library in an

application providing support for both pre-encoded and decoded input video data.

4.3 Design of Encode Library

The library is designed to handle two types of input data: (1) reference from a

memory location, and (2) pre-encoded data in the form of a video stream. The library has

been designed to be compatible with both FAS_FAST and FAS_SLOW, so many of the

design decisions have been taken, keeping the Frame Level Seek library in mind for

integration.

The major design decisions taken are: (1) Using static input buffers for encoding.,

(2) Non inclusion of audio stream., (3) Keeping fixed GOP size., (4) Initializing the

‘muxer’, (5) using most of underlying FFmpeg APIs., and (6) Separation of Public APIs

exposed to the application and private functions to modify internal data structures.

• Using static input frame buffers initialized during startup hinders the flexibility for

the application but reduces the complexity of memory management for application,

runtime overhead of dynamic memory allocation and memory fragmentation caused

by continuous calls to malloc() and free () system calls of memory buffers.

• Audio streams have not been included for encoding as no support for audio by the

Frame Level Seek library makes the two compatible.

• Currently the GOP size is fixed, making it compatible with the Fast Frame Level

Seek library.

38

• Initializing the ‘muxer’ to encode every data packet with a header for comparability

with previous application (EmCapture) versions.

• Re-using most of the underlying FFmpeg API’s providing reduction in time for

development, support from the FFmpeg community and tested and in-production

framework. We use encode to denote encode library function and FFmpeg to denote

FFmpeg library function hereafter

• The APIs exposed to applications are not responsible for maintaining the internal

data structures, but call private Encode functions to perform the task.

4.3.1 Encode Library in Operating System

The library is written to provide a simple and stable adaptation layer for FFmpeg

middleware and application layer, exposing a set of consistent and stable APIs. It uses

many of FFmpeg APIs and acts as a wrapper for them, reducing the integration complexity

for the application developer. This library is smaller than the Frame Level Seek library in

memory footprint discussed in the previous chapter. Since it is not required to do book

keeping of I-frames DTS value for encoding purpose, the Index table module was not

embedded with this library.

Figure 14: Encode Library placement in OS

4.3.2 Encode Library State Machine

During execution, the encoder layer can be in one of these five states, (1) Init, when

the application layer calls the library function for passing codec type, resolution, frames per

Encode Private Functions

Application

FFmpeg (libavformat, libavcodec)

Operating System (Linux/Windows/Mac)

System Calls

FFmpeg

OS

Virtual
File System

Encode/FFmpeg

Specific
 Data

Structures

Encode
Layer

Applicat ion Layer

 Encode Public API’s

39

second, etc; (2) Initialize, when the internal encoders, decoders etc are selected based on

the parameters passed during Init, internal memory allocation is performed, internal data

structures used are initialized, etc; (3) Idle, the system is in idle state expecting data from

the application after initialization or after encoding data; (4) Decode, after the application

passes data (pre-encoded or decoded) to this layer; (5) Encode, this state is responsible for

encoding the data decoded by the decoder.

There is only one thread of execution in the Encode library. The process is designed

to be linear in nature without introducing any parallelism because of the same reasons as

discussed for Frame Level Seek library.

 Figure 15: Encode Library State Machine

There are three major structures used in the implementation which keep reference

of the FFmpeg structures and introduce some of their own member objects. These are (1)

out_context_type, (2) ip_context_typ,e and (3) dec_context_type.

The op_context_type data structure is responsible for storing the encoder data

members. The ip_context_type data structure is passed by the application to encode layer

for setting the parameters for encoding. The dec_context_type data structure maintains the

information required for decoding the input data passed. The data members are listed in

Tables 16-18, respectively.

40

Table 16: Members of op_context_type Structure
Member Description
1 EncodeFmtCtx* Reference to FFmpeg AVFormatContext structure
2 EncCodecCtx* Reference to FFmpeg AVCodecContext structure

3 DecCtx* Reference to Encode dec_context_type structure

4 ipCtx* Reference to Encode ip_context_type structure

5 img_convert_ctx* Reference to FFmpeg SwsContext structure

6 myAVTIMEBASEQ Structure to store rational values

7 St* Reference to FFmpeg AVStream structure

8 g_emulate_pts Counter to store number of frames

9 Tmp_pic* Reference to Internal Buffer

10 Outbuf* Reference to Internal Buffer

11 picture_buf* Reference to Internal Buffer

12 Dump* Reference to Internal log file

Table 17: Members of ip_context_type Structure
Member Description
1 mpeg_type 1 for MPEG-1 and 2 for MPEG-2
2 out_width Required width by application

3 out_height Required height by application

4 Out_bit_rate Required bit rate by application

5 Out_gop_size Required GOP size by application

6 out_max_b_frames Required Maximum B- Frames by application

7 in_filename* Input file name to open

8 out_frame_num Frame rate numerator

9 out_frame_den Frame rate denominator

10 is_hd 1 if video to be encoded is HD, 0 otherwise

41

Table 18: Members of dec_context_type Structure
Member Description
1 DecCodecCtx* Reference to FFmpeg AVCodecContext structure
2 DecPicture* Reference to FFmpeg AVFrame structure

3 Size Size of the decoded frame

4 Frame Count of the decoded frames

4.4 Encode Library File Structure

The current implementation consists of three files, encode_ff.h, which contains the

declarations of functions and all data structures. This file is also used as an interface for

exporting symbols if compiled as a dynamically linked library.

All the APIs visible to the application layer are defined in the file encode_ff.c.

Certain applications currently using this library are: (1) putframes_ff.exe, which provides

support for encoding raw data from memory reference, (2) cap.exe, an application used for

real time encoding of data captured from video card, and (3) SEndoPaste.dll which is built

specifically to provide feature of encoding pre-encoded video data into a different format

(Transcoding).

4.5 API Implementation Details

In the Encode engine there is a set of four APIs currently visible to the application

developer, which includes

Table 19: API’s Exported by Encode Library
Category API Return Value Parameter’s
1

Initialization
en_init () Void void

2 en_enc_setup () en_error_type
out_context_type *,
ip_context_type*

3 Exiting en_close_vid() en_error_type out_context_type*

4 Encoding en_enc_frm () en_error_type out_context_type*, AVFrame*

42

The en_error_type en_enc_setup(out_context type *, ip_context_type*) encode API is

called after en_init ()encode. This API wraps fifteen of the underlying FFmpeg APIs and four

of Encode library internal functions. The pseudo code is:

Figure 16: en_encode_setup() Pseudo Code

The return type “en_error_type” is defined to return only two values,

EN_FAILURE encode and EN_SUCCESS encode. Appendix C has the detailed implementation

of this API. To encode a specific frame, we call (c) en_error_type en_enc_frm

(en_Context_Struct*, AVFrame*) encode; which takes reference to the out_context_type encode

structure already allocated and reference to the AVFrame FFmpeg structure which the

application has to pass. The pseudo code is given in Figure 17.

Figure 17: en_enc_frame() API Pseudo Code

en_error_type en_enc_setup(out_context_type *, ip_context_type*) {
1. Allocate memory for out_context_type structure.
2. Is video to be encoded in MPEG-1 format?

i. NO:
1. Find MPEG-2 encoder.

ii. YES:
1. Find MPEG-1 encoder.

3. Allocate memory for Codec context structure.
4. Find container for encoder.
5. Allocate memory for Format context (container) structure.
6. Allocate a new Video Stream.
7. Set Codec and Format parameters according to ip_context_type structure.
8. Initialize and open Decoder.
9. Allocate memory for internal buffers.
10. Open encoder.
11. Write Header information according to the format.
12. Return EN_SUCCESS.

}

en_enc_frm(en_Context_Struct *op_context,AVFrame *ip_frame){
1. Is input data in Raw format ?

a. YES
i. Goto 3

b. NO
i. Decode data in Raw Format.

2. Scale Raw Data with input parameters.
3. Encode data in required format.
4. Initialize data packet.
5. Point packet data field to encoded frame data field.

6. Write packet to the container in appropriate stream.
7. Return.

}

43

The API (d) en_error_type en_close_vid (en_Context_Struct *) encode is used to

close all references, free allocated memory, and flush out remaining frames in the internal

FFmpeg encoder buffers.

Since the encoder stores certain frames for future reference, it becomes necessary

for the encoder to flush the data stored. This is achieved by calling the API int

avcodec_encode_video(AVCodecContext *, uint8_t *, int, AVFrame *) FFmpeg with NULL

passed as the reference frame to be encoded i.e. the fourth parameter, on success we write

the frame to the stream by calling int av_interleaved_write_frame(AVFormatContext *,

AVPacket *) FFmpeg.

44

4.5.1 Encode Library Engine

Figure 18: Encode Library Structure

45

4.5.2 Encode Library Data Dependency

Figure 19: Encode Library Data Dependency

Custom Encode

46

CHAPTER 5: MOTION VECTOR EXTRACTION LIBRARY

In this chapter we focus on the architecture, design, implementation and state

machine involved in our motion vector extraction library. We focus on different algorithms

implemented in FFmpeg code base for motion vector calculation for video encoded with

MPEG-1 and MPEG-2 encoders. We describe the APIs exposed by this library for

application developers. Next, we present the internal data structures maintained for motion

vector calculation. We will also focus on the FFmpeg APIs used, their implementation, and

use cases. We will use MV for Motion Vectors henceforth.

5.1 Limitations of Motion Vector Extraction in FFmpeg

Currently, there is no provision in FFmpeg distribution to expose Motion Vector

(MV) calculated during encoding and decoding to the application. FFmpeg is designed to

initialize an encoder or decoder during runtime. The upper layer (Management), depending

upon the parameters passed by the application, chooses the specific encoder or decoder

from a registered list. This list depends upon the parameters passed during compilation in

the .configure file.

The encoder chosen is then initialized and all the relevant data structures are

populated. Since the calculation of MV is an integral part of MPEG standard, there are

certain other codecs such as Real Media, Quick time, and Metroska, which have their own

algorithms for reducing redundant data. So the entire framework for MV calculation is

initialized at runtime when the MPEG codec is chosen to be used.

5.2 Motion Vector Extraction Library

The MV library is designed to compute MVs from a video previously encoded with

MPEG encoder during decoding. We re-calculate MVs from the decoded frame data. This

47

framework is capable for computing MVs for an inter-coded frame (P-frame or B-frame).

Figure 20 gives a high level view of the MPEG standard for video compression.

Figure 20: High Level Structure of an MPEG Video Sequence

The various MV search algorithms implemented in FFmpeg are (1) ME_ZERO: no

search, that is use 0, 0 vectors whenever one is needed, (2) ME_FULL, (3) ME_LOG, (4)

ME_PHODS, (5) ME_EPZS: enhanced predictive zonal search, (6) ME_X1: reserved for

experiments, (7) ME_HEX: hexagon based search, (8) ME_UMH: uneven multi-hexagon

search, (9) ME_ITER: iterative search, (10) ME_TESA: transformed exhaustive search

48

algorithm, see Appendix B for reference. We use ME_EPZS MV estimation algorithm in

the encode library as it is supported by both H.264 and MPEG-2 decoders for playback.

5.3 Design of Motion Vector Extraction Library

The MV extraction library is designed to extract MVs from files containing video data.

This library acts as an adaptation layer between the application and FFmpeg library. Its

placement is similar to the encode library described in the previous chapter. The library has

been designed to be compatible with both FAS_FAST and FAS_SLOW. As a result, many

of the design decisions have been taken keeping the Frame Level Seek library in mind for

integration. We took the following design decisions.

1. Using static input frame buffers initialized during startup hinders the flexibility for the

application but reduces the (1) complexity of memory management for applications, (2)

runtime overhead of dynamic memory allocation, and (3) memory fragmentation

caused by continuous calls to malloc() and free () system calls of memory buffers.

2. Reusing most of the underlying FFmpeg APIs provides reduction in development time

and support from the FFmpeg community. We use mv to denote Motion Vector

extraction library function and FFmpeg to denote FFmpeg library functions hereafter.

3. Separation of public APIs that uses private functions to update internal data structures

for ease of maintenance.

5.3.1 Motion Vector Extraction Library State Machine

The MV library consists of five internal states as shown in Figure 21.

49

Figure 21: State Machine for the Motion Vector Extraction Library

(1) The library starts in the init state in which the internal buffers are initialized or

released, (2) Wait state can be reached either after the Flush state or after the init state

before any frame is decoded, (3) Decode state is reached when the application decoded a

frame from the video calls the MV extraction function. The library can return to the init

state from this state if there are no more frames available for decoding, (4) Compute state

provides the framework of calculation of MVs and cannot be reached from the init state,

and (5) Flush state can be reached after the MVs are calculated and the framework needs to

flush internal buffers for further computation. The library can either go to the wait state

when there is a delay by the application to provide the next frame for decoding, or the init

state when there are no more frames available.

The MV extraction library provides a set of four APIs (Table 20) to the application

developer for integration. It uses the MPEG decoder internally to decode the video stream

into frames to get data for re-calculation of MVs. The FFmpeg API int

avcodec_decode_video(AVCodecContext *, AVFrame *, int *, const uint8_t *, int) is used

by the MV extraction library for decoding purpose. It also implements two structures (1)

mv_param_struct and (2) mv_context_struct for book keeping, implementing the internal

state machine, and decoding and parameter passing from the application. These are

explained in Table 21 and Table 22, respectively.

50

Table 20: API’s Exported by Motion Vector Extraction Library
Category API Return Value Parameter’s
1

Initialization

mv_initialize () Void Void

2 mv_open_video () mv_error_type
mv_context_type**,
mv_parameter_type*

3 Exiting mv_close_video () void mv_context_type*

4 Extraction mv_extract () mv_error_type mv_context_type*

Table 21: mv_context_struct Data Members
Member Description
1 format_context* Reference to FFmpeg AVFormatContext structure
2 codec_context* Reference to FFmpeg AVCodecContext structure

3 frame_buffer* Reference to FFmpeg AVframe structure

4 current_frame_index Current frame number decoded

5 stream_idx Video stream index

6 is_video_active True if video is active, false otherwise

7 is_frame_available True if there are frames left, false otherwise

8 out_file_handle* Reference to a file handle to store MV

9 mv_type Type of MV to extract

Table 22: mv_param_struct Data Members
Member Description
1 in_file_path* Reference to a file handle to extract MV from
2 out_file_path* Reference to a file handle to store MV to

3 mv_type_char* Reference to the type of frame to extract MV from

5.4 Motion Vector Extraction Library File Structure

The library source code is divided into 3 files. (1) ffmpeg_mv_extract.h, (2)

ffmpeg_mv_extract.c, and (3) mv_extract_example.c. The ffmpeg_mv_extract.h contains

all the global declarations and macro definitions. This file acts as the interface for the

motion vector extraction library as it exports all the API signatures. The motion vector

51

extraction implementation is in ffmpeg_mv_extract.c, which also contains the code for

decoding frames. Last, mv_extract_example.c is a small command-line application

provided along with the library for testing purposes.

5.5 API Implementation Details

For mv_error_type mv_open_video (mv_context_ref_type *, mv_param_struct)MV,

void mv_initialize ()MV, and void mv_close_video (mv_context_type *) MV, refer to Fast

Frame Level Seek library APIs fas_open_video()FAS, fas_initialize()FAS , and

fas_close_video()FAS , respectively since they are similar.

The mv_error_type mv_extract (mv_context_type *) API performs re-calculation of

motion vectors from the decoded frame data. This API uses six private MV extraction

library functions implemented and calls four FFmpeg APIs mainly exposed to application

for decoding and flushing purposes. The pseudo code for this library is shown in Figure 22.

 Figure 22: Motion Vector Extraction Pseudo Code

mv_error_type mv_extract (mv_context_type *) {
1. Is frame available?

a. YES
i. Extract next frame in internal buffer.

ii. Go to 2.
b. NO

i. Go to 3.
2. Is it an I-frame?

a. YES
i. Flush internal buffers.

ii. Go to 1.
b. NO

i. Get Frame Type (P or B).
ii. Get Macro Block Height.
iii. Get Macro Block Width.
iv. Get Macro Block Stride.
v. Compute Motion Vector Stride.

vi. Get Direction for Motion Vector calculation.
vii. Compute Pix Fmt. Type.

viii. Is there a motion vector for this coordinate?
1. NO

a. Compute Block Size.
b. Fill default values for no motion

vectors.
c. Save Motion Vectors.

2. YES
a. Compute Block Size.
b. Compute Motion Vectors.
c. Save Motion Vectors.

3. Free buffers and close the video.
}

52

When we extract a frame, the frame is stored in an array of pointers to integers

(uint8_t *data [4] FFmpeg), in which the 4 pointers represent four data planes. The fourth

data plane (i.e., data [3]) is the Alpha plane. This data is stored in AVframe FFmpeg structure

which is stored as a reference in frame_buffer* FFmpeg and in the mv_context_structMV. To

compute macro blocks, we need to first compute the interpolation precision, denoted by

shift MV (shift MV = 1 + s->quarter_sample MV). The value of quarter_sample MV can be either

0 or 1. As MVs always have a fractional-sample precision, e.g. a vector of (0.5, 0) indicates

translating the video by half a pixel (interpolating between samples in the reference frame),

where quarter_sample of 1 means the precision of 0.25, and 0 means the precision of 0.5.

The numbers in motion_val[]FFmpeg (Motion Vector table) are fixed-point representations of

those fractional vectors.

 Figure 23: Macro Block Structure

The motion estimation algorithms are specified by the field me_method FFmpeg. The

various search algorithms supported by FFmpeg are listed in Section 5.2. To get motion

vectors of a compressed frame like P-frame, the previous reference frame is reconstructed.

We get the referenced frame from int8_t *ref_index [2] FFmpeg given in the AVframe FFmpeg

structure which is an array of 2 pointers, populated as required. The motion vectors are

stored in int16_t (*motion_val [2]) [2] FFmpeg table which is an array of 2 pointers to an

array of 2 integers. This array is a 3 dimensional array, which is accessed using mv

[arg1][arg2][arg3] FFmpeg.

53

Table 23: Description of Motion Vector Buffer
Argument Value Description

1 arg1
0 Visualizes forward predicted MVs of P frames
1 Visualizes forward and backward predicted

MVs of B frames

2 arg2

MV_TYPE_16X16 1 MV for the whole macro block
MV_TYPE_8X8 4 MVs for one macro block
MV_TYPE_8X16 2 MVs, one per 8x16 block
MV_TYPE_16X8 2 MVs, one per 16x8 block

3 arg3
0 X Direction
1 Y Direction

Figure 24: Motion Vector Calculation Code Snippet

The output of the motion vectors extraction library is given in the following format.

mb_size : sx, sy, dx, dy: pix_fmt, frame_ type: frame_num

where mb_size is the macro block size. The top-left corner of a frame has the coordinate

(0,0). Fields sx and sy are the absolute x and y pixel coordinates of the current frame; dx

and dy are the absolute x and y coordinates of the matching block in the referenced frame;

pix_fmt can either be CHROMA_420, CHROMA_422, or CHROMA_444 depending on the

codec pixel format, which can be PIX_FMT_YUVJ422P or PIX_FMT_YUV420P in case

of MPEG-2, See the Appendix B; frame_ type is the type of the frame which can be either

P or B. A P-frame has inter-coded blocks with forward predicted motion vectors or intra-

coded blocks. A B-frame has inter-coded blocks with backward predicted motion vectors in

1. mv_sample_log2MV = 4- pict->motion_subsample_log2FFmpeg
2. mb_height MV = video_height/16
3. mb_width MV = video_width/16
4. 0 < mb_y MV < mb_height MV
5. 0 < mb_x MV < mb_width MV
6. sx MV = mb_x MV *16 + 8;
7. sy= mb_y MV *16 + 8;
8. xy MV = (mb_x MV + mb_y MV *mv_stride MV) << mv_sample_log2 MV;
9. mx MV = (pict->motion_val FFmpeg [direction FFmpeg][xy][0]>>shift FFmpeg) + sx;
10. my MV = (pict->motion_val[direction FFmpeg][xy][1]>>shift FFmpeg) + sy;

54

addition to the type of blocks in P-frames. Last, frame_num is the frame number of the

current frame in the display order.

Table 24: Description of Motion Vector Parameters
Member Value Macro Block Size

1 mv_sample_log2

0 16x16
1 8X8
2 4X4
3 2X2

2 sx Left X offset value of a macro block

3 sy Top Y offset value for a macro block

55

5.5.1 Motion Vector Library Engine

Figure 25: Engine of the Motion Vector Extraction Library

56

5.5.2 Motion Vector Library Data Dependency

Figure 26: Motion Vector Extraction Library Data Dependency

Custom MV Library

57

CHAPTER 6: EXPERIMENTATION AND PERFORMANCE
MEASUREMENT

This chapter presents results of various tests conducted to measure stability,

performance, and usability of (1) Frame Level Seek (FAS_FAST) Library, (2) Frame Level

Seek (FAS_SLOW) Library, (3) Encode Library, and (4) Motion Vector Extraction

Library. We discuss various applications that were integrated with these libraries to test

their stability and usability. We describe the test environments and the properties of videos

taken from five different categories. We show various performance measurement

comparisons between the FFmpeg library and the MainConcept library (referred as MC*

henceforth). The performance metrics are memory utilization, CPU utilization, PSNR

comparison, and upfront load time which is the wait time before subsequent functions are

ready for use.

6.1 Experimental Environment

The comparison experiments were conducted on two different sets of libraries,

FFmpeg and MC* both built for Windows. FFmpeg libraries have been built using the latest

distribution, version 20536. The experiments were performed on two different Windows

machines.

Table 20: Hardware Profiles of Test Machines

Machine Operating
System

CPU

CPU Address
bus

 Freq
(GHz)

RAM
GB.

1 Inslab.cs.iastate.edu
Windows-XP

SP3
Intel-
Xeon

32 bit 3.60 2

2 Bigvision.cs.iastate.edu
Window-7

Professional
Intel-
Xeon

64 bit 4.00 6

We used twenty-five different videos from the following categories. The videos in

categories 2, 3, 4 and 5 were captured using a DeckLink video capture card. The properties

of these videos are described in Table 21. All videos were captured without audio stream

because the FFmpeg Frame Level Seek library currently does not support seek in videos

58

with audio data. Colonoscopy videos were captured from routine colonoscopy procedures

using a WinFast TV Expert 2000 capturing card.

Table 21: Description of Test Videos

Profile Name
Duration

(Sec)

Dimension
(Pixels)

Width x Height

Frames

1
Fujinon

Colonoscopy (1)

Fuji_1.mpg 812 720 x 480 24,429
2 Fuji_3.mpg 1,326 720 x 480 39,748
3 Fuji_9.mpg 2,147 720 x 480 64,346
4 Fuji_36.mpg 1,125 720 x 480 32,987
5 Fuji_53.mpg 1,944 720 x 480 40,303
6

Animation (2)

Simpsons_1.avi 1,315 624 x 352 32,896
7 Simpsons_2.avi 1,295 624 x 352 32,391
8 Simpsons_3.avi 1,284 624 x 352 32,124
9 Simpsons_4.avi 1,284 624 x 352 32,124
10 Simpsons_5.avi 1,281 624 x 352 32,136
11

Low Motion
(3)

Tonight_1.avi 2,685 624 x 352 64,638
12 Tonight _2.avi 2,685 624 x 352 64,645
13 Tonight _3.avi 2,590 624 x 352 64,786
14 Tonight _4.avi 2,685 624 x 352 64,442
15 Tonight _5.avi 2,680 624 x 352 64,296
16

High Motion

(4)

Soccer_1.avi 7,689 640x368 77,590
17 Soccer_2.avi 3,214 640x368 70,414
18 Soccer_3.avi 3,273 640x368 34,404
19 Soccer_4.avi 6,227 640x512 39,976
20 Soccer_5.avi 5,984 640x512 20,020
21

High Definition

(5)

Dsp_Hsw_1.avi 2,494 1280x720 20,020
22 Dsp_Hsw_2.avi 2,540 1280x720 20,020
23 Dsp_Hsw_3.avi 2,488 1280x720 20,020
24 Dsp_Hsw_4.avi 2,488 1280x720 20,020
25 Dsp_Hsw_5.avi 2,483 1280x720 20,020

Profiling was performed with AMD’s Codeanalyst---a GUI-based code profiler for

x86-based machines. It is a statistical profiler that profiles based on sampled data and it

does not affect the execution speed. It is also relatively immune to over-evaluating the cost

of small, frequently called routines or 'tight' loops. Since most of the code base is in C and

59

C++, this application was chosen to perform the profiling due to the following reasons. (1)

It is C++ based; (2) It supports Windows environment; (3) It is free; and (4) It performs

statistical profiling. Virtual Dub, an open source Windows based software, was used to

extract frames from the captured videos. All the captured videos are uncompressed videos

in AVI format, except for colonoscopy videos that are in MPEG-2 format.

Frames from the raw videos were extracted in PNG format and were used for

comparison between FFmpeg and MC* MPEG encoder. The non-HD frames were encoded

with properties: bit rate of 80,000 bps (bits per second), default dimensions, maximum

number of B- frames of 1, GOP size of 15, closed GOP, and the frame rate of 30 fps. The

HD frames were encoded with properties: bit rate of 80,000 bps, default dimension,

maximum number of B-frames of 1, a GOP size of 15 frames, closed GOP, and the frame

rate of 60 fps.

Codeanalyst requires that libraries to be profiled be built in a debug mode.

Therefore, we built our libraries for performance comparison in a debug mode. However,

we do not have MC* library in the debug mode. Therefore, specific details like function

call graphs and memory level instruction calls could not be gathered when using MC*

library. MC* could not perform seeking and encoding for High Definition (HD) videos, so

the comparison results for HD videos only contain profiling data of FFmpeg in Figures 17,

18 ,22, 23, 24 ,25 and 26.

60

Figure 16: Report Generation Procedure

6.2 Performance of Frame Level Seek FFmpeg

We used an application called getframes that decodes an MPEG-2-video into a

series of images. We built two versions of getframes: one using our FFmpeg extended

library (FAS_FAST) and another using MC* library. We ran the profiler tool to profile

FFmpeg Frame level seek library on videos from each category. The highest number of

function calls made was to the avcodec.dll library at 4.6% of all function calls. This library

contains all the functions related to decoding packets into frames. After that, among the

FFmpeg libraries, swscale.dllFFmpeg had the highest number of calls at 1.8%, with negligible

calls to avcodec.dll and avutil.dllFFmpeg. In the avcodec.dllFFmpeg, most CPU cycles were

utilized by tasks to decode the intra blocks in a frame, ff_mpeg_decode_block_intra()FFmpeg,

an FFmpeg API called by Frame level seek library. After that, the FFmpeg de-interlacing

function, avpicture_deinterlace()FFmpeg was most CPU centric. This is also an FFmpeg

function called through FAS_FAST.

61

Comparing the performance of both the FFmpeg and MC* MPEG-2 decoders, the

FFmpeg decoder is faster than MC* on both 32-bit and 64-bit x86 test machines as shown

in Figure 27 for one video of each category. Table 26 shows the detailed comparison

results on the 32-bit test machine.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Colon (64,346) Anim (32896) L-Motion (64638) H-Motion (77590) HD (20020)

Video Profile (Frame Count)

T
im

e
(S

ec
)

FFmpeg

MC*

Figure 17: Frame Extraction Time Comparison between MC* and FFmpeg

6.3 Performance of FFmpeg Encode Library

For this test, we extracted frames from raw videos into a series of PNG images,

after which they were encoded into an MPEG-2 video with an encoder application called

“putframes”. We built two versions of putframes: one using our FFmpeg extended library

and another using MC* library. We ran the profiler tool to profile the two versions of the

putframes application. The results are as follows. The highest percentage of function calls

of 29.4% was made to the FFmpeg swsscale.dll FFmpeg library. This library contains all the

functions related to decoding the packets into frames. Among the remaining FFmpeg

libraries, avcodec.dll FFmpeg was called the highest number of times, 16.8%, with negligible

calls to avformat.dll FFmpeg on both test machines.

62

In the swscale.dll FFmpeg, sws_format_name()FFmpeg, an FFmpeg API called by

en_enc_frame()FAS took the most CPU time, followed by the FFmpeg motion search API,

ff_epzs_motion_search()FFmpeg, which is also called through ff_enc_frame()FAS.

Comparing the performance of both the FFmpeg and MC* MPEG-2 encoders, the

FFmpeg encoder performs faster than MC* on a 32-bit x86 architecture, whereas the MC*

encoder performs faster than FFmpeg encoder on a 64 bit x86 architecture. Comparison

results between the two libraries are shown in Table 29.

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500

Colon
(64,346)

Anim
(32896)

L-Motion
(64638)

H-Motion
(77590)

HD
(20020)

Video Profile (Frame Count)

T
im

e
(S

ec
)

FFmpeg
MC*

Figure 18: Comparison between FFmpeg and MC*Encoding Time

6.4 PSNR Comparison between MC* and FFmpeg

Video quality is a characteristic of a video passed through a video transmission or

processing system, a formal or informal measure of perceived video degradation (typically,

compared to the original video). Video processing systems may introduce some distortion

or artifacts in the video signal. Video quality of codec is very important. Measurement of

video quality can be made in terms of objective measurement or subjective measurement.

For objective measure of quality of a digital video processing system (e.g. video

codec like DivX, XviD), the signal-to-noise ratio (SNR) and peak signal-to-noise ratio

(PSNR) between the original video signal and signal passed through this system are often

used. PSNR is the most widely used objective video quality metric. It describes the ratio

63

between the maximum possible power of a signal and the power of corrupting noise that

affects the fidelity of its representation. Because many signals have a very wide dynamic

range, PSNR is usually expressed in terms of the logarithmic decibel scale. To compute

PSNR, we first need to calculate the mean squared error (MSE) between the original video

sequence and the reconstructed sequence. For video sequences, MSE is simply the average

squared pixel-by-pixel difference, which is a measure of the noise power introduced. Given

the MSE, PSNR is defined as PSNR = 10 log (v2/MSE) where the log is to base 10 and v is

the maximum intensity value of the video signal. For example, for 8-bit intensity values, v

= 255. The higher PSNR indicates a better performance. However, PSNR does not reflect

subjective quality of videos as perceived by humans.

We computed PSNR values using the static build of FFmpeg. Comparing videos

encoded with both FFmpeg and MC* encoders, FFmpeg performs better in all our test

categories. The results are depicted in Figures 19-23.

32

33

34

35

36

37

38

Fuji_1.m pg Fuji_3.mpg Fuji_9.mpg Fuji_36.mpg Fuji_53.mpg

Video Title

P
S

N
R

 V
al

ue

FFmpeg

MC*

Figure 19: PSNR Comparison for Colonoscopy Videos

64

29.4

29.6

29.8

30

30.2

30.4

30.6

30.8

31

Sim
ps

on
s_

1.
av

i

Sim
ps

on
s_

2.
av

i

Sim
ps

on
s_

3.
av

i

Sim
ps

on
s_

4.
av

i

Sim
ps

on
s_

5.
av

i

Video Title

P
S

N
R

 V
al

ue

FFmpeg

MC*

Figure 20: PSNR Comparison for Animated Videos

33.4

33.6

33.8

34

34.2

34.4

34.6

34.8

35

Tonight_1.avi Tonight_2.avi Tonight_3.avi Tonight_4.avi Tonight_5.avi

Video Title

P
S

N
R

 V
al

ue
s

FFmpeg

MC*

Figure 21: PSNR Comparison for Low Motion Videos

65

28

29

30

31

32

33

34

35

36

Soccer_1.avi Soccer_2.avi Soccer_3.avi Soccer_4.avi Soccer_5.avi

Video Title

P
S

N
R

 V
al

ue
s

FFmpeg

MC*

Figure 22: PSNR Comparison for High Motion Videos

0

5

10

15

20

25

30

35

40

45

Dsp_Hsw_1.avi Dsp_Hsw_2.avi Dsp_Hsw_3.avi Dsp_Hsw_4.avi Dsp_Hsw_5.avi

Video Title

P
S

N
R

 V
al

ue
s

FFmpeg

MC*

Figure 23: PSNR for High Definition Videos

6.5 Frame Level Seek and Encoding Comparison between MC* and
FFmpeg

Comparing with FFmpeg, the MC* library mcmpeg.dll, containing functionalities

for the decoder was used 43% of the time. FFmpeg utilized less memory compared to MC*,

both in encoding and extracting frames from an MPEG-2 encoded video. Also FFmpeg

66

utilized less CPU cycles as compared to MC* for both test machines. The results are listed

in Table 26 and Table 29 in the Appendix C, respectively.

0 5 10 15 20

Colonoscopy

Animation

Low Motion

High Motion

High Definition

V
id

eo
 P

ro
fil

es

Main Memory (Mb)

MC*
FFmpeg

Figure 24: Comparison of Memory Utilization between Two Versions of putframes

0 20 40 60 80 100

Colonoscopy

Animation

Low Motion

High Motion

High Definition

V
id

eo
 P

ro
fil
es

% CPU Utelization

MC*

FFmpeg

Figure 25: Comparison of CPU Utilization between Two Versions of putframes

67

44 45 46 47 48 49 50

Colonoscopy

Animation

Low Motion

High Motion

High Definition

V
id
eo

 P
ro

fil
es

% CPU Cycles

MC*
FFmpeg

Figure 26: Comparison of CPU Utilization between Two Versions of getframes

0 5 10 15 20

Colonoscopy

Animation

Low Motion

High Motion

High Definition

V
id

eo
 P

ro
fil

es

Memory (Mb)

MC*

FFmpeg

Figure 27: Comparison for Memory Utilization between Two Versions of getframes

6.6 Upfront Load Time Comparison between FFmpeg Frame Level
Seek Fast and Slow

As discussed in Chapter 3, we developed two different versions of FFmpeg Frame

level seek: Fast (FAS_FAST) and Slow (FAS_SLOW). FAS_SLOW does generation of a

seek table before opening a video file, enabling it to seek to a particular frame but

increasing the load time as compared to FAS_FAST because it has to decode the header of

every I-frame present in the video stream. The FAS_FAST does a calculation of the seek

table on the fly, which makes the load time negligible, but it is restricted to a certain type of

68

GOPs. Table 27 in the Appendix C shows the average time comparison between the

FAS_FAST and FAS_SLOW to load the test video files.

We measured the time taken to generate the seek table generation for each file as

the performance metric. Since FAS_SLOW computes DTS value for all I-frames before

opening a file, it takes longer time to load the file. The FAS_FAST and FAS_SLOW gave

the same results for seek comparison in case the test videos were encoded with specific

parameters as discussed in Section ‘3.6.1’. The accuracy of frame level seek was tested by

extracting the frames through “getframes” built for both FAS_FAST and FAS_SLOW

versions. The time calculated is the average upfront load time of videos from each

category. Figure 28 shows the time to build the seek table used by FAS_SLOW.

0

20

40

60

80

100

120

Colo
no

sc
o

py

Anim
a
tio

n

Lo
w M

ot
io

n

Hig
h

M
ot

io
n

Hig
h

Def
in

iti
on

Video Profiles

T
im

e
(S

ec
)

Index table generation time

Figure 28: Time to Build Seek Table of FAS_SLOW

6.7 Integration with Applications

The FFmpeg Frame level seek Fast and Encode libraries were built as separate dlls

for Windows platform compatible with both 32 bit and 64 bit architectures. We

successfully integrated these libraries with six different applications (1) SvideoPlayer Non

Real Time; (2) SvideoPlayer Real Time; (3) SendoPaste; (4) EmCapture; (5) getframes_ff,

and (6) putframes_ff.

• SvideoPlayer is a Java based video player that calls our underlying Frame level seek

library to play video streams. SvideoPlayer provides interface for playing a media

69

file up to 32x fast forward and 2x reverse. It also provides an interface for

specifying the frame number to jump to. It uses the APIs exposed by Frame Level

Seek library as discussed in Section 3.4 to perform these tasks. Figure 29 shows the

user interface that calls SVideoPlayer APIs. The real-time version differs from the

non-real time version as it can play a video stream while it is being captured

whereas the non-real time version can only play videos that have already been

captured and saved into a file.

Figure 29: SvideoPlayer Components: (1) Frame number Box (2) Trick Play,
supporting -2x (3) Play (4) Trick Play supporting +2x, +4x, +8x, +16x and +32x.

• SendoPaste is another dynamic linked library written in Java that supports (a)

cutting a video file into smaller clips; (b) joining different video clips; and (c)

transcoding a video clip into MPEG-1 or MPEG-2 format.

70

Figure 30: SendoPaste Components; (1) Codec selection option box (2) Merge option

selection box (3) Status bar (4) Clip generation button.

• EmCapture is an application that captures video from a video capturing device and

encoding it into MPEG-1 or MPEG-2 video files. It uses the Encode library.

• getframes_ff is a command line application to extract frames from a video file in

JPEG, PNG, BMP and GIF format. This application uses FAS_FAST and

FAS_SLOW libraries.

• putframes_ff is a command line application providing feature to encode frames

available in JPEG, PNG, BMP and GIF format into an MPEG-2 video file

according to the parameters passed. This application uses the Encode library with

this application.

71

CHAPTER 7: CONCLUSION AND FUTURE WORK

We have discussed the extended FFmpeg library that supports frame accurate seek,

encoding, decoding, and motion vector extractions for MPEG-2 videos. We reported

performance of the extended FFmpeg library compared to a third party commercial

software development kit. We successfully integrated the library with six existing

applications.

Major challenges faced during the design of the three libraries were separation of

functionality on the basis of internal private functions and external exposed APIs. We

learnt the fundamentals of identifying and separating individual modules in large software

on the basis of functionality and policy.

Large amount of memory fragmentation and reduction in performance of the library

when used for a very long time lead us to the decision of using static internal buffers

instead of dynamic allocation.

Practicing software engineering principle of following a specific pattern of

nomenclature for APIs, data members and data structures from the beginning helped in

reducing development time.

Testing the APIs individually, after integration, as a product and after integration

with the application exposed over 20 bugs/issues. Nevertheless, there are still some

limitations to be addressed as future work.

• The current FFmpeg Frame Level Seek Fast library supports video streams only.

Future work should support MPEG-2 files with audio.

• The library currently supports closed GOP only. Future work should also support

open GOP.

• From the analysis of PSNR for FFmpeg and MC*, the overall quality provided by

FFmpeg is better than that of MC* except the first and the last GOPs. Further

investigation is needed.

• The fast rewind algorithm used in SvideoPlayer is not very efficient, resulting in

50% much higher number of frames extracted compared to the fast forward play.

Due to this, the CPU and memory utilization increases significantly during the fast

rewind in comparison to normal or fast forward playback.

72

• Lack of debugging framework for Windows dlls was a major hindrance during

development. GDB, a Linux based debugger was used to debug issues and then

cross compile the library for windows platform. It is a bottleneck in the

development process. Integrating “Wascana" to view debug prints can be a very

helpful tool, reducing the cross-compilation time during development.

• The biggest challenge faced during development was lack of documentation and

support. Since the major area of focus was MPEG-1 and MPEG-2 codec and

MPEG-PS format, extension of documentation beyond this area of interest is still

missing.

73

APPENDIX A: FFmpeg COMPILATION

This chapter provides an introduction to three different licenses: (1) GPL, (2)

LGPL, and (3) FFmpeg. Next, we describe all the steps taken to port the FFmpeg library

(which is natively built under C99) from Linux environment to Windows environment

(Microsoft Windows Studio C++). A detailed description of all the built libraries, their

specific tasks in the software stack are also be discussed. A brief discussion on various

bugs (both in FFmpeg and the new libraries) which were fixed during the development of

the new libraries are provided.

A.1 GPL License

GNU stands for GNU general public license. It is a free, copy left license for

software and other kinds of works. The licenses for most software and other practical

works are designed to take away freedom to share and change the works. By contrast, the

GNU General Public License is intended to guarantee freedom to share and change all

versions of a program--to make sure it remains free software for all its users. The Free

Software Foundation uses GNU General Public License for most of the software; it applies

also to any other work released this way by its authors.

Proprietary software developers have the advantage of money; free software

developers need to make advantages for each other. Using the ordinary GPL for a library

gives free software developers an advantage over proprietary developers: a library that they

can use, while proprietary developers cannot use it.

A.2 LGPL License

LGPL stands for Lesser General Public License. It is used by a few (not by any

means all) GNU libraries. The latest version is version 3. Using the Lesser GPL permits use

of the library in proprietary programs; using the ordinary GPL for a library makes it

available only for free programs. Using the ordinary GPL is not advantageous for every

74

library. There are reasons that can make it better to use the Lesser GPL in certain cases.

The most common case is when a free library's features are readily available for proprietary

software through other alternative libraries. In that case, the library cannot give free

software any particular advantage, so it is better to use the Lesser GPL for that library.

A.3 FFmpeg License

FFmpeg is licensed under the GNU Lesser General Public License (LGPL) version

2.1 or later. However, FFmpeg incorporates several optional parts and optimizations that

are covered by the GNU General Public License (GPL) version 2 or later. If those parts get

used the GPL applies to all of FFmpeg. Using the GNU GPL will require that all the

released improved versions be free software. To generate the LGPL compliant libraries, we

are required to, follow certain steps, including:

(1) Compile FFmpeg without "--enable-gpl" and without "--enable-nonfree".

(2)Use dynamic linking (on windows, this means linking to dlls) for linking with FFmpeg

libraries. (3) Distribute the source code of FFmpeg, no matter if you modified it or not.

(4) make sure the source code corresponds exactly to the library binaries you are

distributing. (5) Run the command "svn diff . libswscale > changes.diff" in the root

directory of the FFmpeg source code to create a file with only the changes. (6) Explain how

you compiled FFmpeg, for example the configure line, in a text file added to the root

directory of the source code. (6) Use tar ball or a zip file for distributing the source code.

(7) Host the FFmpeg source code on the same web server as the binary you are distributing.

(8) Add "This software uses code of FFmpeg licensed

under the LGPLv2.1

and its source can be downloaded here" to every page

in your website where there is a download link to your application. (9) Mention "This

software uses libraries from the FFmpeg project under the LGPLv2.1" in your program

"about box". (11) Mention in your EULA that your program uses FFmpeg under the

LGPLv2.1. (12) If your EULA claims ownership over the code, you have to explicitly

mention that you do not own FFmpeg, and where the relevant owners can be found. (13)

Remove any prohibition of reverse engineering from your EULA. (14) Do not misspell

75

FFmpeg (two capitals F and lowercase "MPEG") (15) Do not rename FFmpeg dlls to some

obfuscated name, but adding a suffix or prefix is fine (renaming "avcodec.dll" to

"MyProgDec.dll" is not fine, but to "avcodec-MyProg.dll" is). (16) go through all the items

again for any LGPL external library you compiled into FFmpeg (for example LAME). (17)

make sure your program is not using any GPL libraries (notably libx264).

A.4 Doxygen documentation

Doxygen is a documentation system for C++, C, Java, Objective-C, Python, IDL

(Corba and Microsoft flavors), Fortran, VHDL, PHP, C#, and to some extent D. It is an

industry standard for documenting large scale projects.

It can generate an on-line documentation browser (in HTML) and/or an off-line

reference manual from a set of documented source files. There is also support for

generating output in RTF (MS-Word), PostScript, hyperlinked PDF, compressed HTML,

and Unix man pages. The documentation is extracted directly from the sources, which

makes it much easier to keep the documentation consistent with the source code. Doxygen

can also extract code structure from undocumented source files. This is very useful to

quickly find your way in large source distributions. Visualization of the relations between

the various elements by means of dependency graphs, inheritance diagrams, and

collaboration diagrams, can be generated automatically.

Doxygen is developed under Linux and Mac OS X, but is set-up to be highly

portable. As a result, it runs on most other Unix flavors as well. Furthermore, executables

for Windows are also available. Many of the open source libraries like GNU Standard C++

Library, KDE, MySQL, Samba, etc are documented with Doxygen.

Since there is no documentation available for FFmpeg except from some mailing

lists of m-player, we used Doxygen to document some major useful parts of FFmpeg.

Documents have been generated for on-line documentation browser (in HTML) which will

be used as a Wiki and can be updated from different users.

76

A.5 Porting FFmpeg on Windows

FFmpeg does not build under Microsoft Visual Studio C++ compiler because

MSVC++ does not adhere to C99, which FFmpeg developers do. Thus, the entire build

process of FFmpeg was done with MSys+MinGW.

The libraries created by FFmpeg with MinGW are usable just like any other library

(either static or shared), with a C99 compiler. With a modified build framework to behave

like a C99 system, it was possible to use FFmpeg libraries with MSVC++.

However, it was not possible to debug the libav* libraries, since MSVC++ does not

recognize the debug symbols generated by GCC.

A.5.1 Installing MSys

Get packages (1) MSYS-1.0.11.exe and (2) coreutils-5.97-MSYS-1.0.11-

snapshot.tar.bz2. The first step is to install MSYS.exe in C:\msys\ directory. Then, it is

required to unpack the file and copy coreutils-5.97\bin\pr.exe to C:\msys\bin\.

A.5.2 Installing MinGW

The following packages are required: (1) GNU Binutils BIN v2.20.1, (2) MinGW

Runtime DLL v3.18, (3) MinGW Runtime DEV v3.18 , (4) MinGW API for MS-Windows

DEV v3.14 to install MinGW, (5) GCC Version 4, and (5) GCC Full v4.4.0. Extract these

packages to C:\MinGW\. These files in C:\MinGW\bin\ need to be renamed,

 c++-sjlj.exe to c++.exe, cpp-sjlj.exe to cpp.exe, g++-sjlj.exe to g++.exe and gcc-sjlj.exe to

gcc.exe

A.5.3 Downloading FFmpeg from SVN

Install TortoiseSVN, the source code for FFmpeg, which can be downloaded from

“svn://svn.mplayerhq.hu/ FFmpeg /trunk”

77

A.5.4 Configuration for dynamic linked libraries under LGPL

The build is done in MSys command line. Go to the directory where FFmpeg is

located. Run the command

“ . /configure --enable-shared --disable-static --enable-memalign-hack” The --enable-

memalign-hack option is necessary for FFmpeg to run MMX and SSE-optimized code on

Windows. If there are no errors, run make and make install.

A.6 Build description

FFmpeg builds 17 libraries after compilation. The following 4 libraries were used

(1) avcodec-52.dll (2) avformat-52.dll (3) avutil-50.dll and (4) swscale-0.dll. The numbers

in the name are associated with the version of distribution. Complete list of the libraries

built are described in the table below.

Table 22: FFmpeg Library Size
Index Library Size(bytes)

1 avcodec-52.32.0.dll 4,962,816
2 avcodec-52.36.0.dll 4,962,816
3 avcodec-52.dll 4,962,816
4 avcodec.dll 4,962,816
5 avdevice-52.2.0.dll 10,752
6 avdevice-52.dll 10,752
7 avdevice.dll 10,752
8 avformat-52.36.0.dll 729,088
9 avformat-52.dll 729,088
10 avformat-52.39.0.dll 729,088
11 avformat.dll 729,088
12 avutil-50.3.0.dll 75,264
13 avutil-50.dll 75,264
14 avutil.dll 75,264
15 swscale-0.7.1.dll 154,624
16 swscale-0.dll 154,624
17 swscale.dll 154,624

78

A.6.1 libavformat.dll and libavcodec.dll description

Many video file formats (AVI being a prime example) do not actually specify

which codec(s) should be used to encode audio and video data; they merely define how an

audio and a video stream (or potentially, several audio/video streams) should be

combined into a single file. This is why sometimes, when an AVI file is opened, only

sound is heard, but no picture - because the right video codec isn't installed. Thus,

libavformat deals with parsing video files and separating the streams contained in them,

and libavcodec.dll deals with decoding raw audio and video streams.

A.6.2 libswscale.dll description

FFmpeg has recently added a new interface, to handle image scaling. This new

interface is more modular and faster. This library performs highly optimized image

scaling and color space/pixel format conversion operations.

A.6.3 libavutil.dll description

It is a library containing functions for simplifying programming, including random

number generators, data structures, mathematics routines and much more.

A.6.4 libavdevice.dll description

It is a library containing input and output devices for grabbing from and rendering

to many common multimedia input/output software frameworks, including Video4Linux,

Video4Linux2, VfW, and ALSA.

A.7 Bug Reports and Issues faced in Open Source Programming

Over 20 issues/bugs were encountered during development, integration and testing

of the three modules with the applications, which were fixed and tested successfully.

79

Table 23: Bugs List
Bug # Bug List For EM-Manual, FFmpeg Status Effected Libs.

1 Memory corruption due to FFmpeg free Closed
Em-capture,
libavcodec

2 Crash in video close Closed Em-capture
3 MPEG-1,2 Selection Closed SendoPaste

4 Delay opening a video file Closed
SendoPaste/SVideo

Player
5 Delay encoding a video file Closed SendoPaste
6 Crash on Video re-open Closed SVideoPlayer

7 HD Support Closed
SendoPaste/SVideo

Player
8 De-interlace Support Closed SVideoPlayer
9 Rewind algorithm not correct Closed SVideoPlayer
10 Jitter in Video Display Closed SVideoPlayer
11 Video Freeze after long playback Closed SVideoPlayer
12 Generated clip frame loss Closed SendoPaste
13 HD Opening Crash Closed SVideoPlayer
14 HD Inaccurate Aspect Ratio Closed SVideoPlayer
15 HD crash after re-open NON-HD video Closed SVideoPlayer
16 Inverted Saved Image Closed SVideoPlayer
17 Inaccurate last frame jump Closed SVideoPlayer
18 Jump to end Bug Closed SVideoPlayer
19 Merged Video inaccurate frame seek Closed SendoPaste
20 Frame Accuracy Open SVideoPlayer

80

APPENDIX B: DEFINITIONS

B.1 AC coefficient:
Any DCT coefficient for which the frequency in one or both dimensions is non-zero

B.2 B-picture, Bi-directionally predictive-coded picture
A picture that is coded using motion compensated prediction from past and/or

future reference fields or frames

B.3 Backward compatibility
A newer coding standard is backward compatible with an older coding standard if

decoders designed to operate with the older coding standard are able to continue to operate

by decoding all or part of a bit stream produced according to the newer coding standard.

B.4 Backward motion vector
A motion vector that is used for motion compensation from a reference frame or

reference field at a later time in display order

B.5 Backward prediction
Prediction from the future reference frame (field)

B.6 Base layer
First, independently decodable layer of a scalable hierarchy

B.7 Bit stream, stream
An ordered series of bits that forms the coded representation of the data

B.8 Bit rate
The rate at which the coded bit stream is delivered from the storage medium to the

input of a decoder

B.9 Block
An 8-row by 8-column matrix of samples, or 64 DCT coefficients (source,

quantized or de-quantized)

81

B.10 Byte aligned
A bit in a coded bit stream is byte-aligned if its position is a multiple of 8-bits from

the first bit in the stream.

B.11 Byte
A sequence of 8-bits

B.12 Channel
A digital medium that stores or transports a bit stream constructed according to this

specification.

B.13 Chrominance format
The format defines the number of chrominance blocks in a macro block.

B.14 Chrominance component
A matrix, block or single sample representing one of the two color difference

signals related to the primary colors in the manner defined in the bit stream. The symbols

used for the chrominance signals are Cr and Cb.

B.15 Coded B-frame
A B-frame picture or a pair of B-field pictures

B.16 Coded frame
A coded frame is a coded I-frame, a coded P-frame, or a coded B-frame

B.17 Coded I-frame
An I-frame picture or a pair of field pictures, where the first field picture is an I-

picture and the second field picture is an I-picture or a P-picture

B.18 Coded P-frame
A P-frame picture or a pair of P-field pictures

B.19 Coded picture
A coded picture is made of a picture header, the optional extensions immediately

following it, and the following picture data. A coded picture may be a coded frame or a

82

coded field. Coded video bit stream is a coded representation of a series of one or more

pictures as defined in this specification.

B.20 Coded order
The coded order is the order in which the pictures are transmitted and decoded. This

order is not necessarily the same as the display order of the pictures.

B.21 Coded representation
A data element as represented in its encoded form.

B.22 Coding parameters
Coding parameters are user-definable parameters that characterize a coded video bit

stream. Bit streams are characterized by coding parameters. Decoders are characterized by

the bit streams that they are capable of decoding.

B.23 Component
A matrix, block or single sample from one of the three matrices (luminance and two

chrominance) that make up a picture

B.24 Compression
Reduction in the number of bits used to represent an item of data

B.25 Container or Wrapper Format
It is a meta-file format whose specification describes how data and metadata are

stored (not coded). A program able to identify and open a container file might not be able

to decode the contained data. This may be caused by the opening program lacking the

required decoding algorithm, or the meta-data not providing enough information.

B.26 Constant bit rate coded video
A coded video bit stream with a constant bit rate

B.27 Constant bit rate
Operation where the bit rate is constant from start to finish of the coded bit stream

B.28 Data element
An item of data as represented before encoding and after decoding

83

B.29 DC coefficient
The DCT coefficient for which the frequency is zero in both dimensions

B.30 DCT coefficient
The amplitude of a specific cosine basis function

B.31 Decoder input buffer
The first-in first-out (FIFO) buffer specified in the video buffering verifier

B.32 Decoder
An embodiment of a decoding process

B.33 Decoding (process)
The process defined in this specification that reads an input coded bit stream and

produces decoded pictures or audio samples.

B.34 De-quantization
The process of rescaling the quantized DCT coefficients after their representation in

the bit stream has been decoded and before they are presented to the inverse DCT.

B.35 Discrete cosine transform (DCT)
Either the forward discrete cosine transform or the inverse discrete cosine

transform. The DCT is an invertible, discrete orthogonal transformation.

B.36 Display aspect ratio
The ratio height/width (in SI units) of the intended display

B.37 Display order
The display order dictates the order in which the decoded pictures are displayed.

Normally this is the same order in which they were presented at the input of the encoder.

B.38 Display process
The (non-normative) process by which reconstructed frames are displayed

84

B.39 Editing
Editing is the process by which one or more coded bit streams are manipulated to

produce a new coded bit stream. Conforming edited bit streams must meet the requirements

defined in this specification.

B.40 Encoder
An embodiment of an encoding process

B.41 Encoding (process)
A process, not specified in this specification that reads a stream of input pictures or

audio samples and produces a valid coded bit stream as defined in this specification.

B.42 Fast forward playback
The process of displaying a sequence, or parts of a sequence, of pictures in display-

order faster than real-time

B.43 Fast reverse playback
The process of displaying the picture sequence in the reverse of display order faster

than real-time

B.44 Field
For an interlaced video signal, a “field” is the assembly of alternate lines of a frame.

Therefore an interlaced frame is composed of two fields, a top field and a bottom field.

B.45 Flag
A one bit integer variable which may take one of only two values (zero and one)

B.46 Forward motion vector
A motion vector that is used for motion compensation from a reference frame or

reference field at an earlier time in display order

B.47 Forward prediction
Prediction from the past reference frame (field)

85

B.48 Frame
A frame contains lines of spatial information of a video signal. For progressive

video, these lines contain samples starting from one time instant and continuing through

successive lines to the bottom of the frame. For interlaced video a frame consists of two

fields, a top field and a bottom field. One of these fields will commence one field period

later than the other.

B.49 Frame-based prediction
A prediction mode using both fields of the reference frame

B.50 Frame period
The reciprocal of the frame rate

B.51 Frame rate
The rate at which frames are be output from the decoding process

B.52 Future reference frame (field)
A future reference frame (field) is a reference frame (field) that occurs at a later

time than the current picture in display order.

B.53 Frame reordering
Frame reordering is the process of reordering the reconstructed frames when the

coded order is different from the display order. Frame reordering occurs when B-frames are

present in a bit stream. There is no frame reordering when decoding low delay bit streams.

B.54 Group of pictures (GOP)
A notion defined only in ISO/IEC 11172-2 (MPEG-1 Video). In this specification, a

similar functionality can be achieved by the mean of inserting group of pictures headers.

B.55 Header
The header is a block of data in the coded bit stream containing the coded

representation of a number of data elements pertaining to the coded data that follow the

header in the bit stream.

86

B.56 Interlace
The property of conventional television frames where alternating lines of the frame

represent different instances in time. In an interlaced frame, one of the fields is meant to be

displayed first. This field is called the first field. The first field can be the top field or the

bottom field of the frame.

B.57 I-picture, intra-coded picture
A picture coded using information only from itself

B.58 Intra coding
Coding of a macro block or picture that uses information only from that macro

block or picture

B.59 Layer
In a scalable hierarchy denotes one out of the ordered set of bit streams and (the

result of) its associated decoding process (implicitly including decoding of all layers below

this layer).

B.60 Luminance component
A matrix, block or single sample representing a monochrome representation of the

signal and related to the primary colors in the manner defined in the bit stream. The symbol

used for luminance is Y.

B.61 Macro block
The four 8 by 8 blocks of luminance data and the two (for 4:2:0 chrominance

format), four (for 4:2:2 chrominance format) or eight (for 4:4:4 chrominance format)

corresponding 8 by 8 blocks of chrominance data coming from a 16 by 16 section of the

luminance component of the picture. Macro block is sometimes used to refer to the sample

data and sometimes to the coded representation of the sample values and other data

elements defined in the macro block header of the syntax defined in this part of this

specification. The usage is clear from the context.

B.62 Motion compensation
The use of motion vectors to improve the efficiency of the prediction of sample

values. The prediction uses motion vectors to provide offsets into the past and/or future

87

reference frames or reference fields containing previously decoded sample values that are

used to form the prediction error.

B.63 Motion estimation
The process of estimating motion vectors during the encoding process.

B.64 Motion vector
A two-dimensional vector used for motion compensation that provides an offset

from the coordinate position in the current picture or field to the coordinates in a reference

frame or reference field.

B.65 Non-intra coding
Coding of a macro block or picture that uses information both from itself and from

macro blocks and pictures occurring at other times.

B.66 P-picture, predictive-coded picture
A picture that is coded using motion compensated prediction from past reference

fields or frame

B.67 Parity (of field)
The parity of a field can be top or bottom.

B.68 Past reference frame (field)
A past reference frame (field) is a reference frame (field) that occurs at an earlier

time than the current picture in display order.

B.69 Picture
A Picture is a source, coded or reconstructed image data. A source or reconstructed

picture consists of three rectangular matrices of 8-bit numbers representing the luminance

and two chrominance signals. For progressive video, a picture is identical to a frame, while

for interlaced video, a picture can refer to a frame, or the top field or the bottom field of the

frame depending on the context.

B.70 Picture data
In variable-bitrate video, picture data is defined as all the bits of the coded picture,

all the header(s) and user data immediately preceding it if any (including any stuffing

88

between them) and all the stuffing following it, up to (but not including) the next start code,

except in the case where the next start code is an end of sequence code, in which case it is

included in the picture data.

B.71 Prediction
The use of a predictor to provide an estimate of the sample value or data element

currently being decoded

B.72 Prediction error
The difference between the actual value of a sample or data element and its

predictor

B.73 Profile
A profile is defined as subset of the syntax of this specification. In this

specification, the word “profile” is used as defined above. It should not be confused with

other definitions of “profile”.

B.74 Progressive
The property of film frames where all the samples of the frame represent the same

instances in time.

B.75 Peak signal-to-noise Ratio (PSNR)
PSNR is the ratio between the maximum possible power of a signal and the power

of corrupting noise that affects the fidelity of its representation. Because many signals have

a very wide dynamic range, PSNR is usually expressed in terms of the logarithmic decibel

scale.

B.76 Quantization matrix
A set of sixty-four 8-bit values used by the de-quantizer

B.77 Quantized DCT coefficients
DCT coefficients before de quantization; a variable length coded representation of

quantized DCT coefficients is transmitted as part of the coded video bit stream.

89

B.78 Quantizer scale
A scale factor coded in the bit stream and used by the decoding process to scale the

de-quantization

B.79 Reconstructed frame
A reconstructed frame consists of three rectangular matrices of 8- bit numbers

representing the luminance and two chrominance signals. A reconstructed frame is

obtained by decoding a coded frame.

B.80 Reconstructed picture
A reconstructed picture is obtained by decoding a coded picture. A reconstructed

picture is either a reconstructed frame (when decoding a frame picture), or one field of a

reconstructed frame (when decoding a field picture). If the coded picture is a field picture,

then the reconstructed picture is the top field or the bottom field of the reconstructed frame.

B.81 Reference field
A reference field is one field of a reconstructed frame. Reference fields are used for

forward and backward prediction when P-pictures and B-pictures are decoded. Note that

when field P-pictures are decoded, prediction of the second field P picture of a coded frame

uses the first reconstructed field of the same coded frame as a reference field.

B.82 Reference frame
A reference frame is a reconstructed frame that was coded in the form of a coded I-

frame or a coded P-frame. Reference frames are used for forward and backward prediction

when P-pictures and B-pictures are decoded.

B.83 Re-ordering delay
A delay in the decoding process that is caused by frame reordering

B.84 Reserved
The term “reserved” when used in the clauses defining the coded bit stream

indicates that the value may be used in the future for ISO/IEC defined extensions.

B.85 RGB Color Format
Different intensities of red, green, and blue are added to generate various colors.

90

RGB is not a uniform color space. RGB is not efficient since it uses equal bandwidth for

each color component. However, human eye is most sensitive to green, less sensitive to

red, and least sensitive to blue.

B.86 Sample aspect ratio, SAR
This specifies the relative distance between samples. It is defined (for the purposes

of this specification) as the vertical displacement of the lines of luminance samples in a

frame divided by the horizontal displacement of the luminance samples. Thus its units are

(meters per line) / (meters per sample).

B.87 Scalability
Scalability is the ability of a decoder to decode an ordered set of bit streams to

produce a reconstructed sequence. Moreover, useful video is output when subsets are

decoded. The minimum subset that can thus be decoded is the first bit stream in the set

which is called the base layer. Each of the other bit streams in the set is called an

enhancement layer. When addressing a specific enhancement layer, “lower layer” refer to

the bit stream which precedes the enhancement layer.

B.88 Saturation
Limiting a value that exceeds a defined range by setting its value to the maximum

or minimum of the range as appropriate

B.89 Skipped macro block
A macro block for which no data is encoded

B.90 Slice
A consecutive series of macro blocks which are all located in the same horizontal

row of macro blocks. It is a sequence of consecutive rows in an image. Slices can be

bottom to top or top to bottom.

B.91 Signal-to-noise Ratio (S.N.R.)
It is a measure used to quantify how much a signal has been corrupted by noise. It is

defined as the ratio of signal power to the noise power corrupting the signal. A ratio higher

than 1:1 indicates more signal than noise.

91

B.92 Source, input
Term used to describe the video material or some of its attributes before encoding.

B.93 Spatial prediction
Prediction derived from a decoded frame of the lower layer decoder used in spatial

scalability

B.94 Start codes (system and video)
Start codes are 32-bit codes embedded in that coded bit stream that are unique.

They are used for several purposes including identifying some of the structures in the

coding syntax. Stuffing (bits) and stuffing (bytes) are code-words that may be inserted into

the coded bit stream that are discarded in the decoding process. Their purpose is to increase

the bit rate of the stream which would otherwise be lower than the desired bit rate.

B.95 Temporal prediction
Prediction derived from reference frames or fields other than those defined as

spatial prediction

B.96 Temporal scalability
A type of scalability where an enhancement layer also uses predictions from sample

data derived from a lower layer using motion vectors. The layers have identical frame size,

and chrominance formats, but can have different frame rates.

B.97 Tristimulus Theorem
Any color can be obtained by mixing three primary colors in an appropriate

proportion. Primary colors cannot be obtained by mixing the other two primary colors.

Examples of primary colors are red, green, and blue. Three primary colors are sufficient to

represent all colors since there are three types of color receptors in a human eye.

B.98 Variable bit rate
Operation where the bit rate varies with time during the decoding of a coded bit

stream

92

B.99 Variable length coding (VLC)
A reversible procedure for coding that assigns shorter code-words to frequent

events and longer code-words to less frequent events

B.100 Video sequence
It is the highest syntactic structure of coded video bit streams in MPEG. It contains

a series of one or more coded frames.

B.101 YUV Color Format
Luminance is closely related to brightness whereas chrominance is related to hue

and saturation. Thus YUV uses luminance and color-differencing signals. It encodes a

color image or video taking human perception into account, allowing reduced bandwidth

for chrominance components, thereby typically enabling transmission errors or

compression artifacts to be more efficiently masked by the human perception than using a

"direct" RGB-representation. Y' stands for the luma component (the brightness) and U and

V are the chrominance (color) components. YUV is the basic color used by the NTSC,

PAL, and SECAM composite color TV standards.

B.102 ME_ZERO
This motion vector estimation algorithm internally uses no motion vector search but

uses a 0,0 vector whenever one is needed.

B.103 ME_FULL
This motion vector estimation algorithm supports H.264 codec.

B.104 ME_LOG
This motion vector estimation algorithm instead of performing full motion vector

search, it performs search of log 2 block sizes.

B.105 ME_EPZS
This motion vector estimation algorithm uses enhanced predictive zonal search

method.

93

B.106 ME_X1
This motion vector estimation algorithm is reserved for experimentation at the

moment.

B.107 ME_HEX

This motion vector estimation algorithm performs hexagon based search for motion
vectors.

B.108 ME_UMH

This motion vector estimation algorithm performs uneven multi-hexagon based
search for motion vectors.

B.109 ME_ITER

This motion vector estimation algorithm performs iterative motion vector search.

B.110 ME_TESA

This motion vector estimation algorithm performs a transformed exhaustive for
motion vectors.

B.111 YCbCr Color Format
Most image compression standards adopt this color format as an input image signal.

Human does not recognize chrominance details as in luminance details. Sub-sampling

format: J: a: b Ex. 4:4:4, 4:4:0, 4:2:2, 4:2:0, 4:1:1, 4:1:0 defined in terms of a reference

region of J pixels wide and 2 pixels high.

• a: number of chroma pixels (Cr and Cb) taken in the first row

• b: number of chroma pixels taken in the second row

• Cr and Cb are sub sampling at the same location

Figure 31: YCbCr Color Format

94

APPENDIX C: API IMPLEMENTATION DETAILS

C.1 FFmpeg Frame Level Seek APIs

• fas_error_type fas_open_video (fas_context_ref_type *, char *)
To initialize the Frame level seek library, this API is called.Initialization phase starts

with allocating index table with the Index table API call seek_init_table (int) FAS,

initializing the seek table with appropriate size passed in the parameter field. int

av_open_input_file(AVFormatContext **, const char *, AVInputFormat *, int ,

AVFormatParameters *) FFmpeg is responsible for opening the input file and extracting the

requisite information from the first parameter which is a reference to AVFormatContext

structure, member of fas_context_type FAS structure.

 AVFormatContext FFmpeg structure contains information for the container of the

opened stream; it has members like number of media streams in the file denoted by

nb_streams FFmpeg, filename of the input file denoted by filename FFmpeg, pointers to

different input streams which are stored in an array of pointers denoted by AVStream

*streams [MAX_STREAMS] FFmpeg (MAX_STREAMS FFmpeg being the maximum number

of streams supported by FFmpeg, which is 20), position of the first frame given by int64_t

start_time FFmpeg; duration of the stream populated in duration FFmpeg, size of input file in

bytes given by int64_t file_size FFmpeg, total stream Bit-rate in bit/s, given by int bit_rate
FFmpeg (This value can be 0 if FFmpeg can not compute Bit-Rate), Codec-ID of video

stream required to open video decoder video_codec_id FFmpeg; Codec-ID of Audio

Stream required by audio decoder given by audio_codec_id FFmpeg; Codec-ID of subtitle

stream required to open sub-title decoder subtitle_codec_id FFmpeg. The library file

avformat-52.dll contains the functions required to extract all the information and maintain

this structure.

After identifying the required information associated with the container class, the

next step is to extract the information associated with the incoming stream, which is

pointed to by the AVStream *streams [MAX_STREAMS] FFMPEG in AVFormatContext FFmpeg

structure. This API reads packets from specified media file to get stream information. It is

useful for file formats with no headers such as MPEG. This API also computes the real

95

frame-rate. The logical file position is not changed by this API; examined packets are

buffered for later processing. It returns a value greater than or equal to 0 if successful,

AVERROR FFmpeg on error. Since a container can contain 20 different streams, the stream

number associated with first video stream is computed and stored in the stream_idx FFmpeg

member of fas_context_type FAS structure eliminating overhead for future references.

 The AVStream FFmpeg structure is associated with every stream which contains the

requisite information necessary for stream playback. Some of the members of this structure

are, index FFmpeg which is the stream index in AVStream *streams [MAX_STREAMS] FFmpeg

array, AVCodecContext * FFmpeg, pointer to the codec context for this stream, frame_rate

FFMPEG, giving the frame rate of this stream, first DTS FFmpeg for the packet and the PTS

FFmpeg information, quality factor of the stream given by quality FFmpeg, number of frames

given by nb_frames FFmpeg (0 if unknown), aspect ratio of frame sample_aspect_ratio

FFmpeg, Parser context denoted by AVCodecParserContext * FFmpeg. All the functionality

required for the maintenance of the codec and the related data structures is provided in

avcodec-52.dll.

The initialization API is responsible for allocation of all the internal buffers

required during the lifetime of execution according to the design policy.

The API AVCodec *avcodec_find_decoder (enum Codec-ID) FFmpeg is responsible for

returning a handle to the decoder passed in the parameter. It returns a NULL in case of

failure. Opening of a codec is performed by the API int avcodec_open(AVCodecContext *,

AVCodec *). This API internally does some type checking before calling the AVCodec init

()FFmpeg API which is provided for each codec specifically. All the initialization of internal

data members is done in void private_fill_vid_info (fas_context_ref*) FAS function call.

In FFmpeg FAS (Fast) DTS of frames in first and last GOP are stored in the

seek_table FAS which is a member of fas_context_type FAS . DTS of frames in first GOP is

computed by internal function private_complete_seek_table (fas_context_ref*) FAS,

returning FAS_ERROR_TYPE FAS. Function private_compute_frame_count

(fas_context_ref*) FAS does dual purpose of computing frame count and populating

seek_table FAS with DTS of frames in last GOP. It does this by seeking to the last GOP,

counting the number of frames in last GOP and populating the seek_table FAS with DTS

values of frames. Successful call to this API returns FAS_SUCESS FAS.

96

• fas_error_type fas_seek_to_frame (fas_context_ref_type, uint64_t)
This API performs seek to a particular frame buffer passed by the application in the

input video stream. It accomplishes this by comparison of the target_index FAS with the

current index returned by uint64_t fas_get_frame_index (fas_context_ref*) FAS. Current

implementation depends on the seek table generated during opening of video file for

seeking to a frame in the first and last GOP. If the target index is greater than first GOP or

less than the last GOP, we use the internal function fas_error_type.

fas_seek_to_nearest_key (fas_context_ref*, uint64_t target_index) FAS which does the

task of seeking in the video stream to nearest I-frame with DTS value less than the

target_index FAS and updating the current frame index in fas_context_type FAS, the first step

of computation of timestamp for nearest I-frame from the target_index FAS is to compute the

delta value which is modulo of the target index with GOP size.

Time Stamp = (uint64_t) (context->format_context->streams[context->stream_idx] -

>time_base.den*(target_index - (delta)))/fas_get_frame_rate(context); This value allows us

to call FFmpeg seek API based on timestamps int av_seek_frame(AVFormatContext *s, int

stream_index, int64_t timestamp, int flags) FFmpeg, where parameter 1 is the stream index

computed during opening of file, timestamp value should be pre-computed and flags

define the direction in which we need to seek, the direction is based on timestamps, it can

be AVSEEK_FLAG_BACKWARD FFmpeg which makes the stream to seek in decreasing time

stamps value from the current value otherwise its AVSEEK_FLAG_FORWARD FFmpeg. The

value of frame_index FAS field is updated in the fas_context_type FAS accordingly.

On success fas_error_type fas_step_forward (fas_context_ref*) FAS is called number

of times equal to the frame count less than the target_index FAS. This API is also

responsible for updating any seek table entries as the decoding of video packets is done in

this API which makes it to compute the DTS of a particular frame and then depending upon

if it’s a I-frame, it’s value is inserted in the seek table.

The internal function avcodec_decode_video (codec_context*, frame_buffer*,

frameFinished*, packet.data, packet.size) FFmpeg provided by the FFmpeg library is

responsible for decoding the video packets. Parameter codec_context FFmpeg is a pointer to

the codec context of video stream; frame bufferFAS is a temporary storage which is

97

allocated statically; the value of frameFinished FFmpeg is updated internally by this API

when it decodes data requisite for a complete frame; packet_data FFmpeg represent the packet

read by the FFmpeg function int av_read_frame(fas_context_ref*, packet*) FFmpeg which is

not responsible for decoding the data but filing and initializing all the internal data

structures required; packet_size FFmpeg varies according to the stream to be decoded. After

the frame is decoded, it is checked against if it is a I-frame and its value is updated in the

seek _table.

C.2 FFmpeg Encode APIs

• en_error_type en_enc_setup(en_Context_Struct **,ip_Context_Struct*)
This API is called with an ip_Context_Struct encode initialized as the second parameter

by the application specifying the video parameters to encode the video. The parameters to

be specified are described in Table 17.

The first parameter en_Context_Struct encode is a double reference to out_context_type

encode, which stores references to both FFmpeg defined data types and Encode defined data

types. See Table 16 for reference.

This API is responsible to initialize all the data structures and allocate buffers which

will be required by both the encoder and decoder during the execution of application. All

the internal function calls start with private_* which is the same pattern followed in Frame

Level Seek.

This API internally calls private_en_init_context()encode function which does the

memory allocation for context. Finding an encoder from available options is performed via

the API AVcodec *avcodec_find_encoder(Codec_ID) FFmpeg, where Codec_ID FFmpeg is an

enumeration for storing names of all the encoders available. Note that since it’s a static list,

some of these encoders may not be available depending on the license and the settings in

the .configure file, refer chapter 9.6 for more details. The registered codec’s are stored in a

linked list, first_avcodec FFmpeg being the head and CodecID FFmpeg is a field in AVCodec

FFmpeg structure storing the name of that codec. AVCodecContext *avcodec_alloc_context

()FFmpeg allocates a reference to AVCodecContext FFmpeg and sets its fields to contain default

values. The resulting structure can be de-allocated by simply calling av_free()FFmpeg. On

98

success, it returns an AVCodecContext FFmpeg reference pointer populated with default

values or NULL on failure.

The AVOutputFormat *guess_format (const char *, const char *, const char *)

FFmpeg, API is used to get a reference to the AVFormatContext FFmpeg structure which takes a

short name as the first parameter, filename as the second and mime type as the third. At

least one of these should be passed in the parameter and any one match will result in

success. Formats are stored in a linked list with first_oformatFFmpeg being the head of

registered formats.

The API AVStream *av_new_stream(AVFormatContext *, int) FFmpeg adds a new

stream to a media file. This takes a reference to the AVformatContextFFmpeg as the first

parameter, which should be previously allocated and a file-format-dependent stream ID as

the second parameter. It also initializes the new stream to be used directly. Before opening

a codec for encoding, we need to specify a minimum set of parameters for the codec, which

are passed by the application as reference to the structure ip_context_ptr encode. This API is

also responsible to allocate and open the decoder.

The internal function static en_error_type private_en_dec_setup(en_Context_Struct

*)encode, performs the initialization and memory allocation for the decoder. The encoder

requires some scratch buffer of the size of the frame to be encoded. As the frame size

depends on the pixel format used for encoding, the API int avpicture_get_size(enum

PixelFormat, int, int) FFmpeg exposed by FFmpeg performs this calculation for us, which

takes Pixel Format as the first parameter, width and height of the frame as second and third

parameters respectively.

Function int avpicture_fill (AVPicture *, uint8_t *, enum PixelFormat, int, int)

FFmpeg is responsible for filling the AVPictureFFmpeg fields. AVPicture FFmpeg structure acts as

a reference to the data of a frame. Depending on the specified picture format, one or

multiple image data pointers and line sizes are initialized. If a planar format is specified,

several pointers will be pointing to the specific picture planes. This structure has two fields

namely, uint8_t *data [4] FFmpeg and int linesize [4] FFmpeg; the int *data [4] FFmpeg field
FFmpeg pointers to all the four planes of a frame, which are stored in the second parameter of

the API avpicture_fill ()FFmpeg. The second parameter, int linesize [4] FFmpeg is responsible

for storing the width of the planes pointed to by the data array. The third parameter of the

99

API is responsible for storing the pixel format of the frame, fourth and fifth refers to the

width and height of the frame respectively. This API returns the size of the buffer allocated

on success or -1 on failure.

SwsContext *sws_getContext (int srcW, int srcH, enum PixelFormat srcFormat, int

dstW, int dstH, enum PixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter

*dstFilter, const double *param) FFmpeg API is a wrapper over the scaling functionality

provided by the library. Refer Chapter 9.2 for its implementation details. It takes the source

width, height, and pixel format as the first three parameters and destination width, height

and pixel format as the next three, respectively. The rest of parameters are used to define

which algorithm and parameters specific to the algorithm are to be used. It returns a

reference to the SwsContext structure in case of success or a NULL reference in case of

failure. This structure is freed by calling the void sws_freeContext (struct SwsContext *)

FFmpeg API, and is used by int sws_scale (struct SwsContext *, uint8_t* srcSlice[], int

srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[])FFmpeg API.

This API scales the image slice in a source slice and puts the resulting scaled slice.

See Chapter 9.1 for details in the destination image The first parameter is reference to the

allocated context from sws_getContext ()FFmpeg API. Parameter srcSlice FFmpeg is the array

containing the pointers to the planes of the source slice. Parameter srcStride FFmpeg is the

array containing the strides for each plane of the source image. Parameter srcSliceY FFmpeg is

the position in the source image of the slice to process, that is the number (counted starting

from zero) in the image of the first row of the slice. Parameter srcSliceH FFmpeg is the height

of the source slice, which is the number of rows in the slice. Parameter dst is the array

containing the pointers to the planes of the destination image. Parameter dstStride FFmpeg is

the array containing the strides for each plane of the destination image.

Various options available for scaling algorithms are (1) SWS_FAST_BILINEAR,

(2) SWS_BILINEAR, (3) SWS_BICUBIC, (4) SWS_X, SWS_POINT, (5) SWS_AREA,

(6) SWS_BICUBLIN, (7) SWS_GAUSS, (8) SWS_SINC, (9) SWS_LANCZOS, and (10)

SWS_SPLINE. Quality and speed of these scaling algorithms are listed in the order from

lower quality (fast speed) to higher quality (slow speed): SWS_FAST_BILINEAR,

SWS_BILINEAR, SWS_BICUBIC, SWS_X, SWS_POINT, SWS_AREA,

SWS_BICUBLIN, SWS_GAUSS, SWS_SINC, SWS_LANCZOS, and SWS_SPLINE.

100

In the current implementation, we used SWS_BICUBICFFmpeg as the scaling

algorithm as it maintains a balance between speed and quality.

• en_error_type en_enc_frm(en_Context_Struct*,AVFrame*)
To encode raw input data by specified encoder, we call this API. It first scales the

input frame according to the img_convert_ctxencode initialized previously in

en_enc_setup()encode . It then calls int avcodec_encode_video(AVCodecContext *, uint8_t *,

int, const AVFrame *)FFmpeg to encode the frame data according to the codec opened. It

encodes the video frame passed as a reference in the fourth parameter into a buffer passed

as a reference in the second parameter. The first parameter is a reference to the

AVCodecContext FFmpeg already allocated and the third parameter specifies the maximum

size of the output buffer, i.e. the maximum size of encoded frame in bytes. A negative

return value specifies an error during execution where zero specifies that the frame has

been saved for future reference i.e. it will be used as a reference to encode future frames. A

positive return value signifies the number of bytes used from the input buffer. This API

internally calls int (*encode) (AVCodecContext *, uint8_t *, int, void *)FFmpeg, an API

registered with the codec.

The encoded data is to be put into a video stream. The data is put into packets and

then written into the stream according to the format. We use the API void

av_init_packet(AVPacket *)FFmpeg to initialize optional fields of a packet with the default

values. The API int av_interleaved_write_frame(AVFormatContext *, AVPacket *)FFmpeg

performs the task of writing the packets to the stream according to the format.

The packet must contain one audio or video frame. If the packets are already

correctly interleaved, the application should call av_write_frame ()FFmpeg instead as it is

slightly faster in this scenario. It is essential to keep in mind that completely non-

interleaved input will need huge amounts of memory to interleave if used with this API, so

it is preferable to interleave at the de-muxer level. The return value is less than zero in case

of an error; otherwise it is zero.

101

C.3 Overview of swsscale.dll

The swscale.dll library is responsible for image scaling, color conversion, etc. This

is distributed in the form of libswscale.dll. This module can be divided into two paths: (1)

Main Path and (2) Special Conversion as described in Figure 31.

Figure 32: SwsScale Library Structure

Each side must be capable of handling slices, that is, consecutive non-overlapping

rectangles of dimension (0, slice_top) - (picture_width, slice_bottom). Special converters

generally are unscaled converters of common formats, like YUV 4:2:0/4:2:2 to

RGB15/16/24/32. Though it could also in principle contain scalers optimized for the

following specific common cases.

Main path : The main path is used when no special converter can be used. The code

is designed as destination line pull architecture. That is, for each output line the vertical

scaler pulls lines from a ring buffer. When the ring buffer does not contain the wanted line,

then it is pulled from the input slice through the input converter and horizontal scaler. The

result is also stored in the ring buffer to serve future vertical scaler requests. When no more

output can be generated because lines from a future slice would be needed, then all

102

remaining lines in the current slice are converted, horizontally scaled and put in the ring

buffer. (This is done for luma and chroma, each with possibly different numbers of lines

per picture.)

YUV Converter: When the input to the main path is not planar 8 bits per

component YUV or 8-bit gray, it is converted to planar 8-bit YUV. Two sets of converters

exist for this currently: One performs horizontal downscaling by 2 before the conversion;

the other leaves the full chroma resolution, but is slightly slower. The scaler will try to

preserve full chroma when the output uses it. It is possible to force full chroma with

SWS_FULL_CHR_H_INP even for cases where the scaler thinks it is useless.

Horizontal scaler: There are several horizontal scalers. A special case worth

mentioning is the fast bilinear scaler that is made of runtime-generated MMX2 code using

specially tuned pshufwFFmpeg instructions. The remaining scalers are specially-tuned for

various filter lengths. They scale 8-bit unsigned planar data to 16-bit signed planar data.

Future >8 bits per component inputs will need to add a new horizontal scaler that preserves

the input precision.

Vertical scaler and output converter: There is a large number of combined

vertical scalers and output converters like unscaled output converters, unscaled output

converters that average 2 chroma lines, bilinear converters, arbitrary filter length converters

and Plain C 8-bit 4:2:2 YUV to RGB converters. RGB with less than 8 bits per component

uses dither to improve the subjective quality and low-frequency accuracy.

After the scaling structure is assigned, and the encoder parameters are set, we call

int avcodec_open (AVCodecContext *, AVCodec*) FFmpeg, taking the parameters in the form

of references to previously allocated codec and AVCodecContext FFmpeg. Which internally

calls int (*init) (AVCodecContext *)FFmpeg function, initialization API for the specific codec

passed as the second parameter. To write to the specified file in the container format,

FFmpeg requires the file to be opened with int url_fopen(ByteIOContext **s, const char

*filename, int flags) FFmpeg API. To write header for the specified media stream, FFmpeg

provides av_write_header (AVFormat*)FFmpeg, which has a return type void and reads the

filename from the previously assigned name.

C.4 De-interlacing implementation in Frame Level Seek

103

De-interlace mechanism in Frame Level Seek is implemented in the private API

private_fas_pre_process_video_frame(fas_context_ref_type *, AVPicture *, void **)FAS;

Currently it can be managed with ‘DO_DEINTERLACE FAS’ Flag which is specified in

FFmpeg _fas.h file as a global constant. The frames will be de-interlaced only if this Flag is

set. This API acts as a wrapper over the exposed FFmpeg API int

avpicture_deinterlace(AVPicture *dst, const AVPicture *src, enum PixelFormat , int width,

int height) FFmpeg. The first parameter of FFmpeg API is a scratch buffer which will contain

the de-interlaced frame data which is allocated as deinterlace_buf FAS during the opening of

the video. The second parameter is the source frame which needs to be de-interlaced. The

FFmpeg API works only with PIX_FMT_YUV420P, PIX_FMT_YUV422P,

PIX_FMT_YUV444P, PIX_FMT_YUV411P and PIX_FMT_GRAY8 pixel formats. For

other formats, it will return value less than 0 to indicate a failure. The third and fourth

parameters are frame width and height, respectively.

This API internally uses two FFmpeg APIs depending on whether we need to de-

interlace in-place or not. These are (1) deinterlace_bottom_field_inplace(uint8_t *src1, int

src_wrap, int width, int height) FFmpeg and (2) deinterlace_bottom_field(uint8_t *dst, int

dst_wrap, const uint8_t *src1, int src_wrap, int width, int height) FFmpeg. The uint8_t *src1

is the source plane which can be Y, Cb or Cr; src_wrap signifies the width of the data field.

The uint8_t *dst in case of the second API gives the destination where the de-interlaced

data will be copied. Width and height are the dimensions of the frame. The API returns

value 0 in case of success and -1 in case of failure. In case the FFmpeg API

avpicture_deinterlace()FFmpeg fails, we do not proceed further, which will cause that

particular frame to be written without being de-interlaced.

104

APPENDIX D: ADDITIONAL EXPERIMENTAL RESULTS

Table 24: Performance of FFmpeg FAS Library
Video
Profile Video

Hardware
Profile

CPU (%)
Cycles

Mem
(Mb)

Time
(Sec)

1

Fuji_1.mpg
Inslab 46.34 10.6 792

Bigvision 12.6 9.6 732

Fuji_3.mpg
Inslab 46.34 10.6 1,530

Bigvision 12.6 9.6 1,172

Fuji_9.mpg
Inslab 46.34 10.6 2,124

Bigvision 12.6 9.6 1,803

Fuji_36.mpg
Inslab 46.34 10.6 1,341

Bigvision 12.6 9.6 994

Fuji_53.mpg
Inslab 46.34 10.6 1,698

Bigvision 12.6 9.6 1,090

2

Simpsons_1.avi
Inslab 48 10.1 1,261

Bigvision 12.6 9.2 1,201

Simpsons_2.avi
Inslab 48 10.1 1,276

Bigvision 12.6 9.2 1,208

Simpsons_3.avi
Inslab 48 10.1 1,287

Bigvision 12.6 9.2 1,156

Simpsons_4.avi
Inslab 48 10.1 1,198

Bigvision 12.6 9.2 1,223

Simpsons_5.avi
Inslab 48 10.1 1,201

Bigvision 12.6 9.2 1,152

3

Tonight_1.avi
Inslab 47.6 10.6 2,020

Bigvision 11.1 9.8 2,001

Tonight_2.avi
Inslab 47.6 10.6 2,061

Bigvision 11.1 9.8 2,049

Tonight_3.avi
Inslab 47.6 10.6 2,044

Bigvision 11.1 9.8 2,941

Tonight_4.avi
Inslab 47.6 10.6 2,110

Bigvision 11.1 9.8 2,060

Tonight_5.avi
Inslab 47.6 10.6 2,344

Bigvision 11.1 9.8 2,040

105

 Table 24: (continued)
Video
Profile Video

Hardware
Profile

CPU (%)
Cycles

Mem
(Mb)

Time
(Sec)

4

Soccer_1.avi
Inslab 48 10.2 3,180

Bigvision 11.9 9.8 1,830

Soccer_2.avi
Inslab 48 10.2 3,720

Bigvision 11.9 9.8 1,674

Soccer_3.avi
Inslab 48 10.2 1,861

Bigvision 11.9 9.8 1,723

Soccer_4.avi
Inslab 49 10.2 3,746

Bigvision 11.9 9.8 1,601

Soccer_5.avi
Inslab 49 10.2 1,765

Bigvision 11.9 9.8 1,567

5

Dsp_Hsw_1.avi
Inslab 49.6 17.5 2,941

Bigvision 12.7 17.4 2,901

Dsp_Hsw_2.avi
Inslab 49.6 17.5 2,840

Bigvision 12.7 17.4 2,763

Dsp_Hsw_3.avi
Inslab 49.6 17.5 2,903

Bigvision 12.7 17.4 2,897

Dsp_Hsw_4.avi
Inslab 49.6 17.5 2,884

Bigvision 12.7 17.4 2,883

Dsp_Hsw_5.avi
Inslab 49.6 17.5 2,967

Bigvision 12.7 17.4 2,901

Table 25: Performance of FFmpeg Encode Library
Video
Profile Video

Hardware
Profile

CPU (%)
Cycles

Mem.
(Mb)

Time
(FF)

1

Fuji_1.mpg
Inslab 47.1 11.1 1,154

Bigvision 9.1 10.4 1,014

Fuji_3.mpg
Inslab 47.1 11.1 2,580

Bigvision 9.1 10.4 2,411

Fuji_9.mpg
Inslab 47.1 11.1 3,480

Bigvision 9.1 10.4 2,973

Fuji_36.mpg
Inslab 47.1 11.1 1,346

Bigvision 9.1 10.4 1,301

106

 Table 25: (continued)
Video
Profile Video

Hardware
Profile

CPU (%)
Cycles

Mem.
(Mb)

Time
(FF)

2

Simpsons_1.avi
Inslab 49 10.1 1,026

Bigvision 9.1 9.3 914

Simpsons_2.avi
Inslab 49 10.1 948

Bigvision 9.1 9.3 910

Simpsons_3.avi
Inslab 49 10.1 940

Bigvision 9.1 9.3 921

Simpsons_4.avi
Inslab 49 10.1 1,021

Bigvision 9.1 9.3 906

Simpsons_5.avi
Inslab 49 10.1 1,045

Bigvision 9.1 9.3 917

3

Tonight_1.avi
Inslab 47.6 10.1 2,020

Bigvision 10.1 8.6 2,001

Tonight_2.avi
Inslab 47.6 10.1 2,061

Bigvision 10.1 8.6 2,049

Tonight_3.avi
Inslab 47.6 10.1 2,044

Bigvision 10.1 8.6 2,941

Tonight_4.avi
Inslab 47.6 10.1 2,110

Bigvision 10.1 8.6 2,060

Tonight_5.avi
Inslab 47.6 10.1 2,344

Bigvision 10.1 8.6 2,040

4

Dsp_Hsw_1.avi
Inslab 27.4 17.5 2,768

Bigvision 12.7 17.4 2,675

Dsp_Hsw_2.avi
Inslab 27.4 17.5 3,181

Bigvision 12.7 17.4 2,987

Dsp_Hsw_3.avi
Inslab 27.4 17.5 2,169

Bigvision 12.7 17.4 2,042

Dsp_Hsw_4.avi
Inslab 27.4 17.5 3,300

Bigvision 12.7 17.4 3,124

Dsp_Hsw_5.avi
Inslab 27.4 17.5 2,220

Bigvision 12.7 17.4 1,995

107

Table 26: Comparison of Performance between getframes_ff and getframes_mc

Prof
Video
(.mpg)

Hardware
Profile

CPU
(%)

Cycles
(FF)

CPU
(%)

Cycles
(MC*)

Mem.
(Mb)
(FF)

Mem.
(Mb)

(MC*)

Time
(FF)

Time
(MC*)

1

Fuji_1.m
pg

Inslab 46.34 49.1 10.6 16 792 1,254

Bigvision 12.6 14.8 9.6 10.1 732 1,165

Fuji_3.m
pg

Inslab 46.34 49.1 10.6 16 1,530 1,720

Bigvision 12.6 14.8 9.6 10.1 1,172 1,341

Fuji_9.m
pg

Inslab 46.34 49.1 10.6 16 2,124 2,221

Bigvision 12.6 14.8 9.6 10.1 1,803 2,398

Fuji_36.
mpg

Inslab 46.34 49.1 10.6 16 1,341 1,743

Bigvision 12.6 14.8 9.6 10.1 994 1,150

Fuji_53.
mpg

Inslab 46.34 49.1 10.6 16 1,698 1,654

Bigvision 12.6 14.8 9.6 10.1 1,090 1,201

2

Simpson
s_1.avi

Inslab 48 49.1 10.1 14.2 1,261 1,263

Bigvision 12.6 12.6 9.2 13.1 1,201 1,206

Simpson
s_2.avi

Inslab 48 49.1 10.1 14.2 1,276 1,266

Bigvision 12.6 12.6 9.2 13.1 1,208 1,211

Simpson
s_3.avi

Inslab 48 49.1 10.1 14.2 1,287 1,301
Bigvision 12.6 12.6 9.2 13.1 1,156 1,241

Simpson
s_4.avi

Inslab 48 49.1 10.1 14.2 1,198 1,234

Bigvision 12.6 12.6 9.2 13.1 1,223 1,201

Simpson
s_5.avi

Inslab 48 49.1 10.1 14.2 1,201 1,221

Bigvision 12.6 12.6 9.2 13.1 1,152 1,194

3

Tonight_
1.avi

Inslab 47.6 49.1 10.6 14.1 2,020 2,821

Bigvision 11.1 12.1 9.8 12.8 2,001 2,101

Tonight_
2.avi

Inslab 47.6 49.1 10.6 14.1 2,061 2,124

Bigvision 11.1 12.1 9.8 12.8 2,049 2,311

Tonight_
3.avi

Inslab 47.6 49.1 10.6 14.1 2,044 1,987

Bigvision 11.1 12.1 9.8 12.8 2,941 2,816

Tonight_
4.avi

Inslab 47.6 49.1 10.6 14.1 2,110 2,760

Bigvision 11.1 12.1 9.8 12.8 2,060 2,202

Tonight_
5.avi

Inslab 47.6 49.1 10.6 14.1 2,344 2,801

Bigvision 11.1 12.1 9.8 12.8 2,040 2,100

108

Table 26: (continued)

Prof
Video
(.mpg)

Hardware
Profile

CPU
(%)

Cycles
(FF)

CPU
(%)

Cycles
(MC*)

Mem.
(Mb)
(FF)

Mem.
(Mb)

(MC*)

Time
(FF)

Time
(MC*)

4

Soccer_1
.avi

Inslab 48 48.4 10.2 14.1 3,180 3,950

Bigvision 11.9 12 9.8 14.7 1,830 2,115

Soccer_2
.avi

Inslab 48 48.4 10.2 14.1 3,720 4,203

Bigvision 11.9 12 9.8 14.7 1,674 1,952

Soccer_3
.avi

Inslab 48 48.4 10.2 14.1 1,861 2,033

Bigvision 11.9 12 9.8 14.7 1,723 1,801

Soccer_4
.avi

Inslab 49 48.4 10.2 14.1 3,746 3,991

Bigvision 11.9 12 9.8 14.7 1,601 1,932

Soccer_5
.avi

Inslab 49 48.4 10.2 14.1 1,765 1,954

Bigvision 11.9 12 9.8 14.7 1,567 1,596

5

Dsp_Hs
w_1.avi

Inslab 49.6 N/A 17.5 N/A 2,941 N/A

Bigvision 12.7 N/A 17.4 N/A 2,901 N/A

Dsp_Hs
w_2.avi

Inslab 49.6 N/A 17.5 N/A 2,840 N/A

Bigvision 12.7 N/A 17.4 N/A 2,763 N/A

Dsp_Hs
w_3.avi

Inslab 49.6 N/A 17.5 N/A 2,903 N/A

Bigvision 12.7 N/A 17.4 N/A 2,897 N/A

Dsp_Hs
w_4.avi

Inslab 49.6 N/A 17.5 N/A 2,884 N/A

Bigvision 12.7 N/A 17.4 N/A 2,883 N/A

Dsp_Hs
w_5.avi

Inslab 49.6 N/A 17.5 N/A 2,967 N/A

Bigvision 12.7 N/A 17.4 N/A 2,901 N/A

Table 27: Comparison between FFmpeg and MC* PSNR Values
Prof Video Encoder Y U V PSNR

1

Fuji_1.m pg
FFmpeg 36.72 40.84 40.07 37.64

MC* 34.60 39.62 38.74 35.66

Fuji_3.mpg
FFmpeg 34.72 40.14 42.18 36.14

MC* 34.68 39.11 40.33 34.45

Fuji_9.mpg
FFmpeg 36.29 39.83 39.76 37.18

MC* 34.67 39.02 38.90 35.69

109

 Table 27: (continued)

Prof Video Encoder Y U V PSNR

1

Fuji_36.mpg
FFmpeg 34.59 41.61 40.11 35.86

MC* 34.46 39.90 38.68 35.56

Fuji_53.mpg
FFmpeg 35.02 40.31 39.41 36.12

MC* 32.83 39.23 38.59 34.09

2

Simpsons_1.avi
FFmpeg 28.65 34.22 37.53 29.99

MC* 28.71 34.61 37.84 30.08

Simpsons_2.avi
FFmpeg 29.49 34.54 36.42 30.72

MC* 29.55 34.90 36.74 30.82

Simpsons_3.avi
FFmpeg 28.89 34.19 36.14 30.16

MC* 28.95 34.58 36.48 30.25

Simpsons_4.avi
FFmpeg 29.47 34.93 37.00 30.76

MC* 29.53 35.24 37.30 30.85

Simpsons_5.avi
FFmpeg 28.98 34.28 36.31 30.25

MC* 29.05 34.69 36.63 30.35

3

Tonight_1.avi
FFmpeg 32.82 38.14 38.31 33.99

MC* 32.78 38.14 38.32 33.96

Tonight_2.avi
FFmpeg 33.00 38.70 38.97 34.23

MC* 32.94 38.66 38.98 34.18

Tonight_3.avi
FFmpeg 33.64 39.11 39.83 34.86

MC* 33.05 38.27 38.76 34.23

Tonight_4.avi
FFmpeg 33.33 38.21 38.64 34.47

MC* 33.27 38.19 38.63 34.41

Tonight_5.avi
FFmpeg 33.11 37.76 38.42 34.23

MC* 33.06 37.76 38.47 34.19

4

Soccer_1.avi
FFmpeg 30.03 37.07 38.09 31.43

MC* 30.05 37.38 38.33 31.46

Soccer_2.avi
FFmpeg 30.15 36.71 38.64 31.53

MC* 30.21 36.86 38.74 31.60

Soccer_3.avi
FFmpeg 29.75 36.61 37.92 31.14

MC* 29.82 36.75 38.06 31.21

Soccer_4.avi FFmpeg 31.03 37.24 39.16 32.03

110

 Table 27: (continued)
Prof Video Encoder Y U V PSNR

4

Soccer_4.avi MC* 31.05 37.11 39.03 31.96

Soccer_5.avi
FFmpeg 34.31 38.90 40.02 35.45

MC* 34.40 39.02 40.03 35.53

5

Dsp_Hsw_1.avi
FFmpeg 37.53 44.67 44.28 34.67

MC* N/A N/A N/A N/A

Dsp_Hsw_2.avi
FFmpeg 37.29 44.65 43.80 38.63

MC* N/A N/A N/A N/A

Dsp_Hsw_3.avi
FFmpeg 36.62 45.57 45.20 38.11

MC* N/A N/A N/A N/A

Dsp_Hsw_4.avi
FFmpeg 36.51 43.62 43.62 37.87

MC* N/A N/A N/A N/A

Dsp_Hsw_5.avi
FFmpeg 37.68 45.00 45.75 39.08

MC* N/A N/A N/A N/A

Table 28: Comparison of Load Time between FFmpeg FAS Fast and Slow
Video
Profile Video

Hardware
Profile

FAS Fast Time
(Sec)

FAS Slow Time
(Sec)

1

Fuji_1.mpg
Inslab 0 42

Bigvision 0 38

Fuji_3.mpg
Inslab 0 86

Bigvision 0 64

Fuji_9.mpg
Inslab 0 155

Bigvision 0 144

Fuji_36.mpg
Inslab 0 61

Bigvision 0 59

Fuji_53.mpg
Inslab 0 109

Bigvision 0 108

2

Simpsons_1.avi
Inslab 0 44

Bigvision 0 34

Simpsons_2.avi
Inslab 0 26

Bigvision 0 21

Simpsons_3.avi Inslab 0 26

111

Table 28: (continued)
Video
Profile Video

Hardware
Profile

FAS Fast Time
(Sec)

FAS Slow Time
(Sec)

2

Simpsons_2.avi Bigvision 0 21

Simpsons_3.avi
Inslab 0 26

Bigvision 0 27

Simpsons_4.avi
Inslab 0 27

Bigvision 0 24

Simpsons_5.avi
Inslab 0 26

Bigvision 0 22

3

Tonight_1.avi
Inslab 0 65

Bigvision 0 62

Tonight_2.avi
Inslab 0 66

Bigvision 0 55

Tonight_3.avi
Inslab 0 65

Bigvision 0 59

Tonight_4.avi
Inslab 0 64

Bigvision 0 68

Tonight_5.avi
Inslab 0 65

Bigvision 0 60

4

Soccer_1.avi
Inslab 0 91

Bigvision 0 86

Soccer_2.avi
Inslab 0 94

Bigvision 0 87

Soccer_3.avi
Inslab 0 52

Bigvision 0 52

Soccer_4.avi
Inslab 0 50

Bigvision 0 48

Soccer_5.avi
Inslab 0 36

Bigvision 0 33

5

Dsp_Hsw_1.avi
Inslab 0 64

Bigvision 0 43

Dsp_Hsw_2.avi
Inslab 0 62

Bigvision 0 53

Dsp_Hsw_3.avi Inslab 0 61

112

Table 28: (continued)

Video
Profile Video

Hardware
Profile

FAS Fast Time
(Sec)

FAS Slow Time
(Sec)

5

Dsp_Hsw_3.avi Bigvision 0 59

Dsp_Hsw_4.avi
Inslab 0 64

Bigvision 0 61

Dsp_Hsw_5.avi
Inslab 0 64

Bigvision 0 48

Table 29: Comparison of Performance between FFmpeg and MC* Encoder

Prof Video Hardware
Profile

CPU
(%)

Cycles
(FF)

CPU
(%)

Cycles
(MC*)

Mem.
(Mb)
(FF)

Mem.
(Mb)

(MC*)

Time
(FF)

Time
(MC*)

1

Fuji_1.m
pg

Inslab 47.1 87.1 11.1 16.4 1,154 1,344

Bigvision 9.1 14.5 10.4 14.1 1,014 850

Fuji_3.m
pg

Inslab 47.1 87.1 11.1 16.4 2,580 2,901

Bigvision 9.1 14.5 10.4 14.1 2,411 2,249

Fuji_9.m
pg

Inslab 47.1 87.1 11.1 16.4 3,480 3,896

Bigvision 9.1 14.5 10.4 14.1 2,973 2,601

Fuji_36.
mpg

Inslab 47.1 87.1 11.1 16.4 1,346 1,664

Bigvision 9.1 14.5 10.4 14.1 1,301 1,214

Fuji_53.
mpg

Inslab 47.1 87.1 11.1 16.4 2,349 2,612

Bigvision 9.1 14.5 10.4 14.1 2,111 2,097

2

Simpson
s_1.avi

Inslab 49 86 10.1 12.4 1,026 1,263

Bigvision 9.1 17 9.3 11.7 914 910

Simpson
s_2.avi

Inslab 49 86 10.1 12.4 948 1,206

Bigvision 9.1 17 9.3 11.7 910 923

Simpson
s_3.avi

Inslab 49 86 10.1 12.4 940 1,301
Bigvision 9.1 17 9.3 11.7 921 911

Simpson
s_4.avi

Inslab 49 86 10.1 12.4 1,021 1,234

Bigvision 9.1 17 9.3 11.7 906 904

Simpson
s_5.avi

Inslab 49 86 10.1 12.4 1,045 1,221

Bigvision 9.1 17 9.3 11.7 917 907

113

Table 29: (continued)

Prof Video
Hardware

Profile

CPU
(%)

Cycles
(FF)

CPU
(%)

Cycles
(MC*)

Mem.
(Mb)
(FF)

Mem.
(Mb)

(MC*)

Time
(FF)

Time
(MC*)

3

Tonight_
1.avi

Inslab 47.6 88 10.1 12.4 2,020 2,896

Bigvision 10.1 12.3 8.6 11 2,001 1,704

Tonight_
2.avi

Inslab 47.6 88 10.1 12.4 2,061 2,611

Bigvision 10.1 12.3 8.6 11 2,049 1,741

Tonight_
3.avi

Inslab 47.6 88 10.1 12.4 2,044 2,467

Bigvision 10.1 12.3 8.6 11 2,941 1,801

Tonight_
4.avi

Inslab 47.6 88 10.1 12.4 2,110 2,881

Bigvision 10.1 12.3 8.6 11 2,060 1,754

Tonight_
5.avi

Inslab 47.6 88 10.1 12.4 2,344 2,924

Bigvision 10.1 12.3 8.6 11 2,040 1,796

4

Soccer_1
.avi

Inslab 49 88 10.2 14.1 2,252 3,950

Bigvision 11.9 12.4 9.8 13.6 2,431 2,431

Soccer_2
.avi

Inslab 49 88 10.2 14.1 2,756 2,809

Bigvision 11.9 12.4 9.8 13.6 2,418 2,400

Soccer_3
.avi

Inslab 49 88 10.2 14.1 1,654 1,650

Bigvision 11.9 12.4 9.8 13.6 1,472 1,201

Soccer_4
.avi

Inslab 49 88 10.2 14.1 1,891 2,114

Bigvision 11.9 12.4 9.8 13.6 1,601 1,493

Soccer_5
.avi

Inslab 49 88 10.2 14.1 1,147 1,316

Bigvision 11.9 12.4 9.8 13.6 1,097 965

5

Dsp_Hs
w_1.avi

Inslab 27.4 N/A 17.5 N/A 2,768 N/A

Bigvision 12.7 N/A 17.4 N/A 2,675 N/A

Dsp_Hs
w_2.avi

Inslab 27.4 N/A 17.5 N/A 3,181 N/A

Bigvision 12.7 N/A 17.4 N/A 2,987 N/A

Dsp_Hs
w_3.avi

Inslab 27.4 N/A 17.5 N/A 2,169 N/A

Bigvision 12.7 N/A 17.4 N/A 2,042 N/A

Dsp_Hs
w_4.avi

Inslab 27.4 N/A 17.5 N/A 3,300 N/A

Bigvision 12.7 N/A 17.4 N/A 3,124 N/A

Dsp_Hs
w_5.avi

Inslab 27.4 N/A 17.5 N/A 2,220 N/A

Bigvision 12.7 N/A 17.4 N/A 1,995 N/A

114

Table 30: FFmpeg Motion Vector Extraction Library Performance

 Video
Profile Video

Hardware
Profile Time (Sec)

1

 Fuji_3.mpg
Inslab 24

Bigvision 15

Fuji_9.mpg
Inslab 36

Bigvision 30

Fuji_36.mpg
Inslab 123

Bigvision 109

Fuji_53.mpg
Inslab 98

Bigvision 76

2

Simpsons_1.avi
Inslab 86

Bigvision 71

Simpsons_2.avi
Inslab 92

Bigvision 73

Simpsons_3.avi
Inslab 85

Bigvision 71

Simpsons_4.avi
Inslab 88

Bigvision 72

3

Tonight_1.avi
Inslab 69

Bigvision 62

Tonight_2.avi
Inslab 66

Bigvision 61

Tonight_3.avi
Inslab 72

Bigvision 63

Tonight_4.avi
Inslab 72

Bigvision 61

4

Soccer_1.avi
Inslab 107

Bigvision 96

Soccer_2.avi
Inslab 114

Bigvision 102

Soccer_3.avi
Inslab 106

Bigvision 93

Soccer_4.avi
Inslab 108

Bigvision 95

115

BIBLIOGRAPHY

[1] ISO/IEC 11172-1 1993, Information technology — Coding of moving pictures and

associated audio for digital storage media at up to about 1.5 Mbit/s — Part 1: Systems.

[2] ISO/IEC 11172-2 1993, Information technology — Coding of moving pictures and

associated audio for digital storage media at up to about 1.5 Mbit/s — Part 2: Video.

[3] ISO/IEC 11172-3 1993, Information technology — Coding of moving pictures and

associated audio for digital storage media at up to about 1.5 Mbit/s — Part 3: Audio.

[4] Huffing Sun, Wilson Kwok, Max Chien, and C. H. John Ju (1997). MPEG Coding

Performance Improvement by Jointly Optimizing Coding Mode Decisions and Rate

Control. IEEE Transactions on Circuits and Systems for Video Technology, 7 (3), 449-

458.

[5] Kevin McGuinness, Gordon Keenan, Tomasz Adamek, Noel O’Connor. A Framework

and User Interface for Automatic Region Based Segmentation Algorithms.

[6] FFmpeg Multimedia System (10/2010): http:// FFmpeg.mplayerhq.hu/.

[7] FFmpeg for Windows Help (09/2010). http:// FFmpeg.arrozcru.org/.

[8] FFmpeg development discussions and patches (10/2010).

 https://lists.mplayerhq.hu/mailman/listinfo/FFmpeg-devel

[9] Martin Böhme. How to write a Video Player in less than 1000 lines (02/2009).

http://dranger.com/FFmpeg/tutorial01.html.

[10] Martin Böhme. Using libavformat and libavcodec (06/2009).

http://www.inb.uni-luebeck.de/~boehme/using_libavcodec.html.

[11] Doxygen: Source code documentation generator tool (07/2010).

 http://www.stack.nl/~dimitri/doxygen/.

[12] AMD CodeAnalyst Performance Analyzer (06/2010).

 http://developer.amd.com/cpu/codeanalyst/Pages/default.aspx

[13] FFmpeg demuxer how to (10/2010).

 http://wiki.multimedia.cx/index.php?title=FFmpeg_demuxer_howto

[14] GNU General Public License (09/2010). http://www.gnu.org/licenses/gpl.html

[15] Wascana Desktop Developer (09/2010). http://wascana.sourceforge.net/

116

[16] Alexis M. Tourapis, (2002) Enhanced predictive zonal search for single and multiple
frame motion estimation

	2010
	A framework for multimedia playback and analysis of MPEG-2 videos with FFmpeg
	Anand Saggi
	Recommended Citation

	Microsoft Word - $ASQ72421_supp_5B05EA1A-FDE3-11DF-B415-8E72D352ABB1.doc

