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ABSTRACT 

As service oriented architectures have become more widespread in industry, many 

complex web services are assembled using independently developed modular services 

from different vendors. Although the functionalities of the composite web services are 

ensured during the composition process, the non-functional requirements (NFRs) are 

often ignored in this process. Since quality of services plays a more and more important 

role in modern service-based systems, there is a growing need for effective approaches to 

verifying that a composite web service not only offers the required functionality but also 

satisfies the desired NFRs.  

Current approaches to verifying NFRs of composite services (as opposed to 

individual services) remain largely ad-hoc and informal in nature. This is especially 

problematic for high-assurance composite web services. High-assurance composite web 

services are those composite web services with special concern on critical NFRs such as 

security, safety and reliability. Examples of such applications include traffic control, 

medical decision support and the coordinated response systems for civil emergencies. 

The latter serves to motivate and illustrate the work described here.   

In this dissertation we develop techniques for ensuring that a composite service 

meets the user-specified NFRs expressible as hard constraints, e.g., “the messages of 
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particular operations must be authenticated.” We introduce an automata-based framework 

for verifying that a composite service satisfies the desired NFRs based on the known 

guarantees regarding the non-functional properties of the component services.  This 

automata-based model is able to represent NFRs that are hard, quantitative constraints on 

the composite web services. This model addresses two issues previously not handled in 

the modeling and verification of NFRs for composite web services: (1) the scope of the 

NFRs and (2) consistency checking of multiple NFRs.  

A scope of a NFR on a web service composition is the effective range of the NFR 

on the sub-workflows and modular services of the web service composition. It allows 

more precise description of a NFR constraint and more efficient verification. When 

multiple NFRs exist and overlap in their scopes, consistency checking is necessary to 

avoid wasted verification efforts on conflicting constraints. The approach presented here 

captures scope information in the model and uses it to check the consistency of multiple 

NFRs prior to the static verification of web service compositions. We illustrate how our 

approach can be used to verify security requirements for an Emergency Management 

System.   

We then focus on families of highly-customizable, composed web services where 

repeated verification of similar sets of NFRs can waste computation resources. We 

introduce a new approach to extend software product line engineering techniques to the 

web service composition domain. The resulting technique uses a partitioning similar to 

that between domain engineering and application engineering in the product-line context. 

It specifies the options that the user can select and constructs the resulting web service 
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compositions. By first creating a web-service composition search space that satisfies the 

common requirements and then querying the search space as the user makes 

customization decisions, the technique provides a more efficient way to verify 

customizable web services.   A decision model, illustrated with examples from the 

emergency-response application, is created to interact with the customers and ensure the 

consistency of their specifications. The capability to reuse the composition search space 

is shown to improve the quality of the composite services and reduce the cost of re-

verifying the same compositions.  By distinguishing the commonalities and the 

variabilities of the web services, we divide the web composition into two stages: the 

preparation stage (to construct all commonalities) and the customization stage (to choose 

optional and alternative features). We thus draw most of the computation overhead into 

the first stage during the design in order to enable improved runtime efficiency during the 

second stage.  

A simulation platform was constructed to conduct experiments on the two 

verification approaches and three strategies introduced in this dissertation.  The results of 

these experiments were analyzed to show the advantage of our automaton-based model in 

its verification efficiency with scoping information. We have shown how to choose the 

most efficient verification strategy from the three strategies of verifying multiple NFRs 

introduced in this dissertation under different circumstances. The results indicate that the 

software product line approach has significant efficiency improvement over traditional 

on-demand verification for highly customizable web service compositions.   
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CHAPTER 1.   INTRODUCTION 

As service oriented architectures gain more popularity in industry, most existing 

practical mechanisms for synthesizing composite services have been deployed taking into 

consideration their desired functional requirements [14][28].  Functional requirements 

(FRs) describe how a system should behave during operation, while non-functional 

requirements (NFRs) describe constraints on the quality attributes of the system’s 

operation [13].  NFRs can be broadly classified as soft and hard constraints. A constraint 

is a restriction on the degree of freedom in developing a software system [1]. Hard 

constraints refer to the NFRs that must be satisfied by a composite service, while soft 

constraints deal with user preferences and trade-offs among NFRs [13]. The soft 

constraints can only be satisficed, and sometimes the values for a soft constraint can be 

only partially ordered [52]. Our research focuses on hard constraints and quantifiable 

NFRs (i.e., quality of service (QoS) attributes). Assurance of NFRs in our research means 

the satisfaction and fulfillment of all the hard constraints specified as NFRs in the 

composed web services. 

In contrast to modeling techniques for functional requirements which are well-

developed, most of the non-functional requirements for composite web services can still 

be represented only on the modular service level rather than over the entire composition. 

The desire for a non-functional requirements model and verification method for 
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composite web services has never been fulfilled, since existing approaches to modeling 

and verifying non-functional requirements for composite web services are limited either 

in their representational power or their verification efficiency. Commercialized models 

[63] for non-functional requirements typically use simple logics that are easy to use and 

verify, such as WS-Security etc.  The techniques proposed in research work [14][28] are 

more complex and advanced in their representational power, but less efficient for 

industrial use.   

We identified two issues in non-functional requirements modeling for composed 

web services that can improve the modeling and efficient verification of NFRs: (1) 

scoping of non-functional requirements constraints and (2) consistency checking for 

multiple NFRs. A scope of a NFR constraint on a web service composition is the 

effective range of the NFR constraint on the sub-workflows and modular services of the 

web service composition. It allows more precise description of a NFR constraint. When 

multiple NFRs constraints exist and overlap in their scopes, a consistency check is 

necessary to avoid wasting verification resources on conflicting constraints. In order to 

precisely define the scope of our research, in this dissertation we mainly focus on the 

quality of service (QoS) in NFR.  

Accordingly, our research is to develop an automata-based model to represent 

QoS constraints for composite web services, such as security, that takes the following 

two problems into consideration: 

1. The ability to represent the scoping information of the constraints 

2. The ability to conduct the consistency checking of multiple constraints.  
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To solve the above problems, we develop an algorithm to verify the QoS 

constraints within their scopes and introduce a strategy to handle consistency checking of 

multiple QoS constraints.  

As we can see, these two problems focus on how to verify a single QoS constraint 

on a web service composition (WSC) and how to verify multiple QoS constraints on a 

WSC. The next step was to focus on how to improve the constraint verification on 

multiple WSCs.  

In modern web industry, commercial web services often have a very large user 

base. How to customize these web services according to the users’ individual 

requirements becomes increasingly difficult as the number of users increases. One 

problem during composite web service deployment is the frequent requirements 

customization offered to, or desired by, the users. In order to customize a web service in a 

specific domain application (e.g., a travel agency service), FRs and NFRs may both vary 

somewhat among individuals. With existing methods of composing web services on FRs 

and NFRs [28][59], the repeated verification of the slight variations in the services tends 

to incur a heavy overhead.  Even with an efficient verification algorithm for newly 

composed services, there still is waste of computational resources from verifying the 

same set of customized requirements repeatedly when users make similar choices. For a 

specific domain, the verification results for the valid sets of the customizable user 

requirements can be reused for greater efficiency. To pursue the reusability of the 

composite web service verification results, the third problem we address is: 
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3. To extend product line engineering techniques to enable reuse of some 

verification results for highly-customizable web service compositions. The 

product line engineering techniques can distinguish which NFRs on the service 

compositions are shared among all users and which vary across different users. 

By identifying this separation, a reuse-oriented process can be designed for 

efficiently verifying the web service compositions. 

To summarize, our work is to introduce a non-functional requirements model that 

incorporates scope information and enables consistency checking among multiple NFRs, 

and a lower-overhead, product-line-based solution to generate verified web service 

compositions satisfying users’ customized requirements for composite web services.  

This chapter begins with the motivation and targets of our research, continues 

with a brief introduction of our solutions to the problems, and finally describes the 

contribution of this work. To solve our research problems, first, an automaton-based 

NFRs model for composite web service is introduced.  Then the verification algorithm of 

this NFRs model is presented. Three different strategies of verifying multiple NFRs are 

designed and compared to allow a more efficient verification process. To reuse the NFRs 

verification results across multiple WSCs, the software product-line based engineering 

process are extended into the web service composition verification domain.  

This chapter concludes by providing the outline of my dissertation and of its 

research contributions.  
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1.1 Automata-Based Verification of Security Requirements of 

Composite Web Services  

Our overall approach to assembling a composite service that satisfies both the 

functional and non-functional requirements (in the case of security related NFRs) is 

shown in Figure 1. The functional composition algorithm [45] uses a goal model in the 

form of an automaton to encode the user-specified FR. A composite service is 

represented as an automaton where states represent the component services participating 

in the composition and inter-state transitions represent composition of the corresponding 

component services.  The functional composition algorithm assembles a composite 

service that verifiably satisfies the FRs by exploring the space of candidate compositions.  

The focus of this chapter, however, is on verifying that a composite service 

assembled by the functional composition algorithm also satisfies the NFR. We use an 

automaton to represent the non-functional requirements of a composite service. Labels on 

transitions of the NFR automaton encode the set of non-functional constraints that are 

satisfied by the services that are connected by the respective transitions. 

A composite service is said to satisfy a given set of NFRs if and only if the 

sequence of properties over non-functional constraints represented by the NFR-automata 

is also realized by the automaton that encodes the composite service. A composite service 

conforming to desired NFRs is obtained by computing and verifying the product of the 

automaton representing the composite web service and the automaton representing the 

corresponding NFR. This lifts the NFRs analysis from the level of individual services to 
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the level of the search space of candidate compositions obtained from the functional 

requirements. 

 

Figure 1. Overview of non-functional requirements verification process for web 

service composition 
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The non-functional properties, e.g., security policies, of the component services 

are extracted from their WSDL specifications. A domain terminology mapping table is 

used to translate the user-specified NFR, e.g., “messages shall be highly-encrypted” into 

the terminology used in the WSDL specification (“messages must use standard 

Basic128Sha256 encryption algorithm with a 256-bit key”). 

The verification of a composite web service consists of two main parts, as shown 

in Figure 1. The first part is the functional composition of the component web services. 

This is prior work by Pathak, Basu and Honavar [45]. The goal model is an automaton 

constructed to model the functionalities of the required system. With the goal model as 

input, an iterative algorithm generates a composite web service that verifiably satisfies 

the functional requirements.  

The second part of the process, and the contribution of our work, is the 

verification of the security non-functional requirements, shown in the bottom half of the 

diagram. The security NFRs are modeled in an automaton-based model. The composite 

web service derived from the first step can then be verified against this security 

automaton. During the verification, the security policies of the service operations are 

pulled from the appropriate WSDL files. The domain terminology mapping table is used 

to translate the security policies into an algorithm-readable input and to provide the 

algorithm with the aggregation rules needed to handle security NFRs.  

It must be noted that the focus of this approach is on static verification of NFR. 

Verification of NFRs whose satisfaction is contingent on certain runtime constraints on 

the performance of the component services being met (e.g., whether an ambulance 
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reaches its destination in time to meet the response time NFR) that can only be 

dynamically verified at runtime are beyond the scope of this research. 

Chapter 4 will introduce this automaton-based NFRs model and its verification in 

detail. A case study of this approach on the Emergency Management System (EMS) is 

conducted as evaluation.  

The next section uses this NFRs model and verification techniques as 

fundamental work and introduce the verification process of multiple WSCs by extending 

software product line engineering concepts and techniques. 

1.2 Product-Line-Based Requirements Customization for Web Service 

Compositions 

The non-functional requirements are customizable for mass-user based web 

applications. Software product line engineering offers a way to reduce the on-demand 

user requirements verification on newly constructed composite web services [58]. 

Possibly customizable functional and non-functional requirements are organized into 

variabilities in a service product line. The functional and non-functional requirements are 

pre-verified for future use. The verification results are stored and reused when different 

customers need to verify the same web service compositions. This work improves the 

customization efficiency of domain-specific, mass-user based, customizable web services. 

By constructing a decision model [64][65], we can hide the complexity of domain and 

application knowledge from the user and give the user a trouble-free way of generating a 

customized web service. By distinguishing the commonalities and the variabilities of the 
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web services, we can successfully divide the web composition into two stages: the 

preparation stage (to construct all commonalities) and the customization stage (to set all 

variabilities).  

Figure 2 shows an overview of this product-line engineering based approach of 

verifying NFRs for multiple WSCs, which is described briefly here.  The steps are 

labeled in the figure with the number of the subsection that describes that step.   

Our approach contains two workflows, one for the web service product developer 

(shown at the top of the figure) and one for the user (shown at the bottom). This approach 

provides a two-stage process. From the point of view of product line development, the 

development process is divided into the domain engineering phase and the application 

engineering phase. From the point of view of web-service design, the process is divided 

into the preparation stage (before the construction of the search space) and the 

customization stage (after the construction of the search space).  

At the top half of the figure, i.e., the domain engineering phase, the developer 

performs a commonality and variability analysis (CVA) of the system requirements. The 

results of the CVA include a formalized specification of all the common and variable 

functional and non-functional properties. Each variability has some associated parameters 

to configure, called parameters of variation. Some of these parameters may have 

dependencies or tradeoffs with other parameters of variation [65]. We model the 

dependencies among variations in a variability dependency graph.  
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Each commonality and parameter of variation is also associated with a set of 

service compositions that satisfy them. We call this relation the mapping-relation. The 

results of the CVA are captured in a product-line decision model. Given the system 

requirements, the developer can identify the component web services that are relevant to 

the domain and the system.  

For the application engineering phase, the services retrieved from the service 

broker are composed according to the common functional requirements by means of a 

modified version of the goal model and a functional service composition algorithm from 

[44]. The algorithm outputs all possible service compositions that satisfy the common 

functional requirements.  By verifying all the compositions of this set against the 

common NFRs, we prune the composition set into a smaller set in which each 

composition satisfies all commonalities. This set serves as the composition search space 

for the variability, and we call it the commonality composition set (subset).  

In order to improve the verification efficiency for the runtime customization, we 

do an indexing on each parameter of variation mapping to a subset of the search space. A 

composition subset associates with a parameter of variation if and only if all 

compositions in this subset satisfy the variability set by this parameter.  The result of this 

preparation phase is the composition search space that is ready for runtime user 

customization. 
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Figure 2. Overview of approach 
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After implementation of the web services, the user can access a default web 

service with basic functionalities. The user can then customize the functionalities and 

non-functional properties by setting all the parameters of variation in the decision model. 

By interacting with the decision model, the input requirements from the user are always 

kept consistent through solving the constraints in the variability dependency graph.  The 

consistent specification of the variabilities is fed into a query algorithm to search valid 

compositions in the composition search space. The output of this algorithm is either the 

customized service composition satisfying all the requirements from the user or a report 

to the user of a failed composition attempt. 

Chapter 5 describes this software product-line based approach of NFRs 

verification for multiple WSCs in detail on the Emergency Management System (EMS) 

as a case study. 

The next section will summarize the contributions of our two new approaches.  

1.3 Contributions 

This research addresses the problem of NFR modeling and verification for web 

service composition. Existing NFR verification techniques of web service compositions 

are restricted in their efficiency and accuracy. For example, the context based NFR model 

[34][68] is verified by matching the keywords in the NFRs with those in the web service 

profiles and specifications. The drawbacks for context-based matching are limited 

efficiency of searches and inaccuracies in the key word identification. The axiom-based 

NFR models [47][59][69] require expert knowledge to build and verify the formal model 

of the NFR properties. There is a heavy initial overhead to build the NFR model. 
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Moreover, these solutions are not readily compatible with the existing functional web 

service composition approaches nor compatible with industry web service specifications 

such as WS-Policies and WS-Security.  

Thus, the industrial and academic world lacks a NFR modeling and verification 

solution that is accurate, efficient and compatible with existing functional web service 

composition techniques and industry web service specifications. Since industry uses web 

service compositions extensively, reuse-oriented optimizations in their verification 

process are advantageous.  

Our solution uses an automaton-based NFR model to represent quantitative QoS 

hard constraints with scoping information incorporated. An algorithm to verify that a 

proposed service composition satisfies the modeled NFRs is developed. Then, we 

propose three different strategies to verify multiple NFRs for a web service composition. 

The consistency among multiple NFRs thus can be checked prior to their verification. 

Efficiency and other advantages of these strategies are analyzed and compared with each 

other. We then focus on the process-oriented efficiency improvement in verifying 

multiple NFRs on multiple WSCs. We extend software product-line engineering 

techniques into web service composition and verification process to enable reuse of the 

verification results. 

The contributions of this work are: 

• Introducing an automaton-based NFR model which is able to represent 

quantitative QoS hard constraints for web service compositions.  
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• Incorporating scoping information into the NFR model for web service 

composition. 

• Enabling consistency checking of multiple NFR models prior to the 

verification of the NFRs. 

• Introducing an algorithm to verify that an NFR represented in an automaton 

model is satisfied in a web service composition, represented as an automaton 

model 

• Presenting three strategies for verifying multiple NFRs in a web service 

composition automaton and comparing their advantages and disadvantages 

under different circumstances. 

• Extending software product-line techniques to web service composition 

verification, to support reuse of intermediate verification results for verifying 

multiple NFRs on customizable web service compositions.  

• Calculating the complexity of the product-line-based requirements verification 

process for web service compositions to analyze the efficiency advantages of 

this approach. 

• Implementing a web service composition and verification simulation platform 

to simulate and evaluate the advantages of the two proposed approaches and 

the alternative verification strategies.   The simulation results are analyzed to 

support the contribution of the dissertation. 
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The introduction of the approaches, the details of the case study results, the 

experimental results and the contributions will be described in the reminder of this 

dissertation.   

1.4 Outline 

Chapter 2 introduces the background research and reviews the related work in 

service oriented architecture, web service composition, functionalities and non-functional 

requirements of the web service compositions, verification of web service compositions 

and software product line engineering techniques. We also identify the differences of our 

work from existing approaches. 

Chapter 3 describes a small system, the Emergency Management System (EMS), 

that we constructed based on [8], to illustrate the basic concepts and conduct case studies 

of our approaches.  

Chapter 4 details our NFRs modeling and verification methodology for single or 

multiple NFR(s) verification.  This approach introduces a semi-formal automaton-based 

NFRs model, which is capable of representing quantitative QoS hard constraints. Scoping 

information can be described along with the constraints for each NFR, which allows a 

precise definition of NFRs for a web service composition and a more efficient 

verification process. Three different strategies of verifying multiple NFRs are presented 

and compared for their advantages and disadvantages under different circumstances. 

Consistency checking is enabled by our NFRs model and considered in our verification to 

avoid wasting verification resources on inconsistent NFRs. 
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Chapter 5 introduces a new way to customize and verify composite web services 

by incorporating a software product-line engineering approach into web-service 

composition. The approach uses a partitioning similar to that between domain 

engineering and application engineering in the product-line context. It specifies the 

options that the user can select and constructs the resulting web-service compositions. By 

first creating a web-service composition search space that satisfies the common 

requirements and then querying the search space as the user selects values for the 

parameters of variation, we provide a more efficient way to customize web services.    

Chapter 6 presents the results of the simulation experiments for the above two 

approaches introduced in Chapter 4 and Chapter 5. The simulation data and their analyses 

support the expectations and the conclusions of the proposed approaches. 

Chapter 7 concludes the dissertation with a summary of our research contributions 

and directions for future work. 
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CHAPTER 2. RELATED RESEARCH 

Prior work relevant to our research can be roughly divided into three areas: 

service oriented architectures, non-functional requirements, and product-line engineering. 

Their backgrounds and sub-domains are briefly described in this section.  

Definition of Terms.  

Non-functional requirement (NFR): A requirement defines the constraints on 

how the software-to-be should satisfy its functional requirements or how it should be 

developed [62]. In our research, NFRs can be interpreted as a NFR constraint. 

Quality of service (QoS): QoS [24] refers to a set of quality requirements on the 

operation of a system, which can be considered as a subset of NFRs. In our research, we 

focus on the QoS requirements in the NFRs, so the NFRs constraints can be interpreted as 

QoS constraints.  

NFR/QoS Constraints: A constraint is a restriction on the degree of freedom in 

developing a software system [1]. NFRs constraints consist of the hard constraints that 

must be satisfied by the system and the soft constraints that can only be satisficed [13]. In 

our research, we focus on hard constraints, so the term NFR/QoS constraints can be 

interpreted as NFR/QoS hard constraints. 
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NFR/QoS Attribute: An attribute refers to one type of the quality requirements, 

such as security or reliability. A value can be assigned to an attribute. 

NFR/QoS Property:  In our research, a property means an attribute with a value 

assigned, such as “Encryption Strength =128 Bit”. 

Composition Structure Pattern: A composition structure pattern describes what 

structure the multiple modular services use to compose with each other [35], such as 

sequential composition or parallel composition. 

Aggregation Rule: The aggregation rule [24][69] defines the way of calculating a 

QoS property of a composite web service in each composition structure pattern, provided 

with the QoS properties of all modular services in the composition.  

2.1 Service Oriented Architecture 

Service-oriented architecture (SOA) is a group of software system design 

principles, which gains its popularity as the internet industry grows. SOA [41] is used in 

two software engineering phases: the system development phase and the system 

integration phase. SOA is a loosely-coupled software design pattern. SOA based system 

divides the functionalities into independent web services, which can be developed by 

different vendors and be distributed over the internet.  

The most widely used solutions for SOA based systems are REST 

(REpresentational State Transfer) architectural style and SOAP(Simple Object Access 

Protocol) style [37]. REST web service is used by Yahoo Twitter, and Flickr.  For SOAP 

based web service, Google is a primary supporter. Some IT companies, such as Amazon 
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and Ebay have implemented their web services in both REST and SOAP. As a 

comparison, REST based web service is easier to develop for the developers while SOAP 

based web service is easier to consume by the users.  Both REST and SOAP based web 

services can be described by WSDL 2.0 (Web Services Description Language), which 

allows the consumers of the web services to have a unified implementation entry. In our 

research, we use SOAP based web service and WSDL 1.1 files to apply our approach.  

Figure 3 shows the elements of SOA [29] in a tree structure. A web service 

consists of a service contract, the implementation of the service and the interface. The 

service contract defines the functionalities and non-functional properties that the service 

must provide to the service consumers. The contract defines the functionalities by service 

operations including methods, actions and parameters, and describes the invocation URL 

and interfaces. The contract defines the non-functional properties of the service as 

security constraints, quality of service, process, semantics and performance (in service 

level agreement). The implementation of service can be in either REST or SOAP 

architecture and consists of logics and data. The interface of the web service defines how 

and what the service consumers can access the service, which is usually described in 

WSDL file. Service providers publish and register their web services in service repository, 

which can be queried by the potential consumer. The Web service frontend is a wrapper, 

which allows the end users to access the functionality of the service as a standalone 

system. For example, a weather forecast web service’s front-end is like a webpage, where 

the end user can access it on the browser by submitting a location and a date. Another 
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Two types of web service composition mechanism are widely used: the 

orchestration-based composition and the choreography-based composition [14]. The 

orchestration-based composition assumes that there is a central transaction controller, the 

conductor, to describe the process flow among the component services and the service 

user. On the other hand, the choreography-based composition describes the message 

interaction of the component services without a central component to hold the entire 

conversation. In BPEL4WS, this is realized by automated execution of the service 

workflow.  In our work we concern choreography-based composition. 

From the composition time of the modular services, the web service composition 

can be classified into static composition and dynamic composition. Static composition 

approaches take the functional requirements and non-functional requirements as input to 

generate a composite web service from the modular service repository to satisfy the 

requirements. Then the composed web service is deployed on the server and starts taking 

requests from the users. The static composition approaches don’t consider the contents of 

the messages sent among the modular services at the service composition phase. On the 

other hand, the dynamic composition approaches may need to recompose itself upon 

different message received. In our research, we focus on static composition rather than 

dynamic composition.  

Niola Milanovic and Miroslaw Malek [35] identified six basic composition 

structure patterns in their work, represented in operators:  

1. Sequence  executes two or more services in a sequential order. 
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2. Choice ◊ executes two or more services in parallel, and then non-

deterministically chooses output of one and only one of them. 

3. Selection    selects one of the candidate services and executes it. 

4. Parallel with communication  executes two or more services concurrently, 

and then performs a logical operation on their outputs, and based on the 

operations results, chooses one of the outputs. 

5. Parallel without communication  executes two or more services concurrently, 

without any communication and synchronization between them. 

6. Loop   executes a service iteratively, until an exit condition is met. 

However, at the static composition stage, we cannot foresee the values in the 

messages, so “Choice”, “Parallel with communication” and “Parallel without 

communication” can only be taken as one composition pattern: parallel.  Thus, in our 

research of NFRs verification of static web service composition, we only consider two 

composition structure patterns: sequential and parallel. 

2.3 Non-Functional Requirements Monitoring in Web Services 

Requirements monitoring aims to assure satisfactory compliance of the 

requirements by inserting codes into running systems [17]. Manual updates are necessary 

when requirements violations occur in the system [17]. Later, a goal model based 

reconciliation method [16] is introduced to monitor requirements compliance, in order to 

handle the runtime system derivation from the original requirements. A system adapts to 



23 

a change of requirements by re-selecting the components, based on the options in the goal 

model. 

Robinson [49][50] extended the requirements compliance monitoring techniques 

to web services, allowing the web system to record statistics of compliance or observance 

of QoS requirements and other non-functional attributes for analysis purposes. He 

identifies scenarios and QoS attributes that can be monitored in a web service system, 

including Service Failure, Tardy Service (Delay), etc. In [50], Robinson uses web service 

monitoring techniques to ensure regulation of business behaviors, such as that an order 

for an item placed on Saturday must be shipped out by Monday. 

Industry solutions [51] for monitoring web service requirements take place in 

three application environments: development, quality assurance and production. The 

quality of service attributes that can be monitored include availability, performance 

(throughput and latency), stress test, reliability, scalability, integrity, and corrective 

measures. 

Research on monitoring requirements sets up the fundamentals for our research 

on adaptive maintenance of web service compositions, which allows us to obtain QoS 

information for each modular service in a composite web service for analysis and 

improvement purpose. Our approach is to assume the existing requirements monitoring 

mechanism and then build on it. 
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2.4 Verification of Web Service Compositions 

2.4.1 FRs and NFRs Models for Web Service Compositions 

Most existing web service composition and verification approaches [14] focus on 

satisfying the functional requirements. Some previous work has approached the problem 

of verifying NFRs in web service compositions from several different perspectives.  

Quantitative preference techniques [54] use utility theory to try to optimize the selection 

of web services. However, such techniques are restricted to NFRs that can be adequately 

represented in quantitative terms. Qualitative preference techniques [52][69] incorporate 

preference attributes but do not yet handle global nonfunctional constraints (that must 

hold over the entire composed service).  

Constraint satisfaction techniques [53] optimize based on preferences, but do not 

currently implement heuristics aimed at satisfying hard constraints. In addition, constraint 

satisfaction techniques require a specialized, distinct preference language. That is, the 

user must specify the FRs and NFRs using different representations.   

Other researchers [24][34][68][69] have also described NFRs in the context of 

Quality of Service (QoS). 

In general, verification of web service compositions, the functional/non-functional 

properties are commonly modeled in formatted context-based description [34][68], 

axioms (for theorem proving and mathematical methodologies) [47][69], LTL/CTL 

(temporal logic languages for model checking) [46] and state machines [18][24][45]. 
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Context-based property models can be verified by context-based matching, 

including syntactic matching and semantic matching, in order to ensure compliance of the 

composition to the functional and non-functional requirements [34][68]. The drawbacks 

for context-based matching are limited efficiency of searches and inaccuracies of key 

word identification.  

Axiom-based property models.  

Rao, Kungas and Matskin introduce a method for semantic web service 

composition based on Linear Logic theorem proving [47]. Zeng et al. [69] introduce 

optimizing preferences over NFRs based on utility functions in linear programming. 

However, the Linear Logic prover requires expert knowledge to construct property 

models. 

Temporal logic-based property models are commonly used in planning and model 

checking based web service composition [59]. The obvious obstacles are the state 

explosion problem during verification and assurance of consistency among the property 

models. 

Automata-based property models.  

Modeling NFRs as automata facilitates collaboration with other functional 

verification approaches. Foster, Uchitel, Magee and Kramer, e.g., describe a model-based 

approach (LTSA-WS) to verify composition implementations [18]. The automaton-based 

property model is extracted from the NFRs context. The verification mechanism is a trace 

equivalence check, which composes labeled transition systems (LTS) based on pre-
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constructed finite state process models. This research also shows that web service 

compositions modeled in the widely-used standard, BPEL4WS, can be translated into 

LTS in a finite domain.  

Pathak, Basu and Honavar [45] introduced a combined approach for both the 

functional and non-functional requirements during service composition. The functional 

requirements are modeled in a LTS-based goal model. During composing component 

services towards the goal model, a quantified NFRs threshold is also considered. 

However, its ability to handle NFRs is limited in that it only handles one NFR, these 

NFRs must be quantified, and the NFRs must have a global scope. 

Oster [43] shows how a single buffer can help find a substitute for a service 

component in an asynchronous service composition under functionality constraint. This 

analysis shows that two service components can have the same functionalities, and 

substitute for each other even when they have different message sequences, under an 

asynchronous composition environment. This work can be used as the basis for us to find 

functionality substitutes for a modular service.  This work is different from our work in 

the following way:  

1. We consider substitutes of QoS attributes of a modular service on a composition 

failure under QoS constraints, rather than in terms of functionality. 

2. Our approach guides the process of choosing an alternative modular service to 

satisfy the QoS constraint, rather than only doing the equivalence check of two 

modular services. 
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Nadkarni [38] introduces an iterative process to recover from functional failures 

of web services compositions at composition time. It suggests that the user change the 

goal service by providing feedback from the failure analysis. Rather than considering 

functional failures at the time of composition, our research considers non-functional 

failures caused by requirements evolution, after service deployment. This work can be 

integrated into our research in order to have a unified strategy to handle functional and 

non-functional failures of web service compositions. 

2.4.2 Verification of Security and Reliability Constraint   

Security in SOA consists of confidentiality, integrity, and availability attributes, 

which approves the authorized actions and denies unauthorized actions [3]. Raya et. al. 

identified vulnerabilities for web service security including jamming, forgery, in-transit 

tampering, impersonation, privacy violation and on-broad tampering [48].   In existing 

solutions, the security requirements and solutions for the messages of each service are 

modeled in WS-Security, which is described within the WS-Policy embedded in the 

WSDL file [63]. However, the specification of the security requirements exists only on 

the operation level, which means that the global security requirements have to be divided 

into the security requirements for each message exchange operation. A strategy to assure 

the global security requirements of the web service composition is security pattern match 

[66]. Security requirements are modeled in patterns, and the service composition is 

considered as a whole system being checked satisfactory of these patterns. Moreover, the 

security level check in the software architecture domain refers to the situation that a more 
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secured component depends on a less secured component in a composed system, which is 

called security level jeopardization [57].   

Another important aspect of the non-functional requirements of web service 

composition is service reliability. Active research work on service reliability includes the 

reliability analysis and prediction at the service composition stage. Foster [20] introduced 

a service behavior model to validate the composite web services to be free of deadlocks. 

To be able to predict and measure composite web service reliability, faults and failures 

are modeled and analyzed in their execution scenarios [2][67]. A transformation from 

BPEL to a petri-net model is also introduced to analyze the reliability of composed web 

services [70]. In [32], redundancy as a way to improve composite web service reliability 

is also discussed.  

2.5 Software Product Line Engineering in Web Service Composition 

Besides improvement of non-functional requirements verification efficiency in the 

representation and algorithm view, the on-demand verification overhead of composed 

web service can also be reduced or avoided from the process view. The introduction of 

product line engineering into the web service composition verification can avoid on-

demand verification overhead by doing pre-verification in the domain analysis stage and 

it can maximize reuse of verification results across different NFRs verifications and 

different service compositions. That is why software product line engineering (SPLE) can 

help to solve our problem.  

The SPLE process consists of two phases: a domain engineering phase and an 

application engineering phase. In order to simplify the product generation process and 
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hide the background complexity, a decision model is created during the domain 

engineering phase and reused during the application engineering phase. We here use the 

fully constructed decision model introduced in [65] with all its background relation 

models to generate verifiable compositions of customizable web service families. 

Several researchers have applied product line engineering (PLE) to the web 

service domain in different ways. Karam, Dascalu, Safa, Santina and Koteich, [27] 

incorporated PLE into web service-based applications (WSbWAs). The web applications 

benefited from the reconfigurable, reusable pages, workflows and web services 

(WebPads as composite web services). These supported the common artifacts of the web 

development domain and the particular aspects of the application in the domain. Their 

work focused on the reuse of functionalities during product evolution rather than on the 

NFRs of the web applications. 

Balzerani, Di Ruscio and Pierantonio [5] followed the FODA (Feature-Oriented 

Domain Analysis) [30] approach to SPLE to construct a reusability-oriented web 

application architecture. It took the bounded input parameters of the functional methods 

as variation points. New requests from the user were considered as different variation 

values for the product line to enable both design time reconfiguration and runtime 

reconfiguration. However, this work lacked a clear explanation of the domain 

engineering phase to distinguish the commonalities of the web applications from the 

variabilities. 

Capilla and Topaloglu [9] introduced a way of applying SPLE into web service 

composition. The authors identified types of variation points that can be used in a web 
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service based product line: the order of the composition in an orchestration composition, 

the flow conditions in a message path, the service alternatives, the exception handling 

possibilities and the quality of service choices. These types of variations served to 

customize web services during the design and implementation phases. 

Liu et. al. [31] introduced a state-based model to ensure the safety properties 

when a software product line evolves. This state-based model captures the feature 

interactions of the software product line by utilizing the fault tree analysis techniques.   
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CHAPTER 3. CASE STUDY: THE EMERGENCY 

MANAGEMENT SYSTEM 

To illustrate our approaches in case studies, we describe a web service 

dispatching system, the Emergency Management System (EMS), based on [8].  The key 

functional requirements of the EMS are to dispatch ambulance(s), fire truck(s) and police 

to a location upon request using available resources. The chapter begins with a section 

introducing real world EMSs and mishaps of these systems due to insufficient NFRs 

verifications. Then the next section describes the EMS used in our research in detail with 

the architecture design, functional requirements and non-functional requirements. 

3.1 EMS Examples 

EMS is a high-assurance system and a safety critical system [56], because failure 

to meet its functional (e.g., dispatch ambulance to an accident victim) or non-functional 

(e.g., keep patient information confidential) requirements can result in serious harm to 

people.  The reliability of the system, the availability of the services, the accuracy of 

resource allocation and the security of the communications are crucial to public safety. 

Various EMS (also called Incident Command System) implementations in existence 

include the Incident Command System of the U.S. Federal Emergency Management 
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Agency (FEMA) [7] and the National Incident Management System (NIMS) for major, 

multi-site incidents [42].   

• Many incidents in emergency management systems have historically been 

caused by incorrect request/dispatch information or insufficient non-

functional constraints verification. Two well-known examples are:  

1. London Ambulance System (LAS) Failure in 1992 [33]: Due to the poor 

design and implementation of new LAS, the performance and the dispatch 

delay wasn’t guaranteed. A massive delay in ambulance assigning wasn’t 

discovered in time, which leads to a maximum ambulance delay to 12 hours 

and patients’ death.  

2. Australian Emergency System Failure in 2006 [22][40]: A request to dispatch 

ambulance sent by the police department wasn’t delivered because of the 

firewall, which causes the ambulance dispatch delayed for a day and leads to 

the patient’s death. This incident was partially a result of insufficient delivery 

assurance verification of the service. 

The next section introduces the EMS built based on a real world incident 

management system and used in our research as a case study. 

3.2 Emergency Management System Case Study 

We constructed a small version of the Emergency Management System (EMS), 

based on [8], to illustrate the basic concepts of our approach. EMS consists of several 

different units: the Field Officer Service, the Request Dispatch Service (Dispatcher for 

short) and services for emergency handling, including an Ambulance Dispatch Service, a 
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Fire Station Dispatch Service and a Police Dispatch Service. The functional requirements 

are to dispatch ambulance(s), fire truck(s) and police to a location upon request. These 

requests are specified and sent by the Field Officer through a service in a mobile terminal 

or a PDA.  

The Dispatcher has three types: the normal dispatch service, which is responsible 

for routine situations; the speed-line dispatch service, which has low communication 

delay, compared to the normal dispatcher and is used for urgent dispatches; and the 

highly-secured dispatcher, which is used for national security related cases. The 

dispatcher service can also invoke a GPS-MAP service and other third party services. 

Figure 4 shows a sample structure for EMS service composition. The services connected 

by the dashed lines represent the optional services in a valid composition. In other words, 

we can call a automaton that represents all possible service composition functionalities as 

a service composition goal. An implementation of this composition goal may only have a 

subset of the elements in the composition goal. 

EMS is a critical software system because failure to meet its functional (e.g., 

dispatch ambulance to an accident victim) or non-functional requirements (e.g., keep 

patient information confidential) can have catastrophic consequences.  The reliability of 

the system, the availability of the services, the effectiveness of resource allocation and 

the security of communications are crucial to public safety. For example, messages in an 

EMS must be secured against malicious eavesdropping, interception and falsification 

before deployment. Hence, security NFRs for the EMS might require that the messages in 

different scenarios be sent at different encryption levels depending on the type of 
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emergency incident. For national security related incidents, messages and service 

operations may need to be protected with stronger encryption than in the case of civilian 

incidents. An example of a security NFRs for EMS is that a request to dispatch police 

shall be processed using highly-encrypted message paths.  

 

Figure 4. Sample composition for EMS 

Security guarantees for encryption and authentication of the messages for each 

service are typically specified using the web service security policy (WS-Security and 

WS-Policy) which is included in the WSDL specification for the service [63].  The 

security NFRs for the EMS, however, applies to the composite service which consists of 

the multiple component services that make up the EMS. This presents us with the 
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challenge of verifying that the security guarantees available for the individual component 

services that make up the composite service indeed satisfy the security NFRs of the 

composite service. For a composite web service, the security requirements can apply 

either globally (to all services in the composite web service) or locally (to more than one 

service operation but not to all). Service operations are the external functionalities of a 

component service defined in their public interfaces. A service operation takes an input, 

takes actions on the input and returns the output. A component service can have one or 

more service operations. 
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CHAPTER 4. AUTOMATA-BASED VERIFICATION OF 

SECURITY REQUIREMENTS OF COMPOSITE WEB SERVICE1 

With the increasing reliance of complex real-world applications on composite 

web services assembled from independently developed component services, there is a 

growing need for effective approaches to verifying that a composite service not only 

offers the required functionality but also satisfies the desired non-functional requirements 

(NFRs). In high-assurance applications such as traffic control, medical decision support, 

and coordinated response to civil emergencies, of special concern are NFRs having to do 

with security, safety and reliability of composite services. Current approaches to 

verifying NFRs of composite services (as opposed to individual services) remain largely 

ad-hoc and informal in nature. In this chapter we develop techniques for ensuring that a 

composite service meets the user-specified NFRs expressible in the form of hard 

constraints e.g., “response time has to be less than 5 minutes.” We introduce an automata-

based framework for verifying that a composite service satisfies the desired NFRs based 

on the known guarantees regarding the non-functional properties of the component 

                                                 
1 The work presented  in this chapter  is adapted  from Sun, H., Basu, S., Lutz, R. and Honavar, V.  (2010). 

Automata‐Based  Verification  of  Security  Requirements  of  Composite  Web  Services.  21th  IEEE 

International Symposium on Software Reliability Engineering (ISSRE'10), San Jose, CA, USA. 
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services.  We further show how to improve the efficiency of verifying that a composite 

service indeed satisfies a desired set of NFRs by:  (i) Exploiting   information about the 

applicability of specific NFRs (e.g., security) only to certain subsets of the component 

services that make up a composite service to minimize the verification effort and (ii) 

Identifying inconsistencies between NFRs with overlapping scopes. We illustrate how 

our approach can be used to verify the security requirements for an Emergency 

Management System.  We also show how the approach can be used to verify whether a 

composite service satisfies any desired set of NFRs that can be expressed in the form of 

hard constraints of a quantitative nature. 

4.1 Introduction  

As web technologies become increasingly widespread, there is a proliferation of 

independently developed web services in many application domains.  Complex real-

world applications typically rely on composite web services assembled from multiple 

independently developed composite services. Consequently, a variety of approaches have 

been developed for assembling composite services that satisfy the user-supplied 

functional specifications [14][35]. Functional requirements (FRs) describe how the 

composite service ought to process its input so as to generate the desired output.  A 

number of techniques are available for verifying whether a composite service satisfies the 

user-specified FRs [14][35] [45].  

However in many applications, a composite service needs to satisfy not only the 

desired FRs but also the user-specified non-functional requirements (NFRs) [36]. NFRs 

typically specify constraints that must be met with respect to the security, safety and 
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reliability of composite services.  NFRs can be hard constraints or soft constraints. Hard 

constraints refer to constraints that must be satisfied e.g., “response time has to be less 

than 5 minutes”. Soft constraints on the other hand specify user preferences over non-

functional attributes e.g., “the lower the cost, the better”.  NFRs that specify quality 

requirements e.g., with respect to response time, are often also called Quality of Service 

(QoS) requirements [61].  

Ensuring that a composite service satisfies not only the desired FRs but also NFRs 

is especially critical in the case of high assurance applications such as traffic control, 

medical decision support, and coordinated response to civil emergencies [3]. Consider for 

example, an Emergency Management System (EMS) [8].  The key FRs of the EMS (See 

Figure 5) is to dispatch ambulance(s), fire truck(s) and police to a location upon request 

using available resources. An EMS consists of several components: the Scheduler 

Service that takes the request messages from the field officers’ mobile terminals; the 

Emergency Resource Services (e.g., Police.A and Police.B) that interact with the resource 

databases and manage the local resources of ambulances, fire trucks and police; and the 

Dispatcher Service that interacts with ambulances, fire trucks and police cars and 

dispatches them to the target location. 

EMS is a high-assurance system because failure to meet its functional (e.g., 

dispatch ambulance to an accident victim) or non-functional requirements (e.g., keep 

patient information confidential) can have disastrous consequences.  The reliability of the 

system, the availability of the services, the effectiveness of resource allocation and the 

security of communications are crucial to public safety. For example, messages in an 
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EMS must be secured against malicious eavesdropping, interception and falsification 

before deployment. Hence, security NFRs for the EMS might require that the messages in 

different scenarios be sent at different encryption levels depending on the type of 

emergency incident. For national security related incidents, messages and service 

operations my need to be protected with stronger encryption than in the case of civilian 

incidents. An example of a security NFRs for EMS is that a request to dispatch police 

shall be processed using highly-encrypted message paths.  

 

Figure 5. An illustrative example: excerpt of a web-based Emergency Management 

System 
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Security guarantees for encryption and authentication of the messages for each 

service are typically specified using the web service security policy (WS-Security and 

WS-Policy) which is included in the WSDL specification for the service [63].  The 

security NFRs for the EMS, however, applies to the composite service which consists of 

the multiple component services that make up the EMS. This presents us with the 

challenge of verifying that the security guarantees available for the individual component 

services that make up the composite service indeed satisfy the security NFRs of the 

composite service. For a composite web service, the security requirements can apply 

either globally (to all services in the composite web service) or locally (to more than one 

service operation but not to all). Service operations are the external functionalities of a 

component service defined in their public interfaces. A service operation takes an input, 

takes actions on the input and returns the output. A component service can have one or 

more service operations. 

Other similar emergency management systems in existence include the Incident 

Command System of the U.S. Federal Emergency Management Agency (FEMA) and the 

National Incident Management System (NIMS) for major, multi-site incidents [42].  

Many incidents in emergency management systems have historically been caused by 

incorrect request or dispatch data (e.g., the London Ambulance System in 1992 and the 

Australian Emergency System in 2006) [40].  

Current approaches to verifying non-functional requirements (NFRs) of 

composite services (as opposed to individual services) remain largely ad-hoc and 

informal in nature. In this chapter we develop techniques for ensuring that a composite 
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service meets the user-specified non-functional requirements expressible in the form of 

hard constraints. We introduce an automata-based framework for (1) representing NFRs 

that can be expressed in the form of hard constraints and (2) verifying that the composite 

service satisfies the NFRs based on the known guarantees regarding the non-functional 

properties of the component services. We illustrate how our approach can be used to 

verify the security requirements for an emergency management system. However, the 

proposed approach can be used to verify whether a composite service satisfies any 

desired set of non-functional requirements that can be expressed in the form of hard 

constraints of a quantitative nature.   

The proposed approach to static verification of NFRs of composite services 

incorporates two novel elements:  

Scoping of NFRs:  

In many situations, specific NFRs (e.g., with respect to security) may be 

applicable only to specific subsets of the component services that make up the composite 

service. Moreover, the subset of services that need to satisfy NFRs may differ across the 

different NFRs (e.g., response time, security). Existing quality of service models for 

composite web service are not expressive enough to represent NFRs that apply to specific 

subsets of the services that make up a composite service [24][68][69]. To allow modeling 

of NFRs that apply to different subsets of components of a composite service, we 

introduce the notion of scope. The increased precision in the description of NFRs enables 

more efficient verification of NFRs.  
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Consistency checking of NFRs:   

NFRs with overlapping scopes can be inconsistent (and hence unsatisfiable) in the 

case of some candidate composite services. This scenario is not uncommon in settings 

where attempts to achieve some NFRs (say, with respect to security) may rule out the 

achievement of other NFRs (say, with respect to response time) [13]. Hence, when the 

scopes of different NFRs overlap, checking the consistency of NFRs can help avoid effort 

that would otherwise be wasted in exploring composite services that would violate the 

NFRs constraints. Our automata-based model permits the consistency checking of NFRs 

with overlapping scopes.   

We introduce and compare three alternative strategies in the case that multiple 

NFRs exist and analyze their relative advantages and disadvantages under different 

scenarios. This approach to verifying the NFRs can also support efficient re-verification 

of composite services as needed when NFRs are updated. 

While we focus on security requirements in this work, the approach described 

here can handle any other quantifiable quality of service requirement on web service 

composition that is checkable using information available at composition time.  Thus, for 

example, performance and reliability constraints referring to available, historical data 

(e.g., average throughput) can be verified in our approach, while performance and 

reliability constraints that rely on execution time data (e.g., current throughput) must be 
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handled dynamically and are not suitable for this approach.  This is discussed further in 

Sect. 4.4.5. 

The rest of this chapter is organized as following.  Section 4.2 provides an 

overview of our approach. Section 4.3 briefly reviews an approach to exploring the space 

of candidate compositions. Section 4.4 describes our approach to modeling NFRs and 

several strategies for verifying whether a candidate composition satisfies the NFRs.  

Section 4.5 shows the design of the implementation and Section 4.6 discusses the related 

researches. Section 4.7 concludes with a brief discussion and limitations and directions 

for further research. 

4.2 Overview 

Our overall approach to assembling a composite service that satisfies both the 

functional and non-functional requirements (in the case of security related NFRs) is 

shown in Figure 1. The functional composition algorithm [45] (briefly reviewed in 

Section 4.3 below) uses a. goal model in the form of an automaton to encode the user-

specified FR. A composite service is represented as an automaton where states represent 

the component services participating in the composition and inter-state transitions 

represent composition of the corresponding component services.  The functional 

composition algorithm assembles a composite service that verifiably satisfies the FRs by 

exploring the space of candidate compositions.  

The focus of this chapter, however, is on verifying that a composite service 

assembled by the functional composition algorithm also satisfies the NFR. We use an 

automaton to represent the non-functional properties of a composite service (See Section 
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4.4 for details). The latter correspond to sequences of properties of non-functional 

attributes of the component services that make up a composite service. Labels on 

transitions of the NFRs automata encode the set of non-functional constraints that are 

satisfied by the services that are connected by the respective transitions. 

A composite service is said to satisfy a given set of NFRs if and only if the 

sequence of properties over non-functional constraints represented by the NFR-automata 

is also realized by the automaton that encodes the composite service. A composite service 

conforming to a desired NFRs is obtained by computing and verifying the product of the 

automaton representing the composite web service and the automaton representing the 

corresponding NFR. This lifts the NFRs analysis from the level of individual services to 

the level of the search space of candidate compositions obtained from the functional 

requirements. 

The non-functional properties, e.g., security policies, of the component services 

are extracted from their WSDL specifications. A domain terminology mapping table is 

used to translate the user-specified NFR, e.g., “messages shall be highly-encrypted” into 

the terminology used in the WSDL specification (“messages must use standard 

Basic128Sha256 encryption algorithm with a 256-bit key”). 

The verification of a composite web service consists of two main parts, as shown 

in Figure 2. The first part is the functional composition of the component web services. 

This is prior work [45], briefly reviewed in Section 4.3 below. The goal model is an 

automaton constructed to model the functionalities of the required system. With the goal 
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model as input, an iterative algorithm generates a composite web service that verifiably 

satisfies the functional requirements.  

The second part of the process, and the contribution of this chapter, is the 

verification of the security non-functional requirements, shown in the bottom half of the 

diagram. The security NFRs is modeled in an automaton-based model, as described in 

Section 4.4 below. The composite web service derived from the first step can then be 

verified against this security automaton. During the verification, the security policies of 

the service operations are pulled from the appropriate WSDL files. The domain 

terminology mapping table is used to translate the security policies into an algorithm-

readable input and to provide the algorithm with the aggregation rules needed to handle 

security NFRs.  

It must be noted that the focus of this research is on static verification of NFR. 

Verification of NFRs whose satisfaction is contingent on certain runtime constraints on 

the performance of the component services being met (e.g., whether an ambulance 

reaches its destination in time to meet the response time NFR) that can only be 

dynamically verified at runtime are beyond the scope of this chapter. 

4.3 Functional Composition 

In our approach, we take the pre-construction of the composite web service 

meeting the FRs as fundamental. This is illustrated in the top half of the overview in 

Figure 1. In our illustration, we use the algorithm described in previous work [45] to 

achieve this construction, but other approaches, such as those in [14][35], would also 

work.  
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The goal model in Figure 6 is constructed as a first step in composing the 

component services into a composite service. The goal model captures two types of 

information required by the FRs: the workflow of the composite service and the 

component level functionality for each service operation. The states represent component 

services and the transitions represent the input/output messages for the service operations. 

Note that one component service can have more than one operation, so may be represented 

by multiple states. For example, the ambulance service can have service operations to 

provide availability information regarding ambulance resources and to reserve these 

resources. 

The label on each transition represents a guard condition or service operation 

functionality required to be realized by a component service, such as Scheduler_Reserve. 

Each operation can take message inputs and produce message outputs.  The goal model 

identifies the service operations and workflows of EMS as a functionality template for 

required EMS candidates. The functionalities, such as scheduling, reserving and 

dispatching firetrucks, ambulances, and police are specified in the goal model.  

The goal of the functional service composition algorithm is to find component 

services providing the required functionalities. The Iterative Forward and Backward 

Search Algorithm [45] is invoked with the goal model in Figure 6 as input to generate the 

composite web service. The algorithm maintains a composition result set during the 

computation and tentatively searches forwards and backwards in the component service 

registry for a service that satisfies the functional requirement. The result set moves 

forward if the current component service satisfies the service operation specified in the 
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goal model and stores it in the result set; otherwise, it moves backwards and tries another 

component service. The algorithm uses an exhaustive search to find all composite web 

services satisfying the goal model finally. 

 

Figure 6. Functional goal automaton of the EMS 
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4.4 Security Requirement Verification 

To be able to verify the NFRs, the first step is to model them.  As shown in the 

overview in Figure 1, each security NFRs is modeled as a security property automaton.  

4.4.1 NFRs Automata Derivation 

We thus first define the finite state automaton used to model the composite web 

service and the NFRs.  

Definition 1:    A finite state automaton is a tuple FSA = (S, , Δ, P, F) where S is the 

finite set of states,   S is the start state, and Δ  S × 2P × S is the transition relation of 

the form s −  such that s,    S, and  2P is a subset of propositions P. Finally, 

F S is the set of final states.  

A finite sequence is said to be accepted by the FSA if and only if the sequence 

starts from   and terminates in any of the final states in F. The NFRs and composite 

web services are described using FSA.   

Figure 7 shows a composite web service automaton derived from the FRs goal 

model in Figure 6. This candidate represents an instance of the EMS where only police 

need to be dispatched. The composite web service is here augmented with its associated 

security NFRs on the transitions.  
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Figure 7. A composite web service candidate automaton of EMS with security 

policies associated 

We will also model the NFRs property constraints using the automaton in 

Definition 1. Note that an automata-based property model can represent both safety and 

liveness properties [12][21], where a safety property is of the form “a program never 

enters an undesirable state” and a liveness property is of the form “a program eventually 

enters a desirable state”. If a state violating a safety property is encountered during 

composition of the composite web service automaton and the NFRs automaton, or if a 

state satisfying a liveness property is not reached in any branch at the end of the 
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composition, we say that this composite web service violates the NFR. To achieve 

compositional verification of the multiple NFRs properties, we unify the types of 

properties by converting the liveness properties to safety properties via use of an 

additional trap state π to capture those undesirable final states in the liveness properties. 

This is described more fully in [12].   

 
Figure 8. Global security requirements: (1) all service operations shall employ 

highly-secured messages; (2) all service operations shall have authentication. 

Scoping the NFRs: The scope of each NFRs constraint is specified as the dotted 

line as shown in the excerpts in Figure 8. A global NFRs property can be described as a 

single self-loop with a NFR property constraint on it. For example, Figure 8 shows two 

global security properties. One requires that all service operations shall employ a high 

encryption level and the other requires that all messages and operations shall be 

authenticated. The concept of “Encryption Level = High” and “Authentication = True” in 

the constraints will be defined in the domain terminology mapping table in Section 4.4.2.  
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Figure 9. Locally scoped security requirements: (1) all requests to dispatch police 

shall employ highly-encrypted messages; (2) messages to dispatch the police shall be 

authenticated. 

In the composite web service, NFRs may refer only to the properties or behaviors 

of some services or some message paths. A scope of a NFR property refers to a user-

defined subset of the services or service operations to which the NFRs property actually 

applies. For example, a user of the EMS for a search and rescue incident may require 

only the service operations of reading and writing the Police Resource to be highly 

encrypted, rather than globally requiring all service operations to be highly encrypted. 
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Similarly, that user may require only the message to dispatch the police to be 

authenticated. In the excerpts in Figure 9, the dotted lines describe the local scopes of 

these security properties. 

The FRs goal model introduced in Section 4.3 is used here as a template to 

specify NFRs constraints and their scoping information. Since all composite web service 

candidates have the same workflow as that specified in the goal model, a trace 

equivalence check can be performed to verify that the composite web services satisfying 

the FRs also satisfy the required security constraints. 

We now derive the security NFRs constraint model from the goal model in Figure 

6. We illustrate the process with the NFRs described in Section 4.1, i.e., that a request to 

dispatch police shall be processed using highly-encrypted message paths. The 

construction of a NFR property constraint consists of the following steps: 

1. Identify the scope in the goal automaton (Figure 6) for this NFRs constraint. For 

the security NFRs of concern here, we identify the path with the Police_Resource 

operation in it to be the scope. 

2. Label the NFRs constraint for the scope to cover all the operations within the 

scope. Here we label the path we identified in step 1 as “Encryption 

Level>=High”. 

3. Simplify the model, if possible, by merging the states and transitions unrelated to 

the scope into a single state with a self-loop.   

4. Prune unrelated states and paths. Here we remove the other branches from the 

graph, yielding the security NFRs automata in Figure 9. 
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To verify that the composite web service satisfies the security NFR, we must first 

retrieve the security guarantees of the individual component services. The composite web 

service produced by the functional composition, e.g., Figure 7, is stored in Web Service 

Business Process Execution Language (WSBPEL) [65] file. This WSBPEL file records 

the workflow of the participating component services and associates with their WSDL 

files, which further describes their service operations. Each service operation, as shown 

in Figure 7, is associated with a set of NFRs attributes in the WSDL file, namely the 

security property described in the WS-Security. The security policies named in Figure 7, 

such as Basic192, are different security policies which each contain the description of an 

encryption algorithm, a signature key length, a symmetric or asymmetric key and other 

security attributes. The following XML excerpt shows how a security policy is associated 

with a service operation:   

Security Policy Binding to Service Operations 

<Policy wsu:Id="medium_secure"> 

  <ExactlyOne> 

<sp:Basic192 ... /> 

   </ExactlyOne> 

</Policy> 

 

<wsdl:binding name="SecureBinding" type="tns:ReservationInterface" > 

  <PolicyReference URI="# medium_secure " /> 

  <wsdl:operation name="Reservation" >...</wsdl:operation> 

  ... 

</wsdl:binding> 
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In the first part of this piece of code, a Basic192 security solution (described in [4]) 

is defined in the security policy. In the second part, this policy is bound with the 

Reservation operation in the WSDL file of the police service. This reservation operation 

reserves the police resources to dispatch and prevents concurrent allocation of the same 

units. The binding between the security policy and the service operation allows our 

approach to retrieve the security policy for each operation in a composite web service for 

verification.  

As shown in Figure 7 and the XML code, the security policies are specified for 

each operation of each component of a composite service. Note that the security policies 

of different operations can differ from each other. The resulting sets of security policies 

(and the associated enforcement algorithms) are collectively used to construct a domain 

terminology mapping table that allows the different security policies to be compared with 

each other. 

4.4.2 Domain Terminology Mapping 

During verification, the security policies of the service operations associated with 

a service are retrieved from the WSDL specifications of the corresponding service. 

Construction of a domain terminology mapping table is necessary when the NFRs cannot 

be simply quantified or is too complex to handle by single variables. The domain 

terminology mapping table is designed to bridge the gap between the user’s requirements 

(Low, Medium, High, or Critical level encryption) and the specifications described in the 

web services (algorithms and minimum key lengths). As in the security policy domain, 
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first we gathered all the security algorithms the service operation can apply, shown in 

Table 1 [4]. The details of these algorithms and their comparison are described in the 

WS-Security specification [4]. We categorized the encryption algorithms as medium, 

high, or critical, based on their minimum symmetric key length.  Operations without any 

encryption algorithm applied are classified as low encryption level. Table 2 defines, for 

our illustrative example, an excerpt of the different encryption levels specified in WS-

Policy [4] and a Boolean option for an authentication feature for the composite web 

service. These choices associate with different security policies in WS-Security used by 

the web services.  

The security solutions specified in WS-Security are mapped to an encryption level 

based on the minimum key length of their encryption algorithms. By using a symmetric 

encryption algorithm, the message sender and the receiver can share a key, in order that 

only the genuine sender can encrypt and the real receiver decrypt the communication [55]. 

The optional authentication feature is mapped to the security policies based on whether a 

symmetric encryption is applied.  These mappings are stored in a table for use and reuse 

in verification that candidate composite services satisfy the security NFRs.  
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Table 1: Security algorithms in WS-Security (Cited from [4]) 
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Table 2. Security terminology mapping table excerpt 

Encryption Level Security Algorithm 
Min  Key 

Length Symmetric 

Low None 0 No 

Medium 
Basic128 128 No 

Basic128Sha256 128 Yes 

High 

Basic192 192 No 

Basic192Sha256 192 Yes 

TripleDes 192 No 

TripleDesSha256 192 Yes 

Critical 
Basic256 256 No 

Basic256Sha256 256 Yes 
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Table 2 (Continue). Security terminology mapping table excerpt 

Authentication Security Algorithm 

Min  Key 

Length Symmetric 

False 

None 0 No 

Basic128 128 No 

Basic192 192 No 

TripleDes 192 No 

Basic256 256 No 

True 

Basic128Sha256 128 Yes 

Basic192Sha256 192 Yes 

TripleDesSha256 192 Yes 

Basic256Sha256 256 Yes 

 

4.4.3 NFRs Aggregation Rules  

An aggregation rule combines the valuations of non-functional attributes of 

component services that fall within the scope of the corresponding NFRs [69]. For 

example, in the case of the EMS encryption requirement, the aggregation rule is defined 
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as: the encryption level of the composite service is the minimum encryption level of the 

component services that fall within the scope of the NFRs for EMS encryption. We 

implement this aggregation rule in the following aggregation script, which is used by the 

security NFRs verification algorithm. 

 Encryption Level Aggregation Script: 

Define Low=0 

Define Medium=1 

Define High=2 

Define Critical=3 

Define Initial_Security_Level=3  

Int Aggregate(Int current_security, Int new_security) 

{if(current_security>new_security){ 

current_security=new_security; } 

return current_security; 

} 

Bool isSatisfied(Int current_security, Int desired_security) 

{ 

If(current_security< desired_security) return false; 

return true; 

} 
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4.4.4 NFRs Verification Algorithm 

In order to verify that NFRs is satisfied in a candidate composite web service 

known to satisfy the FRs, we compose the automata representation of the composite web 

service and the NFRs property. In our approach, all automata compositions are 

synchronous, i.e., multiple automata can make progress in parallel for each step [23]. The 

problem of whether a composite web service conforms to a desired NFR is addressed by 

calculating the synchronous product of automata representing the composite web service 

with those representing the corresponding NFR. The composite web service is said to 

satisfy the NFRs if and only if the sequence of properties over non-functional attributes 

as represented by the NFR-automata is also present in the automaton of the composite 

web service. The verification process can be viewed as an equivalence check. 

Definition 2:    Given two automata, = ( , , , , ) , for i  {1, 2}, their 

product is another FSA denoted by    = ( , , , , ), where 

 ,  = ( , ),  =   ,  = {( , ) |   ,   }. Finally, 

−    and −     and ( , ) −     ( , )   .  

The automata composition concept can be used in two ways: (1) to verify a NFR 

automaton with a composite web service, and (2) to verify the consistency of two or more 

NFRs automata if two or more NFRs properties need to be combined. 
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When the automata composition algorithm encounters any service within the 

scope, then, if there is an aggregation rule associated with that NFR, the aggregation 

script that implements the aggregation rule is included in the verification algorithm. 

 
Figure 10. Security property aggregation and composed automata 

The verification algorithm uses an entrance condition to detect entry into the 

relevant scope for the current NFR, and an exit condition to trigger evaluation of whether 
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the current NFRs has been satisfied in the composite web service.  Figure 10 shows the 

composed automaton and how aggregation is applied to the scope range for the security 

NFRs in the EMS example during automata composition. During the composition of the 

composite web service automaton and the security property automaton, the states and 

transitions of both automata merge when they share the same predicates. When the 

composition enters the scope of the security constraint, the encryption level value starts to 

aggregate for each merged transition according to its aggregation rule and the 

terminology mapping table. When the composition algorithm leaves the scope, the 

aggregated encryption level value is compared to the value required by the constraint to 

evaluate its satisfaction (here, a High encryption level). All these tasks are described 

inside the aggregation script for the implementation. 

The algorithm to verify a NFR property automaton against a composite web service 

automaton is described in pseudo code as follows: 

 

Security Level Verification Algorithm: 

Let = ( , , , , ) be the composite web service automaton. 

Let = ( , , , , ) be the security constraint automaton. 

Let =  be the initial composed automata. 

1: Load Security Level Aggregation Script 

2: Set current_security= Initial_Security_Level 

3: Initial state of  :   = { , } 

4: Call Combine_States( , ,  ) 

5: If isSatisfied(current_security, required_security) report success, else report failure. 
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6: proc Combine_States( , , ){  

7: /*Select the states with satisfied guard conditions */ 

8:  ForEach  2 , ′    s.t.  ′ :       − ′  ,  − ′  and 

 

9: Create a new state ′  = { ′ , ′ } for      

10: If ′   is a trap state, return and report failure. 

11: Create a new transition  − ′  for  

12: If InScope, 

13: If the guard condition   is a service operation, retrieve its security policy name 

as SName from its WSDL file. 

14: Retrieve the security level as new_level by searching for SName in the security 

terminology mapping table. 

15: current_security=Aggregate(current_security, new_level)  

16: Call Combine_States( ′ , ′ , ′ ) 

17: End ForEach 

18: } 
 

Note that a verification of the security property in Figure 10 on the composite web 

service in Figure 7 returns a “Failure” result, because the aggregation result of the 

encryption level for this composite web service candidate is Medium in its required scope, 

which is lower than the required High. 

4.4.5 Generalization and Limitation 

Beside security constraints, our QoS constraint model is also able to handle other 

QoS quantitative hard constraint for web service compositions, such as performance and 

reliability, which can be checked using information available at composition time. The 

modeling process is the same as modeling a security constraint. The only things to 
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modify in order to handle other QoS constraints are the terminology mapping table and 

the aggregation rules. The terminology mapping table varies among projects and depends 

on the domain engineer’s decisions. For example, for the QoS attribute throughput, we 

can map the requirement terminologies to the implementation level terminologies as 

shown in Table 3. 

Table 3: Performance terminology mapping table excerpt 

Performance Throughput 

High > 1 Mbits/s 

Medium 100 Kbits/s to 1 Mbits/s 

Low < 100 Kbits/s 

 

Some common aggregation rules for QoS attributes for web service compositions 

are provided in Jaeger et. al. [24]. We can then use the aggregation rule of throughput 

defined by Jaeger et. al. [24] as: 

• For sequential or parallel composition, the aggregated throughput is always the 

lowest throughput in the concerned set of component services. 

• For a loop, the aggregated throughput is the same as the path throughput inside of 

the loop. 
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The construction process for the throughput constraint automaton is exactly the 

same as the process for constructing the security constraint automaton.  Figure 11 gives 

an example of a globally scoped performance constraint. 

 

Figure 11. Global performance constraint 

However, our approach is also constrained by our research scope. Because our 

model focuses on QoS quantitative hard constraints for static web service compositions, 

we are unable to handle non-functional properties outside of this scope. If the QoS 

information for component web services is only available for dynamic web service 

composition, such as the message delay, our approach is unable to handle this QoS 

constraint at static composition time. For example, the requirement that “All messages 

shall be received with in x milliseconds after being sent” can only be checked at runtime. 

If the QoS constraint is a qualitative preference, such as “high throughput is preferred to 

low throughput”, our model cannot represent this constraint. 
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4.4.6 Handling Multiple Properties 

In complex composite web services, there often exists more than one user 

specified non-functional requirement to verify, such as security or availability constraints 

with different scopes. An interesting issue is how to handle the multiple property 

automata efficiently. Given a candidate composite web service from the search space, the 

most straight-forward way to verify each property automata is to verify the properties 

independently and sequentially. This strategy, Independent Composition (INC), is shown 

in the first column in Table 4.  INC calculates each property independently with the 

candidate composite web service and discards the intermediate calculation results after 

each inner loop. INC returns verification failed at the first unsatisfied NFRs property. It is 

most suited to a search space with few candidates. A disadvantage of INC is that even if 

the properties are inconsistent, such that no composite web service can satisfy them all, 

the algorithm has to explore the entire search space before telling the user that no 

composite web service satisfies the NFR.  

To overcome this weakness of the INC algorithm, we introduce the Two-Stage 

Composition (TSC) algorithm (the second column of Table 4) which detects property 

inconsistency before performing the verification. TSC composes all property automata 

into one combined property automaton prior to verification. In this way, the first 

inconsistency found during property composition will terminate the verification process, 

and the property automaton causing this failure will be captured and returned to the user 

for possible modification of the NFR. In addition, TSC can assist with efficient 
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verification, since property automata may share the same predicates on the transitions. 

The more predicates shared by the property automata, the fewer states the combined 

automaton will have.   Another advantage of using TSC is that the combined property 

automata can be reused to verify multiple candidate composite web services or when 

NFRs are updated. 

A third strategy, the Big-Bang Composition (BBC) algorithm, replaces the 

sequential verification of the properties in INC with parallel verification (the third 

column in Table 4). BBC composes all the automata including the candidate composite 

web service and the property automata synchronously so that the earliest reachable trap 

state in any of the properties can terminate the verification by returning a failure. 

A combined strategy can be applied using a smart switcher, which pre-calculates 

the verification overhead when provided a group of composite web service candidates and 

a group of NFRs properties.    Generally speaking, INC and BBC are useful for detecting 

inconsistencies in the candidate composite web services quickly, whereas TSC is most 

useful in quickly locating inconsistencies in the user-defined NFRs. 
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Table 4. Three strategies of verification on multiple properties 

 Independent 
Composition 

Two-Stage Composition Big-Bang Composition 

Pseud
o-
Code 

1. For each candidate 
composition si in S 

1) For each 
property pj in P 

2) Verify this 
property by 
calculating s i × pj 

3) If the verification 
failed, jump to 
the next s i 

4) End For Each 
2. Output s i and 

terminate 
3. End For Each 
4. Output “No 

composition 
satisfies the NFR” 

 

1. Take automata q = p0 
2. For j = 1 to k 
3. Calculate q × pj and Save 

the result as q 
4. If there exists only one 

termination state in q and 
it’s a trap state in the safety 
property, Output “Property 
pj is Inconsistent with the 
other properties” and 
Terminate 

5. End For 
6. For each candidate 

composition si in S 
7. Verify the property by 

calculating  s i ×q 
8. If the verification failed, 

jump to the next s i 
9. Else Output s i and 

terminate 
10. End For Each 
11. Output “No composition 

satisfies the NFR 

1. For each candidate 
composition si in S 

2. Verify the property by 
calculating  s i × p 1 × p 2 
×…× p n. All automata 
are composed 
synchronously rather 
than pair-wisely. When a 
trap state is reached, the 
composition terminates 
and returns failure. 

3. If the verification failed, 
try the next s i 

4. Else Output s i and 
terminate 

5. End For Each 
6. Output “No composition 

satisfies the NFR” 

 

Com-
plexit
y 

O( ∑ ∑ | |
| | ) 

O(∑ | | ∏ | |   O(∑ | | ∏ | |  

S is the set of all compositions.  S = {s1, s2, s3, …..sn} 

n is the number of compositions in the search space 

P is the set of all NFRs. P = {p1, p2, p3, …..pn} 

k is the number of NFRs 
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4.5 Design of Implementation 

Figure 12 presents the implementation design of the NFR verification system for 

WSC.  

The left side of the figure shows the four input data of the verification system. 

The service provider profile retrieved from UDDI could have non-functional properties, 

such as location, about the web service. The WSDL provides the functionalities provided 

by the web service including operations, actions and parameters. WSLA and WSPolicy 

provide other QoS properties related to the web service. 

The right side of the figure shows the two inputs from domain knowledge. The 

QoS domain knowledge model includes the terminology mapping tables, which quantify 

the QoS attributes. The aggregation rules, introduced in Section 4.4.3, define how to 

aggregate and evaluate the QoS attributes of the WSC. 

The upper portion of the figure describes the service composition input, which 

begins with a functional goal model. We then define our QoS constraints for the WSC 

from this goal model using the approach described in Section 4.4.1. The service 

compositions are generated from the goal model using functional composition algorithms. 

The core asset of this system is the constraint verification module, which takes all 

the inputs and calls the verification algorithm described in Section 4.4.4. Finally, the 

algorithm outputs the verification results: either verification failure or a set of valid 

WSCs.  
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Figure 12. Implementation design for the NFRs verification system for WSC 

4.6 Related Researches 

In this subsection, we compare our approach with existing solutions on verifying 

the web service compositions. 

Foster et. al. [18][19] have introduced a similar approach to verify the properties 

of web service compositions. The web service composition described in the WSBPEL is 

translated into a finite state process (FSP) model. The behavior property of the web 

service composition is modeled in a message sequence chart (MSC). This MSC model is 

then translated into a FSP model as well. An equivalence check of the two FSP models is 
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conducted to verify the compliance of this property in the web service composition. Our 

model has greater expressive power in the following three aspects: Being able to 

calculate QoS aggregations along the message paths and verify the QoS constraints, 

considering the cases in which some properties are locally scoped and in handling 

multiple properties and their consistency checking. 

Additionally, the construction of the MSC model is required to build from scratch 

and defined for each web service composition. Our property model is build from the goal 

model. The goal model captures all the functionalities and the business process of all 

valid web service compositions. Thus, our property model is easier to define and more 

general in verifying multiple web service compositions derived from the same goal model.   

Jaeger et. al. [24][25] has introduced the QoS aggregation rules for web service 

compositions. They took the functionalities of the web service composition as a hard 

constraint and compared several different composition optimization algorithms based on 

the aggregated QoS values.  All QoS attributes are considered as qualitative soft 

constraints for optimizations where our approach focuses on the QoS quantitative hard 

constraints.  

4.7 Conclusion 

This chapter shows how an automatically generated composite web service of 

independently developed web services can be verified to meet the non-functional security 

requirements imposed by the user as hard constraints. The approach described here 

enables this verification by lifting the NFRs analysis from the level of individual services 

to the level of the search space of candidate composite web services obtained from the 
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functional requirements.  The primary limitations of this approach are (1) that it currently 

can only handle those types of NFRs which can be specified in WSDL and WSDL’s 

auxiliary specifications, such as WS-Policy, WS-Security, WS-Trust and WSLA, and (2) 

that domain expert knowledge is needed to build the terminology mapping table.  We 

hope to ease these restrictions in future work.  
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CHAPTER 5. PRODUCT-LINE-BASED REQUIREMENTS 

CUSTOMIZATION FOR WEB SERVICE COMPOSITIONS2  

Customizing web services according to users’ individual functional and non-

functional requirements has become increasingly difficult as the number of users 

increases. This chapter introduces a new way to customize and verify composite web 

services by incorporating a software product-line engineering approach into web-service 

composition. The approach uses a partitioning similar to that between domain 

engineering and application engineering in the product-line context. It specifies the 

options that the user can select and constructs the resulting web-service compositions. By 

first creating a web-service composition search space that satisfies the common 

requirements and then querying the search space as the user selects values for the 

parameters of variation, we provide a more efficient way to customize web services.   A 

decision model, illustrated with examples from an emergency-response application, is 

created to interact with the customers and ensure the consistency of their specifications. 

The capability to reuse the composition search space may also help improve the quality 

                                                 
2 The work presented  in  this chapter  is adapted  from H. Sun, R.   Lutz and S. Basu, "Product‐Line‐Based 

Requirements  Customization  for Web  Service Compositions", 13th  International  Software  Product  Line 

Conference (SPLC '09), 2009. 
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and reliability of the composite services and reduce the cost of re-verifying the same 

compositions.   

5.1 Introduction 

Commercial web services often have a very large user base. How to customize 

these web services according to the users’ individual requirements becomes increasingly 

difficult as the number of users increases. This chapter introduces a new way to 

customize composite web services to users’ requirements by applying a software product 

line engineering approach to the web service composition domain.  

Most existing practical mechanisms for synthesizing composite services have 

been deployed taking into consideration their desired functional requirements [14][28].  

Functional requirements (FRs) describe how a system should behave during operation, 

while non-functional requirements (NFRs) describe constraints on the quality attributes 

of the system’s operation. NFRs can be broadly classified as soft and hard constraints. 

Hard constraints refer to the set of NFRs that must be satisfied by a composite service, 

while soft constraints deal with user preferences and trade-offs among NFRs [58]. In this 

chapter, we are concerned with hard constraints.  

In order to customize a web service in a specific domain application (e.g., a travel 

agency service), FRs and NFRs may both vary somewhat among individuals. With 

existing methods of composing web services on FRs and NFRs [28][59], the verification 

of the variations in the services tends to incur a heavy overhead that can reduce the 

performance of the composed services.  We instead seek to exploit the reuse of certain 

web service compositions, where the composition has already been verified. The goal is 
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for each small variation to no longer trigger an entirely new verifiable composition 

process.  Thus, for customizable web services, we need a lightweight and low-overhead 

solution to generating web service compositions satisfying users’ customized 

requirements. 

A web service composition shares several similarities with a product line. A 

commercial web service provider has a specified, shared set of functional and non-

functional requirements that should be fulfilled by every possible service composition 

provided to the user.  For example, a travel agency web service has to include a 

membership service and a payment service as common functionalities. Secured web 

service communication is also a common NFR that exists in all compositions.  

These common FRs and NFRs can be mapped to commonalities in a product line 

by taking all possible compositions that satisfy the common FRs and NFRs as products of 

a product line. Each user of the web service can also impose customized FRs and NFRs, 

according to his or her own preference, within the variations provided by, e.g., the travel-

agency service. Thus, a user may require flights to be on a specific airline or airplane 

model for the flight-booking service. These variations in FRs and NFRs, if predictable by 

the service provider, can be specified as variabilities of a product line. The user then only 

needs to decide the value for each variation point in order to generate a customized 

service composition. 

In previous chapter, we have separated the verification of NFRs for a web service 

composition from the verification of FRs in order to reduce the complexity of 

requirements verification. In pursuing a two-stage solution we have subsequently tried to 
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isolate the requirements likely to be changed, or customized, by the users. Product line 

engineering offers a strong framework for this purpose. 

Software product line engineering (SPLE) identifies the common assets of a series 

of products as commonalities and views the optional and alternative assets as variabilities. 

Taking advantages of these two concepts, SPLE reduces the development cost and time 

by reusing the commonalties and the variabilities across the product line [64]. We build 

in this work on the FAST (Family-Oriented Abstraction, Specification, and Translation) 

approach to constructing a product line. FAST uses three key artifacts to enable rapid 

generation of a product given a partially ordered specification from the customer [64][65]: 

1. The commonality and variability analysis (CVA), which identifies the 

commonalities and variabilities for the product line and the dependencies and 

constraints among them.  

2. The mapping relations between the values of the variations and the modules of the 

product lines (which may be one-to-one, one-to-many, or many-to-many mappings) 

and the uses-relations of the modules and their implementations (which describe the 

other modules used if one module is selected). For example, one module may have 

different ways of being implemented under the constraints of performance or 

platforms.  

3. The decision model with which the customer interacts to specify and construct a 

new product in the product line. 
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We extend the process by adapting the workflow used to compositionally 

generate a product-line system to the customized composition of web services:  

• The user decides the values of the variabilities of a product in either a random or 

preferred sequence.   

• The values of these variabilities are used to prune and determine other variabilities by 

following the dependencies and constraint rules.  

• A consistent value set for the variabilities is thus obtained. By tracing the mapping 

between the values of variabilities and the components of the product line, a 

component set is selected. 

• By tracing the uses-relations of the selected component set, all necessary components 

for a product are selected. 

• The implementation of the necessary component set is gathered, compiled and 

published as the final product. 

Web service composition takes advantage of SOA (Service Oriented Architecture) 

[15] to achieve complex functional and non-functional requirements by selecting and 

composing qualified component services provided by service providers. A service broker 

(UDDI) is responsible for the registration and look-up of all component services with 

descriptions.  

By considering a customizable web service composition as a product line, we are 

better able to handle the customized requirements from the users. Normally, web service 
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compositions involve verification of the functional and non-functional requirements on 

demand. This means that whenever there is a variation, change, or new requirement for 

the services, the composition algorithm needs to re-compose and re-verify the web 

services against the variation, change or new requirement.  

Using the SPLE approach, we show how we can successfully divide the 

composition and verification process into two stages. The first stage treats the 

construction of the functional commonalities of the web service compositions and verifies 

them against the common NFRs. The second stage takes as input the verified 

compositions from the first stage and then verifies the candidate composition in the result 

set to meet the variable functional and non-functional requirements from the user.  

Since part of the computation has already been done in the first stage as pre-

processing, the verification overhead caused by the customizations in the mass-user-

based web services is much lower than the traditional one-stage composition and 

verification process. The two-stage SPLE approach has better efficiency because, for a 

customization requirement, the second stage acts like a service composition verifier 

rather than a service composition generator. It essentially hides the large computation 

overhead in the first stage when constructing the search space for the second stage. 

The rest of the chapter is organized as follows. Section 5.2 describes our approach 

to applying SPLE to web service composition and illustrates it by application to an 

emergency-response service. Section 5.3 discusses the advantages and limitations of our 

approach and describes the steps needed for future evaluation. Section 5.4 provides a 

brief conclusion.  
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5.2 Approach 

Figure 2, duplicated here as Figure 13 for convenience, shows an overview of our 

approach, which is described briefly here.  Subsequent subsections provide a more 

detailed account of each of the major steps in Figure 13. The steps are labeled in the 

figure with the number of the subsection that describes that step.   

Our approach contains two workflows, one for the web service product developer 

(shown at the top of the figure) and one for the user (shown at the bottom). This approach 

provides a two-stage process. From the point of view of product line development, the 

development process is divided into the domain engineering phase and the application 

engineering phase. From the point of view of web-service design, the process is divided 

into the preparation stage (before the construction of the search space) and the 

customization stage (after the construction of the search space). 

At the top half of the figure, i.e., the domain engineering phase, the developer 

performs a commonality and variability analysis (CVA) of the system requirements. The 

results of the CVA include a formalized specification of all the common and variable 

functional and non-functional requirements. Each variability has some associated 

parameters to configure, called parameters of variation. Some of these parameters may 

have dependencies or tradeoffs with other parameters of variation. We model this 

dependency of variations in a variability dependency graph.  
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Figure 13. Overview of approach 
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Each commonality and parameter of variation is also associated with a set of 

service compositions that satisfy them. We call this relation the mapping-relation. The 

results of the CVA are captured in a product-line decision model. Given the system 

requirements, the developer can identify the component web services that are relevant to 

the domain and the system.  

For the application engineering phase, the services retrieved from the service 

broker are composed according to the common functional requirements by means of a 

modified version of the goal model and a functional service composition algorithm from 

[44]. The algorithm outputs all possible service compositions that satisfy the common 

functional requirements.  By verifying all the compositions of this set against the 

common NFRs, we prune the composition set into a smaller set in which each 

composition satisfies all commonalities. This set serves as the composition search space 

for the variability, and we call it the commonality composition set (subset).  

In order to improve the verification efficiency for the runtime customization, we 

do an indexing on each parameter of variation mapping to a subset of the search space. A 

composition subset associates with a parameter of variation if and only if all 

compositions in this subset satisfy the variability set by this parameter.  The result of this 

preparation phase is the composition search space that is ready for runtime user 

customization. 

After implementation of the web services, the user can access a default web 

service with basic functionalities. The user can then customize the functionalities and 

non-functional requirements by setting all the parameters of variation in the decision 
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model. By interacting with the decision model, the input requirements from the user are 

always kept consistent through solving the constraints in the variability dependency 

graph.  The consistent specification of the variabilities is fed into a query algorithm to 

search valid compositions in the composition search space. The output of this algorithm 

is either the customized service composition satisfying all the requirements from the user 

or a report to the user of a failed composition attempt. 

5.2.1 Illustrative Example 

We use the small system introduced in Chapter 3, the Emergency Management 

System (EMS) to illustrate the basic concepts of our approach.  

As a reminder, an EMS consists of several different units: the Field Officer 

Service, the Request Dispatch Service (Dispatcher for short) and services for emergency 

handling, including an Ambulance Dispatch Service, a Fire Station Dispatch Service and 

a Police Dispatch Service. The functional requirements are to dispatch ambulance(s), fire 

truck(s) and police to a location upon request. These requests are specified and sent by 

the Field Officer through a service in a mobile terminal or a PDA.  

The Dispatcher has three types: the normal dispatch service, which is responsible 

for routine situations; the speed-line dispatch service, which has low communication 

delay, compared to the normal dispatcher and is used for urgent dispatches; and the 

highly-secured dispatcher, which is used for national security related cases. The 

dispatcher service can also invoke a GPS-MAP service and other third party services. 

Figure 4 shows a sample structure for EMS service composition. The services connected 

by the dashed lines represent the optional services in a valid composition. 



83 

 

5.2.2 Commonality and Variability Analysis 

The commonalities that are shared across all the EMS service compositions are 

listed according to their label, type (Functional requirements as “FR” and Non-functional 

requirements as “NFR”), description and service mappings. 

Commonalities: 

• C1 

o FR 

o There must   be a Field Officer Service.  

o Field Officer Service = any service in Field Officer Service set {FO1, FO2, 

FO3…}. 

• C2 

o FR 

o There must be a Dispatcher Service.  

o Dispatch Service = any service in normal Dispatcher Service set {DSN1, 

DSN2, …} or speed-line Dispatcher Service set {DSSL1, DSSL2, …} or 

Highly-secured Dispatcher Service set {DSHS1, DSHS2, …}. 
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• C3:  

o FR 

o There must be one or more emergency services.  

o An emergency service = any service in the Fire Station Dispatch Service 

set {FS1, FS2, …} or in the Ambulance Dispatch Service set {AS1, 

AS2, …} or in the Police Dispatch Service set {PS1, PS2, …}. 

• C4:  

o NFRs  

o All services must support at least 128-bit encryption in its service 

description. 

The variabilities of the EMS are listed according to their label, type, description, 

parameter(s) of variation and any dependencies among these parameters. 

Variabilities: 

• V1:  

o FR 

o Type of dispatch service 

o {Normal, Speed-line, Highly-secured}.  

o If V1 is Highly-secured, then V6 is High. If V1 is Speed-line, V7 is Low. 
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• V2:  

o FR 

o Existence of Fire Station Dispatch service 

o {True, False} 

o If V2 is False, (V3 or V4) is True 

• V3:  

o FRS 

o Existence of Ambulance Dispatch service,  

o {True, False}. 

o If V3 is False, (V2 or V4) is True 

• V4:  

o FR 

o Existence of Police Dispatch service 

o {True, False}.  

o If V4 is False, (V2 or V3) is True 
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• V5:  

o FR 

o Existence and type of a third-party service.  

o {N/A, GPS-MAP, TP1, TP2,…}.  

o If V5 is N/A, V8 is N/A. 

• V6:  

o NFR 

o Security Level 

o {Medium, Med-High, High}.  

o If V6 is High, V1 is Highly-Secured and V9 is 256. If V6 is Med-High, 

V9 is 256. If V6 is Medium, V9 is 128. 

• V7:  

o NFR 

o Delay of service communication 

o {Low, Med-Low, Medium}.  

o If V7 is Low, V1 is Speed-line. 
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• V8:  

o NFR 

o Range constraint between the field officer and the emergency service 

location 

o {N/A, Near, Medium, Far}.   

o If V8 is not N/A, V5 is GPS-MAP. 

• V9:  

o NFRs  

o Type of encryption 

o {128, 256}. If V9 is 128, V6 is Medium. If V9 is 256, V6 is Med-High or 

High. 

 

Figure 14. Dependency graph of variabilities 
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We model the dependencies of the parameters in the CVA in a dependency graph 

(see Figure 14). In the dependency graph, each node represents a variability and contains 

the information of all the parameters related to this variability. The edges between the 

nodes represent and contain the constraints between the two variabilities.  The graph may 

not be fully connected. A graph-walk algorithm (described in later section) is used to 

traverse the sub-graphs in a random order or a user-preferred order to solve all the 

constraints.   

To reduce the workload and complexity for the later verification process, we 

typically design the parameters of variation by translating integer or real number values 

into enumerated parameters by categorizing user requirements, as is done with the Range 

Constraint V8, above. The range can be an integer of miles from 1 to 100, but is 

represented as only three values: Near (within 10 miles), Medium (10 to 50 miles) and 

Far (51 to 100 miles).  

5.2.3 Goal Model of the Common Functionalities 

In order to generate all the service compositions that satisfy the commonalities, 

we need to represent the common functionalities, here C1, C2 and C3, in the goal model.  

Figure 15 shows the goal model for the common functionalities in EMS. Note that 

we have preserved the possibility of using third-party services to implement the 

functionality ThirdPartyService (OtherData) in the goal model. The functional 

composition process finds appropriate component services to implement these abstract 

methods in the goal model in accordance with the service mapping table. This service 

mapping table is constructed together with the goal model by looking up the CVA results. 
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For example, a mapping is: ThirdPartyService = any element from {N/A, GPS-MAP, 

TP1, TP2, …}. 

 

Figure 15. Goal Model for common functionalities 
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We apply a variant of the choreography-based web service composition algorithm 

from our previous work [44] on this goal model. The change is that we here take 

advantage of the availability of the service mapping table to generate all the compositions 

that satisfy the FRs commonalities rather than generating just one such composition. The 

result of this step, as shown in Figure 13, is a web service Composition Set containing all 

compositions satisfying the common functional requirements. 

5.2.4 Verification Algorithm of Non-functional Constraints 

The next step toward constructing a search space is to verify the common NFRs. 

The automation in Figure 16 shows an example of a NFR that requires that any 

ambulance service in the composition shall respond within 600 seconds. 

 

Figure 16. Transition guard with constraint on the service attributes 

 In previous section, we have described how to model both a service composition 

and a non-functional constraint as automata and how to verify the NFRs constraint by 

composing the two automata. The verification is an automata equivalence check. This 

verification method unifies the constraint models by converting all liveness constraints 
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into safety constraints. It also handles cases where there are multiple constraints to be 

verified.   

  , , , ,  where S is the finite set of states,  S is the start state, 

and   2     is the transition relation of the form ′ such that , ′ , 

and 2  is a subset of propositions P. Finally,  is the set of final states.  

Given two automata,   , , , , , for 1, 2 , their product is 

another FSA denoted by: 

  , , , ,  where 

, ,  

   

, | ,   

′  

′  

, ′ , ′  

Figure 17 shows an example of the product of two automata with the service 

composition automaton on the left, the constraint automaton in the middle and their 

product on the right.  During the calculation of the automata product, if a trap state of the 

safety constraint is reached, the verification has failed. Otherwise, the constraint is 

satisfied by the candidate composition. 
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For example, by applying this verification technique for the common NFRs C4 to 

every composition in the Composition Set retrieved, we prune out any compositions with 

service that violates the requirement for at least 128-bit encryption. The result of 

performing this verification on the other NFRs, as well, is a set of candidate compositions 

that satisfies all commonalities, both functional and non-functional, labeled the 

Commonality Composition Subset in Figure 13.  

 

Figure 17. Product of a service composition and a constraint 

5.2.5 Search Space Construction by Indexing 

In order to construct the composition search space from the Commonality 

Composition Subset, we next need to index every parameter of variation. By indexing, 

we mean the creation of a mapping from each parameter of variation to a further subset of 

the Commonality Composition Subset such that that any composition in this subset 
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all their services. Next, according to the dependency graph, a Medium security level 

requires an encryption length of 128 bits, so we verify whether all these compositions 

also have 128-bit encryption.  

After creating the indexing for the parameters, the construction of the composition 

search space is completed and the application-engineering phase, i.e., the generation by 

the user of a service composition that verifiably satisfies his/her customized requirements, 

begins. 

5.2.6 Solving Constraints 

The user customizes the service composition’s functional and non-functional 

requirements by setting the parameters of variation. However, since the user cannot be 

expected to handle the possibly complex dependencies among the variabilities, a 

specification from the user inputs may not guarantee consistency among the parameters.  

For example, an inconsistent specification is shown in Table 5. A Low parameter in the 

communication delay variability V7 constrains the choice of the Dispatch Service to be 

Speed-line rather than a normal one. In this case, the specification cannot result in a valid 

service composition. 

Instead, in order to ensure the consistency of the user’s choices, a dependency 

graph walking algorithm is applied to interact with and guide the user in solving the 

constraints.   The constraint solving algorithm is as follows: 

1. User picks a variability to start the process  

2. User decides the parameter for this variability. 
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3. Locate the node of this variability in the dependency graph. 

4. Check and apply the constraints on all the edges of current node. If the constraints 

force a variation value on any other node(s), mark them as explored. 

5. Walk to the next unexplored node in the sub-graph and iterate from step 2.  

6. If all nodes of the current sub-graph have been explored, pick a next sub-graph and 

start from step 2. 

7. If all sub-graphs have been explored, then all constraints in the dependency graph 

have been solved. 

Table 5: Excerpt of inconsistent specification 

Variability Value Constraints 

V1 Normal If V1 is Highly-secured, V6 is High. 

If V1 is Speed-line, V7 is Low. 

V7 Low If V7 is Low, V1 is Speed-line 

 

Without the product line concept of a dependency graph, the constraints among 

the different constraints would have to be solved later during the constraints’ verification 

using higher-overhead verification techniques such as the one introduced in section 4.2.5.  

Solving the constraints using a dependency graph is more efficient than detecting the 

inconsistency in the later verification phase. Moreover, we will need this consistent 
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specification to apply the query algorithm to the composition search space in the next 

step.  

5.2.7 Query the Composition Search Space 

We now query the composition search space to find the subset of compositions 

that satisfy each user-selected variation parameter.  Because the construction of the 

search space in the previous step has verified that the remaining compositions satisfy the 

common requirements and that the user’s selection of variabilities is consistent, we need 

only to perform a simple look-up in the Search Space Table.  Table 6 continues our 

example, showing two queries on the parameters of V1 and V7. 

Table 6: Sample query in the composition search space 

Variability Value Composition Subset 

V1 Speed-line CSet1 

V7 Low CSet2 

 

We note that since (V1=Speed-line) and (V7=Low) have already been shown to 

be consistent by the constraint solving in section 5.2.6, if any element of CSet1 satisfies 

V1=Speed-line and any element of CSet2 satisfies V7=Low, then any element of 

CSet1 CSet2 satisfies (V1=Speed-line) and (V7=Low).  More generally: For any two 

constraints P1 and P2, if P1 and P2 are consistent or independent, and any composition 
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in SetA satisfies P1 and any composition in SetB satisfies P2, then any composition in 

SetA  SetB satisfies both P1 and P2. 

5.2.8 User Customization  

The user can customize the web service functionalities and its NFRs by setting the 

values for the variabilities. However, we need to make sure these values of the 

parameters are consistent with each other and do not violate any constraint identified in 

the CVA. To do this, we use a decision model. The structure of the decision model is 

shown in Figure 19. A decision model [65] is a user-friendly, front-end model that 

consists of the commonalties, the variabilities, the parameters of variation together with 

their constraints/dependencies, the mapping relations and the algorithms to handle these 

complex relations. In both the product line and web-service context it interacts with the 

user and generates the user preferred product.   

To customize the service composition, using prompts from the constraint solving 

algorithm in Sect. 5.2.6, the user successively selects values for the parameters of 

variation until all variabilities have been decided.  The workflow for making decisions 

using the decision model is: 

1. Apply constraint solving algorithm to interact with the user. 

2. Report failure if no valid consistent specification exists with the current user 

decisions and start over. 

3. If a consistent value set of the variabilities is obtained, query the search space with 

these parameters to retrieve a set of composition subsets. 
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4. Compute the conjunction of the composition subsets. If the conjunction yields a non-

empty set, any composition in this set will satisfy the user’s common and variable 

(customized) FRs and NFRs. If the conjunction is an empty set, it means no 

composition satisfies all the user’s requirements. 

5. Output the result. In the case of a non-empty set, we use the composition with the 

least services to avoid redundant services.  

 

Figure 19. Structure of the decision model 

5.3 Complexity of SPL-WSC 

In this section we compare the worst-case complexity of the software product-line 

approach described above with that of the traditional, non-product-line approach in [45].  
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 For a web service composition system, there are three cases in which we need to 

re-verify the NFRs for a web service composition: when there is an update to (1) a global 

QoS constraint, (2) a modular service QoS profile, or (3) an aggregation rule of a QoS 

attribute., Any of these three cases can cause a violation of QoS constraints. 

Our assumption in analyzing the complexity of the SPL solution is based on the 

following observation regarding update frequency: 

Frequency of QoS constraint change >> Frequency of single modular service QoS 

change>> Frequency of QoS aggregation rule change. 

 As the global QoS constraint change is far more frequent than the other two cases, 

this is the only situation we have considered in complexity comparisons. 

5.3.1 Complexity of the SPL solution process 

We divide the SPL approach process into two stages. The first stage, the 

preparation stage (akin to the domain engineering process for a software product line), 

conducts commonality and variability analysis (CVA), functionally composes all web 

service compositions and verifies every possible variability value in the CVA table in 

order to construct the indexed search space of web service compositions. The second 

stage, the post-deployment stage (akin to the application engineering process for a 

software product line), takes a to-be-verified QoS constraint as input, searches the CVA 

table for it, and returns a set of web service composition candidates. A further verification 

on this set of candidates may be required to determine the valid web service composition. 

Whether to conduct this verification on the candidate service composition set is 
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dependent on the type of the QoS attributes. We divide all QoS attributes into two 

categories: 

(1) The QoS attributes whose value can be relaxed.   

An example for a QoS attribute that can be relaxed is the message delay. If a 

service composition satisfies a constraint that requires the message delay to be less 

than 10 seconds, it must satisfy all constraints that require the message delay to be 

less than k seconds where k>10. This is often the case in setting the values for a 

variability in a CVA table. If the values of a QoS variability can be relaxed, the QoS 

constraint can map to many values of this variability. Thus, the CVA table needs to 

retrieve multiple sets of web service composition candidates with one relaxable QoS 

constraint as input.    

(2) The QoS attributes whose value cannot be relaxed.    

An example for this type of QoS attributes is the authentication requirement. If a 

web service composition satisfies the authentication requirement, it cannot also 

satisfy the anonymous requirement (without authentication). With the authentication 

requirement as input, the search result from the CVA table is a variability value and 

its corresponding service composition candidate set. 

Preparation Stage 

As Figure 20 shows, there are three steps in the preparation stage. The first is 

manual, while the second and third affect the complexity estimation. The explanation of 

these complexities follows the legends of the figure. 
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1. CVA 
2. Functional composition of modular services (Composition Search Space 

Construction) 
3. Verify and index each variability value (QoS Search Space). 

 

Figure 20. Complexity of the preparation stage of the SPL approach 

Let n:  the number of the functional operations in the goal model. 

m:  the number of candidate modular services for each functional operation. 

s: number of variabilities in the CVA table. 

v: average number of parameters for each variability in the CVA table. 

p: number of states in the property automata. p ≤ n.  
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k: number of composition candidates in the composition search space that satisfy 

the functional goal model.  

Step 1. Because the CVA process is conducted manually in the domain 

engineering phase and requires expert knowledge, we do not include it in the complexity 

calculation.  

Step 2. For the functional WSC, we choose a brute force strategy and try every 

possible combination of the possible candidate modular services, so the complexity for 

this process is exponential as O(mn). Since we take k as the number of composition 

candidates derived from this functional composition process, k ≤ mn. Thus, if every 

possible combination of modular services satisfies the goal model, k = mn. Otherwise, k < 

mn. 

Step 3. During the QoS verification and indexing process, each candidate 

composition is verified against all constraints and maps to the right variability parameter 

in each variability. Since there are k candidate compositions Step 2, and s variabilities to 

verify, there are k·s QoS verifications that are performed. Each verification calculates the 

product of the service composition automaton and the property automaton. As a single 

state represents a modular service in the automaton, the number of states in a candidate 

service composition is the same as the number of states in the goal model, i.e., n. Since p 

is the average number of states in the property automata, each QoS automaton 

verification is O(n·p). Thus, the total verification complexity of this process is: k·s· O(n·p) 

= O(k·s·n·p). Because we construct our QoS constraint from the goal model, we know p

≤n. Since k ≤ mn, the worst case complexity is O(s·mn n2). 
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Post-Deployment Stage:  

The procedure to verify a new QoS constraint involves three steps (Figure 21): 

1. Check QoS failure of current WSC on this update. When the current web service 

composition still satisfies the updated QoS constraint, we report success and exit 

the process. Otherwise we report a failure and continue the process. 

2. Search CVA table for the results set of web service compositions.  

3. If additional verification of the results set is necessary, verify the results set and 

update the QoS search space with the new mapping. 

Exit

Succeed Failed

Failure 
Check

New QoS update

CVA 
Coverage 

Check

Update 
Composition 
with stored 

composition

Succeed

O(1): QoS Constraint Update

O(v)

O((k/v)·s) when no relaxation among 
Variability values 

O((k/2)·s) when relaxation exists 
among Variability values 

Figure 21. Process to verify a new QoS constraint with QoS-indexed composition 

search space. 
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The failure check when QoS constraint is updated costs O(1) time because we 

only need to check the stored and aggregated QoS property with the new QoS constraint. 

(Hash-table lookup costs O(1)). 

The complexity of the CVA coverage check is O(v) because we need to check 

which parameter in the variability’s parameter set the new QoS constraint belongs to.  

Then we get a set of web service compositions that maps to the variability 

parameter. If this variability parameter is a ranged value, further verification sometimes is 

required to determine the subset of this result set that satisfies the QoS constraint. Since 

we need to compare the worst complexity, we here assume this further verification is 

required all the time.   

The complexity of further verification of the results set returned by CVA table 

lookup is O((k/v)·s), because there are k/v service compositions for each variability value 

on average and there are s variabilities to verify. (All QoS constraints may need to be re-

verified when one is updated in order to maintain consistency.) 

However, when relaxation is possible for variability values (for example, a low 

latency is always valid for a high latency constraint), the average number of possible 

service compositions in the results set is k/2. Thus, the complexity becomes O((k/2) ·s). 

 We assume that w-percent of QoS attributes can be relaxed and (1-w) percent 

cannot be relaxed, 0≤w≤1. 
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The complexity of further verifying the results set returned by CVA lookup is: 

w ·O((k/2) ·s)+(1-w) ·O( (k/v) ·s) 

In the rare case of a QoS aggregation rule change, we have to update the QoS 

search space by re-verifying and re-indexing all related mappings. This case is not 

considered in our complexity comparison because it rarely happens. 

5.3.2 Complexity Comparison 

The functional composition approach described in [45] with consideration of QoS 

constraints tries every possible service composition candidate in the search space. This 

process has similar complexity analysis as the brute force method used to index all QoS 

variability values. Its complexity with the verification of QoS constraints is thus 

O(s ·k ·p ·n), and in the worst case, it is O(s·mn n2). 

In the previous sections, we have explained that k≤ mn. Because we need to 

compare the worst complexity in both cases, we need to reduce the number of variables 

by relaxing some variables to their worst cases. We know the number of functional 

composed web services is less than or equal to all possible compositions.  

We use the goal model automaton as a template to derive the property constraint 

automaton and use a single state to represent the modular service in the final composition. 

Thus, the number of states in the property automaton is less than or equal to the QoS 

constraint automaton. Thus, p≤n. 
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Considering the worst cases, we can derive the following complexity equations. 

Note that the complexity of checking QoS failure is equal in both solutions, so is not 

considered in the following analysis. 

Complexity of the normal solution for one QoS constraint failure: 

O(s·mn n2) 

Complexity of the normal solution for x QoS constraint failures: 

O(x·s·mn n2) 

SPL solution for QoS constraint update: 

Complexity of the preparation stage: 

O(mn)+ O(s·mn n2) = O(s·mn n2) 

Complexity of the post-deployment stage for one QoS constraint failure: 

O(v)+w·O((k/2) ·s)+(1-w) ·O( (k/v) ·s) 

Overall for one QoS constraint failure :  

O(s·mn n2)+ O(v)+ w·O((k/2) ·s)+(1-w) ·O( (k/v) ·s) 

Overall for x QoS constraint failures (only counting the preparation stage 

complexity once): 

O(s·mn n2)+ x·O(v)+ x·w·O((k/2) ·s)+ x· (1-w) ·O( (k/v) ·s) 

For these to be an advantage in using the SPL solution, it must be the case that: 
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O(s·mn n2)+ x·O(v)+ x·w·O((k/2) ·s)+ x· (1-w) ·O( (k/v) ·s) 

< O(x·s·mn n2) 

By applying k=mn as the worst case and solving this inequality, we get:  

2
1  

Thus, x (number of times of reuse) must be over this threshold to ensure the SPL 

solution has an advantage over the normal solution. We name this minimum x to have 

this advantage as x.lim. The SPL solution has an advantage only when x.lim is positive.  

.
2

1  

n:  number of functional operations in the goal model. 

m:  number of candidate modular services for each functional operation. 

s: the number of variabilities in the CVA table. 

v: the number of values for each variability in the CVA table. 

w: 0≤w≤1.  A constant. 

In the next section, we design and conduct experiments to analyze how the 

threshold x.lim varies accordingly to these four variables: n, m, s and v. 
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5.3.3 Investigation on Complexity Model 

5.3.3.1 Investigation 1: 

When the goal model and the modular service registry are fixed, n and m are 

determined. In different projects with different CVA tables, s and v are variable. Our 

target is to explore the effect of the number of variabilities, and the number of 

alternatives per variability, on the performance of the SPL-WSC approach. 

Design of Investigation  1: With fixed n and m, we compare the x.lim balance 

point when s and v change. Let s= [1 … 10] and v= [1 … 200], then what is the value of 

x.lim? 

Figures 22 to 29 show the results of Investigation 1 with different n, m and w 

settings.  

Figure 22 shows how x.lim varies with s and v when n=2, m=3 and w=0. There 

are five shark-fin-like objects in the mesh. For each line when s is equal to 1 to 5 at x axis, 

the curve along the y axis is like a heart-pulse curve. It means when s is fixed, there is 

always an advantage in adopting the SPL approach with a number of reuses when the 

number of values in each variability v increases until the heart pulse. When v is close to 

the heart pulse, the number of required reuses for SPL to have an advantage increases 

steeply to a couple hundred times. When v increases more, this reuse number 

immediately becomes negative and remains negative. Note that the light orange zone 

after the shark-fins is the negative zone. This phenomenon occurs because when n and m 

are small, there are few composition candidates to verify. When the number of variability 
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values v increases to a very large number, the overhead of searching a variability value in 

the CVA table will also increase dramatically. At this point, the total cost of the SPL 

approach for each QoS verification will surpass the cost of the normal approach.  

Figure 23 and Figure 24 show how x.lim varies with s and v when n=2, m=3, 

w=0.5 and w=1. As expected, when the percentage of relaxable QoS attributes increases, 

the shark-fin appears sooner on the y axis, which means the balance point appears at a 

smaller v number. Basically, the parameter w doesn’t affect the layout of the 

relationships of the variables much. Thus, from this point on, we show all further figures 

only at w=50. 

Figure 25 and Figure 26 show how x.lim varies with s and v when n=2, m=4 and 

n=2, m=5. We see that an increase in the number of candidate modular services for each 

goal model operation m can postpone the shark-fin effect, because an increase in m can 

increase the size of the candidate service composition search space, which can make the 

reuse in SPL approach more significant. 

Figure 27 shows how x.lim varies with s and v when n=3, m=3. An increase in the 

number of service operations in the goal model n can also postpone the shark-fin effect, 

and its effect on postponing the shark-fin effect is more significant than variable m. This 

is because the increase of n reduces the advantage of verifying a simple service 

composition automaton in the normal approach. 

Figure 28 and Figure 29 show how x.lim varies with s and v when n=3, m=4 and 

n=5, m=10. As expected, with a reasonable size of the goal model where the service 
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operations are more than 3, and a reasonable number of candidate modular services 

where the candidate modular services for each service operation are more than 4, the 

advantage of the SPL approach is obvious and significant. 
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Figure 23. Investigation 1: n=2, m=3, w=0.5. 
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Figure 24. Investigation 1: n=2, m=3, w=1. 
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Figure 25. Investigation 1: n=2, m=4, w=50. 
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Figure 26. Investigation 1: n=2, m=5, w=50. 
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Figure 27. Investigation 1: n=3, m=3, w=50. 
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Figure 28. Investigation 1: n=3, m=4, w=50. 
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Figure 29. Investigation 1: n=5, m=10, w=50. 
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5.3.3.2 Investigation 2: 

When the CVA is designed, s and v are determined and fixed. The size of the goal 

model can vary because there are different ways of implementations.  One of the service 

registries can be chosen based on its size. Our target is to explore the effect of the size of 

the goal model and the size of the service registry, on the performance of the SPL-WSC 

approach.  

Design of Investigation 2: When s, v and w are fixed, we compare the x.lim 

balance point when n and m changes. When n=[2 .. 10], m=[2 .. 50], what is the value of 

x.lim? 

 Figure 30 to Figure 34 show the results of Investigation 2. 

 Figure 30 to Figure 32 show how x.lim varies with n and m when s=5, v=5 and 

w= [0, 0.5, 1]. Shown in these three figures, except when there is a corner with shark-fin 

effect when n and m are small, the SPL approach has an advantage over the normal 

approach with a small number of reuses. With the increase of the w constant, this shark-

fin effect is more obvious, which also confirms the conclusion reached in Investigation 1. 

 Figure 33 and Figure 34 show how x.lim varies with n and m when s=5, v=10, 

w=0.5 and s=10, v=20, w=0.5. The surface layout does not have any significant 

difference compared to those the previous three figures. It shows parameters n and m 

have greater impact on the SPL approach performance than s and v.  
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Figure 30. Investigation 2: s=5, v=5, w=0. 
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Figure 31. Investigation 2: s=5, v=5, w=0.5. 
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Figure 32. Investigation 2: s=5, v=5, w=1. 
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Figure 33. Investigation 2: s=5, v=10, w=0.5. 
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Figure 34. Investigation 2: s=10, v=20, w=0.5. 
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5.3.4 Conclusion of the Investigations 

From Investigation 1 and Investigation 2, we can identify the impacts of 

parameters in the SPL approach on its advantages over the normal approach. The increase 

of the size of candidate compositions search space by either n or m can increase the reuse 

advantage of applying our SPL approach. Parameter s (number of QoS variabilities) has a 

positive effect on the SPL approach, while parameter v (size of variability parameters set) 

has a negative effect on the SPL approach when it is too large. 

Overall, the SPL approach has more advantages and a comparatively better 

efficiency when there is a complex service composition (larger goal model size) with 

many candidate modular services. The SPL approach is more efficient when there are 

more variabilities with reasonable numbers (>3) of parameters in each variability in the 

CVA table. 

5.4 Conclusion 

This chapter introduces a new approach to customizing functional and non-

functional requirements of a web service composition by incorporating software product 

line engineering techniques into the web service domain. By following the product line 

engineering procedures, web service compositions in the search space of a commercial 

service provider can be more readily composed, verified and reused in the presence of 

users’ personal selections of their preferred variations.  

This approach creates a two-phase solution for efficiently handling mass-user 

service customization: a preparation phase in which the composition search space is 

constructed, and an implementation phase in which the web service composition is 
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customized.  As long as functional requirements remain the same during system 

evolution, the preparation stage does not need to be repeated. We anticipate that the 

preparation phase will occur off-line and the customization phase will occur at runtime. 

Most of the computational overhead of verification is pulled into the preparation stage. 

The runtime verification for the user’s customization requirements (the selection of 

variations) is thus simplified. A product-line decision model hides background relations, 

dependency models and verification algorithms from the user. The decision model 

interacts with the user to maintain a consistent set of customized requirements and to 

generate a more convenient and efficient experience of service customization.   
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CHAPTER 6. SIMULATION 

This chapter introduces a simulation platform for verifying web service 

compositions. The purpose of constructing this platform is to evaluate the practicality and 

the merits of our approaches described in the previous two chapters. Through simulations 

of QoS property verifications for web service compositions on a randomly generated 

large data set and under different environmental settings, analyses and comparisons based 

on simulation results show the advantages and disadvantages of each of our approaches 

under various circumstances and configurations. These analyses guide us in choosing and 

configuring our approach process to achieve the best efficiency of web service 

composition verifications for a service oriented system.    

6.1 WSCSimu Platform 

The simulation platform for testing web service composition verification 

approaches is named ‘WSCSimu’. To illustrate the design of WSCSimu platform, Figure 

35 shows the class diagram excerpt of the WSCSimu project.  

We design an Attribute class to define QoS properties that can be represented in 

our system, which consists of their variable types, boundaries and aggregation rules.  

The aggregation rules can also be redefined in its children classes by taking the 

advantage of the polymorphism feature of Java. Sample aggregation rules here are the 



128 

lowest rules, which always choose the lowest value encountered while aggregating, and 

the additive rule, which calculates the sum of all encountered property values. More 

aggregation rules can be defined according to the nature of QoS properties. 

The AttributeValues object records one or more pairs of attributes and their 

values.  

The AttributeGenerator generates different types of attributes and their values 

randomly for simulation purpose.   

The Constraints object randomly generates QoS constraints with scoping 

information and quantitative QoS constraints. When generating QoS constraints, we have 

considered the size of the scope, so QoS constraints are always appropriate for the scope.  

The Automaton object consists of a set of the State objects and a set of the 

Transition objects which together form the standard automaton. Each of the transitions 

affixes with a service Operation object according to our SOA setting. 

The CompositionGenerator randomly generates an automaton as the web 

service goal model. We realize this random generation by specifying three parameters. 

The first parameter is the number of automaton tiers, i.e., the maximum number of 

transitions from the start state to the end state in any path. The other two parameters are 

the maximum number of branches for each state and the possibility of branching. For 

example, if the number of tiers is 6, the maximum number of branches for each state is 3 

and the possibility of branching is 30%, which means the CompositionGenerator 

generates from a start state. For each state generated, the CompositionGenerator has a 30% 
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possibility to generate at the most 3 outgoing transitions. At tier 6, all states have out-

transitions to an end state. 

The Verifier is the implementation of our core QoS verification algorithm. It 

implements the process of calculating the product of the web service composition 

automaton and the QoS constraint automaton and outputs the verification result. When 

verifying multiple QoS constraints, this verifier can be used to conduct an independent, 

sequential or incremental verification process. The other two verifiers, the 

VerifierBigBang and the VerifierTwoStage, are variations of this verifier. They are 

designed to perform other processes for multiple constraints verification. Rather than the 

normal Verifier which can only take one constraint as input, both of them can take a set 

of constraints as input to verify.  

 The WSCSimu typically conducts a QoS constraint verification on a web service 

composition as shown in Figure 36. Simulation processes described in the next sections 

are very similar to this process, with only small variations. As we can see from Figure 36, 

first we use CompostionGenerator to generate a composite service goal model. Then we 

generate a set of QoS attributes and input these attributes into the goal model and the 

constraints-generator. The constraints-generator takes the goal model as another input 

and generates the constraints with scoping information and QoS constraints.  

We can use the goal model to generate, or functionally compose, one or more web 

service composition automata. We choose a type of verifier according to the purpose of 

the simulation and initialize this verifier. The verifier takes the service composition 
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automata and the constraint automata as inputs, and performs the verification algorithm 

and process. Finally, it outputs either success or failure. 

 

 

Figure 35. Class diagram excerpt for WSCSimu project 
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Figure 36.QoS verification process for web service composition in WSCSimu 
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6.2 Randomization 

In the WSCSimu platform, the randomization follows a uniform distribution 

pattern in the valid value range for different generators. In order to make the simulation 

results comparable with each other, we use a fixed initialization seed for the Java random 

object (java.util.Random). In this way, the set of candidate web service compositions are 

the same in the different verification processes.   

 There are four random generation features in WSCSimu: Goal model generation, 

Web service composition generation, Constraint generation and QoS attribute generation.   

 In the goal model generation process, the fundamental concept is to randomly 

generate the automaton. There are four input parameters in this randomized automaton 

generation process: the number of tiers, the number of branches, the seed for the random 

function and the probability of branching. The number of tiers means the maximum 

number of states in the longest path starting from the entrance of the automaton to any 

end of the automaton. The number of branches means the maximum number of parallel 

sub-paths that can be generated starting at a state. For example, if the number of branches 

at StateA is 3, the number of the outgoing transitions for this StateA is 3 at maximum. 

The probability of branching means the probability to generate a set of parallel out-

transitions for a state. 

 In the web service composition generation process, the goal model automaton and 

a set of QoS attributes are the inputs. The web service composition automata copy the 

workflow of the goal model and associate the QoS attributes with each state and 
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transition in the derived automata. A QoS value is uniformly generated for each QoS 

attribute in this process. 

 In the constraint generation process, the goal model automaton and the QoS 

attributes are the inputs. There are two special randomization parameters for this process 

besides the random seed: the probability to start building a scope and the probability to 

terminate building a scope. The generation process traverses the goal model automaton 

from the entrance point.  For every state, there is a probability to start building the scope 

of the constraint. If the scope building is already started, there is a probability to 

terminate the scope building process for each state. When the scope is built, the QoS 

constraint is uniformly randomly generated based on the size of the scope. 

 In the QoS attribute generation process, the user needs to specify the number of 

attributes, the minimum valid value, the maximum valid value, the aggregation rule and a 

random seed. A QoS attribute value is uniformly generated in the valid value range. 

6.3 Simulations 

6.3.1 Simulation 1 

Simulation goal: find a reasonable size of the web service composition search 

space to do further simulation. 

Simulation design: we change the size of the web service composition search 

space while fixing the constraint scope size and goal model size. Table 7 shows the 

environment parameter setting for the simulation. 
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Table 7: Environment setting for Simulation 1 
Object Parameter 
Global Random seed 111 
Goal model Num of tiers  7 
Goal model Num of branches 2 
Goal model Probability of branching 50% 
Attribute Num of attributes 1 
Attribute Low bound 1 
Attribute High bound 10 
Constraint Probability to start 50% 
Constraint Probability to end 20% 
Constraint Number of constraints 1 
Composition Num of instances 200000 
Verifier Type Normal 

 

We add a loop at the web service composition generation part in the verification 

process (Figure 36). We create a set to load all web service compositions and call this set 

the WSC search space set. We log the time consumed by the verifier to verify the whole 

WSC search space set and divide this time by the size of the WSC search space set to get 

the verification time for each WSC. Then we repeat this process by changing the size of 

the WSC search space set from 1 to 131072 with an exponentially increasing rate. We 

compare verification time for each WSC in different search space sets. Figure 37 gives 

the results of this simulation, which shows how the search space size affects WSC 

verification time.  

The results in Figure 37 tell us that when the WSC search space size is small 

(under 128), the installment overhead of Java object initialization is very obvious, which 

can result in a biased set of simulation data. From Figure 37, we can see that verification 

time is stable when the search space size is over 500. Thus, to have a more convincing 
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simulation data set and analyses in later simulations, we set a minimum limit of 500 for 

the size of the WSC search space.  

 

Figure 37. Simulation 1: How search space size affects WSC verification time 

While recording the verification time in Simulation 1, we also record the success 

rate when verifying the WSC search space set. Because we generate the web service 

compositions, attributes and constraints with the fixed random seed for every round, the 

expected verification success rate should be fixed. However, when the WSC search space 

set is small (under 128), the success rate is not stable enough to represent the real success 

rate. From the results shown in Figure 38, we can derive the same results as Figure 37: a 

minimum of 500 WSCs in the search space set is a must to get stable results for later 

simulations. 
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Figure 38. Simulation 1: How search space size affects statistical WSC verification 

success rate 

6.3.2 Simulation 2 

Simulation goal: find the relation between QoS constraint scope size and QoS 

constraint verification time. 

Simulation design:  we fix the size of the WSC search space and the size of the 

goal model, while changing the size of the scope in QoS constraint. Table 8 shows the 

environment parameter setting for the simulation. 
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Table 8: Environment setting for Simulation 2 
Object Parameter 
Global Random seed 111 
Goal model Num of tiers  12 
Goal model Num of branches 2 
Goal model Probability of branching 50% 
Attribute Num of attributes 1 
Attribute Low bound 1 
Attribute High bound 10 
Constraint Probability to start 100% 
Constraint Probability to end 0% 
Constraint Number of constraints 1 
Constraint Scope size limit 1~65 
Composition Num of instances 500 
Verifier Type Normal 

 

We design the simulation process based on the basic process shown in Figure 36. 

We create a loop for generating a search space set with 500 web service compositions. 

Then we create another loop to generate QoS constraints with different scope sizes from 

1 to 65. Experiments show that verification time spent on a scope size beyond 65 is too 

long for conducting simulation on large WSC search space sets. For each scope size, we 

record and calculate average QoS constraint verification time for each WSC in this 

simulation. Note that the scope size of a QoS constraint means how many states and 

transitions in the scope of the QoS constraint are to be verified.    

Figure 39 gives an idea of how scope size can affect the verification time of each 

QoS constraint.  As expected, the time overhead of verifying a QoS constraint with a 

larger scope costs more time than smaller scopes. The relationship between scope size 

and constraint verification time is similar to a linear relationship.  
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Results from this simulation show that affixing scope information on QoS 

constraint, especially a small scope, can significantly reduce verification time of a QoS 

constraint. In other NFRs models for web service compositions, the NFRs are always 

defined and verified as global constraints, which is not as efficient and precise as our 

model. 

During Simulation 2, we also recorded and calculated verification time for each 

state or transition in the constraint automaton. From the results in Figure 40 we can see 

that as scope size increases, verification time for each state or transition slowly decreases, 

reaching a stable point at scope size 37.  The explanation for this phenomenon is that 

when the scope size is small (under 37), the overhead of initializing the verifier plays an 

important role in the whole verification process. When the scope is larger (over 37), this 

overhead is not as obvious as before since it is divided evenly over verification time of 

each state or transition. 
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Figure 39. Simulation 2: How scope size affects each constraint verification time 

 

Figure 40. Simulation 2: How Scope size affects each state/transition verification 

time 
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6.3.3 Simulation 3 

Simulation goal: compare the performance of the three strategies of verifying 

multiple QoS constraints as introduced in Chapter 4. These three strategies are 

independent verification strategy, big-bang verification strategy and two-stage 

verification strategy. 

Simulation design: create two fixed sets of candidate web service compositions 

and a fixed set of constraints for verification. One set of candidate WSCs should have a 

low expected verification success rate and the other a high expected verification success 

rate. Conduct QoS verifications with the three different verifiers, each of which 

represents different strategies of verifying multiple QoS constraints, as shown in Table 4. 

Record and compare verification performance of the three strategies under different 

environments (different candidate WSCs sets). Table 9 shows the environment parameter 

setting for the simulation. 

Table 9: Environment setting for Simulation 3 
Object Parameter 
Global Random seed 111 
Goal model Num of tiers  7 
Goal model Num of branches 2 

Goal model 
Probability of 
branching 50% 

Attribute Num of attributes 1 
Attribute Low bound 1 
Attribute High bound 10 
Constraint Probability to start 50% 
Constraint Probability to end 20% 
Constraint Number of constraints 3 
Composition Num of instances 1000 
Verifier Type Normal, TwoStage, BigBang 
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The simulation process is modified from the basic WSCSimu verification process 

shown in Figure 36. We use a modified web service composition generator to construct 

two sets of candidate web service compositions, each of which has 1000 candidates. We 

also use a modified constraint generator to generate a set of 3 QoS constraints. Through a 

guided generation process, we make one set of candidate WSCs to have a low expected 

verification success rate (5%) and the other having a high expected verification success 

rate (95%). Three strategies for verifying multiple constraints are used to verify all three 

QoS constraints for candidate WSC sets. Their verification times (their performance) are 

recorded by SimuLogger. We repeat this experiment 10 times to avoid biased simulation 

data and compare the derived results in Figures 41 and 42.  

Figure 41 shows the performance comparison for the three strategies at a 5% 

expected verification success rate. We can see from the simulation results in this setting 

that the big-bang verification strategy gives the best verification performance, which is 

around 4 times faster than the independent verification strategy and 8 times faster than 

the two-stage verification strategy. The independent verification strategy gives an 

average performance. The two-stage verification strategy gives the worst performance, 

which is two times slower than the independent verification strategy. 

We then analyze these simulation results to get a reasonable explanation.  

When success rate is very low, the independent algorithm can terminate the whole 

verification process when it meets the first invalid constraint. However, the two-stage 

algorithm has an installment overhead of combining all constraints and the combined 

constraint has a more complex verification process.  
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The consequence of this overhead is that the independent verification strategy 

performs better than the two-stage verification strategy when the expected success rate is 

low, which means the independent verification strategy mostly terminates its verification 

process after it has verified the first constraint. 

The big-bang verification strategy gives the best verification performance. 

Because we try a low expected success rate before simulation, we set the constraint 

threshold to be very small, which means attributes in WSCs can easily aggregate to 

exceed the constraint limit and violate the QoS constraint. In this case, because the Big-

Bang verification strategy verifies all QoS constraints simultaneously, it can find any 

QoS constraint violation and terminate the verification process at a very early stage.  

 

Figure 41. Simulation 3: Strategies Comparison (5% Success Rate, 1000 WSCs, 3 

Constraints)  
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From the simulation data and the analyses, we can conclude that when QoS 

verification of WSCs has a low success rate expectation, we should choose the big-bang 

verification strategy to verify multiple QoS constraints. A low verification success rate 

expectation can usually be caused by composing a composite web service from an 

untrusted or an open modular service registry.  

Figure 42 shows the performance comparison for the three strategies at a 95% 

expected verification success rate. From the figure we can see that the two-stage 

verification strategy gives the best performance, which is slightly faster than the 

independent verification strategy and 3 to 4 times faster than the big-bang verification 

strategy.  

By comparing Figure 42 with Figure 41, we notice that the performance of the 

two-stage verification strategy does not change too much in either of simulation settings, 

while verification time of the independent verification strategy increases up to three times 

and of the big-bang verification strategy increases up to more than 20 times.  

We analyze this phenomenon for an explanation. When the expected success rate 

is high, the independent algorithm needs to verify almost all candidate constraints (95% 

chance), which increases verification time nearly three times compared to verification at 

5% success rate. 

The time required by the two-stage verification strategy, on the other hand, does 

not change much because verifying a combined constraint is a little more efficient than 
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verifying them independently and the installment overhead of combining the constraints 

can be ignored when this combined constraint is reused 1000 times. The verification 

process and length do not change at all in any of the settings. This results in a stable 

performance for the two-stage verification strategy. However, the overhead of combining 

the constraints may be obvious when the candidate web service composition set is small. 

In this case, the performance of the two-stage verification strategy is still stable, but it 

may be not as efficient as the independent verification strategy. 

The big-bang verification strategy, in this setting, needs to simultaneously verify 

three QoS constraints (at 95% success rate). Because implementation of the big-bang 

verification algorithm requires more intermediate variables and multiple threads, if it 

does not terminate at an early verification stage, its performance in terms of time 

consumed would be worse than verifying multiple constraints independently and 

incrementally.   

We can conclude from this analysis that when the expected verification success 

rate is high and the candidate WSC set is large, the two-stage verification strategy is a 

good choice to maximize reuse of the combined constraint and achieve best performance. 

However, if expectation of the verification success rate is high and the candidate WSC 

set is small, the independent verification strategy is a better choice.  

Web service composition from an enterprise internal modular service registry or a 

trusted service registry usually has a high verification success rate expectation. 
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 When the expected verification success rate cannot be determined, the 

independent strategy or the two-stage strategy shall be a stable strategy.  

 

Figure 42. Simulation 3: Strategies Comparison (95% Success Rate, 1000 WSCs, 3 

Constraints) 

6.3.4 Simulation 4A and Simulation 4B 

Simulation goal: To experimentally try the SPL based QoS constraint verification 

approach. Compare two ways of constructing indexed WSC search space and their 

respective performances. 

Simulation 4A design: Simulation 4A incrementally constructs the indexed search 
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system is deployed. For each verification encountered after the web system’s deployment, 

we first lookup in the indexed WSC search space to see if this updated constraint has 

been verified and stored in the indexed WSC search space. If so, we return the stored 

verification results. Otherwise, we initiate the verification process on this updated 

constraint. The derived verification result is returned and stored.  

Simulation 4B design: Simulation 4B builds the indexed WSC search space at 

once before the web system deployment and makes it ready for later verification lookups. 

In this process, construction of the indexed WSC search space is a preprocess for the 

verification system. The overhead for this preprocess is an extra overhead for the overall 

system verifications. The stored and pre-verified QoS constraints are not guaranteed to be 

used after the web system is deployed. Although the pre-construction of this indexed 

WSC search space can give a better performance afterwards, if QoS verification results 

are not frequently and adequately reused after system deployment, the overall average 

performance for each verification would not be very efficient. 

Table 10 shows the environment parameter setting for these two simulations. 

We have designed the simulation process based on the basic process shown in 

Figure 36. We created an indexed WSC search space, which is a hash table in our 

implementation, to store service compositions and their verification results mappings. 

For Simulation 4A, we randomly generated 1000 web service compositions and 

QoS constraints to verify. For each verification, we randomly picked a web service 

composition from the 1000 composition instances and randomly picked a QoS constraint 
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to mimic customer choice. Then we query this composition-constraint pair in the indexed 

WSC search space. If it has been verified and stored in the hash table, we retrieve and 

return the verification results. Otherwise, we perform verification of this QoS constraint 

on this service composition, and store and output the verification results. 

Table 10: Environment setting for Simulation 4 
Object Parameter 
Global Random seed 111 
Goal model Num of tiers  7 
Goal model Num of branches 2 
Goal model Probability of branching 50% 
Attribute Num of attributes 1 
Attribute Low bound 1 
Attribute High bound 10 
Constraint Probability to start 50% 
Constraint Probability to end 20% 
Constraint Number of constraints 1 
Composition Num of instances 1000 
Verifier Type Normal 
Verifier Num of verifications 10000 

 

Figure 43 shows the total time spent for 10,000 of QoS verifications when an 

indexed search space of 1000 WSCs is incrementally built. The indexed search space is 

not fully built (covering all 1000 WSCs) until the number of random verifications 

exceeds 5400. We notice that the verification time is stable after 1600. By analyzing the 

simulation data, we find that the indexed WSC search space is 80% built at the 1600th 

verification and 90% at the 2400th verification. We can conclude that the web based 

system using an incrementally built indexed WSC search space can reach a stable 

verification performance when the indexed WSC search space is 80% built. Taking the 
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number of possible service compositions as n, 80% to 90% build of the indexed WSC 

search space requires around 2n times of verifications. 

 

Figure 43. Simulation 4A: The total verification time when search space is 

incrementally build (SPL Approach) 

For Simulation 4B, we randomly generated 1000 web service compositions and 

QoS constraints for verification. First we verified all 1000 web service compositions on 

all QoS constraints independently. We stored the composition/constraint pairs and their 

verification results mappings into indexed WSC search space, which is a hash table in the 

implementation. Then for any subsequent verifications after the web system’s 

deployment, we only need to query the indexed WSC search space to retrieve the 

verification results. 
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Figure 44 shows the results of Simulation 4B. We can see the first 1000 

verifications are merely used for constructing the indexed WSC search space, which are 

not real customers’ requests. After the first 1000 verifications, the later verifications are 

only lookups in the indexed WSC search space, whose performance is stable and linear 

with the number of verifications. 

 

Figure 44. Simulation 4B: The total verification time when search space is build first 

(SPL Approach) 

By comparing Figures 43 and 44, we can see that at the 10,000th QoS verification, 
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means there is an advantage in using the incremental building process of the indexed 

WSC search space in real applications, especially when the overall number of possible 

QoS verifications after system deployment is not very large. Building the indexed WSC 

search space at one time and before the system deployment is thus more suitable for 

performance critical web based systems, where customers want the verification process to 

be completed as soon as possible. 

6.3.5 Simulation 5 

Simulation goal: show the difference between QoS constraint verification 

performance obtained by the normal approach (by calculating automata product) and the 

SPL-based approach (by pre-constructing the indexed WSC search space). 

Simulation design: record and compare the performance of a normal QoS 

constraint verification process using the verifier and the performance of a normal QoS 

constraint verification process using the SPL approach when the indexed WSC search 

space is ready. Table 11 shows the environment parameter setting for the simulation. 

The process design of this simulation is exactly the same as Simulation 4. The 

difference is that we record and calculate the verification time for each QoS constraint on 

a web service composition before the indexed WSC search space is fully constructed and 

after it has been constructed.  
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Table 11: Environment setting for Simulation 5 
Object Parameter 
Global Random seed 111 
Goal model Num of tiers  7 
Goal model Num of branches 2 
Goal model Probability of branching 50% 
Attribute Num of attributes 1 
Attribute Low bound 1 
Attribute High bound 10 
Constraint Probability to start 50% 
Constraint Probability to end 20% 
Constraint Number of constraints 3 
Composition Num of instances 1000 
Verifier Type Normal 
Verifier Num of non-SPL verifications 1000 
Verifier Num of SPL verifications 1000 

 

For 1000 times of verification, we get the computation time consumed before the 

indexed WSC search space is fully constructed and after it has been constructed: 

Table 12. Simulation 5: Performance comparison with/without SPL approach 

  Total Verification Time 
(ms) 

Each WSC Verification 
Time (ms) 

Before indexed search space 
constructed 

66 0.066

After indexed search space 
constructed 

7 0.007

 

From the results shown in Table 12 we can see that WSC verification with a fully 

constructed WSC search space is 9.4 times faster than verification by calculating the 

automata product. 
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From this simulation, we can conclude that for a highly customizable web service 

composition where the customers may request frequent QoS constraint verification, a 

SPL-based approach has a significant performance advantage compared to the traditional 

verification process.  

6.4 Related Researches 

Chandrasekaran et. al. [10] introduced a composite web service simulation tool 

named Service Composition and Execution Tool (SCET), which functionally composes 

the component services. SCET can conduct performance simulation and analysis on the 

composed web service in order to compare different composite web services before 

deploying them.   

Narayanan and McIlraith [39] modeled the web services in Petri-Net formalism 

and provided verification simulations for semantic web service compositions. They also 

analyzed the complexity of these processes. Functional properties, such as reachability 

and liveness, can be verified for the web service compositions to ensure the behavior 

correctness. 

In these two simulation based approaches [10][39] for web service compositions, 

the focus is on simulating the process of functional web service compositions and 

verifying the functional properties of the web service compositions. On the other hand, 

our simulation platform WSCSimu randomly generates the web service compositions 

based on a functional goal model, which is not a real functional composition process. 

WSCSimu instead focuses on the QoS constraint verification of these service 

compositions. 
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Chang et. al. [11] proposed a simulation platform for web service composition 

with that considers some QoS attributes including availability, reliability and 

performance. The simulation is conducted within an example of a travel planning web 

process. Different aggregated QoS values for the composite web service are calculated 

with different numbers of users as inputs. However, in this paper, the concept of QoS 

aggregation rules is not clearly identified. All simulations are conducted in the same 

manually-constructed web service composition. Thus, simulation results cannot be 

compared across multiple web service compositions. In our simulation platform 

WSCSimu, the aggregation rules are separately defined for each type of QoS attributes. 

The web service compositions and QoS constraints are automatically generated for 

verification.  

From the evaluation point of view, the goal of the existing simulation platforms 

[10][39][11] is to evaluate the functional properties or non-functional properties for the 

composed web services and derive a web service composition that satisfies the 

requirements. On the contrary, WSCSimu targets on the evaluation of the QoS 

verification techniques for web service compositions, rather than the properties of the 

service compositions. With the help of the simulations with the WSCSimu, the engineers 

can compare different QoS verification strategies for web service compositions and 

choose the most efficient one for their projects. 

6.5 Conclusion of the Simulations 

Simulations conducted on WSCSimu platform have shown the validity and the 

advantages of our NFRs verification approaches introduced in Chapter 4 and Chapter 5.  
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Simulation 1 identifies the minimum size of the candidate web service 

composition search space in order for later simulations to have reasonable and analyzable 

results. 

Simulation 2 shows that verification time of a QoS constraint has a positive linear 

correlation with the size of the constraint scope. It shows that a scoped QoS constraint 

has better verification efficiency than a global QoS constraint. 

Simulation 3 compares the three verification strategies for verifying multiple 

constraints. With a low verification success rate expectation, the big-bang verification 

strategy gives the best performance. With a high verification success rate expectation and 

a large candidate web service composition set, the two-stage verification strategy gives 

the best performance. With a high verification success rate expectation and a small 

candidate web service composition set, the independent verification strategy gives the 

best performance. When the expected verification success rate cannot to determined, 

either the independent strategy or the two-stage strategy shall be selected as a stable 

verification strategy.  

Simulations 4A and 4B compare the two ways of constructing the indexed WSC 

search space in a SPL-based web service composition NFRs verification approach. One 

way is the on-demand incremental construction after web system deployment and the 

other is to pre-construct it before web system deployment. The simulations show that 

there is an advantage in incrementally building the indexed WSC search space in real 

applications, especially when the overall number of possible QoS verifications after 

system deployment is not very large. Building the indexed WSC search space at once and 
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before system deployment is more suitable for performance critical web based systems 

where customers desire the verification process to be done as soon as possible. 

Simulation 5 shows that for a highly customizable web service composition where 

customers may request frequent QoS constraint verifications, a SPL-based approach has a 

significant performance advantage compared to the traditional verification process.  

The results of the simulations in this chapter support the approaches proposed in 

Chapters 4 and 5, showing their advantages across different circumstances. 
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CHAPTER 7. CONCLUSION AND FUTURE WORK 

This chapter summarizes the work we have presented in this dissertation, 

followed by a summary of contributions and a brief discussion of some future directions. 

7.1 Summary 

As service oriented architectures have become more widespread in industry, many 

complex web services are assembled with independently developed modular services 

from different vendors. Although functionalities of composite web services are ensured 

during the composition process, non-functional requirements (NFRs) are often ignored in 

this process.. In Chapter 3 we introduced an Emergency Management System (EMS), 

which was used as a case study of a critical web based system in this dissertation.  

To ensure quality of services in critical web based systems such as EMS, we 

proposed two effective approaches to verify that a composite web service not only offers 

the required functionality but also satisfies the desired NFRs. In Chapter 4, we described 

techniques for ensuring that a composite service meets user-specified NFRs that can be 

expressed in the form of hard constraints, e.g., “the messages of particular operations 

must be authenticated”. We introduced an automata-based framework for verifying that a 

composite service satisfies the desired NFRs based on known guarantees regarding non-

functional properties of component services.  This automata-based model is able to 



157 

represent NFRs that are hard, quantitative constraints for composite web services. This 

model addressed two issues we identified in NFRs modeling and verification for 

composite web services that had been overlooked by other researchers: scoping of NFRs 

and consistency checking of multiple NFRs. We then introduced and compared three 

alternative verification strategies: the independent verification strategy, the two-stage 

verification strategy and the big-bang verification strategy, in the case where multiple 

NFRs exist, and analyzed their relative advantages and disadvantages under different 

scenarios. This approach to verifying NFRs can also support efficient re-verification of 

composite services as needed when NFRs are updated. 

We then focused on multiple highly customizable composed web services where 

repeated verification of similar sets of NFRs can waste computational resources. We 

introduced a new approach to reconfigure the existing verification process by extending 

software product line engineering techniques to web service composition domain. Using 

a partitioning similar to that between domain engineering and application engineering in 

the product-line context, this approach first creates a web-service composition search 

space that satisfies the common requirements and then queries the search space as the 

user selects values for parameters of variation.  It specifies the options that the user can 

select and constructs the resulting web-service compositions.  This drew most of the 

computation overhead into the first stage in the design process to enable improved 

runtime efficiency in the second stage. The capability to reuse the composition search 

space provided a more efficient way to customize web services.. A complexity model 

showed the advantage of the product-line based verification process. Experiments on the 
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complexity model showed the relationships among the parameters in this approach and 

the ways of choosing values for these parameters to take advantage of this SPL-based 

approach. 

A simulation platform WSCSimu was constructed to conduct experiments on the 

two verification approaches and three strategies we have introduced in this dissertation.  

The results of these simulation experiments were analyzed to show and compare the 

advantages of our approaches in various situations and environments over the traditional 

verification process and over each other.  

7.2 Future Work 

The work presented in this dissertation is a part of a larger topic that concerns 

how to model and verify non-functional requirements and properties for web service 

compositions.  

Some interesting directions for extending our work are briefly described below. 

 Soft constraint modeling and verification for web service compositions 

Soft constraints are constraints that cannot be simply judged as satisfied or 

unsatisfied. For example, the requirement that “the room shall be kept warm” for an 

automatic heater is a soft constraint because there is no way to clearly distinguish ‘warm’ 

and ‘not warm’. If this constraint can be assigned an evaluation function to measure the 

unclear concept ‘warm’ by a value ‘temperature’, this soft constraint becomes a 

quantitative constraint. Such a soft constraint can be satisfied in percentage terms. If there 

is no such evaluation function for this soft constraint, this constraint is a qualitative 
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constraint or qualitative preference, e.g. United Airlines is preferred over Delta Airlines. 

It would be interesting to see if recent work by Santhanam et al. [52] to handle 

preferences (soft constraints) could be integrated with our approach.  

QoS constraint violation monitoring and recovery for deployed web service 

compositions 

Composite web services may fail to satisfy their non-functional requirements after 

deployment if the requirements or the environment evolve over time. For example, a new 

security policy may be required for an existing composite web service. In many cases, 

service users want to retain their current service provider, whom they may trust, to the 

extent possible. Rather than re-composing modular services from the service registry to 

meet the new goal, a better solution may be to replace only the components that caused 

the NFRs to fail. To fix the existing problematic service composition with minimal 

impact [26], we need to identify the service(s) now causing the NFR(s) to be violated. To 

achieve this goal, we need to take two steps: 1. to introduce a strategy to identify specific 

weaknesses of the composite web service that contribute the most to failure of updated 

non-functional requirements, and 2. to design a comparative evaluation method for the 

alternative modular services based on how much a replacement can improve failed QoS 

attributes of the service composition and how many replacements are required to satisfy 

the failed QoS constraints. 

Towards this goal, we plan to explore the use of a product-line fault tree analysis. 

In previous work, we analyzed reliability and safety properties of a software product line 

using a product line fault tree [57]. This work modeled the software product line at the 
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architectural stage, using Architecture Analysis and Description Language (AADL) [57]. 

Each module associates with an error behavior model. The error behavior models utilize 

Markov-chains and interact with each other to simulate possible error events. The failure 

rates and failure scenarios of a member of the product line can then be analyzed by 

coordinating all associated modular error behavior models with the product line fault tree 

information. By taking the composition of a web service as a member of a product line, a 

similar analysis of the service composition appears to be possible.  

Van Lamsweerde [60] also suggests the use of fault trees and cut sets for 

comparing the options in a goal model, similar to our planned use in comparing two 

possible replacement solutions. 

Continuous work on WSCSimu platform 

In this dissertation, we have introduced a simulation platform WSCSimu for 

verifying web service compositions. The purpose of constructing this platform was to 

demonstrate the practicability and the merits of our approaches. Through simulations of 

QoS property verifications for web service compositions on a randomly generated large 

data set and under different environment settings, we can analyze and compare the 

performance of WSC verification approaches and processes, which is convenient for 

testing new ideas in further research. The current weakness of this platform is that it lacks 

a user-friendly interface to set up the simulation environment, parameters and processes.  

The next goal in building the WSCSimu platform is to create a user-friendly GUI 

to perform QoS verifications on web service compositions. An additional goal for the 
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WSCSimu is for it to output a graphical analysis of simulation results, rather than text-

based data as in the current version. 

7.3 Conclusion and Contribution 

This dissertation addressed the following problems: 

1. How to formally model a QoS constraint for a web service composition with scoping 

information incorporated and consistency checking enabled? 

2. How to verify this QoS constraint model on a web service composition? 

3. How to efficiently verify multiple constraints for a web service composition? 

4. How to efficiently verify multiple constraints for multiple web service compositions? 

To solve the first problem, we introduced an automaton-based model to represent 

a quantitative QoS hard constraint with. The scoping information can be affixed to this 

QoS constraint model. The contributions include: 

• The introduction of a formal model of quantitative QoS for web service compositions. 

• The introduction of a scoped QoS constraint model, which allows more efficient 

verification than for a global constraint. 

To solve the second problem, we introduced a verification algorithm for this QoS 

constraint model that calculated the product of the QoS constraint automaton and the web 

service composition automaton. The algorithm provided: 
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• The capability of verifying an automaton-based QoS model for a web service 

composition  

• The capability of consistency checking  multiple QoS constraints. 

To solve the third problem, we designed three alternative verification strategies: 

the independent verification strategy, the two-stage verification strategy and the big-bang 

verification strategy. The contributions of this work include:  

• The introduction of three different verification strategies for multiple QoS constraints. 

• The analysis of the relative advantages and disadvantages of the three verification 

strategies under different circumstances.  

• The introduction of a strategy for choosing an efficient verification strategy when 

multiple QoS constraints exist for a web service composition. 

• The support for efficient re-verification of composite services as needed when NFRs 

are updated. 

Through investigations using the simulation platform we developed, WSCSimu, 

we concluded that with a low verification success rate expectation, the big-bang 

verification strategy gives the best performance. With a high verification success rate 

expectation and a large candidate web service composition set, the two-stage verification 

strategy gives the best performance. With a high verification success rate expectation and 

a small candidate web service composition set, the independent verification strategy gives 
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the best performance. When the expected verification success rate cannot be determined, 

a stable verification strategy is either the independent strategy or the two-stage strategy.  

To solve the fourth problem, a new approach to customizing the functional and 

non-functional requirements of a web service composition was proposed which 

incorporated software product line engineering techniques into the web service domain.  

The contributions of this were:  

• The creation of a two-phase solution for efficiently handling mass-user service 

customization: a preparation phase in which the composition search space is 

constructed, and an implementation phase in which the web service composition is 

customized.  

• The introduction of a highly customizable web service composition where customers 

may request frequent QoS constraint verification, with significant performance 

advantage compared to the traditional verification process 

By following product line engineering procedures, web service compositions in 

the search space of a commercial service provider can be more readily composed, 

verified and reused in the presence of users’ personal selections of their preferred 

variations.   

Through the complexity construction for this SPL-based verification approach 

and its comparison with traditional verification complexity, we identified the impacts of 

the parameters in the SPL approach on its advantages over the normal approach. An 

increase of the candidate composition search space size can increase the reuse advantage 
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of applying our SPL approach. Meanwhile, the number of QoS variabilities has a positive 

effect on the SPL approach, while the size of the variability parameter set has a negative 

effect on the SPL approach when it is too large. 

Overall, the SPL approach is more efficient when the web based system has a 

complex service composition (goal model size) with more varieties of candidate modular 

services. When designing the CVA table for this system, more variabilities with 

reasonable sizes of parameter sets are preferred. 

The simulations in WSCSimu showed that there is an advantage in using the 

incremental building process of the indexed WSC search space in real applications, 

especially when the overall number of possible QoS verifications after system 

deployment is not very large. Building the indexed WSC search space at once and before 

system deployment is more suitable for performance critical web based systems where 

customers desire the verification process to be done as soon as possible. We also found 

that for a highly customizable web service composition where customers may request 

frequent QoS constraint verification, a SPL-based approach has significant performance 

advantage compared to the traditional verification process.  
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