
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

Extensible Problem Specific Tutor (xPST) : Easy
authoring of intelligent tutoring systems
Sateesh Kumar Kodavali
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kodavali, Sateesh Kumar, "Extensible Problem Specific Tutor (xPST) : Easy authoring of intelligent tutoring systems" (2010).
Graduate Theses and Dissertations. 11849.
https://lib.dr.iastate.edu/etd/11849

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F11849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11849?utm_source=lib.dr.iastate.edu%2Fetd%2F11849&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Extensible Problem Specific Tutor (xPST):

Easy authoring of intelligent tutoring systems

by

Sateesh Kumar Kodavali

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Computer Science;

Human Computer Interaction

Program of Study Committee:
Vasant Honavar, Co-major Professor
Stephen Gilbert, Co-major Professor

Alexander Stoytchev

Iowa State University

Ames, Iowa

2010

Copyright c© Sateesh Kumar Kodavali, 2010. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to Krishna, my beloved friend of all time.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

ACKNOWLEDGEMENTS . xi

ABSTRACT . xiii

CHAPTER 1. INTRODUCTION . 1

1.1 Anatomy of ITS . 1

1.2 Research Questions . 2

1.3 Thesis Organization . 3

CHAPTER 2. REVIEW OF LITERATURE 5

2.1 Evolution of ITSs . 6

2.2 Effectiveness of ITSs in training/learning 8

2.3 Parent Systems to xPST . 9

2.3.1 Cognitive Tutor Authoring Tools (CTAT) 9

2.3.2 Cognitive Tutor SDK . 10

2.3.3 Comparison of the Parent Systems with xPST 14

2.4 Emergence of Games in Tutoring . 17

CHAPTER 3. xPST AUTHORING SYSTEM 21

3.1 xPST vs. CTAT . 21

3.2 xPST Architecture . 22

iv

3.2.1 Components of the xPST File . 23

3.3 xPST Authoring Tool . 25

CHAPTER 4. xPST AUTHORING STUDY 28

4.1 Methods . 28

4.1.1 Participants . 28

4.1.2 Materials . 28

4.1.3 Procedures . 31

4.2 Results . 31

4.2.1 Model Analysis . 31

4.2.2 Timing Data . 32

4.2.3 Exit Questionnaire Data . 34

4.3 Discussion . 36

CHAPTER 5. TORQUE xPST DRIVER AND EXTENSIONS TO

xPST . 39

5.1 Torque xPST Driver . 39

5.1.1 Torque Game Engine Advanced (TGEA) and TorqueScript 40

5.1.2 Components of Torque xPST Driver 40

5.2 Extensions To The xPST Framework . 44

5.2.1 Generalizable Tutoring . 45

5.2.2 Proactive Feedback . 47

5.2.3 Additional Functional Checktypes 48

CHAPTER 6. TORQUE xPST AUTHORING STUDY 50

6.1 Methods . 50

6.1.1 Participants . 50

6.1.2 Materials . 51

6.1.3 Procedures . 52

v

6.2 Results . 53

6.2.1 Model Analysis . 53

6.2.2 Timing Data . 54

6.2.3 Exit Questionnaire Data . 57

6.3 Discussion . 57

CHAPTER 7. FRACTION ADDITION AUTHORING STUDY . . . 59

7.1 Methods . 59

7.1.1 Participants . 59

7.1.2 Materials . 60

7.1.3 Procedures . 61

7.2 Results . 61

7.2.1 Model Analysis . 62

7.2.2 Timing Data . 63

7.2.3 Exit Questionnaire Data . 66

7.3 Discussion . 66

CHAPTER 8. SUMMARY AND FUTURE WORK 68

APPENDIX A. xPST AUTHORING STUDY - I 71

APPENDIX B. xPST AUTHORING STUDY - II 75

APPENDIX C. SAMPLE xPST FILE 79

APPENDIX D. xPST AUTHORING STUDY - III 81

BIBLIOGRAPHY . 87

vi

LIST OF TABLES

Table 2.1 Comparison of CTAT, Cognitive Tutor SDK and xPST 15

Table 4.1 Three tasks to be done along with their descriptions 30

Table 4.2 How the cognitive models were scored 32

Table 4.3 Time to complete model actions within a task (times in hours,

with percent of total in parentheses). 21 models considered . . . 33

Table 4.4 Editing sessions to complete model actions within a task (percent

of total in parentheses). 21 models considered 33

Table 5.1 Fraction task related functional checktypes 48

Table 6.1 How the cognitive models were scored 53

Table 6.2 Time to complete model actions within a task (times in minutes,

with percent of total in parentheses) 54

Table 6.3 Editing sessions to complete model actions within a task (percent

of total in parentheses) . 54

Table 6.4 Average Quintile data of the 18 models 56

Table 7.1 How the cognitive models were scored 62

Table 7.2 Ranks data from the Wilcoxon rank sum test 62

Table 7.3 Time to complete model actions within a task (times in minutes,

with percent of total in parentheses) 63

vii

Table B.1 Mappings provided for the two tasks, their description and the

correct answer . 78

viii

LIST OF FIGURES

Figure 1.1 A Pictorial representation of an Intelligent Tutoring System. . . 2

Figure 2.1 Screenshot of the Cognitive Tutor SDK showing the Type Hier-

archy Inspector, Predicate Tree and the Instance Editor. 11

Figure 2.2 TutorLink Architecture. 13

Figure 2.3 Evolution of this work showing the relationship between xPST

and its parent systems. 16

Figure 2.4 ITS on the top of Paint.NET application showing a JIT message. 17

Figure 2.5 A screenshot of the ITS prototype for the VANTH Web-based

Authoring Tool. The tutor on the left side panel shows the initial

problem statement to address and a hint. A JIT (just-in-time

message) gives feedback on top of a partial screenshot of the

Web-based Authoring Tool on the right. 18

Figure 3.1 The architecture of xPST. The Firefox plugin “eavesdrops” on

the software interface or website that needs tutoring. The Pre-

sentation Manager gives visual feedback using the software in-

terface. The xPST file provides the feedback and goal structure

needed for each task within the tutor. The Graphical Tutor Edi-

tor enables teachers to create the xPST file without programming

skills. 23

Figure 3.2 Tutor on NCBI WebSite. 25

ix

Figure 3.3 xPST Authoring Tool with its standard template. 27

Figure 4.1 Histogram showing Timing By Task and Participants. 34

Figure 4.2 Activity Graph of xPST Authoring Study - I 35

Figure 4.3 A screenshot of a tutor in action on the ACM portal showing a

Hint message for the user. 37

Figure 4.4 A screenshot of a tutor in action on the ACM portal showing a

JIT message since the user did not enter the exact phrase intel-

ligent tutoring in the query box. 38

Figure 5.1 Torque xPST Driver Architecture. 41

Figure 5.2 Torque xPST driver interface for communication events. 42

Figure 5.3 The xPST architecture along with the Torque Driver. 43

Figure 5.4 xPST snippet showing “Ans” checktype in action. 46

Figure 5.5 Example showing the proactive “OnComplete” feedback type. . . 47

Figure 5.6 xPST snippet showing “Lcm” functional checktype and the con-

ditional JITs. 49

Figure 6.1 Histogram showing Timing By Task and Participants. 55

Figure 6.2 Activity Graph of xPST Authoring Study - II 56

Figure 7.1 Fraction Addition User Interface for Task C. 61

Figure 7.2 Histogram showing Timing By Task and Participants. 64

Figure 7.3 Estimated Marginal Means vs BP and EP for three tasks. 65

Figure A.1 Exit Questionnaire data sheet of xPST Authoring Study - I . . . 74

Figure B.1 Email Advertisement of xPST Authoring Study - II 75

Figure B.2 Pre-Survey Questionnaire of xPST Authoring Study - II 76

Figure B.3 Exit Survey Questionnaire of xPST Authoring Study - II 77

x

Figure C.1 Sample xPST file of a DemoTask in a 3D game environment. . . 80

Figure D.1 Pre-Survey Questionnaire of xPST Authoring Study - III 81

Figure D.2 Exit Survey Questionnaire of xPST Authoring Study - III 82

Figure D.3 Email Advertisement of xPST Authoring Study - III 83

Figure D.4 Screenshot 1 of xPST Authoring Study - III webpage 84

Figure D.5 Screenshot 2 of xPST Authoring Study - III webpage 85

Figure D.6 Screenshot 3 of xPST Authoring Study - III webpage 86

xi

ACKNOWLEDGEMENTS

This would not have been possible without the support of so many individuals who

helped me shape this thesis into it’s final form. This thesis also reflects the relationships

with many generous and inspiring people I have met and worked with since the beginning

of my master’s program at Iowa State University. I would like to express my deep

gratitude to my program of study committee, Dr. Stephen Gilbert, Dr. Vasant Honavar

and Dr. Alexander Stoytchev for being very kind and generous towards me. I would like

to specially thank my advisor Dr. Stephen Gilbert for guiding me through all the phases

from the beginning to the end of my Master’s program, ensuring my academic success,

involving me in fruitful research discussions and providing me with financial support.

I would like to thank Dr. Steve Blessing, assistant professor of psychology at the Uni-

versity of Tampa for being instrumental in steering research ideas in the right direction.

The development on xPST would not have been possible without the foundational efforts

by Steven Ourada, the senior architect of xPST. I would also like to acknowledge the

help from Mike Oren, Ross Bohner, Shrenik Devasani, Jay Roltgen, Wutthigrai Boonsuk

for helping me with conducting studies and providing advice on various technical issues.

I would like to extend my special thanks to Dr. Kasthurirangan Gopalakrishnan for

his pure love and guidance all through out my master’s program at Iowa State University.

I am grateful for the friendship of so many of the students and staff of the Hu-

man Computer Interaction program, the Virtual Reality Applications Center and the

Computer Science Department. I would also like to thank Pamela Shill, Linda Dutton,

Karen Koppenhaver, Jean Bessman, and Lynette Sherer for their tireless efforts to make

xii

opportunities possible for me.

My friend Sindhu provided me with unwavering moral support all through out, which

helped me grow and concentrate even more. I would also like to thank my parents and

friends, who have always encouraged me in any pursuit.

xiii

ABSTRACT

An Intelligent Tutoring System (ITS) is an artificially intelligent educational soft-

ware application that teaches a user skills by giving personalized feedback as the user

completes tasks within a problem domain. Despite their popularity, authoring these

systems is a labor-intensive process, requiring many different skill sets. A major com-

ponent of an ITS is the cognitive model. Historically its implementation has required

not only cognitive science knowledge, but also programming knowledge as well. To ad-

dress this challenge, the Extensible Problem Specific Tutor (xPST) was developed for

easy authoring of ITSs for existing software and websites. This work develops an xPST

authoring tool to simplify the process of xPST authoring by the end user and to help

conduct research experiments. It also evaluates the xPST system in terms of the time

taken by the users to author successful models. This work also extends xPST framework

to enable the creation of generalized tutors in addition to problem specific tutors. To

help non-technical military trainers create xPST tutors in game scenarios, this work de-

velops a Torque xPST Driver plugin to enable xPST authoring in Torque 3D game and

evaluates authoring in spatial environment scenarios like 3D games using the authoring

tool. Finally, this work compares xPST and Cognitive Tutor SDK (another authoring

framework) using a fraction addition study and shows that the ratio of training devel-

opment time to training experience time using xPST is approximately 50% less that

that of using Cognitive Tutor SDK. This thesis also shows that there is no significant

difference between the “beginner programmer” and “experienced programmer” groups

in terms of the time taken to author the tasks using xPST.

1

CHAPTER 1. INTRODUCTION

“Learning by Doing” has proven to be a successful paradigm for educational training.

An Intelligent Tutoring System (ITS) is a computer based training software system

having an artificial intelligence (AI) component attached to it. This AI component can

keep track of the students progress, give feedback and hints as required and can provide

customized training to the student on a task. The key distinguishing factor of these

systems comes from the fact that they are “intelligent” unlike the normal computer aided

learning systems like audio lectures, presentations etc. Content models (also known as;

cognitive models, knowledge bases, expert systems, or simulations) give ITSs depth so

that students can “learn by doing” in realistic and meaningful contexts. Models allow

for tutoring instruction to be generated in real time. Instructional models allow the

computer tutor to more closely approach the benefits of individualized instruction by a

competent tutor.

1.1 Anatomy of ITS

ITSs generally comprise of four modules: the interface module, the expert module,

the student module and the tutor module. The student interacts with an ITS using the

interface module, which is generally in the form of a GUI or a simulation. The expert

module contains complete description of the knowledge or behaviors that represent ex-

pertise in the subject-matter domain the ITS is teaching. The student module contains

description of the knowledge or behaviors of the student including his/her misconceptions

2

and knowledge gaps. The tutor module is responsible for detecting the knowledge gaps

and providing appropriate feedback or hints as required. Figure 1.1 shows a pictorial

representation of a general ITS.

Figure 1.1 A Pictorial representation of an Intelligent Tutoring System.

1.2 Research Questions

The organization of this thesis is centered around answering the following research

questions.

1. What learning curve, if any, exists when users use xPST to author tutors on

existing web-interfaces?

3

2. What learning curve, if any, exists when users use xPST to author tutors on

existing game interfaces?

3. Is there a difference between xPST and Cognitive Tutor SDK in terms of the

training development to training experience time ratio?

4. Is there a significant difference between the “beginner programmer” and “experi-

enced programmer” groups in terms of the time taken to author using xPST?

This thesis also studies how the extensions provided to xPST can support gener-

alizable tutoring and how Torque xPST Driver can support xPST tutoring in game

environments.

1.3 Thesis Organization

This chapter provided an overview of Intelligent Tutoring Systems, the various com-

ponents of an ITS, and the research questions this thesis aims to answer. Chapter 2

goes through a careful literature review framing a background for answering the research

questions. Chapter 3 gives the details of the xPST Authoring System, its architecture,

the distinction between xPST and CTAT (a different ITS authoring system), the var-

ious components of an xPST file and the xPST Authoring Tool. Chapter 4 tries to

answer Research Question 1 by giving the details of the xPST authoring study con-

ducted to understand the usability of the xPST system to author tutors on existing

web interfaces. Chapter 5 presents the Torque xPST Driver to enable xPST tutoring

in game environments, its various components, and the Torque Game Engine, which is

used as the simulation environment. It also describes the extensions provided to the

xPST framework to support generalizable tutoring apart from problem specific tutoring

and the additional functional checktypes added to the framework. Chapter 6 tries to

answer Research Question 2 by presenting a study in which participants author models

4

in game environments using xPST. Chapter 7 attempts to answer Research Questions

3 and 4 by describing the results of the fraction addition study which compares xPST

with Cognitive Tutor SDK in terms of the training development to training experience

time ratio and also compares the time differences between “beginner programmer” and

“experienced programmer” groups. Chapter 8 provides a summary of this thesis focusing

on my specific individual contribution.

5

CHAPTER 2. REVIEW OF LITERATURE

The area of previous research that directly relate to this thesis is authoring tools for

easy authoring of ITSs. More specifically this thesis explores two research areas. The

first is easy authoring of ITSs on existing 2D interfaces. The second is easy authoring

of ITSs in complex spatial environments like 3D games. There exists vast amount of

literature on the main research topic and an extremely detailed analysis of the field

is beyond the scope of this work. However, I will endeavor to summarize the main

conclusions, and point out some particularly relevant studies.

The first research area deals with using an existing interface to build ITSs on top

of it. Re-using an existing interface with a tutor reduces the time required to develop

the tutor and any issues of learning transfer, a concern of past researchers [Corbett

et al. (1997)]. If the ITS environment is the same as the non-ITS environment then

such issues of transfer largely disappear. The second research area deals with how to

easily author ITSs in complex spatial environments like 3D games. For learning to be

effective it should be scaffolded or guided [Kirschner et al. (2006)]. During the last few

decades, the very nature of teaching in modern universities has changed. Motivating

students by setting challenges, goals and problems which are engaging is being seen

as a key factor in the learning process [Laurillard (1993)]. Research has shown that

students learn better and retain more when they actively engage in the learning process.

Tutoring within games or tutoring using games provides these advantages compared

to tutoring with traditional software. Pedagogy researchers have shown an increased

interest in incorporating gaming principles into teaching and learning [Kirriemuir and

6

McFarlane (2004)]. Games manage to maintain the user’s attention with a background

story, high-end graphics and the feeling of immersion within a simulated environment.

Games can encourage active learning and motivate participation by giving rewards when

students complete a task. An emerging model of games suggests that they excel by

providing learners with situated experiences of activities, whereby they develop new

ways of thinking, knowing, and being in worlds [Shaffer et al. (2005)]. In recent years,

the research in this area is growing fast due to the interest of military to use ITSs in 3D

games to carry out military training.

2.1 Evolution of ITSs

The evolution of Intelligent Tutoring Systems is fascinating, originating in the Ar-

tificial Intelligence (AI) movement of the late 1950’s and early 1960’s. In 1958 Skinner

reintroduced the idea of “Teaching Machines” [Skinner (1958)] based on the Verbal the-

ory, highlighting the need and advantages of such machines for the future in comparison

to the audio-visual aids. The first teaching machine was invented by Pressey in 1934.

Teaching machines help the students in being active instead of passive receivers. The

paper described and evaluated the working of few such types of machines to teach the

students. This paper has been influential in orienting the research community to focus

on such type of machines. “Programmed Instruction” [Kay (1968)], a method of pre-

senting new subject matter to students in a graded sequence of controlled steps emerged

making use of the teaching machines. Also the education system in United States dur-

ing this period also provided encouraging support for the development of ITSs. In the

1960’s, researchers created a number of Computer Assisted Instructional (CAI) sys-

tems that were generative [Uhr (1969)]. These systems were essentially automated flash

card systems, designed to present the student with a problem, receive and record the

student’s response, and tabulate the student’s overall performance on the task. These

7

programs generated sets of problems designed to enhance student performance in skill-

based domains, primarily arithmetic and vocabulary recall. By the late 1960’s and early

1970’s, researchers had moved beyond merely presenting problems to learners while col-

lecting and tabulating their responses, to considering the student a factor in the overall

instructional system [Suppes (1967)]. Researchers developed systems that altered the

presentation of new materials based on the history of a student’s responses. During that

period there was crisis in AI since the researchers came to understand that the problems

of AI were slightly intractable than the relatively straightforward challenges of building

faster computers.

In 1982, Sleeman and Brown reviewed the state of the art in computer aided in-

struction and first coined the term Intelligent Tutoring Systems (ITSs) to describe these

evolving systems and distinguish them from the previous CAI systems [Sleeman and

Brown (1982)]. During the 1980’s, computer scientists specializing in AI continued to

focus on the problems of natural language, student models, and deduction. However,

the field also attracted researchers from outside the computer science disciplines. Ander-

son, who was working in cognitive science, developed the Adaptive Control of Thought

(ACT*) theory of cognition [Anderson (1983)]. During mid 1980’s ITSs met Educational

Psychology forming a discipline combining the work of researchers from AI, cognitive

science and education moving towards a more “cognitively oriented form of software

engineering.”

One of the biggest challenges for developing ITSs is that they are very hard to

develop and require expertise in various areas. Ideally they require a team consisting

of a software developer, domain experts, a teaching expert and usability engineers. To

address this issue a number of authoring tools have been developed to date. In the

last few years there has been significant progress in the development of ITS authoring

tools and in the understanding of the key issues involved. The development efforts to

date represent many diverse approaches, and it is still too early to get a sense for which

8

approaches will prove to be the most useful. A popular classification of authoring tools

by category to better understand the state of art of the ITS authoring tools was given

in [Murray (2003)].

At this point it would be useful to recall the research questions this thesis aims

to answer. Out of the various ITS authoring tools available, xPST is the one that is

discussed at length in this thesis. xPST, aimed to tutor on procedural tasks instead of

conceptual tasks, tries to remove the need for expertise in various domains as stated

above making it easier for the non-programmers to authors tutors by using the existing

interfaces for tutoring.

2.2 Effectiveness of ITSs in training/learning

ITSs have been successfully used to tutor on a variety of domains such as mathemat-

ics, geometry, and economics [Aleven et al. (2006),Arruarte et al. (1997) and Koedinger

et al. (2004)]. Within the different types of ITSs, model-tracing tutors have been partic-

ularly effective [Anderson et al. (1989),Koedinger et al. (1997),Ritter et al. (2007) and

VanLehn et al. (2005)]. These tutors contain a cognitive model of the domain that the

tutor uses to check most, if not all, student responses. For example, the Andes physics

tutor by VanLehn [VanLehn et al. (2005)], and his colleagues contains a cognitive model

of how to solve problems within physics. This model is referenced for each step in the

problem solving process in order to make sure the student stays on path. The model can

also be used to provide hints and other assistance to the student learning the material.

This type of intense interaction and feedback has led to impressive student learn-

ing gains. Students using the Andes physics tutors have demonstrated large gains in

effect size over paper-and-pencil homework, on both standardized and more conceptual,

experimenter-designed tests [VanLehn et al. (2005)]. Results from another model-tracing

tutor that instructs students on how to program show that they can master the material

9

in a third less time [Corbett (2001)]. Carnegie Learning’s Cognitive Tutors for math is in

use by over 1000 school districts by hundreds of thousands of students. Typical results

indicate a 30% improvement on standardized tests such as the SATs, and double that

on more targeted instruments, as well as significant learning time reductions [Franklin

and Graesser (1996)].

2.3 Parent Systems to xPST

This section describes the two important parent systems to the xPST architecture

presented in this work. They are the CTAT (Cognitive Tutor Authoring Tools) and Cog-

nitive Tutor SDK. It also describes the TutorLink architecture which enables Cognitive

Tutor SDK to tutor on existing interfaces forming the basis for xPST system.

2.3.1 Cognitive Tutor Authoring Tools (CTAT)

CTAT [Aleven et al. (2006)] stands for Cognitive Tutor Authoring Tools which as

of current day is the leading cognitive model authoring tool in the academic world. It

is a collection of authoring tools developed at Carnegie Mellon University’s Learn Lab.

This system has been initially called TDK (Tutor Development Kit). CTAT supports

development of two types of tutors, Cognitive Tutors and Example-Tracing Tutors, which

represent different trade-offs in terms of ease of authoring and generality. Cognitive

Tutors rely on a rule-base cognitive model and have been successful in improving students

math proficiency in American high schools [Koedinger et al. (1997)]. They can tutor on

many facets of algebra and can tutor on as many examples of a given type of problem

as you want, e.g., hundreds of y=ax+b problems. Example-Tracing Tutors on the other

hand can only tutor on one kind of problem, and sometimes don’t even generalize as

much as cognitive tutors. They do not require much programming compared to Cognitive

Tutors [Koedinger et al. (2004)]. This is because they don’t attempt to solve the classic

10

problem in AI of generalizing from a knowledge structure that’s been manually encoded.

The Cognitive Tutor Authoring Tools comprise three separate applications: an exter-

nal GUI Builder (typically, NetBeans or Adobe Flash), a set of core tools for demonstration-

based task analysis and for testing and debugging cognitive models, and an external

editor for cognitive models (typically Eclipse).

In CTAT, the authoring of Example-Tracing Tutors and Cognitive Tutors is orga-

nized around examples of demonstrated behavior. These examples include alternative

strategies for solving problems and errors students are expected to make, and can be

recorded conveniently with CTAT’s Behavior Recorder tool. They can be used as the

basis for Example-Tracing Tutors to provide guidance to students. The examples can

also be used as planning cases and semi-automatic test cases for cognitive models, if an

author is developing a Cognitive Tutor.

2.3.2 Cognitive Tutor SDK

Cognitive Tutor SDK [Blessing et al. (2006)] is a set of cognitive ITS authoring tools

build on an architecture called Tutor Runtime Engine (TRE) [Ritter et al. (2003)], which

was inspired by TDK. The main idea behind Cognitive Tutor SDK is to come up with

GUI representations that enable the cognitive model designer to do their work without

any programming and with a clarity not offered by previous systems. As per Cognitive

Tutor SDK design the two main components of a model-tracing ITS cognitive model

are the object model and the rule hierarchy. The object model represents the pieces

of the domain to be tutored (e.g. table cells in a worksheet, components of a graph,

equations to solve and the terms within those equations), and this object model is used

by the rules to provide the tutoring to the student. The plan behind the SDK is to apply

concepts that have been successful in other aspects of computer applications, such as

tree views, hierarchies, and point-and-click interfaces, to the design of model tracing

ITSs. Development of such representations so they are usable by non-programmers in

11

this context is difficult, but critical to lowering the bar in terms of both time and money

in the creation of such systems. As noted in [Blessing et al. (2006)] the Cognitive Tutor

SDK has been successful in terms of being able to be used by cognitive scientists who are

not professional programmers, but it still requires significant computational background

and it not easy enough for, say, a high-school teacher to use.

Figure 2.1 shows a screenshot of the Cognitive Tutor SDK. The Type Hierarchy

Inspector can be seen in the upper left. The left pane of that window shows the current

type hierarchy and the right pane shows information about the currently selected item

in the left.

Figure 2.1 Screenshot of the Cognitive Tutor SDK showing the Type Hier-
archy Inspector, Predicate Tree and the Instance Editor.

12

In the view of object model, the requirements for this particular tool are similar to

other existing tools, in that the basic functionality is to display and edit objects consist-

ing of attribute/value pairs. However, there are additional requirements for Cognitive

Tutors that makes using any off-the-shelf or previously produced software problematic.

In particular, pre-defined object types exist that have their own properties and behav-

iors. For example, there is a goalnode object type (representing a students subgoal in

the problem), that has a set of predefined properties, and attached to these goalnode

types is a predicate tree inspector. In addition to the object model, the other main piece

of a cognitive model specifies the goal-state behaviors, such as right answers, hints, and

just-in-time (JIT) messages forming the backbone of a model-tracing tutor. Cognitive

Tutor SDK has a non-code based (GUI) representational scheme for the rules using tools

like Rule Editor and Tutorscript editor.

It is desirable to enable the construction of model-tracing ITSs around pre-existing

software. This would eliminate or at least greatly diminish the time spent doing tra-

ditional interface programming that is to develop a custom interface on which learners

will be tutored. By allowing authors to create an ITSs for off-the-shelf software, this

will lower the bar for creating such systems. One can imagine tutoring not only math

or statistics using Microsoft Excel as the interface (or some other spreadsheet), but one

could also tutor on Microsoft Excel itself (or any other application requiring training)

[Ritter and Koedinger (1996)]. Such a scenario would be a boon to corporate training

environments. What is needed is a way for the Tutor Runtime Engine, the tool that

uses the cognitive model created by the SDK, to communicate with third-party software

(that is, software that the authors creating the ITSs did not program). Even though the

interfaces for the current Cognitive Tutors were developed essentially in tandem with

their cognitive models, the code for the interfaces was separate from the tutoring code,

with the two pieces communicating to each other through a messaging protocol. This

separation allows to use Cognitive Tutor SDK described in the previous section, and

13

also allows for the possibility of third-party applications to be the student interface.

TutorLink [Blessing et al. (2007)] came as the solution to this problem. TutorLink acts

as a communication link between TRE and the off-the-shelf software. Figure 2.2 shows

architecture of TutorLink.

Figure 2.2 TutorLink Architecture.

Once the user interacts with the interface, that interaction needs to be noted by Tu-

torLink and sent to the TRE for the appropriate tutoring action. The part of TutorLink

that receives the interaction message from the interface is called the EventMapper. As its

name implies, this part takes the incoming message and maps the event into something

the TRE can understand (that is, a goalnode within the cognitive model). In the case,

where the interface was built using tutorable widgets, this mapping is straightforward.

In other cases, there needs to be a more structured mapping table that maps between

interface widgets and goalnodes. This mapping has to be supplied by the author. Such a

mapping application using AppleEvents has been described [Ritter and Blessing (1998)].

In general terms, the author starts a listening application, then begins to interact with

the widgets in the interface in order to identify their names, and then maps those to

goalnodes.

14

2.3.3 Comparison of the Parent Systems with xPST

The comparison between xPST and its parent systems shows a relationship between

the “Ease of Use” vs “Power”. They seem to be inversely proportional to each other. The

main idea behind CTAT is also to enable non-programmers or non-cognitive scientists to

author ITSs. The key advantage of CTAT to the existed ITS authoring systems is that it

requires no AI programming for example-tracing tutors (for Cognitive Tutors, one need

to program rules in JESS). However, it is confined to a specific set of interfaces using

CTAT-friendly widget libraries (e.g. certain Java beans or Flash actionscript libraries).

It also uses quite complex tools like “GUI Builder,” “Behavior Recorder,” “Working

Memory Editor,” “Conflict Tree,” etc which demand some level of programming knowl-

edge to understand and use them effectively. The complex GUI interface might seem

difficult to interact with for non-cognitive scientists. This way CTAT has still a deep

learning curve. But it is very powerful to create generalizable tutors for repetitive tasks

(e.g. do 30 math problems of this form). The Cognitive Tutor SDK has similar under-

lying concepts from CTAT but had used TRE as its underlying engine. The Cognitive

Tutor SDK can produce much generalizable tutors than CTAT. It can make a tutor

for all algebra problems and thus rules that apply generally can apply to any problem

(e.g. “forgot the negative sign” rule can apply to y=ax+b but also to y=sin(x)+cos(x)

or any other problem that might be appropriate). Also Tutorscript allows much more

power with customizable programming. It also still uses some complex tools like “Rule

Editor”, “TutorScript Editor” which again has some programming bent. TRE makes

certain assumptions that are not helpful when tutoring on software (e.g. it assumes

that the tutor author can fully control and track the state of the interface, graying out

buttons as needed, etc). And like CTAT, Cognitive Tutor SDK also does not enable

authoring of ITSs on existing interfaces. The xPST system has arisen to overcome these

problems. xPST based its idea on completely removing such complex GUI’s as existed

15

in its parent systems and provides a simplex text file interface. This way the author

breaks the task into a sequence of steps and writes them in a file. This made xPST

more usable by non-programmers or non-cognitive scientists to author ITSs with very

less effort. It also uses TutorLink architecture to be able to tutor on existing interfaces

removing the need to create tutoring specific interfaces. However, xPST is more lim-

ited in power. It could only author problem-specific tasks (and later game-based tasks)

where repetition is not required. This works well for software-based learning and game

based training where training is majorly task specific. Table 2.1 shows a comparison of

CTAT, Cognitive Tutor SDK and xPST in view of various factors.

Table 2.1 Comparison of CTAT, Cognitive Tutor SDK and xPST

CTAT Cognitive Tutor SDK xPST
Ease of use Low Medium High
Power Medium High Low
Enable authoring on existing interfaces No No Yes

Figure 2.3 shows the history or evolution of this research.

In view of these systems and the comparison between them [Table 2.1] and the

results [Blessing et al. (2009)] evaluating the programming knowledge needed to use

the Cognitive Tutor SDK, we can predict that it will be easier for non-programmers to

use xPST if xPST removes some of the complex data representations of the SDK, e.g.

predicate rule hierarchies.

The Cognitive Tutor SDK enables the creation of cognitive models that contain ab-

stracted instruction over instances. However, it seemed to be difficult to use in other

situations. In two of the tutors built using Cognitive Tutor SDK, for example, the

authors created a lot of declarative and procedural representations that ultimately re-

ceived very little use. For example, [Hategekimana et al. (2008)] created a tutor for

Paint.NET, software similar to Adobe Photoshop. One exercise taught users how to

resize and scale an image. While one could imagine using this instruction in multiple

16

Figure 2.3 Evolution of this work showing the relationship between xPST
and its parent systems.

image-manipulation instances, in the actual tutor it was used in only a couple of ex-

ercises. The power of having a model-tracing tutor, in which the instruction could be

abstracted over multiple instances, was lost. However, the author still spent much time

creating the representations that contained the instruction.

Figure 2.4 shows a screenshot of ITS on the top of Paint.NET application showing

a JIT message.

Likewise, the tutor for the CAPE web based Authoring Tool used at Vanderbilt Uni-

versity as part of the VaNTH ERC [Roselli et al. (2008)], the authoring process contained

similar issues. Ultimately, the tutored instruction centered over a set of eight problems.

Much work went into the declarative and procedural structures of the tutor, but their

re-use was not nearly as great as what one would see in a Carnegie Learning math tutor.

17

Figure 2.4 ITS on the top of Paint.NET application showing a JIT message.

Ultimately, the effort spent developing those representations seemed disproportionate to

their usefulness in the completed model. What was desired for these situations was a

more streamlined system where the tutoring could be developed without the need for

as much underlying structure typical of model-tracing tutors. The Extensible Problem

Specific Tutor (xPST) authoring system was designed to eliminate these problems.

Figure 2.5 shows a screenshot of the ITS prototype for the VANTH Web-based

Authoring Tool.

2.4 Emergence of Games in Tutoring

ITS researchers have begun exploring how games and features that are found in games

(e.g., embodied agents) can be used in intelligent tutors. For example, McQuiggan,

et al. [McQuiggan et al. (2008)] have examined how topics in middle school science

18

Figure 2.5 A screenshot of the ITS prototype for the VANTH Web-based
Authoring Tool. The tutor on the left side panel shows the initial
problem statement to address and a hint. A JIT (just-in-time
message) gives feedback on top of a partial screenshot of the
Web-based Authoring Tool on the right.

could be taught using a tutor built on a commercial 3D-game engine. Students search

an island science post to find clues to solve a mystery. While interacting with non-

player characters and making observations in the virtual world, students learn scientific

principles. [Johnson (2009)] describes a tutor in which users learn cultural issues while

interacting in a serious game (a game designed for a primary purpose other than pure

entertainment). Gomez-Martin, et al. [Gomez-Martin et al. (2004)] have developed

a system called JV2M which borrows ideas from games to teach programmers with

Java knowledge the internal workings of the Java Virtual Machine. In some knowledge

19

domains, games may be the only possible means of simulating and practicing real world

problems. In the military for instance, simulations have been used for teaching pilots

to fly as well as for training of combat scenarios that would otherwise be too deadly or

expensive to train in the field [Stottler (2000)]. [Livak et al. (2004)] presents a method

to unify the computer generated forces community and the online training community,

seemingly disparate areas, by using a single cognitive model to provide both tutoring and

computer generated forces capability. While previous ITSs have been most effective for

learning conceptual tasks like teaching physics [VanLehn et al. (2005)] and procedural

tasks like teaching algebra [Aleven et al. (2006)], but little has been done to explore

tutoring on procedural tasks in spatial environment scenarios like 3D games.

For some learning domains, games are a more natural way to learn than traditional

classrooms. Crawford (1984) suggests that games are “the most ancient and time-

honored vehicle for education. They are the original educational technology, the natural

one, having received the seal of approval of natural selection. We don’t see mother

lions lecturing cubs at the chalkboard; we don’t see senior lions writing their memories

for posterity. Game-playing is a vital educational function for any creature capable

of learning.” The optimal learning state is that of being in “flow” [Csikszentmihalyi

(1990)]. It refers to a mental state of immersion and clarity. Athletes call it “being in

the zone”, and the term has made its way into a number of fields including video games

research.

It is important to understand the difference between various terms like educational

simulations, virtual worlds and serious games as stated in [Aldrich (2009)]. Educational

Simulations are structured environments, abstracted from some specific real-life activity,

with stated levels and goals. They allow participants to practice real-world skills with

appropriate feedback but without affecting real processes or people. Virtual Worlds are

3D environments where participants from different locations can meet with each other at

the same time. These environments can capture and convey enough social cues, such as

20

body language, interactive props, and the look and feel of “real” surroundings to convince

some part of the participant’s brains that they are physically in other world. Increasingly

important, some virtual worlds also enable participants to build and otherwise change

the environment. Second Life is a best-known example of a virtual world. Serious games

are interactive experiences that are easy and fun to engage while building awareness of

the real world context. Serious games usually require no coaching outside help and even

spread through word of mouth, promoted by people who enjoy playing them.

21

CHAPTER 3. xPST AUTHORING SYSTEM

Re-using an existing interface with a tutor reduces the time required to develop the

tutor and any issues of learning transfer. With past ITSs, researchers have had concerns

about whether skills being learned in the ITS will transfer to the non-ITS environment

[Corbett et al. (1997)]. If the ITS environment is the same as the non-ITS environment

(e.g., learning how to edit images in the context of Adobe Photoshop itself, rather than

alternating between a tutorial video and the software), then such issues of learning

largely disappear.

3.1 xPST vs. CTAT

xPST [Blessing et al. (2009)] stands for Extensible Problem Specific Tutor and CTAT

stands for Cognitive Tutor Authoring Tools. xPST1 was developed with software training

as the target application. Traditional software training often uses videos based on screen-

recordings (e.g., from Adobe Captivate or TechSmith Camtasia Studio), but this passive

technique to learning has been shown to be less effective than an ITS [Hategekimana et

al. (2008)]. In form, xPST is similar to the CTAT [Aleven et al. (2006)]. CTAT and

xPST both allow the author to quickly create a model for a particular problem instance

by writing hints and other tutoring aspects while the author manipulates the interface.

xPST differs from CTAT in that CTAT requires the authors to use either a Java or Flash

interface built using specific CTAT widgets and xPST does not.

1The xPST Authoring System is open source and it is available on Google code repository at http:
//code.google.com/p/xpst/.

http://code.google.com/p/xpst/
http://code.google.com/p/xpst/

22

3.2 xPST Architecture

The xPST architecture (see Figure 3.1) is an instantiation of the architecture of

plug-in tutor agents described in [Ritter and Koedinger (1996)]. The xPST file, which

contains information that allows for instruction akin to a model-tracing tutor, includes

information describing the objects within the learning domain and rules that determine

which feedback the student will receive at any given moment. Every interface element of

the application for which one needs learning instruction is mapped to an object and has

one or more rules associated with it. The rules contain the instructional feedback. The

Plugin or Listener (Firefox Plugin for Web interfaces) eavesdrops on user actions in the

third-party software and sends them to the xPST Tutoring Engine, which checks them

with the xPST file. Feedback is mapped back to the client UI control and displayed on

the interface, e.g., via coachmark-style graphics [Hewes et al. (1994)]. Note that while

ITSs for academic topics like math typically require a more complex cognitive model,

so that learners can receive high-quality personalized feedback across a large number of

similar math problems, software training does not require such repetitive tasks, and the

cognitive models are typically simpler and thus problem specific.

The third-party software can be a stand-alone application or a website. If the task

is tutoring on a stand-alone application, then the system can listen for user events in

three ways by using: 1) widgets that automatically send the needed events (the method

used in [Ritter and Koedinger (1996)] with AppleEvents); 2) accessibility hooks built

into the software (used frequently by screen readers like JAWS and software like Adobe

Captivate); and 3) low-level OS events. xPST enables tutoring on any website viewable

in Firefox that can be monitored via the Document Object Model (DOM) or on any

stand-alone application in which you can insert a “listener” function to eavesdrop on

user events. The xPST Engine runs on its own server or locally and communicates with

the other components via TCP/IP, allowing the tutored application and the tutor to

23

Figure 3.1 The architecture of xPST. The Firefox plugin “eavesdrops” on
the software interface or website that needs tutoring. The Pre-
sentation Manager gives visual feedback using the software in-
terface. The xPST file provides the feedback and goal structure
needed for each task within the tutor. The Graphical Tutor Ed-
itor enables teachers to create the xPST file without program-
ming skills.

run on different servers.

3.2.1 Components of the xPST File

The xPST file (a sample is provided in Appendix C) is a text file written using

a syntax that is designed to be easy to read and write for an inexperienced cognitive

modeler. The file contains three sections: Sequence, Mappings, and Feedback. The

sequence identifies a path of steps the user takes through the problem space to achieve

the goal specified in the task. The mappings section maps interface identifiers to the

steps noted in the sequence that the user takes. Finally, the feedback section provides

24

hints and error messages for each step within the sequence. Because of this relatively

simple syntax, the authoring tool for xPST can be a text editor. An online text editor for

creating web-based tutors where authors can immediately jump to their target website

and test the current xPST file has been created.

For example, one tutor built teaches AP Biology students in high school how to use

the NCBI Bioinformatics tools that are available online. For one task, learning how

to search for a DNA sequence using the BLAST tool, the sequence contains steps like

Click-Nucleotide-BLAST-Link, then Enter-DNA-Sequence, etc. In sequences, steps can

be separated by then, and, or, and until. Until is used when there is a set of UI controls

that are all submitted to the system at once, typically by a button like Search or Go or

Submit or OK in a dialog panel. These conjunctions can be used in any combination

and grouping to allow for much flexibility in how the tutoring can progress, much more

so than the typical screen-capture movie. The Mappings section for the above steps

contains mappings that match the less understandable labels that NCBI’s site uses to

name that link internally, e.g. “homeBlastn:click” to the more friendly step name in the

sequence. Whenever that link is clicked, the xPST tutor passes along the message to

that particular tutor step.

The Feedback section specifies the desired answer and any hints or JITs (just-in-

time error messages). JIT error syntax allows several variations, e.g. the tutor author

can decide whether to allow a mistaken keystroke or click to reach the target software

(and presumably lead to unwanted to results) or to block the learner’s action so that

the error message can appear without allowing the potentially damaging action to take

place. Also, JITs can occur based on a variety of tests such as “If learner’s input is

less than 5, give this JIT.” Finally, as in other tutor APIs, xPST supports variable

replacement within hints and JITs, so that if an incorrect answer were assigned to the

variable “almost”, an error message might say: “You chose {almost}, which is close, but

its {answer}.”

25

It has been confirmed that the xPST approach can be used to develop real tutors

rapidly; one of the most extensive efforts is described in [Roselli et al. (2008)], in which

the tutor taught university faculty how to use a complex web-based homework authoring

tool. Other smaller efforts include tutoring on the NCBI site (see Figure 3.2) and on

Slashdot Journals.

Figure 3.2 Tutor on NCBI WebSite.

3.3 xPST Authoring Tool

The xPST Authoring Tool is an online web-based tool to author xPST files. It is

designed to serve two purposes: 1) To provide an easy to use graphical user interface

(GUI) to author xPST files without installing any software on the client computer 2) To

provide a tool to log the amount of time spent by the author in each of the Mappings,

26

Feedback and Sequence sections of the xPST file, which helps in conducting research

experiments involving xPST authoring. The logs and the xPST files generated by the

author are automatically stored on the server of the researcher without any work required

from the author.

The xPST Authoring Tool provides an Integrated Development Environment (IDE)

for authoring xPST files. It accomplishes all the background work like creating the

properties file, the scenario file, the linking html file and appropriately ties them up

with the xpst file taking off a bunch of housekeeping work from the author allowing him

to focus on the cognitive model alone. It provides the feature of syntax checking and

informs the author of any errors as he is editing the file. This feature greatly helps the

non-programmers in easing the authoring process as it has been found that most of the

errors encountered by the author initially during the xPST authoring process are simple

syntax errors. It also provides a starting standard template for the authors and the

authors can add their cognitive model into the standard template seamlessly. In-place

help is provided for each section of the file. The xPST Authoring Tool also provides

auto save functionality similar to Google docs. Figure 3.3 shows the xPST Authoring

Tool with its standard template.

27

Figure 3.3 xPST Authoring Tool with its standard template.

28

CHAPTER 4. xPST AUTHORING STUDY

We tested the ability of novice users of xPST to create models using the xPST Au-

thoring Tool. Our approach is based upon a study conducted previously which examined

another authoring tool described in Blessing and Gilbert (2008). Our purpose with this

study1 is to ensure that the xPST authoring approach is useful to people with different

backgrounds and to examine the learning curve in the time course of learning to author.

4.1 Methods

4.1.1 Participants

We conducted the study during Fall 2008 in an introductory HCI graduate class at

Iowa State University. The class had 48 first-year students in the HCI program from a

variety of different departments. An extra credit assignment was presented to the class.

Students could elect to do the assignment or not, and then they could elect to make

their data available for analysis or not. Eighteen students made some attempt at doing

the assignment, and 10 agreed to participate in the study.

4.1.2 Materials

The assignment was composed of three main parts: 1) information about intelligent

tutoring systems in general; 2) a worked example of creating a model using the xPST

1The research described in this chapter has been published in the Proceedings of the 14th Interna-
tional Conference on Artificial Intelligence in Education [Gilbert et al. (2009)].

29

authoring system; and 3) the assignment itself. The information concerning intelligent

tutoring in general was very brief: a web page (http://www.hci.iastate.edu/HCI521/

bin/view/Main/CogModelActivity)that contained roughly two pages of text that dis-

cussed tutoring at a very high level (e.g., needing to think about a student’s goals, what

help messages to provide, etc.), and a 5-minute screen movie which demonstrated the

VaNTH xPST tutor, designed for a Vanderbilt University web application [Roselli et al.

(2008)].

The worked example was much more in-depth, and composed of four parts: 1) a

44-minute screen movie showing someone creating the model while annotating their

actions; 2) the resulting commented xPST file; 3) a six-page web document containing

the technical information portrayed in the video; and 4) a website where the student

could try the example portrayed in the movie for him or herself. This worked example

involved a web page (http://xpst.vrac.iastate.edu/WebxPST/employmentappmenu.

html) one might use to apply for a job, which asked for such information as name,

education history, and major. The page used a variety of different entry widgets in

order to illustrate the various features of xPST-based models. Finally, the assignment

consisted of designing an xPST tutor for three different tasks (as described in Table 4.1

below), all centered on the issue of searching a particular library database (the ACM

Portal, http://portal.acm.org/dl.cfm?coll=portal&dl=ACM).

Each task specified different parameters that needed to be used in the search and

ended with the user sorting the found results in a particular manner or showing the

reference in ACM reference notation. For example, Task A asked the user to find a full-

text article about intelligent tutors (but not a math one) by someone from MIT. The

student had to find the paper with the most downloads that met those criteria. These

tasks were chosen because they are real-world tasks in which students not experienced

with such database searches might benefit from having a tutor. All three tasks were

similar in scope. They were not intended to vary in difficulty, but that was not calibrated

http://www.hci.iastate.edu/HCI521/bin/view/Main/CogModelActivity
http://www.hci.iastate.edu/HCI521/bin/view/Main/CogModelActivity
http://xpst.vrac.iastate.edu/WebxPST/employmentappmenu.html
http://xpst.vrac.iastate.edu/WebxPST/employmentappmenu.html
http://portal.acm.org/dl.cfm?coll=portal&dl=ACM

30

Table 4.1 Three tasks to be done along with their descriptions

Task Name Task Description
Task A: Search by University Use the Advanced Search to find articles from

authors at MIT on intelligent tutoring that
are not about math and where you have full
text available. Sort the list of hits to see
which one has had the most downloads over the
past 6 weeks. How many articles are there,
and what’s the name of the paper with the
most downloads?

Task B: Search Proceedings Do a search to find articles from the CHI
conference proceedings (but not the extended
abstracts) on multitouch that have full-text
available in ACM Portal. How many total CHI
articles on multitouch are there? Which one
has the most citations? Note that the official
name of the CHI conference is the Conference
on Human Factors in Computing Systems.

Task C: Find Reference You can remember an important article by Ritter and
one other person from 1996. Find the article and the
exact ACM Reference Citation format for it.

separately. Task A and Task C has 6 goalnodes (refer Chapter 2 for definition). Task B

has 7 goalnodes and requires some good thought from the participant to sequence them

correctly. For more elaborate description of the tasks see “Your deliverables section of

the study” in Appendix A.

In order to complete the assignment, the students had available to them the on-line

xPST Authoring Tool as described above. The xPST Authoring Tool allowed us to

track progress in creating the models, including the ability to know how long and how

often students worked on each of the three major sections of an xPST file (mappings, se-

quence and feedback). Lastly, participants filled out an exit questionnaire that asked for

demographic information and the participants reflections on using the xPST Authoring

Tool.

31

4.1.3 Procedures

The class instructor briefly presented the assignment to the students. If they elected

to do the assignment, then the students had three weeks to complete it. All materials

were available via a web page, and students were free to work on the assignment at any

time or place until its due date. The materials suggested that it will take 5 - 10 hours

to do the assignment.

4.2 Results

We divide the results into three parts: 1) qualitative and quantitative measurements

of the models produced; 2) timing data concerning model creation; and 3) analysis of

the end-of-task questionnaire.

4.2.1 Model Analysis

As stated above, 10 students gave permission to analyze their models. As a group,

these 10 participants produced 26 models: one participant produced only one task model,

two participants produced two task models, and the other seven participants completed

all three task models. When it is sensible we will use all data in the analyses, but at

other times we will use data only from the seven participants that completed all the

assignments. We will make clear which set of data we are using.

Blessing and Gilbert (2008) classified the models produced by the participants in

the SDK Authoring Tool into one of five categories (other researchers have used similar

scales [Martin et al. (2007)]). We did the same thing with these models produced

with the xPST Authoring Tool. The scores were based on actually running the model.

The scores are reflective of the models behavior. Due to the direct mapping between

how an xPST model behaves to how the model looks, the scores would be similar if

not identical if based on the model’s structure. As can be seen in Table 4.2, all the

32

participants performed quite adequately at producing models, with only one model not

being sufficient, and majority of participants (18 out of 26, 69%) received a score of

either 4 or 5.

Table 4.2 How the cognitive models were scored

Score Description Models
5 A model that produces behaviors close to an ideal 6

model, in terms of hints and just-in-time messages
4 A very good model that is beyond just being 12

sufficient
3 A sufficient model where the student can complete 7

the task
2 Model provides hints, but does not provide enough 1

guidance for a novice
1 Model runs but produces nonsensical help 0

The three participants who did not complete all three tasks created the poorer cog-

nitive models. Of the five models produced by these three people, the model that scored

a 2 came from that group. One model scored a 4, but the other three models scored

3s. Of the seven people who completed all three tasks, one person scored all 3s, another

scored one 3 and two 4s, and the remaining participants and models scored a mixture

of 4s and 5s.

4.2.2 Timing Data

The xPST Authoring Tool kept track of how long participants spent working on the

three parts of an xPST model and how many edits were made to each part. Table 4.3

displays the average time participants spent on various parts of the models, split by the

three different tasks. Table 4.4 displays number of editing sessions. Note that these data

represent the participants that completed all 3 tasks and for which we have valid times

(7 participants completed all 3 tasks).

The standard deviation of the timing data (in hours) for Tasks A, B and C was 1.82,

33

Table 4.3 Time to complete model actions within a task (times in hours,
with percent of total in parentheses). 21 models considered

Task A Task B Task C
Sequence 1.30 (35.0%) 1.02 (40.3%) 0.58 (33.5%)
Mappings 1.06 (28.6%) 0.58 (22.9%) 0.40 (23.1%)
Feedback 1.35 (36.4%) 0.93 (36.8%) 0.75 (43.4%)
Total 3.71 (100%) 2.53 (100%) 1.73 (100%)

Table 4.4 Editing sessions to complete model actions within a task (percent
of total in parentheses). 21 models considered

Task A Task B Task C
Sequence 37.67 (24.5%) 16.83 (26.0%) 12.67 (19.5%)
Mappings 46.33 (30.1%) 22.67 (35.1%) 24.17 (37.3%)
Feedback 70.00 (45.5%) 25.17 (38.9%) 28.00 (43.2%)
Total 154.00 (100%) 64.67 (100%) 64.84 (100%)

1.70 and 1.00 respectively. Figure 4.1 shows the histogram of timing data by tasks and

participants for the 7 participants who completed all the three tasks. We can observe

the learning curve as these participants move from task to task. Participants were not

required to work on the tasks in order, but all did so, as evident from their log files. As

noted above, the 3 tasks are similar in scope. Participants got more proficient in using

the tool and creating these models. The histogram shows that all the participants have

the expected learning curve.

Figure 4.2 shows what the average participant was doing while working through the

task model. We analyzed the data for each participant by dividing progress in writing

the model into quintiles. Within each quintile we calculated what percentage of the time

was spent on sequence actions, mapping actions, and feedback actions. This particular

graph is based on all available data (26 task models), though all graphs are very similar

to one another regardless of how the data are sliced. Much of the sequencing work was

done first, and the mapping and feedback work was then done in tandem. This was

the way the worked example movie showed during training went through the process of

34

Figure 4.1 Histogram showing Timing By Task and Participants.

model creation, and it appears that most of the participants adopted that path.

4.2.3 Exit Questionnaire Data

Participants completed a short questionnaire after they were done with the assign-

ment (see Figure A.1 in Appendix A). The questionnaire asked for demographic in-

formation (sex, home department, number of undergraduate programming courses and

self-rated “techie” score) and contained four questions asking them to reflect on their

experiences.

Of the 10 participants, all but one were male, and five of them came from engineering

departments (two were undecided, one computer science, and one veterinary medicine

major). All but two had taken more than five computer science courses as an under-

graduate; the remaining two had taken only one course. They self-rated themselves as

35

Figure 4.2 Activity Graph of xPST Authoring Study - I

at least moderately technologically sophisticated, with two 5s, three 4s, and the rest

3s. Given the small sample size and somewhat homogeneous group, it is hard to make

conclusions concerning who may have produced better models based on demographic

information. A previous study [Blessing and Gilbert (2008)] found that the number of

computer courses was a good predictor of cognitive model success. Examining the two

people who had only taken one programming course apiece, one of them wrote uninspired

models that scored a 3, but the other wrote among the best models (two 5s and a 4).

One of the two people who had taken more than 10 courses also wrote uninspired models

(all 3s). The other person who had taken more than 10 courses wrote excellent models

(a 5 and two 4s). In our small sample we have examples of all possible combinations of

programming courses and model rating.

36

In the free response questions (there were four total, asking them to reflect on this

particular experience, the task in general, what was challenging, and other uses of xPST),

five participants explicitly said that they liked the approach that xPST took with regards

to providing training on existing websites. Three people were neutral, one person thought

the process was too complex, and another made the point that if the website were

designed correctly, no training would be needed. Two people pointed out that the

usefulness of such an approach increased with the site’s complexity. Four users took

the current implementation to task, citing weaknesses such as the training materials,

the limited functionality of the editor, and the inability to circle or highlight items in

the interface as the system provides feedback (not implemented within xPST for this

particular study).

4.3 Discussion

There are two main items we would like to note from the study. First, people

were able to use the xPST Authoring Tool. Everyone who attempted to start the task

produced at least one working model. The instruction provided was minimal, about an

hour, but with that instruction a mix of people created a model of a particular task. The

second item to notice is the the presence of a learning curve as the participants moved

from task to task. There was a spread in terms of time to create the models, but all users

reduced their times upon successive models. By the third model most participants were

able to complete their model in just over 1.5 hours. After another model or two, that time

would be close to 1 hour (the developers of xPST could probably produce such models

in 30-45 minutes). That 1 hour would provide around 10 minutes worth of instruction.

So this study tries to answer our first research question that there exists a learning

curve when users use xPST to author tutors on existing web-interfaces, but we cannot

prove its significance since the study does not have enough number of participants. A

37

better study with more participants is conducted later, which is described in Chapter 7.

The small up-front cost of training coupled with a small time in producing the training

could make the xPST approach attractive to those who want to provide model-tracing

feedback to existing interfaces.

Figure 4.3 shows a screenshot of a tutor in action on the ACM portal showing a Hint

message for the user. Figure 4.4 shows a screenshot of a tutor in action on the ACM

portal showing a JIT message since the user did not enter the exact phrase intelligent

tutoring in the query box.

Figure 4.3 A screenshot of a tutor in action on the ACM portal showing a
Hint message for the user.

38

Figure 4.4 A screenshot of a tutor in action on the ACM portal showing
a JIT message since the user did not enter the exact phrase
intelligent tutoring in the query box.

39

CHAPTER 5. TORQUE xPST DRIVER AND

EXTENSIONS TO xPST

This chapter describes the Torque xPST driver and the extensions provided to the

xPST framework. Torque xPST driver acts as a bridge between the Torque game engine

and the xPST engine to enable xPST tutoring in games. The extensions provided to

the xPST framework allow for the creation of generalizable tutors and to give proactive

feedback. Additional functional checktypes are also added to the xPST framework to

enable tutoring on math problems.

5.1 Torque xPST Driver

Torque xPST driver serves the job of the Firefox plugin (see Chapter 3) when tutoring

on web based interfaces. The driver eavesdrops on the events happening in the game

and sends them to the xPST engine. It also receives the appropriate feedback from the

xPST engine and sends it to the game.

We have participated in a series of direct interactions with the military trainers at

the Camp Dodge-Iowa National Guard and took their feedback on authoring tutors in

games. Based on that, we understood that the authoring of tutors in games seemed hard

for the non-technical military trainers due to the inherent domain complexity of the 3D

environment and the lack of programming knowledge. In the hope of giving them a tool

to author problem specific military tutors we developed this driver so that they can use

the easy to use xPST framework to develop tutors in games.

40

5.1.1 Torque Game Engine Advanced (TGEA) and TorqueScript

Before describing the Torque xPST driver, it is worth mentioning the simulation

engine we have used. We have used Torque Game Engine Advanced (TGEA) as our

simulation engine. It is a commercial off-the-shelf game engine from GarageGames. It

provides various core functionalities required for game development like the rendering

engine, physics engine, 3D graphs, collision detection etc. Instead of starting from

scratch, using an off-the-shelf game engine drastically reduces the game development

time and helps the author concentrate more on the tutoring task.

TGEA supports scripting using TorqueScript. TorqueScript is similar in syntax to

JavaScript and allows the developer to create modifications (mods) of the existing games.

The Torque xPST driver is written completely in TorqueScript.

5.1.2 Components of Torque xPST Driver

The Torque xPST driver comprises of two components: the “Listener module” and

the “Presentation module”. The Listener module listens to the events happening in

the game and sends them to the xPST engine over the network. It also receives the

feedback from the xPST engine and sends it to the Presentation module. The Presenta-

tion module is responsible for presenting the received feedback to the user. The xPST

Torque driver communicates with the xPST engine and the game engine using a mes-

sage format called “Dormin message.” It is essentially a long string in a specific format

containing the various attributes informing the current state of the task, the message to

be communicated and the action verb which determines what to do with the message.

Figure 5.1 shows the pictorial representation of the Torque xPST Driver.

The xPST Torque driver also provides an interface to communicate between various

entities in the game and to register location based events in the game.

41

Figure 5.1 Torque xPST Driver Architecture.

5.1.2.1 Communication Events

Unlike traditional GUI software or websites, many of the tasks in games require the

player to be able to communicate with other entities in the game. A special goalnode

starttalk has been introduced to provide feedback related to invoking the communication

with other entities. The driver also provides an interface (see Figure 5.2) that allows

the player to choose the entity with which to communicate and the message that will

be communicated. This approach facilitates tutoring on the protocol of communication

and on the type of the communication messages that should be used, a common training

task in the military, where communication is frequently highly-structured.

For example, if the player is supposed to choose the Evacuate command for the task,

but he chooses a different command, say, the Fire command, a JIT can be launched

saying “You used Fire command on this occupant. That’s not something you need to

do right now.” This multiple-choice user interface for tutoring on communication is

designed to tutor on communication protocol and procedure: what to say and when and

42

Figure 5.2 Torque xPST driver interface for communication events.

how to say it. Future research will evaluate its effectiveness within military scenarios.

5.1.2.2 Location Events

Location events facilitate tutoring on the navigational aspects of the player’s perfor-

mance. Unlike the traditional GUI software or websites, almost every task in a game

requires the player to move within the virtual environment. To register a location based

event the author places a trigger at the appropriate location and assigns it an identifier

(entity-id). The author can use the entityid-enter goalnode to tutor on when the player

enters a particular designated location in the game.

For example, the goalnode b1-enter is triggered when the player enters building1

(b1). Figure 5.5 shows the b1-enter goalnode along with the appropriate feedback given

43

to the user in the game.

Figure 5.3 shows the comprehensive picture of the xPST architecture along with the

Torque xPST Driver.

Figure 5.3 The xPST architecture along with the Torque Driver.

The framework of the xPST driver can be leveraged to various other game engines

by making the syntactical script changes required to be able to suit with that particular

game engine. The Torque driver enables tutoring in 3D games created with Torque Game

Engine. As shown in Figure 5.3, the Torque driver is one of the many possible interfaces

to xPST and one of the several we have built. The xPST Firefox plugin is an interface

which is used to tutor on websites. The Paint.NET Driver is another interface that is

used to tutor on Paint.NET, an image editing application. Likewise, many interfaces

could be built to tutor with xPST on different existing software applications.

44

In general, we see that the xPST Torque driver provides a mechanism to author xPST

tutors in a complex domain like Torque 3D game. The four important steps required

to create a game tutor from scratch include: 1) Create the tutoring scenario, which in

effect consists of building the game map. 2) Give unique identifiers to each entity in

the game on which you plan to tutor. 3) Make a list of the events corresponding to

the entities chosen to tutor on and give appropriate mapping names in the mappings

section of the xPST file. The mappings associate game-based events with the goalnodes

that need to evaluate those events within the tutor. 4) Complete the feedback and

sequence sections of the xPST file, listing the appropriate feedback for each goalnode

and the sequence(s), in which the goalnodes may to be accomplished. Step 1 is perhaps

the most difficult step, and is required of the scenario author even in the absence of a

tutor. Past research [Gilbert et al. (2009)] (see Chapter 4) has demonstrated that novice

authors can accomplish steps 2-4 with little training in a simpler software setting, that of

using a website to search an online database. It would be of interest to explore whether

military trainers could use a modification of those previous tools to overlay an xPST

tutor on existing virtual training scenarios effectively. A related study is described in

Chapter 6.

5.2 Extensions To The xPST Framework

xPST language can model tutor for any task which contain a set of steps to be

performed in a given order and each step has an answer which denotes the correct answer

for that step to be successfully completed. A limitation of xPST is that there is no way

to carry out generalizable tutoring since there is no way that xPST can remember the

state of the previous steps and retrieve it appropriately in the order tree. So the current

step cannot make use of the states of the previous steps for tutoring purposes. This

restricts xPST to enable building only problem-specific tutors and not generic tutors.

45

State spaces and domains that are complicated (e.g., games) require feedback to

be given to the user proactively to either notify about the current step or to provide

information regarding the next steps. xPST supported only two kinds of feedback Hints,

JITs but none of them is proactive.

The xPST reference documentation and the xPST JavaDoc documentation describ-

ing the expressiveness of the language prior to adding these extensions are given at http:

//xpst.googlecode.com/svn/trunk/xPSTLib/doc/syntax/index.html and http://

xpst.googlecode.com/svn/site/javadoc/index.html respectively. The instructions

on how to create a cognitive model using xPST is given at http://code.google.com/

p/xpst/wiki/CreatingACognitiveModel.

We have added extensions to xPST framework to eliminate these limitations. This

section gives an overview of these extensions and how they can be used to eliminate

the previous xPST limitations. Each subsection contains appropriate URLs to the code

corresponding to those extensions.

5.2.1 Generalizable Tutoring

xPST has been basically designed to tutor on problem specific tasks. Each task

contains a set of steps to be performed in some order. Previously xPST had no capability

to remember the state of the previous steps and hence could not tutor on them once

they were completed. To drive the point home, we use a simple addition task example.

The web page has three text boxes, the first two are to enter two numbers to be added

and the third text box is to enter the sum of the two numbers. Once the user entered the

first number and moved to the second step (goalnode) of entering the second number,

the state of the first step is lost, and hence tutoring on addition cannot be done for

any generic numbers that the user enters. Though this example seems to be simple this

turns out be a very useful feature as it can cater to creation of generalizable tutors (one

tutor for many problems) and can enable conditional JITs depending on the previous

http://xpst.googlecode.com/svn/trunk/xPSTLib/doc/syntax/index.html
http://xpst.googlecode.com/svn/trunk/xPSTLib/doc/syntax/index.html
http://xpst.googlecode.com/svn/site/javadoc/index.html
http://xpst.googlecode.com/svn/site/javadoc/index.html
http://code.google.com/p/xpst/wiki/CreatingACognitiveModel
http://code.google.com/p/xpst/wiki/CreatingACognitiveModel

46

state (e.g., in the case of a game environment, if the player picks up a crossbow in a

previous step give feedback1 else give feedback2).

The answer to a goalnode is referred to as checktype in xPST language. These

checktypes can also be functions which take in parameters and return an answer for

the goalnode. They are specifically called functional checktypes. In order to carry out

generalizable tutoring a new generic functional checktype “Ans” has been added to

the framework. The “Ans” checktype accepts a single parameter which is the goaln-

ode name and it returns the answer to that goalnode even though the step has been

completed. The answer returned can be any of the answer types supported by xPST

and this allows the author to fire conditional JITS. http://xpst.vrac.iastate.edu/

extensionscode/functionalchecktypes.zip contains the zip file with the code for the

“Ans” generic functional checktype along with other functional checktypes provided.

Let’s look back at the addition example. We will add a constraint that the two

addends should be equal to see the “Ans” checktype in action. So now the answer to

the second goalnode will be Ans(“GN1”) to check if both the numbers are equal or not.

An appropriate JIT can be fired if that is not the case. Figure 5.4 shows the example

xPST snippet depicting this.

Figure 5.4 xPST snippet showing “Ans” checktype in action.

http://xpst.vrac.iastate.edu/extensionscode/functionalchecktypes.zip
http://xpst.vrac.iastate.edu/extensionscode/functionalchecktypes.zip

47

5.2.2 Proactive Feedback

xPST supported providing feedback (Hints and JITs) when the user asks for it.

State spaces and domains which are complicated (eg., games) require feedback to be

given to the user proactively to either notify that the current step is completed or to

provide information regarding the next steps. Apart from the Hints and JITs a new

feedback type “OnComplete” has been added to the xPST framework. This is used to

provide proactive feedback regarding the current step completion or as reminder about

the next steps. This feedback fires as the user completes the current step in the sequence.

http://xpst.vrac.iastate.edu/extensionscode/emscript.g contains the grammar

file of xPST after the addition of the new “OnComplete” feedback type.

For example, in the case of a game environment, Figure 5.5 shows the scenario using

the OnComplete feedback to inform the user about the current step completion that he

or she has entered Building 1.

Figure 5.5 Example showing the proactive “OnComplete” feedback type.

http://xpst.vrac.iastate.edu/extensionscode/emscript.g

48

5.2.3 Additional Functional Checktypes

We have also incorporated additional functional checktypes into the xPST frame-

work to be able to tutor on math problems. They include the basic arithmetic functional

checktypes which are “Sum”, “Subtract”, “Multiply” and “Divide”. Each of these check-

types accepts the two required parameters for the operation to be performed. Also to

tutor on fraction addition task (see chapter 7) we have also incorporated the following

checktypes into the framework. http://xpst.vrac.iastate.edu/extensionscode/

functionalchecktypes.zip contains the code for the additional functional checktypes.

They are illustrated in Table 5.1.

Table 5.1 Fraction task related functional checktypes

Functional Checktype Description
Lcm(“step1”,“step2”) Function returns True if the user’s answer is the

lowest common multiple (LCM) of the answer
of step1 and answer of step2

EqNumerator(“num1”,“denom1”,“lcm”) Function returns the equivalent numerator if
converting the fraction num1/denom1 to a
fraction with a new denominator (lcm)

IsMultiple(“step1”) Function returns True if the user’s answer
is a multiple of the answer of step1

Figure 5.6 shows the example xPST snippet using the “Lcm” functional checktype

and also the conditional JITs.

These checktypes are created to support very basic math tutoring. In the future, we

hope to create libraries of functional checktypes to be able to tutor on various problem

domains.

http://xpst.vrac.iastate.edu/extensionscode/functionalchecktypes.zip
http://xpst.vrac.iastate.edu/extensionscode/functionalchecktypes.zip

49

Figure 5.6 xPST snippet showing “Lcm” functional checktype and the con-
ditional JITs.

50

CHAPTER 6. TORQUE xPST AUTHORING STUDY

The motivation behind conducting this study was to ensure that the Torque xPST

driver can support xPST authoring in game environments. This study tests if there

exists any learning curve when the novice xPST users use the Torque xPST driver to

create xPST game tutors.

The methods used in this study were similar to those used in our earlier study

described in Chapter 4.

6.1 Methods

6.1.1 Participants

Participants were contacted through email advertisement (see Figure B.1 in Appendix

B). There were 21 interested participants. As a first step, the interested participants

took a pre-survey (see Figure B.2). Based on the pre-survey 14 of them were selected

to do the complete study. Out of them, two participants did not author any models

and expressed their sadness for dropping right in the beginning of the study because

they were in their finals week of the semester. We did not hear back from two other

participants who took the pre-survey but did not author any models. So we effectively

had the data of 10 participants who participated in the study.

51

6.1.2 Materials

The materials for the study were provided via the web page (http://xpst.vrac.

iastate.edu/TorqueTutor/cogstudy.html) similar to the previous study (see Chapter

4). The web page has an embedded 15-minute video which goes through the process

of creating a Demo Tutor using the xPST Torque driver. The web page also has links

to the commented xPST file and the sample Demo Tutor game application. The Demo

Tutor task requires the user to shoot once at the enemy, called “Kork,” and then pick

up the crossbows present near the fireplace. Finally, the study consisted of designing an

xPST tutor for two different tasks.

The first task in the study was Target Acquisition. The task teached soldiers how

to locate an enemy target so that an assisting aircraft can destroy it. The scenario

consisted of a Target (tower). The player moved in the scenario, entered the proximity

region of the target, started communication, issued a report location command to the

Base, again started communication and then issued a Fire command to the Base. The

second task in the study was Evacuate. The task aimed at teaching soldiers how to

evacuate cottages in a threatened village environment. There were three cottages in

the game scenario with an occupant in each one. The player was supposed to enter

a cottage, start communication, and issue the Evacuate command to the occupant of

that cottage. The evacuation of cottages could be done in any order. Once all three

cottages were evacuated, the task was complete. The necessary mappings for authoring

tutors for the two tasks were provided in Table B.1 in Appendix B. The Evacuate task

was little more complicated than the Target Acquisition task in terms of the number

of goalnodes required to be authored and the linearity level of the sequence section.

Since the cottages can be evacuated in any order, the sequence section of the Evacuate

task was more non-linear compared to Target Acquisition. The Evacuate task required a

minimum of 7 goalnodes, and Target Acquisition task required a minimum of 3 goalnodes

http://xpst.vrac.iastate.edu/TorqueTutor/cogstudy.html
http://xpst.vrac.iastate.edu/TorqueTutor/cogstudy.html

52

apart from the “Off-path” goalnodes (steps that could be done in the interface that were

not relevant to the current task) for successful completion.

The participants were asked to use the on-line xPST Authoring Tool, which was

used for the study described in Chapter 4 to author their xPST files . The participants

also filled out an exit questionnaire [Figure B.3 in Appendix B] giving feedback on their

usage of the xPST Torque Driver and the xPST Authoring Tool.

6.1.3 Procedures

The interested participants initially took the pre-survey, which tested whether they

had the minimum programming experience (simple HTML editing or SPSS scripting or

editing Outlook filter rules or similar kind of minor programming). The participants

who had met the required criteria as determined by the pre-survey were then moved on

to the complete study. Any under qualified or over qualified participants were excluded

at this stage of the study and were provided a compensation of $3 in cash for taking the

pre-survey.

The participants who were selected had two weeks to do the study. They were

promised a compensation of $40 in cash for taking the pre-survey, successfully authoring

tutors for two tasks in the study and completing the exit survey (see Figure B.3 in

Appendix B). The task was said to be successfully completed when: 1) there was a

cognitive model that worked, meaning it ran in the game and the system provided

hints, and 2) there was a tutor that guided the learner through the steps of task as

described. The successful participants were also entered into a random lottery for $149

cash prize (the cost of a 5th Gen iPod Nano). All materials were available via a web

page (http://xpst.vrac.iastate.edu/TorqueTutor/cogstudy.html), and students

were free to work on the study at any time or place until its due date. The materials

suggested 6 - 12 hours to do the tasks. During task development, technical support was

provided by the author in a consistent manner. Support for interface issues was provided

http://xpst.vrac.iastate.edu/TorqueTutor/cogstudy.html

53

(e.g., not knowing how to install or launch the game) but participants were not given

guidance on how to write an xPST file other than pointing to the online documentation.

6.2 Results

We conducted model analysis to qualitatively evaluate the data and also conducted

the quantitative timing and editing sessions data analysis. We also report the feedback

given by the participants in the exit survey questionnaire.

6.2.1 Model Analysis

10 participants took the complete study. These 10 participants produced 20 models.

In Gilbert et al. (2009) we classified the models produced by the participants in the

xPST Authoring Study - I into one of five categories (other researchers have used similar

scales [Martin et al. (2007)]). We did the same thing with these models produced with

the xPST Authoring Tool in this study. The categories were modified to add a new

category: “Model has the required hints but does not run due to syntactical errors.” The

scores were based on actually running the model. Table 6.1 shows that all participants

performed well at producing models, with only two models not being sufficient, and with

the majority (16 out of 20, 80%) receiving a score of either 4 or 5.

Table 6.1 How the cognitive models were scored

Score Description Models
5 A very good model that is beyond just being 8

sufficient
4 A sufficient model where the student can complete 8

the task
3 Model provides hints, but does not provide enough 2

guidance for a novice
2 Model runs but produces nonsensical help 0
1 Model has the required hints but does not run 2

due to syntactical errors

54

The one participant who made syntactical mistakes while authoring the models could

not get the two models running, and these models scored 1. One participant had their

two models scored 3 and the rest of the participants had their models scored a mixture

of 4s and 5s.

6.2.2 Timing Data

The timing and editing sessions data were collected from the xPST Authoring Tool.

Table 6.2 displays the average time participants spent on various parts of the models,

split by the three different tasks. Table 6.3 displays number of editing sessions.

Table 6.2 Time to complete model actions within a task (times in minutes,
with percent of total in parentheses)

Task A Task B
Sequence 3.49 (17.68%) 2.63 (19.04%)
Mappings 5.87 (29.74%) 4.61 (33.38%)
Feedback 10.38 (52.58%) 6.57 (47.58%)
Total 19.74 (100.0%) 13.81 (100.0%)

Table 6.3 Editing sessions to complete model actions within a task (percent
of total in parentheses)

Task A Task B
Sequence 8.1 (18.6%) 10.0 (26.9%)
Mappings 15.8 (36.2%) 12.2 (32.9%)
Feedback 19.7 (45.2%) 14.9 (40.2%)
Total 43.6 (100%) 37.1 (100%)

We noted two interesting aspects of this data. The first item to notice was the

learning curve as these participants moved from task to task. Participants were not

required to work on the tasks in order, but all did so, as evident from their log files.

As mentioned above, the Task B (Evacuate task) was more complicated than Task A

(Target Acquisition task), but more interestingly the time spent and the number of steps

required in Task B was less than Task A. The second item of note was that the time

55

spent and the number of steps (see Table 6.3) taken in the sequence section of Task B

was more compared to sequence section of Task A though the total time and the total

steps was reduced. But as mentioned, Task B had more complicated sequence than Task

A. Though there was no proof of significance due to the small number of participants,

it seemed participants were able to complete more modeling in less time after a quick

learning curve. To overcome the number of participants limitation of this study we

conducted another study described in Chapter 7.

The standard deviation of timing data (in minutes) were 9.16 and 6.24 for Tasks

A and B respectively. Figure 6.1 shows the histogram of timing data by tasks and

participants of the 9 participants whose all the models ran successfully. The histogram

shows that all the participants except one have the expected learning curve.

Figure 6.1 Histogram showing Timing By Task and Participants.

56

Figure 6.2 gives an idea about the trend the average participant was following while

authoring the task. Similar to the previous study (see Chapter 4), we calculated the

average quintile data for the 18 task models from the nine participants (the one partic-

ipant whose models scored 1 and did not run was excluded in this since those models

did not have the necessary step data to be plotted). We see that the same result was

replicated in authoring game tutors too.

Figure 6.2 Activity Graph of xPST Authoring Study - II

Table 6.4 shows the average quintile data (on which the graph is generated) corre-

sponding to the 18 models.

Table 6.4 Average Quintile data of the 18 models

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Mappings 20.68% 37.47% 39.60% 42.53% 29.15%
Sequence 41.14% 12.11% 11.12% 24.21% 17.74%
Feedback 38.18% 50.42% 49.28% 33.25% 28.76%

We also found that the average number of contiguous edit steps for Task A and Task

B were 10.33 and 8.88 respectively. This also strengthened the learning curve observation

57

as the amount of switching between sections to fix or amend a previous edit had been

reduced. It should also be noted that the significance of the result cannot be proved

since we did not have enough data.

6.2.3 Exit Questionnaire Data

The exit questionnaire (see Figure B.3 in Appendix B) asked for their undergraduate

major, number of undergraduate programming courses taken and self-rated “techie”

score similar to previous study (see Chapter 4). There were also two free response

questions: 1) “Do you think this approach makes the tutoring in 3D games relatively

easy?”, 2) “Do you have any suggestions for the authoring tool or authoring framework?”.

Five people explicitly said that the approach seemed relatively easy to set up a tutor

to guide someone through the game tasks. Two of them said they were not sure, one

person thought the documentation and the little help provided when he/she was stuck

was helpful, one person felt the idea was great, and the other person (who scored a

1 on both models) felt that it was too complex to understand. This participant also

mentioned that he could not spend much time due to his graduation. Most of the

participants suggested improving the authoring tool to be more user friendly and have

more error checking. There were also suggestions to have more documentation and code

samples.

6.3 Discussion

The Torque xPST Driver enables xPST authoring in Torque 3D game. Although the

domain is complex, people are able to author tutors with progressively smaller times

after a little instruction time. This study tries to answer our second research question

of whether there is a learning curve as the participants move from task to task even

though the tasks get complex. This study stands as a proof of concept to show that the

58

Torque xPST driver enables xPST authoring in game environments. But again we note

that these results are not significant due to the lower number of participants and further

research is required to prove the significance.

59

CHAPTER 7. FRACTION ADDITION AUTHORING

STUDY

The idea behind conducting this study was to examine and compare the extended

xPST framework with the Cognitive Tutor SDK in terms of the ratio of training de-

velopment time to training experience time for authoring similar tasks and to evaluate

the differences between “beginner programmers” and “experienced programmers” (de-

scribed below) in terms of the time they take to author models using xPST and the

model scores.

The materials and the procedures used for this study were mostly similar to those

used in the previous study (see Chapter 6). So they will be discussed here briefly by

giving reference to Chapter 6 wherever required.

7.1 Methods

7.1.1 Participants

The number of participants in this study were increased from those in our previous

studies (see Chapters 4 and 6) to analyze the significance of our results. They were

contacted through email advertisement (see Figure D.3 in Appendix D). Similar to the

previous study they also took a pre-survey (see Figure D.1) but here the participants

were not eliminated based on the pre-survey results. We had got 28 participants out of

which 14 were categorized as “beginner programmers” and the other 14 were categorized

60

as “experienced programmers” depending on the number of undergraduate programming

courses they have taken. “Beginner programmers” took fewer than three programming

courses and the “experienced programmers” took three or more programming courses.

From now on we use BP and EP to represent “beginner programmers” and “experienced

programmers” respectively.

7.1.2 Materials

Similar to the study described in Chapter 6, the web page (see Figures D.4, D.5, D.6

in Appendix D) hosted all the materials required for the study. It had a 22-minute video

showing the creation of a Demo Addition Tutor using the extended xPST Authoring

System. The Demo Addition Tutor task (see Figure 7.1) was built on a web page which

had two text box controls where the user could enter two values to be added, and the

tutor guided the user in the process of addition of two numbers, giving all the required

Hints and JITs. The study required the participants to design an xPST tutor for three

different tasks using the on-line xPST Authoring Tool (see Chapter 4) and take the exit

questionnaire (see Figure D.2 in Appendix D).

Task A gave tutoring on fraction addition where the denominators of both the frac-

tions are same (eg., 1/5 + 2/5). The user interface had the text boxes to enter input

fractions and the text boxes to enter the fraction sum. Task B gave tutoring on fraction

addition where the denominator of the second fraction is a multiple of the denominator

of the first fraction (eg., 1/3 + 1/6). Task C gave tutoring on fraction addition where

the denominators of both the fractions are neither same nor the denominator of the

second fraction is a multiple of the denominator of the first fraction (eg., 1/3 + 2/5).

For Task B and Task C the user interface had the text boxes to enter input fractions and

the text boxes to enter the LCM and the equivalent numerators and the text boxes to

enter the fraction sum. The task complexity increased as the user moves through Task

A to Task B to Task C in terms of the generality of fraction addition and also in terms

61

of the numbers of steps required for authoring due to increase in the number of UI text

boxes. Figure 7.1 shows the user interface of the Task C.

Figure 7.1 Fraction Addition User Interface for Task C.

7.1.3 Procedures

Participants who took the pre-survey were categorized into BP and EP groups de-

pending on the number of undergraduate programming courses they had taken. The time

limit to complete authoring the three tasks was 1 week. The compensation structure

remained the same as it was in the previous study (see Chapter 6).

7.2 Results

We carried out the model analysis and the timing data analysis. The analysis in

this study is little different from the previous study (see Chapter 6) because of the

classification of the participants into two groups BP and EP. Since we have the required

62

number of participants in this study, we also carried out the statistical significance tests.

We also mention the user feedback from the exit questionnaire.

7.2.1 Model Analysis

The 28 participants produced 84 models. Similar to the classification in Gilbert

et al. (2009), we classified the models produced by the participants into one of the five

categories (see Table 7.1). The table shows that the majority (64 out of 84, 76%) received

a score of either 4 or 5.

Table 7.1 How the cognitive models were scored

Score Description Models
5 A model that produces behaviors close to an ideal 35

model, in terms of hints and just-in-time messages
4 A very good model that is beyond just being 29

sufficient
3 A sufficient model where the student can complete 8

the task
2 Model provides hints, but does not provide enough 8

guidance for a novice
1 Model runs but produces nonsensical help 4

Since the data is ordinal and naturally skewed due to more 4’s and 5’s, we used the

Wilcoxon rank sum test, a non-parametric statistical significance test, to test if the BP

and EP groups have equally high model scores. We have H0: There is no difference in

the means of the model scores between BP and EP and Ha: There is a difference in the

means of the model scores between BP and EP. Table 7.2 shows the mean rank and the

sum of the ranks of the two groups.

Table 7.2 Ranks data from the Wilcoxon rank sum test

Groups N Mean Rank Sum of Ranks
BP 14 14.29 200.00
EP 14 14.71 206.00

63

The ranks indicate that EP group has a little higher scores than BP group but it

should be noted that the difference is very little. The test statistic (U = 95) and the

p-value is 0.880 which is greater than 0.05. So we accept the null hypothesis. This shows

that there is no significant difference in the means of the model scores between BP and

EP.

7.2.2 Timing Data

Similar to the previous study (see Chapter 6), the timing data was obtained from the

xPST Authoring Tool log files. Table 7.3 displays the average time participants spent

in each of the three sections across the tasks A, B and C.

Table 7.3 Time to complete model actions within a task (times in minutes,
with percent of total in parentheses)

Task A Task B Task C
Sequence 11.56 (13.53%) 11.23 (12.47%) 2.04 (3.15%)
Mappings 10.01 (11.71%) 8.43 (9.36%) 3.52 (5.44%)
Feedback 63.88 (74.76%) 70.38 (78.17%) 59.10 (91.41%)
Total 85.45 (100.0%) 90.04 (100.0%) 64.66 (100.0%)

Table 7.3 shows the learning curve as the user progresses from task to task. We

observe that there is an increase in the total time from Task A to Task B but it should

be noted that this increase is due to increase in the time spent in the feedback section.

This is because Task A has 6 goalnodes for which feedback needs to be authored where

as Tasks B and C have 10 goalnodes because the denominators of the fractions are not

same and they require intermediate reduction steps. But from Task B to Task C again

the time decreases.

Figure 7.2 shows the histogram of timing data by tasks and participants. Out of

28 participants, 17 of them (8 people from BP group and 9 people from EP group)

seem to have the expected learning curve. It is hard to tell the exact reason why other

participants do not have the expected learning curve. We think one reason might be

64

the random fluctuations that one sees in real world data. Also, despite the instructions

given, perhaps the participants might have left the authoring tool running even when

they are not actually working on the task.

Figure 7.2 Histogram showing Timing By Task and Participants.

We conducted a 2x3 mixed factor ANOVA (a 3 level dependent factor of task number,

and a 2 level independent factor of programming experience) with time taken as the

dependent variable to study the between-subjects (BP and EP groups) effects in relation

to time taken. This gave Type III Sum of Square = 221.780, df = 1, Mean Square =

221.780, F = 0.029 and p-value of .865 clearly showing that we can accept the null

65

hypothesis that there is no significant difference between the BP and EP groups in

terms of the time taken to complete the tasks. Figure 7.3 plots a graph between the

Estimated Marginal Means (the mean times) and the Programming Experience groups

for all the three tasks. The plot shows that BP have taken more time than EP for each

task but the difference between these times decreased gradually and for Task C there is

little difference between times taken by BP(65.03) and EP(64.28).

Figure 7.3 Estimated Marginal Means vs BP and EP for three tasks.

It would be interesting to compare Cognitive Tutor SDK and xPST in terms of the

ratio of training development time to training experience time. This ratio is estimated

to be 10:1 in the case of Cognitive Tutor SDK for authoring the three similar fraction ad-

dition tasks [Blessing and Gilbert (2008)]. The exit questionnaire asked the participants

to give an estimate on the number of hours they needed to go through the instruction

to do the tasks. From this data we have a total average instruction time of 150 minutes.

66

The total average development time for the three tasks is 240.15 minutes. The average

total instruction experience time is estimated to be 75 minutes (15 minutes for Task A

and 30 minutes each for Task B and Task C). This gives us the ratio of 5.2:1 which is

approximately 50% less than that of Cognitive Tutor SDK.

7.2.3 Exit Questionnaire Data

Participants completed a short exit questionnaire (see Figure D.2 in Appendix D)

after they were done with authoring the tasks. The questionnaire asked for the estimate

of the time they needed to go through the instruction provided, what was challenging

about cognitive modeling, other arenas where this kind of tutoring would be helpful and

what do they think of this approach.

Participants mentioned that understanding the functions to use and thinking in lines

of xPST was tough in the beginning. But as they progressed, they were able to grasp

them. There were suggestions to use xPST in teaching mathematics, computer games

like chess, language courses, biology, statistics and how to use email, chat, the Iowa State

AccessPlus accounts management system, etc. There was also a suggestion to use xPST

to teach Sudoku for deaf and dumb people. A majority of the participants felt that the

approach is flexible and has the potential to teach novice users on problem specific tasks.

There were also suggestions for improving the authoring tool to be more user friendly.

We would like to incorporate this feedback in planning future xPST research.

7.3 Discussion

We see that the core extensions provided to xPST are able to support tutoring in

cases where the previous state needs to be remembered. There is a learning curve as the

participants move from task to task. As an answer to our third research question, we see

that the ratio of training development time to training experience time is approximately

67

50% less than that of Cognitive Tutor SDK. And as an answer to our fourth research

question, we see that there is no significant difference in the means of the model scores

and the time taken to complete the tasks between BP and EP, which indicates that

programming experience did not effect participants’ ability to use the xPST tool. This

result is a notable achievement in the effort to empower non-programmers to create

intelligent tutoring systems.

68

CHAPTER 8. SUMMARY AND FUTURE WORK

This chapter summarizes the research challenges this thesis aimed to answer, the

solutions proposed and my specific contribution. We have started over with a brief in-

troduction to Intelligent Tutoring Systems and their anatomy. Then we presented a brief

literature review on the evolution of ITSs, the effectiveness of ITSs in training/learning,

the parent systems (CTAT, Cognitive Tutor SDK) to xPST, comparison of xPST with

its parent systems, the emergence of games in tutoring and the xPST Authoring System

in detail.

The first research question of interest is “What learning curve, if any, exists when

users use xPST to author tutors on existing web-interfaces?”. In the direction of an-

swering this question we have conducted a study (described in Chapter 4) to test the

ability of novice users of xPST to create cognitive models using the xPST Authoring

System. The participants authored tutors for three tasks on ACM portal using the xPST

Authoring Tool. We noticed two main points from the study. First, people were able

to use the xPST Authoring Tool. Everyone who attempted to start the task produced

at least one working model. The instruction provided was minimal, about an hour, but

with that instruction a mix of people created a model of a particular task. The second

item to notice is the the presence of a learning curve as the participants moved from task

to task. There was a spread in terms of time to create the models, but all users reduced

their times upon successive models. By the third model most participants were able

to complete their model in just over 1.5 hours. After another model or two, that time

would be close to 1 hour (the developers of xPST could probably produce such models

69

in 30-45 minutes). That 1 hour would provide around 10 minutes worth of instruction.

So this study tries to answer our first research question that there exists a learning curve

when users use xPST to author tutors on existing web-interfaces but we cannot prove

its significance since the study does not have enough number of participants. The small

up-front cost of training coupled with a small time in producing the training could make

the xPST approach attractive to those who want to provide model-tracing feedback to

existing interfaces. My specific contribution in this study involved the design and de-

velopment of the xPST web based Authoring Tool along with the logging functionality,

few bug fixes in the xPST Firefox Plugin needed for the study and monitoring the study

from start to end.

The second research question of interest is “What learning curve, if any, exists when

users use xPST to author tutors on existing game interfaces?”. In the direction of

answering this question we have conducted a study (described in Chapter 6) to test the

ability of novice users of xPST to create tutors in 3D games using the extended xPST

Authoring System. The participants authored tutors for two tasks in the Torque Game

Engine Advanced using the xPST Authoring Tool. We see that the Torque xPST Driver

enables xPST authoring in Torque 3D game. Given that the domain is complex, people

are able to author tutors with progressively smaller times after a little instruction time

though this result is not significant. There is a learning curve as the participants move

from task to task even though the tasks get complex. My specific contribution in this

study is to develop the Torque xPST Driver, design and conduct the study from start

to end and analyze the results.

The third and fourth research questions of interest are “Is there a difference be-

tween xPST and Cognitive Tutor SDK in terms of the training development to training

experience time ratio?” and “Is there a significant difference between the “beginner

programmer” and “experienced programmer” groups in terms of time taken to author

using xPST?”. These research questions are answered in Chapter 7 by conducting a

70

study on the fraction addition problem which Cognitive Tutor SDK has used in the

past. As in the previous studies we see a learning curve as the participants move from

task to task. The ratio of training development time to training experience time using

xPST is approximately 50% less than that of Cognitive Tutor SDK. We see that there

is no significant difference between the BP and EP groups in terms of the time taken to

complete the tasks. We also see that there is no significant difference in the means of

the model scores between BP and EP. My specific contribution in this study involved

developing the generalizable tutoring extensions to xPST, developing other additional

functional checktypes and design and conduct the study from start to end and analyze

the results.

Future research can explore to add more functionalities to Torque xPST Driver to

support events like communication between teams in addition to communication between

players, events on a category of entities instead of individual entities (eg: for tutoring

on all tanker objects apart from just a particular tanker), events specific to military

domains like navy, air force etc. The xPST framework can also be experimented to be

embedded in applications on various hardware devices like mobile, multitouch etc. It is

also worth exploring Natural Language Processing tutoring using xPST.

71

APPENDIX A. xPST AUTHORING STUDY - I

Your deliverables section of the study

Your user is someone who needs to learn how to use the ACM Portal online database.

Use http://portal.acm.org/dl.cfm?coll=portal&dl=ACM to access it, or the link in

the xPST editor. (Note that if you are off-campus, you won’t be able to read the text

of the articles you find unless you login to the ACM Portal via the ISU Library’s proxy

server, but you don’t need to do that for this activity; this is just about search. If you

do want to do this for some reason, use this link and login to the ISU Library proxy

server with your ISU ID and library PIN.)

Your user needs to learn how to accomplish three tasks, so you will create three sepa-

rate xPST files, one for each task. To do this, use the xPST Editor http://aphrodite.

vrac.iastate.edu/WebSite1/xpstedit.aspx.

Note: This activity can be a little confusing because you are a student but you’re

also creating a tutor for someone who is a student. Below, for example, the italics text

is what the learner, your target user, would see, but the normal text is for you to see.

Task A: Search by University

Create an xPST file that can tutor on the following task:

Use the Advanced Search to find articles from authors at MIT on intelligent tutoring

that are not about math and where you have full text available. Sort the list of hits to

see which one has had the most downloads over the past 6 weeks. How many articles are

there, and what’s the name of the paper with the most downloads?

http://portal.acm.org/dl.cfm?coll=portal&dl=ACM
http://aphrodite.vrac.iastate.edu/WebSite1/xpstedit.aspx
http://aphrodite.vrac.iastate.edu/WebSite1/xpstedit.aspx

72

Provide JITs as appropriate. Include hints for every step. You can decide whether

you want to have multiple levels for your hints. Some people prefer to use the first level

to remind the learner of his or her goal and the second level to give concrete directions

about what is required, e.g. what to click or type. You could have further levels if

desired. In your write up of the activity, be sure to comment on your rationale for your

design decision.

You don’t need to provide a way for the learners to input the answers to the questions

like “How many articles are there?” Just assume they have pencil and paper to write

that down on their own. These are mostly for your own reference while creating the

cognitive model. The answers are 1) there are 9 articles from this search and 2) the

one with the most downloads is “What would they think?: a computational model of

attitudes.”

Note that you need to put quotes around “intelligent tutoring” when you type it in

the search field.

Task B: Search Proceedings

Create an xPST file that can tutor on the following task:

Do a search to find articles from the CHI conference proceedings (but not the extended

abstracts) on multitouch that have full-text available in ACM Portal. How many total

CHI articles on multitouch are there? Which one has the most citations? Note that the

official name of the CHI conference is the Conference on Human Factors in Computing

Systems.

You can use two approaches: Browsing the CHI proceedings and then searching for

“multitouch,” or use the Advanced Search.

Include both possible paths to the goal in your sequence (the browsing and the

advanced search). The answer to total articles is 7. The one with the most citations is

Smartskin by Rekimoto, with 72.

73

Task C: Find Reference

Create an xPST file that can tutor on the following task:

You can remember an important article by Ritter and one other person from 1996.

Find the article and the exact ACM Reference Citation format for it.

Because some learners may want to type “ritter” or “Ritter 1996” etc. in the general

search field instead of using the Advanced Search, create a branch of your sequence to

allow that, even though it’s a bad idea (you get hundreds of hits). The normal sequence

of steps would start with clicking Advanced Search, but this other branch would start

with typing in the search field, getting the hits, but also a JIT explaining why it’s a bad

idea and that clicking Advanced Search next would be the right thing to do next. (Note

that after doing a search, the Advanced Search link is located in the left navigation

menu below the blue boxes.)

For that first step’s answer to allow a large variety of combinations like “ritter,”

“Ritter,” “ritter 96,” “1996 Ritter” etc, set the answer in the xPST file equal to

RegEx(“[rR]itter(1996|96)?|(1996 |96)?[Rr]itter”); This formula parses regular expres-

sions (a computer science term) and will accept all those combinations of Ritter and

1996 as correct while rejecting others. This may seem confusing now but will be more

understandable after watching the training.

Note that when learners click into an article in the hit list, they can click either the

title or the smaller “full citation” link. You need to have a step in your sequence for each

of those. The “ACM Ref ” link within the Ritter and Blessing article is what you want

them to click as the final step. Note also that in the advanced search page, to set the

publication date to 1996, you set “Published since” to 1996 and “Published before” also

to 1996. This seems a little odd, as if the second date should really be called “published

before or during.” Also, because the ACM Portal website does some odd things with its

drop down menus, use the following RegEx? formula as the answer for your steps about

selecting 1996: RegEx(“1996//s*”);

74

Exit Questionnaire Data

Figure A.1 Exit Questionnaire data sheet of xPST Authoring Study - I

75

APPENDIX B. xPST AUTHORING STUDY - II

Email Advertisement

Figure B.1 Email Advertisement of xPST Authoring Study - II

76

Pre-Survey Questionnaire

Figure B.2 Pre-Survey Questionnaire of xPST Authoring Study - II

77

Mappings Provided for the Two Tasks

The required mappings for authoring the two tasks in the study, their description

and their correct answers are given in Table B.1.

Exit Survey Questionnaire

Figure B.3 Exit Survey Questionnaire of xPST Authoring Study - II

78

Table B.1 Mappings provided for the two tasks, their description and the
correct answer

Mapping Description Correct Answer
Target:EnterProximity Triggers when player “1”

enter the proximity
region of the Target

base:Evacuate Command asking the base “Evacuate”
to Evacuate

base:Ammo Command asking the base “Ammo”
use Ammo

base:Fire Command asking the base “Fire”
to Fire

base:Jump Command asking the base “Jump”
to Jump

base:Destroy Command asking the “Destroy”
base to Destroy

base:ReportLoc Command to report “ReportLoc”
the location of
the target to base

cottage1Trigger:Enter Triggers when the “1”
player enters cottage 1

startcommunicate Command to start “c”
communication

cottage1Occupant:Evacuate Command asking “Evacuate”
the occupant in
cottage 1 to Evacuate

cottage1Occupant:Ammo Command asking “Ammo”
the occupant in
cottage 1 use Ammo

cottage1Occupant:Fire Command asking “Fire”
the occupant in
cottage 1 to Fire

cottage1Occupant:Jump Command asking “Jump”
the occupant in
cottage 1 to Jump

cottage1Occupant:Destroy Command asking “Destroy”
the occupant in
cottage 1 to Destroy

cottage1Occupant:ReportLoc Command to report “ReportLoc”
the location of the
target to base

79

APPENDIX C. SAMPLE xPST FILE

Here is a sample xPST file of a DemoTask in a 3D game environment. The task re-

quires the user to shoot once at the enemy, called ’Kork’, and then pick up the crossbows,

present near the fire place.

80

Figure C.1 Sample xPST file of a DemoTask in a 3D game environment.

81

APPENDIX D. xPST AUTHORING STUDY - III

Pre-Survey Questionnaire

Figure D.1 shows the pre-survey questionnarie of the xPST Authoring Study - III

Figure D.1 Pre-Survey Questionnaire of xPST Authoring Study - III

Exit Survey Questionnaire

Figure D.1 shows the exit survey questionnarie of the xPST Authoring Study - III

82

Figure D.2 Exit Survey Questionnaire of xPST Authoring Study - III

Email Advertisement and Screenshots of the study webpage

83

Figure D.3 Email Advertisement of xPST Authoring Study - III

84

Figure D.4 Screenshot 1 of xPST Authoring Study - III webpage

85

Figure D.5 Screenshot 2 of xPST Authoring Study - III webpage

86

Figure D.6 Screenshot 3 of xPST Authoring Study - III webpage

87

BIBLIOGRAPHY

Aleven, V., McLaren, B., Roll, I., Koedinger, K. R. (2006). Toward meta-cognitive

Tutoring: A Model of Help-Seeking with a Cognitive Tutor. International Journal of

Artificial Intelligence in Education., 16, 101–130.

Aleven, V., Sewall, J., McLaren, B. M., Koedinger, K. R. (2006). Rapid authoring of in-

telligent tutors for real-world and experimental use. In Kinshuk, Koper, R., Kommers,

P., Kirschner, P., Sampson, D. G., Didderen, W., (Eds.), Proceedings of the 6th IEEE

International Conference on Advanced Learning Technologies (ICALT 2006), 847–851.

Aleven, V., McLaren, B. M., Sewall, J., Koedinger, K. (2006). The Cognitive Tutor

Authoring Tools (CTAT): Preliminary evaluation of efficiency gains. In Ikeda, M.,

Ashley, K. D., Chan, T. W. (Eds.), Proceedings of the 8th International Conference

on Intelligent Tutoring Systems (ITS 2006), 61–70.

Aldrich, C. (2009). Learning Online with Games, Simulations, and Virtual Worlds:

Strategies for Online Instruction. John Wiley and Sons, 2009., 7–11.

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, Massachusetts: Har-

vard University Press.

Anderson, J. R., Conrad, F. G., Corbett, A. T. (1989). Skill acquisition and the LISP

Tutor. Cognitive Science., 13, 467–506.

88

Arruarte, A., Fernandez-Castro, I. Greer, J. E. (1997). The IRIS Shell:How to Build

ITSs from Pedagogical and Design Requisites. International Journal of Artificial In-

telligence in Education., 8, 341–381.

Bell, B. (1998). Investigate and decide learning environments: Specializing task models

for authoring tools design. Journal of the Learning Sciences, Vol. 7. No. 1.

Blessing, S., Gilbert, S. (2008). Evaluating an Authoring Tool for Model-Tracing In-

telligent Tutoring Systems. Proceedings of the 9th International Conf. on Intelligent

Tutoring Systems, 204–215.

Blessing, S. B. (1997). A programming by demonstration authoring tool for model tracing

tutors. Int. J. of Artificial Intelligence in Education. Vol. 8 , No. 3-4, 233–261.

Blessing, S. B., Gilbert, S, Ritter, S. (2006). Developing an authoring system for cognitive

models within commercial-quality ITSs. In Proceedings of the Nineteenth International

FLAIRS Conference.

Blessing, S., Gilbert, S., Ourada, S., Ritter, S. (2007). Lowering the Bar for Creating

Model-Tracing Intelligent Tutoring Systems. In Proceedings of the 13th International

Conference on Artificial Intelligence in Education.

Blessing, S., Gilbert, S., Blankenship, L., Sanghvi, B. (2009). From SDK to xPST: A

New Way to Overlay a Tutor on Existing Software. Proceedings of the Twenty-Second

International FLAIRS Conference.

Blessing, S. B., Gilbert, S., Ourada, S., Ritter, S. (2009). Authoring model-tracing

cognitive tutors. The International Journal for Artificial Intelligence in Education,

19(2).

89

Bruckman, A. (1997). Moose Crossing: Construction, community, and learning in a

networked virtual world for kids. PhD Dissertation, MIT Media Lab.

Brusilovsky, P. (1998). Methods and Techniques of Adaptive Hypermedia. In P.

Brusilovsky, A. Kobsa, and J. Vassileva, editors, Adaptive Hypertext and Hypermedia,

Chapter 1, Kluwer Academic Publishers, The Netherlands, 1998., 1–44.

Clancey, W., Joerger, K. (1988). A Practical Authoring Shell for Apprenticeship Learn-

ing. Proceedings of ITS-88, Montreal, 67–74.

Corbett, A. T. (2001). Cognitive computer tutors: Solving the two-sigma problem. In

the Proceedings of the Eighth International Conference of User Modeling.

Corbett, A. T., Koedinger, K. R., Anderson, J. R. (1997). Intelligent tutoring systems. In

Helander, M. G., Landauer, T. K., Prabhu, P. (Eds.) Handbook of Human-Computer

Interaction, 2nd edition Elsevier Science, 849–874.

Crawford, C. (1984). The art of computer game design. Berkeley, CA:Osborne/McGraw-

Hill.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimum experience. New York:

Harper Perennial.

Franklin, S., Graesser, A. (1996). Is it an agent, or just a program? A taxonomy for au-

tonomous agents. Proc. of the Third Intl Workshop on Agent Theories, Architectures,

and Languages.

Gilbert, S., Blessing, S. B., Kodavali, S. (2009). The Extensible Problem-Specific Tutor

(xPST): Evaluation of an API for Tutoring on Existing Interfaces. Proceedings of the

14th International Conference on Artificial Intelligence in Education.

90

Gomez-Martin, M., Gomez-Martin, P., Gonzalez-Calero, P. (2004). Game-driven intel-

ligent tutoring systems. Proceedings of the Third International Conference on Enter-

tainment Computing (ICEC)., 108–113.

Hategekimana, C., Gilbert, S., Blessing, S. (2008). Effectiveness of using an intelligent

tutoring system to train users on off-the-shelf software. In McFerrin, K. et al. (Eds.),

Proc. of Society for Info. Tech. and Teacher Education Intl Conf., AACE, 414–419.

Hewes, J., Hills, M., Miyake, J., Sleeter, M. (1994). Creating interactive on-line instruc-

tion. Professional Communication Conference, IPCC ’94 Proceedings, 446–451.

Hsieh, P., Halff, H., Redfield, C. (1999). Four easy pieces: Developing systems for

knowledge-based generative instruction. International Journal of Artificial Intelligence

in Education.

Johnson, W. L. (2009). A simulation-based approach to training operational cultural

competence. Proceedings of ModSIM, Virginia Beach, VA.

Jong, T., VanJoolingen, W. R. (1998). Scientific discovery learning with computer sim-

ulations of conceptual domains. Review of Educational Research, Vol. 68 No. 2, 179–

201.

Kay, H. (1968). Teaching Machines and Programmed Instruction. Penguin Books

Kirriemuir, J., McFarlane, A. (2004). Literature reviews in games and learning. Technical

Report Report 8, Nesta FutureLab Series.

Kirschner, P. A., Sweller, J., Clark, R. E. (2006). Why minimal guidance during instruc-

tion does not work: An analysis of the failure of constructivist, discovery, problem-

based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–

86.

91

Koedinger, K. R., Aleven, V., Heffern, McLaren, B. Hockenberry (2004). Opening the

Door to Non-Programmers: Authoring Intelligent Tutor Behavior by Demonstration.

In the Proceedings of the Seventh International Conference of Intelligent Tutoring

Systems, Maceio, Brazil.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., Mark, M. A. (1997). Intelligent

tutoring goes to school in the big city. International Journal of Artificial Intelligence

in Education., 8, 30–43.

Lajoie, S., Faremo, S., Wiseman, J. (2001). A knowledge-based approach to designing

authoring tools: From tutor to author. In Proc. of Artificial Intelligent in Education,

J.D. Moore C. Redfield, L.W. Johnson (Eds). ISO Press., 77–86.

Laurillard, D. (1993). Rethinking university teaching: A framework for the effective use

of educational technology. Routledge.

Livak, T., Heffernan, N. T., Moyer, D. (2004). Using Cognitive Models for Computer

Generated Forces and Human Tutoring. 13th Annual Conference on (BRIMS) Behav-

ior Representation in Modeling and Simulation. Simulation Interoperability Standards

Organization. Arlington, VA.

Major, N., Ainsworth, S., Wood, D. (1997). REDEEM: Exploiting symbiosis between

psychology and authoring environments. International J. of Artificial Intelligence in

Education. Vol. 8 , No. 3-4., 317–340.

Major, N. P., Reichgelt, H (1992). COCA - A shell for intelligent tutoring systems. In

Frasson, C., Gauthier, G., McCalla, G.I. (Eds.) Procs. of Intelligent Tutoring Systems

’92. New York: Springer-Verlag.

92

Martin, B., Mitrovic, A., Suraweera, P. (2007). Domain modelling with ontology: A case

study. In Cristea, A., Carro, R.M., (Eds.) Proceedings of the 5th Int. Workshop on

Authoring of Adaptive and Adaptable Hypermedia, User Modeling, 4–11.

McQuiggan, S., Rowe, J., Lee, S., Lester, J. (2008). Story-based learning: The impact of

narrative on learning experiences and outcomes. Proceedings of the Ninth International

Conference on Intelligent Tutoring Systems, Montreal, Canada., 530–539.

Merrill, M. D., ID2 Research Group (1998). ID Expert: A Second generation instruc-

tional development system. Instructional Science, Vol. 26, 243–262.

Munro, A., Johnson, M. C., Pizzini, Q. A., Surmon, D. S., Towne, D. M, Wogulis,

J. L. (1997). Authoring simulation-centered tutors with RIDES. International J. of

Artificial Intelligence in Education. Vol. 8 , No. 3-4, 284–316.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated

analysis of the state of the art. In Murray, T., Blessing, S., Ainsworth, S. E. (Eds.),

Tools for Advanced Technology Learning Environments., 491–544.

Murray, T. (1997). Expanding the knowledge acquisition bottleneck for intelligent tu-

toring systems. International J. of Artificial Intelligence in Education. Vol. 8 , No.

3-4, 222–232.

Murray, T. (1998). Authoring knowledge-based tutors: Tools for content, instructional

strategy, student model, and interface design. Journal of the Learning Sciences, Vol.

7. No. 1., 5–64.

Murray, T. (1999). Authoring Intelligent Tutoring Systems: An analysis of the state of

the art. International Journal of AI in Education, 10., 98–129.

93

Parker, D. (2002). Show us a story: an overview of recent research and recourse devel-

opment work at the British Film Institute. English in Education, 36, 38–45.

Ritter, S., Kulikowich, J., Lei, P., McGuire, C. L. Morgan, P. (2007). What evidence

matters? A randomized field trial of Cognitive Tutor Algebra I. In Hirashima, T.,

Hoppe, U., Young, S. S. (Eds.), Supporting Learning Flow through Integrative Tech-

nologies., Vol. 162, 13–20.

Ritter, S., Koedinger, K. (1996). An architecture for plug-in tutor agents. Journal of

AIED, 7(3-4), 315–347.

Ritter, S., Blessing, S. B., Wheeler, L. (2003). User modeling and problem-space repre-

sentation in the tutor runtime engine. In P. Brusilovsky, A. T. Corbett , F. de Rosis

(Eds.), User Modeling, 333–336.

Ritter, S., Blessing, S. B. (1998). Authoring tools for component-based learning envi-

ronments. Journal of the Learning Sciences, 7 (1), 107–131.

Roselli, R. J., Gilbert, S., Howard, L., Blessing, S. B., Raut, A., Pandian, P. (2008).

Integration of an Intelligent Tutoring System with a Web-based Authoring System to

Develop Online Homework Assignments with Formative Feedback. American Society

for Engineering Education Conference.

Schewe, S., Reinhardt, B., Bestz, C. (1999). Experiences with a Knowledge Based Tu-

toring System for Student Education in Rheumatology. In XPS-99: Knowledge Based

Systems: Survey and Future Direction, 5th Biannual German Conference on Knowl-

edge Based Systems, Lecture Notes in Artificial Intelligence 1570, Springer.

Shaffer, D. W., Squire, K. D., Halverson, R., Gee J. P. (2005). Video games and the

future of learning. Phi Delta Kappan, 87(2), 104–111.

94

Skinner, B. F. Tecahing Machines. Science, 128, 969-977.

Sleeman, D., Brown, J. S. (1982). Introduction: Intelligent Tutoring Systems. New York:

Academic Press., 1–11.

Sparks, R., Dooley, S., Meiskey, L., Blumenthal, R. (1999). The LEAP authoring tool:

supporting complex courseware authoring through reuse, rapid prototyping, and in-

teractive visualizations. International Journal of Artificial Intelligence in Education.

Stottler, R. H. (2000). Tactical action officer intelligent tutoring system(tao its). Pro-

ceedings of the Industry/Interservice, Training, Simulation and Education Conference

(I/ITSEC).

Suppes, P. (1967). Some theoretical models for mathematics learning. Journal of Re-

search and Development in Education, 1, 5–22.

Towne, D. M. (1997). Approximate reasoning techniques for intelligent diagnostic in-

struction. International Journal of Artificial Intelligence in Education. Vol. 8 , No.

3-4, 262–283

Uhr, L. (1969). Teaching machine programs that generate problems as a function of

interaction with students. Proceedings of the 24th National Confernece, 125–134.

Van Marcke, K. (1998). GTE: An epistemological approach to instructional modeling.

Instructional Science, Vol. 26., 147–191.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., Treacy, D.,

Weinstein, A., Wintersgill, M. (2005). The Andes physics tutoring system: Lessons

learned. International Journal of Artificial Intelligence and Education., 15,(3).

95

Virvou, M., Moundridou, M. (2001). Adding an instructor modeling component to the

architecture of ITS authoring tools. International Journal of Artificial Intelligence in

Education 12(2)., 185–211.

White, B., Frederiksen, J. (1995). Developing Metacognitive Knowledge and Processes:

The Key to Making Scientific Inquiry and Modeling Accessible to All Students. Techni-

cal Report No CM-95-04. Berkeley, CA: School of Education, University of California

at Berkeley.

Winne P. H. (1991). Project DOCENT: Design for a Teacher’s Consultant. In Goodyear

(Ed.), Teaching Knowledge and Intelligent Tutoring. Norwood, NJ: Ablex.

	2010
	Extensible Problem Specific Tutor (xPST) : Easy authoring of intelligent tutoring systems
	Sateesh Kumar Kodavali
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Anatomy of ITS
	1.2 Research Questions
	1.3 Thesis Organization

	2. REVIEW OF LITERATURE
	2.1 Evolution of ITSs
	2.2 Effectiveness of ITSs in training/learning
	2.3 Parent Systems to xPST
	2.3.1 Cognitive Tutor Authoring Tools (CTAT)
	2.3.2 Cognitive Tutor SDK
	2.3.3 Comparison of the Parent Systems with xPST

	2.4 Emergence of Games in Tutoring

	3. xPST AUTHORING SYSTEM
	3.1 xPST vs. CTAT
	3.2 xPST Architecture
	3.2.1 Components of the xPST File

	3.3 xPST Authoring Tool

	4. xPST AUTHORING STUDY
	4.1 Methods
	4.1.1 Participants
	4.1.2 Materials
	4.1.3 Procedures

	4.2 Results
	4.2.1 Model Analysis
	4.2.2 Timing Data
	4.2.3 Exit Questionnaire Data

	4.3 Discussion

	5. TORQUE xPST DRIVER AND EXTENSIONS TO xPST
	5.1 Torque xPST Driver
	5.1.1 Torque Game Engine Advanced (TGEA) and TorqueScript
	5.1.2 Components of Torque xPST Driver

	5.2 Extensions To The xPST Framework
	5.2.1 Generalizable Tutoring
	5.2.2 Proactive Feedback
	5.2.3 Additional Functional Checktypes

	6. TORQUE xPST AUTHORING STUDY
	6.1 Methods
	6.1.1 Participants
	6.1.2 Materials
	6.1.3 Procedures

	6.2 Results
	6.2.1 Model Analysis
	6.2.2 Timing Data
	6.2.3 Exit Questionnaire Data

	6.3 Discussion

	7. FRACTION ADDITION AUTHORING STUDY
	7.1 Methods
	7.1.1 Participants
	7.1.2 Materials
	7.1.3 Procedures

	7.2 Results
	7.2.1 Model Analysis
	7.2.2 Timing Data
	7.2.3 Exit Questionnaire Data

	7.3 Discussion

	8. SUMMARY AND FUTURE WORK
	A. xPST AUTHORING STUDY - I
	B. xPST AUTHORING STUDY - II
	C. SAMPLE xPST FILE
	D. xPST AUTHORING STUDY - III
	BIBLIOGRAPHY

