
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

A spatial mediator model for integrating
heterogeneous spatial data
Hsine-jen Tsai
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Tsai, Hsine-jen, "A spatial mediator model for integrating heterogeneous spatial data" (2011). Graduate Theses and Dissertations. 10285.
https://lib.dr.iastate.edu/etd/10285

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10285?utm_source=lib.dr.iastate.edu%2Fetd%2F10285&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A spatial mediator model for integrating heterogeneous spatial data

by

Hsine-Jen Tsai

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Leslie Miller, Major Professor

Shashi Gadia

Sree Nilakanta

Wallapak Tavanapong

Johnny Wong

Iowa State University

Ames, Iowa

2011

Copyright © Hsine-Jen Tsai, 2011. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF FIGURES v

LIST OF TABLES ix

ABSTRACT x

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. LITERATURE REVIEW 7

2.1 Ontology-based data integration 7
2.1.1 Ontology support for heterogeneous data integration 8
2.1.2 Ontology support geospatial information integration 10

2.2 Mediator to support the interoperability among multiple data sources 11
2.2.1 Mediation systems for geographic data 14

2.3 Quality driven geospatial data integration 17

CHAPTER 3. ONTOLOGY MODEL 19

3.1 Ontology model 20
3.1.1 Ontology model definition 22
3.1.2 The weighted ontology 29

3.2 Search 34
3.3 Extended function ontology 37

3.3.1 Function search 42
3.4 Semantic network model 42

CHAPTER 4. SPATIAL MEDIATOR MODEL 47
4.1 Motivation 48

4.1.1 GeoGrid infrastructure 49
4.1.1.1 User 50
4.1.1.2 Registration 51
4.1.1.3 Data source 51
4.1.1.4 Independent tools 52
4.1.1.5 Computation server 52

4.1.2 Interaction between spatial mediator and infrastructure 53
4.2 The spatial mediator model 54

4.2.1 Local interface views (LIV) 54
4.2.2 Registration process 55
4.2.3 Overall mediation process 58
4.2.4 Major components 64

4.2.4.1 R tree: RT 65
4.2.4.2 Rule set: RS 66
4.2.4.3 Geographic symbolic ontology: GSO 67
4.2.4.4 Semantic network ontology: SNO 67
4.2.4.5 Fact database: FD 68
4.2.4.6 System manager: SM 70

4.3 Map script generation 72
4.3.1 An example of MLIV 74
4.3.2 Search MLIVs 77
4.3.3 Rank MLIVs 78
4.3.4 Map grouping 80

iii

4.3.5 Map script generation 86
4.3.6 Map MLIV ranking strategy 91

4.3.6.1 Quality attributes of geographic data 93
4.3.6.1.1 Geographic data quality standard 93
4.3.6.1.2 Fitness for use 94
4.3.6.1.3 Data conversion 95
4.3.6.1.4 Completeness 96
4.3.6.1.5 Positional accuracy 97
4.3.6.1.6 Accessibility 98
4.3.6.1.7 Reliability 98
4.3.6.1.8 Resolution 99
4.3.6.1.9 Map type 99

4.3.6.2 Quality ranking measure model 100
4.3.6.2.1 Attributes values generation approaches 103

4.3.6.2.1.1 Attributes reliability value 103
4.3.6.2.2 Parameter values generation approaches 104

4.3.6.2.2.1 Expert model 106
4.3.6.2.2.1.1 Data model conversion 107

4.3.6.2.2.1.1.1 Raster to vector conversion 108
4.3.6.2.2.1.1.2 Vector to raster conversion 112
4.3.6.2.2.1.1.3 Parameter file value 114
4.3.6.2.2.1.1.4 Parameter com value 115
4.3.6.2.2.1.1.5 Parameter pos value 116
4.3.6.2.2.1.1.6 Parameter rel value 116
4.3.6.2.2.1.1.7 Parameter access value 117

4.3.6.2.2.2 Parameter res value generation model 117
4.3.6.2.3 Weight generation approaches 119

4.3.6.2.3.1 Partitioning weight generation approach 121
4.3.6.2.3.2 Map grouping weight generation approach 125

4.3.6.3 Scoring function ranking model 131
4.3.6.3.1 Single attribute scoring function 131

4.3.6.3.1.1 Scoring function 135
4.4 Relational script generation 138

4.4.1 Search RLIVs 142
4.4.2 Generate SubQueries 145
4.4.3 Generate framework query 150

4.5 Integration script generation 152

CHAPTER 5. EVALUATION 154

5.1 Map generation process correctness 154
5.1.1 Empirical study 154

5.1.1.1 Empirical study data set 155
5.1.1.2 Evaluation of quality ranking measure model 155

5.1.1.2.1 Evaluation of quality ranking measure approach 156
5.1.1.3 Evaluation of scoring function ranking model 158
5.1.1.4 Evaluation of partitioning weight generation approach 161

5.1.2 Conceptual correctness 164
5.1.2.1 Correctness of coverage using RT 165
5.1.2.2 Correctness of coverage using GSO 169
5.1.2.3 Correctness of coverage of map grouping 169

5.2 Relational query correctness 172
5.2.1 Framework query correctness 173
5.2.2 Subquery correctness 179

CHAPTER 6. CONCLUSION AND FUTURE WORK 181

iv

6.1 Conclusion 181
6.2 Future work 182

APPENDIX A. Summary of registration data 184

APPENDIX B. Rule set 186

APPENDIX C. Equivalence class comparison for the parameters 188

BIBLIOGRAPHY 192

ACKNOWLEDGEMENTS 200

v

LIST OF FIGURES

Figure 3.1a: The is-a relation between t1 and t2. 23

Figure 3.1b: The is-a relation between car and vehicle. 23

Figure 3.2a: The has-instance relation between t1 and t2. 24

Figure 3.2b: The has-instance relation between vehicle and car. 24

Figure 3.3: The is-a and has-instance relations between car and vehicle. 24

Figure 3.4a: The is-part-of relation between t1 and t2. 25

Figure 3.4b: The is-part-of relation between sea floor and sea. 25

Figure 3.5a: The contains relation between t1 and t2. 25

Figure 3.5b: The contains relation between sea floor and sea. 26

Figure 3.6a: The synonym relation between t1 and t2. 26

Figure 3.6b: The synonym relation between brook and creek. 26

Figure 3.7a: The antonym relation between t1 and t2. 26

Figure 3.7b: The antonym relation between female and male. 27

Figure 3.8a: The is-closely-related relation between t1 and t2. 27

Figure 3.8b: The is-closely-related relation between automobile and car 27

Figure 3.9: A fragment of a sample ontology represented by a graph. 28

Figure 3.10: A fragment of a weighted ontology with two different weighted is-a and

has-instance edge. 33

Figure 3.11: A fragment of a weighted ontology with two different weighted synonym

edges. 33

Figure 3.12: A fragment of a weighted ontology with two different weighted

is-closely-related edges. 34

Figure 3.13a: The has relation between t1 and t2. 38

Figure 3.13b: The has relation between merge and vecOnRaster. 38

Figure 3.14a: The evolves relation between t1 and t2. 39

Figure 3.14b: The evolves relation between version1 and version2. 39

Figure 3.15a: The implements relation between t1 and t2. 39

Figure 3.15b: The implements relation between vecOnRaster and vecRas-v1. 39

Figure 3.16a: The defines-as relation between t1 and t2. 40

Figure 3.16b: The defines-as relation between fusion and merge. 40

Figure 3.17a: The applies-to relation between t1 and t2. 40

Figure 3.17b: The applies-to relation between merge and roadMap. 40

Figure 3.18: Fragments of ontology and function ontology. 41

vi

Figure 3.19: Fragment of the function portion of the function ontology showing how

versions are maintained in the model. 41

Figure 3.20: Example of two data sources in the semantic data model. 44

Figure 3.21: A fragment of Semantic Network Ontology. 45

Figure 4.1: A simple example of a GeoGrid graph showing the nodes and the data flow

for a mediated data request. 50

Figure 4.2: Data source node layout and request/data flow for retrieval. 52

Figure 4.3: Overall process of the spatial mediator. 64

Figure 4.4: A fragment of Geographic Symbolic Ontology. 67

Figure 4.5: A fragment of Semantic Network Ontology. 68

Figure 4.6: A block diagram of the mediator components that generates map scripts. 73

Figure 4.7a: An example of data accessible by a specific MLIV. 74

Figure 4.7b: An example illustrates an MLIV that provides access to ArcGIS. 75

Figure 4.7c: An example illustrates an MLIV that provides access to Oracle spatial. 76

Figure 4.8: Fragment of the symbolic search. 78

Figure 4.9: Examples of FullCoverageList and PartialCoverageList. 80

Figure 4.10: An example of the data structures after two MLIVs (α,β) have been

processed. 83

Figure 4.11: A continuing example from Figure 4.10. 84

Figure 4.12: Pseudo code for map grouping algorithm. 85

Figure 4.13: Maps from the MLIVs that have been clipped to the part of requesting

bounding box that they cover. 90

Figure 4.14: Result map after integration 91

Figure 4.15: Sample rules for dealing with file and map types. 102

Figure 4.16a: The original raster (JPG type) map. 109

Figure 4.16b: The converted vector (SHAPE type) map. 109

Figure 4.17a: The original raster (TIFF type) map. 110

Figure 4.17b: The converted vector (SHAPE type) map. 110

Figure 4.18a: The original raster (JPG type) map. 111

Figure 4.18b: The converted vector (SHAPE type) map. 111

Figure 4.19a: The original vector (SHAPE type) map. 112

Figure 4.19b: The converted raster (JPG type) map. 113

Figure 4.19c: The converted raster (TIFF type) map. 114

Figure 4.19d: The original map in raster type. 114

Figure 4.20: The spatial mediator in the running stage. 121

Figure 4.21a: Comments of partitioning weight generation approach. 123

Figure 4.21b: Partitioning weight generation algorithm. 124

vii

Figure 4.22: Map grouping weight generation algorithm. 130

Figure 4.23: Scoring function algorithm. 137

Figure 4.24: An example of the object structure for RLIV. 138

Figure 4.25: The process for generating a relational script. 140

Figure 4.26: A fragment of Semantic Network Ontology. 144

Figure 4.27: The hypergraph representation of database scheme R. 146

Figure 4.28: An example of framework query. 151

Figure 4.29: An example of integration script. 153

Figure 4.30: A map results from execution of the integration script shown in Figure 4.29. 153

Figure 5.1: A comparison of incorrectly ranked MLIVs between set of initial weights and

tuned weights. 158

Figure 5.2: A comparison of incorrectly ranked MLIVs between set of initial weights and

tuned weights. 158

Figure 5.3: Number of incorrectly ranked MLIVs between random sequence, incoming

sequence and sorted sequence. 160

Figure 5.4: Number of incorrectly ranked map groupings between random sequence,

incoming sequence and sorted sequence. 160

Figure 5.5: comparison between mLIVs in map script and best available MLIVs in terms

of parameter com 162

Figure 5.6: comparison between mLIVs in map script and best available MLIVs in terms

of parameter file 162

Figure 5.7: comparison between mLIVs in map script and best available MLIVs in terms

of parameter pos 162

Figure 5.8: comparison between mLIVs in map script and best available MLIVs in terms

of parameter rel 163

Figure 5.9: comparison between mLIVs in map script and best available MLIVs in terms

of parameter res 163

Figure 5.10: comparison between mLIVs in map script and best available MLIVs in terms

of parameter access 163

Figure 5.11: An example of the topological relationship between a point location

requirement and the bounding box of MLIV. 166

Figure 5.12: Examples of possible relationship between a circle region location

requirement of request and the bounding box of MLIV 166

Figure 5.13: Examples of possible topological relationship between the bounding box of

location requirement of request and the bounding box of MLIV. 167

Figure 5.14: Examples of possible relationship between the location requirement of

request and the bounding box of MLIV. 168

viii

Figure 5.15: The bounding box of map request is covered by a subset of a map grouping

MGj that contains two MLIVs, namely MLIV1, MLIV 2. 170

Figure 5.16: An example of join equivalent sets. 177

ix

LIST OF TABLES

Table 3.1. A sample set of weights by edge (relation). 31

Table 4.1. Registration data for the MLIV shown in Figure 4.7. 76

Table 4.2. Attribute values in the rules. 104

Table 4.3. Methods used in subquery algorithm. 149

Table 4.4. Methods used in frameworkQuery. 151

Table 5.1. Res values generated by the Parameter Resolution Value Generation Model. 156

x

ABSTRACT

The complexity and richness of geospatial data create specific problems in heterogeneous

data integration. To deal with this type of data integration, we propose a spatial mediator

embedded in a large distributed mobile environment (GeoGrid). The spatial mediator

takes a user request from a field application and uses the request to select the appropriate

data sources, constructs subqueries for the selected data sources, defines the process of

combining the results from the subqueries, and develop an integration script that controls

the integration process in order to respond to the request. The spatial mediator uses

ontologies to support search for both geographic location based on symbolic terms as well

as providing a term-based index to spatial data sources based on the relational model. In

our approach, application designers only need to be aware of a minimum amount about

the queries needed to supply users with the required data. The key part of this research

has been the development of the spatial mediator that can dynamically respond to

requests within the GeoGrid environment for geographic maps and related relational

spatial data.

1

CHAPTER 1. INTRODUCTION

Every local system designer tends to develop the database that can meet

his/her organization’s specific needs. It results in huge diversity in a multiple

heterogeneous data sources environment. In this environment, a variety of sources and

applications use different data models, representations and interfaces. System

designers need to develop integrated systems that allow users to access and manage

information from multiple heterogeneous data sources. One reason for such need has

been that environments for data access have changed from centralized data systems

into multiple, distributed data sources. Another more recent cause for the attention of

integration technologies is the emergence of e-commerce and its needs for accessing

data repositories, application and legacy source that located across the organization

intranet or on the Internet (Hammer & Pluempitiwiriyawej, 2001). While there are

more varied and complicated data available to users the integration of heterogeneous

data becomes more challenging (Ram, Park & Lee, 1999). How to provide this

capability has become an important and active research area in the information system

community.

There are two major tasks that an integration system needs to accomplish in

order to solve the problem. First, a set of suitable data sources containing data that

correspond to the response needed to answer a user’s query should be located. Second,

2

after data sources have been found, the system not only needs to bring together all

data required it also needs to resolve the heterogeneity among these data.

The primary problem that an integration system faces is to resolve

heterogeneity among data sources which include conflicts of naming, scaling,

formatting, computational, and granularity among multiple data sources.

Identification inconsistencies and constraint mismatches also are included in this

problem. The heterogeneity can be classified into two types, namely semantic and

syntactic heterogeneity (Kim & Seo, 1991), (Wache, et al. 2001). The latter is

sometimes referred as structural heterogeneity (Wache, et al. 2001). Structural

heterogeneity means that different information sources use different structure to store

their data while the semantic heterogeneity refers to the differences in the meaning of

the data that is interchanged between data sources (Wache et al. 2001).

A number of researchers have worked in the area of integrating heterogeneous

data (Tuchinda et al. 2004, Thakkar et al. 2007, Park & Ram 2004, Ghulam 2010,

Hribernik et al. 2010, Weiderhold 1992). Several data integration architectures have

been designed by projects like TSIMMIS (Chawathe et al. 1994), COIN (Moulton et

al. 2002), MOMIS (Bergamaschi et al. 1999). One approach to building an integration

system is the data warehouse approach (Fan & Poulovassilis 2003, Golfarelli & Rizzi

1998, Wu et al. 2001) which pre-fetches, merges and resolves existing discrepancies

3

between sources and then stores integrated information in the central repository to

answer users’ queries. Another approach is referred to as mediation. It provides

users with an integrated view of the underlying source. Data remains stored at their

local sites. Users can query the mediator, which locates relevant data sources and

integrates each individual result into a format that can satisfy users’ requests

(Wiederold, 1992, Athanasiadis & Janssen 2008, Michalowski, et al. 2004, Thakkar et

al. 2003).

The problem is even more interesting when one considers the integration of

spatial data. Not only are there the typical problems of heterogeneity, but in addition

the data types available in spatial data repositories represent very rich data types.

Even a cursory glance at spatial data sources indicates the need of combining

everything from maps to general data that includes some type of location. For

example, crime data typically includes the location where a crime occurred.

Another difference between integration of traditional relational data and

geographic data is that more human participation is needed in the integration of

geographic data. In some cases, experts of the geographic domain are needed to

participate in the integration process. For example, a specialist called a geomatician is

used to refer to professionals who gather, process and deliver geographic data to users

by using a CASE tool of a integration system (Coimbra 2009).

4

Many approaches to provide solutions for integration of spatial data have been

put forward (Park & Ram 2004, Goodchild et al. 2007, Visser et al.2002, Vidal et al.

2009). In addition there is research that utilizes ontologies to solve the semantic

heterogeneity among multiple data sources (Vidal et al. 2009, Janowicz et al. 2010)

and others employ scheme query mapping mechanism to resolve the heterogeneity

problem (Park & Ram 2004, Ghulam 2010), there are few approaches that provide a

comprehensive approach for generating geographic maps and related spatial data in a

mobile environment built on exploiting data quality. Our work aims to develop a

spatial mediator system that can provide this need.

The work that our research group has done with the Census Bureau has led us

to believe that the most critical need is the development of an environment that makes

integrated spatial data available in the field. Most of the agency applications that

involve spatial data are used in the field.

To this end, our research group has proposed and implemented the GeoGrid

infrastructure for providing spatial data to users in a mobile environment. The focus

of this thesis is on the spatial mediator that takes a user request from a field

application and develops a script that defines the process of how the available data

sources are used to respond to the request. It should be noted that while this remains

5

a significant problem, the mobile environment proposed does provide some

restrictions that make it more manageable than the general problem.

We propose a spatial mediator model that utilizes ontologies to help user

application designers to use domain terms to access data from multiple heterogeneous

spatial data sources. In our approach, application designers only need to be aware of

a minimum amount about the queries needed to supply users with the required data.

The application designers along with the data and tool suppliers provide the

basic information about their applications, data sources, and/or tools, respectively.

The spatial mediator uses this information along with the user request in order to

place the major burden of dealing with the system heterogeneity on the spatial

mediator.

The main contribution of our work has been the development of

comprehensive approach to generating spatial data results for a very real problem – an

infrastructure for supporting dynamic access to heterogeneous spatial data in a mobile

environment. The key part of this research has been the development of the spatial

mediator that can dynamically respond to requests for geographic maps and related

relational spatial data.

Secondary contributions have been made while building the tools necessary to

implement the spatial mediator. Our weighted ontology (Tsai et al. 2001, Tsai et al.

6

2003) is an example of our contribution is this area. Our approach of combining the

weighted ontology with the semantic data model is another example (Tsai et al. 2003).

The remainder of this thesis is organized as follows. In Chapter 2, we review

the background material for the concepts required by the spatial mediator. Chapter 3

looks at our ontology model and its application to our spatial mediator. The spatial

mediator model is defined in Chapter 4 and evaluated in Chapter 5. Chapter 6

provides a conclusion and some thoughts for future work on these topics.

Supplementary material is given in the appendices.

7

CHAPTER 2. LITERATURE REVIEW

An overview of literature related to spatial mediation of geographic data is

presented in this chapter. We collect and categorize relevant research into three areas:

ontology supported data integration, mediator-based data integration and spatial data

quality. We discuss current literature in these areas and also look into some related

issues.

In Section 2.1, we review related work in the field of ontology supported data

integration. We also look at some ontology based geographic data integration systems.

Several mediator based data integration systems are reviewed in Section 2.2.

Literature related to spatial data quality is discussed Section 2.3.

2.1 Ontology-based data integration

An ontology is built as an explicit representation of semantics of each data

source. An excellent discussion of ontologies, regarding the actual range of

knowledge that an ontology can successfully represent, can be found in (Brewster &

O’Hara 2004). A detailed discussion of evaluating ontology tools and ontology

contents can be found in (Guraino et al. 2009).

In (Weng et al. 2006), the authors develop an automated technology of

ontology construction by using the theory of formal concept analysis to serve as the

groundwork in assembling the different levels of ontological concepts. Cui et al.

8

(2009) developed top-down and bottom-up construction methods. The bottom-up

approach makes use of formal concept analysis methods and the Wikipedia is used as

the corpus for the acquisition.

Methods have been developed for building geospatial ontologies. Baglioni et

al. (2007) define new relations in geospatial terms that express spatial properties. A

geospatial ontology can be extracted from these relations. The ontology could be used

as the basis for an advanced user query system.

2.1.1 Ontology support for heterogeneous data integration

In dealing with multi-database systems, ontologies can be used effectively to

organize keywords as well as database concepts by capturing the semantic

relationships among keywords or among tables and fields in a relational database. By

using these relationships, a network of concepts can be created to provide users with

an abstract view of an information space for their domain of interest. We discuss

several ontology-based integration systems in the following paragraphs.

Seng & Kong (2009) introduced an ontology-aided integration approach that

allows a query over multiple intelligent information sources. Their ontology is used to

enhance both structural and semantic interoperability.

Project OBSERVER (Mena et al.1998) considers the metadata description and

ontologies for each different information source and provides knowledge on the

9

vocabulary used in the source. The information source is viewed by using its

relevant semantic concept which can be chosen from pre-existing domain specific

ontologies.

In the Web domain, a global ontology can be used as a modeling tool and

serve as a base of integration.

SOBA, an ontology-based information extraction and integration system,

focuses on processing structured data, text and image caption (Buitelaar et al. 2008).

It is capable of acquiring factual knowledge for a certain domain based on a given

ontology.

HELIOS, an ontology-based knowledge sharing system in the P2P area,

employees peer ontologies to allow information search and knowledge sharing

(Castano et al. 2003). The peer ontology is the ontology inside each peer that

describes knowledge about itself.

There are several differences between our ontology search model and the

projects mentioned above. First of all, we define multiple relations between terms to

present different relationship between terms. The relations in these systems are

simpler. Secondly, the ontology model serves as a search module in our approach.

We define and use weights between terms inside the ontology to aid the search. The

existing ontology systems don’t consider the weights between terms inside the

10

ontology, their focus are on the mapping between schemas of data sources. Third,

the semantic network model connected to our ontology model is used to resolve the

semantic heterogeneity between data sources. These systems use the ontology itself

to handle the semantic differences between data sources.

2.1.2 Ontology supported geospatial information integration

Geospatial data is very diverse and dynamic. The geospatial information may

be unstructured or semi-structured, and usually there is no regular schema to describe

them. As the amount of geospatial data grows, a problem of interoperability between

multiple geospatial data sources has gained a growing attention. Many approaches to

provide solutions have been developed. Using ontologies to support the

interoperability is one of them.

The use of formal ontologies for geographical information integration is

introduced in (Cruz & Calnan 2002, Stuckenschmidt et al. 2002, Wache et al. 2001,

Visser et al. 2002). They propose an intelligent architecture for semantic-based

information retrieval. This architecture uses underlying ontologies and an inference

engine that has the ability to derive new knowledge.

The paper proposed by O’Brien and Gahegan (O’Brien 2005) presents a

framework for representing, manipulating and reasoning with geographic semantics.

They use ontologies to describe methods, data and human experts inside their

11

environment. Among them an entity’s ontology describes users, inputs, outputs, and

semantic changes. Our work uses an entity ontology to describe spatial concepts of

the real world.

In Vidal et al. (2009), they propose an approach that rewrites a query based on a

domain ontology into sub-queries submitted over multiple data sources and combines

data resulting from those sub-queries. In particular, their approach takes advantage of

DL (Description Logics) reasoning to remove sub-queries that are not consistent.

The difference between their work and our approach is that they focus on

using ontologies with formal semantics to support the translation process between

data sources and our approach is to use ontology as a search model to locate data

sources for the response to a user’s query. Multiple ontologies are used to enhance the

semantic integration process (Peachavanish & Karimi 2007). In our ontology model,

we introduce the function ontology to enrich our terms in the ontology model and thus

to enhance our search.

2.2 Mediator to support the interoperability among multiple data

sources

The mediator concept was introduced by (Wiederhold 1992). A mediator is

designed to provide a uniform interface to a number of heterogeneous data sources.

Given a user query against the global schema, the mediator decomposes it into

12

multiple local sub-queries and sends them to the appropriate data sources, merges the

partial results and reports the final answer to the user. We discuss several

mediator-based integration systems in the following paragraphs.

In Athanasiadis & Janssen (2008), a mediator based knowledge manager

component is presented. The component exploits ontologies and semantic modeling

to support the data exchange between heterogeneous data sources.

The Mediator Prometheus (Michalowski et al. 2004, Thakkar et al. 2003) is a

mediator system that uses planning techniques to expand a given query into a set of

operations. These operations specify how to access the appropriate data sources,

including web services, web sources and databases. It utilizes a “local_as_view”

approach to map between the relations in the mediated schema (domain relations) and

the source relations. A technique called tuple-level filtering was introduced by

Prometheus. The filtering technique can reduce the number of web service requests

thus optimizes the execution of the composed web services.

Artemis, a query formulation and planning system, provides the ability of

integrating scientific data on the grid (Tuchinda et al. 2004). It enables users to easily

query metadata catalogs on the grid. It has an ontology-based query formulation

system that exploits semantic web tools to model metadata attributes. It employees a

13

query mediator based on planning techniques that can dynamically updates its domain

model.

Several prototype mediator architectures have been designed by projects like

TSIMMIS (Chawathe et al. 1994), COIN (Moulton et al. 2002), MOMIS

(Bergamaschi et al. 1999).

TSIMMIS focuses on the automatic generation of wrappers and mediators

which conducts mapping the information in an Object-Exchange Model (OEM) to the

underlying structured or unstructured data. OEM is used to represent a piece of data.

Fields inside the OEM of each object describe semantic of the data. The process of

integration inside TSIMMIS requires human participation. In some cases, integration

may be automated by a mediator under the guidance of end users. Our approach is

different from it is that we use semantic network model and ontology to specify the

semantic of the data and the automatic generation of wrappers and mediators is not

our focus.

A context interchange (COIN) mediator is an automated reasoning engine

which helps users resolve semantic conflicts between their own context and context of

data sources (Moulton et al. 2002). They define “context” as the implicit

understanding of the relationship between data elements and structures and the real

world that data represents. Each data source and receivers decide how to construct

14

abstract conceptualization and how that is represented in data and programs. They

argue that their context interchange approach is a well suited solution in a large-scale

interoperable database system of a dynamic environment.

The MOMIS (Mediator environment for Multiple Information Sources) can be

considered as a hybrid method of mediator and query language approach

((Bergamaschi et al. 1999).). It aims to integrate and query both a structured data

source (i.e. relational database) and a semi-structured data source (i.e. object-oriented

data source). While all of these are interesting approaches to providing mediation that

supports unstructured or semistructured data, they are not usable for spatial data due

to the rich complex structure of geographic data.

2.2.1 Mediation systems for geographic data

With the growing use of geographic information systems much work has been

conducted in regards to the research topic of the geographic data integration. The

nature of geographic data creates more challenges for supporting interoperability

between multiple geographic data sources. Geographic data has diverse and

dynamic characteristics and may be unstructured or semi-structured, and usually there

is no regular schema to describe them. Reviews of geographic data interoperability

and integration efforts are provided in (Park & Ram 2004, Goodchild et al. 2007,

Visser et al. 2002).

15

Many mediator based integration systems have been proposed in a variety of

domains. (Smart et al. 2010) propose a mediation framework to retrieve and

integrate distributed gazetteer resources. Researches in Michalowski et al. (2004),

Park et al. (2004) and Zaslavsky (2004) propose mediation systems to support

interoperability within the geographic data domain.

In Park and Ram (2004), they identified semantic conflict among data sources

and stored associated knowledge in the ontology called Semantic Conflict Resolution

Ontology (SCROL). A semantic mediation service layer serves as one of the core

components of the SCROL system. Several semantic mediators are employed inside

the mediation service layer. Each has its own specific responsibility. They showed

the model works well in the domain of geographic data. A semantic data model

called Unifying Semantic Model Star (USM*) is proposed for modeling data in GIS

databases (Ram et al. 1999). The USM* is used in their SCROL system to manage

federated and local schema.

MIX (Mediation of Information using XML) is a mediation-based approach

for integrating information in the GIS domain (Gupta et al. 1999, 2000, Zaslavsky et

al. 2003). Each data source exports a model of information it contains in the form of

an XML definition. This XML model is used as a structural description of the data

exchanged by the components inside the mediator architecture. Each source is

16

queried with an XML-based query language, XMAS (Ludäscher et al. 1999).

XMAS allows object fusion and pattern matching on the input XML data.

With the growing numbers of GIS data and resources over the Internet, there is

an increasing demand for geospatial information services to support interoperation of

massive repositories of heterogeneous geospatial data. VirGIS is a mediation

platform that utilizes an ontology and provides an integrated view of geographic data

(Essid et al. 2006). Its data is constructed as an ontology by using common

Semantic Web techniques. The mediator in VirGIS provides a global virtual view

that allows local data sources to be accessed as one integrated source.

A WFS-based mediation system that addresses the integration of GIS data and

tools is proposed in (Boucelma & Colonna 2004). It focuses on the expressive

power of query language and provides an approach of the integration of query

capability available at the source.

One major difference between our approach and these works is that they don’t

handle map type geographic data and they don’t consider the quality of a geographic

data. More important it is common in these systems that predefined queries are used

and the solutions are known so the task is to execute the solution. The needs for a

truly dynamic solution that can generate solutions on the fly are critical in the

GeoGrid environment.

17

2.3 Quality driven geospatial data integration

Data quality and metadata are crucial for the development of Geographic

Information Systems. Lassoued et al. (2007) proposes a quality-driven mediation

approach and system that allow a community of users to share a set of autonomous,

heterogeneous and distributed geospatial data sources with different quality

information. A common vision of the data that is defined by a global schema and a

metadata schema is shared by users. Devillers et al. (2005) develop a design of a tool

that can manage heterogeneous data quality information and provide functions to

support expert users in the assessment of the fitness for use of a given data source.

In Hariharan et al. (2005), they develop approximate algorithms for answering

queries based on the local analysis of the query region. The quality of answers

improves progressively as the local analysis goes deeper. Data sources are ranked

by a weighted score function that is based on two criteria: spatial coverage and

information content which base captures how much of the query-specified keywords

are present in a data source.

The QGM (Quality-driven Geospatial Mediator) supports efficient and

accurate integration of geospatial data from a large number of sources (Thakkar et al.

2007). It features an ability to automatically estimate the quality of data provided by

a source by using the information from another source of known quality.

18

There are several differences between our works and theirs. First of all, we

use quality of geographic data to rank and select data sources before we dynamically

generate integration script. Secondly, we identify several geographic attributes of a

geographic data to represent the quality of a geographic data. Third, we allow the

user/applications designer to specify their perspectives of the quality of geographic

data.

19

CHAPTER 3. ONTOLOGY MODEL

Integration of data continues to be a problem. The number of databases

available to users continues to grow and it is difficult for users to get all of the data

they need from a single data source. It is clear that such a user will need data

integration software to make use of multiple data sources.

In dealing with multi-database systems (Hribernik et al. 2010, Ghulam 2010),

ontologies can be used very effectively to organize keywords as well as database

concepts by capturing the semantic relationships among keywords or among tables

and fields in a relational database (Seng & Kong 2009, Vidal et al. 2009, Buitelaar et

al. 2008, Baglioni et al. 2007). By using these relationships, a network structure can

be created to provide users with an abstract view of an information space for their

domain of interest. Ontologies are well suited for knowledge sharing in a distributed

environment where, if necessary, various ontologies can be integrated to form a global

ontology.

Database owners find ontologies useful because ontologies can be used to form

a basis for integrating individual databases by using identification of logical

connections or constraints between the information pieces. Ontologies can provide a

simple conversational interface to existing databases and support extraction of

information from them. Because of the distinctions made within an ontological

20

structure, they are used to support database cleaning, semantic database integration,

consistency-checking, and data mining (Brewster & O’Hara 2004).

In this chapter we look at our ontology model (Tsai et al. 2001, Tsai et al. 2003)

to set the role of ontologies in our approach to data integration, i.e. the spatial

mediator. There are two major components in the spatial mediator that utilize our

ontology model, namely the Geographic Symbolic Ontology (GSO) and the Semantic

Network Ontology (SNO). These two components are both based on the ontology

models presented in this chapter.

We present the definition and examples of our ontology model in Section 3.1.

The search algorithm of the ontology is presented in Section 3.2. The ontology

model has been expanded to incorporate a function ontology to allow users to include

tools into the query process. The definition of our function ontology model is

introduced in Section 3.3 and we present the semantic network of SNO in Section 3.4.

3.1 Ontology model

From an artificial intelligence viewpoint, an ontology is a model of some

portion of the world and is described by defining a set of representational terms

(Neches et al. 1991). In an ontology, definitions associate the names of entities in a

universe of discourse (e.g., classes, relations, functions, or other objects) with

21

human-readable text describing what the names mean, and formal axioms that

constrain the interpretation and well-formed use of these terms (Gruber 1993).

 The main motivation behind ontologies is that they allow for sharing and reuse

of knowledge bodies in computational form. In the Knowledge Sharing Effort (KSE)

project (Neches et al. 1991), ontologies are put forward as methods to share

knowledge bases between various knowledge-based systems. The basic idea was to

develop a library of reusable ontologies in an uniform formalism that each system

developer was supposed to adopt. Originally, the term ontology comes from where it

is employed to describe the existence of beings in the world. Artificial Intelligence

(AI) deals with reasoning about models of the world. Therefore, it is not strange that

AI researchers adopted the term ontology to describe what can be (computationally)

represented of the world in a program.

Many definitions of ontologies have been put forward (Guarino et al. 2009, Sowa

2001). One that seems to best characterize our view of the essence of an ontology

(Gruber 1993, p199): “An ontology is a formal, explicit specification of a shared

conceptualization”. Conceptualization refers to an abstract model of some phenomena

in the world by having identified the relevant concepts of those phenomena. Explicit

means that the type of concepts used, and the constraints on their use are explicitly

defined. For example, in medical domains, the concepts are diseases and symptoms, the

22

relations between them are causal, and a constraint is that a disease cannot cause itself.

Formal refers to the fact that the ontology should be machine readable, which excludes

natural language. Shared reflects the notion that an ontology captures consensual

knowledge, that is, it is not private to some individual, but accepted by a group.

Since the various definitions of ontologies have varied, the next subsection

looks at the formal definition of ontologies that we introduced in (Tsai et al. 2001,

Tsai et al. 2003).

3.1.1 Ontology model definition

Definition 3.1:

An ontology is defined as O = <T, R, S> where

T = {ti| i = 1..n} is a set of terms, where each term refers to a set of

real-world objects,

R ⊆ T × T = {r i | i = 1..m} is a set of relations between terms,

defined as R = {(t1,t2)|t1, t2 ∈T}, and

S is a set of operations needed to create, maintain and search the

ontology structure defined by T,R.

To make our ontology model sufficiently rich to handle the needs of the spatial

mediator, several types of relation types have been defined between terms (is-a,

has-instance, part-of, contains, is-closely-related, synonym, antonym). Our

23

implementation is based on viewing the ontology structure as a directed graph (T, R,)

where each node t ∈T represents a term and is labeled with the term. The edges of

the directed graph represent the relation between terms and are labeled with the

relation type. Some terms used in examples below are adapted from Cote (2006).

Definition 3.2:

The relation type t1 is-a t2 is a relation between t1 and t2 such that t1 is a

subtype of t2.

A simple example of is-a is “car is-a vehicle”. The graph structure of the

relation type is shown in Figure 3.1a and the example is given in Figure 3.1b.

Definition 3.3:

The relation type t1 has-instance t2 is a relation between t1 and t2 such

that t1 is a super type of t2.

A simple example is “vehicle has-instance car”. The graph structure of the

relation type is given in Figure 3.2a and the example is given in Figure 3.2b.

Figure 3.1a: The is-a relation between t1 and t2.

t1 t2
is-a

car vehicle
is-a

Figure 3.1b: The is-a relation between car and vehicle.

24

Note that the two relation types point in different directions in the directed

graph. Figure 3.3 shows this relationship for car and vehicle.

Definition 3.4:

The relation type t1 is-part-of t2 is a relation between t1 and t2 such that

presence of t1 implies the presence of t2, but the occurrence of t2 doesn’t

imply the presence of t1.

A simple example of is-part-of is “sea floor is-part-of sea”. The graph

structure of the relation type is shown in Figure 3.4a and the example is given in

Figure 3.4b.

Figure 3.2b: The has-instance relation between vehicle and car.

vehicle car
has-instance

Figure 3.2a: The has-instance relation between t1 and t2.

t1 t2
has-instance

vehicle

car

is-a has-instance

Figure 3.3: The is-a and has-instance relations between car and vehicle.

25

Definition 3.5:

The relation type t1 contains t2 is a relation between t1 and t2 such that

presence of t2 implies the presence of t1, but the occurrence of t1 doesn’t

imply the presence of t2.

A simple example of contains is “sea contains sea floor”. The graph

structure of the relation type is shown in Figure 3.5a and the example is given in

Figure 3.5b.

Definition 3.6:

The relation type t1 synonym t2 is a relation between t1 and t2 such that t1

and t2 are not identical but have same meanings.

Figure 3.4a: The is-part-of relation between t1 and t2.

t1 t2
is-part of

Figure 3.5b: The contains relation between sea floor and sea.

Sea Sea floor
contains

Figure 3.5a: The contains relation between t1 and t2.

t1 t2
contains

Figure 3.4b: The is-part-of relation between sea floor and sea.

Sea floor Sea
is-part of

26

This relation is symmetric. A simple example is “brook synonym creek”.

The graph structure of the relation type is given in Figure 3.6a and the example is

given in Figure 3.6b.

Definition 3.7:

The relation type t1 antonym t2 is a relation between t1 and t2 such that t1

and t2 have opposite meanings.

This relation is symmetric. A simple example is “female antonym male”.

The graph structure of the relation type is given in Figure 3.7a and the example is

given in Figure 3.7b.

t2
synonym

t1

Figure 3.6a: The synonym relation between t1 and t2.

t2
antonym t1

Figure 3.7a: The antonym relation between t1 and t2.

Figure 3.6b: The synonym relation between brook and creek.

creek
synonym

brook

Figure 3.7b: The antonym relation between female and male.

male
antonym

female

27

Definition 3.8:

The relation type t1 is-closely-related t2 is a relation between t1 and t2

such that t1 and t2 are not considered as synonyms but are generally used

together.

A simple example of is-closely-related is “automobile is-closely-related car”.

The graph structure of the relation type is shown in Figure 3.8a and the example is

given in Figure 3.8b.

t1 t2
is-closely-related

Figure 3.8a: The is-closely-related relation between t1 and t2.

Figure 3.8b: The is-closely-related relation between automobile and car.

automobile car
is-closely-related

28

In Figure 3.9, a fragment of an ontology is represented by a directed acyclic

graph (dag) with more general terms higher in the dag and more specific terms lower

in the dag. The is-a and part-of are directed. Relations synonyms and antonym and

is-closely-related are not directed edges. “Marine feature” is-a “Environmental

feature” and “Sea” is-a “Marine feature”. “Sea floor” is-part-of “Sea” indicates

wherever there is a “Sea floor” there must be a “Sea” and a “Sea” contains “Sea

floor”. Both “Marsh” and “Swamp” is-a “Wetland” and these two terms are synonyms.

“Sea” and “Landmass” are antonyms. “Marine reef” and “Marine habitat” are

Swamp

is-a

Marsh

is-a has-instance

has-instance

has-instance

antonym

is-closely-relate

synony

is-a

is-part-

has-instanc

contains

Figure 3.9: A fragment of a sample ontology represented by a graph.

contains

Environmental feature

is-a has-instance

Marine feature

is-a

has-instance
Geographic feature

Sea

is-a
has-instance

Landmass

is-a

Sea floor

is-part-of

has-instance
Wetland

is-a

is-a

has-instance

Habitat

has-instance

Marine

is-a

Marine reef

is-a
has-instance

29

connected by a is-closely-related relation since “Marine reef” is an example of a good

“Marine habitat” and they are most likely referred together in the study of marine

habitation.

The set of operations given in the definition of the ontology need to be able to

create, maintain and search the directed graph used to store the ontology structure.

The most interesting operation is the search operation. Before looking at the search

algorithm we examine an extension of our basic ontology structure in the next

subsection.

3.1.2 The weighted ontology

To enhance the search operation, we add the notion of edge weights to create a

weighted ontology.

Definition 3.9:

A weighted ontology is defined as θ = <T,R,W,S>, where

T = {t i| i = 1..n} is a set of terms such that each term refers to a set of

real world objects,

R ⊆ T × T = {r i| i = 1..m} is a set of relations between terms,

defined as {(t1, t2)| t1, t2 ∈T},

30

W is a set of weights {wi| i = 1..m}, where each weight wi is assigned to

a relation ri to indicate the value of following the relation in a search,

and

S is a set of operations needed to create, maintain, and search the

ontology structure defined by T, R, W.

The weighted ontology supports the same relation types as the ontology

defined in the previous section. In the remainder of this thesis we will use the term

ontology to mean weighted ontology.

To more clearly describe what we mean by a weighted ontology we will

examine the concept in the directed graph representation. We will use the term “edge”

instead of “directed edge” in the remainder of the chapter. We will use “term node”

and “term” interchangeably and also “relation” and “edge” will be used as

interchangeable words in the remainder of the chapter. We use the directed graph

notation ϕ = (η,ξ) to represent the ontology structure where η is the set of terms used

to represent the domain and ξ is the set of edges connecting the nodes representing the

terms. Let ω be the set of weights such that ωj ϵ ω is the weight for the Ei ε ξ. We

use the weights to prune the search of the ontology. Let I(ξ) be the set of the is-a,

has-instance, part-of, contains and is-closely-related relations in the ontology. For E

ε I(ξ), the weights are used to estimate the relative closeness of t2 to t1 when t1 relation

31

t2 defines an edge in the graph. Going through a term like “Geographic feature” would

in general not produce good search results. To block the search, the weights on an

edge (like an is-a edge) are set to larger values if the relationship is more abstract. The

weights on an edge range from zero to infinity. The only requirement for the weight

values is that they provide the type of search requirements that the user wants. In our

Current implementation they are static, but we have considered allowing users

to have their own weighting scheme based on the type of search that they want to

conduct. An example of a weighting scheme that has worked well in our

implementation of the ontologies with static weights used in the spatial mediator is

shown in Table 3.1.

Edge Type Weight

is-a 200

has-instance 50

is-part-of 100

contains 100

is-closely-related 0 to 10

synonym 0 to 10

antonym 0 to 10

Table 3.1 A sample set of weights by edge (relation)
type

32

The idea behind the weights shown in Table 3.1 is that we want to control the

search. The is-a weight of 200 means that we are trying to minimize (block) the

search task of going from a specific concept like car to a more abstract concept like

vehicle. The reason being that a move in that direction weakens the search. On the

other hand, we have found it to be more useful to go from abstract to specific, so we

use a smaller weight (50) to make that a more probable search direction. The two

edge types that are the most interesting on a positive search are is-closely-related and

synonym. Assuming that edges are only used for concepts that are closely related

and those that have the same meaning, these weights should be small. Setting these

weights to a value in the range 0 -10 (depending on how close the meaning is) means

that these edges will be exploited early in the search when they are available. The

antonym edge plays the search role in the not concept search.

The is-part-of and contains edges have not proved as useful and we have used

the weights (100) to reduce the likelihood of the search using those edges in the

mediator ontology searches.

A future consideration for using the weighted ontology in the spatial mediator

will be to add questions to the registration process about the nature of the way a user

application will use concepts. That way, the weights will be able to reflect the user

needs more closely than our current static model can.

33

The Figure 3.10 shows a fragment of a weighted ontology which has two is-a

edges with different weights. Compare “Underground river” to the term “Geographic

feature”, the term “Wetland” is more general, so the weight associated with “Wetland”

is set 200 which is greater than 50, the weight associated with “Underground river” .

Figure 3.11 shows a fragment of a weighted ontology with different weight

values associated with synonym edge. The meaning of term “Quagmire” is more

similar with “Marsh” than the term “Swamp”, so the weight for the former pair is set

to 9 and is greater than the latter which has a value: 8.

Figure 3.12 shows a fragment of a weighted ontology with different weight

values associated with is-closely-related edge. For the term “Marine reef”, “Sea

Figure 3.10: A fragment of a weighted ontology with two different weighted is-a

and has-instance edge.

Geographic feature

Underground river

has-instance
50 is-a

200

Wetland
is-a

200

50
has-instance

50

Figure 3.11: A fragment of a weighted ontology with two different weighted

synonym edges.

Wetland

Quagmire 9
synonym

8
synonym Marsh

is-a
200

50
has-instance

is-a

200
has-instance

Swamp

50
has-instance

is-a
200

34

grass bed” is more closely related than the term “Marine habitat”, so the weight for

the former pair is set to 8 and is greater than the latter which has a value: 5.

The method of generation of the weights depends on the builder of the

ontology. The weights can be assigned by hand or can be generated automatically.

We have generated the weights by hand in the implementations that we have used.

3.2 Search

The basic premise of our ontology search is to use search terms from the users’

request and proceed from the search terms to “near by” database terms. Weights can

be combined with user interaction and define what is meant by “near by”. The

thresholds used to block the search are provided by users when they register with

integration system.

For synonym, antonym and is-closely-related edges, we use 0 to represent

identical and larger weight values for terms that are not as close.

Figure 3.12: A fragment of a weighted ontology with two different weighted

is-closely-related edges

Sea grass bed

Marine feature

is-a
200

50
has-instance

Marine reef
is-closely-related

8
is-closely-related

5

Habitat

Marine habitat

is-a
200

50
has-instance 50

has-instance
is-a

200

35

To look at the search, we provide a set of basic rules used in the search.

1. When the user generates a request he/she is asked for a set of search terms

inside the request. For a map request, the search terms might be a theme

for the map and/or the symbolic terms referring geographic location. For a

relation request, the requesting attributes are the search terms used to map

to existing database terms. For the merged request, the theme and/or

symbolic terms referring geographic location and requesting attributes are

used to search the ontology.

2. Weights are used to block paths that are unlikely to provide useful results.

For example, an is-a edge from a specific term to an abstract term is

unlikely to yield a useful “near by” term.

3. For a typical positive search, the algorithm first locates the query node by

using the search terms in the request and then starts from the query node

by looking for synonym edges. If one is found the weight is tested

against the synonym threshold. If the weight is larger, the search moves

to the next node and continues. Whether more edges are followed from

the individual nodes depends on whether we are looking for all “near by”

terms or one. This can be decided by the nature of the request and what is

known about the application (more details on what is known about an

36

application will be described in Chapter 4). If no synonym edge exists,

then the is-closely-related edges are used and if no is-closely-related edge

is found then has-instance, is-part-of and contains edges are used. If none

of the edges mentioned above exists then the is-a edges are used as

indicated in rule 2.

5. For a NOT search, the algorithm starts from the query node in the ontology

and looks for an antonym edge associated with the term node. If one

exists, its weight is tested against the antonym threshold. If an

appropriate antonym edge is found, the search moves to the new term node

and a positive search (rule 3) is initiated from that point.

6. In all cases if no “near by” term is found for a query term, the user

application is notified of the request failure.

7. When all query terms have been processed, the search algorithm returns a

set of references to data sources. For the relational request and merged

request, not only the references to data sources is returned but also a set of

references to the attributes that can be used to generate the required

query(ies) are returned by the search algorithm.

37

3.3 Extended function ontology

Our ontology model has been extended to include an ontology of domain

functions. The major purpose of this extension is to increase the richness of data

available in the ontology model. A good ontology model should contain the richest

information in the least space. Adding the function ontology has limited cost, while

the information it contains is much richer. We will call the newly added ontology,

function ontology and the weighted ontology, ontology in the remainder of this thesis.

The structure of the function ontology is similar to the weighted ontology

structure except that the term nodes of the function ontology are terms referring to

classes of functions or specific functions in the real world. In our previous works

(Tsai et al. 2001, Tsai et al. 2003), we see the "leaves" of this ontology as being the

set of implemented domain functions.

Definition 3.10:

A function ontology is defined as the tuple F = <θ, T, F, R0, R, S>, where

θ is a weighted ontology,

T is a set of terms used as internal nodes,

F is a set of functions used as leaf nodes,

R is a set of relations that can be of the form t1 relation t2 or t relation f,

where t, t1, t2 ∈T and f ∈F.

38

R0 is a relation that connects a term from θ to either a term t ∈T or a

function f ∈F. The relations in R0 support the types: applies-to and

define-as.

S is a set of operations needed to create, maintain, and search the

ontology structure defined by T, F, R, R0.

Definition 3.11:

The relation type t1 has t2 is a relation between t1 and t2 such that t1 is super

type of t2.

A simple example of has is “merge has vecOnRaster”. The graph structure

of the relation type is shown in Figure 3.13a and the example is given in Figure 3.13b.

Definition 3.12:

The relation type t1 evolves t2 is a relation between t1 and t2 such that t2 is

newer version of function of t1.

A simple example of evolves is “version1 evolves version2”. The graph

structure of the relation type is shown in Figure 3.14a and the example is given in

Figure 3.14b.

Figure 3.13a: The has relation between t1 and t2.

t1 t2
has

Figure 3.13b: The has relation between merge and vecOnRaster.

merge vecOnRaster
has

39

Definition 3.13:

The relation type t1 implements f is a relation between t1 and f such that f is

an implemented function of t1.

A simple example of implements is “vecOnRaster implements vecRas-v1”.

The graph structure of the relation type is shown in Figure 3.15a and the example is

given in Figure 3.15b.

Definition 3.14:

The relation type t defines-as f between t and f such that t defines f where t

is a term ϵ T and f is a function ϵ F

A simple example of defines-as is “fusion defines-as merge”. The graph

structure of the relation type is shown in Figure 3.16a and the example is given in

Figure 3.16b.

Figure 3.14b: The evolves relation between version1 and version2.

version1 version2 evolves

Figure 3.14a: The evolves relation between t1 and t2.

t1 t2
evolves

Figure 3.15a: The implements relation between t1 and t2.

t1 t2
implements

implements

Figure 3.15b: The implements relation between vecOnRaster and vecRas-v1

vecRas-v1 vecOnRaster

40

Definition 3.15:

The relation type f applies-to t between f and t such that f can be

applied to t where t is a term ∈T and f is a function ∈F

A simple example of applies-to is “merge applies-to roadMap”. The graph

structure of the relation type is shown in Figure 3.17a and the example is given in

Figure 3.17b.

Figure 3.18 shows fragments of ontology and function ontology. The term

“fusion” has relation defines-as with a term “merge” in the function ontology while

“merge” has relation applies-to with the term “roadmap” in the ontology.

Figure 3.17a: The applies-to relation between t1 and t2.

t1 t2
applies-to

Figure 3.17b: The applies-to relation between merge and roadMap

merge roadMap applies-to

Figure 3.16a: The defines-as relation between t1 and t2.

t1 t2
defines-as

Figure 3.16b: The defines-as relation between fusion and merge

defines-as merge fusion

41

The current version of our function ontology handles software versions by

using a term to indicate the version number. Figure 3.19 shows a simple example

Figure 3.19: Fragment of the function portion of the function ontology

showing how versions are maintained in the model.

conversion

objectToRelation relationToObject

relToObj_v1
version1

version2

objToRel_v2

objToRel_v1

has

implements

has

implements

implements

has

evolves

Figure 3.18: Fragments of ontology and function ontology.

Ontology Function Ontology

map

roadMap

has-instance is-a

fusion

defines-as

merge

vecOnRaster

has

vecRas-v1

implements

applies-to

42

3.3.1 Function search

To look at the search of function portion of the function ontology, we provide

a set of basic rules used in the search.

1. The search inside the function ontology starts with a search term from the

uers’ request. Note that the search always starts in the weighted

ontology by applying the search algorithm described in Section 3.2.

2. If the search follows a defines-as edges that point into the function portion

of the ontology then search inside the function portion of the function

ontology then starts.

3. The search follows either evolves edges that lead to a newer version of the

function or has edges to a term in the function portion of function

ontology with more specific meaning.

4. The search continues downwards to the terms in the lower level, the

search follows implements edges and then halts a function at the leaf level

is reached.

3.4 Semantic network model

In the spatial mediator, the Semantic Network Ontology (SNO) is used to

search the data sources that can answer users’ relational queries. We first briefly

43

introduce what a RLIV is here in order to describe the semantic network. A formal

definition of RLIV is presented in Chapter 4. The spatial object is a view type object

(program) that is used by the data sources to provide a mechanism to make the local

data available to use. A RLIV is a spatial object. In our current model we have

restricted them to represent relations. Due to our assumption that RLIVs represent

relations, we use equijoin in the current SNO model definition for combining RLIVs.

Note that this can be expanded to include other data type (e.g. objects) in the future.

Since semantic data model is a phrase that has seen a lot of overuse, we start

by providing what we envision as a semantic data model.

Definition 3.16:

A semantic data model is a t-tuple ϑ = <R, T, A, L, O>, where

R is a set of RLIVs,

T is the set of terms stored in the RLIVs,

A is the set of association (equijoins) used to show how RLIVs can be

combined (joined),

L is the set of links that connect the RLIVs to the associations, and

O is the set of operations for operating on the graph created by

connecting the RLIVs to the appropriate associations using the links.

44

Definition 3.17:

The Semantic Network Ontology is defined as a tuple S = <θ, ϑ , R, O>,

where

θ is the weighted ontology,

ϑ is a semantic data model,

R is a set of relations that connect the terms in θ with terms in ϑ, and

O is the set of operations needed to create, maintain and search the

SNO structure.

Two RLIVs are connected by an association node that describes how to

combine the data from the two sources. For example, if the two RLIVs from two

data sources are biology data, such as protein data that appear to the user as relations

in the relational databases, the association node defines how the two RLIVs can be

joined (Figure 3.20). Note that the example has been chosen to point out that the

association nodes can support more than simply equijoin.

Merge entries
from two
sources

atomic
position

protein sequence protein sequence

PDB Swiss-Prot

 citations citations

Figure 3.20. Example of two data sources in the semantic data model.

45

Figure 3.20 illustrates the entries in the semantic network for the RLIVs

provided by PDB and SWISS-PROT databases. The resulting semantic network is

connected to the ontology model by a process where each property node is attached to

a node in the ontology.

Figure 3.21 shows a fragment of a Semantic Network Ontology.

Figure 3.21: A fragment of Semantic Network Ontology.

is-a

synonym

Flood-Site

RLIV 1 Admin-Region

Area

RLIV 2 Population

CityName

State

Bottomland
Town

Flood Field

Plain

Flood Plain

Geographic Feature

Anthropogenic Feature

Populated Place

Physiographic Feature

City

(RLIV 1, RLIV2, RLIV1.Admin-region = RLIV2.State)

46

The example in Figure 3.21 shows two RLIVs, namely RLIV1 and RLIV2, are

connected through the semantic network. Two entity nodes each representing one

RLIV have the properties associated with it. These properties are the attributes of the

relations inside the RLIVs. For example, there are three attributes associated with

RLIV1 and they are “Admin-Region”, “Flood-Site”, “Area”. The join criteria

specified by the triangle in the figure indicates that these two RLIVs can be joined by

the attribute “Admin-Region” of RLIV1 and the attribute “State” of RLIV2. The

application is interested in which towns are located in a flood-risk area. It uses terms:

“FloodField” and “town” to request the information. The system uses these two

terms to start the search algorithm mentioned in the previous section and search

through ontology. Since “FloodField” and “town” are synonyms to “Flood Plain”

and “City” respectively, the search algorithm locates RLIV1 and RLIV2 that contain

required data. Note that the leaf node in the ontology has a reference to the

corresponding attribute which is indicated by a dashed-line with an arrow in the

figure.

The tools in ϑ for generating corresponding queries to query the data of the

relations within the RLIVs are elaborated in detail in Chapter 4.

47

CHAPTER 4. SPATIAL MEDIATOR MODEL

In this chapter, we present the formal definition of the spatial mediator as well

as the infrastructure in which the mediator is engaged. However, we must point out

that our contribution of this study comes from the formal definition of the overall

infrastructure, the registration process, and the model, algorithms and the evaluation

of the spatial mediator. The infrastructure referred to as GeoGrid is the final

outcome of a group project. Several components of GeoGrid have been

implemented by members of the group. The spatial mediator server is the core

component of GeoGrid.

The motivation and the overall structure of the GeoGrid infrastructure is

introduced in Section 4.1. The role played by the spatial mediator in the

infrastructure is also described. The overview of the spatial mediator model is

presented in Section 4.2. The two major tasks performed by the spatial mediator,

namely map generation and relation generation are described in detail in Sections 4.3

and 4.4, respectively. Section 4.5 looks at the Integration Script produced by the

spatial mediator. The Integration Script defines the process that guides the creation

of the final result requested by the user.

48

4.1 Motivation

As mentioned in the Introduction chapter, geographic data is very diverse and

dynamic. The geographic information may be structured, semi-structured or

unstructured and usually there is no regular schema to describe it. As the amount of

geospatial data grows, the problem of interoperability between multiple geospatial

data sources becomes the critical issue in developing distributed geospatial systems.

We use the following example as our motivating scenario. An application

requests the tornado information of a particular place and time, for example, the state

of Alabama in 2011, in a distributed data source environment. The application

requests a map which indicates locations where tornados happened, it also asks for the

detailed data regarding the tornados such as the scale of each tornado, date, time, etc.

The purpose of the application is to look for regions that have been under attack by F4

scale tornados and study the path of tornados. In the following paragraphs the

process required is described if the system is to respond to application’ request.

In this example, two different forms of data are needed, namely a map and

relational data. The system must decide which data sources contain related relational

data or the maps needed to respond. It then needs to select the data sources if the data

resides in more than one place. Finally, the system must have the capability to merge

the map with relational data in order to respond to the application.

49

Many approaches have been proposed to provide solutions to the integration

problem. Among them we see mediation, an information integration strategy, as one

of the most appealing approaches. The mediator concept was introduced by

(Wiederhold 1992). In Wiederhold (1992) mediators were defined as components

occupy a layer between the users, applications and the data sources. Mediators

provide intermediary services between these parties. A mediator is build to provide a

uniform interface to a number of heterogeneous data sources. Given a user request,

the mediator defines the process that decomposes the request into multiple local

sub-queries, sends them to the appropriate data sources and merges the partial results

and reports the final answer to the user. We first introduce the GeoGrid infrastructure

and then the details of spatial mediator in the following sections. GeoGrid was

developed to provide geographic information to a distributed mobile environment

(Nusser et al. 2003, Miller et al. 2004, Miller et al. 2001).

4.1.1 GeoGrid infrastructure

GeoGrid is modeled as a directed graph G(N,E). N is a set of nodes with

some processing power focused on supporting the GeoGrid infrastructure. The

edges in the edge set E represent the communication links that tie the components of

GeoGrid together.

50

The set of node types T = {user, spatial mediator, computation server, data

source, tool, registration} represents the infrastructure component types in GeoGrid.

A wrapper is associated with each node type to simplify integration of the

components in this computing environment and to standardize communication

requirements. Figure 4.1 provides a simple illustration of the directed graph formed

by GeoGrid.

4.1.1.1 User

The user node represents the user application that generates the initial request

for the geographic data that has to be up/down loaded. The user’s device can either

be stationary or mobile. The user application and the device that the application is

Figure 4.1: A simple example of a GeoGrid graph showing the

nodes and the data flow for a mediated data request.

spatial mediator

user

independent tool

computation

server

 data

sources

51

running on are wrapped by a user wrapper (Nusser et al. 2003; Miller et al. 2004,

Miller et al. 2001). The user node (primarily through the wrapper) is responsible for

determining the next node (usually the mediator) required to complete the request,

formulating the request in the format expected by the next node’s wrapper, initiating

moving the request object to the next node, and preparing to receive the data

requested. The details of how user nodes were implemented are given in (Zou

2004).

4.1.1.2 Registration

The registration node supported by GeoGrid provides a window into the spatial

mediator for potential users and data suppliers. Independent tools (i.e., tools

available outside of the computation server) have to be registered as well. Due to its

importance in the mediation process, the details of registration process are presented

in Section 4.2.

4.1.1.3 Data sources

The basic structure of a data source is given in Figure 4.2. The local interface

view (LIV) (Yen et al. 1994, 1995, 1998) is designed to export data from the data

source into the GeoGrid environment. The number and type of LIVs is a local

decision dependent on how the local information manager wants to share the available

52

data within GeoGrid. The details on how the data sources were implemented is

given in (Qu 2003).

4.1.1.4 Independent tools

A similar structure has been used for independent tools. The tool interface

converts the incoming data to the format expected by the tool and converts the results

to the object format expected by the wrapper. The registration process for a tool

node defines the tool type (i.e., its functionality) and the local interface views used to

move data to and from the tool.

4.1.1.5 Computation server

The major task performed by the computation server is to provide the facility to

execute the integration script it receives from the mediator and store the results of the

subqueries in the integration script. It also provides tools to operate on the results of

the individual queries. Once the integration script is received from the spatial

LIV

 Data Source

request string

result

 query

return view

 object(s)

 Wrapper

Figure 4.2: Data source node layout and request/data flow for retrieval.

53

mediator it is parsed into the individual tools and query components. The components

are then used to initiate and send the subqueries to the individual data sources. Upon

the completion of the request the computation server sends back the result to the user

and a message indicating the successful completion the request is also sent to the

mediator. The computation server is described in (Ming 2006).

4.1.2 Interaction between spatial mediator and infrastructure

The spatial mediator is connected to three types of components in a GeoGrid

environment. The first is the connection between the spatial mediator and the user

nodes. User nodes generate requests that go to the spatial mediator and the spatial

mediator sends acknowledgement and messages back to the user’s wrapper. The

second edge type links the computation server to the mediator and is used as the

communication link over which the integration script is sent to the computation server

from mediator and computation server sends acknowledgement and messages (the

most important message is that the data indicated in the integration script is not

available) back to mediator. The last edge type is used to communicate with the

registration node(s). The mediator receives registration data from a registration node

and sends acknowledgements and messages back to the registration node. The

mediator populates the Fact Database and the rule sets with the registration data

received from the registration node(s).

54

4.2 The spatial mediator model

4.2.1 Local Interface Views (LIV)

Before we present the spatial mediator model we first introduce the Local

Interface View (LIV). The basic unit of communication between the spatial mediator

and other components in GeoGrid is an object view. The local interface view is a view

type object that is used by the local data administrator to provide a mechanism to

make the local data accessible to the GeoGrid infrastructure. The object view type is

defined as being an extension of the object model (EOM). The use of views in this

model is an extension of the work on the Zeus View Mechanism given in (Yen et at.

1994, 1995, 1998). The views have a traditional object structure (attribute and

methods) with the restriction that they support a derivation method. The derivations

method is used to generate the public and private attributes of each object instance

created through a view. The individual data sources are expected to have local control.

The local interface allows distribution transparency and representation transparency,

while hiding or converting (mapping) some of the data from the data source. The

local interface view belongs to the local data source. It interacts directly with the data

source and passes the result to the wrapper which controls communication between

the GeoGrid components. A given data source and its wrapper can support multiple

local interface views in order to present its data to different applications or users.

55

The views are developed by the owners of the data source and are registered for use to

the GeoGrid infrastructure.

There are two types of Local Interface Views used inside the GeoGrid

infrastructure. One is the map type, MLIV. MLIV is defined as a view type object that

provides access to a map object from a data source in GeoGrid. Each data source that

provides maps contributes one or more MLIVs, where each MLIV can be used to

generate a map. The other type of spatial object used in GeoGrid is the RLIV. For

this thesis, we have restricted RLIVs to operate on sets of relations. The RLIVs is

defined as view type object that provides the access to data inside the data source and

have the capability to transform the data into a relation. Examples of MLIVs and

RLIVs are given in the description of the mediation process.

4.2.2 Registration process

Every participant providing data, tool or user applications in GeoGrid is

required to register with the infrastructure. The registration process provides two

kinds of information to the spatial mediator. First, it provides the information

necessary to link new nodes into the GeoGrid infrastructure. In addition the

registration process gathers the facts and rules about new nodes. This information is

stored in the Fact Database and/or Rule Set. It’s needed in the mediation process to

make it possible to reliably use the new nodes. The required registration data varies

56

depending on the type of node the participants are introducing. We explain several

important registration data that support the mediation process of the spatial mediator.

The details of registration data are given in Appendix A.

Designers of new user applications are required to register their applications

and the device types that the applications will use in the field. The capability of device

display capability is also required when registered with the infrastructure. An integer

variable named “screen code” is used to specify the capabilities of an application to

display result and the return data type requested by the application. For example, the

mediator interprets the value 1 to indicate the requested type from the application is a

map and the device can only display one map at a time without panning function.

When the mediator receives the request from the application it checks the Fact

Database and learns the screen code associate with the requesting application has the

value 1. Information on the application and devices are used in the mediation process

to help guide the generation of the integration script.

Data sources can be made available to GeoGrid by registering the data sources

and the local interface view(s) that will provide the mediator a view of the data that is

being made available from the data source. As we mentioned in the previous section,

the communication unit in the GeoGrid are the LIV objects and that there are two

57

types of LIVs used in GeoGrid, namely the MLIV and RLIV. If a data source can

provide multiple LIVs then it must register each LIV separately.

To register a MLIV the person registering it must provide the following information:

� A set of geographic coordinates specifying the point or bounding box covered by

the MLIV. In our implementation, the decimal degree latitude/longitude is

chosen for the ease of use in the algorithms.

� The theme(s) of the MLIV specifying the geographic features supported for the

map. For example, a MLIV with a theme: “lakes” indicates it can provide maps

with lakes.

� Symbolic terms representing geographic location covered by the MLIV. For

example, a MLIV with a symbolic term: “Midwest” indicates it can provide the

maps of Midwest region of U.S.

� Values for quality attributes such as completeness, positional accuracy,

accessibility, reliability, resolution and file type. The quality attributes required

are based on the metadata suggested in the Content Standard for Digital

Geospatial Metadata Workbook (FGDC 2000) published by FGDC (Federal

Geographic Data Committee).

For each RLIV that operates on a set of relations, the person registering it

needs to register the following information:

58

� Every relation schema made available to the infrastructure. This includes name

of relations, the attributes and attribute data types.

� Key attributes are required. This information is made to support mediation

process of the spatial mediator.

� The set of functional dependencies describing the semantics of the data covered

by the RLIV.

� Whether the relation schemes defined by the RLIV supports the universal

relation property (i.e. is the join of the relations defined by the RLIV lossless).

Independent tool nodes also need to register with the infrastructure.

Registration information includes tool type, tool name and parameters for the tool.

Tool types supported by GeoGrid include combine, crop, convert, scale, merge in our

current implementation. Our spatial mediator can easily be extended to support

additional types by either adding independent tools or by adding more tools to the

computation server.

4.2.3 Overall mediation process

The mediation process starts with a user application in the field sending a

request to the spatial mediator. The spatial mediator then generates an integration

script defining the tools and the data sources needed to generate the requested spatial

object(s). The integration script is passed to the computation server where it is used

59

to execute the process of obtaining the data and creating the spatial object(s). The

resulting spatial object(s) which are either a map, a set of tuples or a map merged with

some spatial data is then passed back to the user application.

There are three types of requests handled by the mediator, namely map

requests, relational requests and merged requests. A map request looks for data that

can generate a map that satisfies the request requirements. A relational request asks

for the spatial data in the form of a set of relational tuples. The third type of request,

the merged request, builds on the previous two. That is, the spatial data is displayed

on top of the map in the form of icons. Different types of requests contain different

requested properties. We explain each type of request in detail in the following

paragraphs.

(1) The map request:

A map request contains location requirements, property requirements and

theme requirements. The location requirements are either in geographic coordinate

data format or a symbolic term referring a geographic location. The geographic

coordinate data has three forms: (1) a point specified by a latitude and longitude pair

(2) a point and the radius (3) a set of latitude and longitude pairs specifying the lower

left and upper right corners of a bounding box. Property requirements of the map

request are preferred values for the quality attributes namely, completeness, positional

60

accuracy, accessibility, reliability, resolution and file type. The theme is a term

specifying feature of the map required, for example: river, soil, etc. The following are

some examples of map requests.

Example 1: The map request with request id r1001 is asking for a soil map with a

bounding box of <41.5233, 93.1402>, <42.1341, 94.1435> and has

the following quality request: a 100% (complete) coverage(encoded

as 1.0), a SHAPE map file type, 0.03 m for the positional accuracy, a

90% reliability of the data, a 100 m resolution and accessibility is 25

seconds.

 < r1001,(<41.52, 93.14>,<42.13, 94.14>), (<1.0, SHP, 0.03, 0.9, 100, 25>,

soil) >

Example 2: The map request with request id r1002 is asking for a wetland map

with a center point at <41.5211, 93.1463> and a 50 m radius and

has the following quality request: a 90% coverage, a TIFF map file

type, 0.01 m for the positional accuracy, a 100% reliability of the

data, a 10 m resolution and accessibility is 5 seconds.

 < r1002, (<41.5211, 93.1463>, 50m), (<0.9, TIFF, 0.01, 1.0, 10, 5>,

wetland) >

61

Example 3: The map request with request id r1003 is asking for a prairie map of

Midwest and has the following quality request: a 80% coverage, a

JPG map file type, 0.02 m for the positional accuracy, a 90%

reliability of the data, a 25 m resolution and accessibility is 45

seconds.

 < r1003, (Midwest), (<0.8, JPG, 0.02, 0.9, 25, 45>, prairie) >

(2) The relational request:

Relation request contains request id and the requesting attributes and/or conditions.

The following is an example of relation request.

Example 4: The map request with request id r1004 is asking for the data

(owner name and owner address) of the property in the state of Iowa

whose area is larger than or equal to 2000 sqft.

 < r1004, (ownerName, ownerAddress), (ownerState = “Iowa” and sqft >=

2000) >

(3) The merged request:

A merged request contains request id, location requirement, property

requirement, theme and requesting attributes and/or conditions. The following is an

example of a merged request.

62

Example 5: The map request with request id r1005 is asking for a map

exactly the same as example 4 but also requests the data (owner name and owner

address) of the property in the state of Iowa whose area is larger than or equal to 2000

sqft. The application that generates this request is looking for the topology

relationship between big houses and prairie in the Iowa. The final result for this

request is a tabular form of some spatial information along with a map with some

icons indicating requested houses on it.

< r1003, (Midwest), (<0.8, JPG, 0.02, 0.9, 25, 45>, prairie), (ownerName,

ownerAddress), (ownerState = “Iowa” and sqft >= 2000)>

Upon receiving the request, the mediator first identifies the request type and

then starts the corresponding process. The spatial mediator initiates the generating

map script process for a map request (if one exists) and starts the generating relational

script process if one exists. As to the merged request, the mediator first starts both

processes and then generates an integration script specifying a merge type tool is

required based on the map and relation generation scripts.

In general, the mediator has two equally important tasks. First, it has to be

able to locate the data given a request. Second, once the data is located it must be able

to bridge the semantic gap between the user’s request and the existing data, perform

63

data manipulation operations needed to query the data sources and integrate the

results from the individual such queries.

If users request a map with symbolic terms then the spatial mediator uses the

symbolic terms to search Geographic Symbolic Ontology to locate potential MLIVs

that can respond the request. If users provide geographic coordinate data then the

mediator uses the R_Tree structure to find the relevant MLIVs. A rule Set and Fact

Database are also used in the process to generate the map script. The generation of

the map script is described in detail in Section 4.3.

As to the relational request, users are required to provide information on

requested attributes. The spatial mediator first makes use the Semantic Network

Ontology to search for RLIVs and then uses the Semantic Network Ontology and Fact

Database to generate a relational script. Details of the relational process are given in

Section 4.4.

Figure 4.3 shows a block diagram of the process of the spatial mediator. Both

generating map script process and the generating relational script process displayed in

the bold outlined rectangles will be presented in detail in Sections 4.3 and 4.4,

respectively.

The detailed descriptions of each component of model are presented in the

next subsection.

64

4.2.4 Major Components

The spatial mediator model is defined as 7-tuple M = <Ψ, RT, RS, GSO,

SNO, FD, SM> where Ψ is the mediation process that was overviewed in the

previous section and the rest of components are defined in the following paragraphs.

Figure 4.3: Overall process of the spatial mediator.

Relational

Request

Map

Request

Request

Integration Script

Relational

Script

Map

Script Generate

Integration Script

Fact

DB

Generate

Relational

Script

Semantic

Network

Ontology

Generate

Map

Script

R-Tree

Rule

Set

Geographic

Symbolic

Ontology

65

4.2.4.1 R_Tree: RT

The component RT ={η, rtrtrtrt} where η is a set of operations and rtrtrtrt is a

spatial index that utilizes the R_Tree structure. The rt is adopted from R-Trees

proposed by Guttman (1984). It is an index structure used for spatial objects

retrieval. The data structure splits space with a hierarchically nested, and

possibly overlapping, minimum bounding rectangles (MBRs, also known as

bounding boxes). η consists of the search operation that searches through the

R_Tree index structure to identify the MLIVs that match the search conditions.

The search operation makes use of the following detecting functions to

determine topological relationships between MLIVs and the geographic

coordinate data of the incoming map request. For the component RT to

identify a MLIV there exists at least one of these functions that returns TRUE.

� Include(Point, Polygon) is a function that determines the spatial

coincidence of points and a polygon. It can be used to identify the

bounding box that contains the requested point. It returns TRUE if

the point meets the following two conditions: (a) the point is located

inside the polygon and (b) the point doesn’t touch the borders of the

polygon

66

� Overlap(Polygon, Circle) is a function that determines whether the

polygons is overlapped with the circle region. It returns TRUE if

the circle and the polygon overlapped. To overlap, the circle and

polygon must include at least one point.

� Overlap(Polygon, Polygon) is a function that determines whether two

polygons overlap. It returns TRUE if two polygons include at least

one point.

4.2.4.2 Rule Set: RS

RS is the rule set defined as follows:

RS = { r}, where r is a rule that contains three clauses: IF clause,

THEN clause and ELSE clause. IF clause contains Boolean

expression. IF clause and THEN clause are mandatory while ELSE

clause is optional.

In the process to generate a map script the spatial mediator first locates MLIVs

and then uses a ranking mechanism to rank the MLIVs. It makes use of rules from the

rule set RS to generate the value of the parameters used in the ranking mechanism.

The ranking mechanism is introduced in Section 4.3.3. In our current model, the rules

remain static while the mediator is running. Contents of RS are included in the

Appendix B.

67

4.2.4.3 Geographic Symbolic Ontology: GSO

GSO is the geographic symbolic ontology which is based on our ontology

work described and defined in Chapter 3. An example is of a fragment of GSO is

illustrated in Figure 4.4.

4.2.4.4 Semantic Network Ontology: SNO

SNO is the semantic network ontology defined in Chapter 3. The search terms

from the relation request are used to search the ontology to locate the RLIVs that

contain the attributes necessary to respond to the user request. The join criteria in the

semantic network connecting two RLIVs is used to combine them into one relation. A

fragment of a sample SNO is shown in Figure 4.5.

Figure 4.4: A fragment of Geographic Symbolic Ontology.

Country:

State:

County:

City: Des Moines

City:

Include

Include

Include

Include

68

4.2.4.5 Fact Database: FD

FD is a database based on the relational data model. It stores the

metadata of the applications, LIV objects from the data sources and either

computation server tools or independent Tool Nodes in the GeoGrid

infrastructure.

Figure 4.5: A fragment of Semantic Network Ontology.

(RLIV 2. Region = RLIV3.Location)

(RLIV 1.Address = RLIV2.State)

RLIV 3 RLIV2 RLIV 1

State Region Property-

Area
Address Location

Is-a edge

Social Entity

Country

Physical Object

House Land

Entity

Events

Natural

Disaster

Living Being

Human Being

Owner

Storm

-Name

69

The metadata suggested by FGDC (Federal Geographic Data Committee)

(FGDC 2000), in particular, “Content Standard for Digital Geospatial Metadata”

includes seven categories: identification, data quality, spatial data organization, spatial

reference, entity and attribute, distribution and metadata reference. Among them,

several attributes in data quality associated with MLIVs which provide the spatial

objects in a map form in our infrastructure are stored in the FD. These data are

recorded into FD when data sources registered with the infrastructure. Besides the

spatial characteristic metadata, the spatial mediator also document related

characteristics, such as reliability of a data source which can be obtained from a

statistic data maintained by mediator.

For the RLIVs that provide spatial data in a relational form, the metadata of

relations within each RLIV are stored in the FD. The metadata includes relational

schemes, data type of the attributes within the relations and functional dependency

within each relation. The spatial mediator makes use of these metadata to generate

the integration script.

When a user node is registered within the infrastructure, the characteristics and

functionality of their display devices are also recorded in the FD. These information

help the spatial mediator decide what type of data needs that the application is

requesting. The geographic quality requirements for applications used in user nodes

70

are also stored in the FD. A preference selection on geographic quality attributes

indicating which attributes are more important than other attributes is completed

during registration process. This preference is stored in the FD. The spatial mediator

makes use of this information to find MLIV that can generate the requested map(s).

4.2.4.6 System Manager: SM

SM is the system manager of the spatial mediator. It is a collection of

programs and performs the mediation process. The SM is further divided into the

following modules:

1. Administrator:

Functions:

� Evaluates the request after receiving a request from the wrapper of the

spatial mediator to decide the type of the request. It then invokes the

corresponding mediation process

� Coordinates the operation flow between modules inside the mediator

manager SM

� Monitors the meditation process and records status data for every

request.

� Manages information received from the registration node which

receives registration information from participants of the GeoGrid.

71

2. Ranker:

Functions:

� This component is activated by SM and perform the following function if

the incoming request is a map request or a merged request. It doesn’t

perform any task for a relation request.

i. Perform the ranking mechanism to identify the data source that can

provide the best answer in term of map quality.

3. Script Generator

Functions:

� For the map request, it performs the following function:

i. Enforce the map group algorithm to generate map groupings

ii. Replace the tool type in a map grouping to generate template skeleton

and then transform the template into the map integration script

� For the relational request, it performs the following functions:

i. Generate the relation framework query

ii. Create the subquery for each MLIV and generate the relation

integration script

� Generate the final integration script where the returned type maybe “map”,

“relation” or “merged”

72

4. Curator:

Functions:

� Maintains metadata and rule sets inside FD and RS, its job includes

updating data, periodic back up.

We elaborate the map generation corresponding map request in the following section.

The relation generation is discussed in detail in Section 4.4.

4.3 Map script generation

After the spatial mediator identifies that the request includes a map request it

starts the map script generation process. A block diagram of this process is depicted in

Figure 4.6. We elaborate the process in the following sections.

73

Map

Grouping

s

Figure 4.6 A block diagram of the mediator components that generates map scripts.

Fact Database Rule Set

Potential

MLIVs

Rank

MLIVs

Ranked

MLIV s

Generate

Groupings

Geographic

Symbolic

Ontology

R_Tree
GSO RT

Search

MLIV

Map

Request

Map Script

Map

Template

Skeleton

Generate

Map

Script

RS
FD

Generate

Template

74

4.3.1 An example of MLIV

MLIV is defined as a view type object that provides the access to a map object

from a data source in GeoGrid. Each data source that provides maps contributes one

or more MLIVs, where each MLIV can be used to generate a map. The following is

an example of a MLIV which can generates a map as shown in Figure 4.7a. The

MLIV provides the access of the following map. An example of the object structure

of the MLIV is shown in Figure 4.7b. Note that the data source providing this MLIV

needs to register with GeoGrid the following information shown in Table 4.1. To

simply the example we have limited the code in Figure 4.7b to show only how the

data is accessed and have ignored the code required to restrict the access to one user at

a time. Figure 4.7c is another example of MLIV which stores geographic data in a

vector data model.

Figure 4.7a: An example of data accessible by a specific MLIV

75

public class MapLiv {

public jpgMap getMap (int height, int width, double dpi, double minlat, double minlong,

double maxlat, double maxlong) {

string endpoint = "http:// rasterImageServer /arcgis/services/satelliteMaps/MapsServer ";

ESRI.ArcGIS.ADF.ArcGISServer.MapServerProxy mapserver =

new ESRI.ArcGIS.ADF.ArcGISServer.MapServerProxy(endpoint);

MapServerInfo mapinfo = mapserver.GetServerInfo(mapserver.GetDefaultMapName());

MapDescription mapdesc = mapinfo.DefaultMapDescription;

ImageType imgtype = new ImageType();

imgtype.ImageFormat = esriImageFormat.esriImageJPG;

imgtype.ImageReturnType = esriImageReturnType.esriImageReturnURL;

ImageDisplay imgdisp = new ImageDisplay();

imgdisp.ImageHeight = height;

imgdisp.ImageWidth = width;

imgdisp.ImageDPI = dpi;

ImageDescription imgdesc = new ImageDescription();

imgdesc.ImageDisplay = imgdisp;

imgdesc.ImageType = imgtype;

MapImage mapimg = mapserver.ExportMapImage(mapdesc, imgdesc);

jpgImage = clip(mapimg, minlat, minlong, maxlat, maxlong);

return jpgImage;

}

}

Figure 4.7b An example illustrates an MLIV that provides access to ArcGIS.

76

OwnerID Bounding Box Theme

Geographic Quality

Complete

-ness

Map

type

Positional

Accuracy

Relia

bility

Resolu-

tion

accessib

ility

MLIV-55 ”42.0597047,-94.165246”,

“42.210095, -93.8802273”

Satellite 1 JPG 0.01 0.9 25 5

Table 4.1. Registration data for the MLIV shown in Figure 4.7.

package mapLIV;

import java.sql.*;

import java.io.*;

import oracle.spatial.geometry.*;

import java.lang.Object;

public class QuerySpatialdb {

 public geoMap derive (double minlat, double minlon, double maxlat, double maxlon) {

 private GeoMap theMap = new GeoMap();

 Class.forName("com.oracle.jdbc.Driver");

 String url = "jdbc:oracle://spatiallocalhost/geogrid";

 Connection connection = DriverManager.getConnection(url);

 Statement stmt = connection.createStatement();

 String query = "";

 query = "select theGeometry from defaultTable where sdo_filter(theGeometry, ";

 query = query + "SDO_geometry(2003, 8307, null,SDO_elem_info_array(1, 1003,3),";

 query = query + " SDO_ordinate_array(minlon, minlat,maxlon,maxlat) = \"TRUE\"";

 ResultSet rs = stmt.executeQuery(query);

 STRUCT st = (oracle.sql.STRUCT) rs.getObject(1);

 //convert STRUCT into geometry

 JGeometry j_geom = JGeometry.load(st);

 theMap.addOneGeometry(j_geom);

 return theMap;

 }

}

Figure 4.7c: An example illustrates an MLIV that provides access to Oracle spatial.

77

4.3.2 Search MLIVs

The map mediation process starts with the spatial mediator determining the

MLIVs that are capable of responding to all or part of the incoming request. To do

this, the map mediator makes use of the MLIV registration data. The Fact Database

FD is used to identify the MLIVs that satisfy theme and property requirements in the

map request. Location requirements can take either symbolic (e.g., a city name)

value or radius/point/bounding box values. Location requirements based on

geographic coordinates (e.g. a point/point and radius/bounding boxes) are resolved

using the R-Tree (RT). For symbolic terms that identify location (e.g. “Midwest”),

the Geographic Symbolic Ontology (GSO) is used. Any terms that indicate locality

point to the MLIVs that include the term value and its surrounding area. For example,

terms like USA, North Central, Iowa, Story and Ames define locality, while terms

like country, state, region, county and city are terms that assist the search. A fragment

of the GSO is illustrated in Figure 4.8.

78

If the request only provides a symbolic term then the mediator first uses

Geographic Symbolic Ontology (GSO) to locate the MLIVs that match the search

criteria. The mediator then searches the Fact Database (FD) to find the bounding

boxes of the located MLIVs.

4.3.3 Rank MLIVs

Once the MLIVs that satisfy the Fact Database search and the RT and/or GSO

are gathered into a list, it is necessary to rank the MLIVs on the basis of their value

responding to the request.

Figure 4.8: A fragment of the symbolic search.

County

Country

USA

State

Iowa

City

Ames

City

Story

City

79

The spatial mediator partitions the MLIVs into two lists: FullCoverageList and

PartialCoverageList. The FullCoverageList is defined as the set of MLIVs whose

bounding boxes fully cover the requested area of the request. The

PartialCoverageList is defined as the set of MLIVs whose bounding boxes overlap

part of the requested area of the request. The motivation for the two lists is to allow

our algorithms to first examine the quality of MLIV on the FullCoverageList (if they

exist) and only go to the process of using MLIVs from the PartialCoverageList when

they are required. Figure 4.9 shows several examples from these two lists. The request

bounding box is indicated by the solid shaded box and the diagonally shaded box

represents the MLIV bounding box. Examples A and B are from FullCoverageList

and examples C and D are from PartialCoverageList. Example A shows the bounding

box of the MLIV is bigger than the one of request and so it is a complete cover of the

bounding box of the request. Example B is the case where bounding box of MLIV is

exactly the same as the bounding box of the request. Example C and D are cases

where the bounding box of a MLIV overlaps part of bounding box of the request.

80

To investigate the two lists of MLIVs requires the mediator to evaluate the

potential contribution of each MLIV to the generation of a useful map. The mediator

makes use of a ranking mechanism to rank these potential MLIVs based on their

likelihood of generating high quality spatial object in respond to the request. MLIVs

on these two lists on are ranked on decreasing order of their ranking values. We put

lots of effort to investigating ranking methodologies. The ranking mechanisms tested

are described in more detail in Section 4.3.5

4.3.4 Map grouping

Before we describe our map grouping algorithm we first introduce a set of

definitions that provide the basic concepts needed in the algorithm.

Figure 4.9. Examples of FullCoverageList and PartialCoverageList.

A. B.

FullCoverageList = {A, B}

C. D.

PartialCoverageList = {C, D}

: Request bounding box : MLIV bounding box

81

Definition 4.1:

A grouping is recursively defined as consisting of a tool type and a

list of objects such that each object is either a MLIV or a grouping.

Definition 4.2:

A well-formed grouping is a grouping that only consists of tool

types and MLIVs.

Definition 4.3:

A map grouping is a well-formed grouping that generates an instance of

the requested map.

Definition 4.4:

The ranking value of a grouping is set by using the value of the

smallest ranking value of any MLIV found in the grouping.

The task of the mediator is to generate at least one map grouping that

has a ranking value greater than or equal to the system threshold. In our current

model the system threshold is set when the mediator is initially installed. The

map-grouping algorithm starts by examining the FullCoverageList in order of

decreasing ranking values. If an MLIV in this list has a quality measure above

the system threshold, it is formulated as a map grouping and passed to the next

level.

82

If no complete cover MLIVs can generate a map grouping with a ranking values

above the threshold, the algorithm switches to the PartialCoverageList. As in the

previous case, the MLIVs are processed in order of decreasing quality measures.

The algorithm maintains a collection of bounding boxes that represents the uncovered

portions of the request map bounding box. We use an example to show how the map

grouping algorithm works (Figure 4.10). Assume that MLIV α and MLIV β are the

first and second top ranked MLIVs on the PartialCoverageList used, respectively.

The algorithm first uses the bounding box of the MLIV α against the request

bounding box and partitions the request bounding box into a collection of three

fragments {1,2,R1} of the original request bounding box (Figure 4.10a). The

algorithm then uses MLIV β to partition remaining bounding box R1 into bounding

box 3 and 4. The collection of bounding boxes that remain uncovered contains four

fragments (1,2,3,4) of the original request bounding box. Note the algorithm discards

any MLIVs that come before MLIV β on PartialCoverageList but don’t overlap with

any fragments {1,2,R1}. Figure 4.10b shows the example after two MLIVs (α,β) have

been processed.

83

The map grouping combine (α, β) (Figure 4.10d) formed after processing α

and β indicates that a tool of tool type combine will be necessary to generate the map

area covered by α and β.

The algorithm will continue to process the list of bounding boxes (1,2,3,4)

(Figure 4.10c) in the example that have not been covered by either α or β. The

algorithm continues until either the collection of uncovered bounding boxes (Figure

4.10c) is empty or the remaining MLIVs in the list have quality measure values below

the acceptable threshold level. If the collection is empty, it means the request

bounding box can be covered by the combination of areas of bounding boxes of the

MLIVs in the current map grouping. The map grouping is returned. Otherwise, an

exception indicating failure to find an appropriate map grouping is raised and a

Figure 4.10. An example of the data structures after two MLIVs (α,β) have been processed.

c) Collection of bounding boxes <1,2,3,4>

 d) Current map grouping: combine (α,β)

4

Request bounding

α

β
1

2

3

b) Covering phase II a) Covering phase I

R1:
uncovered
request
bounding
box

Request bounding box

α

1

2

84

message is sent back to the user that the request as written cannot be processed.

Figure 4.11 shows the continuing process from the previous example shown in Figure

4.10.

Assume MLIVγ, MLIV δ and MLIVε are ranked after MLIVα and

MLIV β on the PartialCoverageList, respectively. The algorithm tests the

bounding box of MLIVγ against the request bounding box. Since the bounding

box of MLIVγ covers the bounding box 1 the collection of uncovered bounding

boxes becomes {2,3,4} (shown in covering phase a). In covering phase b the

algorithm then uses MLIVδ to cover the bounding box 4 and the set of

uncovered bounding boxes becomes {2,3}. In the covering phase c, the

algorithm uses MLIVε to cover bounding boxes 2 and 3 and leave the set of

bounding boxes empty. This is one of the halting conditions of the algorithm

and the algorithm stops. We present the map grouping algorithm in Figure 4.12.

Request bounding

α

β

γγγγ

δ

ε

Figure 4.11. A continuing example from Figure 4.10.

(Covering phase a) (Covering phase b) (Covering phase c)

Request bounding

α

2

β

3

δ

γγγγ

Request bounding

α 4

2

3
γγγγ

β

85

Input:

1. Request bounding box: BBX_R

2. The fullCoverageList: List_C

3. The partialCoverageList: List_PC

Output: A map grouping: MG

{

// The MLIVs on both list are arranged according to their ranking values. The first MLIV has the highest ranking

//value and the last MLIV has the lowest ranking value.

process_done = false;

while (List_C.notEmpty() and process_done = false)

{

MapG � (List_C.firstElement()); // a map grouping is formed

List_C.removeFirst(); // remove the first MLIV from the list

MapG.rankingValue = MLIV.rankingValue;

if MapG.rankingValue >= system.threshold

then process_done = true;

}

// Array_BBX is a collection of BBXs that are not covered by any MLIVs. Inclusion of bounding box of MLIV breaks

//the original BBX_R into several smaller bounding boxes which are put into the Array_BBX. The request bounding

//box is put into the array for the first round.

Array_BBX � BBX_R;

While (List_PC.notEmpty() and process_done = false)
{

MLIV = List_PC.firstElement(); //always takes the first MLIV on the list
BBX_MLIV = MLIV.boundingBox; //obtain the bounding box of MLIV
found = false;
i = 0;
while ((found = false) and (i < Array_BBX.size()))

{
A_BBX = Array_BBX.elementAt(i); // check the element in the array
If (BBX_MLIV partially cover A_BBX) then

 {
MapG � MLIV; // add MLIV into map grouping
List_PC.removeFirst(); //remove the MLIV from the list
Array_BBX.removeElementAt(i); //remove the bbx from array
Array_BBX � break A_BBX by BBX_MLIV; //add smaller bbxs
found = true;

}
 else // this MLIV might cover more than one bounding box in the array

{
Array_BBX.removeElementAt(i); //remove the bbx from array
i = i + 1; // evaluate the next uncovered bbx in the array
if (Array_BBX.empty())

{
MapG � MLIV;
List_PC.removeFirst(); //remove the MLIV from the list

}
}

}

 If (List_PC.empty() or Array_BBX .empty()) then
 Process_done = true;

}

If (Array_BBX.notEmpty() or MapG.rankingValue < system.threshold) then
 Error message = “Fail to find any MLIV that covers request bounding box”;

else output MapG; //process is done successfully.
}

Figure 4.12. Pseudo code for map grouping algorithm.

86

4.3.5 Map Script Generation

Once an acceptable map grouping has been generated, it needs to be converted

into syntax capable of guiding the computation server. The tool types must be

replaced with actual tool names available in the GeoGrid infrastructure. It is also

useful to use an optimization step to improve tool usage in the computation server.

We call the converted form, the template skeleton of the integration script. The

definitions of template skeleton and resulting map script are given as follows:

Definition 4.5:

A template skeleton is recursively defined as consisting of a tool name and

the parameters required by the tool, where each parameter is a string that

identifies an MLIV or a template skeleton.

Definition 4.6:

The map script is the template skeleton replaced the tool name and

parameter with the specific format and actual data. A map script has

the form:

map(Oαααα (,(,(,(,,,,,,,,, Oββββ(,(,(,(,,,,,,,,,,,,,,,,, where

Sn is in the form of: (MLIV_location, MLIV_query,

MLIV_boundingBox)

Om is either in form of: (tool_name, tool_location,

87

tool_category) or NoOp

 Where NoOp indicates no tool is included

The MLIV tokens in the template skeleton are replaced with the viable queries

for the MLIVs and any associated information required by the computation server to

gain access to the data wrapper supporting the individual MLIVs. The MLIV could

either be actual queries or vectors of query parameters.

To deal with the large variety of geographic data sources (e.g., Oracle spatial,

Arc View, etc.) that exist today, we have found it more practical that each MLIV

accepts a vector of values that the MLIV substitutes into the appropriate query

language to form the query that the MLIV executes against the local geographic data

source(Figure 4.7b). The detail of the vector format are determined during the

MLIV registration and made available to the spatial mediator through the Fact

Database.

The associated information mentioned above depends to some extend on the

type of communications protocol being used to connect the computation server

wrapper to the data source wrappers. In general we have found two types of

information to be valuable, namely, the address of the data source site (e.g, IP address,

url), and the layout of the spatial object(s) generated by the data source.

88

Once the queries and associated information have been generated and used to

replace the MLIV tokens, the resulting map script is passed to the computation server

for processing. To allow construction of a new map script in case of failure, the

mediator stores the request, the MLIV lists, map grouping, template skeleton, and

map script in temporary storage until the map has been created and returned to the

user application.

Example 6: We use an example to illustrate the map mediation process.

Assumes that the bounding box of an incoming request has the following

latitude/longitude coordinates: (“41.86301,-94.165246","42.210095, -93.698127”).

The first set of coordinates is the lower left corner of the bounding box and the

second one indicates the upper right corner. To give a clear demonstration of the

map grouping process, we further assume the spatial mediator search R_Tree and

locates four MLIVs that each partly overlap with bounding box of the request.

FullCoverageList is empty and the mediator switch to PartialCoverageList. Four

MLIVs on the PartialCoverageList are shown in the Figure 4.13. Assume the

ranking values of MLIVs are ordered in accordance with their subscriptions, that is,

MLIV 1 is ranked higher than MLIV2 and MLIV2 ranked higher than MLIV3, etc. The

spatial mediator generates the following map grouping based on the map grouping

algorithm.

89

Map grouping:

 combine(combine(MLIV 1,MLIV 2), combine(MLIV 3, MLIV 4))

The map grouping is then converted into template skeleton and then map

script shown below.

Template skeleton:

clip(mosaic(MLIV 1, MLIV 2, MLIV 3,MLIV 4), “41.863010,

-94.165246” ,”42.210095, -93.698127”)

The four MLIVs are combined into one map by the mosaic tool in the

computation server and then clipped to fit the indicated bounding box (“41.863010,

-94.165246”, ”42.210095, -93.698127”). Replacing the MLIV tokens (MLIV1,

MLIV 2, MLIV 3, MLIV 4) with location and query vector information generates the

following map script.

Map script:

map(<clip, IP of clipTool, cropTypeTool>(<mosaic, IP of mosaicTool,

combineTypeTool>(IP of MLIV1, <” MapServer”, “4,4,72” >,

(”42.0597047,-94.165246”, “42.210095, -93.8802273”)>),(IP of MLIV2, <”

MapServer”, “4,4,72” >, (”42.0597047, -93.8802273”, ”42.210095,

-93.698127”)),(IP of MLIV3,, <” MapServer”, “4,4,72” >, (” 41.863010,

-93.8802273”, “42.0597047, -93.698127)), (IP of MLIV4,, <” MapServer”,

“4,4,72” >, (” 41.863010, -94.165246”, “42.0597047, -93.8802273))))

γγγγ

90

The map fragments shown in Figure 4.13 illustrate the results of the queries

generated the map for the four MLIV defined in Example 6.

The map displayed in the Figure 4.14 is the map results in the execution of the

map script (from Example 6) in the computation server, which in turn will be sent to

the user application in response to the request. The accuracy of the final map will

depend on the quality of tools that are available within GeoGrid.

MLIV 1 MLIV 2

MLIV 3 MLIV 4

Figure 4.13. Maps from the MLIVs that have been clipped to the part of

requesting bounding box that they cover.

91

Figure 4.14. Result map after integration.

4.3.6 Map MLIV ranking strategy

In this section, we present the ranking strategy used to support the generation

of the map script in the spatial mediator. We first describe our motive to employ a

ranking mechanism into the spatial mediator followed by the definitions of quality

attributes used in the ranking mechanism and then introduce the mechanisms

themselves.

The popularity of geographic information systems results in the availability of

a large number of geospatial data sources with different types of data of varying

qualities. Ranking of data providers plays an even more important role in the multiple

92

data sources environment than before. Generally, frameworks in the information

integration environment have not addressed explicitly the ranking issues. However,

we argue the ranking will become mandatory as well as locating relevant data when it

is necessary to perform integration of information from multiple data sources. One

of our goals in GeoGrid is to look into all aspects of data integration including

ranking. We propose several approaches to address ranking in the context of

geographic data integration.

One of the challenges of ranking is to push ranking computation into the

pre-query processing phase to make it efficient and ease the overall operation. We

apply the ranking metric before querying every individual data source and generating

the map script. We believe these ranking approaches will result in the minimal

computation cost in the overall integration process.

The most effective ranking approach is to make use of characteristics of data

sources. This information is available in the Fact Database and Rule Set in the form of

metadata and rules, respectively. The ultimate goal of the spatial mediator is to

provide a high quality map in respond to the map request. This motivates our

selection of quality based parameters in the ranking and scoring metrics discussed in

the Section 4.3.6.2 and Section 4.3.6.3, respectively. The consideration behind the

selection is based on geographic data quality. There are six attributes associated

93

with our ranking mechanism, namely completeness, file, positional accuracy,

reliability, resolution and accessibility. We introduce them in the next section.

The values of each attribute of an individual MLIV will be loaded into our

Fact Databases when the MLIV is registered in GeoGrid. To determine the

corresponding parameter value in the quality measure, the spatial mediator makes use

of this value from the Facts Databases FD and the corresponding attribute value in the

request to fire rules in the Rule Set RS. More detail on how this is done is given in

Subsection 4.3.6.2.

4.3.6.1 Quality attributes of geographic data

While participants of the geographic community agree on the importance of

spatial data quality, their definitions of quality varies greatly. Many efforts are made

towards gaining a consensus on a single definition in the past years. Devillers et

al.(2007) present the concept of spatial data quality as “the closeness of the agreement

between data characteristics and the explicit and/or implicit needs of a user for a given

application in a given area.” (Devillers et al. 2007, p.264).

4.3.6.1.1 Geographic data quality standard

Attributes of data quality recommended by ISO and well recognized by the

GIS community are commonly identified as the “famous five”: completeness, logical

94

consistency, positional accuracy, temporal accuracy and thematic accuracy. Among

them, logical accuracy refers to all logical rules that govern the structures and

attributes of geographic data. Based on our observation it is reasonable to assume all

spatial objects provided by MLIVs follow the topological and geometric integrity (for

example, the contour of a polygon is properly closed in the dataset). So, we don’t

consider the logical consistency as an attribute in our quality measure.

Thematic accuracy is another attribute not included in the measure. Thematic

accuracy sometimes refers as the “attribute accuracy” and is defined as the accuracy

of attributes and of the classification of features and their relationship (Devillers et

al.2007). In our model, we have used “theme” as a filter criteria to locate the MLIVs.

Therefore the thematic accuracy is not included in our quality criteria. Temporal

accuracy is not included in our quality measure for the same reason.

4.3.6.1.2 Fitness for use

The concept of “fitness for use” proposed by Juran (Juran et al. 1974) has

often recognized as a definition of quality in the largest sense and sometimes refers as

the external quality. It corresponds to the level of concordance that exists between a

product and user needs, or expectations (Devillers et al. 2007). Several researchers

from the area of information management have adopted the concept of “fitness for use”

and identified some attributes to define business data quality (Wang and Strong 1996,

95

Lee et al. 2002). Some similarity between these attributes and ones for the

geographic data quality emerges after our further investigation. And yet there are

some attributes not identified by geographic participants but worthy of being

considered as criteria to evaluate the quality of geographic data in the mobile

environment that GeoGrid is designed to operate in.

Among them are size of data, accessibility and reliability. The size by itself

cannot represent the usefulness of a data. The size of data is a function of resolution

and compression and region covered in the context of geographic data. For example,

a map of very small size (that means its resolution is generally coarse) that display the

soil type of a region and doesn’t provide useful information when compared to a map

with a bigger size (with a fine resolution) that conveyies more meaningful information

is not a reasonable choice. We include accessibility and reliability in our ranking

criteria.

4.3.6.1.3 Data conversion

Not only the original quality characteristic associated with maps but also the

quality change due to a conversion process is considered in our quality measure.

The common conversion process deals with the alteration of the underlying data

model, for example, convert raster data to vector data. Changing the resolution is

another type of conversion. When the request asks for the particular resolution or a

96

map type the spatial mediator needs to be able to consider the availability of tools and

evaluate the potential quality loss due to a conversion of resolution or data model in

order to rank the MLIV. Due to the consideration of possible conversion we include

resolution and map type in our ranking criteria.

4.3.6.1.4 Completeness

Completeness is defined as the difference between an actual object and its

specification in the document (CEN/TC287/WG02 1995). It is used to detect errors of

omission (abnormal absence) or commission (abnormal presence) of features, their

attributes and relationship (Devillers et al. 2007). To quantify completeness, three

possible measures are suggested by (CEN/TC287/WG02 1995). We adopt the

“coverage ratio” as the measure which is the percentage of data present relative to

specification. For example, if there are 250 roads in a geographical area and 2 of

them are missing, then the dataset is 99% covers the features that is, roads. Or if the

map only includes 225 roads then the map is 90% complete. We observe that most

geographic data providers use a text description to specify the completeness of their

data. The text description of completeness report in the metadata of the geographic

data can be quantified by computing the ratio between coverage presented and the

actual area on the ground. This job is done by data source administrator. When data

source registers a MLIV with GeoGrid it needs to provide a quantity value for the

97

completeness attribute of the registered MLIV. For example, the text “The following

areas are missing, with no known data source: Essex County except for Newark” is

used in the metadata of the State of New Jersey Composite of Parcels Data provided

by New Jersey Office of Information Technology (NJOIT) and Office of Geographic

Information Systems (OGIS) (JNOIT 2010). A numerical value for the attribute

completeness should be assigned by the data source which provides this map. We

adopt these definitions and define the completeness attribute associated with the

ranking measure as follows:

Definition 4.7:

Completeness is a measurable coverage ratio between data content and

its specification.

4.3.6.1.5 Positional accuracy

Positional accuracy sometimes refers as the “spatial accuracy” is a

measurement of how close map features are to their true position on the Earth

(Devillers et al. 2007). The common measures are horizontal error and vertical error.

We adopt the definition of

“Quantitative_Horizontal_Positional_Accuracy_Assessment” suggested by SDTS

(Spatial Data Transfer Standard) and define positional accuracy as follows:

98

Definition 4.8:

Positional accuracy is the degree of the deviation between data content

and its ground true position.

4.3.6.1.6 Accessibility

Accessibility is defined as “the extent to which data is available or easily and

quickly retrievable” in (Pipino et al. 2002). The measurement of easy of data

retrieval is beyond our scope of research. We define the accessibility as the time that

the MLIV takes to make the generated map available for use plus the time it takes to

download the data. It considers not only the data size but also the connection speed of

data sources and is defined as follows:

Definition 4.9:

Accessibility is the measure of availability for the data in terms of time.

4.3.6.1.7 Reliability

The reliability is defined as “the extent to which data is available and regarded

as true and credible” in (Devillers et al. 2007). In other words, it is defined as the

level of confidence a data source has that the data is correct. We define the

reliability as follows:

99

Definition 4.10:

Reliability is the confidence level of correctness and credibility of the

data.

4.3.6.1.8 Resolution

Resolution refers to the “the small size of feature can be mapped or measured”

(Burrough and McDonnell 1998). For example, if the size of each individual cell

of an imagery type map is 30 meter x 30 meter then it is having a resolution of 30 m.

We adopt this definition for the attribute resolution which is defined in the following

paragraph.

Definition 4.11:

Resolution is defined as the size of the smallest recording unit of the

map.

4.3.6.1.9 Map type

There are two types of logical structure for the maps considered in our work, namely

raster data model and vector data model. A vector data model uses two-dimensional

Cartesian (x,y) co-ordinates to store the shape of a spatial entity (Heywood 2006).

In the vector model the point is the basic block from which other spatial features (line,

polygon) are constructed. The raster data model is described as tessellations. Each

individual cell is used as the building block for creating images of point, line, polygon

(Heywood 2006). The attribute mapType is defined as follows:

100

Definition 4.12:

MapType is defined as the logical structure used to encode the

geographic data.

4.3.6.2 Quality ranking measure model

The spatial mediator utilizes a quality measure to evaluate the potential

contribution of each MLIV to the generation of a useful map. A MLIV ranking

value v is defined as follows:

v = w1*com + w2* file + w3* pos + w4* rel + w5 *res + w6*access, where

- com indicates the completeness of the geographic data,

- file estimates the cost in terms of quality of converting the MLIV data

to the map type required by the requesting application,

 - pos indicates the positional accuracy of the MLIV data,

 - rel is the reliability of the data source supporting the MLIV,

 - res indicates the degree to which the resolution of the map generated

by the MLIV matches the requested resolution,

- access is an estimate of the accessibility of the MLIV data given, and

the size of the data and the available connection speed and bandwidth,

and

- wi is the weight associated with ith parameter

101

The motivation for the ranking value comes from the work used to determine

image similarity in image retrieval systems (Lim et al. 2001, Mountrakis et al. 2004).

In particular the linear combination of the weighted terms is a common approach in

such systems. Our contribution comes from ways in which we determine the

parameters and the weights.

There are some questions that seem difficult to address using the traditional

approaches like the ones in (Mountrakis 2004 & 2005, Lim 2001) to generate weights

and parameter values. Their approaches require users’ interaction with systems in

deciding weight and parameter values. It is impossible for a large system like

GeoGrid to use such an approach. To generate parameter values and weight values

we propose several models which are described in Section 4.3.6.2.2 and Section

4.3.6.2.3, respectively.

Determination of the individual parameter value makes use of the Facts Database FD

and/or rules from Rule Set RS . Models that generate their values are described in

detail in the following sections.

The approach taken in the proposed system is to use the MLIV data to

generate a set of rules for inclusion in the rule set. Each generated rule matches the

request and MLIV values in the if condition and provides the value of the parameter

in the then clause. Examples of the if/then rules generated for the file parameter are

102

shown in Figure 4.15(a). request.mapType in the sample rules shown in the Figure

4.15(a) represent the mapType attribute value associated with the request.

MLIV. mapType in the sample rules stands for the mapType attribute value associated

with the MLIV. In our implementation the rules are generated before the system is

activated and remain static while the spatial mediator is running.

The motivation for using rules rather than functions to generate the individual

values of the parameters comes from the fact that the complete process of determining

the individual parameter values can require additional rules in the rule set (e.g., Figure

4.15 (b)). We found it more practical to expand the rule set rather than combine the

use of rules and functions. The use of the rules also allowed us to simplify the run

time requirements.

 (a) Map Type Rules:

if request.mapType = vector and MLIV.mapType = raster

 then file = 0.55

if request.mapType = raster and MLIV.mapType = vector

 then file = 0.65

if request.mapType = MLIV.mapType

 then file = 1.0

 (b) Samples of rules for converting file types to map types:

if fileType = JPG

 then mapType = raster

if fileType = GEOTIFF

 then mapType = raster

Figure 4.15. Sample rules for dealing with file and map types.

103

In the next section, we look at parameter values for these rules. We start with

the values of the attributes used in the if clause of the rules and then we present

approaches to generate parameter values used in the then clause of the rules.

4.3.6.2.1 Attributes Values Generation Approaches

Due to the growing amount of geographic data available different values exist

in the quality attributes of geographic data. After long investigating on the geographic

data quality our research team found most commonly used values for the attribute

which is in the if clause of the rules generating parameter values of the ranking metric

in our Quality Ranking Measure Model. One exception is the attribute reliability.

The value for attribute reliability is calculated by the spatial mediator. The attribute

values are listed in Table 4.2 along with citations.

4.3.6.2.1.1 Attribute reliability value

In our model, the value of attribute reliability provided by the data source is

used as the initial value and the mediator uses a moving average window method to

calculate the attribute reliability value for the MLIVi, MLIVi
reliability , and is defined by

the following function:

MLIVi
reliability = (fs) / (rs)

where fs is the number of failed responses sent from computation

server indicating the MLIV fails to respond

104

rs is the last n request made to MLIVi, the value, the value n

is set through a configuration file of the system.

Based on the practical consideration, the values for attribute reliability for

registered MLIVs in GeoGrid infrastructure is limited within 80% and 100%. A

MLIV with a poorer reliability value than 80% is restricted from providing any maps

unless the request specific indicates a willingness to use maps of lower reliability.

Table 4.2 Attribute values in the rules

Attribute Commonly used values Related citations

completeness 1, 0.9, 0.8 (ISO 2002),(JNOIT 2010)

mapType SHAPE, VPE, DLG,

DEM, GEOTIFF, TIFF,JPG

(Clarke 2001), (Burrough

1998), (Heywood et

al.2006)

Positional Accuracy 0.01, 0.02, 0.03 (NSSDA 1998),(SEDAC

2008)

Reliability 0.8, 0.9, 1.0 Decided by the spatial

mediator

Resolution 1 m, 5 m, 10 m, 25 m, 45m (UNBC GIS 2006),(Davis

2001),(Heywood et al.2006)

Accessibility 5 sec, 10 sec, 25 sec, 45 sec (Moussaoui 2006)

4.3.6.2.2 Parameter Values Generation Approaches

The values for parameters used in the quality metric introduced in Section

4.3.5.2 are generated by use of Fact Databases FD and rules in the Rule Set RS. The

spatial mediator uses attribute values of incoming requests and of MLIVs from FD to

generate a set of rules for inclusion in the RS. Each generated rule matches the

105

request and MLIV values in the if condition and provides the value of the parameter

in the then clause.

The approach proposed in (Mountrakis 2004) requires users to input their

preference percentage on the individual dimension of their aggregation function. As

we mentioned in the previous section, since our GeoGrid is such a large and dynamic

system it is not a possible way to ask users to input their preference on each data

object in our infrastructure. The models we propose require no users’ interaction

with the system. Our focus is to identify the parameter values based on their

geographic interpretation and the goals of the application designs. We must point

out difficulties exist in generating the parameter values due to the lack of an

appropriate space to compute a numerical values for some of these parameters. We

develop a model, Parameter Resolution Value Generation Model, to generate the

parameter res because of its geographic characteristics. For the rest of the parameters

namely, com, file, pos, rel and access, the values used in our testing have been

determined by our team members based on our knowledge of geographic data and

values available in the literature (Table 4.2). This approach is elaborated in the

Expert Model section.

The generation of these parameter values is based on the geographic

interpretation. The higher the value indicates a better geographic quality than the

106

one with a lower value with respect to a parameter. The example shown in the Figure

4.16 indicates the MLIV with a vector type will receive a reasonable high value for

the parameter file (which is 0.65 in the example) when a request asks for a raster file

type. The reason is that a conversion from vector to a raster will maintain a

reasonable geographic quality. While the MLIV with a raster type will generate a

lower value for the parameter file (which is 0.55 in the above example) when the

request is asking a vector type indicates that the map will have a poor quality after a

conversion from a raster to a vector type. The approach to generate values for the

parameter file, i.e. 0.65 and 0.55 in this case, is presented in Section 4.3.6.2.2.2.1. The

highest value for a parameter is 1 indicating the underlying MLIV generates a map

that meets or exceeds the incoming request’s requirement with respect to that

parameter, in another words, this MLIV generates the best map with respect to that

parameter. For example, a MLIV with a JPG file type will receive the value 1 for

the parameter file if the incoming request asks for a map of JPG type.

4.3.6.2.2.1 Expert Model

There are some differences between integrating a disparate set of geographic

data sources and the integration of traditional SQL_based databases. One of them is

that the integration of geographic data requires more human participation. We

consider that experts familiar with geographic data quality issues should get involved

107

in the process of data integration. Similar scenarios have already been identified in

various contexts (Devillers 2007, Gervais et al. 2007, Combra 2009). Since our

research team has conducted a long term investigation with deep exploration on

geographic data quality we put forward some values for the parameters in the ranking

metric used in our testing. In the expert model, the values of parameters com, file, pos,

rel, access are identified by our team members and some GIS professionals. The

available literature was an important source of parameter values as well (Table 4.2).

We use the following section to demonstrate the rational behind the decision on value

for the parameter file.

4.3.6.2.2.1.1 Data Model Conversion

Raster and vector are the two basic data structures for storing and

manipulating geographic data on a computer. Raster model uses the grid form to store

data. Each pixel or cell contains either a data value for an attribute, or a reference

number pointing to an attribute in the database (Clark 2001). Because a raster image

map has to have cells for all spatial locations, it is strictly limited by how big a spatial

area it can represent. Vector data is represented as a collection of simple geometric

objects such as points, lines, polygons, etc. All of the major GIS available today are

primarily based on one of the two structures, either raster based or vector based.

108

Raster format data are often output from optical scanner or other raster

imaging devices. Vector data acquisition is often more difficult than raster image

acquisition, because of its abstract data structure, topology between objects and

attributes associated (Heywood et al. 2006). It is possible to perform the

raster-to-vector or a vector-to-raster conversion. And it is clear that going from vector

to raster, filling in grid cells as lines cross them or as polygons include them, is

relatively simple. The opposite is quite complex (Clark 2001). Although recent

development in automated conversion technology has make this conversion in a

matter of minutes or even seconds, the quality loss due to the conversion is

unavoidable.

The following figures show the results of conversion. The tools being used to

convert are Vextractor (http://www.vextrasoft.com/vextractor.htm), R2V

(http://www.ablesw.com/r2v/) and ArcView

(http://www.esri.com/software/arcview/index.html).

4.3.6.2.2.1.1.1 Raster to vector conversion

Figure 4.16 shows the conversion from the JPG file type to the SHAPE file

type. The SHAPE file type is a popular geospatial vector data format. It is developed

and regulated by ESRI (Environmental Systems Research Institute).

109

The original file is a colored relief map of County of Boulder, Colorado and is

in the JPG file type (Figure 4.16a).The 3-dimentional representation of terrain is

displayed by the shades of color. There are blue lines and polygons to depict as rivers.

There is some obvious loss after the conversion. Not only the color is lost, but also

some features (lines and polygons) are missing in the converted file (Figure 4.16b).

Same scenario exists in the Figure 4.17a, 4.17b.

Figure 4.16a. The original raster (JPG type) map.

(Source: http://www.bouldercounty.org/lu/gis/images/reliefsd_bc.jpg)

Figure 4.16b. The converted vector (SHAPE type) map.

110

Figure 4.17a. The original raster (TIFF type) map.

(Source: http://ortho.gis.iastate.edu/)

Figure 4.17b. The converted vector (SHAPE type) map.

In our next conversion example, an image with a JPG file type illustrating some

portion of the proposed expansion in the Syracuse Metropolitan Area (Figure 4.18a).

The diagonal line shaded area represents the area after the expansion. Names of

counties are shown in this image. The shaded area is easy to identify after the

111

conversion into the SHAPE file type (Figure 4.18b), but counties names are distorted

and hard to recognize.

Figure 4.18a. The original raster (JPG type) map.

(Source: http://www.smtcmpo.org/docs/maps/smtcmpa.jpg)

Figure 4.18b. The converted vector (SHAPE type) map.

112

4.3.6.2.2.1.1.2 Vector to raster conversion

In this example, a map with SHAPE file type which is the county of State

Iowa (Figure 4.19a) is converted into a raster file type by the use of GIS tool

ArcView.

Figure 4.19a: the original vector (SHAPE type) map

(Source: http://ortho.gis.iastate.edu/)

This SHAPE file is converted into JPG and TIFF shown in Figure 4.19b and

Figure 4.19c, respectively. When applications ask for a raster file type, they expect

to obtain some information when they look at the image type map like the one shown

in the Figure 4.19d. While the vector file type only stores geographic features and

113

other information (like the one in the table shown in Figure 4.19a) the raster file

carries along the display information with geographic data, like color, legend or

meaningful tags or names on the image itself. In another words, the display

information of the raster file type conveys some information. It is obvious that some

information is lost due to the conversion when we compare Figure 4.19a to the

original raster map in Figure 4.19d.

Figures 4.19b and 4.19c, respectively, show that converting the vector map

shown in Figure 4.19a back to JPG and TIFF con not recover the lost information.

Figure 4.19b: the converted raster (JPG type) map.

114

Figure 4.19c: the converted raster (TIFF type) map.

Figure 4.19d: The original map in raster type.

4.3.6.2.2.1.1.3 Parameter file value

Based on the results of the conversion, The parameter file value is set as

follows:

if request.mapType = vector and MLIV.mapType = raster

 then file = 0.55

115

if request.mapType = raster and MLIV.mapType = vector

 then file = 0.65

if request.mapType = MLIV.mapType

 then file = 1.0

4.3.6.2.2.1.1.4 Parameter com value

The value of the parameter com indicates the likelihood of the underlying

MLIV will generate a map whose completeness attribute matches or exceeds the one

with incoming request. The values are determined by our team members. Following

are some examples of the rules.

(a) if request.completeness = 0.9 and MLIV.completeness = 1.0

 then com = 1

(b) if request.completeness = 0.9 and MLIV.completeness = 0.9

 then com = 0.9

(c) if request.completeness = 0.9 and MLIV.completeness = 0.8

then com = 0.5

Case (a) indicates the MLIV has a map whose completeness attribute exceeds

the need of the incoming request and thus receives a value 1 for the parameter com.

Case (b) shows the MLIV meets the requirement of the incoming request and receives

the value 0.9 for the parameter com. Case (c) indicates the MLIV has a map whose

116

completeness attribute fails to meet the need of the incoming request and thus

receives a value 0.5 for the parameter com. The main reason for the relative low value

of parameter com (i.e. 0.5) in case (c) is to allow the MLIV receives a lower ranking

value in our ranking metric of the Quality Ranking Measure Model since it is unlikely

the MLIV will generate a map with good quality in terms of completeness.

The values for rest of the parameters, namely pos, rel, access are generated

based on the same philosophy and we only list some example rules here. The set of

complete rules is listed in Appendix B.

4.3.6.2.2.1.1.5 Parameter pos value

if request.positionalAccuracy = 0.01 and MLIV.positionalAccuracy = 0.01

 then pos = 1

if request.positionalAccuracy = 0.01 and MLIV.positionalAccuracy = 0.02

 then pos = 0.6

if request.positionalAccuracy = 0.01 and MLIV.positionalAccuracy = 0.03

then pos = 0.5

4.3.6.2.2.1.1.6 Parameter rel value

if request.reliability = 1 and MLIV.reliability = 1

 then rel = 1

117

if request.reliability = 1 and MLIV.reliability = 0.9

 then rel = 0.6

if request. reliability = 1 and MLIV. reliability = 0.8

then rel = 0.5

4.3.6.2.2.1.1.7 Parameter access value

if request.accessibility = 5 sec and MLIV. accessibility = 5 sec

 then access = 1

if request. accessibility = 5 sec and MLIV. accessibility = 10 sec

 then access = 0.6

if request. accessibility = 5 sec and MLIV. accessibility = 25 sec

then access = 0.5

4.3.6.2.2.2 Parameter res value generation model

Resolution refers to the smallest size of geographic object that can be mapped

to the data model (Burrough 1998). A spatial object with a finer resolution

indicates it has more cells with smaller size than the one with a coarser resolution for

a same coverage. A MLIV with finer resolution has a smaller numerical value in its

resolution attribute and a MLIV coarser resolution has a greater numerical value. If

the resolution of MLIV does not match with the one associated with the incoming

118

request a conversion is needed. A conversion from finer to coarser will suffer from

the conversion loss which means the spatial object cannot be fully recoverable after a

conversion is performed with respect to the resolution. Since the MLIV has a finer

resolution it has cells with smaller size and multiple smaller cells need to merge to

form a single bigger cell in order to convert into a coarser resolution. Unless a

sampling process from the ground feature can be conducted there is no way to assign

a value into this single cell. One well known solution is by prediction; the value of

this single bigger cell is predicted based on the value of smaller cells from which it is

converted.

In our approach, we use some well accepted concepts of interpolation process

in geographic science. Interpolation is the prediction of a value of an attribute at an

unsampled site X0 from measurements made at other sites Xi falling within a given

neighborhood. The rationale behind interpolation “is the very common observation

that, on average, values at points close together in space are more likely to be similar

than points further apart “(Burrough 1986). In another words, cells with the same

values tends to cluster together. Based on the concept, we develop the Resolution

Value Generation Model which is explained in the following paragraph. We introduce

a function RF(x,y) that generates the value for the parameter res for inclusion in the

RS rules. The values assigned to the �� in the RF(x,y)were based on this concept and

119

we also conduct an empirical study to determine the values of ��(discussed in

Chapter 5).

The value of parameter res is determined by the following rules:

If MLIV. resolution = x and req.resolution = y then res = RF(x, y).

The function RF(x,y) that computes the values is defined as follows:

4.3.6.2.3 Weight generation approaches

The ranking metric defined in Section 4.3.6.2 Quality Ranking Measure Model

is as follows:

v = w1*com + w2* file + w3* pos + w4* rel + w5 *res + w6*access, where

wi is the weight associated with ith parameter

In previous section, we introduced two approaches to generate the parameter

values in the quality ranking metric above, namely, com, file, pos, rel, res, access. In

����, �	 =

1 where x = y
where x = y

∑ � � ��	��
��� / ��

� ��

��

���
� 1 �� � 1

��

where x γ y

 n = x / y

 �� = probability that i is the

number that match the one

chosen and

120

this section, we introduce two approaches that generates weight wi in the ranking

metric.

The reason why the values from weights for a system like GeoGrid cannot be

the same as the way (Mountrakis 2004, Lim 2001) is that they looked at a set of maps

as pictures and had the users rank them and it is not a possible way in a large dynamic

system like GeoGrid.

We develop two approaches to identify weights. They are described in the

following sections. Evaluations for each approach are given in detail in Chapter 5.

During a preprocessing stage, the spatial mediator generates a set of weight

vectors, W. Each weight vector is corresponding with a given request. Since the

number of possible combination of attribute values is already known it means all

possible requests without bounding boxes are also known. This makes it possible to

calculate the weight vector associated with each request. During the run time, when

the spatial mediator receives the incoming request (with bounding box) it obtains the

associated weight vector from the set W and calculates the ranking values for the

MLIVs in FullCoverageList and PartialCoverageList.

The diagram shown in Figure 4.20 indicates how the weights are integrated

into the spatial mediator during the running stage.

121

4.3.6.2.3.1 Partitioning weight generation approach

To calculate the parameter weights, we make use of the attribute value

partition, and the availability of conversion tools. We use a matrix of weights where

each line in the matrix represents a set of weights for a potential request. The set of

MLIVs L is partitioned into four sets representing the system’s ability to do any

conversion required to use an MLIV to process the request. The four sets of MLIVs

are

• A is the set of MLIVs that can be used in the response without conversion,

• B is the set of MLIVs that can be used in the response without loss and the

necessary conversion tools are supported by the system,

• C is the set of MLIVs that can be used, but will suffer some loss of quality

using the current conversion tools supported by the system, and

• D is the set of MLIVs where either conversion can’t be done or no tools

exist.

Figure 4.20. The spatial mediator in the running stage.

Map Scripts

Spatial

Mediator Request

W: The set of weight

vectors

The set of MLIVs

122

An iterative algorithm is applied to the four sets of MLIVs to adjust the weights

to enforce the partial ordering implied by the four sets. The correct partial ordering is

indicated by the ranking values of MLIVs inside these sets. The ranking values of

MLIVs in set A are higher than the ones in set B and the ranking values of MLIVs in

set B are higher than the ones in set C and same follows for set C and set D. The

ranking values of MLIVs in set A are higher than ranking values of MLIVs in set B

because the MLIVs in set A can generate maps without conversion, i.e. maps without

quality loss due to conversion. In other words, MLIVs in set A generate maps with

better quality than maps generated by MLIVs in set B.

The algorithm starts with a set of initial values for the weight vector and “tunes”

the weight values until the partial ordering implied by the four sets is true. The “tune”

means that the algorithm updates the weight values by a gradient change in each

iteration. The documentation of the algorithm is shown in Figure 4.21(a) and

algorithm is presented in Figure 4.21(b).

123

Input:

1. Vector of quality requirement of Request: Qual_R // It has six values for the quality attributes

2. Vector of initial weights: Initial_W // Value 0.5 is set for each element in vector Initial_W.

3. Set of MLIVs: MLIV // It is an object that has quality attributes (qual), label, ranking values.

output:

Vector of tuned weights: final_W

// This algorithm is used to generate a weight vector for a corresponding request.

// This algorithm identifies the corresponding weight values υ for the corresponding request.

// Each MLIV is evaluated by the ranking value υ which is defined as

// υ = w1 * com + w2 * file + w3 * pos + w4 * rel + w5* res + w6 * access

// To calculate the weights in the above formula, we make use of rules in the Rule Set and data from Fact Database.

// A vector of weights will be generated by this algorithm.

// This algorithm is decomposed into four distinct phases. For each request, this algorithm will go from phase I through

// phase IV. Phase II, Phase III and Phase IV work as a loop. If the process doesn’t meet the halting condition in Phase IV

// then the algorithm goes back to Phase II, Phase III and Phase IV. When the algorithm stops a weight vector

// containing six weight values is generated

// Phase I LIV Partitioning: MLIVs will be partitioned into four sets, they are D, C, B and A.

// A is the set of LIVs that can be used in the response without conversion,

// B is the set of LIVs that can be used in the response without loss and the necessary conversion tools

// are supported by the system

// C is the set of LIVs that can be used, but will suffer some loss of quality using the current conversion tools supported

// by the system, and D is the set of LIVs where either conversion can’t be done or no tools exist.

// Initially, all LIVs are not labeled. The algorithm starts to check each LIV with respect to a particular request. LIVs that are

// identified as the member of set D will be labeled first. And LIVs evaluated as members of set C, set B and set A will be

// labeled accordingly.

// Phase II Ranking Value Generating: The ranking value for each LIV will be generated by using the ranking formula stated

// above. For each parameter value in the formula, the algorithm calls a module ruleEngine. The variable parmValue is a

// vector that holds the parm values for the MLIV. “parmValue = ruleEngine(MLIV, Qual_R);”

// A method, compuRanValue, is called to calculate the ranking value for the corresponding MLIV

// Here comes the tuning process

// “ while (NOT done)” is used as a halting condition

// Phase IV Weight Tuning: The algorithm will stop if the following condition is true otherwise the

// tuning process begins.

// ε >= (e(A,B) * θ1 + e(A,C) * θ2 + e(A,D) * θ3 + e(B,C) * θ4 + e(B,D) * θ5 + e(C,D) * θ6

// where ε is the threshold and e(A,B) is the number of incorrectly positioned MLIVs in partition A

// and partition B, etc. The threshold is set manually. A method, testErrorNum, is used to get ε.

// A method, getNoIncorrectMLIV, is used to compute the number of incorrectly positioned MLIVs

// The weight tuning procedure starts with a small adjustment on θi for 1 <= i <= 6. These adjustments

// are made one at a time starting from θ1. The algorithm will check the halting condition for every

//adjustment. A method, tuneTheta, is used to tune the θi

//When all θi for, 1 <= i <= 6 are adjusted and the halting condition is still false, the tuning

//process starts to make adjustments on the weights wi for 1 <= i <= 6. wi are adjusted by small

//increment (+0.01) or decrement (-0.01) one at a time and is done in method: tuningWeights.

Figure 4.21a. Comments of partitioning weight generation approach

124

Input:

1. Vector of quality requirement of Request: Qual_R // It has six values for the quality attributes

2. Vector of initial weights: Initial_W // Value 0.5 is set for each element in vector Initial_W.

3. Set of MLIVs: MLIV // It is an object that has quality attributes (qual), label, ranking values.

Output:
Vector of tuned weights: fianl_W

// Phase I LIV Partitioning: MLIVs will be partitioned into four sets, they are D, C, B and A.
if (MLIV. completeness < Qual_R.completeness) then MLIV.label = “D”;

else if (MLIV.positional accuracy > Qual_R.positional accuracy) then MLIV.label = “D”
else if (MLIV.reliability < Qual_R.reliability) then MLIV.label = “D”

else if (MLIV. accessibility > Qual_R.accessibility) then MLIV.label = “D”
// Check if an unlabeled LIV belongs to Set C
 if (MLIV.resolution > Qual_R.resolution) then MLIV.label = “C” ;

else if (MLIV. file = raster and Qual_R.file = vector) then MLIV.label = “C”;
else if (MLIV. file = lossyRaster and Qual_R.file = vector) then MLIV.label = “C”;

else if (MLIV. file = lossyRaster and Qual_R.file= raster) then MLIV.label = “C”;
//Check if an unlabeled LIV belongs to Set B that can be used in the response without loss
if (MLIV.resolution < Qual_R.resolution) then MLIV.label = “B”;

else if (MLIV.file = vector and Qual_R.file = raster) then MLIV.label = “B”;
else if (MLIV.file = vector and Qual_R.file = lossyRaster) then MLIV.label = “B”;

else if (MLIV.file = raster and Qual_R.file = lossyRaster) then MLIV.label = “B”;

// If an MLIV is unlabeled then it must belongs to Set A

if (MLIV.label == “ “) then MLIV.label = “A”;
// Phase II Ranking Value Generating:
parmValue = ruleEngine(MLIV, Qual_R);
for (i = 1; i++; i<=6){

updated_W.element(i) = intial_W.element(i) ;
// Here comes the tuning process
boolean done = false;
while (NOT done) {

MLIV.rankingValue = compuRanValue(parmValue, updated_W);
for (i = 1; i++; i<=6){ //Phase IV Weight Tuning:

theta [i] = 0.5; // Initialize the theta with value 0.5
arrayNumIncorrectM[1] = getNoIncorrectMLIV(parA, parB);
arrayNumIncorrectM[2] = getNoIncorrectMLIV(parA, parC);
arrayNumIncorrectM[3] = getNoIncorrectMLIV(parA, parD);
arrayNumIncorrectM[4] = getNoIncorrectMLIV(parB, parC);
arrayNumIncorrectM[5] = getNoIncorrectMLIV(parB, parD);
arrayNumIncorrectM[6] = getNoIncorrectMLIV(parC, parD);
i = 1;
if (ε >= testErrorNum(arrayNumIncorrectM, theta[i]))

 done = true;
while ((i <= 6) and (NOT done)) {

 tunetheta(i);
 i++;

if (ε >= testErrorNum(arrayNumIncorrectM, theta[i]))
 done = true;

}
if (NOT done) then

updated_W = tuningWeights(updated_W);
else final_W = updated_W;

}

Figure 4.21b. Partitioning weight generation algorithm.

125

4.3.6.2.3.2 Map grouping weight generation approach

Another method to generate weight values in the quality metric of the Quality

Ranking Measure Model employed by the spatial mediator makes use of experts. The

Map Grouping Weight Generation Approach is used when FullCoverageList is empty

or doesn’t contain any MLIVs above the threshold value, that is, spatial mediator

cannot find a MLIV that can generate a map whose bounding box covers the one with

the map request at a sufficient level of quality. After spatial mediator identifies all

possible map groupings from the MLIVs in PartialCoverageList for the incoming

request, the correct map grouping sequence is identified using geographic

interpretation of available data. An iterative algorithm is applied to the MLIVs to

enforce the correct map grouping sequence.

The ranking value for a map grouping is defined as the minimum ranking

value within the group, i.e., the minimum ranking value associated with a MLIV

within the group. Before we introduce the correct map grouping sequence we first

present the following definitions. We have defined the grouping and map grouping in

Section 4.3.3

Definition 4.13:

MGi is defined as a preferred map grouping over MGj iff MGi generates a

map with better quality than the map generated by MGj

126

One map grouping is identified as a preferred map grouping over another map

grouping based on the need of application and also on our knowledge of geographic

data quality. To model the decisions is not the focus of this research. We reveal

some of the rational behind the decisions in the following paragraph.

Rationale behind the decision in the Map Grouping Weight Generation in

deciding a preferred map grouping:

R1: The grouping with the least number of MLIVs is preferred.

R2: The least number of “file conversions” needed inside the map grouping

is preferred.

R3: The least number of “resolution conversions” needed inside the map

grouping is preferred.

R4: The higher value in non-convertible parameters is preferred.

The rationales are written in the order of priorities, the one on top has the

higher priority over the one below.

We use the following example to demonstrate the rationales behind the

decision.

Attribute Complete

ness

Map

type

Positional

accuracy

reliability resolution accessibility

REQ 0.9 SHAPE 0.01 1.0 25 6

===

127

L41 1 'SHAPE' 0.01 1 25 6

L43 1 'SHAPE' 0.01 1 1 4

L45 1 'SHAPE' 0.01 1 10 4

L46 1 'SHAPE' 0.01 1 25 5

L47 1 'SHAPE' 0.01 1 5 6

L49 1 'SHAPE' 0.01 1 25 4

L50 0.9 'TIFF' 0.02 0.95 25 10

L55 0.8 'JPG' 0.03 0.5 100 15

L58 0.9 'SHAPE' 0.01 1 25 5

L59 1 'TIFF' 0.01 1 25 10

Based on the rational stated above, the map grouping MG1 is the preferred

map grouping over MG2, and MG2 is the preferred map grouping over MG3, etc,. In

another word, MG1 is the best map grouping and the MG4 is the least preferred. The

reasons are as follows:

• There are only two MLIVs in the map grouping MG1, fewer than others.

• File types and resolution are all the same with the group MG1, MG2, MG3.

• The map grouping MG2 is preferred than MG3 is because file types of all three

MLIVs are all SHAPE files, resolution are the same too, no conversion is

needed.

• The map grouping MG3 is preferred than MG4 is because no file conversion is

needed in MG3 while a raster-to-vector conversion is needed in MG4.

We now define a correct map grouping sequence by first introducing a correct

local sequence of a map grouping.

 Map grouping:

MG1: <L41,

L49>

MG2: <L41, L46,

L58>

MG3: <L43, L45,

L47>

MG4: <L41, L45,

L55>

Best

Poorest

128

Definition 4.14:

Correct local sequence of a map grouping MGk = {MLIV 0,..MLIV i,

MLIV j,..MLIV m} is defined as a sequence that satisfies the following

condition:

For each pair of MLIVi and MLIVj, the ranking value of MLIVi is higher

than the ranking value of MLIVj where MLIVi and MLIVj are ith and jth

term in the sequence respectively with 0<= i < j<= m

Definition 4.15:

A correct map grouping sequence:{ MG0,.. MGi, MGj,.. MGm}is defined as

a sequence that satisfies the following two conditions:

(1) min(MGi) > min(MGj) where min is the minimum function that

return the minimum ranking value inside a map grouping MGi

and MGj are map grouping with correct local sequence and i
th

and jth term in the sequence respectively with 0<=i < j<= m.

(2) MGi is a preferred map grouping over MGj.

In the Map Grouping Weight Generation Approach spatial mediator uses an

iteration algorithm to generate weight values in the quality measure metric of the

Quality Ranking Measure Model. With a given request and the PartialCoverageList,

the correct map grouping sequence is identified with respect to the given request. The

129

algorithm then starts with a set of initial values for the weight vector and updates the

weight values with a gradient change until the correct map grouping sequence is

found. Once the correct map grouping sequence is found the weight vector is stored

in the set of weight vectors, W mentioned in Section 4.3.6.2. Figure 4.22 shows the

algorithm.

130

Input:

4. Vector of initial weights: Initial_W // Value 0.5 is set for each element in vector Initial_W.

5. Vector of MGs: MG_Vec // It is a vector of map groupings generated by the spatial mediator.

//MG is an object that has id and a set of MLIVs which composes the map gouping

//MLIV is an object that has quality attributes (qual), label, ranking value

Output:

Vector of tuned weights: final_W

// To ensure the correct local sequence of a map grouping, a method, checkLocalSeq, is used

// The method, correctMGSeq, checks to see if the map groupings inside the vector MG_Vec is in correct map grouping

// sequence, that is min(MGi) is less than min(MGj) where MGi is located before MGj inside the vector.

// The method, preferred(MGi, MGj), returns true if MGi is a preferred map grouping than MGj

// The method, min(MG), returns the minimum ranking values of MLIV inside the map grouping MG.

boolean correctMGSeq(MG_Vec) {

int i = 0;

int j = i + 1;

Boolean continue = true;

while (j <= MG_Vec.size() and continue) {

 if (min(MG_Vec.elementAt(i)) < min(MG_Vec.elementAt(j)))

 continue = false;

 else {

 if (preferred(MG_Vec.elementAt(i), MG_Vec.elementAt(j)){

i++;

 j = i;

}

else continue = false;

 }

}

for (i = 1; i++; i<=6){

updated_W.element(i) = intial_W.element(i) ;

boolean done = false;

If (correctMGSeq(MG_Vec)) then done = true;

//Tuning process starts if the MG_Vec doesn’t hold the correct map grouping sequence

while (NOT done) {

updated_W = tuningWeights(updated_W);

while (NOT MG_Vec.isEmpty()){

MLIV = MG_Vect.nextElement();

parmValue = ruleEngine(MLIV, Qual_R);

MLIV.rankingValue = compuRanValue(parmValue, updated_W);

}

done = correctMGSeq(MG_Vec);

}

if (done) then final_W = updated_W;

Figure 4.22. Map grouping weight generation algorithm.

131

4.3.6.3 Scoring function ranking model

To overcome the limitations inherent in the use of the ranking value, we

introduce a second model that makes use of an MLIV ranking function that considers

the application developers concerns of attribute importance. The main value of this

approach is that it removes the need to create the somewhat artificial separation

between parameter and weight values.

4.3.6.3.1 Single attribute scoring function

The scoring function of a MLIVi, Si, depends on six attributes which are the

same as the one used in the quality measure metric of the Quality Ranking Measure

Model, namely completeness, mapType, positional accuracy, reliability, resolution

and accessibility. A score S ri
j indicates the degree of quality superiority in the j th

parameter for the MLIVi with respect to the incoming request r. The single attribute

scoring function is defined as the follows:

Definition 4.16:

Sr
i
j = B j * M r

i
j where

B j is base score for attribute j

Mr
i
j is the magnitude for attribute j with respect to MLIVi and

request r

132

The score S ri
j defined above is implemented with rules in the Rule Set RS.

There are two factors that affect the degrees of superiority. The first one is the base

score indicating the relative importance between attributes and decided by

applications /users. In our implementation, three scales are used for each attribute,

namely “critical”, “important” and “non-important”, each scale is assigned with a

non-zero positive numeric value; the higher the value indicates more important the

attribute is to the applications /users. The applications/users can decide which

attributes are more important than other attributes. The application designers (people

that registered the applications) are asked to complete a preference selection when

they registered with the GeoGrid infrastructure and then information is then stored in

the Fact Database FD.

Our motivation of developing this approach comes from our observation that

different users have different needs in the multiple geographic data sources

environment. For example, a user in a situation with a need of an urgent response is

willing to scarify the quality loss due to the conversion of the file type to exchange

with the fast accessibility of a request map. In this case, this user can mark the

attribute accessibility with a “critical” scale and “non-important” for the attribute

mapType when registering with the infrastructure. Another motivating scenario is

when an application conducting a land use survey doesn’t ask for a fast retrieval of a

133

map but require a map with precise file type it can make the preference selection with

attribute mapType marking “critical” and attribute accessibility marking

“non-important” during the registration process.

Another factor that affects the score is magnitude of the superiority. The

magnitude for each attribute is not the same and is determined based on our

knowledge of geographic data quality. When the MLIV has a poor attribute compare

to the one associated with the request this magnitude is assigned with a negative value.

The magnitude reflects the characteristics of the attributes. For example, the

non-linear characteristic of attribute resolution is reflected by the following rules

given the base score for resolution is 15:

if req.resolution = 10 and MLIV.resolution = 1 then Si
res = 15 * -5 = -75.

if req.resolution = 25 and MLIV.resolution = 1 then Si
res = 15 * -6 = -90.

if req.resolution = 100 and MLIV.resolution = 1 then Si
res = 15 * - 8 = -120.

We can see the magnitude for each rule is different, namely -5, -6 and -8, and

is not proportional to the ratio of MLIV.resolution to req.resolution. Similar

observations are found in (Mountrakis 2004). They require users’ interaction to

quantify the users’ preferences in (Mountrakis 2004) while our approach makes use of

the help from the application experts.

134

There are three possible cases for the score. We discuss these cases to illustrate

the implementation of the rules.

Case 1: The score is zero. If the attribute value associated with

MLIV is the same as the one included in the request, then the rule

generates the value of zero for Si
j. For example, if req.completeness

= 0.9 and MLIV.completeness = 0.9 then Si
com = 0.

Case 2: The score is a positive value greater than zero. If the MLIV

has a better attribute value than the one of request then the rule

generates non-zero positive value for Si
j. For example, if req.

req.completeness = 0.8 and MLIV.completeness = 0.9 then Si
com =

pos.scr where pos.scr is a numerical value and pos.scr > 0.

Case 3: The score is a negative value less than zero. An MLIV will

receive a negative value in Si
j if the MLIV has a poorer attribute

value than the one of request. For example, if req.completeness = 0.9

and MLIV.completeness = 0.8 then Si
com = neg.scr where neg.scr is a

numerical value and neg.scr < 0. The idea behind this is to allow a

MLIV with a poorer quality than the one associated with the request

to receive a lower score.

135

4.3.6.3.1.1 Scoring function

We now give the definition of the scoring function. The scoring function Si of

MLIV i is the sum of scores S r
i
j. The following equation gives the scoring function for

MLIV i with respect to the request r.

Si = S r
i

com + S r
i
file + S r

i
pos + S r

i
rel + S r

i
res + S r

i
access

where Sri
j is the score with respect to attribute j

Example 7:

We illustrate the scoring function by the following example. A user indicates

that attribute mapType, resolution and positional accuracy are “critical” and the

attribute completeness and reliability are “important” and attribute accessibility is

“not-important”. Application experts assign a base score 5 for the “not-important”

attribute, a base score 10 for “important” attribute and 15 for the “critical” attribute.

The following vectors indicate the attributes values associated with the MLIV i. and

request r.

Attribute Complete

ness

Map

type

Positional

accuracy

reliability resolution accessibility

REQ r 0.9 SHAPE 0.01 1.0 25 10

MLIVi 1 SHAPE 0.01 0.9 25 25

MLIVj 1 JPG 0.01 0.9 25 5

For MLIVi the following rules in RS are fired:

if req.compleness = 0.9 and MLIV.completeness = 1 then Si
res = 10 * 1 =

10.

136

if req.mapType = vector and MLIV.mapType = vector then Si
file = 15 * 0

= 0.

if req.positionalAccuracy = 0.01 and MLIV.positionalAccuracy = 0.01

then Si
pos = 15 * 0 = 0.

if req.reliability = 1.0 and MLIV.reliability = 0.9 then Si
rel = 10 * -1 =

-10.

if req.resolution = 25 and MLIV.resolution = 25 then Si
res = 15 * -4 = 0.

if req.accessibility = 10 and MLIV.accessibility = 25 then Si
access = 5 * -1

= -5.

The score for MLIVi is sum of scores above and is -5.

For MLIVj the following rules in RS are fired:

if req.compleness = 0.9 and MLIV.completeness = 1 then Si
res = 10 * 1 =

10.

if req.mapType = vector and MLIV.mapType = raster then Si
file = 15 * -5

= -75.

if req.positionalAccuracy = 0.01 and MLIV.positionalAccuracy = 0.01

then Si
pos = 15 * 0 = 0.

if req.reliability = 1.0 and MLIV.reliability = 0.9 then Si
rel = 10 * -1 =

-10.

if req.resolution = 25 and MLIV.resolution = 5 then Si
res = 15 * -4 = -60.

if req.accessibility = 10 and MLIV.accessibility = 5 then Si
access = 5 * 1 =

5.

The score for MLIVj is sum of scores above and is -130.

The reason for both MLIVs receiving a negative score is that attributes for

MLIVs are either same as or poorer than the request. Because the designers select the

attribute mapType as a “critical” so MLIVi receive zero for the attribute mapType

while MLIVj obtains a negative number due to the huge negative magnitude.

Note that some additional rules need to be fired in order to convert the file

type.

if fileType = SHAPE then mapType = vector

137

if fileType = JPG then mapType = raster

The final scores for MLIVi and MLIVj are -5 and -130 respectively. The

scoring function rank MLIVi higher than MLIVj.

The algorithm for the scoring function is given in Figure 4.23.

 Input:

1. Vector of quality requirement of Request: Qual_R // It has six values for the quality attributes associated with the

given reqeust

2. Vector of quality requirement of a MLIV // It has six values for the quality attributes associated with the given MLIV

output:

score s for the associated MLIV

//This algorithm is used to generate a score vector for a corresponding request.

// This algorithm identifies the corresponding score s for the corresponding request.

// Each MLIV is evaluated by the score s which is defined as

// Si = S r
i com + S r

i
file + S r

i pos + S r
i rel + S r

i res + S r
i access Where Srij is the score with respect to attribute j

// To calculate the score in the above formula, we make use of rules in the Rule Set and data from Fact Database.

// A vector of scores will be generated by this algorithm.

}

 for (i = 1; i++; I <= 6) {

 s = singleScore(attribute i);

return s;

}

/ A method, singleScore(attribute i), is used to generate a score for a signal attribute i

// Sr
i
j = B j * M r

i
j where B j is base score for attribute j and

// Mr
i
j is the magnitude for attribute j with respect to MLIV i and request r

// The method base(attribute i) returns the base score for the attribute i

//The method magnitude(request.attribute i, MLIV.attribute i) returns the magnitude for the attribute i

// It calls ruleModule((Qual_R.i, MLIV.i) uses the following formula to generate the desired score for the attribute i

int singleScore(attribute i) {

 int singScore;

singScore = base(i) * magnitude(Qual_R.i, MLIV.i);

return singScore;

}

//

int magnitude(Qual_R.i, MLIV.i) {

int mag;

 if request.attribute i= Qual_R. i and MLIV. attribute I = MLIV.i then mag = ruleModule(Qual_R.i, MLIV.i);

return mag;

}

Figure 4.23. Scoring function algorithm.

138

4.4 Relational script generation

An example of the object structure of an RLIV is shown in Figure 4.24. A

block diagram of the process for generating the relational script is shown in Figure

4.25. The distributed nature of data sources supporting the spatial mediator means that

two types of queries are needed to produce the relational results, namely, subqueries

for each RLIVand a framework query to combine the RLIVs.

package relationalLIV;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.Statement;

public class Querydb {

 public Relation derive (String query) {

 private Relation rel = new Relation():

 Class.forName("com.mysql.jdbc.Driver");

 String url = "jdbc:mysql://localhost/geogrid";

 Connection connection = DriverManager.getConnection(url);

 Statement stmt = connection.createStatement();

 ResultSet rs = stmt.executeQuery(query);

 ResultSetMetaData rsmd = rs.getMetaData();

 int columnCount = rsmd.getColumnCount();

 String tuple = "";

 while (rs.next()) {

 for (int col = 1; col <= columnCount; col++) {

 tuple = tuple + rs.getString(col);

 if (col < columnCount) tuple = tuple + "\t";

rel.addCurrentTuple(tuple);}

tuple = "";}

return rel;}

Figure 4.24. An example of the object structure for RLIV.

139

To connect the relational data with the map, we make use of the service inside

the computation server to obtain a geographic location for a corresponding spatial

data.

The actual connection depends on the nature of the data that is returned to the

computation server. Occasionally, the data may have coordinate information as

attributes in the table obtained form an RLIV. In those cases, the merge tool can use

the data directly. However, in general the available spatial data will have a

geographic connection only through state, city or address values. We make use of

two tools in the computation server to fine the appropriate coordinate information.

First, for purely symbolic data values like a state name (e.g. Iowa), we use a

computation based tool based on the GSO. For specific addresses, the computation

server makes use of a web-tool, such as GPS Visualizer

(http://www.gpsvisualizer.com/geocoder/) to convert the addresses to geographic

coordinates.

140

A query has to be generated for each RLIV that is used to generate the final

result. We use the term subquery for these queries. The computation server

distributes the subqueries to the data sources that support the RLIV over which they

are defined. The results of the subqueries are returned to the computation server as

individual relations.

To combine the resulting relations into the final result, the spatial mediator

creates a framework query.

Figure 4.25. The process for generating a relational script.

Semantic

Network

Ontology SNO

Relational

Request

Search

RLIV

Generate

Subqueries
Generate

Framework

Generate Relational

Script

Relational Script

Fact Database

FD

141

Definition 4.17:

The framework query is defined as a query of the form:

R1, join1, R2 join2…joinm-1 Rm where

Ri, i = 1,2,…,m-1 are connected in the semantic network of the SNO

with a join criteria (joini i=1,2,…,m-1) defined in the association

node that connects the two RLIVs.

The computation server receives the subqueries and the framework query as

part of the integration script and uses it to guide the distribution of the subQueries and

the generation of the final result. The process of generating the relational script starts

with the spatial mediator determines the appropriate RLIVs for the relational request.

Then it generates the subqueries for each of the required RLIVs, determines the

correct framework query for combining the RLIVs, and creates a relational script.

We formally define the relational script in the following paragraph and then elaborate

the process in the following sections.

Definition 4.18:

A relational script has the form:

relation (<S1; S2;…Sm><A, C> F) where

Si are subquery where i = 1,..m

A is attribute list and C is the condition from the user request

142

F is framework query

4.4.1 Search RLIVs

The search for the RLIVs needed makes use of the Fact Database (FD) and the

Semantic Network Ontology (SNO). The SNO consists of a triple (Σ,θ,ϑ), where Σ

is the set of search operations defined in Chapter 3, θ is an ontology and ϑ is a

semantic network of RLIVs connected by association nodes that define the join

criteria for two RLIVs. The search terms from the relational request are used to search

θ to locate the RLIVs that contain the attributes necessary to respond to the user

request and are connected by join criteria through the connection in ϑ.

We start with an example before examining the algorithm to illustrate how the

Semantic Network Ontology (SNO) is used to locate the RLIVs and how to combine

the relations from RLIVs. An application generates a requests with request id 1008

and ask for people’s id who is injured in event of a natural disaster. To answer this

request the spatial mediator searches ontology of SNO and locates RLIV1 that

provides the properties information such as owner’s id. Another data source; RLIV3

that has the natural disaster reports is also identified by the spatial mediator. The

fragment shown in Figure 4.26 illustrates the search terms from for relational request

which are identity and natural disaster are used to search the ontology θ and locates

two RLIVs namely, RLIV1 and RLIV3. When the search algorithm stops two

143

attributes namely, id and stormName are referenced by pointers from the algorithm.

Since id is an attribute of RLIV1 the spatial mediator identifies RLIV1 as a RLIV

containing information relevant to the request. The spatial mediator also finds RLIV3

because stormName is attribute that belongs to RLIV3. As one can be seen from this

example, the ontology portion of the SNO allows us to find a set of RLIVs that

contain the information required to respond to the relational request.

Unfortunately the RLIVs found in this search process may not typically not be

connected by join criteria. In the example (Figure 4.26) the search process returned

RLIV1 and RLIV3, but the semantic network portion of SNO doesn’t define a way of

joining the result of the two RLIVs (Figure 4.26). It is clear from the example that

RLIV2 has to be included in order be able to join RLIV1 and RLIV3 to generate the

results needed to respond to the request.

The ontology θ of the SNO which is the upper portion of supports the search of

RLIVs while the lower portion of SNO defines the join criteria for combining the

RLIVs together. In Figure 4.26, the join criteria shows that join condition for RLIV1

and RLIV2 is “RLIV 1. id = RLIV2.ownerId” and join condition for RLIV2 and RLIV3

is “RLIV 2. address = RLIV3.location”. The relation schemes inside each RLIVs are

stored inside the Fact Database (FD). Note that Figure 4.26 only shows a fragment of

SNO.

144

 Figure 4.26. A fragment of Semantic Network Ontology.

(RLIV 2. address = RLIV3.location)

Human Being

storm-

Name

Is-a edge

Relation schemes for each RLIV:

RLIV1 (Gender (genderType, gender), Resident (name, id))

RLIV2 (Property (ownerId, address), Facility (type, capacity))

Corresponding request: <r1008, {identity, natural disaster}>

(RLIV 1. id = RLIV2.ownerId)

Identity

Social Entity

Country

Physical Object

House Land

Entity

Events

Natural

Disaster

Living Being

RLIV3 RLIV2 RLIV 1

ownerId

gender

address
id

lotNo location

145

Once all of the RLIVs (and join criteria) are identified for the framework

query, the spatial mediator must determine the subqueries that will have to be sent to

each RLIV that appears in the framework query. The subqueries must return any

attributes needed to respond to the request along with the attributes needed by the join

criteria. While any type of join criteria could be supported by our SNO model

(Chapter 3), for this thesis we have restricted the join criteria to be equijoins. Also

while any joins supported by relational database management systems can be

supported for the subqueries, we have assumed that the joins are natural joins.

In the remainder of this chapter we look in detail at the algorithms for

generating the RLIV subqueries and framework query, respectively.

4.4.2 Generate SubQueries

Each RLIV defines a set of relations such that the registered views have

undergone the renaming process (Miller et al. 2002). When there are two attributes

within different relations refer to the same characteristics and have different names

then attributes are renamed by using view. In a similar way attributes with different

semantics are given different names through the views. The Fact Database contains

the information on the relations that exist for each RLIV. For example, the attributes

stored in each relation (the attributes might have been renamed under the renaming

146

process), attribute data types and the functional dependencies that have included by

the individual registering the RLIV.

The relations registered for an RLIV may or may not have the lossess join

property, but the RLIVs that support this property are registered by the owners as

supporting the universal relation principle.

Since we assume that the renaming process has been used to make the attribute

names uniform, we are able to represent the relations defined for an RLIV as a

hypergraph.

A hypergraph is a couple H = (N,E) where N is a set of vertices, and E is a

set of hyperedges which are non-empty subsets of N (Berge 1973). A natural

coorespondance existes between a hypergraph and a database where N is the set of

attributes and E is the set of the relations schemes for the database. For example, the

hypergraph in Figure 4.27 represent a database scheme R = {R1, R2, R3} where R1 (A,

B, C), R2 (C, D, E), R3(A, E) are relation schemes. The hypergraph can be used to

model both the logical design and query operations (Owrang & Miller 1988).

 Figure 4.27. The hypergraph representation of database scheme R.

A B C

R1

R3

R2
D

E

147

A hypergraph is connected if every pair of its hyperedges is connected by

some path of hyperedges. In our algorithms, individual RLIVs are represented by a

hypergraphs.

The algorithm generates the query needed for one RLIV. Naturally, the

spatial mediator must use the algorithm for each RLIV needed in the relational script.

Algorithm subquery {

R = relation schemas for LIV;

F = Fds defined over R;

A = attributes required from LIV;

rest = relation conditions and additional clauses;

S = getJoinSequence (R, A);

C = R – S;

while S changes

 for every s ∈S

 for every R ∈S – {s}

 if R ∩S � W ∈F+ where W R

 s = s + W;

G = getConnectedComponents (C);

For (every G ∈G)

If (!oneEdge(G, S))

 S = addEdges(G,S, F);

Subquery = generateQuery(A,S, rest);

}

The focus of the algorithm is to obtain a query that can be executed at the data

source site that supports the RLIV the query is generated for. The starting conditions

of the algorithm include the set of relation schemes R supported by the RLIV

⊆

148

(obtained from the Fact Database), the functional dependencies defined over R, the set

of attributes required from the RLIV (those needed in the request result and those

needed by the framework query equijoins), and any conditions required by application

initiating the request (e.g. WHERE clause). The algorithm starts by obtaining an

initial join sequence (the relations that contain the needed attributes and those that are

needed to provide a connected join result). The functional dependencies are used to

create what are called fd-hyperedge (Miller 1992) in the underlying hypergraph. The

fd-hyperedges are used to test whether connected subcomponents of the underlying

hypergraph that are not included in the initial join set (S) intersect with just one

fd-hyperedge. The motivation for including this in the subquery algorithm is that we

are able to maintain losslessness in the subquery if the relations defined by R support

the universal relation principle. More details on this process are given in Chapter 5.

An overview of the functionality of the methods called in the subquery

algorithm is given in Table 4.3. We provide the pseudo code for some of the less

traditional methods in the remainder of this subsection.

Algorithm oneEdge(G, S) {

for (every G ∈G)

 if (attr(G) intersects only one edge of S)

return true;

 else

return false;

}

149

Algorithm addEdges(G,S, F) {

 for (every G ∈G)

 if (!oneEdge({G},S)) {

 N = addNewEdges(S, G);

 S =S U N;

 }

 S =expand(S, F);

 return S;

}

Algorithm addNewEdges(S, G) {

for (every G ∈G)

 while changes occur {

 for every g ∈G

 if ((g ∩ attr(S)) γ Ø) {

 S = S U {g};

 G = G – {g};

 }

 return S;

}

Name of Method Description

getJoinSequence (R, A) This method implements a join sequence

generation scheme as the one presented

in (Owrang & Miller 1988)..

getConnectedComponents(C) This method takes a set of edges and

returns a set of connected components.

oneEdge(G, S) This method tries to collapse the edges

of G on one edge of S

addEdges(G,S, F) This method adds edges to G if no one

edge of S is found.

generateQuery(A,S, rest) This method use the relations defined by

the edge in S , attributes in A , join

conditions generated from the Fact

Database and condition in the parameter

rest for the where clause to generate

SQL subquery.

Table 4.3. Methods used in subquery algorithm.

150

4.4.3 Generate framework query

The framework query provides a structure for combining the subqueries

generated for each RLIV.

Algorithm frameworkQuery {

ϑ = semantic network portion of SNO

FrameworkRest = relational conditions and additional clause;

A = attributes required from RLIV;

S = getFrameworkJoinSequence (ϑ);

G = getFrameworkConnectedComponents (ϑ, S);

For every G ∈ G

 If (!oneRLIV(G,S)

 S = addRLIVs(G,S);

frameworkQuery = getFrameWorkQuery(A,, S, FrameworkRest);

}

The framework query algorithm is similar to the subquery algorithm in that it

operates on a hypergraph (see proof of Lemma 4 for details on how the hypergraph

for this algorithm is constructed). Note that a key difference here is that the RLIV

have been registered independently and that a lot less information is known about the

inter relationships of the attributes in different RLIVs. We only assume that the join

attributes in the equijoin statements must be equal and that we can use the unique

names for those attributes.

An overview of the functionality of the methods called in the framework query

algorithm are presented in Table 4.4.

151

Figure 4.28 shows an example of the framework query and relational script

generated by the spatial mediator to respond to the request: r1008 shown in Figure

4.28.

Name of Method Description

getFrameworkJoinSequence(ϑ) This method uses Semantic Network

Ontology and Fact Database to

identify the RLIVs needed to

respond to the request and chooses

additional LIVs to ensure a

connected set of RLIVs (if possible)

getFrameworkconnectedComponents(ϑ, S) This method determines RLIVs in ϑ

that are not in S and returns a set of

the connected components of the

RLIVs not in S.

oneRLIV(G, S) The method returns TRUE if the

RLIVs in G are connected to at most

one RLIV in S.

addRLIV(G, S) This method adds RLIVs connected

to S until all the RLIVs in G have

been added or the remaining RLIVs

in G connect to only one RLIV in S.

Table 4.4. Methods used in frameworkQuery algorithm.

request: <r1008, {identity, natural disaster}>

Framework query:

RLIV1. id = RLIV2.ownerId and RLIV2. address = RLIV3.location

Relational script:

relation(<“id”, RLIV1; “ownerId, address”, RLIV2; “location, stormName”,

RLIV3><id, stormName>”RLIV1. id = RLIV2.ownerId and RLIV2. address =

RLIV3.location”)

Figure 4.28 An example of a framework query.

152

4.5 Integration script generation

Before we present the process to generate the integration script we formally

define the integration script.

Definition 4.19:

The integration script has the form:

O(R;M) where

O is either a merge tool which has the form (tool_name, tool_location,

mergeToolType) or NoOp where indicates no tool is needed

R is the relational script

M is the map script

The spatial mediator replaces the O of the integration script with a NoOp for

the map request and relational request. The process for generating integration script is

the same as the one generating relational script or map script in such case. For a

merge request, the spatial mediator first generates both relational script and map

script and then replaces the O of the integration script with merge token.

Figure 4.29 shows an example of the integration script in response to a request.

Figure 4.30 shows a map results from execution of the integration script shown in

Figure 4.29. MLIV1 has the correct resolution but needs to be converted to JPG.

Finally MLIV 2 is JPG, but needs to be converted to the appropriate resolution

153

Figure 4.30. A map results from execution of the integration script shown in Figure 4.29.

Figure 4.29. An example of integration script.

The request: <r1009, {Alabama}, {<0.8, JPG, 0.02, 0.9, 25, 45>, counties},

{tornado, scale, location }, {date = ‘2011-4-28’}>

The corresponding integration script:

(merge, IP of mergeTool, mergeToolType)(map ((<mosaic, IP of mosaicTool,

combineTypeTool>)(<convertJPG, IP of convertJPGTool,

convertJPGToolType>(IP of MLIV1, <” MapServer”, “5,5,72” >, <”

34.350015,-87.712215”, “34.482731, -87.290015” >)),(<setRes, IP of

setResTool, setResolutionType>(IP of MLIV2, <” MapServer”, “5,5,72” >, <”

34.712204, -86.75221”, ” 34.730743, -86.590924” >,25)));

relation(<“reportId, scale”, RLIV1; “id, location”, RLIV2><tornado, scale,

location>”R LIV1. id = RLIV2.id”))

154

CHAPTER 5. EVALUATION

In this chapter, we look at the correctness of the spatial mediator model.

Since people’s definitions of quality are different it is not practical to try to prove

anything about quality. Rather we have done on empirical study to address the issue

of map quality (Section 5.1.1). Coverage is measureable so we looked at map

coverage with a set of lemmas (Section 5.1.2). For evaluation of the relational portion

of the spatial mediator we concentrate on showing that our query generation process

generated queries with a lossless join property whenever the underlying data

semantics supported a lossless join (Section 5.2).

5.1 Map generation process correctness

The discussion of the map generation process introduced in Section 4.3.5

highlights the need of ranking data sources in the infrastructure. We start by looking

at an empirical study to evaluate the quality of the maps produced in Section 5.1.1.

Section 5.1.2 looks at the correctness of the map coverage.

5.1.1 Empirical study

We look at the results from empirical study in this section. Section 5.1.1.2

looks at the empirical results for the Quality Ranking Measure Model. The empirical

155

results for the Scoring Function Ranking Model are examined in Section 5.1.1.3. We

present correctness issues in Section 5.1.1.4.

5.1.1.1 Empirical study data set

A geographic dataset for the counties of State of Iowa was used as the test set.

It contains geographic information about state, county and city. Three hundred and

fifty five spatial objects (i.e. MLIVs) are used as the test dataset. We validate the

approaches by creating twelve requests to conduct the testing.

5.1.1.2 Evaluation of quality ranking measure model

The spatial map mediator utilizes the quality measure v to evaluate the

potential contribution of each MLIV to the generation of a useful map.

A MLIV ranking value v is defined as follows:

v = w1*com + w2* file + w3* pos + w4* rel + w5 *res + w6*access, where

wi is the weight associated with ith parameter

Our contributions come from the ways we determine the parameters and

weights. We start by looking at the generation of parameter. We develop a model,

Parameter Resolution Value Generation Model, to generate the parameter res because

of its geographic characteristics. The result is shown in Table 5.1.

156

MLIV
Req 1 m 5 m 10 m 25 m 100 m

1 m 1 0.7833 0.70749 0.64063 0.5034

5 m 0.7833 1 0.875 0.7833 0.56651

10 m 0.70749 0.875 1 0.8472 0.70749

25 m 0.64063 0.7833 0.8472 1 0.78906

100 m 0.5034 0.56651 0.70749 0.78906 1

The first row lists attribute resolution of the coming request and the first

column is the value associated with the MLIV. The values in bold font are values for

the parameter res generated by Parameter Resolution Value Generation Model. The

value for parameter res is 1 if both the MLIV and request has the same values for the

attribute resolution. We found that there are several values are higher than we

expected. They are values in the cell with solid color background. When the attribute

resolution associated with MLIV is coarser than the one associated with the request

the parameter res should be lower.

We proposed two approaches to calculate wi, namely Partitioning Weight

Generation Approach and Map Grouping Weight Generation Approach. The

following sections described the evaluation of these two methods.

5.1.1.2.1 Evaluation of partitioning weight generation approach

In Section 5.3.2.1 we have described the process of Partitioning Weight

Generation Approach for deriving the weight values in the quality ranking measure.

Table 5.1. Res values generated by the Parameter Resolution Value Generation Model.

157

The set of MLIVs is partitioned into four sets representing the system’s ability to do

any conversion required to use an MLIV to process the request. We use the number of

incorrectly partitioned MLIVs to demonstrate the effectiveness of this approach. The

incorrectly partitioned MLIVs mean MLIVs that have been partitioned into wrong set.

For example, a MLIVs that can be used in the response without conversion is

partitioned to the set that contains MLIVs that can be used, but will suffer some loss

of quality using the current conversion tools supported by the system.

The Figure 5.1 shows the comparison of error rates in terms of the number of

incorrectly ranked MLIVs between two sets of weights, namely initial weights and

tuned weights. The initial weights are set to 0.5 for all wi in the quality ranking

measure. After the tuning process the final tuned weights are generated. Twelve

requests are put to evaluate the approach. Two out of twelve does not support the

effectiveness of this approach, namely Request 2 and Request 4, since the number of

incorrectly partitioned MLIVs before tuning process are lower than the one when

tuned weights apply.

158

Figure 5.2 shows the comparison of incorrectly ranked map groupings

between sets of initial weights and tuned weights. The result shows that one out of

twelve requests, namely request 3, doesn’t support this approach since the number of

incorrectly ranked map groupings are the same for both sets of weights.

5.1.1.3 Evaluation of scoring function ranking model

To show the evaluation of this ranking model, three different sequences are

used in the testing, namely incoming sequence, random sequence and sorted sequence.

0%

20%

40%

60%

80%

1 2 3 4 5 6 7 8 9 10 11 12

% of

incorrectly

ranked MLIVs

Request

Applying initial

weights

Applying tuned

weights

0%

10%

20%

30%

40%

50%

1 3 5 7 9 11

% of incorrectly

ranked map

groupins

Request

Applying initial weights

Applying tuned weights

Figure 5.1. A comparison of incorrectly ranked MLIVs between sets of

initial weights and tuned weights.

Figure 5.2. A comparison of incorrectly ranked map groupings between set of

initial weights and tuned weights.

159

The incoming sequence corresponds to the MLIV’s identifier: MLIVid. The MLIV

with the smallest MLIVid will come in as the first element in the incoming sequence.

In another words, the spatial mediator will select MLIV with the smallest MLIVid

since it is on the top of the PartialCoverageLise. Sorted sequence is ordered by the

score associated with each MLIV. The MLIV with highest score is on the top of the

sorted sequence and will be selected by the spatial mediator first. All MLIVid are

rendered into a random order and becomes the random sequence.

Figure 5.3 show the comparison of the performance in terms of incorrectly

ranked MLIVs between these three sequences, namely sorted sequence, random

sequence and incoming sequence. In this sorted sequence, no incorrectly ranked

MLIV is found. Both incoming sequence and random sequence have some incorrectly

ranked MLIVs. Except for one request, request 5, random sequence has more

incorrectly ranked MIVs than the incoming sequence. Thus the sorted sequence is

proved to be the best. In another words, the scoring function generates the correct

ranking MLIVs with respect to the incoming map request.

160

Figure 5.4 shows the comparison of the performance in terms of the number

of incorrectly ranked map groupings between these three sequences. In this sorted

sequence, incorrectly ranked map groupings are found only for three requests, namely

request 5, request 10 and request 11. Only four requests out of twelve, the incoming

sequence has more number of incorrectly ranked map groupings than the random

sequence. Thus the random sequence has the poorest performance among three

sequences. The sorted sequence is proved to be the best.

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10 11 12

% of Incorrectly

ranked MLIVs

Request

Random sequence

Incoming sequence

Sorted sequence

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 101112

% of

Incorrectly

ranked map

groupings

Request

Random sequence

Incoming sequence

Sorted sequence

Figure 5.3. Number of incorrectly ranked MLIVs between random sequence,

incoming sequence and sorted sequence.

Figure 5.4. Number of incorrectly ranked map groupings between random

sequence, incoming sequence and sorted sequence.

161

5.1.1.4 Quality evaluation of map grouping weight generation model

We present our performance evaluation of the map grouping weight

generation model of the spatial mediator in our empirical study in this section. We

use a quantity measure, equivalence class, to show the performance of our spatial

mediator. Each parameter is assigned a value indicating the degree of quality in an

equivalence class. We compare the median of the equivalence class of MLIVs of map

grouping in the map script generated by the spatial mediator with the best available

MLIVs for the corresponding request.

The tables of the values of the equivalence class of six parameters in the

quality ranking measure model and tables of comparison values are shown in

Appendix C. Figure 5.4 through Figure 5.9 show the Comparison between MLIVs

in map script and best available MLIVs (as chosen by our research group) in terms of

six parameters in Quality Ranking Measure Model, namely, com, file, pos, rel, res

and access. From these comparisons we found out that MLIVs in map script

generated by the spatial mediator are the best MLIVs available in more than half of

the requests. For example, MLIVs in map script generated by the spatial mediator

are the best available in nine out of twelve requests in terms of the parameter res.

The worst case is the parameter pos, MLIVs in map script generated by the spatial

mediator are the best available are only seen in six out of twelve requests.

162

0

1

2

3

4

1 2 3 4 5 6 7 8 9 101112

a
v

e
ra

g
e

 v
a

lu
e

parameter com

MLIVs in map

script

best available

MLIVs

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 101112

a
v

e
ra

g
e

 v
a

lu
e

parameter file

MLIVs in map

script

best available

MLIVs

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 101112

a
v

e
ra

g
e

 v
a

lu
e

parameter pos

MLIVs in map

script

best available

MLIVs

Figure 5.5. Comparison between MLIVs in map script and best

available MLIVs in terms of parameter com.

Figure 5.7. A comparison between MLIVs in map script and best

available MLIVs in terms of parameter pos.

Figure 5.6. Comparison between MLIVs in map script and best

available MLIVs in terms of parameter file.

163

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 101112

a
v

e
ra

g
e

 v
a

lu
e

parameter rel

MLIVs in map

script

best available

MLIVs

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

a
v

e
ra

g
e

 v
a

lu
e

parameter res

MLIVs in map

script

best available

MLIVs

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12

a
v

e
ra

g
e

 v
a

lu
e

parameter access

MLIVs in map

script

best available

MLIVs

Figure 5.8. Comparison between MLIVs in map script and best

available MLIVs in terms of parameter rel.

Figure 5.9. Comparison between MLIVs in map script and best

available MLIVs in terms of parameter res.

Figure 5.10. Comparison between MLIVs in map script and best

available MLIVs in terms of parameter access.

164

5.1.2 Conceptual correctness

Let llllg be the geographic search region (point, point & radius or bounding box)

for the current request. We first define a correct MLIV identified by the R_Tree

component (RT) to be an MLIV that either contains llllg or overlaps llllg. The MLIV that

only share a common border with llllg or touches llllg isn’t considered a correct MLIV.

The followings are examples of llllg

1. llllg represents a bounding box defined by the points <41.5233, 93.1402>,

<42.1341, 94.1435> llllg = {<41.52, 93.14>,<42.13, 94.14>}

2. llllg represents region with a center point at <41.5211, 93.1463> and a 50 m radius

llllg = {<41.5211, 93.1463>, 50m}

3. llllg presents a point <41.5211, 93.1463>

llllg = {<41.5211, 93.1463>}

We define a correct MLIV identified by the Geographic Symbolic Ontology

(GSO) to be an MLIV that either contains lllls or overlaps lllls where lllls is the region

defined by the symbolic terms in the request. The following is example of lllls.

lllls represents the region: “Midwest”

lllls = {Midwest}

165

5.1.2.1 Correctness coverage using RT

Lemma 1: Given a map request r associated with the geographic location

requirement llllg, component RT identifies correct MLIVs if the requested area is

covered in the complete set of MLIVs available.

Proof:

We prove this lemma by contradiction.

Assume that given the request r, component RT identifies a MLIV that doesn’t

overlap nor contains at least part of geographic location requirement llllg. The MLIV

must be in one of the following cases.

Case 1: The llllg is a point and falls outside the MLIV.

Case 2: The llllg is point and radius that results in a circle shape region and

doesn’t overlap with the MLIV.

Case 3: The llllg is a circle shape region that only contact with the MLIV at one

point.

Case 4: The llllg is a bounding box that shares a common border with the MLIV.

Case 5: The llllg is a bounding box that doesn’t overlap with the MLIV.

For Case 1, the function in RT, Include(Point, Polygon) will be applied.

According the definition of this function (which is described in Section 4.2.2) it

returns TRUE if the point meets the following two conditions: (a) the point is located

166

inside the polygon and (b) the point doesn’t touch the borders of the polygon. Since llllg

is a point and falls outside the MLIV in Case 1 the value FALSE will be returned by

this function. An example of this case is shown in Figure 5.11.

For Case 2 and 3, the function in RT, Overlap(Polygon, Circle) will be

applied. According the definition of this function (which is described in Section 4.2.2)

it returns TRUE if the circle and the polygon overlapped. In Case 2 shown in Figure

5.12(a), llllg is a circle and doesn’t overlap with MLIV the function returns FALSE. llllg is

a circle and only contact with the MLIV at one point the function returns FALSE in

Case 3 which is shown in Figure 5.12(b) shows an example of this case.

Figure 5.12. Examples of possible relationship between a circle region location

requirement of request and the bounding box of MLIV.

(a) Case 2

llllg

area of llllg

MLIV

Bounding box of MLIV

(b) Case 3

llllg

area of llllg

MLIV

Bounding box of MLIV

MLIV

Bounding box of MLIV llllg

Figure 5.11. An example of the topological relationship between a

point location requirement and the bounding box of MLIV.

167

For Case 4 and 5, the function in RT, Overlap(Polygon, Polygon) will be

applied. According the definition of this function (which is described in Section 4.2.2)

it returns TRUE if these two polygons overlapped. An example of Case 4 is shown

in Figure 5.13(a), the bounding box of llllg shares a common border with the bounding

box of MLIV and the function returns FALSE. An example of Case 5 is shown in

Figure 5.13(b), the bounding box of llllg doesn’t overlap with the bounding box of

MLIV and the function returns FALSE.

The functions of component RT , namely Overlap(Polygon, Polygon),

Overlap(Polygon, Circle), Include(Point,Polygon),will not return TRUE for any case

from Case 1 through Case 5 stated above.

According to the definition of component RT, only when at least one of the

functions returns TRUE for an MLIV that the component RT identifies it as a correct

MLIV . We found the contradiction for the assumption and thus obtain the following

Figure 5.13. Examples of possible topological relationship between the bounding

box of location requirement of request and the bounding box of MLIV.

MLIV

Bounding box of MLIV

llllg

Bounding box of lg Bounding box of lg

llllg MLIV

Bounding box of MLIV

(a) Case 4 (b) Case 5

168

conclusion: given a request r associated with location requirement llllg, component RT

identifies correct MLIVs.

Figure 5.14 shows examples that the area or the bounding box of location

requirement llllg overlaps with the bounding box of MLIV. In such cases, MLIV will be

identified by component RT and thus a correct MLIV. In (a), the location requirement

llllg is a circle that overlap with the bounding box of MLIV. In (b) the location

requirement llllg is a bounding box that overlaps with the bounding box of MLIV. In (c)

the location requirement llllg is a point that falls inside the bounding box of MLIV. □

The next lemma looks at the correctness of map coverage using the GSO

search.

Figure 5.14. examples of possible relationship between the location requirement of

request and the bounding box of MLIV.

(a)

llllg MLIV

Bounding box of MLIV area of llllg

(b)

MLIV

Bounding box of MLIV

llllg

Bounding box of lg

MLIV

Bounding box of MLIV

llllg

llllg is a point

(c)

169

5.1.2.2 Correctness of coverage using GSO :

Lemma 2: Given a map request r associated with symbolic location

requirement lllls, GSO identifies MLIVs that correctly cover the requested area.

Proof:

We prove the Lemma 2 by contradiction.

Assume a request r with a symbolic location requirement lllls, component GSO

identifies MLIVs that neither contains the requested location nor overlaps part of

location.

Based on the assumption, for the GSO to identify the MLIV there must exit a

path starting from the root to the MLIV. According to the definition of GSO an edge

“include” must be included in the path for a MLIV to be identified. It means that the

MLIV must be included in the region that triggers the search. A contradiction to the

assumption occurs. So we conclude that given a request r associated with symbolic

location requirement lllls, GSO identifies correct MLIVs that correctly cover the request.

□

5.1.2.3 Correctness of coverage of map grouping

Lemma 3: Given a map request r and the set of MLIVs LLLL, where LLLL is the set

of MLIVs in PartialCoverageList produced by the RT and GSO components. If the

170

map grouping algorithm terminates with success the map grouping algorithm

generates a map grouping that covers the location requirement llll of r.

Proof:

Given request r = < rid, llll, Ω> assume that map grouping algorithm generates

MGi. Let space (B) returns the space covered by B where B is a geographical polygon.

We are proving the following:

 space(llll) ⊆ space(ML) where ML is the union of bounding boxes of MLIVs in

MGi

After the grouping process starts and before it terminates, the region llll is

divided into two parts: lα and lβ where lα is the region that hasn’t covered by any

MLIV in MG j and lβ is the region covered by MLIVs in MGj where MGj⊆MGi and

space(lα)γspace (lβ) = space(llll). An example is shown in Figure 5.15.

llll

lα lβ

MLIV1

MLIV2

MGj = {MLIV 1, MLIV 2} ⊆MGi

Figure 5.15. The bounding box of map request is covered by a subset of a map

grouping MGj that contains two MLIVs, namely MLIV1, MLIV 2.

171

There are only two possibilities for the grouping algorithm to be terminated,

namely, return a map grouping successfully and return a message indicating fail to

find a map grouping.

If the algorithm returns a map grouping then it indicates the algorithm

terminates successfully i.e., it will identifies all MLIVs in L that overlaps with lα and

discard MLIVj where the bouonding box of MLIV j is covered by space(lβ). -----(a)

The condition for the algorithm to terminate successfully is space(lα) =∅

-----(b)

From (a) and (b) we conclude that map grouping algorithm generates a map

grouping: MGi which contains MLIV,,,,, where 1 ≤ i ≤ n and space(llll) ⊆

space(ML),where ML is the union of bounding boxes of MLIVs in MGi. In another

words, the total coverage of MLIVs in MGi covers the region of llll in request r. □

Theorem 1:

Given a map request, when the map grouping algorithm terminates

successfully the spatial mediator generates a map script whose bounding box covers

the bounding box of the location requirement of the map request by using the

components RT and GSO.

172

Proof:

In Lemma 1 we prove that the RT identifies MLIVs that overlap or contain

the bounding box of the geographic location requirement of the map request. In

Lemma 2 we prove that the GSO identifies MLIVs that overlap or contain the

bounding box of the symbolic location requirement of the map request. In Lemma 3

we prove that if the map grouping algorithm terminates with success the map

grouping algorithm generates a map grouping that covers the location requirement of

the map request. □

5.2 Relational query correctness

For the issue of relational correctness, we make use of the lossless join where

possible. Note that it is possible for people to register data sources that are not

lossless. To this point the individual registering an RLIV whether the relations in

the LIVs satisfy the universal relation principle. The following proofs of correctness

are only valid in the instances where the registered RLIVs support this assumption.

Two aspects of the process of generating a relational result have to be

considered. Section 5.2.1 looks at the correctness of the process for generating the

framework query and Section 5.2.2 exams correctness for the subqueries needed for

each RLIV.

173

5.2.1. Framework query correctness

We start by looking at the required definitions in relational database theory.

If U is the set of attributes, then a database scheme R = (R1, R2,…, Rk) is defined as a

set of subsets of U. We use r(Ri) is to be a relation instance over scheme Ri.

Let R = (R1, R2,…, Rk) be a set of relation schemes over U. A relation r(U)

satisfies the join dependency (jd) [R1, R2,…, Rk], if and only if r = πR1(r) …

πRk(r).

The relation u(U) is called the universal relation if U is the set of all

attributes. A set of relations over U defined by R = (R1, R2,…, Rk) is said to satisfy

the universal relation principle if the join dependency [R] holds for the universal

relation u(U).

We defined attr(R) for a relation scheme R as the set of attributes of R and

attr(RLIV) is defined as the union of sets of attributes of relations inside the RLIV.

Two representation of a set of relations are join equivalent if they produce an

equivalent join result.

We use the renaming process used by Miller et al. (2002) to insure that

attribute names are unique. The process uses attribute names in views to insure that

attributes that have the same semantics have the same name and that attributes with

different semantics have different names.

174

We briefly review some of the relevant terminology concerning the

relationship between database and hypergraphs in the following paragraph. A

hypergraph is a couple H = (N, E), where N is the set of vertices and E is a set of

hyperedges which are nonempty subsets of N. We define attr(E) is the union of the

edges in E (Berge 1989). A hypergraph is reduced if no hyperedge of H is properly

contained in another hyperedge of H. H is connected if every pair of its vertices is

connected by some path of hyperedges. If H is reduced connected hypergraph with

the vertex set N and the edge set E, then E' is a complete subset of E if and only if E'

⊂ E and for each Ei in E if Ei ⊆ attr(E') then Ei belongs to E'. E' is said to be a

trivial subset of E if | E'| ≤ 1 or E = E'.

Let E' be a nontrivial complete subset of E and ψ1, ψ2,…,ψp be connected

components of E − E' with respect to E'. Then E' has the bridge-property if and only

if for every i = 1,2,…,p there exists Ei ∈E' such that (attr(E') ∩ Ni) ⊆ Ei, where Ni =

attr(ψi). Ei is called a separating edge of E' corresponding to ψi. A nontrivial

complete subset E' of E with the bridge property is called a hinge of H (Gyssens &

Paredaens 1984).

A set of RLIVs in an SNO is defined as a set of connected RLIVs if for any

two RLIVs in the set they are connected by some path. A path in an SNO is a

sequence of the form RLIV1, Association1, RLIV2,…Association m-1, RLIVm, where

175

Association i is connected to RLIVi and RLIVi+1. We have defined framework query

in Section 4.4 as a query that has the form: R1 join1 R2 join2…joinm-1 Rm Where Ri, i

= 1,2,…,m-1 are RLIVs connected in the semantic network of the SNO with a join

criteria (joini, i=1,2,…,m-1) (equijoin in the current model)defined in the association

node that connects the two RLIVs.

Lemma 4: Let L be a set of connected RLIVs in an SNO, where the joins

defined by the association in the SNO for the RLIVs in L are equijoins. A connected

hypergraph H = (N, E) exits, such that, the set of relations defined by the relations

schemes in E is join equivalent to the set of RLIVs in L.

Proof:

Without loss of generality, let L = {L1, L2,…Lm}. Create the set L' = {L'1,

L'2,…,L'm} where L' is created from L by applying the renaming process given by

(Miller et al. 2002).

Let E' = {attr(L'1), attr(L'2),…attr(L'm)}. Construct E = {E1, E2,…Em} from E'

by using Ei = sub(attr(L'i)) (1 ≤ i ≤ m) where sub() is an operation that replaces any

attribute names equated in equijoin statements with a unique name.

Let N = attr(Ei). We now need to show that the resulting hypergraph H =

(N, E) is join equivalent to the set of RLIVs in L.

m

i = 1
∪

176

[To show: Equijoin of RLIVs in L implies (→) ei(Ei), where ei is a

relation over Scheme Ei].

Let t be a tuple in the relation u(U) formed by joining the tuples in the Li of L

(1 ≤ i ≤ m) under the equijoin conditions. Since the process of converting the

scheme of Li to Ei (1 ≤ i ≤ m) has only changed the attributes names and eliminated

columns that are equal to columns under the new names, we can find a tuple δ

generated in ei (Ei)that has the same values as t only with the duplicated columns

missing. Equijoin of RLIVs in L with the duplicated columns removed is a subset

of ei(Ei).

[To show: ei(Ei) implies the equijoin of RLIVs in L]

Let s be a tuple in the relation ei(Ei), Again since we haven’t changed

relational values in the ei (1 ≤ i ≤ m) and only the attribute names, we can find a tuple

t in the equijoin of the Li of L that has the same values plus some duplicated columns.

 ei(Ei) with the duplicated columns added is a subset of the equijoin of the

RLIVs in L. Hence the set of connected RLIVs is join equivalent to the edges of the

hypergraph. □

After the renaming process, the attribute names in the equijoin statement have

been changed and the columns under the names have also been eliminated. This

m

i=1

m

i=1

m

i=1

m

i=1

m

i=1

m

i=1
...

...

177

guarantees no duplicate attribute names or columns after the join operations. Note

this lemma holds whether or not the join is a lossless join.

Figure 5.16 shows an example of a set of RLIVs, namely {RLIV1, RLIV2}

that is join equivalent to the set of relations: {R1,R2}. The join criteria in the SNO

fragment says: “RLIV1.Household-size = RLIV2.Capacity”. The renaming process

renames both “Household-size” and “Capacity” as “Num_of_Person”. The resulting

tuples from the join operation from these two sets are join equivalent.

Theorem 2: The framework query algorithm generates framework queries

with a lossless join sequence, if the set of RLIVs in the join sequence are connected,

Household-size

Figure 5.16. An example of join equivalent sets.

RLIV2

Facility_id

Type

Capacity

(RLIV1.Household-size = RLIV2.Capacity)

RLIV1 Address

Land_lot_id

Address

Land_lot-id R1
Num_of_person

Facility_id

Type

R2

178

the joins in the SNO are equijoin, the subqueries for the individual RLIVs are lossless,

and the connected components of the semantic network of RLIVs satisfy the universal

relation principle.

Proof:

Let L be the set of RLIVs from a framework query, where L is a subgraph of

a connected component G of the semantic network of RLIVs that satisfies the

universal relation principle.

Construct two hypergraphs HL and Hg using the process described in the

proof of Lemma 4, where HL represents the RLIVs in L and Hg represents the RLIVs

in G, respectively.

Without loss of generality, let HL = (N,E), E = {E1, E2,…Em} and Hg = (O,D),

D = { D1, D2,…Dk}. Note that E⊆ D.

It is clear from the framework query algorithm that any connected

component of Hg that is not part of HL is connected to only one edge of HL.

HL is a hinge and the join of the relations represented by the edges in E is

lossless.

Moreover, by Lemma 5.3, the RLIVs in L are join equivalent to those

defined by HL. Hence the join of the RLIVs in L are lossless. □

...

179

5.2.2. Subquery correctness

We start by looking at the definition of the F-fd-hinge defined by (Miller

1992). Let H = (U, R) represent a universal join dependency. Let Σ be an arbitrary

subset of R and F be a set of functional dependencies. From Σ and F, we generate a

set of edges Σ* = {E1
*,…,En

*}by expanding the edges of Σ using the functional

dependencies in F. Specifically, Ei
* = Ei∪W1∪ ···∪Wm where Ei∩ Ej → Wj∈F+ for

j = 1,…,n. We use the notation H* Σ, F to denote the hypergraph with nodes U and

edges R - Σ∪Σ* . We say Σ is an F-fd-hinge of H if Σ* is a hinge of H*
Σ,F. We will

use Fd-hinge in the remainder of this chapter where it is clear what set of functional

dependencies is being used.

Theorem 3 looks at the correctness of the subquery generation algorithm

with respect to generating lossless join sequences.

Theorem 3: The subquery algorithm generates a subquery with a lossless

join property for a RLIV, if the relations in the RLIV satisfy the universal relation

principle.

Proof:

Let R be the set of relations in an RLIV that satisfies the universal relation

principle. By definition of the universal relation principle [R] holds. Let D be the

set of Fds (functional dependency) defined over the attributes in attr(R).

180

Construct the hyper graph H = (attr(R), R) to represent the set of relations

in the RLIV. Let S ⊆R be the set of relations used in the join sequence of the

query generated by the subquery algorithm and let C = R – S.

Without loss of generality, let S = {S1,…,Sm}. The algorithm expands each

edge S of using the fds in D. In particular, at each step of the addEdges(G,S, F) if Si

∩ Sj → W exists in D, the attributes in W are added to both Si and Si. The process

continues until the expansion is complete. At this point, we have generated the

hypergraph H*
S,D. Since the algorithm doesn’t stop until every connected component

of G intersects with only one edge of H*
S,D, S is an D –fd-hinge.

Since [R] holds and S’ is an Fd-Hinge of R, [S] holds by the result of

Miller (1992). □

Theorem 3 shows that if the relations for a given RLIV satisfy the universal

relation principle, then the subquery generated for the RLIV will have a lossless join.

Meanwhile, Theorem 2 shows that if subqueries possess a lossless join sequence and

the set of RLIVs have the potential to generate a lossless join the framework query

algorithm will generate a lossless join. The result is that the two algorithms will

generate a lossless join whenever possible.

Conclusions and thoughts on future work are presented in the next chapter.

181

CHAPTER 6. CONCLUSION AND FUTURE WORK

In this dissertation, we have presented a spatial mediator model to support the

integration of heterogeneous data in the context of the geographic data domain. We

conclude with a brief description of our model in this chapter. We also discuss our

future research work that will expand on the model we presented here.

6.1 Conclusion

The key part of this research has been the development of a spatial mediator

for the GeoGrid environment. The spatial mediator has been designed to dynamically

respond to requests for geographic maps and related spatial data in a relational format.

We have developed the spatial mediator to support data source selection, creation of

geographic data manipulation operations and construction of query parameter vector

sets used in the LIVs of the chosen data sources. There are three types of data the

spatial mediator can return, namely a map, a set of spatial data and an integrated

spatial object merged with a map and set of spatial data. The correctness of the model

was evaluated.

We now conclude our work with the contributions of our model:

182

1. We define a weighted ontology search model to help user application

designers use domain terms to access data from multiple heterogeneous spatial

data sources.

2. We combine the weighted ontology with the semantic data model to further

release the burden of dealing with system heterogeneity from

users/applications.

3. We propose algorithms that allow the map mediator to examine the quality of

spatial objects that can fulfill requests from users/applications. Our

contribution comes from ways in which we determine the parameters and the

weights in the quality measure.

6.2 Future work

Our spatial mediator is supported by an ontology based search module. We

introduce a weighted ontology that allows users to access data by domain query.

Future work will include the function ontology in our spatial mediator model. This

function ontology can enrich a search by providing necessary information and more

search terms. Another future consideration for using the weighted ontology in the

spatial mediator will be to add questions to the registration process about the nature of

the way a user application will use concepts. By doing that, the weights will be able

to reflect the application needs more closely than our current static model can.

183

Finally, we will look at relaxing the restriction that the nonmap data is relational. In

particular we will look at the use of the SNO structure for object and semi-structured

data in addition to relational data.

184

APPENDIX A. Summary of registration data

Table a.1. Registration data for user node

User node Id Id of the user

Owner Information of the owner

Date Registration date

Application type The application type running on the user node

Device type Type of device, e.g. mobile device or note pc

Screen code This field specifies the type of request and the capability of

the device display. Different values indicates different

capabilities:

1. is a map request without panning functionality

2. is a map request with panning functionality

3. is relation request

4. is a merged request with panning functionality

Device Display Size Size of the display

Preference Selection Select category of quality attribute which is critical,

important, non-important

Table a.2. Registration data for MLIV

MLIV Id Id of the MLIV

Data Source ID Id of the data source that provides this

MLIV

Date Registration date

BBX Bounding box

Theme Theme of the map

Symbolic term An identifying term

Geographic Quality completeness Attribute completeness

resolution Attribute resolution

mapType Attribute mapType

Positional Accuracy Attribute Positional Accuracy

reliability Reliability

accesssibility

185

Table a.3. Registration data for RLIV

RLIV Id Id of RLIV

Date Registration date

Relation Scheme The relation schemes of all relations inside the

RLIV, include relation names, attributes names,

attribute types, key attributes.

Join attribute The attributes in the join condition with other

RLIVs and the joining RLIV’s name

Table a.4. Registration data for data source

DS id Id of the data sources

Owner Information of owner

Date Registration date

LIVs provided List of MLIVs and/or RLIVs provided

Reliability The degree of the reliability of the node

Table a.5. Registration data for tool node

Tool node Id Id of the tool node

Owner Information of the owner

Date Registration date

Tool Type Type of the tool,

Tool Name Name of the tool, e.g. mosaic, crop

IP address IP address of the tool node

186

 APPENDIX B. Rule set

Rule Sets:
� The first part of the rule set is used in the quality ranking model.
� The second part of the rule set is used in the scoring function model.

Each rule Rule ij corresponds to the jth rule for each parameter i in the
ranking function. Some of the forms use simpler versions. The values x, y
and z are values in the tables.

Rules for parameter completeness, com:

Rule10: IF R.com <= L.com THEN com = 1.0;
Rule11: IF R.com = x and L.com = y THEN com = z;

Parameter file has the following pre-existing rules:

IF fileType = JPG THEN mapType = lossyRaster;
IF fileType = TIFF THEN mapType = raster;
IF fileType = GeoTIFF THEN mapType = raster;
IF fileType = DEM THEN mapType = raster;
IF fileType = DLG THEN mapType = vector;
IF fileType = VPE THEN mapType = vector;
IF fileType = SHAPE THEN mapType = vector;

Rules for parameter file, file:

Rule20: IF R.file = L.file THEN file = 1.0;
Rule21: IF R.file= x and L.file = yTHEN file = z;

Rules for parameter positional accuracy, pos:

Rule30: IF R.pos => L.pos THEN com = 1.0;
Rule31: IF R.pos = x and L.pos = y THEN pos = z;

Rules for parameter reliability, rel:

Rule50: IF R.rel =< L.rel THEN rel = 1.0;
Rule51: IF R.rel = x and L.rel = y THEN rel = z;

187

Rules for parameter resolution, res:

Rule60: IF R.res = L.res THEN res = 1.0;
Rule61: IF R.res = x and L.res = y THEN res = z;

Rules for parameter resolution, access:
Rule70: IF R.access = L.access = THEN access = 1.0;
Rule71: IF R.access = x and L.access = y THEN access = z;

Rules for scoring function model:

Rule80: if req.compleness = i and MLIV.completeness = j then Si
res = b * m;

Rule90: if req.mapType = i and MLIV.mapType = j then Si
file = b* m ;.

Rule100: if req.positionalAccuracy = i and MLIV.positionalAccuracy = j then Si
pos = b *m;

Rule200: if req.reliability = i and MLIV.reliability =j then Si
rel = b * m ;.

Rule300: if req.resolution = i and MLIV.resolution = j then Si
res = b * m;

Rule400: if req.accessibility = i and MLIV.accessibility = j then Si
access = b * m;

188

APPENDIX C. Equivalence class comparison for the

parameters

parameter com value

1 3

0.9 2

0.8 1

parameter com

MLIVs in map script best available MLIVs

request 1 3 3

request 2 3 3

request 3 2 3

request 4 3 3

request 5 3 3

request 6 2.5 2.6

request 7 3 3

request 8 3 3

request 9 3 3

request 10 2 2.3

request 11 2 2

request 12 2.5 2.66

parameter pos value

0.01 3

0.02 2

0.03 1

Table c.1 equivalence class comparison for the parameter com

Table c.2 equivalence class comparison for the parameter com

Table c.3 equivalence class comparison for the parameter pos

189

 parameter pos

MLIVs in map

script

best available

MLIVs

request 1 2 3

request 2 3 3

request 3 3 3

request 4 2 2

request 5 2.5 3

request 6 3 3

request 7 3 3

request 8 3 3

request 9 2.5 2.5

request 10 3 3

request 11 2.5 3

request 12 2.5 2.66

parameter rel value

1 3

0.9 2

0.8 1

parameter res value

1 5

5 4

10 3

25 2

100 1

Table c.4 equivalence class comparison for the parameter pos

Table c.5 equivalence class comparison for the parameter rel

Table c.6 equivalence class comparison for the parameter res

190

 parameter rel

MLIVs in map

script

best available

MLIVs

request 1 3 3

request 2 3 3

request 3 2.5 3

request 4 2.5 2.5

request 5 3 3

request 6 2 2.33

request 7 2 3

request 8 3 3

request 9 3 3

request 10 2.5 2.5

request 11 3 3

request 12 3 3

 parameter res

MLIVs in map

script

best available

MLIVs

request 1 3 5

request 2 5 5

request 3 1 5

request 4 5 5

request 5 5 5

request 6 5 5

request 7 5 5

request 8 5 5

request 9 5 5

request 10 5 5

request 11 4 4

request 12 5 5

Table c.7 equivalence class comparison for the parameter rel

Table c.8 equivalence class comparison for the parameter res

191

 parameter access

 MLIVs in map script best available MLIVs

request 1 4 4

request 2 4 4

request 3 4 4

request 4 3 3.5

request 5 4 4

request 6 3 3.67

request 7 4 4

request 8 2.5 3.67

request 9 2.5 3.67

request 10 3 3.33

request 11 4 4

request 12 4 4

parameter access value

5 4

10 3

25 2

45 1

Table c.10 equivalence class comparison for the parameter access

Table c.9 equivalence class comparison for the parameter access

192

BIBLIOGRAPHY

Athanasiadis, I. N. and Janssen, S. (2008). Semantic mediation for environmental

model components integration. Information Technologies in Environmental

Engineering, 1, 3-11.

Baglioni, M., Masserotti, V., Renso, C., and Spinsanti, L. (2007). Building geospatial

ontologies from geographical databases. In Proceeding of the 2nd International

Conference, GeoS 2007, Mexico City, Mexico, 195-209.

Berge, C. (1973). Graphs and Hypergraphs. North-Holland, Amsterdam.

Bergamaschi, S., Castano, S., and Vincini, M. (1999). Semantic integration of

semistructured and structured data sources. SIGMOD Record, 28(1), 54-59.

Brewster, C. and O'Hara, K. (2004). Knowledge representation with ontologies: the

present and future. IEEE Intelligent Systems, 19(1), 72-81.

Boucelma, O. and Colonna, F. (2004). Mediation for online geoservices. In

Proceedings of the 4th International Workshop on Web and Wireless GIS,

112-119.

Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., and Racioppa, S. (2008).

Ontology-based information extraction and integration from heterogeneous

data sources. International Journal of Human-Computer Studies, 66(11),

759-788.

Burrough, P. and McDonnell, R., (1998)Principles of Geographical Information

Systems. New York, Oxford University Press,

Castano, S., Ferrara, A., Montanelli, S., and Zucchelli, D. (2003). HELIOS: a general

framework for ontology-based knowledge sharing and evolution in P2P

systems. In Proceedings of the 14th International Workshop on Database and

Expert Systems Applications, 597–603.

CEN/TC287/WG02. (1995). Geographic Information - Data Description - Quality.

1995-1-24, European Committee for Standardisation.

Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,

Ullman, J., et al. (1994). The TSIMMIS project: Integration of heterogeneous

information sources. In Proceedings of the 10th meeting of the information

processing society of Japan (IPSJ), 7–18.
Clark, K. (2001)Analytical and Computer Cartography. 2nd ed. Upper Saddle River,

NJ: Prentice Hall.

Comibra, A., (2009).Geographic Data Integration to Support Web GIS Development.
In Proceedings of the International Conference on Management of Emergent
Digital EcoSystems, ACM MEDES,Oct. 27-30.

193

Cote, R., Jones, P., Apweiler, R. and Hermjakob, H.(2006)The ontology lookup

service, a lightweight cross-platform tool for controlled vocabulary queries.
BMC Bioinformatics. Feb 28; 7(1):7-97.

Cruz, I. and Calnan, P. (2002). Object interoperability for geospatial applications: a
case study. The Emerging Semantic Web, IOS Press, 281-295.

Cui, G.Y., Lu, Q., Li, W.J., and Chen, Y.R. (2009). Automatic acquisition for

ontology construction. In the 22nd International Conference on the Computer

Processing of Oriental Languages (ICCPOL2009), Hong Kong, 248-259.

Davis, B. (2001). GIS: A Visual Approach. Onword Press, Santa Fe, NM.

Devillers, R., Bedard, Y., and Jeansoulin, R. (2005). Multidimensional management

of geospatial data quality information for its dynamic use within GIS.

Photogrammetric Engineering and Remote Sensing, 71(2), 205-216.

Devillers, R., Bedard, Y., Jeansoulin, R. and Moulin, B. (2007). Towards spatial data

quality information analysis tools for exports assessing the fitness for use of

spatial data. International Journal of Geographical Information Science. Vol.

21, No. 3, March, 261-282.

Essid, M., Colonna, F., Boucelma, O., and Betari, A. (2006). Querying mediated

geographic data sources. EDBT 2006, LNCS 3896, 1176-1181.

Fan, H. and Poulovassilis, A. (2003). Using automed metadata in data warehousing

environments. DOLAP ’03 Proceedings of the 6th ACM International

Workshop on Data Warehousing and OLAP, New Orleans, Louisiana, 86-93.

Gervais, E., Liu, H. Nussbaum, D., Roh, Y., Sack, J. and Yi, J. (2007)Intelligent Map

Agents — An Ubiquitous Personalized GIS. ISPRS Journal of

Photogrammetry and Remote Sensing Vol. 62, Issue 5, October, 347-365.

Ghulam, A. (2010). A Framework for Creating Global Schema Using Global Views

from Distributed Heterogeneous Relational Databases in Multidatabase

System. Global Journal of computer Science and Technology, Vol. 10, Issue 1,

Apl. 2010, 31-34.

Golfarelli, M. and Rizzi, S. (1998). A methodological framework for data warehouse

design. In Proc. DOLAP ’98 Proceedings of the 1st ACM International

Workshop on Data Warehousing and OLAP, 3-9.

Goodchild, F., Fu, P., and Rich, P. (2007). Sharing geographic information: an

assessment of the geospatial one-stop. Annals of the Association of American

Geographers, 97(2), 250-266.

Gruber, T. R. (1993). A translation approach to portable ontologies. Knowledge

Acquisition, 5(2),199-220.

194

Guarino, N., Oberle, D., and Staab, S. (2009). What is an ontology? Handbook on

Ontologies, International Handbooks on Information Systems,

Springer-Verlag Berlin Heidelberg, 1-17.

Gupta, A., Marciano, R., Zaslavsky, I., and Baru, C. (1999). Integrating GIS and

imagery through XML-based information mediation. In P. Agouris and A.

Stefanidis (Eds). Integrated Spatial Databases: Digital Images and GIS,

Lecture Notes in Computer Scienc, LNCS 1737, 211-234.

Gupta, A., Zaslavsky, I., and Marciano, R. (2000). Generating query evaluation plans

within a spatial mediation framework. Proceedings of the 9th International

Symposium on Spatial Data Handling.120-128.

Guttman, A. (1984). R-Trees A Dynamic Index Structure for Spatial Searching. In

Proceeding of ACM SIGMOD Internatinal Conf on Management of Data,

47-57.

Gyssens, M. and Paredaens, J.(1984). A decomposition methodology for cyclic

databases, Adv. Database Theory 2. 85-122.

Hammer, J. and Pluempitiwiriyawej, C. (2001). Overview of the integration wizard

project for querying and managing semistructured data in heterogeneous

sources. In Proceedings of the 5th National Computer Science and Engineering

Conference (NCSEC 2001), Chiang Mai University, Chiang Mai, Thailand.

Hariharan, R., Shmueli-Scheuer, M., Li,C. and Mehrotra, S.(2005). Quality-driven

approximate methods for integrating GIS data. In GIS '05 Proceedings of the

13th annual ACM international workshop on Geographic information systems.

97-104.

Heywood, I., Comelius, S.,Carver, S. (2006). An Introduction to Geographical

Information Systems. London, Pearson Prentice Hall.

Hribernik, K.; Kramer, C.; Hans, C.; Thoben, K.-D. (2010). A Semantic Mediator for

Data Integration in Autonomous Logistics Processes. Enterprise

Interoperability IV. Making the Internet of the Future for the Future of

Enterprise, Springer, London, 157-167.

ISO (2003). Geographic information – Metadata. ISO 19115:2003, International

Organization for Standardization.

ISO(2002). Geographic Information – Quality Principles, ISO/TC 211, 19113:2002,

International Organization for Standardization.

Janowicz, K., Schade, S., Boring, A., Kebler, C., Maue, P. and Stasch, C. (2010).

Semantic Enablement for Spatial Data Infrastructures. Transactions in GIS.

14(2), 111-129.

Juran, J.M., Gryna, F.M.J. and Bingham, R.S. (1974). Quality Control Handbook.

(New York) McGraw-Hill.

195

Kim, W. and Seo, J. (1991). Classifying schematic and data heterogeneity in

multidatabase systems. IEEE Computer. 24(12), 12–18.

Lassoued, Y., Essid, M., Boucelma, O., and Quafafou, M. (2007). Quality-driven

mediation for geographic data. In Proceeding of 5th International Workshop on

Quality in Databases. 27-38.

Lee, Y., Strong, D. Kahn, B. and Wang, R. (2002). AIMQ: a methodology for

information quality assessment. Information & Management Vol.40, 133-146.

Lim, J. Wu, J. Singh, S. and Narashimhalu, D. (2001). Learning similarity matching

in multimedia content-based retrieval. IEEE Transaction on Knowledge and

Data Engineering. Vol. 13, No. 5. 846-850.

Ludascher, B., Papakonstantinou, Y., and Velikhov, P.(1999). A framework for

navigation-driven lazy mediators. In ACM Workshop on the Web and

Database.22-28.

Mena, E.V., Kashyap, A., Illarramendi, A., and Sheth, A. (1998). Domain specific

ontologies for semantic information brokering on the global information

infrastructure. International Conference of Formal Ontologies in Information

Systems (FIOS’98). Trento, Italy.54-88.

Michalowski, M., Ambite, J., Thakkar, S., Tuchinda, R., Knoblock, C., and Minton, S.

(2004). Retrieving and semantically integrating heterogeneous data from the

web. IEEE Intelligent Systems, 19(3), 72-79.

Miller, L. (1992) Generating hings from arbitrary subhypergraphs. Information

Processing Letters. Vol. 41, 307-312.

Miller, L. Yu, X. and Nilakana, S., (2002). Integration of relational databases and

record-based legacy systems for populating data warehouses. In Proceedings

of the Hawaii International Conference on System Science.3033-3041.

Miller, L., Bing Z., Ming, H., and Nusser, S. (2004). Supporting a virtual office

environment for federal agency field operations. The 3rd International

Conference on Politics and Information Systems: Technologies and

Applications (PISTA '04), Orlando, FL. 84-88.

Miller, L., Yu, X., and Nilakanta, S. (2002). Integration of databases and record-based

legacy systems for populating data warehouses. The 35th Hawaii International

Conference on System Sciences. 8, 3033 – 3041.

Miller, L., Ming, H., Tsai, H., Wemhoff, B. and Nusser, S. (2007). Supporting

Geographic Data in the Mobil Computing Environment. In proceedings of

Parallel and Distributed Computing Systems (PDCS-2007), ISCA 20th Int'l.

Conf. Sept. Las Vegas, Nevada, 24-26.

196

Miller, L., Nikhil Sathe, Ming, H., Dhigha Sekaran, Nusser, S., and Pheishang Zhao.

(2001). An infrastructure for delivering geospatial data to field users. The

IASTED International Conference on Parallel and Distributed Computing and

Systems. Anaheim, CA.

Ming, H. (2006). A Computation Infrastructure to Support Field Users. Creative

compont, Iowa State University.

Morrison,A., Morrison, J., Muehrche,P., Kimerling,P., Guptill, S. (1995). Elements of

Cartography. Canada, John Wisley & Sons.

Moulton, A., Madnick, S.E., and Siegel, M. (2002). Context interchange mediation

for semantic interoperability and dynamic integration of autonomous

information sources in the fixed income securities industry. MIT Sloan

Working Paper No. 4404-02.

Mountrakis, G. Stefanidis, A. Schlaisich, I. and Agouris, P. Supporting quality-based

image retrieval through user preference learning. Photogrammetric

Engineering and Remote Sensing, Vol. 70, No. 8. 973-981.

Moussaoui, S., Guerroumi, M. and Badache, N. (2006). Data Replication in Mobile

Ad Hoc Networks. Lecture Notes in Computer Science (LNCS), 4325,685-697.

NSSDA(1998). Using the National Standard for Spatial Data Accuracy to Measure

and Report Geographic Data Quality. Positional Accuracy Handbook.19-42.

Neches, R., Fikes, E. , Finin, T., Gruber, R., Senator, T. and Swartout, R.(1991).

Enabling technology for knowledge sharing, AI Magazine, 12(3), 36-56.

NJOIT (2010). State of New Jersey Composite of Parcels Data, New Jersey State

Plane NAD83 and MOD-IV Tax List Search Database. New Jersey Office of

Information Technology (NJOIT), Office of Geographic Information Systems

(OGIS)

Nusser, S., Miller,L., Clarke, K.and Goodchild, M.(2003). Geospatial IT for Mobile

Field Data Collection. Communications of the ACM. Vol. 46. No. 1. 45-46.

O’Brien, J and Gahegan, M. (2005) A knowledge framework for representing,

manipulating and reasoning with geographic semantics, in P.F. Fish (Ed.),

Developments in Spatial Data Handling 11th International Symposium on

Spatial Data Handling, 585 – 598.
Owrang, M. and Miller, L.(1998) Query Translation Based on Hypergraph Models.

The computer Journal, Vol. 31, no. 2. 155-164.

Park, J. and Ram, S. (2004). Information systems interoperability: What lies beneath?
ACM Transactions on Information Systems (TOIS), 22(4), 595-632.

Peachavanish, P. and Karimi, H. (2007). Ontological engineering for interpreting

geospatial queries. Transactions in GIS. 11(1), (Feb. 2007), 115–130.

197

Qu, S. (2003). An Infrastructure for Delivering Geospatial Data to Field users. Thesis,

Iowa State University.

Ram, S., Park, J., and Lee, D. (1999). Digital Libraries for the Next Millennium:

Challenges and Research Directions. ISF, Springer. 1(1), 75-94.

SEDAC(2008). Metadata: 2.Data Quality Information.

http://sedac.ciesin.columbia.edu/metedata/guide/dataqual.html. (7/22/2008)

CIESIN’s Guide to FGDC Compliant Metadata.

Seng, J. and Kong, I.L. (2009). A schema and ontology-aides intelligent information

integration. Expert Systems with Applications, 36, 10538-10550.

Smart, P., Jones, C., and Twaroch, F. (2010). Multi-source toponym data integration

and mediation for a meta-gazetteer services. GIScience 2010, LNCS 6292,

234-248.

Sowa, J. (2001). Knowledge representation: logical, philosophical, and computational

foundations. Computational Linguistics, 27(2), 286-294.

Stuchenschmidt, H., Visser, U., Schuster, G., and Vogele, T. (2002). Ontologies for

geographic information integration. Computers and Geosciences, 28 (1),

103-117.
Thakkar, S., Ambite, J.L., and Knoblock, C.A. (2003). Efficient execution of

recursive integration plans. Proc 2003 IJCAI Workshop on Information
Integration on the Web. 255-268.

Thakkar, S., Knoblock, C., and Ambite, J. (2007). Quality-driven geospatial data

integration. In Proceeding of the 15th International Symposium on Advances in

Geographic Information Systems, ACM GIS.44-49.

Tsai, H., Xu, J., Lin, S., and Miller, L. (2003). Incorporating entity and function

ontologies into the integration of heterogeneous, distributed data sources.

ISCA 18th International Conference on Computers and their

Applications.184-187.
Tsai, H., Miller, L., Ming, H., Wemhoffm, B., and Nusser, S. (2006). Combining

spatial data from multiple data sources. ISCA 19th International Conference on
Computer Applications in Industry and Engineering, 89-94.

Tsai, H., Miller, L., and Xu, J. (2001). Using ontologies to integrate domain specific

data sources. The 3rd International Conference on Information Reuse and

Integration (IRI-2001), 62-67.

Tuchinda, R., Thakkar, S., Gil, and Deelman. (2004). Artemis: Integrating scientific

data on the grid. IAAI Emerging Applications, 892-899.

UNBC GIS (2006). Mapbasics.

http://www.gis.unbc.ca/courses/geog205/lectures/mapbasics/index.php ,

7/27/2006. UNBC GIS LAB.

198

Vidal, V., Sacramento, E., Macedo, J., and Casanova, M. (2009). An ontology-based

framework for geographic data integration. ER 2009 Workshop, LNCS 5833,

337-346.

Visser, U., Stuckenschmidt, H., Schuster, G., and Vogele, T. (2002). Ontologies for

geographic information processing. Computer and Geosciences, 28(1),

103-117.

Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,

and Hubner, S. (2001). Ontology-based integration of information – a survey

of existing approaches. Workshop on Ontologies and Information Sharing,

108-117.

Wang, R. and Strong, D. (1996). Beyond Accuracy: what data quality means to data

consumers. Journal of Management Information Systems. Vol. 12 (4). 5-34.

Weng, S., Tsai, H.J., Liu, S., and Hsu, C. (2006). Ontology construction for

information classification. Expert Systems with Applications, 31(1), 1-12.

Wiederhold, G. (1992). Mediators in the architecture of future information systems.

IEEE Computer, 25(3), 38-49.

Wu, L., Miller, L. and Nilakanta, S. (2001). Design of data warehouses using

metadata. Information and Software Technology, 43, 109-119.

Yen, C. H. and Miller, L.L., (1995). An extensible view system for multidatabase

integration and interoperation. Integrated Computer-Aided Engineering, 2(2),

97-123.

Yen, C. H., Miller, L. L., Sirjani, A. and Tenner, J. (1998). Extending the

object-relational interface to support an extensible view system for

multidatabase integration and interoperation. International Journal of

Computer Systems Science and Engineering, 13(4), 227-240.

Yen, C. H., Miller, L. L. and Pakzad, S. H. (1994). The design and implementation of

the zeus view system. Hawaiian International Conference on Systems Science,

206-215.

Zaslavsky, H., Baru, I., Bhatia , C., Memon , A., Velikhov , P. and Veytser, V. (2003)

Grid-enabled mediation services for geospatial information. In Proceedings of

Workshop on Next Generation Geospatial Information. 35-37.

Zaslavsky, H., Tran, J., Martone, E. and Gupta, A. (2004) Integrating Brain Data

Spatially: Spatial Data Infrastructure and Atlas Environment for Online

Federation and Analysis of Brain Images , Biological Data Management

Workshop (BIDM 2004) in conjunction with 15th International Workshop on

Database and Expert Systems Applications (DEXA'04), Zaragosa, Spain,

Aug/Sept. 389-393.

199

Zou,B. Integrating Mobile computing into Fixed Network. Thesis. Iowa State

University.

200

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to those who helped me with

various aspects during the process of the research and the writing of this thesis. First

and foremost, I would like to express my gratitude to my major professor, Dr. Leslie

Miller, for his patience, encouragement, valuable suggestions and guidance

throughout my graduate career. This dissertation would not have been possible

without his support and guidance. I would also like to thank the committee members

for their efforts and contributions to this work: Dr. Shashi Gadia, Dr. Sree Nilakanta,

Dr. Wallapak Tavanapong and Dr. Johnny Wong.

I would also like to thank all the members of Dr. Miller’s research group for

their advice and assistance during the course of my research. I especially want to

thank Ming Hua for his long term support and work on implementation, Becca

Wemhoff for her insightful discussion and the preparation of data set, Sheng Qu for

his support and assistance.

Finally, I want to thank my family: my husband, Shang-Chi Gong, and my

children, Ryan and Stephanie, for their love, encouragement, patience and support.

	2011
	A spatial mediator model for integrating heterogeneous spatial data
	Hsine-jen Tsai
	Recommended Citation

	Microsoft Word - $ASQ113521_supp_undefined_7EC8B5CE-E062-11E0-8E63-7255F0E6BF1D.docx

