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ABSTRACT

Proteins are vital parts of living organisms and involved in almost every single biological

process. When participating in in-vivo reactions, proteins are constantly in motion and their

dynamics is critical to the realization of their functions. Although the advancement of structure

determination methods and computational approaches has opened up great opportunities for

studying protein dynamics and functional mechanisms, much remains to be understood. In

this thesis, I aim to establish some new computational methods for studying protein dynamics

and functional mechanisms.

In the first half of this thesis, I will describe the new computational methods for protein

dynamics that I have developed. One of the most common methods for obtaining the protein

dynamics computationally is molecular dynamics (MD) simulations. Although MD simulations

can provide atomic details of the protein dynamics, it is computationally expensive and is thus

limited to short time scales, especially for large systems. In this thesis I focus on methods for

studying protein dynamics that can circumvent such limitations. Two strategies are employed:

(1) represent protein dynamics using weighted structure ensembles; (2) improve existing coarse-

grained models with multi-body potentials using generalized spring tensors.

In the second half of the thesis, I investigate the functional mechanisms of ligand migration

and allosteric communication using novel, dynamics-based methods. Specifically, two subgoals

are defined and accomplished: (1)chart the ligand migration channels in heme proteins us-

ing different structure ensembles; (2) determine the allosteric communication pathways using

dynamic motion correlations.
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CHAPTER 1. OVERVIEW AND OBJECTIVES

The study of protein dynamics and functional mechanisms at the molecular level has been

greatly advanced in recent years due to the development of various structure determination

methods and computational approaches, but how to most effectively model protein dynamics

and use it to understand functional mechanisms is still an important open question. Currently,

it is well accepted that the functions of a protein are closely related to not only its structure but

also its dynamics and there is strong evidence [Burra et al. (2009); Eisenmesser et al. (2005)]

that a single structure is not sufficient for fully understanding the protein functions and some

degree of mobility is necessary. In this thesis, I plan to address some of the difficulties in

modeling the protein dynamics and in doing so gain a better understanding of the functional

mechanisms. Two specific aims are set up to achieve this objective.

Aim # 1: Establish new computational methods for protein dynamics

One of the most common methods for studying the protein dynamics computationally is

molecular dynamics (MD) simulation. Although MD simulation can provide atomic details

of the protein dynamics, it is computationally expensive and is limited to short time scales,

especially for large systems. In this thesis I focus on methods for studying protein dynamics

that can circumvent such limitations.

Subgoal # 1.1: Represent protein dynamics using weighted structure ensembles

A structure ensemble can be used to represent the effects of protein dynamics and capture

protein structural flexibility around the native states. Recently, some researchers point out

that different structures of the same protein under different experimental conditions or of
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proteins with high sequence similarity can form an ensemble that resembles the heterogeneity

of the native state or a wide global landscape of protein dynamics [Burra et al. (2009); Best

et al. (2006)]. An ensemble of conformations sampled by MD simulation, on the other hand,

is usually limited to a local region of the conformation space as transitions among different

conformation states can take a longer time than MD simulations can reach. Therefore, in this

subgoal the abundant structures of the same protein in the Protein Data Bank [Berman et al.

(2000)] are utilized and are combined with some conformational sampling approaches to obtain

a more globally distributed ensemble.

An ensemble representation of the protein dynamics has the advantageous flexibility to

incorporate the knowledge of protein dynamics from various sources, such as existing crystal

structures, NMR ensembles, and conformations sampled by MD simulations. The method

developed is able to obtain a more globally distributed dynamic ensemble than a traditional

MD simulation under the same time constraint.

Subgoal # 1.2: Improve existing coarse-grained models with multi-body potentials

using generalized spring tensors

In the last decade, various coarse-grained elastic network models (ENMs) have been de-

veloped to study the large scale motions of proteins and protein complexes where computer

simulations using detailed all-atom models are not feasible. In order to achieve simplicity,

these coarse-grained ENMs usually adopt only two-body Hookean-like potentials, such as in

Gaussian Network Model (GNM) [Bahar et al. (1997)] and Anisotropic Network Model (ANM)

[Atilgan et al. (2001)]. However, these two-body interactions are limited in fully representing

the interactions between a pair of residues. Specifically, under the two-body potentials of

ANM, the fluctuation of one residue relative to its interacting partner is only constrained lon-

gitudinally along the axis connecting them. Therefore, it is necessary to include multi-body

interactions in the potential in order to have more realistic constraints. This goal is achieved

by deriving the model from a physically more realistic multi-body Go-like potentials [Clementi

et al. (2000)].
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Aim # 2: Determine the functional mechanisms of ligand migration and

allostery communication

It has been pointed out that protein dynamics plays an essential role in understanding

some functional mechanisms, such as allosteric communication [Tobi and Bahar (2005); Bahar

et al. (2007); Bahar and Rader (2005); Yang et al. (2009)] and ligand migration [Ruscio et al.

(2008); Bossa et al. (2004); Bourgeois et al. (2006); Ostermann et al. (2000)]. In this aim,

the functional mechanisms of allosteric communication and ligand migration are investigated

using protein dynamics models.

Subgoal # 2.1: Chart the ligand migration channels in heme proteins using dif-

ferent structure ensembles

Many biological reactions happen at a catalytic site that is hidden beneath the protein

surface and can only be reached through some transient channels. For small ligands such as O2,

the opening and closing of these channels are mainly controlled by the dynamic fluctuations

of the host protein [Cohen et al. (2006)]. For this reason, a complete map showing how a

ligand migrates in the host protein cannot be obtained from a single static structure. MD

simulations provide a way to identify these channels but are limited by the time scale that can

be reached. In this subgoal, an approach to map the ligand migration channels in dynamic

structure ensembles is presented. The ligand migration maps from different ensembles are

further compared and the control mechanisms of the identified ligand migration channels are

investigated.

Subgoal # 2.2: Determine the allosteric communication pathways using dynamic

motion correlation

Allosteric regulation can be described as the binding of an effector at one site that switches

the functionality of another site, often at distance. Although a wide variety of models have

been proposed [Tang et al. (2007); Gandhi et al. (2008); Chennubhotla and Bahar (2006);

Zheng et al. (2006); Zheng and Brooks (2005)], the underlying mechanisms of the allosteric
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communication remain unclear. In this subgoal, I stress on the important role that protein

dynamics plays in the allosteric communication and hypothesize that the allosteric commu-

nication between the allosteric site and catalytic site should be carried out along pathways

of residues that have strongly correlated motions, so that information such as conformation

change can be quickly transduced from one site to another. A simple and computationally

inexpensive approach to identify the putative allosteric communication pathways using coarse-

grained ENMs is provided. The results are validated by examining whether the residues along

the predicted pathways are evolutionarily conserved.

Overall, I aim to provide novel and systematic computational approaches to model protein

dynamics and to elucidate the functional mechanisms of allosteric communication and ligand

migration. The concrete output of this thesis includes (1) a novel method for determining the

relative populations of the conformation states within an ensemble; (2) a generalized spring

tensor model; (3) an efficient algorithm for charting the ligand migration maps, and (4) an

efficient algorithm for predicting the allosteric communication pathways.

Thesis Organization

The thesis is organized as follows:

Chapter 1: Overview and Objectives

This chapter gives a general introduction to the thesis, presenting the overall structure and

the aims of this thesis.

Chapter 2: Determine the Populations of Protein Conformation States Using Experimental

Residual Dipolar Coupling Data

In this chapter, the subgoal # 1.1 is fulfilled. A new dimension, the relative population at each

structure, is added to the ensemble, and it greatly enhances the ensemble’s ability to describe

the conformation space. A novel computational method that determines the relative popu-

lations is developed by employing iterative least squares fitting methods to the experimental
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RDC data. As a result, we are able to use this method to determine several ubiquitin ensembles

with low Q-factors, which would not have been possible without the use of relative populations.

Chapter 3: Evaluate the Quality of Conformation Sampling Methods using Experimental

Residual Dipolar Coupling Data

In this chapter, we further demonstrate the wide application of the iterative least squares fitting

methods, developed in Chapter 2. Many computational approaches have been developed and

used for sampling protein conformations near the native state. However, it has been difficult

to evaluate the qualities of the conformations sampled or to compare them among the various

sampling schemes. The developed approaches are applied to evaluate ubiquitin conformations

generated from four widely-used conformational sampling approaches, namely, MD simulation,

Elastic Network Model (ENM), CONCOORD, and tCONCOORD.

Chapter 4: Generalized Spring Tensor Models for Protein Fluctuation Dynamics and Con-

formation Changes

This chapter fulfills the subgoal # 1.2 and chapter 2-4 combined complete the fulfilment of Aim

# 1. In order to achieve simplicity, the multi-body potential, which is known to be important

in protein structure prediction and protein design etc., is neglected in most elastic network

models. In this chapter, we address this insufficiency and introduce three-body and four-body

potentials through bond bending and torsional interactions in the Go-like potential.

Chapter 5: Efficient Mapping of Ligand Migration Channel Networks in Dynamic Proteins

In this chapter, subgoal # 2.1 is fulfilled. Ligand migration in a dynamic protein resem-

bles closely a well-studied problem in robotics, namely, the navigation of a mobile robot in a

dynamic environment. In this chapter, we present a novel robotic motion planning inspired

approach that can map the ligand migration channel network in a dynamic protein. The dy-

namic behaviors are represented as structure ensembles. The dynamic ligand migration maps

are charted using different structure ensembles.
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Chapter 6: Predicting Allosteric Communication Pathways Using Motion Correlation Net-

work

Subgoal # 2.2 is fulfilled in this chapter and Chapter 5 and 6 combined complete Aim # 2.

In this chapter, we hypothesize that the allosteric communication between an allosteric site

and its catalytic site is through pathways of residues that have strongly correlated motions.

A weighted network from the coarse-grained elastic network model is formulated and graph

search algorithms are used to identify allosteric communication pathways.

Chapter 7: Conclusion and Future Research

This final chapter presents conclusions and some future research directions.
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CHAPTER 2. DETERMINE THE POPULATIONS OF PROTEIN

CONFORMATION STATES USING EXPERIMENTAL RESIDUAL

DIPOLAR COUPLING DATA

A paper to be submitted

Tu-Liang Lin, Santhosh Kumar Vammi and Guang Song

Abstract

Ensembles have been increasingly used to represent protein native states and structural het-

erogeneity. In this work, we add a new dimension, the relative population of each structure,

to the ensemble, which greatly enhances the ensemble’s ability to describe the conformation

space. We develop a novel computational method that determines the relative populations by

employing iterative least squares fitting methods to the experimental RDC data. We compare

Q-factors among several ubiquitin ensembles. Our results show that ensembles with RDC de-

rived populations significantly improve the agreement between the calculated and experimental

RDCs. As a result, we are able to use this method to determine several ubiquitin ensembles

with low Q-factors, which would not have been possible without the use of relative populations.

These ensembles represent different solutions to the experimental constraints from the well-

known EROS ensemble. As a result, different conclusions may be drawn regarding whether a

structure is reached by conformation selection or induced-fit.
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Introduction

Protein structure ensembles

The functions of a protein are closely related to not only its structure, but also its dynamics.

For more and more proteins, it is becoming increasingly evident that the functional behavior of

a protein is best represented not by one single static structure, but by the distribution and dy-

namic transition among a number of conformation states that form the native-state ensemble

[Karplus and McCammon (2002)]. With the advancement of structure determination methods,

protein structures are becoming increasingly available and for some well-studied proteins, tens

and even hundreds of structures (of the same protein) have been determined. These structures

have been shown to capture a representative subset of the native-state ensemble [Best et al.

(2006)]. However, the relative populations of these conformation states in the conformation

space are not known. Currently, several approaches for obtaining relative population in disor-

dered protein were proposed [Fisher et al. (2010); Choy and Forman-Kay (2001)], but to the

best of our knowledge no attempts at obtaining the relative populations have been made for

folded protein ensembles even though such information is essential for describing the confor-

mation space (other key information is the transition rates among these states). The aim of

this work is to employ a novel iterative least-square fitting approach to determine the relative

populations of these structures using experimental RDC data.

Significance of the work

There are many practical applications for conformation ensembles. Park et al. showed that

structure ensembles can help improve docking, screening, and selectivity prediction for small

nuclear receptors [Park et al. (2010)]. Friedland and Kortemme demonstrated the usefulness

of conformation ensembles in computational protein design [Friedland and Kortemme (2010)].

Several research groups used conformation ensembles to explain the recognition process in bio-

molecular bindings [Lange et al. (2008); Boehr et al. (2009); Wlodarski and Zagrovic (2009)].

A conformation ensemble along with information regarding its relative populations can be used

to enhance the aforementioned applications.
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Methods for determining structure ensembles

A number of experimental [Scheek et al. (1991)], computational [Karplus and McCammon

(2002); Shehu et al. (2006); de Groot et al. (1997); Seeliger and De Groot (2009)], or hybrid

[Lange et al. (2008); Lindorff-Larsen et al. (2005); Kuriyan et al. (1991); Richter et al. (2007)]

methods have been developed to capture protein structure heterogeneity and then represent

it using ensembles. NMR spectroscopy is the most commonly used experimental technique

for studying protein dynamics in solution. The technique is powerful even though it has a

limitation on the size of the protein. Relaxation of nuclear magnetization can quantitatively

probe fast protein dynamics (picoseconds to nanoseconds) or the dynamics in a much slower

domain (microseconds to milliseconds) [Lange et al. (2008)]. Thus there exists a blind window

ranging from nanoseconds to microseconds that is beyond the capacity of nuclear magnetization

relaxation. MD simulation is the most commonly used computational approach for obtaining

a structure ensemble. The main limitation of MD simulation is the limited timescale that can

be reached, especially for large systems. It also has been shown recently that MD simulations

beyond hundreds of nanoseconds might have the potential risk of running into high free energy

states and staying there for a long time, thus incurring skewed populations [Lange et al. (2010)].

Therefore, obtaining the dynamics over a broader time-scale is a challenge. To overcome some

of these difficulties, residual dipolar couplings (RDCs), which provide complementary dynamics

information that is inaccessible to NMR relaxation methods, have been used as ensemble

constraints for ensemble determination [Lange et al. (2008); Mittermaier and Kay (2006)].

One possible way to circumvent the aforementioned limitations in ensemble determination

is to construct ensembles using known experimental structures only (which has its own limi-

tation as well). Recently, it was suggested that the available structures of the same protein

determined under different experimental conditions or of proteins with high sequence similarity

should be useful in representing the heterogeneity of the native states and in understanding the

functions of the protein [Best et al. (2006)]. Zoete et al. (2002) calculated the relative backbone

fluctuations among an ensemble of HIV-1 protease structures and found it comparable with

experimental B-factors. Zhang et al. (1995) investigated the agreement and discrepancy among
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25 crystal structures of T4 lysozyme. Best et al. (2006) compared the dynamic properties of

ensembles formed by different X-ray structures of the same proteins with NMR experimental

data and found that the order parameters, scalar couplings, and residual dipolar couplings

were all well reproduced.

Several approaches incorporate the RDC, NOE data, or order parameters as ensemble

constraints in MD simulations to obtain dynamic ensembles. Lindorff-Larsen et al. (2005) first

developed a dynamic-ensemble refinement (DER) method that incorporates NOE (Nuclear

Over-hauser enhancement) data and generalized order parameters as ensemble constraints into

the energy function. RDC data were first used as constraints in an innovative study by Lange

et al. (2008), who carried out ensemble refinements using MD simulations in explicit solvent

under restraints from NOE and RDC data. (Their approach was named EROS, standing

for ensemble refinement with orientational restraints). Richter et al. (2007) adopted replica-

simulations and presented a MD simulation protocol for generating protein ensembles under

the ensemble-averaged NMR restraints back calculated from the reference ensemble.

Besides the aforementioned methods, there exist other computational approaches for con-

structing an ensemble, such as the loop prediction program [Shehu et al. (2006)], the geometric

restriction checking program [de Groot et al. (1997)], and the chemical shift prediction algo-

rithm [Jensen et al. (2010)].

In all of these methods, it was assumed that all structures within an ensemble contribute

equally. The idea of adding the dimension of relative populations to the description of an

ensemble was not explored, even though it is a highly significant feature of any ensemble. This

is especially true for ensembles formed by experimental structures, about which little is known

experimentally regarding their relative populations. Precise knowledge of the relative popula-

tions for ensembles generated from MD simulations is also not always available . Recently it

was shown that MD simulations longer than hundreds of nanoseconds possess potential risks

of running into high free energy states and resulting in more skewed populations and worse

correlations with experimental RDCs than shorter simulations [Lange et al. (2010)].
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Residual dipolar coupling (RDC)

The dipolar coupling is the interaction that exists between two magnetic nuclei. Under

isotropic solution conditions, dipolar coupling averages to zero as a result of the effects of

Brownian motion. The use of an alignment medium that can create a weak force on the pro-

tein and eventually lead to an incomplete averaging of anisotropic magnetic interactions makes

it possible to measure dipolar coupling. Therefore, the residual dipolar coupling (RDC) be-

tween two spins represents the incomplete averaging of spatially anisotropic dipolar couplings.

One intriguing property of RDC is that it can probe the blind spot of the conventional NMR

relaxation. Conventional NMR relaxation has been used to probe the dynamics faster than the

rotational correlation time of a system which is in the range from picoseconds to nanoseconds

or to identify the dynamics slower than microseconds. However, many important biological

processes happen in the blind spot of conventional NMR, between nanoseconds and microsec-

onds, where RDC plays an important role in the protein dynamics studies. In this work, we

develop an algorithm that can exploit the RDC data and output the relative populations of

the structures within an ensemble that is in best agreement with the RDC data.

Induced-fit or conformation selection?

We apply the proposed algorithm to study the recognition mechanism in protein-protein

interactions. For some well studied proteins such as Ubiquitin, there are many experimental

structures available in the Protein Data Bank [Berman et al. (2000)]. These structures provide

valuable information about protein structural heterogeneity since each determined structure

may represent a valid conformation state in the energy landscape. Some structures are unbound

free structures and some are bound structures, but how these structures distribute in the

energy landscape (i.e., their relative populations) is not fully known. Because of this, two

distinct models, induced-fit and conformation selection, are proposed to explain the protein-

protein recognition mechanism. In the induced-fit model, the interactions between a protein

and its binding partner induce a series of conformation changes in the protein. In conformation

selection model, it is thought that unbound and bound conformations pre-exist even before the



12

interaction takes place. The interaction merely causes the bound state to be more favorable

and the population to shift towards the bound state.

Table 2.1 Q factors and CCs between the experimental and calculated
RDC of 1UBQ and 1YD8 ensemble.

leave out HC NH RDC HC RDC NC RDC
Q factor for the equal weighted ensemble 0.4463 0.3908 0.3151
Q factor for the 88% 1UBQ vs. 12% 1YD8 weighted ensemble 0.3105 0.2826 0.2416
CC for the equal weighted ensemble 0.9104 0.9227 0.9608
CC for 88% 1UBQ vs. 12% 1YD8 weighted ensemble 0.9557 0.9595 0.9761

Results and Discussions

Case study using an artificial two-structure ubiquitin ensemble

To demonstrate the importance of having relative populations in an ensemble, we first

apply our method to a ubiquitin ensemble consisting of only two structures (pdb-id: 1UBQ

and 1YD8). 1UBQ is a free structure and 1YD8 is a bound ubiquitin structure in complex

with human GGA3 GAT domain. In this case study, we will determine the relative populations

between the two structures and show how much they can help improve the accuracy in RDC

calculations. To this end, 56 Non-HC RDC datasets are used in the least square fitting (see

Methods section) and the relative populations are determined - 88% and 12% respectively

for 1UBQ (free) and 1YD8 (bound). We compute the Q factors and correlation coefficients

(CCs) between the experimental and calculated RDC of the NH, HC (not used in population

calculations), and NC datasets. Table 2.1 shows the differences in Q-factors and CCs with

and without relative populations. The substantial improvements in Q factors and CCs clearly

demonstrate the significant contribution that relative populations can bring to reproducing

RDC data.

Ensembles with relative populations

In this section, we apply our approach to several well-known Ubiquitin ensembles. These

include, an X-ray structure ensemble consisting of 46 X-ray ubiquitin structures, 4 ubiquitin
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Table 2.2 Q-factors and CCs between the experimental and calculated NH
RDC of different ensembles.

NH RDC (leave out HC) 1D3Z
(NMR
ensem-
ble)

2NR2
(MUMO
Ensem-
ble)

1XQQ
(DER
Ensem-
ble)

2K39
(EROS
Ensem-
ble)

46 X-ray
Struc-
tures

46 X-ray
Struc-
tures +
1D3Z

Q factor for the equal weights 0.1699 0.2744 0.3004 0.0917 0.2263 0.1945
Q factor for the RDC derived
weights

0.1649 0.2017 0.2494 0.0886 0.1991 0.1511

CCs for the equal weights 0.9874 0.9628 0.9561 0.9961 0.9740 0.9809
CCs for the RDC derived
weights

0.9875 0.9797 0.9689 0.9963 0.9800 0.9887

Table 2.3 Q-factors and CCs between the experimental and calculated HC
RDC of different ensembles.

HC RDC (leave out HC) 1D3Z
(NMR
ensem-
ble)

2NR2
(MUMO
Ensem-
ble)

1XQQ
(DER
Ensem-
ble)

2K39
(EROS
Ensem-
ble)

46 X-ray
Struc-
tures

46 X-ray
Struc-
tures +
1D3Z

Q factor for the equal weights 0.2282 0.3502 0.4031 0.2249 0.2465 0.2305
Q factor for the RDC derived
weights

0.2268 0.3117 0.3786 0.2224 0.2407 0.2135

CCs for the equal weights 0.9736 0.9340 0.9129 0.9727 0.9682 0.9721
CCs for the RDC derived
weights

0.9738 0.9469 0.9225 0.9730 0.9704 0.9760

ensembles determined computationally (with experimental constraints), and a combined en-

semble made up of X-ray ubiquitin structures and an NMR ensemble (1D3Z). In the first test,

56 non-HC RDC datasets are used to obtain the relative populations of the structures in the

different ensembles. Table 2.2 shows the improvement in Q-factors from equal population to

RDC derived populations in 36 NH RDC datasets. The Q-factor of the X-ray structure ensem-

ble improves from 0.2263 to 0.1991 when RDC derived weights (i.e., populations) are used. The

Q-factor of the X-ray and NMR combined structure ensemble improves to 0.1511 when relative

populations are used and it outperforms the NMR ensemble or the X-ray ensemble alone. We

observe improvements in Q-factors from equal population to RDC derived populations among

all ensembles, with the MUMO ensemble (2NR2) having the greatest improvement. Table 2.3
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shows the results of HC RDC, which is used here as a testing dataset since it is not used in de-

termining the populations. The Q-factor of the X-ray and NMR combined structure ensemble

improves from 0.2305 to 0.2135. The X-ray and NMR combined ensemble with RDC derived

populations outperforms all the other ensembles in reproducing the HC RDC.

Table 2.4 Q factors and CCs between the experimental and calculated NC
RDC of different ensembles.

NC RDC (leave out NC) 1D3Z
(NMR
ensem-
ble)

2NR2
(MUMO
Ensem-
ble)

1XQQ
(DER
Ensem-
ble)

2K39
(EROS
Ensem-
ble)

46 X-ray
Struc-
tures

46 X-ray
Struc-
tures +
1D3Z

Q factor for the equal weights 0.2711 0.3708 0.4645 0.2555 0.2474 0.2415
Q factor for the RDC derived
weights

0.2697 0.3196 0.4219 0.2602 0.2465 0.2459

CCs for the equal weights 0.9790 0.9569 0.9377 0.9803 0.9825 0.9833
CCs for the RDC derived
weights

0.9793 0.9697 0.9467 0.9796 0.9821 0.9827

Table 2.5 Correlation Coefficient between the weights derived from
non-NC and non-HC data sets.

Ensemble 1D3Z
(NMR
ensem-
ble)

2NR2
(MUMO
Ensem-
ble)

1XQQ
(DER
Ensem-
ble)

2K39
(EROS
Ensem-
ble)

46 X-ray
Struc-
tures

46 X-ray
Struc-
tures +
1D3Z

Correlation Coefficient 0.9934 0.9793 0.9812 0.7813 0.9964 0.9949

Table 2.4 shows the same results as Table 2.3 except in this case NC RDC data, instead

of HC RDC, are left out for validation. The Q factor for NC RDC using the X-ray and NMR

structure combined ensemble slightly deteriorates when using the derived relative populations,

which is likely due to the noise in RDC data. The X-ray and NMR combined ensemble with

RDC derived populations again has the best Q-factor of 0.2459 in NC RDC and it outperforms

all the other ensembles.

The relative populations of the structures with an ensemble as determined above using

non-NC and non-HC datasets may not necessarily be consistent. To check how robust and

consistent these populations are, we compute the correlation coefficients between the two sets
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of populations that are derived from non-NC and non-HC datasets respectively and the results

are shown in Table 2.5. For all the ensembles except EROS, the populations derived from the

two datasets are strongly correlated and have a correlation coefficient over 0.97. The relatively

low correlation coefficient between the populations found for the EROS ensemble may reflect

the fact that the structures in this ensemble were originally intended to have equal populations

and were optimized to fit the non-NC RDC data (with NC data left out for validation).

Table 2.6 Structures with non-zero populations in the X-ray and NMR
combined ensemble.

PDB ID Chain ID in X-
ray Structure or
Model Number in
NMR Structure

Weights Comments

1UBQ A 0.1005 Free structure
1S1Q B 0.0114
1AAR B 0.0523 Diubiquitin
1CMX B 0.1125 Largest weight among the bound structures
1TBE A 0.0504 Tetraubiquitin
1TBE B 0.0422
2C7N H 0.0466
2D3G A 0.0419
2FCQ A 0.0051
2FCQ B 0.0193
2G45 E 0.0246
1YIW C 0.0559
1F9J B 0.0158 Tetraubiquitin
1D3Z 2 0.2631 NMR Structure
1D3Z 7 0.1392 NMR Structure
1D3Z 10 0.0192 NMR Structure

Table 2.6 shows all the structures with non-zero populations in the X-ray and NMR com-

bined ensemble and the corresponding populations. Although the original ensemble consists

of 56 X-ray or NMR structures, only 16 structures end up having non-zero contribution to

the final RDC. Among these 16 structures with non-zero populations, only three of them are

NMR structures, but their populations sum up to over 40%. The ligand-free crystal structure

1UBQ has a population of about 10%, which together with that of NMR structures, adds up

to a population of over 50% for free structures. Among the bound structures, 1CMX-B, which
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binds to Ubiquitin c-terminal hydrolase L3, has the largest population of 11%. For the 40

structures with zero population, either they indeed represent a state that is not populated, or

they are close to a conformation with significant population (one of 16 structures with non-zero

populations) and their contribution is somehow overshadowed.

Conformation Selection or Induced Fit?

Lange et al. (2008) presented a RDC-derived ensemble (named EROS) for Ubiquitin. It

was argued that conformation selection was sufficient to explain the recognition dynamics of

Ubiquitin since all the 46 crystal structures are within less than 0.8 Å backbone root mean

square distance (RMSD) away from at least one of the structures in the EROS ensemble. In

the paradigm of relative populations presented in this work, one may question whether the

EROS conformations that the 46 X-ray structures are closest to, are significantly populated,

or have any population at all. How confident can one be about the necessity for including any

single conformation in the ensemble? While the EROS ensemble as a whole may have captured

most of the dynamics revealed in RDC data, it is a much more challenging task to establish

that any single conformation is essential and even irreplaceable to the ensemble. After all, it is

quite possible that there may exist other ensembles that are able to reproduce the same set of

experimental data. In other words, there may exist multiple solutions to the same experimental

constraints. In what follows next, we want to address two questions: the first one is, ”Does

there exist another solution?” The second question is, ”If multiple solutions (ensembles) exist,

do they have consensus on the recognition dynamics?” In other words, will we still see that

all the 46 crystal structures of Ubiquitin are close to at least one of the conformations in the

ensembles?

The existence of multiple ensemble solutions

The answer to the first question is affirmative. Indeed, when our algorithm is applied to

the EROS ensemble to determine the relative populations, we are able to lower the NH Q-

factor further. And the derived populations tell us that about 40% of the conformations in the
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ensemble have zero population. In other words, one may pick a subset of the EROS ensemble,

those with non-zero populations, and assign them with proper relative populations and that will

represent an equally good, if not better, ensemble than the original EROS. Another solution

may be the X-ray and NMR combined ensemble that contains only 16 conformations (3 NMR

modes and 13 crystal structures). One big advantage of this ensemble is that it is composed

of purely experimental structures, thus the quality of each conformation is more reliable. The

NH Q-factor of this ensemble is 0.15, which is higher than that of EROS (which is 0.09).

However, the NC and HC Q-factors are both lower than those of EROS. We construct yet

another possible solution by combining X-ray/NMR ensemble with some of the conformations

in EROS. We repeatedly select one conformation from the EROS ensemble and add it to the

X-ray/NMR ensemble. The conformation being selected at each iteration is the one that can

lower the most the NH Q-factor of the resulting ensemble. We select 11 EROS conformations

in this way and the final ensemble, which has 17 experimental structures and the newly added

11 EROS conformations, has a NH Q-factor that is 0.0991, which is about the same as that of

EROS.

Consensus?

To answer the second question, ”do the multiple solution ensembles have a consensus re-

garding the recognition mechanism?” we plot the backbone root mean square distance (RMSD)

from the 46 crystal structures to their closest conformations in the aforementioned four ensem-

bles original EROS (118 structures), EROS subset with relative populations (68 structures),

X-ray/NMR combined ensemble (16), and X-ray/NMR/EROS ensemble (28 structures).

From figure 2.1, we see that the minimum backbone RMSDs from the 46 X-ray structures

to the original EROS ensemble all fall below roughly 0.8 Å. The ensemble using EROS subset

with relative populations (dark green curve) has higher RMSD than EROS, which is expected

since it contains fewer conformations than EROS. The backbone RMSD (i.e., the closest RMSD

distance from an X-ray structure to any conformation in the ensemble) to the EROS subset

ensemble (dark green curve in the figure) rises up for a number of crystal structures. Particu-
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Figure 2.1 The minimum backbone RMSD between 5 ensembles and x-ray
strcutures.

larly, it rises up to over 0.9 Å for crystal structure 1P3Q (chain V). The X-ray/NMR combined

ensemble (cyan curve) and X-ray/NMR/EROS ensemble (purple curve), on the other hand,

have even smaller backbone RMSD, falling below 0.5 Å for most of the crystal structures.

Based on these observations, can one say that all these four ensembles have consensus on

the recognition dynamics, or that they are all in favor of conformation selection? In Lange

et al. (2008), the authors concluded that the recognition dynamics is mostly conformation

selection, based on the fact that all 46 x-ray structures fall within 0.8 Å backbone RMSD to

at least one of the structures in the EROS ensemble. The threshold value 0.8 Å is critical

in the interpretation. The conclusion would have been different if a lower value than 0.8

Å had been used. To put this in perspective, let us consider the backbone RMSD from a

single free structure (1UBQ) to all the other 45 crystal structures. These values, shown in

the red line in Figure 1, show how far the other structures, mostly bound structures, are from
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the free structure. The values set the upper limit on the threshold value that can be used

in interpreting the ensembles. As an extreme case, if one chooses a threshold value of 0.90

Å (which is the largest distance from a bound structure, 1F9J-B, to the free structure) and

say any structure that falls with this distance to the free structure is considered conformation

selection, then the recognition mechanism would by default be conformation selection for all

the bound structures.

For this reason, we probably should not increase the threshold value further than 0.8 Å.

If this is the case, we could conclude that all the four ensembles have a consensus and favor

conformation selection for most of the crystal structures. However, the recognition mechanism

is unclear for the other structures whose backbone RMSD to at least one of the ensembles is

higher than 0.8 Å (above the dashed line in the figure). These structures and their closest

RMSD to the EROS subset ensemble (dark green curve in the figure) are: 1S1Q-D (0.81 Å),

1P3Q-V (0.91 Å), 1TBE-B (0.84 Å), 1YDB-U (0.84 Å), 1YDB-V (0.84 Å), 1YIW-A (0.82 Å),

1YIW-B (0.84 Å), 1F9J-A (0.83 Å), 1F9J-B (0.87 Å). On the other hand, probably a lower

threshold value should be used. Because when one uses 0.8 Å as the threshold value for char-

acterizing conformation selection, one has already assumed that all structures, except bound

structures 1TBE-A and 1F9J-B (which are the peaks on the red line in the figure that surpass

0.8 Å), are in favor of conformation selection. However, if we use a lower threshold value,

say 0.6 Å, then there is no consensus at all regarding the recognition mechanism among the

four ensembles. The four ensembles represent four different solutions and they yield different

conclusions on the matter.

Conclusion

In this work, we develop a novel computational method that is able to determine the relative

populations of structures within an ensemble by employing the iterative least squares method

to fit the experimental RDC data. We compare Q-factors among several ubiquitin ensembles

and the results show that ensembles with RDC derived populations significantly improve the

agreement between the calculated and experimental RDCs. Consequently, we are able to use
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this method to determine several ubiquitin ensembles with low Q-factors, which would not

have been possible if relative populations had not been used. These ensembles may represent

different solutions to the same experimental constraints. Therefore, an interesting question

that arises here is whether or not these ensembles have consensus regarding the recognition

mechanism for ubiquitin. The answer to this depends heavily on the threshold value used for

characterizing conformation selection, which is the backbone root mean square distance from

a bound structure to the closest populated conformation state. When a high threshold value

is used, all the four ensemble solutions are in favor of conformation selection for most of the

bound structures, while a clear consensus cannot be reached if a lower threshold value is used

instead. The low backbone RMS distances between the bound structures and the free structure

1UBQ strongly suggest that a lower threshold value should be used.

Materials and Methods

In this section, we will present the algorithm for deriving the relative populations of the

structures within an ensemble and the cross validation method. The ensembles and RDC

datasets used are also given.

Structural alignment

Structural alignment is used to align the structures within a given ensemble to the common

coordinate system. Therefore, all the structures can be assumed to have the same molecular

reference frame after the alignment.

Residual dipolar coupling (RDC) calculation of a single structure

Residual dipolar coupling comes from the interaction of two nuclear spins (dipole-dipole)

in the presence of the external magnetic field and is defined by Cornilescu et al. (1998)

Dij =
hrirj

(2πr)3
〈3cos2θ − 1〉 (2.1)

where ri and rj are the nuclear magnetogyric ratios of the nuclei i and j, h is Planks constant, r

is the internuclear distance between the two nuclei and θ is the angle between the internuclear
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vector and the external magnetic field. The brackets signify the average. Normally, the residual

dipolar coupling reduces to zero because of isotropic tumbling. The anisotropic measurement

can be obtained by the aid of various types of liquid crystalline media.

With regards to the 3D structure, the RDC (Dij) can be expressed according to the molec-

ular frame. First, the elements of the Saupe matrix are defined as

Slm = 〈3cosβlcosβm − klm
2

〉 (2.2)

where βl denotes the orientation of the l-th molecular axis with respect to the external magnetic

field. The RDC (Dij) can be reformulated in the molecular frame as

Dij =
hrirj

(2πr)3

(
α2
y − α2

x α2
z − α2

x 2αxαy 2αxαz 2αyαz

)


Syy

Szz

Sxy

Sxz

Syz


(2.3)

where αx , αy and αz are the cosines of the angles between the bond vector of the two nuclei

and the x, y and z axes of the molecular frame. Let αx,k, αy,k and αz,k represent the k-th αx,

αy and αz. When all the bond vectors are considered, we will have the following formula.

Dexp =
hrirj

(2πr)3


α2
y,1 − α2

x,1 ... 2αy,1αz,1

: : :

α2
y,N − α2

x,N ... 2αy,Nαz,N





Syy

Szz

Sxy

Sxz

Syz


(2.4)

where Dexp is the experimental Dij of all interactions and N is the total number of interactions

in a protein structure. Equation 2.4 can be rewritten in the following matrix form:

Dexp = cAS (2.5)

where c is the constant hrirj
(2πr)3

and A is the Nx5 matrix in the equation 2.4 and the S is the

five element vector. Basically, the S and Dcalc can be calculated from the Moore-Penrose
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pseudoinverse of matrix A.

S = A−1Dexp (2.6)

Dcalc = AA−1Dexp (2.7)

Residual dipolar coupling (RDC) calculation of an ensemble

The RDC calculation method for a single structure can be extended to take ensemble aver-

aging into account so that the ensemble Dcalc can be obtained. First consider the assumption

that all structures have equal contributions toward the experimental RDC: Dexp . When an

ensemble with equal weights is considered, we will have the following formula.

(
A1

n
+
A2

n
+ ...+

Ak
n

+ ...
An
n

)
S = Dexp (2.8)

where Ak is the A matrix obtained from the k-th structure. S can be obtained from the

following formula.

S =
(
A1

n
+
A2

n
+ ...+

Ak
n

+ ...
An
n

)−1

Dexp (2.9)

Now consider another assumption that different structures may have different populations and

thus different contributions toward the Dexp and can be combined linearly. Therefore, weights

(representing the relative populations) are given to different structures and the following for-

mula is used to represent the combination:

(w1A1 + w2A2 + ...+ wkAk + ...+ wnAn)S = Dexp (2.10)

where n is the total number of structures and wk and Ak are the relative population (or weight)

and A matrix of the k-th structure. Thus, S can be obtained from the following formula.

S = (w1A1 + w2A2 + ...+ wkAk + ...+ wnAn)−1Dexp (2.11)

The definition of our problem is thus to find the optimal relative populations of the structures

within the ensemble such that the experimental RDC is best reproduced.
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Iterative least squares fitting for optimal populations for a single RDC data set

In the process of back-calculating the residual dipolar coupling (RDC) from a protein

structure or ensemble, singular value decomposition is used to obtain a least square solution

for the alignment tensor. We apply the same technique iteratively to obtain the optimal relative

populations for a given ensemble. Due to the assumption linearity, the weights can be obtained

via iterative least squares fitting. First, an equal value is given for all populations and Equation

2.11 is used to obtain S. After S is obtained, it is used to determine the wks via least squares

fitting. The process is iterated until the weights converge. In the end, each structure has

either positive or zero population, since the weights are derived with nonnegative constraints

[Lawson and Hanson (1995)]. The following algorithm gives the detailed implementation of

the iterative least squares fitting for a single RDC data set.

Iterative Least Squares Fitting ([A1A2 · · ·An], Dexp)

for i = 1 to n do

new weights(i)← 1
n

end for

repeat

old weights← new weights

A← old weights(1) ∗A1 + · · ·+ old weights(n) ∗An

S ← pseudo inverse(A) ∗Dexp

AS ← [A1S A2S · · ·AnS]

new weights← non negative least squares(AS,Dexp)

until old weights and new weights converge

return new weights

Iterative least squares fitting for optimal relative populations for multiple RDC

data sets

In the case of multiple RDC data sets, different alignment tensors are calculated for different

media. The optimal weight combination (the relative populations) is obtained by least squares
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fitting to all the RDC data sets. The following algorithm gives the detailed implementation of

the iterative least squares fitting for multiple RDC data sets.

Iterative Least Squares Fitting Multiple RDCs ([A1A2 · · ·An], [D1, D2 · · ·Dm])

for i = 1 to n do

new weights(i)← 1
n

end for

repeat

old weights← new weights

A← old weights(1) ∗A1 + · · ·+ old weights(n) ∗An

for i = 1 to m do

S(i)← pseudo inverse(A) ∗Di

AS(i)← [A1S(i) A2S(i) · · ·AnS(i)]

end for

AS all←



AS(1)

AS(2)

·

·

·

AS(m)



D all←



D1

D2

·

·

·

Dm


new weights← non negative least squares(AS all,D all)

until old weights and new weights converge

return new weights
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Table 2.7 The selected ensembles.

Ensemble Structure determination method Number of structures
X-ray structures X-ray crystallography 46
1D3Z NMR spectroscopy [Cornilescu et al. (1998)] 10
2NR2 Minimal Under-restraining Minimal Over-

restraining (MUMO) [Richter et al. (2007)]
144

1XQQ Dynamic Ensemble Refinement (DER)
[Lindorff-Larsen et al. (2005)]

128

2K39 Ensemble Refinement with Orientational re-
straints (EROS) [Lange et al. (2008)]

116

X-ray structures+ 1D3Z X-ray crystallography and NMR spectroscopy 56

Table 2.8 The RDC data sets for obtaining the weights and validation.

Source RDC Type Number of RDC data sets
Lakomek et al. (2008) NH 13
Lakomek et al. (2006) NH 5

NC’ 4
HC’ 4

Ottiger and Bax (1998) NH 2
CaC’ 2
CaHa 2
NC’ 2
HC’ 2

Tolman (2002) NH 9
Ruan and Tolman (2005) NH 7
Kontaxis and Bax (2001) Methyl 10

The ubiquitin ensemble and RDC data set for obtaining the weights and validation

Ubiquitin has long been used as a model protein to probe the protein dynamics and several

ubiquitin ensembles exist in the PDB and were generated from different structure determination

methods to satisfy both dynamic and structural constraints. In this work, we select 4 well-

known ubiquitin ensembles and an X-ray structure ensemble consisting of 46 X-ray structures

for our study. We also form a combined ensemble of X-ray and NMR structures. Table 2.7

shows the selected ensembles. A total of 62 RDC data sets, including NH, NC’, HC’, CαC’,

CαHα and side chain methyl, are used to obtained the weight combinations (i.e., relative

populations) of the 6 selected ubiquitin ensembles. Table 2.8 shows the types and references
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for these 62 RDC data sets.

The cross validation

Q factor is a commonly used measure of the agreement between the experimental and

calculated RDCs and is calculated by the following formula [Cornilescu et al. (1998)],

Q =

√∑
(Dcalc −Dexp)2√∑

D2
calc

(2.12)

where Dcalc is the calculated RDC and Dexp is the experimental RDC. We also use the corre-

lation coefficient to measure the agreement, which is calculated as the following,

ρ =
(Dcalc −Dcalc)(Dexp −Dexp)√∑
(Dcalc −Dcalc)2

∑
(Dexp −Dexp)2

(2.13)

We performed two rounds of cross validations. In the first round, all 6 HC RDC data sets

were left out of the weight evaluation process and were used for validation only. The alignment

tensors used to compute the HC RDCs in different alignment media were determined from

non-HC RDCs. In the second round, NC RDC data sets were left out for validation and the

alignment tensors for NC RDCs in this round are obtained from non-NC RDCs.
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CHAPTER 3. EVALUATING THE QUALITY OF CONFORMATION

SAMPLING METHODS USING EXPERIMENTAL RESIDUAL

DIPOLAR COUPLING DATA

A paper to be submitted

Tu-Liang Lin, Santhosh Kumar Vammi and Guang Song

Abstract

Many computational approaches have been developed and used for sampling protein con-

formations near the native state. However, it has been difficult to evaluate the qualities of

the conformations sampled or to compare them among the various sampling schemes. In this

work, we develop a novel method for evaluating the quality of conformation ensembles and

apply it to evaluate ubiquitin conformations generated from four widely-used conformation

sampling approaches, namely, MD simulation, Elastic Network Model (ENM), CONCOORD,

and tCONCOORD. We choose ubiquitin because there exists abundant experimental residual

dipolar coupling (RDC) data on this protein. RDC data contains rich ensemble-averaged infor-

mation about a given protein and thus provide tight constraints that can be used for probing

what conformations should make up the protein ensemble. Our results demonstrate that the

conformations generated by MD simulations are the best among all sampling methods. Specif-

ically, MD simulation performs significantly better than the other methods in capturing the

side chain motions. The backbone flexibility modeled and sampled by tCONCOORD comes

quite close, with CONCOORD and ENM trailing behind.
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Introduction

Conformational sampling

It is now well accepted that the functions of a protein are closely related to not only its

structure but also its dynamics. There is strong evidence showing that the best representation

of the native states of a protein should be an ensemble of structures [Karplus and McCammon

(2002)]. Therefore, numerous computational approaches have been developed and used to

sample the conformational space around the native state in hope that the distribution and

dynamic transition among the conformation states can be well studied and understood.

MD simulation is one of the most commonly used computational approaches for confor-

mation sampling. The main limitation of MD simulation is its high computation cost, which

greatly limits the timescale that can be reached, especially for large systems. Recently it also

has been shown that MD simulations beyond hundreds of nanoseconds might have the poten-

tial risk of running into high free energy states and staying there for a long time, thus skewing

the populations [Lange et al. (2010)]. Therefore, obtaining the correct sampling in a broad

time-scale is still a challenge. To overcome such difficulties, residual dipolar couplings (RDCs)

data, which provide complementary dynamics information that is inaccessible to NMR relax-

ation methods, have been used as constraints in conformation sampling [Lange et al. (2008);

Mittermaier and Kay (2006)].

Elastic Network Model (ENM) is another choice for conformation sampling. In the last

decade various coarse-grained elastic network models have been developed to study the large-

scale motions of proteins and protein complexes where computer simulations using detailed

all-atom models are not feasible. Among these models, the Gaussian Network Model (GNM)

and the Anisotropic Network Model (ANM) have been widely used [Bahar et al. (1997); Atilgan

et al. (2001)] due to their simplicity. Specifically, the analytic solutions to residue fluctuations

and motion correlations can be easily derived. In this work, we use one of the recently developed

ENMs, the Torsional Network Model (TNM), which uses the backbone torsional angles as the

essential degrees of freedom of the protein [Mendez and Bastolla (2010)]. The major advantage
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of TNM is that the covalent bond geometry, such as bond lengths and bond angles, are naturally

conserved in the motions represented by the modes. CONCOORD uses geometrical constraints

to sample the conformational space. From a given input structure, a geometric description of

the structure is calculated and this geometric description can be used to generate hundreds of

structures [de Groot et al. (1997)]. Later, CONCOORD is re-implemented as tCONCOORD

to allow the sampling of conformational transitions of a protein under geometrical constraints

[Seeliger et al. (2007); Seeliger and De Groot (2009)]. The advantage of the CONCOORD and

tCONCOORD over MD is computational efficiency.

With the development of various structure determination methods, protein structures are

becoming increasingly more available and for some well-studied proteins, tens and even hun-

dreds of structures (of the same protein) have been determined and are available in the PDB.

These structures have been shown to capture a representative subset of the native-state en-

semble [Best et al. (2006)]. Therefore, an ensemble formed by experimental structures from

the PDB can be regarded as samplings too and can be used as a reference frame to examine

the other conformation sampling methods.

For most conformation sampling approaches, the relative populations of the sampled confor-

mations in the conformation space are not known. Currently, few methods exist for obtaining

such relative populations even though they are essential information for describing the confor-

mation space. Recently, we developed a method for determining the relative populations of

protein conformation states using experimental residual dipolar coupling data and applied it

to study the protein recognition mechanism of ubiquitin [Lin and Song (2011)].

The abundant ensemble-averaged information included in RDC data also provides tight con-

straints that can be used for probing what conformations should make up the ensemble. Thus,

the aim of this work is to evaluate the sampling ability of different computational approaches.

For a given conformation sampling method, we will examine how well the conformations it

generates can reproduce the experimental RDC data. Our hypothesis is that the samplings

that best approximate the conformation space should also reproduce the RDC data with the

highest fidelity.
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Besides the aforementioned methods, there exist other computational approaches for con-

structing an ensemble, such as the loop prediction program [Shehu et al. (2006)], the geometric

restriction checking program [de Groot et al. (1997)], and the chemical shift prediction algo-

rithm [Jensen et al. (2010)].

Significance of the work

Although many conformation sampling methods have been proposed, to the best of our

knowledge there is not much effort to compare the sampling qualities of these methods. The

algorithm presented in this work provides a way to measure the sampling quality of a given

conformation sampling method, and to identify its strengths and weaknesses. Current work

uses RDC data as the constraints to evaluate an ensemble. However, this can be easily extended

to include other experimental data, such as NMR order parameters.

The residual dipolar coupling (RDC)

The residual dipolar coupling is an interaction that exists between two magnetic nuclei.

Under isotropic solution condition, dipolar coupling averages to zero as a result of the effects

of Brownian motion and tumbling of the molecule. The use of an alignment medium that can

create a weak force on the protein and eventually leads to an incomplete averaging of anisotropic

magnetic interactions makes the measurement of residual dipolar coupling possible. Therefore,

the residual dipolar coupling (RDC) between two spins represents the incomplete averaging of

spatially anisotropic dipolar couplings. One intriguing property of RDC is that it can probe

the blind spot of the conventional NMR relaxation. Conventional NMR relaxation has been

used to probe the dynamics faster than the rotational correlation time of a system which can

range from picoseconds to nanoseconds or to identify the dynamics slower than microseconds.

However, many important biological processes happen in the blind spot of the conventional

NMR, between nanoseconds to microseconds, where RDC plays an important role in protein

dynamics studies. In this work, we develop an algorithm that can exploit the RDC data and

use them as constraints in evaluating the sampling qualities of different conformation sampling
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approaches.

Results

Case study using an artificial two-structure ubiquitin ensemble

Protein structure ensembles are represented by a collection of conformations. In Lin and

Song (2011), we have shown that, in order to better describe the conformation space using an

ensemble, it is helpful to introduce information about the relative population of the ensemble,

i.e., an ensemble that is described not only by a set of conformations, but also by the relative

population of each conformation. Such relative populations are not readily available most

times when an ensemble is generated but can be determined by iterative least square fitting

as described in Lin and Song (2011). For example, in a case study performed on an artificial

ubiquitin ensemble consisting of only two structures (pdb-id: 1UBQ and 1YD8, with 1UBQ

being a free structure and 1YD8 a bound ubiquitin structure in complex with human GGA3

GAT domain), we showed that introducing relative populations between the two structures

greatly improved the accuracy in reproducing the experimental RDC data (as compared to the

case without relative populations) [Lin and Song (2011)].

The results of a 50-ns MD simulation of ubiquitin

In this section, we examine the trend of Q-factor changes over time based on conformations

cumulated in a 50-ns MD simulation (see Figure 3.1). At the beginning, the Q-factors of the

backbone RDCs, NH, NC and HC RDC, are below 0.45, but at the end of 50-ns simulation,

the Q factors increase to above 0.6. The Q-factor of the side chain RDC is very high at the

beginning, but it decreases to 0.5 around 5 ns. The Q-factor of NH RDC also reaches its

minimum at 2 ns. The results imply that longer simulations do not necessarily result in better

correlations between the experimental and calculated RDCs. This phenomenon has also been

observed in recent work by Lange et al. in several 1000-ns MD simulations using different force

fields [Lange et al. (2010)].
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Figure 3.1 The changes of Q factors over time.

The trends suggest that as simulation progresses in time, the accumulated population may

not necessarily increase in their accuracies in approximating the conformation space. There

could be several reasons for this. First, the simulation has not been run long enough and some

conformation states have not been reached. Secondly, the simulation has not been run long

enough and the samplings are biased by what the starting structure is and what the initial

simulation conditions are. Lastly, the force fields may not be accurate enough to give the

right proportion of populations to the different conformation states. If the cause is one or

both of the latter two, the problem can be solved by re-assigning a relative population to each

conformation. If it is the first one, then a different sampling scheme has to be applied to reach

those conformation states.

Our newly developed iterative least square RDC fitting algorithm [Lin and Song (2011)]

is applied to the 50-ns MD ensemble. After re-assigning relative populations, the Q-factors

of all the RDCs are lowered significantly (see Table 3.1), but they remain quite high. This

indicates the simulation, though 50-ns long, has not reached some important conformation
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Table 3.1 Overall Q-factors and cross correlations (CCs) between the ex-
perimental and calculated RDCs using 50-ns MD ensemble.

50-ns MD NH RDC HC RDC NC RDC Side chain RDC
Q factor for the equal weighted ensemble 0.70 0.62 0.60 0.65
Q-factor for ensemble with relative population 0.27 0.38 0.33 0.34
CC for the equal weighted ensemble 0.81 0.83 0.86 0.84
CC for ensemble with relative population 0.96 0.92 0.95 0.95

states that significantly contribute to the observed RDCs. In the sections that follow, we will

show this problem can be mostly alleviated by running MD simulations from multiple starting

structures.

Figure 3.2 The fluctuations of Q-factors on the starting structure of MD
simulations.

46 different X-ray structures, shown in the abscissa, are used as the starting points in the
simulations.

Multiple shorter MD simulations using different X-ray structures as starting points

In this section, we will investigate the quality of the conformations generated from multiple

shorter (2-ns each) MD simulations using different structures as the starting points. 46 X-



34

ray ubiquitin structures are chosen and 2-ns MD simulations are performed for each chosen

structure. For each structure, 1,000 conformations (one per every 2-ps) are collected in the

corresponding MD simulation and are used to compute the Q-factors. Figure 3.2 shows the

fluctuations of Q-factors between the calculated and experimental RDCs when each of these

46 structures is used as the starting point of the simulation. Side chain RDC varies extensively

in the range between 0.4 and 1. Only one structure (1F9J chain B) gives backbone RDCs that

are higher than 0.5.

Table 3.2 Average Q factors and CCs between the experimental and cal-
culated RDCs of 46 2-ns MD ensembles.

2-ns MDs of 46 xray structures NH RDC HC RDC NC RDC Side chain RDC
Q factor for the equal weighted ensemble 0.3625 0.4274 0.3854 0.6388
Q-factor for ensemble with relative population 0.2679 0.3617 0.3180 0.5051
CC for the equal weighted ensemble 0.9399 0.9044 0.9389 0.8103
CC for ensemble with relative population 0.9657 0.9305 0.9570 0.8747

The iterative least square RDC fitting algorithm (see [Lin and Song (2011)] or a review of

the algorithm in the Methods section) is then applied to all the 46 2-ns MD ensembles. Table

3.2 shows the average Q-factor of the equal weighted ensemble (without relative populations)

and RDC weighted ensemble (with relative populations). The Q-factors of all the RDCs are

reduced by about 20-30% after the fitting.

Table 3.3 Q-factors of the conformation ensembles generated from different
sampling approaches (without relative populations).

Sampling methods MD ENM CONCOORD tCONCOORD 46 X-ray Struc-
tural Ensemble*

Q factor of NH RDC 0.223 0.326 0.261 0.197 0.224
Q factor of HC RDC 0.328 0.438 0.297 0.268 0.255
Q factor of NC RDC 0.288 0.350 0.246 0.223 0.247
Q factor of side chain RDC 0.281 0.383 0.361 0.307 0.294
*The ensemble of the original 46 X-ray structures (last column) serves as a reference.
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The results from MD, ENM, CONCOORD and tCONCOORD

In this section, we will examine and compare the conformations generated by four different

sampling approaches, namely, MD, ENM, CONCOORD and tCONCOORD. Since it is much

more difficult to sample well the conformation space from a single structure, as the sampling

process can be easily trapped in a local energy well, we choose to use 46 known X-ray struc-

tures of ubiquitin as the starting points when evaluating all the aforementioned conformation

sampling methods. When evaluating the sampling ability of a given method, a sub-ensemble

of 200 structures is generated around each of the 46 X-ray structures (see Methods section for

details on how the conformations are generated by the different methods). As a result, the

final ensemble contains 46 sub-ensembles, each of which in turn contains 200 conformations,

and thus has a total of 9,200 conformations. To evaluate how well such an ensemble can po-

tentially reproduce the RDC data, we need to first determine the relative population of each

conformation. However, due to the large size of the ensemble, it is not feasible to compute their

relative populations directly using the iterative least square fitting method, as there would be

more parameters than the number of data points. Therefore, we first determine the relative

populations of the conformations within each sub-ensemble by fitting the ensemble to the ex-

perimental RDCs. Then the top ten conformations with largest populations are selected from

each sub-ensemble to form the final ensemble, which now has only 460 conformations.

Table 3.4 Q-factors of the conformation ensembles generated from different
sampling approaches (with relative populations).

Sampling methods MD ENM CONCOORD tCONCOORD
Q factor of NH RDC 0.154 0.210 0.191 0.161
Q factor of HC RDC 0.281 0.350 0.271 0.259
Q factor of NC RDC 0.228 0.282 0.23 0.215
Q factor of side chain RDC 0.215 0.262 0.258 0.241

Table 3.3 shows the Q-factors computed from the ensembles generated from different confor-

mational sampling approaches. For all four ensembles, the 460 conformations in the ensemble

are given an equal population. It is worth noting that tCONCOORD has the best performance

for backbone RDCs among the four sampling approaches, while the MD ensemble has the best
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performance for side chain RDCs. Table 3.4 shows the Q-factor results after assigning relative

populations to the 460 conformations in each ensemble. Interestingly, the MD ensemble now

outperforms all the other ensembles, including tCONCOORD, on both NH and side chain RDC

data sets. On NC and HC RDCs, for both of which the experimental data are much sparser,

MD ensemble performs about equally well as the other methods. This indicates that the MD

ensemble contains conformations that resemble more closely the experimental populated con-

formation states of ubiquitin than any other ensembles. The reason why this is not obvious in

Table 3 when equal populations are used is probably due to the fact that the simulations had

not been run long to correctly reproduce the population distribution. The accuracies of force

fields may have had some influences as well.

Discussions and Conclusion

In this work, we develop a novel method for evaluating the quality of conformation en-

sembles and apply it to evaluate ubiquitin conformations generated from four widely-used

conformation sampling approaches, namely, MD simulation, Elastic Network Model (ENM),

CONCOORD, and tCONCOORD. A protein’s conformation space has very high dimensions

and there exist many local energy minima. For proteins like Ubiquitin, abundant evidence

exists showing that the protein has multiple well-populated conformation states that are sep-

arated by high energy barriers. The transition times among some of these states can be on

the order of microseconds. Thus, it is infeasible to produce a good coverage of the conforma-

tion space starting from a single structure. Besides, most conformation sampling methods are

suited only for local sampling, with MD simulation being perhaps the only exception. However,

there are limitations with MD simulations as well. Conformations sampled by MD are more

prone to be biased towards some regions of the conformation space and it takes extremely long

simulations to remove the bias. In addition, it is possible that the force fields may lead the

conformations away from the desired conformation states found in nature. Fortunately, most of

these limitations can be alleviated by applying our recently developed RDC-based method that

is able to re-assign the relative population of each conformation. For the aforementioned rea-
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sons, we use 46 (instead of 1) known crystal structures of Ubiquitin as the starting points for

generating conformations when evaluating each sampling method. Our results demonstrate

that the conformations generated by MD simulations are still the best among all sampling

methods. However, this is only true if the populations of the conformations in the ensemble

have been readjusted. Specifically, MD simulations perform significantly better than the other

methods in capturing the side chain motions, even before relative population readjusting is

applied. The backbone flexibility modeled and sampled by tCONCOORD comes quite close,

with CONCOORD and ENM trailing behind. Longer MD simulations probably are required to

further justify the sampling ability of MD in the backbone motion and this will be investigated

in the future research.

Materials and Methods

In this section, we give a detailed description of the processes by which conformations are

generated using the four different sampling methods. For convenience, we also include here

the algorithm [Lin and Song (2011)] for computing and reassigning relative populations to

conformations within an ensemble so that they can best reproduce the experimental residual

dipolar coupling (RDC) data. The RDC datasets used in this work and how RDC can be

computed from a structure or an ensemble are also given.

Structural alignment

Structural alignment is used to align the structures within a given ensemble to the common

coordinate system. Therefore, all the structures can be assumed to have the same molecular

reference frame after the alignment.

Residual dipolar coupling (RDC) calculation of a single structure

Residual dipolar coupling comes from the interaction of two nuclear spins (dipole-dipole)

in the presence of the external magnetic field and is defined as Cornilescu et al. (1998)

Dij =
hrirj

(2πr)3
〈3cos2θ − 1〉 (3.1)
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where ri and rj are the nuclear magnetogyric ratios of the nuclei i and j, h is Planks constant, r

is the internuclear distance between the two nuclei and θ is the angle between the internuclear

vector and the external magnetic field. The brackets signify the average. Normally, the residual

dipolar coupling is reduced to zero because of isotropic tumbling. The anisotropic measurement

is obtained by the aid of various types of liquid crystalline media.

With regards to the 3D structure, the RDC (Dij) can be expressed according to the molec-

ular frame. First, the elements of Saupe matrix is defined as

Slm = 〈3cosβlcosβm − klm
2

〉 (3.2)

where βl denotes the orientation of the l-th molecular axis with respect to the external magnetic

field. The RDC (Dij) can be reformulated in the molecular frame as

Dij =
hrirj

(2πr)3

(
α2
y − α2

x α2
z − α2

x 2αxαy 2αxαz 2αyαz

)


Syy

Szz

Sxy

Sxz

Syz


(3.3)

where αx , αy and αz are the cosines of the angles between the bond vector of the two nuclei

and the x, y and z axes of the molecular frame. Let αx,k, αy,k and αz,k represent the k-th αx,

αy and αz. When all the bond vectors are considered, we will have the following formula.

Dexp =
hrirj

(2πr)3


α2
y,1 − α2

x,1 ... 2αy,1αz,1

: : :

α2
y,N − α2

x,N ... 2αy,Nαz,N





Syy

Szz

Sxy

Sxz

Syz


(3.4)

where Dexp is the experimental Dij of all interactions and N is the total number of interactions

in a protein structure. Equation 3.4 can be rewritten in the following matrix form:

Dexp = cAS (3.5)
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where c is the constant hrirj
(2πr)3

and A is the Nx5 matrix in the equation 3.4 and the S is the

five element vector. Basically, the S and Dcalc can be calculated from the Moore-Penrose

pseudoinverse of matrix A.

S = A−1Dexp (3.6)

Dcalc = AA−1Dexp (3.7)

Residual dipolar coupling (RDC) calculation of an ensemble

The RDC calculation method for a single structure can be extended to take ensemble aver-

aging into account so that the ensemble Dcalc can be obtained. First consider the assumption

that all structures have equal contributions toward the experimental RDC: Dexp . When an

ensemble with equal weights is considered, we will have the following formula.

(
A1

n
+
A2

n
+ ...+

Ak
n

+ ...
An
n

)
S = Dexp (3.8)

where Ak is the A matrix obtained from the k-th structure. S can be obtained from the

following formula.

S =
(
A1

n
+
A2

n
+ ...+

Ak
n

+ ...
An
n

)−1

Dexp (3.9)

Now consider another assumption that different structures may have different populations and

thus different contributions toward the Dexp can be combined linearly. Therefore, weights (rep-

resenting the relative populations) are given to different structures and the following formula

is used to represent the combination:

(w1A1 + w2A2 + ...+ wkAk + ...+ wnAn)S = Dexp (3.10)

where n is the total number of structures and wk and Ak are the relative population (or weight)

and A matrix of the k-th structure. Thus, S can be obtained from the following formula.

S = (w1A1 + w2A2 + ...+ wkAk + ...+ wnAn)−1Dexp (3.11)

The definition of our problem is thus to find the optimal relative populations of the structures

within the ensemble such that the experimental RDC is best reproduced.
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Iterative least squares fitting for optimal populations for a single RDC data set

In the process of back-calculating the residual dipolar coupling (RDC) from a protein

structure or ensemble, singular value decomposition is used to obtain a least square solution

for the alignment tensor. We apply the same technique iteratively to obtain the optimal relative

populations for a given ensemble. Due to assuming linearity, the weights can be obtained via

iterative least squares fitting. First, equal values are given for all populations and Equation

3.11 is used to obtain S. After S is obtained, it is used to determine the wks via least squares

fitting. The process is iterated until the weights converge. In the end, each structure has either

positive or zero population, since the weights are derived under the nonnegative constraints

[Lawson and Hanson (1995)]. The following algorithm gives the detailed implementation of

the iterative least squares fitting for a single RDC data set.

Iterative Least Squares Fitting ([A1A2 · · ·An], Dexp)

for i = 1 to n do

new weights(i)← 1
n

end for

repeat

old weights← new weights

A← old weights(1) ∗A1 + · · ·+ old weights(n) ∗An

S ← pseudo inverse(A) ∗Dexp

AS ← [A1S A2S · · ·AnS]

new weights← non negative least squares(AS,Dexp)

until old weights and new weights converge

return new weights

Iterative least squares fitting for optimal relative populations for multiple RDC

data sets

In the case of multiple RDC data sets, different alignment tensors are calculated for different

media. The optimal weight combination (the relative populations) is obtained by least squares



41

fitting to all the RDC data sets. The following algorithm gives the detailed implementation of

the iterative least squares fitting for multiple RDC data sets.

Iterative Least Squares Fitting Multiple RDCs ([A1A2 · · ·An], [D1, D2 · · ·Dm])

for i = 1 to n do

new weights(i)← 1
n

end for

repeat

old weights← new weights

A← old weights(1) ∗A1 + · · ·+ old weights(n) ∗An

for i = 1 to m do

S(i)← pseudo inverse(A) ∗Di

AS(i)← [A1S(i) A2S(i) · · ·AnS(i)]

end for

AS all←



AS(1)

AS(2)

·

·

·

AS(m)



D all←



D1

D2

·

·

·

Dm


new weights← non negative least squares(AS all,D all)

until old weights and new weights converge

return new weights
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Table 3.5 The RDC data sets for obtaining the weights and validation.

Source RDC Type Number of RDC data sets
Lakomek et al. (2008) NH 13
Lakomek et al. (2006) NH 5

NC’ 4
HC’ 4

Ottiger and Bax (1998) NH 2
CaC’ 2
CaHa 2
NC’ 2
HC’ 2

Tolman (2002) NH 9
Ruan and Tolman (2005) NH 7
Kontaxis and Bax (2001) Methyl 10

The ubiquitin ensemble and RDC data set for obtaining the weights and validation

Ubiquitin has long been used as a model protein to probe protein dynamics. In this work,

we select 46 X-ray structures to form an X-ray structure ensemble for comparison with the

ensembles obtained from MD, ENM, Concoord and tConcoord.

Conformational Sampling from MD

NAMD [Phillips et al. (2005)], a parallel molecular dynamics simulation program, is used

to conduct the MD simulations. Periodic boundary conditions are applied in all simulation

processes under the CHARMM27 force field. Each starting structure is solvated in a 10Å water

box and each simulation starts with energy minimization and then equilibrium. One 50 ns MD

simulation starting from PDB structure 1UBQ and 46 2-ns MD simulations are conducted

using a HPC cluster computer.

Conformational Sampling using ENM

In ENM conformational sampling, we used all the atoms of protein in Hessian matrix

calculations but only backbone torsional angles are considered free to rotate. The steps done

to generate new structures from TNM (Torsional Network Model) are : (1) Torsional modes
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from TNM are computed. (2) A random linear sum among the first ten low frequency modes

weighted by their corresponding eigen frequencies are used to obtain torsional changes. (3)

New structures are generated by rotating the original protein chain along the torsional changes

obtained from step 2. (4) Newly generated structures are then energy minimized to remove

any atom clashes.

Conformational Sampling using CONCOORD and tCONCOORD

46 CONCOORD and 46 tCONCOORD ensembles are generated from the program CON-

COORD version 2.1 and tCONCOORD version 1.0 respectively. OPLS-AA parameters are

used for VdW parameters and Engh-Huber parameters are used for the bonded parameters.

RDC data set used A total of 62 RDC data sets, including NH, NC’, HC’, CαC’, CαHα and

side chain methyl, are used to obtained the weight combinations (i.e., relative populations) of

the 6 selected ubiquitin ensembles. Table 3.5 shows the types and references of these 62 RDC

data sets.

A total of 62 RDC data sets, including NH, NC’, HC’, CaC’, CaHa and side chain methyl,

are used to obtained the weight combinations (i.e., relative populations) of the 6 selected

ubiquitin ensembles. Table 3.5 shows the types and references of these 62 RDC data sets.

The validation

Q factor is a commonly used measure of the agreement between the experimental and

calculated RDCs and is calculated by the following formula [Cornilescu et al. (1998)],

Q =

√∑
(Dcalc −Dexp)2√∑

D2
calc

(3.12)

where Dcalc is the calculated RDC and Dexp is the experimental RDC. We also use the corre-

lation coefficient to measure the agreement, which is calculated as the following,

ρ =
(Dcalc −Dcalc)(Dexp −Dexp)√∑
(Dcalc −Dcalc)2

∑
(Dexp −Dexp)2

(3.13)
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CHAPTER 4. GENERALIZED SPRING TENSOR MODELS FOR

PROTEIN FLUCTUATION DYNAMICS AND CONFORMATION

CHANGES

A paper published in the BMC Structural Biology

Tu-Liang Lin and Guang Song

Abstract

Background: In the last decade, various coarse-grained elastic network models have

been developed to study the large-scale motions of proteins and protein complexes where

computer simulations using detailed all-atom models are not feasible. Among these models,

the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM) have been widely

used. Both models have strengths and limitations. GNM can predict the relative magnitudes

of the fluctuations well, but due to its isotropic assumption, it can not be applied to predict the

directions of the fluctuations. In contrast, ANM adds the ability to do the latter, but it loses a

significant amount of precision in the prediction of the magnitudes. In this article, we develop

a generalized spring tensor model (STeM) that is able to predict well both the magnitudes and

the directions of the fluctuations.

Results: The new STeM is able to reproduce the mean square fluctuations for a set of

111 X-Ray structures with significantly better B factor correlations than ANM. The average

correlation coefficient is 0.60 as compared to 0.53 by ANM and 0.59 by GNM. Despite the use of

a more sophisticated potential, the performance of STeM is about the same as the performance

of the GNM in experimental B factor prediction. However, the new model preserves the
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anisotropic information, just like ANM, and greatly improves the magnitude prediction ability.

Also the overlaps and correlations between the observed conformational changes and the most

involved mode derived from STeM is about 4.5% improvement than the mode derived from

ANM for a set of 20 pairs ”open” and ”closed” conformations. The frequency of the lowest

mode identified as the most involved mode is also higher in STeM than in ANM.

Conclusions: STeM outperforms ANM in explaining protein conformation changes. All

of these are accomplished without sacrificing the essential features that have made ANM and

GNM attractive.

Introduction

It is now well accepted that the functions of a protein are closely related to not only its

structure but also its dynamics. With the advancement of the computational power and in-

creasing availability of computational resources, function-related protein dynamics, such as

large-scale conformation transitions, has been probed by various computational methods at

multiple scales. Among these computational methods, coarse-grained models play an impor-

tant role since many functional processes take place over time scales that are well beyond

the capacity of all-atom simulations [Voth (2009)]. One type of coarse-grained models, the

elastic network models (ENMs), have been particularly successful and widely used in studying

protein dynamics and in relating the intrinsic motions of a protein with its functional-related

conformation changes over the last decade [Bahar et al. (1997); Atilgan et al. (2001); Bahar

and Rader (2005); Ma (2005)].

The reason why ENMs have been well received as compared to the traditional normal

mode analysis (NMA) lies at its simplicity to use. ENMs do not require energy minimization

and therefore can be applied directly to crystal structure to compute the modes of motions.

On the other, minimization is required for carrying out normal mode analysis (NMA). The

problematic aspect of energy minimization is that it normally shifts the protein molecule away

from its crystal conformation by about 2 Å. In addition, in ENMs analytic solutions to residue
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fluctuations and motion correlations can be easily derived. Although several variations of

ENMs exist, the ENMs basically have the potential similar to the following harmonic form:

V =
γ

2

∑
all qualified pairs (i,j)

(|rij| − |r0,ij|)2 (4.1)

where γ is the force constant and |rij| and |r0,ij| are the instantaneous and equilibrium distances

respectively between residues i and j. All qualified pairs are the pairs that are within some

distance cutoff. The simplicity of traditional ENMs has been regarded as an advantage because

the second derivative can be obtained analytically. On the other hand, the simplicity leaves

much room for improvement and many new models has been proposed [Ming and Brschweiler

(2006); Song and Jernigan (2006, 2007); Lu et al. (2006); Yan (); Zheng (2008)].

The two most widely used ENM models are Gaussian Network Model (GNM) and Anisotropic

Network Model (ANM). They have been used to predict the magnitude or direction of the

residue fluctuations from a single structure and have been applied in many research areas,

such as domain decomposition and allosteric communication [Lin and Song (2009); Bahar

et al. (2007); Zheng and Brooks (2005); Yang et al. (2009); Bahar and Rader (2005); Zheng

and Brooks (2005); Kundu et al. (2007); Tama and Sanejouand (2001) ]. Both models have

their own advantages and disadvantages. GNM can predict the relative magnitudes of the

fluctuations well, but due to its isotropic assumption, it can not be applied to predict the

directions of the fluctuations. In contrast, ANM adds the ability to do the latter, but it loses

a significant amount of precision in the prediction of the magnitudes.

Gaussian Network Model. Gaussian Network Model (GNM) was first introduced in

Bahar et al. (1997) under the assumption that the separation between a pair of residues in

the folded protein is Gaussianly distributed. The model gives a good agreement between

the theoretical and experimental crystallographic B-factors. The model describes a protein

structure as a cluster of Cα atoms. The connectivity among the Cα’s is expressed in Kirchhoff

matrix Γ (see Eq. (4.2)). Two Cα’s are considered to be in contact if their distance falls within

a certain cutoff distance. The cutoff distance between a pair of residues is the only parameter

in the model and is normally set to be 7 Å to 8 Å. Let ∆ri and ∆rj represent the instantaneous

fluctuations from equilibrium positions of residue i and j and rij and r0,ij be the respective
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instantaneous and equilibrium distances between residue i and j. The Kirchhoff matrix Γ is:

Γij =


−1 if i 6= j ∩ r0,ij ≤ rc

0 if i 6= j ∩ r0,ij > rc∑N
j,j 6=i Γij if i = j

(4.2)

where i and j are the indices of the residues and rc is the cutoff distance.

The simplicity of the Kirchhoff matrix formulation results from the assumption that the

fluctuations of each residue are isotropic and Gaussian distributed along the X, Y and Z

directions. The expected value of residue fluctuations, < ∆ri
2 >, and correlation, < ∆ri ·

∆rj >, can be easily obtained from the inverse of the Kirchhoff matrix:

< ∆ri
2 >=

3kBT
γ

(Γ−1)ii, (4.3)

< ∆ri ·∆rj >=
3kBT
γ

(Γ−1)ij , (4.4)

where kB is the Boltzmann constant and T is the temperature. The < ∆ri
2 > term is directly

proportional to crystallographic B-factors.

Anisotropy Network Model. GNM provides only the magnitudes of residue fluctua-

tions. To study the motions of proteins in full details, especially to determine the directions of

the fluctuations, normal mode analysis (NMA) is needed. Traditional NMA is all-atom based

and requires a structure to be first energy-minimized before the Hessian matrix and normal

modes can be computed, which was rather cumbersome. Even after the energy minimization,

the derivation of the Hessian matrix is not easy due to the complicated all-atom potential.

In Tirion’s pioneering work [Tirion (1996)] the energy minimization step was removed and a

much simpler Hookean potential was used, and yet it was shown that the low frequency normal

modes remained mostly accurate. Since then, the Hookean spring potentials have been used in

coarse-grained Cα models [Hinsen (1998); Tama and Sanejouand (2001)] as well. Such models

are best known as Anisotropy Network Model (ANM) [Atilgan et al. (2001)] since they have

directional information of the fluctuations and the fluctuations are anisotropic. The potential

in ANM has the simplest harmonic form similar to that is in Eq. 4.1. Assuming that a given
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structure is at equilibrium, the Hessian matrix (3N×3N) can be derived analytically from such

a potential [Atilgan et al. (2001)]. The 3N×3N Hessian matrix HANM can be repartitioned

into N×N super elements and each super element is a 3×3 tensor.

HANM =



H1,1 H1,2 ... H1,N

H2,1 H2,2 ... H2,N

: : : :

HN,1 HN,2 ... HN,N


(4.5)

where Hi,j is the interaction tensor between residue i and j and can be expressed as:

Hi,j =


∂2V

∂Xi∂Xj

∂2V
∂Xi∂Yj

∂2V
∂Xi∂Zj

∂2V
∂Yi∂Xj

∂2V
∂Yi∂Yj

∂2V
∂Yi∂Zj

∂2V
∂Zi∂Xj

∂2V
∂Zi∂Yj

∂2V
∂Zi∂Zj

 (4.6)

Let H+ be the pseudo inverse of Hessian matrix HANM. The mean square fluctuation <

∆ri
2 > and correlation can be calculated by summing the fluctuations over the X−, Y− and

Z− directions.

< ∆ri
2 >=

3kBT
γ

(H+
3i−2,3i−2 +H+

3i−1,3i−1 +H+
3i,3i) (4.7)

< ∆ri ·∆rj >=
3kBT
γ

(H+
3i−2,3j−2 +H+

3i−1,3j−1 +H+
3i,3j) (4.8)

Strengths and Limitations of GNM and ANM. The advantages of ANM/GNM over

the conventional NMA lie in several aspects: (i) it is a coarse-grained model and uses the Cα’s

to represent the residues in a structure; (ii) it does not require energy minimization and thus

can be applied directly to crystal structures to compute the modes of motions; (iii) it provides

analytic solutions to the mean square fluctuations and motion correlations.

The limitations of the GNM model. GNM provides only information of the magnitudes of

residue fluctuations but no directional information. Therefore, the modes of GNM should not

be interpreted as protein motions or components of the motions, since the potential of GNM

is not rotational invariant [Thorpe (2007)].

The limitations of the ANM model. In contrast to GNM, ANM adopts the Hookean springs

and the potential is simply a sum over Hookean potentials so the interaction potential is now
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rotational invariant. And thus, the modes of ANM do represent the possible modes of protein

motions. Yet, when applied to compute B-factors, ANM has a significantly poorer performance

than GNM. The reason is that, in GNM, the fluctuations in the separation between a pair of

residues are assumed to be Gaussian distributed and isotropic, while in ANM, because only

a Hookean spring is attached between a pair of residue i and j, the fluctuation of residue j

is only constrained longitudinally along the axis from i to j. The fluctuation is uncontrained

transversely. The interaction spring tensor Hi,j between residue i and j in Eq. (4.6) becomes

the following in the local frame (where the Z axis is along the direction from i to j):

Hi,j =


0 0 0

0 0 0

0 0 1

 (4.9)

Because the fluctuation of residue j is unconstrained transversely relative to residue i, the

fluctuations given by ANM is less realistic than that by GNM. Such unrealistic-ness of ANM

is an artifact due to the simplistic potential of ANM. In reality, the transverse fluctuation

of residue j could have been constrained by i through bond bending interaction or torsional

interaction, both of which are missing in ANM.

Our Contributions. To overcome the limitations of ANM and GNM, we develop a

generalized spring tensor model for studying protein fluctuation dynamics and conformation

changes. It is called generalized spring tensor model, or STeM, for the reason that the interac-

tion between a pair of residue i and j is no longer a linear Hookean spring as is in Eq. (4.9), but

takes a generalized tensor form that can provide proper transverse constraints on a residue’s

fluctuations relative to its neighbours. We obtain the generalized tensor form by deriving the

Hessian matrix from a more physically realistic coarse-grained potential, the Go-like potential

[Clementi et al. (2000)], which has been successfully used in many MD simulations to study the

protein folding processes and conformational changes [Clementi et al. (2000); Koga and Takada

(2001, 2006)]. In additional to the Hookean spring interactions, the potential includes bond

bending and torsional interactions, both of which had been found to be helpful in removing

the “tip effect” of the ANM model [Lu et al. (2006)]. The inclusion of the bond bending and
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torsional interactions is reflected in the generalized tensor spring interaction between i and j,

in such a way that the tensor now includes not only the two-body interaction between i and j,

but also three-body and four-body interactions that involve i and j.

The STeM model is able to integrate all the aforementioned attractive features of ANM

and GNM and overcome their limitations. Results on predicting B-factors and conformation

changes in Section 4 demonstrate that the STeM model is more accurate in predicting the direc-

tions of motions than ANM and in predicting the magnitudes of fluctuations than GNM. This

is accomplished without incurring significantly more computational cost. STeM is naturally

rotational-invariant since it is derived from a rotation-invariant potential function.

In addition, STeM has the following advantages that neither GNM nor ANM has. The

potential in the STeM model includes bond bending and torsional interactions. Such rotational

springs are desirable but are missing in most ENMs. In doing this, STeM naturally includes

three-body and four-body interactions explicitly, which have been shown to be important, for

example, in structure predictions [Feng et al. (2007)]. Most ENMs, on the other hand, only

explicitly use two-body potential although the method of calculating collective modes may

take account of the coupling between all nodes in the network and thus implicitly include the

three and four body interactions. STeM is still more physically realistic by including bond

bending and torsional rotations explicitly since they capture the chain behavior of protein

molecules, which is neglected in most elastic network models where the protein is treated as an

elastic rubber. Therefore, we have reasons to expect this model will further distinguish itself

in studying protein dynamics where a correct modeling of bond bending or torsional rotations

is crucial.

Results and discussion

Crystallographic B-factor Prediction

Table 1 shows the correlation coefficients between the experimental and calculated B factors

of 111 proteins. The mean values of the correlation coefficients of ANM, GNM, and STeM are

0.53, 0.59, and 0.60 respectively. Hence, the STeM provides the directional information of the
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(Å

)
A

N
M

G
N

M
S

T
eM

P
ro

te
in

R
(Å
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residue fluctuations as ANM and has an accuracy even slightly better than GNM in B-factor

prediction, but whether STeM is better than GNM in B factor prediction is questionable. Due

to the small difference between the GNM and STeM result, the two models are comparable in

B factor prediction if we consider the statistical error limits.

Figure 4.1 The distribution of the correlation coefficient between the ex-
perimental and calculated B factors.

Figure 4.1 shows the distribution of the correlation coefficients between the predicted B-

factors and the experimental B-factors. STeM is the only model that there are instances where

the correlation coefficient is above 0.85 and no instances where the correlation coefficient is

below 0.25. This implies that the performance of STeM is more steady than either ANM or

GNM. The scatter plot of the correlation coefficients between ANM and STeM in Figure 2

shows that STeM performs better than ANM for 80% of the proteins in the data set.

A particular interesting case is diphtheria toxin (1DDT) where previous research [Kundu

et al. (2002)] indicated that the low correlation of the GNM (-0.01) was due to the lack of

the crystal packing effect. When the effect of crystal neighbours was taken into account, the

correlation increased to 0.6 [Kundu et al. (2002)]. Using the STeM model, which includes

the effect of bond bending and torsional rotations, the correlation coefficient improves to 0.49
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Figure 4.2 The scatter plot of the correlation coefficients from ANM and
that from STeM.

For 80% of the proteins listed in Table 1, STeM does better.

without taking into account any crystal packing effect. Therefore, much of the discrepancy

observed between experimental and calculated B-factors for this protein may have not been due

to crystal packing, but in a larger degree, to a proper modeling of intramolecular interactions.

Protein structures of higher resolution have more accurate information of coordinates and

B-factors. We investigate whether our model’s performance can be further improved when the

dataset used is limited to structures with higher resolution. We select the 12 structures with

resolution better than 1.3 Å from the first dataset. The mean values of the correlation coeffi-

cients of these 12 structures are 0.56, 0.62, and 0.63 for ANM, GNM, and STeM, respectively,

which give the same 3% increase for all three models.

Since the Go-like potential has several terms contributing to it, including bond stretching,

bending, dihedral rotations, and the non-bonded interactions, we also investigate the contribu-

tion of different terms to the agreement with experimental B factors. Bonded stretching term
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Table 4.2 The contribution of different terms to the experimental B factor
predictions.

HANM is the Hessian matrix from ANM. HV1, HV2, HV3 and HV4 are
the Hessian matrices from bond stretching (V1), bond bending (V2), tor-
sional rotation (V3) and non-local interaction (V4) terms, respectively.

Hessian matrices used Correlation Coefficient with B factors Improvement with respect to ANM
HANM 0.53 0.00
HV4 0.55 0.02
HV4 + HV1 0.57 0.04
HV4 + HV2 0.57 0.04
HV4 + HV3 0.56 0.03
HV4 + HV1 + HV2 0.59 0.06
HV4 + HV1 + HV3 0.58 0.05
HV4 + HV2 + HV3 0.57 0.04
HV4 + HV1 + HV2 + HV3(= HSTeM) 0.60 0.07
HANM + HV1 0.54 0.01
HANM + HV2 0.54 0.01
HANM + HV3 0.54 0.01
HANM + HV1 + HV2 + HV3 0.56 0.03

(V1), bending term (V2), or torsional rotation term (V3) alone (see Methods section) is not

enough to constraint some proteins in which the hessian matrix becomes close to singular and

will have more than 6 zero eigenvalues when doing the eigen value decomposition for normal

mode analysis. Only non-bonded interaction term (V4) is able to provide enough constraints

which can enforce the hessian matrix to have only 6 zero eigenvalues. Therefore, V4 is the base

term for the comparison of different terms to the agreement with experimental B factors with

respect to ANM results. Table 2 shows the comparison of the contributions of these bonded

and nonbonded interactions in resulting in an improvement of B factor predictions with re-

spect to ANM results. Our results agree with the previous literatures which indicated that the

non-bonded interaction plays a dominant role [Bahar et al. (1997)]. Table 2 shows that the

contribution to the agreement with experimental B factors mainly comes from the non-bonded

interaction and we found that the result even surpass the correlation coefficient obtained from

ANM when non-boned interaction term is used alone.

It has been pointed out that the performance of B factor predictions can be improved

by replacing the single force constant in ANM or GNM with a force constant depends on

the inverse square of pairwise distance [Yan ()]. The Taylor expansion of the non-bonded

interaction term (V4) obtained from the Go-like potential has a force constant as 120ε
r20,ij

which

depends on the inverse square of pairwise distance and this might explain why the correlation
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Table 4.3 The overlap and correlation of the observed conformational
change and the most involved mode among different models in
open conformations.

Protein Overlap in ANM Correlation in ANM Overlap in STeM Correlation in STeM
Adenylate kinase 0.49(1) 0.62(1) 0.55(1) 0.63 (1)
Alcohol dehydrogenase 0.69(3) 0.54(9) 0.73 (2) 0.65 (30)
Annexin V 0.33(1) 0.60(32) 0.33 (1) 0.56 (22)
Aspartate aminotransferase 0.56(9) 0.63(9) 0.68 (6) 0.67 (6)
Calmodulin 0.44(5) 0.62 (77) 0.48 (1) 0.62 (16)
Che Y protein 0.46(1) 0.78(12) 0.40(1) 0.74(1)
Citrate synthase 0.48(7) 0.72(26) 0.49(5) 0.63(5)
Dihydrofolate reductase 0.71(1) 0.65(1) 0.73(1) 0.66(1)
Diphtheria toxin 0.43(1) 0.69(2) 0.50(2) 0.73(2)
Enolase 0.31(1) 0.45(34) 0.32(1) 0.49(53)
HIV-1 protease 0.67(1) 0.78 (10) 0.85 (1) 0.90(1)
Immunoglobulin 0.68(3) 0.57(3) 0.66(3) 0.58(3)
Lactoferrin 0.48(1) 0.64(24) 0.48(1) 0.70(36)
LAO binding protein 0.81(1) 0.74(1) 0.87(1) 0.80(1)
Maltodextrin binding protein 0.77(2) 0.66(2) 0.80(2) 0.70(2)
Seryl-tRNA synthetase 0.21(4) 0.59(10) 0.21(4) 0.60(37)
Thymidylate synthase 0.37(4) 0.69(9) 0.44(3) 0.68(9)
Triglyceride lipase 0.35(15) 0.50(25) 0.30(14) 0.56(24)
Triose phosphate isomerase 0.15(38) 0.28(11) 0.14(7) 0.30(8)
Tyrosine phosphatase 0.41(2) 0.57(27) 0.42(1) 0.59(25)

coefficient with experimental B factors from the non-bonded interaction alone can perform

better than the correlation coefficient from ANM by 2%.

Although the contribution to the agreement with experimental B factors of the bonded

interactions, including stretching, bending and dihedral rotations, are much smaller than non-

bonded interactions, they still account for about 5% increase when considering all the three

bonded terms. When we look at the individual contributions, we found that the bond stretching

contributes about 2% increase, the bond bending also contributes 2% increase, and the torsinal

rotation contributes about 1% increase.

We also change the base Hessian matrix to HANM and observe the contributions regarding

to these three bonded terms. The correlation coefficient increases 3% when all the three bonded

terms are added to the HANM

Conformational Change Evaluation

It is known that the modes derived from the open form of a structure have better overlaps

and correlations with the direction of a protein’s conformation change than the ones derived

from the closed form [Tama and Sanejouand (2001)]. Here we apply the STeM model to study
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the conformation changes between the open and closed forms of 20 proteins and the open

forms are used to calculate the normal modes. Table 3 lists the overlaps and correlations

of the observed conformational changes and the indices of the modes that are most involved

in the conformation changes. GNM is not considered since it does not provide directional

information. The mean values of the overlaps and correlation coefficients of ANM are 0.49 and

0.61 respectively, and for STeM, 0.52 and 0.64 respectively. The performance increase gained

by STeM is about 4.5% on both overlap and correlation. In both the overlap and correlation

calculations, the modes that are most involved in the conformation change tend to have lower

indices in STeM than in ANM, suggesting the modes of STeM may be of higher quality.

Conclusions

In this work, we develop a generalized spring tensor model for protein fluctuation dynam-

ics and conformation changes. The new STeM model is able to reproduce the mean square

fluctuations for a set of 111 X-ray structures with significantly better correlations with the

experimental B factors than ANM by about 13%. The overlaps and correlations between the

observed conformational changes and the most involved modes improve by 4.5% when using

STeM over ANM for a set of 20 proteins. Therefore, STeM maintains the anisotropic in-

formation as is available in ANM, and improves the accuracy significantly in predicting the

magnitudes of the fluctuations. Although the performance of STeM slightly surpasses the per-

formance of GNM in experimental B factor predictions by 0.01, the difference is within the

statistical error limits. Therefore, the two models are comparable in the experimental B factor

predictions, but GNM is unable to provide the directions of the fluctuations.

Although the derivation of Hessian matrix in STeM is more complicated than the ANM

or GNM, the computational complexity is almost the same as ANM. It means that with only

slight increase in the computational time, STeM is able to provide much more accurate results

than ANM.

The STeM is based on a physically sounder potential. The Go-like potential has been used

frequently in studying the protein folding processes and in other MD simulations [Clementi
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et al. (2000); Koga and Takada (2001, 2006)]. The force parameters of the Go-like potential,

Kr, Kθ, Kφ and ε, are taken from the previous literature [Clementi et al. (2000)] without any

tuning process. Therefore, it can be expected that these force parameters can be further tuned

for different applications or within different context, such as under the crystal environment,

and hence increase the predicting accuracy.

Other than a linear Hookean spring that is in ANM, the residue interactions in STeM take a

generalized spring tensor form. It is foreseeable that other spring tensors can be used to model

residue-residue interactions, for example, by deriving from other forms of potential functions,

and consequently, many other variations of spring tensor models can be developed.

Chain breaking, such as that due to missing residues, has a more felt impact on STeM

than on ANM or GNM, since the first, second, and third terms of the potential used to derive

the model are all related to the continuity of the chain. We have not evaluated such impact

in the current work but this could be a future research direction and our STeM model would

be a proper tool for evaluating the impact of chain breaking on protein motions. As another

part of future research, we will evaluate the importance of each term in the potential function

and determine exactly how each term contributes to the protein motions. STeM does not

always outperform ANM in B-factor predictions - it does better than ANM for 80% of the

proteins studied. it would be interesting to find out why this is so. Crystal packing has been

known to impact B-factor predictions. Therefore, a proper inclusion of crystal packing effects

may further enhance STeM’s performance. Since STeM takes into account bond bending and

torsional interactions, it is expected that it will further distinguish itself in studying protein

dynamics where a correct modeling of bond bending or torsional rotations is crucial, such as

in predicting S2 order parameters of NMR structures.

Methods

In this section we will show the derivations of the Hessian matrix from a Go-like potential

proposed by Clementi, Nymeyer and Onuchic [Clementi et al. (2000)] and we call the potential

CNO (Clementi, Nymeyer and Onuchic) Go-like potential.
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The Go-like potential

The CNO Go-like potential [Clementi et al. (2000)] takes the non-native and native (equi-

librium) conformations as input and it can be divided into four terms. The first term of this

Go-like potential (defined as V1 for later use) preserves the chain connectivity. The second (V2)

and third terms (V3) define the bond angle and torsional interactions respectively and the last

term (V4) is nonlocal interactions. The Go-like potential has the following expression.

V (X,X0) =
∑
bonds

V1(r, r0) +
∑
angles

V2(θ, θ0)

+
∑

dihedral

V3(φ, φ0) +
∑
i<j−3

V4(rij , r0,ij)

=
∑
bonds

Kr(r − r0)2 +
∑
angles

Kθ(θ − θ0)2

+
∑

dihedral

{K(1)
φ [1− cos(φ− φ0)]

+K(3)
φ [1− cos3(φ− φ0)]}

+
∑
i<j−3

ε[5(
r0,ij

rij
)12 − 6(

r0,ij

rij
)10] (4.10)

In equation (4.10), r and r0 represent respectively the instantaneous and equilibrium dis-

tances of the virtual bond formed by the Cα’s of two consecutive residues. Similarly, the θ

(θ0) and φ (φ0) are respectively the instantaneous (equilibrium) virtual bond angles formed

by three consecutive residues and virtual dihedral angles formed by four consecutive residues.

The rij and r0,ij represent respectively the instantaneous and equilibrium distances between

two non-consecutive residue i and j. This Go-like potential is physically more accurate than

the Hookean potential that is used in ANM.

The Go-like potential (equation 4.10) includes several force parameters (Kr, Kθ, K
(1)
φ ,

K
(3)
φ and ε) and the value of these force parameters are taken directly from the previous

literature [Clementi et al. (2000)] without any tuning process. The values of these parameters
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are Kr = 100ε, Kθ = 20ε, K(1)
φ = ε, K(3)

φ = 0.5ε and ε = 0.36.

Anisotropic fluctuations from the second derivative of the Go-like potential

Similar to ANM, STeM has a 3N×3N Hessian matrix and the Hessian matrix can be decom-

posed into N×N super-elements (equation 4.6). Each super-element in STeM is a summation

of four 3×3 matrices. The first 3×3 matrix is the contribution from bond stretching. The sec-

ond and third 3×3 matrices are the contributions from bond bending and torsional rotations

respectively. The fourth 3×3 matrix is the contribution from nonlocal contacts.

Hi,j =


∂2V1(r,r0)
∂Xi∂Xj

∂2V1(r,r0)
∂Xi∂Yj

∂2V1(r,r0)
∂Xi∂Zj

∂2V1(r,r0)
∂Yi∂Xj

∂2V1(r,r0)
∂Yi∂Yj

∂2V1(r,r0)
∂Yi∂Zj

∂2V1(r,r0)
∂Zi∂Xj

∂2V1(r,r0)
∂Zi∂Yj

∂2V1(r,r0)
∂Zi∂Zj

+


∂2V2(θ,θ0)
∂Xi∂Xj

∂2V2(θ,θ0)
∂Xi∂Yj

∂2V2(θ,θ0)
∂Xi∂Zj

∂2V2(θ,θ0)
∂Yi∂Xj

∂2V2(θ,θ0)
∂Yi∂Yj

∂2V2(θ,θ0)
∂Yi∂Zj

∂2V2(θ,θ0)
∂Zi∂Xj

∂2V2(θ,θ0)
∂Zi∂Yj

∂2V2(θ,θ0)
∂Zi∂Zj

+


∂2V3(φ,φ0)
∂Xi∂Xj

∂2V3(φ,φ0)
∂Xi∂Yj

∂2V3(φ,φ0)
∂Xi∂Zj

∂2V3(φ,φ0)
∂Yi∂Xj

∂2V3(φ,φ0)
∂Yi∂Yj

∂2V3(φ,φ0)
∂Yi∂Zj

∂2V3(φ,φ0)
∂Zi∂Xj

∂2V3(φ,φ0)
∂Zi∂Yj

∂2V3(φ,φ0)
∂Zi∂Zj

+


∂2V4(rij ,r0,ij)

∂Xi∂Xj

∂2V4(rij ,r0,ij)
∂Xi∂Yj

∂2V4(rij ,r0,ij)
∂Xi∂Zj

∂2V4(rij ,r0,ij)
∂Yi∂Xj

∂2V4(rij ,r0,ij)
∂Yi∂Yj

∂2V4(rij ,r0,ij)
∂Yi∂Zj

∂2V4(rij ,r0,ij)
∂Zi∂Xj

∂2V4(rij ,r0,ij)
∂Zi∂Yj

∂2V4(rij ,r0,ij)
∂Zi∂Zj


(4.11)

The Hessian matrix is derived from the second derivative of the overall potential (equation

4.10). Let us first consider the first term of the Go-like potential and let (Xi, Yi, Zi) and (Xj ,

Yj , Zj) be the Cartesian coordinates of two consecutive residue i and j.

V1(r, r0) = Kr(r − r0)2

= Kr{[(Xj −Xi)2 + (Yj − Yi)2 +
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(Zj − Zi)2]1/2 − r0}2 (4.12)

The first and second partial derivatives of V1 with respect to the X-direction of residue i

are

∂V1

∂Xi
= −2Kr(Xj −Xi)(1− r0/r) (4.13)

∂2V1

∂X2
i

= 2Kr(1 + r0(Xj −Xi)2/r3 − r0/r) (4.14)

We will get similar results for the Y- and Z-directions of residue i. Since we focus only

on the equilibrium fluctuations, we can have r ∼= r0 at equilibrium and the first and second

partial derivatives of V1 can be further simplified to the following expressions.

∂V1

∂Xi
= 0 (4.15)

∂2V1

∂X2
i

= 2Kr(Xj −Xi)2/r2 (4.16)

In a similar way, the second cross-derivatives have the following form:

∂2V1

∂Xi∂Yj
= −2Kr(Xj −Xi)(Yj − Yi)/r2 (4.17)

Equations 4.16 and 4.17 give the elements of the first 3×3 matrix for the super element Hij

in equation 4.11. For the diagonal super elements Hii, equations 4.16 and 4.17 are substituted

by the following:

∂2V1

∂X2
i

= −
∑

j=i−1,i+1

2Kr(Xj −Xi)2/r2 (4.18)

∂2V1

∂Xi∂Yi
=

∑
j=i−1,i+1

2Kr(Xj −Xi)(Yj − Yi)/r2 (4.19)

Now let’s consider the second term of the Go-like potential and let (Xi, Yi, Zi), (Xj , Yj , Zj)

and (Xk, Yk, Zk) be the Cartesian coordinates of three consecutive residue i, j and k. Suppose
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θ is the virtual bond angle formed by these three consecutive residues. The second term of the

CNO Go-like potential is V2 = Kθ(θ− θ0)2 and the first and second partial derivative of V2 are

∂V2

∂Xi
= 2Kθ(θ − θ0)

∂θ

∂Xi
(4.20)

∂2V2

∂Xi
2 = 2Kθ(

∂θ

∂Xi
)2 + 2Kθ(θ − θ0)

∂2θ

∂Xi
2 (4.21)

Since θ equals θ0 at equlibrium, ∂2V2

∂Xi
2 can be further simplified as

∂2V2

∂Xi
2 = 2Kθ(

∂θ

∂Xi
)2 (4.22)

Likewise, ∂2V2
∂Xi∂Xj

becomes

∂2V2

∂Xi∂Xj
= 2Kθ(

∂θ

∂Xi
)(
∂θ

∂Xj
) (4.23)

Let p = (Xi −Xj , Yi − Yj , Zi − Zj) and q = (Xk −Xj , Yk − Yj , Zk − Zj). We define G as

the following.

G =
(p.q)
|p||q|

(4.24)

The θ can be expressed as

θ = cos−1(
(p.q)
|p||q|

) = cos−1(G) (4.25)

The partial derivatives of θ are
∂θ

∂Xi
=

−1√
1−G2

∂G

∂Xi
(4.26)

∂θ

∂Xj
=

−1√
1−G2

∂G

∂Xj
(4.27)

∂θ

∂Xk
=

−1√
1−G2

∂G

∂Xk
(4.28)

The derivative of G is

∂G

∂Xi
=

∂

∂Xi

(p.q)
|p||q|

=
(Xk −Xj)|p||q| − (p.q) |q||p|(Xi −Xj)

(|p||q|)2
(4.29)

We can also get ∂G
∂Xj

and ∂G
∂Xk

.

∂G

∂Xj
=

(2Xj −Xi −Xk)|p||q| − (p.q) |q||p|(Xj −Xi)

(|p||q|)2

−
(p.q) |p||q| (Xj −Xk)

(|p||q|)2
(4.30)
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∂G

∂Xk
=

(Xi −Xj)|p||q| − (p.q) |p||q| (Xk −Xj)

(|p||q|)2
(4.31)

Combined eq (4.22),(4.26) and (4.29), we can get the following formula.

∂2V2

∂Xi
2 =

2Kθ

1−G2
(
(Xk −Xj)|p||q| − (p.q) |q||p|(Xi −Xj)

(|p||q|)2
)2 (4.32)

Similarly, Combined eq (4.23),(4.26), (4.27), (4.29) and (4.30), the second cross-derivative

∂2V2
∂XiXj

becomes

∂2V2

∂XiXj
=

2Kθ

1−G2
(
(Xk −Xj)|p||q| − (p.q) |q||p|(Xi −Xj)

(|p||q|)2
)

(
(2Xj −Xi −Xk)|p||q| − (p.q) |q||p|(Xj −Xi)

(|p||q|)2

−
(p.q) |p||q| (Xj −Xk)

(|p||q|)2
) (4.33)

Following the same approach, we are able to get ∂2V2
∂XjXk

and ∂2V2
∂XkXi

and these second cross-

derivatives form the elements of the second 3×3 matrix of the super element Hij in equation

4.11.

Due to the complexity of the derivation process of the third (dihedral angle) term of CNO

Go-like potential, we omit the derivation process here. Readers can refer to the appendix for

further details.

Finally, let’s consider the final (non-local contact) term.

V4 = ε[5(
r0,ij

rij
)12 − 6(

r0,ij

rij
)10] (4.34)

A talor expansion will give us the following form.

V4 = −ε+
120ε
r2

0,ij

(rij − r0,ij)2 (4.35)

Equation 4.35 has the same harmonic form as the first term but with a different force constant,

so the derivation process is the same as the first term. Therefore, we only give the derivation

result here.

∂2V4

∂Xi∂Yj
= −240ε

r2
0,ij

(Xj −Xi)(Yj − Yi)/r2
ij (4.36)
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After combining the Hessian matrix from all four terms, we can calculate the pseudo inverse

of the final Hessian matrix H. The mean square displacement < ∆ri
2 > and inter residue

correlation < ∆ri ·∆rj > can be calculated by summing the elements over the X−, Y− and

Z− directions, as is in ANM.

< ∆ri
2 >=

kBT

γ
(H+

3i−2,3i−2 +H+
3i−1,3i−1 +H+

3i,3i) (4.37)

< ∆ri ·∆rj >=
kBT

γ
(H+

3i−2,3j−2 +H+
3i−1,3j−1 +H+

3i,3j) (4.38)

The Protein Sets Studied

To evaluate the STeM model, we apply it to compute thermal B-factors and to study protein

conformation changes and compare the results with those computed from ANM and GNM.

For B-factors computation, the protein data set is from Kundu et al. (2002) that contains 111

proteins. Two proteins, 1CYO and 5PTP, are removed from the data set because they no

longer exist in the current Protein Data Bank [Berman et al. (2000)]. The proteins in the first

dataset all have a resolution that is better than 2.0 Å. For conformation change studies, the

data set is from Tama and Sanejouand (2001), which contains 20 pairs of protein structures.

Each pair of protein structures have significantly large structure difference from each other.

Evaluation Techniques

We used the same evaluation techniques as have been applied before [Kundu et al. (2002);

Tama and Sanejouand (2001)] to evaluate the STeM model. The following three numerical

values are computed.

The correlation between the experimental and calculated B factors

The linear correlation coefficient between the experimental and calculated B factors are

calculated according to the following formula.

ρ =
∑N
i (xi − x)(yi − y)

[
∑N
i (xi − x)2

∑N
i (yi − y)2]1/2

(4.39)
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where xi and yi are respectively the experimental and calculated B factors of the Cα atom of

the residue i and x and y are the mean values of the experimental and calculated B factors. N

is the number of residues.

The overlap between the experimental observed conformational changes and

the calculated modes

The overlap measures the directional similarity between the conformational changes and a

calculated mode. The formula for calculating the overlap is

I =
|
∑3N
i eiri|

[
∑3N
i e2

i

∑3N
i r2

i ]1/2
(4.40)

where ei is the coordinate of residue i of a selected mode and ri is the conformational displace-

ment of residue i.

The correlation between the experimental observed conformational changes

and the calculated modes

The correlation measures the magnitude similarity between the conformational changes and

a calculated mode. The formula used for calculating the correlation is the same as equation

(4.39), with different meaning for xi and yi.

ρ =
∑N
i (xi − x)(yi − y)

[
∑N
i (xi − x)2

∑N
i (yi − y)2]1/2

(4.41)

where xi is the amplitude of the displacement of residue i in the conformational change and

yi is the amplitude of the displacement of residue i in a calculated mode. x and y are the

corresponding mean values.

List of abbreviations used

ENM: Elastic Network Model

GNM: Gaussian Network Model
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ANM: Anisotropic Network Model
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CHAPTER 5. EFFICIENT MAPPING OF LIGAND MIGRATION

CHANNEL NETWORKS IN DYNAMIC PROTEINS

A paper accepted by Proteins: Structure, Function, and Bioinformatics

Tu-Liang Lin and Guang Song

Abstract

For many proteins such as myoglobin, the binding site lies in the interior and there is no

obvious route from the exterior to the binding site in the average structure. Although computer

simulations for a limited number of proteins have found some transiently-open channels, it is

not clear if there exist more channels elsewhere or how the channels are regulated. A systematic

approach that can map out the whole ligand migration channel network is lacking. Ligand

migration in a dynamic protein resembles closely a well-studied problem in robotics, namely,

the navigation of a mobile robot in a dynamic environment. In this work, we present a novel

robotic motion planning inspired approach that can map the ligand migration channel network

in a dynamic protein. The method combines an efficient spatial mapping of protein inner

space with a temporal exploration of protein structural heterogeneity, which is represented by

a structure ensemble. The spatial mapping of each conformation in the ensemble produces

a partial map of protein inner cavities and their inter-connectivity. These maps are then

merged to form a super map that contains all the channels that open dynamically. Results

on the pathways in myoglobin for gaseous ligands demonstrate the efficiency of our approach

in mapping the ligand migration channel networks. The results, obtained in significantly less

time than trajectory-based approaches, are in agreement with previous simulation results. In
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addition, the method clearly illustrates how and what conformational changes open or close a

channel.

Introduction

Proteins are one of the fundamental functional units of living systems. The desire to

understand their functional mechanisms drives the progress in biological sciences and medicine.

Many proteins function through the binding of a small ligand. Examples are substrate and/or

cofactor binding in enzyme catalysis. For many proteins such as myoglobin, the binding sites lie

in the interior and there is no obvious route connecting the binding site to solvent in the average

structure. Although protein dynamics is known to open pathways dynamically, exactly how

the dynamics exerts its control is not fully known. Our knowledge of how a ligand may enter

or exit the binding site has advanced significantly thanks to the developments in mutagenesis

studies, X-ray crystallography, time-resolved Laue X-ray diffraction, and molecular dynamics

(MD) simulations. Yet, such knowledge remains incomplete even for the most studied proteins

such as myoglobin. For example, though some pathways are revealed by the aforementioned

methods, it is not clear if there exist alternative pathways or how these pathways are regulated.

Moreover, it remains a challenge to extend the time-resolved Laue X-ray diffraction studies or

MD simulations broadly to the study of ligand migration process in other proteins, due to the

difficulties in experimental setup or limitations in computation. A method that can efficiently

map the whole ligand migration network and elucidate how the protein dynamics regulates the

channels is lacking.

Ligand migration in a dynamic protein resembles closely a problem that has been well

studied in robotics, namely, the navigation of a mobile robot in a dynamic environment. In-

spired by this observation, we develop an innovative motion planning based approach that

can efficiently map the complete ligand migration channel network in a dynamic protein. The

approach overcomes the computational barrier faced by existing methods by integrating an

efficient geometric mapping component with the dynamic exploration of a protein’s structure

flexibility. By taking as input a structure ensemble of a given protein, which may be composed



69

Figure 5.1 Overview of the method.

Efficient geometric mapping is applied to each conformation in the ensemble to obtain a partial
map of how the internal cavities (shown here are the four xenon binding sites and a distal pocket
(DP) of myoglobin) are connected to each other and to the solvent. These partial maps are
then merged to form the entire dynamic migration network, which shows how the cavities can
be accessed dynamically.

of existing experimental structures and/or conformations generated from MD simulations, the

approach carries out an efficient spatial mapping of the protein’s inner space at each confor-

mation in the ensemble (see Figure 5.1). The spatial mapping reveals the partial connectivity

among the cavities and the solvent. All partial maps are then merged to form a super-graph

that represents the whole migration channel network that is accessible to the ligand, both

spatially and dynamically. The super-graph can then be used to identify all the migration

pathways that exist in the ensemble. This is much more efficient than most other methods

that identify only one pathway at a time. The quality of the structure ensemble is critical
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to the success of this method. A good ensemble needs to represent sufficiently the structural

heterogeneity of the host protein. Our method is flexible and a structure ensemble can be

constructed using crystal structures of the same protein, or NMR ensembles, or conformations

generated from MD simulations, or a combination of all above. The benefit of having such

flexibility is that it facilitates the integration of existing structure and dynamics information

about a given protein. Dynamic conformational ensembles have also been found useful in

understanding molecular recognition [Boehr et al. (2009)].

We apply this method to myoglobin and cytochrome P450cam and the results demonstrate

the feasibility of our approach in efficiently mapping the ligand migration channel network and

in identifying migration pathways that are in agreement with previous experimental and simu-

lation results. Moreover, the method clearly illustrates how and what conformational changes

open or close a channel. Such close association between the variations of the channel clear-

ances (the effect) and conformational changes (the cause) may provide the needed information

to decipher the regulation mechanism.

Myoglobin(Mb) is a single chain globular protein rich in muscle tissues and is responsible

for oxygen storage. The backbone of Mb forms eight alpha-helices wrapped around a heme and

the heme iron can bind with small gaseous ligands such as Xenon, O2, CO, or NO. A number

of experimental and computational methods have been developed and applied to study the

dynamics of ligand migration and binding in myoglobin [Frauenfelder et al. (2009)]. Here we

highlight some of the results from mutagenesis, X-ray crystallography, time-resolved Laue X-

ray crystallography, and molecular dynamics. Related work on protein geometry calculations

and robotics-inspired methods are also reviewed.

Flash photolysis and Mutagenesis. The pioneering work of Austin et al. (1975) intro-

duced the flash photolysis technique that is still widely used today in studying the recombina-

tion kinetics in heme proteins. The geminate recombination, or the re-binding of the ligand

before it exits to the solvent, reveals the heterogeneity of the conformational substates and

the existence of several binding pockets. The existence of these binding pockets was further

confirmed by xenon binding sites [Tilton et al. (1984)]. Ligands were also found to reside in



71

the distal pocket near the binding site for some short time period after photo-dissociation at

low temperature [Teng et al. (1997)]. In addition to the four xenon (Xe) sites and the distal

pocket, another two cavities where ligands may temporarily reside were identified in a 90-ns

MD simulation [Bossa et al. (2004)]. Recently, some cavities that are smaller than the xenon

sites were suggested to be located at the branching points of the migration channels by an-

other MD simulation [Ruscio et al. (2008)]. Xenon gas was also used as the perturbing agent

to migration pathways [Tetreau et al. (2004)]. The effects of xenon on ligand binding, with

25 mutants, were studied Scott and Gibson (1997). The residues that surround these cavities

were found to be highly conserved [Frauenfelder et al. (2001)], which indicates that the cavities

should have functional roles. Site-directed mutagenesis of 27 residues was used to map out the

ligand pathways [Scott et al. (2001)]. Random mutagenesis studies conducted by Huang and

Boxer (1994) showed that single mutations of several other clusters of residues far away from

the pathways were discovered to profoundly affect the ligand-binding kinetics.

X-ray Crystallography. The abundance of crystal structures (over 200 for myoglobin for

example) in the PDB [Berman et al. (2000)] presents a valuable structural basis for studying

protein inner cavities and their role in the rebinding kinetics. Especially worth mentioning are

the high-resolution near-atomic resolution crystal structures, many of which capture structure

substates [Kachalova et al. (1999); Vojtechovsky et al. (1999)]. Studies of the conversion

among substates clearly demonstrated that dynamics plays a key role in the realization of

protein functions [Frauenfelder et al. (2001); Teeter (2004)]. Base on X-ray crystallography,

structure changes observed before and after photolysis confirmed that Xe1, the proximal cavity

site, is the secondary ligand-docking site [Chu et al. (2000); Nienhaus et al. (2005); Ostermann

et al. (2000)]. Such transition from the distal site to the proximal binding site was used

to infer significant thermal fluctuations that are necessary to open the channel between the

two sites [Nienhaus et al. (2005); Ostermann et al. (2000)]. On the other hand, none of the

crystal structures alone presents a complete picture of how a ligand may migrate inside the

protein matrix. It has been widely believed that one [Scott et al. (2001)] or several dynamic

pathways [Cohen et al. (2006)] can be created via the thermal fluctuations and that such
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dynamic pathways cannot be identified from a single static structure.

Time-resolved X-ray Crystallography. A great leap in the understanding of the mi-

gration process was made possible by the advances in time-resolved Laue diffraction studies,

thanks to the pioneering work of Moffat and co-workers [Srajer et al. (2001, 1996)]. The tech-

nique is a perfect tool to study light-sensitive protein dynamics, such as that of heme proteins

[Bourgeois et al. (2007)]. It literally allows one to trace a photo-disassociated ligand as it

migrates through the protein, as well as structure relaxation, over a broad range of timescales,

from a few nanoseconds to as long as a few milliseconds [Schotte et al. (2003); Bourgeois et al.

(2006, 2003); Schmidt et al. (2005)]. It has provided direct insight about how the correlated

motions of the backbone and side chains provide a gating mechanism for ligand migration

[Schotte et al. (2003)]. Particularly, Srajer et al. (2001) observed the ligand appearing at two

locations, the distal pocket and the Xe1 binding site. Schotte et al. (2003) observed the ligand

translocation in the L29F mutant MbCO between the binding site and the Xe1 site and found

that the Xe4 site was probably the intermediate stop site. Bourgeois et al. (2006) reported

the sub-nanosecond time-resolved Laue X-ray diffraction results on the triple mutant YQR-Mb

and observed the photolyzed CO move to the Xe4 site before reaching the Xe1 site. All of

these Laue X-ray diffractions showed only the Xe1 site was occupied by the photolyzed ligand

at around 100-ns and, it was suggested that an intermediate stop at Xe4 site might take place

during the ligand’s migration between the binding site and the Xe1 site.

Molecular dynamics. MD was first used as early as the late 70’s by Case and Karplus

(1979) to study the dynamics of ligand binding in myoglobin, followed by work such as Elber

and Karplus (1990), and is still widely used today. Nutt and Meuwly (2004) applied classical

MD and QM-MD to capture some ligand pathways and were able to reproduce the infrared

spectrum data. Hummer et al. (2004) did both MD simulations and time-resolved X-ray, and

the results from time-resolved X-ray validated the MD trajectories. Similarly, Anselmi et al.

(2008) and Bossa et al. (2004, 2005)’s MD simulations reproduced CO diffusion and kinetics

that agreed with experimental data, especially that of the time-resolved Laue X-ray diffractions.

Perhaps the most extensive MD results were obtained by Ruscio et al. (2008), whose cumulative
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7-µs simulations were used to identify many different trajectories and entry/exit portals on

the protein surface. Besides the aforementioned work in MD, Cohen et al. (2006) proposed an

implicit ligand sampling method to image the migration pathways without the presence of the

ligand. The approach was able to map out important cavity sites as well as pathways among

them and predicted additional exit pathways that were not easy to be probed by experiments.

Robotics-inspired methods. Robotics-inspired methods have been applied to study

many problems in biology, such as protein loop closure [Canutescu and Dunbrack (2003);

Kolodny et al. (2005); Manocha et al. (1995)] , structure determination [van den Bedem et al.

(2005)], protein backbone motions [Noonan et al. (2005)], protein flexibility and conformation

sampling [Shehu et al. (2006, 2009); Yao et al. (2008); Kazerounian et al. (2005); Chirikjian

(2011)], and conformation transitions [Kim et al. (2005); Schuyler et al. (2009)]. Particularly,

as maps of the environments are often built to facilitate the path planning of robots, roadmap-

based motion planning methods [Kavraki et al. (1996)] have been successful in studying the

motions of proteins [Apaydin et al. (2003); Apaydin (2004); Chiang et al. (2007); Chodera

et al. (2007); Singhal et al. (2004); Amato and Song (2002); Song (2003); Thomas et al. (2005,

2007)] and ligands [Apaydin et al. (2002); Bayazit et al. (2001)].

Voronoi graphs, alpha shapes, and computations on protein geometry. Voronoi

graphs have been used to study protein geometry and packing since the 70’s, in works such as

those by Richards (1974) and Finney (1975). Voronoi graphs or generalized Voronoi graphs are

widely used in robotic motion planning [Latombe (1991); Choset et al. (2005); LaValle (2006)]

since they produce maximum-clearance roadmaps [Choset and Burdick (2000); Wilmarth et al.

(1999)] that can be used to guide the navigation of a robot. Some recently developed tools to

identify channels in proteins, such as Petrek et al. (2007) and Yaffe et al. (2008), are based on

Voronoi graphs and alpha shapes [Edelsbrunner and Mucke (1994)]. Alphas shapes are useful

to compute molecular surface area and volume [Liang et al. (1998a)], as well as to identify

internal cavities [Liang et al. (1998b)] and surface pockets [Liang et al. (1998c)].
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Methods

Overview of Dynamic Map Ensemble (DyME)

Compared to the existing computational methods reviewed above, our method, Dynamic

Map Ensemble (DyME), is unique in several respects. First, it is ensemble-based – the dynam-

ics and structure flexibility of the host protein is represented by an ensemble of conformations.

An ensemble in the DyME approach can be composed of crystal structures, NMR structures,

conformations generated in one MD simulation, or even conformations generated in multiple

MD simulations using multiple crystal structures as the starting points. Secondly, Voronoi

graphs computed for every conformation in the ensemble are used to identify the locations of

the internal cavities and surface portals (i.e., entry/exit points on the protein surface that link

the internal cavities to the solvent) as well as the channels connecting them. The channels

are the maximum clearance paths among cavity sites or between a cavity site and the solvent.

A channel is considered open when its clearance reaches a certain threshold. As a result,

for each conformation, a map is produced that shows the current partial connectivity of the

ligand migration channel network and the extent of openness of the channels. Thirdly, the

partial maps are connected together at the common cavity sites and surface portals to form

a super-graph (see Figure 5.1). This final super-graph represents the whole dynamic migra-

tion channel network and contains all the ligand migration pathways existing in the ensemble.

Lastly, because each conformation in the ensemble is fully mapped and the channel clearances

at each conformation are known, there is a direct mapping between conformations and channel

clearances, or between conformational changes and variations in the channel clearances. Such

direct correlations, which are difficult to acquire with any other methods, can be collected and

analyzed to identify the key conformational changes that regulate these channels.

Geometric mapping methods. Voronoi graphs [De Berg et al. (1997)] are used to map

the protein inner space. All atoms are approximated by spheres of the same radius of 1.6 Å.

Since the vast majority of the atoms in a protein are carbons, oxygens, or nitrogens, and have

a van der Waal’s radius [Bondi (1964)] of 1.7 Å, 1.52 Å, or 1.55 Å respectively, the uniform

sphere of 1.6 Å introduces only a small error when computing the clearances of the channels.
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Hydrogen atoms are not included in the model. In future work, one improvement can be

made is to represent each atom by its actual vdW radius. Consequently, additively-weighted

Voronoi graphs will be needed, which, unfortunately, is computationally much more expensive.

An alternative approach is to use the alpha shapes [Edelsbrunner and Mucke (1994); Liang

et al. (1998b); Edelsbrunner et al. (1998)]. However, since the alpha shapes are based on power

diagrams, not the additively-weighted Voronoi graphs that are needed for the exact calculation

of the channel clearances, it may introduce some errors too when computing channel clearances.

In the current work, a uniform sphere of 1.6 Å is used.

(a) (b)

Figure 5.2 The ligand migration channel network of myoglobin using the
MD ensemble.

(a) 2-D view and (b) 3-D view. The internal cavities (shown in circles in the 2D plot and
colored green on the 3D plot) consist of four xenon binding sites (Xe1-4), two sites (S1 and
S2) discovered by MD [5], and the DP (distal pocket). The entry/exit portals are marked by
P followed by the portal number. Between a given pair of vertices, say between DP and Xe4,
there may exist an open channel (an edge on the 2D, colored blue on 3D plot) in a subset of
the conformations. The conformation (the frame number from MD) whose channel has the
largest clearance as well as the clearance value itself is labeled on the edge on the 2-D figure.
2-D figures are created using software Graphviz [Ellson et al. (2004)] and 3-D figures using
PyMol [Schrödinger, LLC (2010)] (www.pymol.org).

Internal cavities and the identification of their locations. For myoglobin, besides
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the four xenon binding sites and the distal pocket, two additional cavities (named Ph1 and

Ph2 in [Bossa et al. (2004)] and renamed as S1 and S2 here) that are large enough for a ligand

to transiently stay are included in our list of cavities. The locations of these cavities relative

to the protein structure are known (the green spheres in Figure 5.2(b)). Such information is

used to identify which vertices in the computed Voronoi graphs correspond to cavity regions.

Channels, channel clearances, and entry/exit portals. The clearances of the chan-

nels connecting the cavities and the solvent are extracted from the Voronoi graphs computed

at every conformation. The solvent ends of the channels reveal the locations of the entry/exit

portals on the protein surface. A channel may be open at one conformation while closed at

another. The effect of protein conformational changes is manifested in the fluctuations of the

channel clearances. In other words, the channels are regulated by the conformational changes

of the protein.

Implementation Details of the Dynamic Map Ensemble (DyME) approach

Voronoi diagram basics. Voronoi diagram is used to map the free space inside the

protein at every conformation in the ensemble. Let P = {p1, p2, · · ·, pn} be the atom centers.

The Voronoi diagram subdivides the space into polytopes, one for each atom, such that any

point q lying within a polytope is nearer to the atom inside the polytope than to any other

atoms. Since the subdivision is not necessarily a closed space, an infinity vertex is introduced

to complete the subdivision. The subdivision can be formulated as the following mathematic

definition:

for all q in the polytope V D(i), dist(q, pi) < dist(q, pj) (5.1)

Normally uniform spheres for all atoms are assumed and Euclidean distances are used. When

different atoms are given different radii, then weighted distances are used.

The Voronoi diagram has many useful properties. Each Voronoi vertex is equi-distant to its four

closest atom neighbors. Two Voronoi vertices share an edge if they have three atom neighbors

in common. Most attractively, the Voronoi diagram represents the maximum clearance paths
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among the atoms, which makes it an ideal geometric construct for finding ligand migration

pathways.

There are four major steps in the dynamic map ensemble (DyME) approach. Figure 5.3

shows the flow chart.

Step 1: Construct the maximum clearance graph and identify solvent vertices.

In the first step of DyME, the Voronoi diagram is computed and the clearance of each Voronoi

vertex is assigned based on its distance to its closest atom neighbors. Similarly the clearances

of the edges of the Voronoi diagram can be computed quickly. Vertices as well as edges that

have low clearances are then removed. The remaining Voronoi graph is further reduced to a

maximum clearance tree (which is the same as a maximum spanning tree) that has no loops.

Now since an actual ligand migration channel network may contain loops, some deleted edges

are added back. We name this procedure “adding loops”. The edge added back at each

iteration has to satisfy two criteria: i) it has the largest clearance among all the deleted edges,

and ii), it bridges a gap between two vertices which otherwise would have a long shortest-path

distance between each other. (Specifically, a distance is long if it is longer than a threshold

value, which is a parameter in the model. The performance of the model is insensitive to this

parameter.) It turns out that only a few edges need to be added back as the shortest-path

distances between many other pairs of vertices quickly decrease as edges are added back.

Vertices outside the protein surface are identified as solvent vertices, if they are reachable by

the probe sphere from the infinity vertex. In the end, the vertices on the maximum clearance

“tree” (which is now a graph with some loops) are divided into two categories, solvent or

non-solvent. Among non-solvent vertices, those with high clearance (higher than 1.8 Å) are

marked as candidate cavity vertices.

Step 2: Identify cavity regions.

In this step, candidate cavity vertices identified in step 1 for every conformation in the

ensemble are superposed. This is done by aligning the corresponding conformations. To

identify common cavity regions from these vertices, two reasonable assumptions are made.
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Figure 5.3 Flow chart of the DyME method.

At step 1, efficient geometric mapping is applied to each conformation in the ensemble and a
maximum clearance graph that best represents the internal free space of the protein and its
connectivity is computed. In steps 2 and step 3, cavity and portal vertices are identified by
DBSCAN [Ester et al. (1996)] clustering and marked out on the graph. Finally at step 4, the
maximum clearance graphs are combined to form a super graph (or a map ensemble), which
contains the dynamic ligand migration channel network and can be used to search for open
channels between cavities and the solvent.
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The first assumption is that a cavity is at least some distance (a parameter in the model) away

from the solvent. This is to distinguish a cavity from a surface pocket. The second assumption

is that the cavities should appear more frequently and with higher clearance than the channels

connecting them. This assumption allows us to distinguish cavities from open channels. A

density based clustering algorithm (DBSCAN [Ester et al. (1996)]) is applied on the cavity

candidate vertices and the resulting clusters are identified as cavity regions and each cavity is

given a unique label. The identified cavity regions are then mapped back to each individual

conformation and its associated Voronoi graph. As a result, for each individual Voronoi graph,

the vertices that fall into the cavity regions are known. Within each cavity region, the vertex

with maximum clearance is chosen as the representative cavity vertex for that cavity. Thus,

by the end of this step, all the cavity vertices on the graphs are marked out, along with the

solvent vertices outside the protein surface.

There are two parameters for DBSCAN, K and ε. K is the minimal number of vertices

required to form a cluster and ε is the neighborhood radius within which two vertices are

considered to be in the same cluster. An alternative approach to the clustering algorithm is

to provide the cavity centers directly using known experimental data, specifically the Xenon

binding sites if they are available.

Step 3: Identify portal regions.

In the context of ligand migration into and out of a host protein, a portal is defined as a

ligand entry or exit point on the protein surface. They are the channel openings on the surface.

In our maximum clearance graph, a portal vertex is a non-solvent vertex that connects directly

with a solvent vertex and is used to connect the solvent with one of the cavities. To identify

portal vertices on the graph, we recursively remove all the leaf vertices on the graph that

are neither cavity vertices nor the infinity vertex. A vertex is a leaf if it has only one edge

connecting to it. In the end, only cavity vertices, the infinity vertex and the vertices that

are on the paths that connect them are kept. All the non-solvent vertices that have a direct

edge to a solvent vertex are now identified as portal vertices. These portal vertices represent

all the possible entry/exit points on the protein surface via which cavities and the solvent are
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connected in that conformation. The graph also contains the maximum clearance paths among

the cavities.

Next, the graphs from all the conformations in the ensemble are superposed again and

DBSCAN [Ester et al. (1996)] is applied to all the portal vertices found in the graphs. The

clustering identifies locations on the protein surface, or the portal sites, where portal vertices

are consistently located. Each identified portal site is given a unique portal number. At this

point of the method, the graphs from all the conformations in the ensemble have in common

the same cavity sites and surface portal sites.

Step 4: Construct the super graph

Finally, merge the corresponding cavity vertices of the same cavity sites across all the

graphs/ conformations. This results in a super graph that contains not only the spatial but

also the temporal mapping of the free space inside the protein. Within this super graph, the

channels among the cavity sites or between the cavities and the solvent (via the portal sites)

may reach their maximum clearances at different conformations. Thus, a maximum clearance

path that goes through the protein may be composed of a series of channel segments for which

the maximum clearance are found at different conformations.

MD Simulation

NAMD [Phillips et al. (2005)], a parallel molecular dynamics simulation program, was used

to conduct the MD simulations. Periodic boundary conditions were applied in the simulation

process with the CHARMM27 force field. The starting structure (PDB ID: 1A6G) was solvated

in a 10 Å water box. The simulation started with 100 ps energy minimization, followed by

a 10-ns equilibration. MD simulation was conducted using a HPC cluster computer. 5,000

conformations were extracted from the MD trajectory at 2ps intervals.

Structure Ensemble Preparation

To apply the dynamic map ensemble (DyME) approach, we first construct ensembles of



81

Table 5.1 The execution times of DyME on three ensembles.

The results are obtained by executing DyME on a Linux PC with 2.53 GHz CPU and 2 GB
memory using MATLAB.

Ensemble Execution time [sec]
Myoglobin crystal structure ensemble (227 structures) 1264
10-ns Myoglobin MD ensemble (5,000 conformations) 59,351
Cytochrome P450cam crystal structure ensemble (120 structures) 8,387

conformations that represent the protein structure flexibility near the native state.

The DyME approach is ensemble-based and it provides the flexibility to study the effect

of protein dynamics expressed in different forms. When applied to an ensemble of crystal

structures, it can provide results on ligand migration pathways that are based purely on ex-

perimental structures. It has been shown [Best et al. (2006)] that ”even a modest set of

structures of a protein determined under different conditions, or with small variations in se-

quence, captures a representative subset of the true native state ensemble.” For myoglobin,

there are over 200 crystal structures available. Such a collection of experimental structures of

the same protein present a valuable sample of the native state ensemble that is not simulation

based [Yang et al. (2008)]. New NMR-based approaches are also being proposed that promise

to generate structure ensembles with richer dynamics [Lindorff-Larsen et al. (2005); Richter

et al. (2007); Lange et al. (2008)]. Such ensembles will be ideal inputs for DyME when it is

used to study the effect of protein dynamics on ligand migration.

We have constructed three ensembles in this work. The first ensemble contains all the

myoglobin structures in PDB [Berman et al. (2000)] that have a resolution better than 2.0

Å and their substates. There are 227 such structures (counting the substates). These structures

provide valuable information on myoglobin’s structural flexibility that comes directly from

experimental data. The second ensemble is composed of conformations generated in a 10-ns

molecular dynamics simulation of the myoglobin (PDB-id: 1A6G) in explicit water. The third

ensemble contains 79 cytochrome P450cam PDB structures that have a resolution better than

3.0 Å and their substates, and thus a total of 120 conformations. The DyME approach was

applied to all three ensembles and the execution times are given in Table 5.1.
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Results

Mapping the Ligand Migration Channel Network of Myoglobin

One advantage of the DyME approach over most other methods is that it produces a

complete mapping of all the space that is spatially and dynamically accessible to a ligand and

thus the whole dynamic ligand migration channel network.

Figure 5.2 shows the channel network mapped by DyME, using the ensemble of the MD-

generated conformations. The vertices in the network represent internal cavities or surface

portals via which cavities are connected to the solvent. The edges represent the channels

connecting them. In addition, each edge label on the 2-D plot (Figure 5.2(a)) shows the

maximum clearance reached for that channel as well as the conformation (the frame number

from the MD simulation) at which the maximum clearance is reached. Remarkably, from

this single ensemble of conformations generated from a 10-ns MD simulation, all the known

significant internal cavities are mapped out and most entry/exit channels connecting the inner

cavities to the solvent are identified. In comparison, most existing MD approaches simulate

the ligand explicitly and each simulation takes tens and perhaps even hundreds of nanoseconds

to generate one pathway or sometimes even none. Multiple simulations have to be repeated in

order to find other pathways. The advantage of mapping approaches such as DyME over the

trajectory-based approaches has also been reported for protein folding pathway studies [Amato

and Song (2002); Song (2003)].

The dynamic channel network portrayed in Figure 5.2(a) also demonstrates clearly that

protein dynamics is critical to the migration of a ligand – the channels open at the different

conformations and a ligand’s migration in the protein has to be in sync with the conformational

changes of the protein. Figure 5.2(b) shows the corresponding 3-D plot of the migration channel

network inside the protein matrix.



83

Figure 5.4 Portal clusters identified based on the MD ensemble.

Each small circle represents a channel opening on the protein surface at a particular confor-
mation. All the channel openings (circles) are overlaid and a clustering algorithm is applied
to identify the surface portals via which a ligand may enter or exit the protein matrix.

A Close Examination of the Surface Portals of the Channel Network

Surface Portal Identification

The geometric mapping of each conformation in the ensemble reveals how the cavities are

inter-connected and how they are connected to solvent. Figure 5.4 shows all the channel end-

points on the surface after mapping all the conformations in the ensemble and structurally

aligning them to the mean structure. The points fall into clusters (DBSCAN clustering algo-

rithm is employed for this purpose [Ester et al. (1996)]), each of which represents a populated

region where a ligand may enter or exit the protein. Such regions are named entry/escape por-

tals by Ruscio et al. (2008), who applied extensive MD simulations to identify these channel

openings. Remarkably, most of the portals (except P5) found by their cumulative 7-µs MD

simulations [Ruscio et al. (2008)] are identified by our method using the ensemble constructed

from a 10-ns MD simulation, which is about 3 orders of magnitude shorter than the cumulative
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Table 5.2 Surface residues surrounding the entry/exit portals.

The common residues between Ruscio et al. (2008) and ours are colored red. Residues in
bold are those identified as important for ligand binding kinetics by Huang and Boxer (1994)
mutagenesis study. Portals 10 to 12 are new portals (marked with *) predicted by our method.

Portal Portal Residues
from Crystal
Ensemble

Portal Residues from
the 10ns MD Ensemble

Portal Residues from
Ruscio et al. (2008)

1 64, 67, Hem 64, 67, Hem 64, 67, Hem
2 101, 105, 143 101, 139, 143 101, 104, 139, 143, 146
3 71, 85, 89 67, 70, 71, 85, 88, 89 71, 74, 75, 82, 85, 89
4 42, 44, 96 44, 97 43, 45
5 26, 27, 56 34, 51, 55
6 1, 79, 80, 83, 86, 137,

141, 145
7, 134, 137

7 12, 13, 16, 17, 115, 119,
122

16, 20, 24, 118, 119

8 18, 21, 70 18, 70, 74, 77, 78 18, 21, 70
9 7, 11, 77,79 8, 11, 79
10* 11, 14, 77 11, 77
11* 128, 132
12* 83, 141, 144, 148

7-µs simulation [Ruscio et al. (2008)] and 1 order of magnitude shorter than what is normally

required for the conventional MD simulation to find just one ligand migration pathway in

myoglobin. The residues that surround these portals are listed in Table 5.2. From the table it

is seen that portals 6, 7, and 9 are absent in the crystal structure ensemble, indicating these

portals may become visible only when the protein is in motion. On the other hand, putative

portals 11 and 12 suggested by the crystal ensemble are not observed in the MD ensemble or

by Ruscio et al.’s trajectory-based simulations [Ruscio et al. (2008)]. Since a lower channel

clearance requirement was used for open channels in the crystal ensemble, it is possible that

portal 11 or 12 is not a true portal. Another possible explanation is that these two portals

open up much less frequently than the others.
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(a) (b)

Figure 5.5 Portal clusters and the ligand migration channel network pre-
dicted solely from the ensemble of crystal structures.

Direct Experimental Evidence of Ligand Channels

The DyME approach employs structure ensembles to represent protein structural flexibility

and relies on efficient geometric mapping to identify dynamic ligand migration channels. When

applied to the experimental structures of a given protein, it can weave partial information

existing in each individual structure together to form a more complete picture of the ligand

migration channel network that is based solely on experimental data, untainted by uncertainties

or errors that are likely to be introduced in simulations.

Figure 5.5(a) shows the ligand entry/exit portals based on the crystal structure ensemble.

Figure 5.5(b) shows the 2-D view of the ligand migration channel network. Each edge represents

a channel between two cavities or between a cavity and the solvent, with an edge label indicating

the maximum clearance reached in that channel as well as the structure PDB-id for which the

maximum clearance is reached. Since our goal here is to predict where channels may potentially

open, the clearance threshold for the channels is lowered and set to be 1.1 Å. Remarkably, many

of the channels found in MD simulations (see Figure 5.2 and results in Ruscio et al. (2008))
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can be predicted by simply analyzing the existing crystal structures. Ruscio et al. (2008) found

that there are two discrete dynamic pathways in myoglobin, a ”major” pathway that is more

frequently used by the ligand, and a ”minor” pathway (see Ruscio et al. (2008)). Interestingly,

all the portals (portals 1 to 5) on the major pathway can be identified by DyME from the

crystal structure ensemble, and only one of the four portals (portals 6 to 9) is identified on

the minor pathway, which provides a structure-based explanation for the less frequent usage of

the minor pathway as was observed by Ruscio et al. (2008). Most entry/exit channels shown

in Figure 5.5(b) have a clearance less than 1.4 Å. However, it is foreseeable that thermal

fluctuation can further increase the clearances of these channels, causing them to be truly

open. The scale of fluctuations in channel clearance that the thermal fluctuations of a protein

can bring about is examined in the next section.

Table 5.3 Numbers of conformations at which a portal is open or may
potentially open.

From the MD ensemble (5000 conformations in total), the first two most frequently open
channels are P6 and P1, the latter of which corresponds to the Histidine gate. For the crystal
structure ensemble (223 structures in total), a lower threshold (1.1 Å instead of 1.5 Å) is used
to identify channels that may potentially open.

Ensemble P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
MD (clearance ≥ 1.5 Å) 538 14 15 7 0 3526 119 44 1 5 0 0
Crystal (clearance ≥ 1.1 Å) 28 97 66 1 1 0 0 4 0 7 1 5

Table 5.3 lists the number of crystal structures or MD conformations at which a given portal

is open (or nearly open, in the case of crystal structures). One portal (P6) opens significantly

more frequently than others. A close examination shows that many residues at or near this

portal are highly flexible. Figure 5.6 shows the root mean square fluctuation (RMSF) of the

residues throughout the 10-ns MD simulation. Many of the residues near portal P6, marked

out with an ‘x’ on the plot, have significantly higher RMSF values. The second most frequently

opened channel during the MD simulation is from DP to portal P1, which corresponds to the

“Histidine gate”. This is not surprising since the “Histidine gate” had long been recognized

as a major channel [Scott et al. (2001); Ringe et al. (1984); Olson et al. (1988)] to the binding
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Figure 5.6 The root mean square fluctuations of the residues based on the
MD ensemble.

Residues near portal P6 are marked out by ’X’. Several residues near P6 are highly flexible,
providing a dynamics basis for the opening of this channel.

site. It is worth noting, however, that for these two most frequently opened channels, the

opening mechanisms are quite different. The His gate is mainly controlled by the swing of the

side chain of Histidine 64, while for portal P6, the large backbone motion in the loop region

between helices E and F is the main contributor to the opening of this channel.

The Dynamics of the Channels

Because the ligand migration channel network is individually mapped at each and every

conformation in the ensemble, another advantage of the DyME approach is that it provides

direct information about the dynamic fluctuations of each channel in the network, and partic-

ularly, how often a channel is open and to what extent a channel’s clearance fluctuates.
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(a) (b)

Figure 5.7 Clearance distributions of the channels that are, (a) between the
cavities, and (b) between cavities and solvent (via the portals),
based on the MD ensemble.

Since a channel is no longer recognizable when its clearance is too small, the distributions all
begin at 1.2 Å. The channels via portals P6 and P1 are the top two most frequently opened
channels, as clearly displayed in the clearance distributions of these two channels.

The Fluctuations of the Channels

Figure 5.7 shows the fluctuations of the channel clearances within the conformation ensem-

ble generated from the 10-ns MD simulation. Specifically, Figure 5.7(a) shows the clearance

distributions of the channels between the cavities and Figure 5.7(b) the channels between cav-

ities and the exterior. There are several observations. First, the distributions of the channel

clearances are close to Gaussian distributions. Particularly, each distribution has a tail that

decreases rapidly in magnitude. The scale of the fluctuation, i.e., the difference between the

maximum and minimum clearances, ranges from 0.4 Å for some channels to as high as 1.0

Å for some others. The fluctuation is contributed by the thermal fluctuations of the structure.

It is thus perceivable that such fluctuation should be able to cause the near-open channels

observed in the crystal structure ensemble (see Figure 5.5) to truly open up. Importantly, the

inter-cavity channels are found to open wider and more frequently than the cavity-to-solvent

channels. This may have a functional reason, for example, to regulate the rate of reactions of

the ligands and to prevent expulsion of ligand.
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Table 5.4 Channels identified by our method using the MD ensemble and
the residues lining the channels.

Residues in bold are those identified by Huang and Boxer (1994) using mutagenesis data to be
important for ligand binding kinetics.

Channels Residues Lining the Channel

DP ←→ Xe4 Hem 107 68 29
DP←→P1 Hem 67 64
DP←→P4 Hem 107 32 29 64 43 33 46 44 97
Xe4 ←→S1 111 72 69 14
Xe4 ←→S2 111 72 69 14 131
Xe4 ←→ Xe2 111 72 68 Hem 135
S1←→S2 115 111 17 14 131 72
S1←→P7 114 28 24 17 115 119
S1←→P8 69 28 24 17 25 21 14 18 70 73 74 77
S2←→ Xe3 135 134 131 76 72 138
S2←→ Xe2 134 131 10 76 135 138 72
S2←→P7 131 115 14 10 123 13 17 119 16 122
S2←→P10 135 131 76 14 10 77 11
S2←→P9 134 131 76 10 14 11 7 77
Xe3 ←→ Xe2 138 76 75 72 135
Xe3 ←→P3 138 76 75 72 86 Hem 71 89 85
Xe3 ←→P6 134 76 75 1 137 141 79 86 80
Xe2 ←→ Xe1 Hem 135 108 139 138 142 104
Xe1 ←→P3 Hem 142 89 138 86 75 71 85 67
Xe1 ←→P2 146 142 104 101 139

Validating Ligand Migration Channels with Mutagenesis Data

The dynamic map ensemble stores the information about all the channels, for example,

the residues and atoms that line the channels. Table 5.4 lists the channels identified by our

method using the 10-ns MD ensemble and the residues that line these channels. The random

mutagenesis study by Huang and Boxer (1994) found that a surprisingly large number of

mutants exhibited different ligand-binding kinetics from the wild-type protein. In our study, we

find that the mutated residues that are significant for ligand-binding kinetics appear frequently

on the surface of the ligand migration channels identified by our method (shown in bold in

Table 5.4). For every channel, there is at least one residue that was found important for the

ligand-binding kinetics. Among all migration channels, the channels connecting to the DP site

(i.e., DP to Xe4, DP to P1, DP to P4, see the map in Figure 5.2(a)) must have a significant

role in ligand-binding kinetics since most of the residues lining these channels were identified

as important residues by Huang and Boxer (1994).
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Figure 5.8 2-D view of the ligand migration channel network of cytochrome
P450cam using an ensemble of 120 crystal structures.

The internal cavities (shown in circles) consist of six cavities identified by DyME. The en-
try/exit portals are marked by P followed by the portal number. An edge represents a puta-
tive open channel in a subset of the conformations. The conformation whose channel has the
largest clearance as well as the clearance value itself is labeled on the edge.

Mapping the Ligand Migration Channel Network of cytochrome P450cam

The mapping approach presented in this work is applicable to other proteins as well. Here

we apply it to a cytochrome P450cam ensemble that contains 120 X-ray structures/substates.

Cytochrome P450cam was among the first solved X-ray structures in the cytochrome P450

superfamily [Winn et al. (2002)]. Like myoglobin, the structure has a deeply-buried heme

pocket. A substrate, camphor, is bound to the active site. Previously, eight persistent cavities

were identified [Mouawad et al. (2007)] from 36 trajectories of 1-ns MD simulations. However,
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Figure 5.9 3-D view of the ligand migration channel network of cytochrome
P450cam using an ensemble of 120 crystal structures.

The internal cavities, colored green, consist of six cavities identified by DyME. Putative open
channels are colored blue. Heme is colored red and camphor is colored yellow.

only five of them, namely cavities A-E, seemed to possess functional importance. Cavity A is

where camphor resides, and cavities B, C and D are where the Xenon gases were found. We

identify six cavities from the X-ray ensemble and find a high frequency of appearance for all of

the five aforementioned cavities, i.e., cavities A-E. Figure 5.8 and Figure 5.9 are respectively

the 2D and 3D representations of the ligand migration channel network, using 1.1 Å as the

clearance threshold for putative open channels. Six portals also are identified. Previous work

using MD simulations identified three main pathways, i.e. pathways 1-3, for substrates or small

ligands to migrate into and out of the protein [Mouawad et al. (2007); Wade et al. (2004)]. Our

results show similar network patterns. The paths going through portals P4 and P7 correspond

to pathway 1, while the paths going through P5 and P3 correspond to pathways 2 and 3,

respectively. From the 2D graph in Figure 5.8, it is seen that the most feasible path from the

active site to the solvent is the path that starts at cavity A, going through cavities B and E,

and enters the solvent at portal P7, which corresponds to pathway 1 identified before.
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Discussion

Since it is difficult to observe the migration pathways of a ligand experimentally, simulation-

based methods, particularly molecular dynamics (MD), have been the choice of approach in

studying ligand migration pathways. Compared with the conventional usage of MD, DyME

has several clear advantages. It has its own limitations too. Understanding its strengths and

limitations is necessary to properly apply the method.

First, the DyME approach maps the whole ligand migration channel network of the host

protein and delineates how the clearances of the network channels may vary as the host protein

changes its conformations under thermal fluctuations. It establishes direct correlations between

the conformations of the host protein and the channel clearances, as each conformation in the

ensemble is individually mapped and the channel clearances at each conformation are known.

The analysis of such correlations may reveal how the channel clearances are regulated by the

dynamics, or the conformational changes, of the host protein. The dynamic nature of the

ligand migration channel network, and the dynamic variation of the channel clearances, are

most clearly portrayed in DyME. It shows that different parts of the channels may open at

different conformations, which explains why there is no route from the solvent to the buried

binding site for the average structure, but many routes may exist when the dynamics of the

protein is taken into account. If we treat the geometric mapping of the host protein at each

conformation as a spatial exploration to the free space available to the ligand, and the dynamics

of the host proteins as a temporal exploration of protein flexibility, we will see that there are

no open routes within the space inside the host protein at any single time, but there are many

routes in the combined space-time. Trajectory-based MD simulations trace the trajectory of

a ligand in this space-time, while the DyME approach decouples the time-space exploration

of the whole system into a separated temporal exploration of protein structural heterogeneity

and a spatial exploration of protein inner space.

MD-like methods approach the ligand migration problem by integrating over the time

evolution of the whole system that includes the protein, the ligand, and solvent. The trajectory

of the ligand is traced through the simulation process. Each simulation usually produces just
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one pathway. If a different pathway is desired, then the simulation has to be repeated, possibly

for multiple times or for a much longer time. Since the motion of the ligand is driven by

diffusion and is stochastic in nature, such trajectory-based approaches are not best suited to

trace out the complete ligand migration channel network. A mapping approach, such as the

one developed in DyME, is the better choice for such a purpose.

Another way to appreciate the difference between a mapping approach and a trajectory-

based one is to realize that it requires a large extent of coordination between the motions of

the ligand and the protein in order for the ligand to migrate through the protein. For example,

when a transient channel is opened, the ligand needs not only to be there but also to have

the right momentum in order to take advantage of the transiently opened channel to move

through the channel to the next site. A transient channel may have to open and close many

times before the ligand can pass through. Such coordination, accomplished through random

diffusion, inevitably lengthens the time needed to simulate explicitly a ligand’s transition from

one site to another, making it many times longer than the time it takes for the channel to open

just once (which would be sufficient for a mapping approach to capture it).

The computational efficiency gained by a mapping approach over trajectory-based methods

does come with some compromises. MD simulations produce time-dependent trajectories of

the ligand. In the DyME approach, the exact trajectories that a ligand may take and their

time-dependent information are no longer known. What is known instead is the exact shapes

and sizes of the network channels and how they vary as the host protein fluctuates. The

extent of opening and the fluctuations of each channel and the wait time until it takes place

for the protein to make the needed conformational changes, however, can be used to indirectly

determine the rate of ligand migration along the channel. The estimated transition rates among

the cavities and the solvent can then be used to write down a master equation of the whole

system, the solution to which will give the population kinetics at each cavity.

The interaction between the ligand and the protein is automatically included in explicit-

ligand trajectory-based approaches. In the DyME approach, since the trajectory of the ligand

is not explicitly followed and the network channels are the focus and are mapped instead, care



94

must be taken to adequately address the effect that a ligand would have on the host protein

and thus the channel network. Since the size of diatomic ligands is small and uncharged, it is

thus not unreasonable, as the zero-order approximation, to map the ligand migration channel

network without the presence of the ligand. Indeed, work such as that by Tilton et al. (1984)

had found that the presence of the ligand has only a small effect on the protein structure and

cavity volumes. The idea of using an implicit ligand was also exploited Cohen et al. (2006),

where the migration pathways were imaged using an implicit ligand model by calculating

the mean free energy. In the case where the zero-order approximation is not sufficient, the

following first-order approximation to the effect of the ligand can be adopted. In contrast to

the zero-order approximation where the protein flexibility and dynamics is explored without

the presence of any ligand, at the first-order approximation a ligand can be placed in turn at

each cavity site or the solvent and multiple MD simulations can be run to generate ensembles

of conformations. In this way, the interactions between the ligand and the protein and their

effect on the channel network can be mostly included.

In summary, the DyME approach has the following advantages:

• Mapping the whole ligand migration channel network. A trajectory-based MD simulation

run can produce only one single transition pathway a time for the ligand. The dynamic

map ensemble constructed by DyME, on the other hand, represents the whole ligand

migration channel network that is accessible to the ligand, spatially and dynamically.

• Computational Efficiency. Because the trajectory of the ligand is not explicitly followed,

the requirement for the coordination between the motions of the ligand and the protein

through random diffusion is removed. We now need to examine the dynamics of protein

only long enough to see the transient channels open once. This is many times shorter than

the simulation time needed to see a ligand actually traversing through these channels.

• Clear display of the effect of protein dynamics or conformational changes on ligand

migration. Since the protein inner space at each conformation is individually mapped in

DyME, the effect of protein conformational changes is directly reflected in the fluctuations
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of channel clearances. It is thus clearly shown in DyME how protein dynamics may open

one channel and at the same time close another. The scales of fluctuations of channel

clearances are also readily available in DyME.

• Facilitating the study of the control mechanism. Though protein dynamics is well known

to contribute the opening of transient channels, it is not clear how the control is carried

out at the atomic level and what residues are key in regulating the channels. Since the

dynamic map ensembles directly link protein conformational changes to the variations

in channel clearances, analysis of the correlation between conformational changes at the

residue level and channel clearances may pinpoint the key regulatory residues, as is

expected that the motions of the key channel-controlling residues should have a strong

correlation with the channel clearances.

• Flexibility and broad applicability. In DyME, the dynamics of a protein is represented

by an ensemble of conformations. Consequently, DyME can be applied to study the

effect of protein dynamics in general, not limited to conformations generated in MD

simulations. For example, it can be applied to an ensemble of crystal structures (of the

same protein) and/or NMR structure ensembles. When used in this way, it becomes a

method for studying ligand migration pathways that is purely experimental structure-

based. This is novel. It is significant too because it provides direct experimental evidence

for how ligand may migrate in the host protein. Furthermore, the flexibility of DyME

allows the use of conformations of mixed origins. This allows one to form an ensemble

by combining experimental structures, conformations generated from one or more simu-

lations, and/or conformations sampled using normal modes. The combined information

may reveal a more complete picture of the ligand migration process than any subset of

the conformations can. DyME can also be applied to conformation substates, such as

the three well-known substates (A0, A1, and A3) of myoglobin, to study how substate

inter-conversion affects ligand migration [Hummer et al. (2004)].



96

Conclusions

To conclude, we have developed a novel computational framework called DyME that can

efficiently map the ligand migration channel networks in dynamic proteins. Results on the

pathways in myoglobin for gaseous ligands demonstrate that the method is able to map out the

ligand migration channel network in a much shorter time than what is required for conventional

MD simulations. DyME is unique in that it integrates an efficient spatial mapping of protein

inner space with a temporal exploration of protein structural heterogeneity, and produces an

exact mapping of all the space reachable by a ligand, spatially and dynamically. Moreover,

DyME provides direct information on the correlation between protein conformational changes

and the fluctuations of the channel clearances. Such correlation information may be critical in

determining the molecular mechanism by which the ligand migration channels are regulated.
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CHAPTER 6. PREDICTING ALLOSTERIC COMMUNICATION

PATHWAYS USING MOTION CORRELATION NETWORK

A paper published in Asia-Pacific Bioinformatics Conference 2009

Tu-Liang Lin and Guang Song

Abstract

Background: Allosteric regulation can be described as the binding of an effector at one

site switches the functionality of another site, often at distance. Although a wide variety of

models have been proposed, the underlying mechanism of the allosteric communication remains

unclear. In this work, we hypothesize that the allosteric communication between the allosteric

site and catalytic site should be carried out along pathways of residues that have strongly

correlated motions, so that information such as conformation change can be quickly transduced

from one site to another. Results: (i) The intramolecular communication pathways of 10 out

of 15 myosin proteins derived from our Motion Correlation Network (MCN) model agree with

the pathways derived from multiple sequence alignment (MSA) in a very high statistically

significant level (< 1.0E−08). (ii) The pathways of the remaining 5 myosin proteins, which all

fall in the post-rigor state, are completely different from the pathways obtained from MSA and

the disagreement suggests the possibility of the existence of a different route in the post-rigor

state. (iii) The intramolecular communication pathways of thrombin derived from our method

agree with the pathways derived from electron density maps in a high statistically significant

level (< 1.0E − 05). Conclusions: We provide a simple and computationally inexpensive

approach to identify the putative allosteric communication pathways. The excellent agreement

between our results and previous works supports our hypothesis that the most efficient allosteric
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communication is through pathways of residues that have strongly correlated motions. Such an

agreement also implies that sequence conservation, which has been used to identify allosteric

communication pathways, may have a dynamics origin.

Background

The importance of allosteric communication

A number of important biological processes, such as cell signaling or metabolic activities,

employ allosteric regulation to mediate the processes. Allosteric regulation can be described

as the binding of an effector at one site causing a conformational change at a distant catalytic

site. The conformational change might switch the functionality of the proteins, e.g., from T

(tense) state to R (relaxed) state or from R state to T state [Monod et al. (1963)]. Many

proteins adopt the allostery to control their functions, e.g., myosin, G protein-coupled recep-

tors and phosphofructokinase [Gether (2000); Houdusse et al. (2000); Shirakihara and Evans

(1988)]. Although some of the allosteric communication details have been revealed in the past

few years [Swain and Gierasch (2006)], the mechanism that governs the allosteric regulation is

still a mystery.

Previous methods for allosteric communication pathway identification

The identification of allosteric communication pathways in the allosteric proteins remains a

difficult task and has received a lot of attention recently [Swain and Gierasch (2006)]. Several

experimental and theoretical methods have been proposed, including statistical analysis of

sequence conservation [Suel et al. (2003); Tang et al. (2007)], molecular dynamics simulation

[Rousseau and Schymkowitz (2005)], elastic network model [Zheng and Brooks (2005)], and

experimental methods such as studying electron density map changes [Gandhi et al. (2008)]

and targeted allosteric mutant sites [Kimmel and Reinhart (2000)].

On the theoretical side, formulating the proteins as network structures is a favorable trend in

recent computational studies of allosteric communication [Tang et al. (2007); Daily et al. (2007);
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Chennubhotla and Bahar (2006).] Tang et al. (2007) used the residue contact network with

the weights derived from sequence conservation scores of multiple sequence alignments. Daily

et al. (2007) formulated a contact rearrangement network between two different states (active

and inactive). Chennubhotla and Bahar (2006) employed Markov propagation of information.

Theoretical models for protein allostery

Historically, two major models, MWC concerted [Monod et al. (1965)] and KNF sequential

model [Koshland et al. (1966)], have been proposed to explain the protein allostery. For an

oligomeric protein, MWC concerted model assumes all subunits are functionally identical and

the change is all-or-none whereas KNF sequential model assumes each individual subunit can

undergo its own conformational change. These two models are still under a lot of debate.

However, it has been widely believed that the fundamental mechanism of undergoing a confor-

mational change in response to an effector binding is intrinsic to proteins [Tang et al. (2007)].

Some studies show that the intrinsic dynamics of enzymes in the unbound state is related to

allosteric regulation, and proteins have the ability to sample conformations that meet func-

tional requirement under native state conditions [Bahar et al. (2007)].

The ability of sampling conformations in the absence of ligands suggests that extracting the

allosteric communication pathway from a single unligand structure is possible. Our conjecture

comes from some recent researches which attempt to link the equilibrium fluctuations and

catalytic functions [Bahar et al. (2007); Kern and Zuiderweg (2003)]. Also recent researches

provided mounting evidence that allosteric conformational changes not only been observed

upon ligand binding but also in the equilibrium fluctuations when the ligand is absent [Fetler

et al. (2007); Tobi and Bahar (2005); Hammes-Schiffers and Benkovic (2006)]. Due to the in-

crease support of the linkage between the intrinsic dynamics and protein functions, it provides

the possibility of predicting the allosteric pathway from the intrinsic dynamics encoded in the

unbounded structure. Based on this conjecture, we propose a method to extract the allosteric

communication pathway using a single unligand structure.

Our method is based on the hypothesis that the most efficient allosteric communication path-
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way between the allosteric site and the catalytic site is through residues that have strongly

correlated motions. We derive the scales of motion correlation among the residues from Elastic

Network Model (ENM) and name our model as Motion Correlation Network (MCN). Elastic

Network Model (ENM) [Bahar et al. (2007)] is one of the successful methods for studying

protein dynamics and has been applied to study the intramolecular communication pathway

in several allosteric proteins, e.g., myosin, cycling-dependent kinase II and GroEL chaperonin

[Zheng et al. (2006); Gu and Bourne (2007); Zheng and Brooks (2005)].

Our contributions

In this paper, we introduce a novel approach to identifying the potential communication

pathway of protein allostery. Our method differs from previous studies in several aspects.

First, we formulate the intramolecular communications as a network structure and the com-

munications is through correlated motions, which is an innovative idea. Second, our approach

requires only a single protein structure and our results are comparable to other methods that

used multiple structures, such as MSA [Tang et al. (2007)]. Third, our approach can generate

not only single paths, but also path ensembles. Fourth, the motion correlation between two

residues is calculated from correlation patterns [Yesylevskyy et al. (2006)] that have been used

successfully in defining the relative motions in the domain decomposition problem. The mo-

tion correlation network (MCN) structure that we construct in this work is purely from ENM

and we assume that the allosteric communications between two sites are accomplished through

correlated motions.

The Markov propagation of allosteric effects proposed by Chennubhotla and Bahar (2006) is

perhaps the closest to our work. However, they formulated the communication probability be-

tween a pair of residues to be a function of their spatial overlap, e.g., the percentage of atoms

that are in contact. Therefore, the hypothesis behind their approach and ours is fundamentally

different. In addition, the correlation between two residues in our approach is more robust to

small changes in protein structures.
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Results and discussion

The intramolecular communication pathway of myosin

Myosins are motor proteins which transform the chemical energy, such as that from ATP

hydrolysis, into movement. The energy transduction process can be seen as an allosteric com-

munication, where the chemical energy is propagated from the binding site to a distant region

and a movement is induced. Crystallographic and biochemical researches have identified three

main conformational states, pre-stroke state, rigor state and post-rigor state, which correspond

to the different stages in the actomyosin cycle [Houdusse et al. (2000)]. We divide the myosin

structure into motor head and tail (lever arm). At the beginning of the actomyosin cycle, the

ATP hydrolyzes into ADP and phosphate (Pi), both of which are bound to the motor head and

the lever arm is up. The release of the ATP hydrolysis energy will eventually cause movement

of the lever arm. The pre-stroke state is the state before the movement occurs. After the power

stroke, the ADP and phosphate are released from the binding site and the lever arm swings to

the down position. The nucleotide-free structure is the rigor or near-rigor state. When another

ATP binds to the myosin, the molecular structure goes back to the post-rigor state.

In deriving the allosteric communication paths, we use the same start and end points as in

Tang et al. (2007) to represent the allosteric site and the catalytic site. The source of the

allosteric communication is set to be the γ− phosphate of ATP and the end residue T742,

which is a residue that resides on the surface of the converter near the lever arm. According

to Tang et al. (2007), T742 has the highest rank in the communication efficiency compared

with other residues in the lever arm area and the communication efficiency is obtained through

the Cartesian distance divided by the path conservation weight. Also, it has been pointed

out by Zheng and Brooks (2005) that T742 plays an important role in the hinge motion of

the converter. In our work, we incorporate the γ−phosphate into the network graph and as-

sign a node to represent it, just as Cα atom is used to represent each residue (see Methods

section). Depending on the presence of the nucleotide, the start node might be γ−phosphate

or γ−phosphate analog when ATP is present, or β−phosphate when ADP is present, or the

equivalent 181S when the structure is nucleotide-free.



102

For comparison, Table 6.1 includes the paths obtained by Tang et al. (2007), who adopted

the MSA (multiple sequence alignment) to derive allosteric pathways. The p-values in Table

6.1 are the results of the statistical test on the similarity of two paths: 10 out of 15 path pairs

are highly statistically significant. For the rest 5 path pairs, the two methods give different

results, suggesting there may exist an alternative communication route.

Figure 6.1 Allosteric communication paths of Myosin in two different
states.

The allosteric communication paths derived from our MCN are colored blue and paths derived
from MSA are green.The start and end points are marked as red beads in both subfigures. (a)
is the prestroke state (1VOM) and (b) is the post-rigor state (1MMA). 1VOM (a) shows high
similarity between the two paths derived from MCN and MSA. The two paths in 1MMA (b)
are divergent.

Figure 6.1.(a)-(b) are the comparisons of the paths derived from MCN and MSA in two

different states. The paths in the prestroke state are very similar (see Figure 6.1.(a)). In the

post-rigor state, the paths derived from the two methods are similar for some species (not

shown), while for the others, such as Dictyostelium (pdb:1MMA), the paths are divergent (see

Figure 6.1.(b)).



103

T
ab

le
6.

1
T

he
co

m
pa

ri
so

n
of

th
e

al
lo

st
er

ic
co

m
m

un
ic

at
io

n
pa

th
s

of
m

yo
si

n
fa

m
ily

de
ri

ve
d

fr
om

M
C

N
an

d
M

SA
.

Fo
r

co
m

pa
ri

so
n,

w
e

in
cl

ud
e

th
e

pa
th

s
ob

ta
in

ed
by

M
SA

(m
ul

ti
pl

e
se

qu
en

ce
al

ig
nm

en
t)

[T
an

g
et

al
.

(2
00

7)
].

In
or

de
r

to
pe

rf
or

m
co

m
pa

ri
so

n
be

tw
ee

n
di

ffe
re

nt
sp

ec
ie

s,
th

e
or

ig
in

al
re

si
du

e
nu

m
be

rs
ar

e
m

ap
pe

d
to

th
e

re
fe

re
nc

e
re

si
du

e
nu

m
be

rs
th

at
ar

e
ob

ta
in

ed
fr

om
th

e
al

ig
nm

en
t

w
it

h
D

ic
ty

os
te

liu
m

m
yo

si
n

II
fr

om
w

hi
ch

a
co

m
m

on
nu

m
be

ri
ng

sy
st

em
fo

r
di

ffe
re

nt
sp

ec
ie

s
is

de
fin

ed
.

T
he

p-
va

lu
e

is
th

e
F

is
he

r’
s

ex
ac

t
te

st
fo

r
th

e
si

m
ila

ri
ty

of
th

e
tw

o
pa

th
s

fr
om

th
e

tw
o

di
ffe

re
nt

m
et

ho
ds

,
M

C
N

an
d

M
SA

.
A

cu
to

ff
di

st
an

ce
of

7.
0

Å
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The allosteric pathways in pre-stroke and rigor structures are overall similar across all species.

First, the communication starts from the γ−phosphate and travels through P loop (179-186)

and then connects to switch II (454-459). It indicates that the motions between P loop and

switch II are highly correlated. After the message passes through switch II, it connects to relay

helix (466-518). At the final stage, the communication jumps from relay helix directly to the

end point in the converter. Figure 6.2.(a) shows the overlapped paths of the prestroke states

among different species and the paths are highly similar across different species.

Figure 6.2 The overlapped paths of the prestroke and post-rigor states de-
rived from MCN for myosin family.

(a) is the overlapped paths of the prestroke state and (b) is the overlapped paths of the post-
rigor state. The start and end points are marked as red in both subfigures. The pre-stroke
state shows high consistency among the paths of different species. The post-rigor state exhibits
two different communication routes among the paths of different species.

The allosteric pathways in the post-rigor state are more divergent. It shows two types

of paths in the post-rigor state. The first type is similar to the path obtained in the pre-

stroke and rigor states. The allosteric communications of Chicken myosin V with ADP-BeF3

(1W7J) and nucleotide-free scallop myosin II (1KK7) belong to the first type. The second

type of path goes through an interface (90-124) between N-Terminal subdomain and SH1 he-
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lix and jumps from N-terminal subdomain to the converter. The Dictyostelium myosin II

(1MMA,1MMD,1FMW,1FMV) at post-rigor state appears to have the second type of commu-

nication path. Figure 6.2 shows the overlapped paths among different species and the paths

in the post-rigor state (Figure 6.2.(b)) exhibit two different routes. Therefore, we speculate

that probably two pathways exist in the post-rigor state among different species. In our study,

we find that when the link between the P loop (179-186) and switch II (454-459) becomes

disconnected due to the stroke movement in some species, the communications between the

γ−phosphate and the lever arm might have to go through a complete new route.

Further analysis of the difference between the MCN and MSA derived paths in the post-rigor

state, reveals that the difference indeed comes from the breakage of the interface between P

loop and switch II subdomain. When the gap between the P loop and switch II subdomain

becomes larger and the message cannot pass the gap directly, the MSA derived path go through

a small extra detour and connect back to the swith II subdomain,but the MCN derived path

go through a complete different route which will bypass the switch II. While it is difficult to

conclude which one is more accurate, the results do indicate that the allosteric communication

paths are more prone to change in the post-rigor state.

In a recent study of the allosteric communications in Myosin V, Cecchini et al. (2008) proposed

a transition pathway from the rigor to the post-rigor state by using a linear interpolation of

the two states. Their study focused on the allosteric communication between the nucleotide

binding site and the U50/L50 cleft, which is different from ours that is between the nucleotide

binding site and the converter. Yet still some similarities can be found from the two studies.

They found that only small fluctuations are present in the N, U50 and L50 subdomains except

for the relay group (467-493) which is coupled to the converter. Our results also reveal the im-

portant role of the relay helix. All the MCN derived paths in the rigor state contain residues

from the relay helix. Cecchini et al. (2008) also pointed out that the hinge was located at

residues 763-769 in the rigor state, but changed to 696-697 in the post-rigor state. Due to the

different locations of the hinge, they suggested that the converter subdomain might be more

independent of the head in the post-rigor state than the rigor. This difference may explain why
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two possible communication pathways exist in the post-rigor state, since some of the second

type paths in the post-rigor state contain the residues near the hinge.

Figure 6.3 The allosteric communication path ensembles of the prestroke
and post-rigor states.

(a) The allosteric communication path ensemble derived from the top 50000 shortest paths of
MCN in the prestroke state (1VOM). (b) The allosteric communication path ensemble derived
from the top 50000 shortest paths of MCN in the post-rigor state (1MMD). The residues are
colored according to their frequency in the top 50000 shortest paths and the color scale is BMR.
Blue (B) means less frequent, red (R) means more frequent and magenta (M) is somewhere in
the middle.

The allosteric communication path ensemble

We also performed the k shortest path search on MCN. We set the k=50000 and obtained

the path ensembles for the prestroke and post-rigor states. Figure 6.3.(a) displays the path

ensemble of the prestroke state and Figure 6.3.(b) the path ensemble of the post-rigor state.

The area visited by the top 50000 shortest paths is much narrower in the pre-stroke state

than in the post-rigor state, again suggesting the communication paths in the post-rigor state

should be more divergent.

After further examination of the 1VOM path ensemble, we found that F458, F482, I499 and

their nearby residues are visited more frequently and these residues has been identified to
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be important mutant sites. The mutant F458A has been showed to have a large impact on

ATPase activity [Sasaki et al. (1998)] and the mutant F482A can increase the actin affinity

in the presence of ATP [Ito et al. (2003)]. The mutant I499A does not change the kinetic of

ATP hydrolysis, but it completely loses the motor functions [Sasaki et al. (2003)]. As the path

ensemble of 1MMD, we found that G680 and G684 and their nearby residues are visited more

frequently and the mutations of G680A and G684A also have been showed to have effects on

the Pi release rate and nucleotide binding and release kinetics [Ito et al. (2003); Batra et al.

(1999)].

The conservation of intramolecular communication pathway

Ten out of fifteen myosin structures have similar pathways when comparing the pathways

obtained from MCN and MSA. The p-values of these 10 structures are less than 10−8, which

means that the similarities between the pathways from the two methods in these 10 structures

are statistically very significant. It’s remarkable that the results of such two completely different

approaches can reach such high consistency. Since the paths from MSA are composed of

residues that are highly conserved, it implies that the motion correlation is related to the

evolutionary conservation, and sequence conservation may have a dynamics origin.

The intramolecular communication pathway of thrombin

Thrombin is a serine protease and have received lots of attention due to its importance

in homeostasis. Two forms, fast and slow, exist at the equilibrium state. The slow form

is Na+−free and is responsible for anticoagulation. The fast form is Na+−bound and is

responsible for coagulation [Enrico et al. (2007)]. Two major allosteric pathways exist in

the thrombin molecule. One relates to the binding of Na+, which promotes the activity

of procoagulant. The other involves the exosite I and the binding of thrombomodulin to

exosite I promotes the activity of anticoagulant, protein C [Gandhi et al. (2008)]. Recently an

allosteric communication pathway between the exosite I and the active site was revealed by

the work of Gandhi et al. (2008). They proposed a plausible pathway which is consistent with

the documented electron density map changes of thrombin mutant D102N. The free form of
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thrombin mutant D102N (PDB ID code 3BEI) is stabilized in an inhibited state. The binding

of protease activated receptor PAR1 fragment to exosite I causes a conformational change to

the active site that is 30 Å away from the exosite I.

The allosteric communication pathway that Gandhi et al. (2008) proposed comprises four

layers. The residues of the first layer are in direct contact with PAR1 fragment and they

are F34 and R73. The second layer contains M32 and Q151. The third layer comprises the

interactions between two β−strands,141-146 and 191-193, and involves W141, N143 and E192.

The final layer contains a disulfide bonded C191 and C220 and E146, where the interactions

are transmitted to the active site.

Figure 6.4 The allosteric communication paths of thrombin in two different
states.

(a)The allosteric communication path in the inactive state (3BEI). (b)The allosteric commu-
nication path in the active state (3BEF). The comparison of allosteric communication paths
derived from MCN (blue) and electron density map changes (green) in the two states shows
the paths are highly similar.

The agreements between the MCN intramolecular communication pathway and

electron density map

We studied the allosteric communication pathways of thrombin mutant D102N using MCN

and found that the pathways elicited by MCN using atomic level contacts with cutoff distance

set to 4.0 Å are similar to the pathway obtained by Gandhi et al. (2008). Table 6.2 shows the
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Table 6.2 The allosteric communication paths of thrombin mutant D102N

The allosteric communication paths of thrombin mutant D102N between exosite I and the
active site derived from MCN using atomic level contacts with cutoff distance set to 4.0 Å.
State Allosteric communication paths between exosite I and the active site P-Value
Inactive F34 L41 C42 G193 E192 G219 9.5E-05

F34 L40 W141 N143 C220
R73 Q151 N143 C220 G219
R73 Q151 N143 C220

Active F34 M32 W141 Q151 L144 K145 E146 G219 1.1E-05
F34 M32 W141 Q151 L144 K145 E146 C220
R73 P152 L144 K145 E146 G219
R73 P152 L144 K145 E146 C220

allosteric communication paths of thrombin mutant D102N between exosite I and active site

derived from our MCN model and Figure 6.4 shows the good agreement between paths obtained

from our method and those obtained by studying electron density map changes [Gandhi et al.

(2008)].

The allosteric communication starts from F34 and reaches the C220 loop via L40 and the 141-

146 β−strand and then reaches the 215-219 β−strand via L41, C42 and 191-193 β−strand. The

other communication path starts from R73 and reaches C220 and the 215-219 β−strand via

Q151 and 141-146 β−strand. Basically, there are four important components in the allosteric

communication paths of thrombin mutant D102N, the M32 residue, the Q151 residue, the

141-146 β−strand and 191-193 β−strand. Our approach successfully identifies three of them

except the M32, for which we are able to successfully identify its closeby neighbors, L40 or

L41, which is about 3.8 Å away from M32 when considering atomic level contacts.

Conclusions

We provide a simple and computationally inexpensive approach to identifying the putative

allosteric communication pathways and path ensembles. We compare the intramolecular com-

munication pathways derived from our approach with the pathways derived from the statistical

analysis of sequence conservation and experimental data and find very good agreement. The

excellent agreement supports our hypothesis that the allosteric communication between the
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allosteric site and the catalytic site is through pathways of residues that have strongly corre-

lated motions.

Several important features exist in our approach. First, the pathways derived from our MCN

model are strongly conserved. Most of the pathways derived from MCN agree with the path-

ways derived from statistical analysis of sequence conservation and those pathways that do not

agree also show high conservation characteristics. The link between dynamics and sequence

conservation has also been pointed out by Zheng et al. (2006). Second, the pathways derived

from MCN agree with the pathways derived from electron density map. Third, our approach

can generate allosteric path ensembles, which may be more meaningful than single paths.

Among the available computational approaches to allosteric pathway prediction, our method

has the lowest requirement. Sequence conservation approach requires at least a sufficient

amount of homologous to extract statistically significant data. Molecular dynamic simulation

is computationally expensive. Our approach requires only a single pdb structure file to ob-

tain the putative intramolecular communication pathway or path ensemble and the results are

comparable with those obtained from other approaches.

Although we have observed some relations among motions, allostery and sequence conservation

in this work, the underlying mechanism of allostery is still not fully understood and requires

further investigation.

Methods

As a network approach, Motion Correlation Network (MCN) consists of three parts: nodes,

edges and weights. Each node represents one residue of the protein, the edges represent

the contacts between the residues, and the weights are the motion correlation between two

residues that are in contact. The complete approach will involve graph generation, edge weight

derivation and network exploration.
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Graph generation

To identify the putative set of residues that involve in the allosteric communication, we

formulate the graph structure of the MCN based on the protein 3D structure. Each protein

is model as an undirected weighted graph G = (V,E,W ). The nodes of the graph V =

vi|i = 1, 2, ..., n represent the residues, the edges of the graph E = eij represent the contacts

between residue i and j, and the non-negative weight W = wij represents the motion correlation

between two residues. Two kinds of network graph, residue level and atomic level, are used.

In both graphs, each vertex represents a residue and an edge between two vertices represents

the contacts between the two residues. The difference between the two kinds of graph is on

how the contacts are defined. In the residue level graph, we draw an edge between two vertices

if the distance between the Cα atoms of the two residues are within 7 Å. In the atomic level

graph, we draw an edge between two vertices if the distance between any two heavy atoms of

the two residues is below 3.5 Å.

Edge weight derivation

The edge weights define the motion correlation between residue pairs. The calculation of

the motion correlation is based on Gaussian Network Model (GNM) [Bahar et al. (1997)], and

can be extended to other kinds of elastic network models, e.g., Anisotropic Network Model

(ANM) [Atilgan et al. (2001)].

Gaussian network model

Gaussian Network Model (GNM) was first introduced in Bahar et al. (1997). Inspired by

Tirion (1996) in atomic level normal mode analysis, Bahar et al. (1997) extend the model to

residue level and obtained an acceptable agreement between the theoretical and experimental

crystallographic B-factors. The Gaussian network model describes a 3D protein structure as

a cluster of Cα atoms connected by harmonic springs within a certain cutoff distance. The

cutoff distance between residue pairs is the only parameter of the model and normally is from

7 Å to 8 Å. Let ∆Ri and ∆Rj represent the instaneous fluctuations from equilibrium positions
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of residue i and j and ∆Rij the difference between the instaneous fluctuations of two residues.

As an elastic network model, the GNM has the following harmonic potential (6.1).

VGNM =
γ

2
∆RTΓ∆R =

γ

2

N∑
i<j

Γij(∆Ri −∆Rj)2 (6.1)

where γ is the force constant and Γij is the Laplacian matrix (Hessian matrix) which can be

derived directly from the 3D structure and is defined as (6.2).

Γij =


−1 if i 6= j ∩Rij ≤ rc

0 if i 6= j ∩Rij > rc∑N
j,j 6=i Γij if i = j

(6.2)

where i and j are the indices of the residues and rc is the cutoff distance.

The simplicity of the Hessian matrix formulation results from the assumption that the fluctu-

ations of each residue are isotropic and Gaussian distributed along the X, Y and Z directions.

The expectation value of residue fluctuations, < ∆R2
i > (6.3) , and correlation, < ∆Ri ·∆Rj >

(6.4), can be easily obtained from the inverse of the Laplacian matrix under the isotropic and

Gaussian assumption.

< ∆R2
i >=

kBT

γ
(Γ−1)ii (6.3)

< ∆Ri ·∆Rj >=
kBT

γ
(Γ−1)ij (6.4)

The kB is the Boltzmann constant and T is the temperature. The < ∆R2
i > term is directly

related to crystallographic B-factors.

Motion correlations

The cross correlation between the fluctuations of residues i and j can be written as (6.5).

cij =
< ∆Ri ·∆Rj >√

< ∆R2
i > · < ∆R2

j >
(6.5)

The cij ’s form a n× n correlation matrix and n is the total number of residues of the protein.

Now consider the ith and jth columns, ri and rj , and define the motion correlation as the
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correlation of these two columns [Yesylevskyy et al. (2006)]:

mcij =
(ri − ri)(rj − rj)

′√
(ri − ri)(ri − ri)′

√
(rj − rj)(rj − rj)′

(6.6)

mcij thus describes the motion correlation between residues i and j. The edge weight wij is

related to mcij by,

wij = −log(|mcij |), (6.7)

which means two strongly (weakly) motion-correlated residues have a low (high) weight be-

tween them. By doing this, the search for pathways of residues that have strongly correlated

motions becomes equivalent to finding the shortest paths.

Network exploration

Yen’s algorithm (finding the first k shortest paths)

Dijkstra’s algorithm [Dijkstra (1959)] allows us to find the shortest path between two nodes

in a graph, but sometimes the second shortest path, the third shortest path,..., until the kth

shortest path are within our interests. In the allosteric communication, the first k shortest

paths might form a path ensemble which includes more information than a single shortest

path solution. A path ensemble can reveal the degree of involvement of a given residue in the

path ensemble, which is not available in a single path solution. In this work, we applied the

Yen’s algorithm [Yen (1971); Martins and Pascoal (2003)] for finding the top k shortest paths.

Only loopless paths are determined by the Yen’s algorithm. The Yen’s algorithm ranks the k

shortest paths between a pair of nodes by constructing a tree of paths. The complexity of the

Yen’s algorithm is O(k|V |(|E| + |V | log |V |)), which takes k|V | times longer than Dijkstra’s

algorithm. Since it’s computationally more expensive than finding the shortest path, we only

applied the Yen’s algorithm to myosin.

The statistical significance of the derived paths (ensembles)

In order to evaluate the paths derived from MCN, we adopt the Fisher’s exact test [Samuels

and Witmer (2002)] to test the statistical significance of the consistency of the MCN derived
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path and the compared path, the path derived from other methods , such as MSA in myosin

family or electron density maps in thrombin. The Fisher’s exact test allows us to examine

whether the appearance of the same residues in both MCN derived path and the compared

path is pure random or not. The null hypothesis is that the residues that appear in the MCN

derived path cannot be found in the compared path and the alternative hypothesis is that the

residues that appear in the MCN derived path can be found in the compared path. In short,

that is the similarity between the MCN derived path and the compared path. The p-values

are calculated from the total number of residues of the protein, the total number of residues of

the compared path, the total number of residues of the MCN derived path (ensemble) and the

total number of residues or their immediate sequence neighbors that appear in both the MCN

derived path (ensemble) and the compared path. The smaller the p-value, the more likely the

residues that appear in the MCN derived path can be found in the compared path and the

more similar between these two paths.

Table 6.3 The Allosteric Communication Pathway Test Set.

Protein Conformational State PDB Code
Myosin [Tang et al. (2007)] Pre-stroke 1VOM, 1YV3, 1QVI, 1BR2, 1W9J ,1LKX

Post-rigor 1MMA, 1MMD, 1W7J, 1W9I, 1FMW,
1KK7,1FMW

Rigor 2AKA, 1OE9
thrombin [Gandhi et al. (2008)] Inactive 3BEI

Active 3BEF

Testing data set

We have derived the allosteric communication pathways in two protein members: myosin

and thrombin. The names and Protein Data Bank (PDB) [Berman et al. (2000)] codes of

these proteins are given in Table 6.3. The testing data set is compiled based on two previous

works: Tang et al. (2007) and Gandhi et al. (2008). The results of Tang et al. (2007) are

from statistical analysis of evolutionary conservation and the results of Gandhi et al. (2008)

are from polar interactions and are consistent with the changes documented in the electron

density map. The reason for comparing the derived allosteric communication pathways from
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different approaches is due to the lack of a standard benchmark in allosteric communication

pathway identification.
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CHAPTER 7. CONCLUSION AND FUTURE RESEARCH

In this thesis, I have made several contributions to the field of computational biology,

especially in the area of computational studies of protein dynamics and functional mechanisms.

Since a better understanding of protein dynamics lends to a better understanding of the protein

functions, studies on protein dynamics are presented first.

In my work on protein dynamics, two computational methods are developed to overcome

some of the limitations found in molecular dynamics simulations or elastic network models.

First, I introduce relative population into the description of ensembles and develop a novel

computational method that is able to determine the relative populations of structures within

an ensemble using the experimental RDC data. I compare Q-factors among several ubiquitin

ensembles and the results show that ensembles with relative populations significantly improve

the agreement between the calculated and experimental RDCs, implying that an ensemble with

relative populations is more efficient and can better describe the native states while using fewer

parameters. Therefore, such ensemble representation should be the choice in future ensemble

determination using the still limited experimental data. Secondly, I develop a new coarse-

grained model with multi-body potentials using generalized spring tensors. This generalized

spring tensor model is able to integrate in a single model the attractive features of two widely-

used models, ANM and GNM, and to overcome their limitations.

As the second half of this thesis work, I develop two novel computational approaches for

studying the functional mechanisms of allosteric communication and ligand migration. The

ligand migration pathways of myoglobin and cytochrome P450cam are determined from a

set of conformational ensembles with rich dynamics. The allosteric communication pathways

of myosin and thrombin are determined from the dynamics information derived from elastic
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network models.

Two important contributions are made in the second part of this thesis. First, an efficient

approach for mapping the whole ligand migration channel network is presented. In contrast to

a trajectory-based MD simulation run that can produce only one single trajectory at a time, the

developed approach is more efficient and maps the whole ligand migration channel network.

Second, the excellent agreement between allosteric communication pathways derived in our

studies and the pathways derived from multiple sequence alignments implies that sequence

conservation may have a dynamics origin.

With the establishment of the aforementioned frameworks, future research directions are

multiple, including but not limited to: (1)incorporate weighted Voronoi diagram related meth-

ods such as alpha shapes to obtain more precise mappings of the ligand migration networks;

(2)utilize the newly developed RDC fitting method to construct more accurate conformational

sampling methods; (3)extend the RDC fitting method to other experimental data, such as

chemical shifts or order parameters; (4)apply the RDC fitting method to study disordered

proteins.
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