
University of Kentucky
UKnowledge

Theses and Dissertations--Biosystems and
Agricultural Engineering Biosystems and Agricultural Engineering

2017

USING THE VEHICLE ROUTING PROBLEM
(VRP) TO PROVIDE LOGISTICS
SOLUTIONS IN AGRICULTURE
Hasan Seyyedhasani
University of Kentucky, hshasani@yahoo.com
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.510

Click here to let us know how access to this document benefits you.

This Doctoral Dissertation is brought to you for free and open access by the Biosystems and Agricultural Engineering at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Biosystems and Agricultural Engineering by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

Recommended Citation
Seyyedhasani, Hasan, "USING THE VEHICLE ROUTING PROBLEM (VRP) TO PROVIDE LOGISTICS SOLUTIONS IN
AGRICULTURE" (2017). Theses and Dissertations--Biosystems and Agricultural Engineering. 53.
https://uknowledge.uky.edu/bae_etds/53

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu
https://uknowledge.uky.edu/bae_etds
https://uknowledge.uky.edu/bae_etds
https://uknowledge.uky.edu/bae
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been
given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright
permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-
party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not
permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-
free license to archive and make accessible my work in whole or in part in all forms of media, now or
hereafter known. I agree that the document mentioned above may be made available immediately for
worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future
works (such as articles or books) all or part of my work. I understand that I am free to register the
copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of
the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we
verify that this is the final, approved version of the student’s thesis including all changes required by the
advisory committee. The undersigned agree to abide by the statements above.

Hasan Seyyedhasani, Student

Dr. Joseph Dvorak, Major Professor

Dr. Donald G. Colliver, Director of Graduate Studies



USING THE VEHICLE ROUTING PROBLEM (VRP) 

TO PROVIDE LOGISTICS SOLUTIONS IN AGRICULTURE 

 

 

 

 

______________________________________ 

 

DISSERTATION 

______________________________________ 

 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy in the 

College of Engineering at the University of Kentucky 

 

 

By 

Hasan Seyyedhasani 

 

Lexington, Kentucky 

 

Director: Dr. Joseph Dvorak, Assistant Professor of Biosystems and Agricultural 

Engineering 

 

Lexington, Kentucky 

 

2017 

 

Copyright © Hasan Seyyedhasani 2017  



ABSTRACT OF DISSERTATION 

 

USING THE VEHICLE ROUTING PROBLEM (VRP) 

TO PROVIDE LOGISTICS SOLUTIONS IN AGRICULTURE 

 

Agricultural producers consider utilizing multiple machines to reduce field 

completion times for improving effective field capacity. Using a number of smaller 

machines rather than a single big machine also has benefits such as sustainability via less 

compaction risk, redundancy in the event of an equipment failure, and more flexibility in 

machinery management. However, machinery management is complicated due to 

logistics issues.  

In this work, the allocation and ordering of field paths among a number of 

available machines have been transformed into a solvable Vehicle Routing Problem 

(VRP). A basic heuristic algorithm (a modified form of the Clarke-Wright algorithm) and 

a meta-heuristic algorithm, Tabu Search, were employed to solve the VRP. The solution 

considered optimization of field completion time as well as improving the field 

efficiency. Both techniques were evaluated through computer simulations with 2, 3, 5, or 

10 vehicles working simultaneously to complete the same operation. Furthermore, the 

parameters of the VRP were changed into a dynamic, multi-depot representation to 

enable the re-route of vehicles while the operation is ongoing.  

The results proved both the Clarke-Wright and Tabu Search algorithms always 

generated feasible solutions. The Tabu Search solutions outperformed the solutions 

provided by the Clarke-Wright algorithm. As the number of the vehicles increased, or the 

field shape became more complex, the Tabu Search generated better results in terms of 

reducing the field completion times. With 10 vehicles working together in a real-world 

field, the benefit provided by the Tabu Search over the Modified Clarke-Wright solution 

was 32% reduction in completion time. In addition, changes in the parameters of the VRP 

resulted in a Dynamic, Multi-Depot VRP (DMDVRP) to reset the routes allocated to each 

vehicle even as the operation was in progress. In all the scenarios tested, the DMDVRP 



was able to produce new optimized routes, but the impact of these routes varied 

for each scenario. 

The ability of this optimization procedure to reduce field work times were verified 

through real-world experiments using three tractors during a rotary mowing operation. 

The time to complete the field work was reduced by 17.3% and the total operating time 

for all tractors was reduced by 11.5%.  

The task of a single large machine was also simulated as a task for 2 or 3 smaller 

machines through computer simulations. Results revealed up to 11% reduction in 

completion time using three smaller machines. This time reduction improved the 

effective field capacity. 

 

KEYWORDS: Vehicle Routing Problem, logistics, effective field capacity, field 

efficiency, Tabu Search 
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CHAPTER 1:  INTRODUCTION 

Farmers are limited by the amount of field work they can complete within a 

specified time window. This is called Effective Field Capacity, which according to the 

definition is the total area worked divided by the time until the field was complete. As 

such, reducing the time for field completion which is considered a holy grail in 

agricultural operations will be accomplished through improving effective field capacity 

(American Society of Agricultural and Biological Engineers, 2011).  

There are essentially only two ways to increase effective field capacity – increase 

speed, width or size of individual machines or use additional machines at one time.  

1.1   SINGLE VEHICLE 

Increasing speed or width of machines is a frequently used approach to improving 

effective field capacity as evidenced by the increasing size and horsepower of agricultural 

machinery over the decades (Shearer, Pitla, & Luck, 2010b). In addition to making these 

machines larger and faster, much research has focused on improving their efficiency by 

discovering algorithms that divide a field into paths in such a way to minimize turning 

and other non-productive time (D. D. Bochtis & Vougioukas, 2008; I. Hameed, D. 

Bochtis, C. Sørensen, & M. Nøremark, 2010; Jin & Tang, 2010; Oksanen & Visala, 

2009). Although larger, faster machines have significantly improved capacity over time, 

researchers have identified compaction issues with making even larger machines 

(Blackmore, Have, & Fountas, 2002; Hamza & Anderson, 2005). They also are less 

flexible in smaller or fields with complex geometry. In addition, it is probable that 

obsolescence should be considered with respect to newer technologies, and as such, it 

effects the vehicle life (Shearer et al., 2010b). Therefore, it cannot be expected that 

substantial improvements in bigger and faster agricultural machinery will continue 

(Dionysis D Bochtis, Sørensen, & Busato, 2014).  

1.2   MULTIPLE VEHICLES 

The other method of increasing effective field capacity is to increase the number 

of machines being used at one time (Blackmore et al., 2002; Shearer, Pitla, & Luck, 

2010a). In many situations, using multiple vehicles in the same environment is a good 

strategy to handle very complex problems. Agriculture is one of the contexts where 
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multiple vehicles are applicable.  Current advances in innovative sensing and information 

and communication technologies have paved the way for introduction of autonomous 

vehicles and intelligent machines into agricultural operations. This breakthrough will 

alleviate the environmental impact of agricultural machinery and improve efficiency 

(Dionysis D Bochtis et al., 2014). Using multiple machines allows the use of smaller 

machines with less compaction risk. It also provides redundancy in the event of an 

equipment failure and more flexibility in machinery management. And another 

significant benefit to follow the use of smaller machines on the farm will be the ability of 

manufacturers and producers to reduce the liability of fully autonomous machines 

(Blackmore et al., 2002). As such, there are demands pushing towards operating a larger 

number of smaller vehicles.  

1.3   CHALLENGE OF MULTIPLE VEHICLES 

1.3.1   Path Planning   

In order to take full advantage of these advances and new paradigm in agriculture 

it is essential to increase utilization of the machinery for agricultural operations. To this 

end, intelligent and optimized path planning and task scheduling for vehicles must be 

provided rather than the traditional agricultural operations planning. There are several 

common approaches used by farmers currently to cover the whole field by a fleet of 

vehicles.  In one approach, vehicles follow each other with the following vehicle working 

the next pass over. This method is okay for two, but coordination becomes difficult and a 

big issue for a human operator when many vehicles are used. They also waste time 

driving by all the rows just completed by neighboring vehicles. Another approach is 

dividing the field into zones and each vehicle starts working in a zone, this method is so-

called “work-zone”. Therefore, since for the both currently most used approaches human 

is involved in coordination, there will be difficulties in well path assignment to each 

vehicle. However, systems of multiple vehicles engaged in a collective behavior to carry 

out an overall task are an important challenge. The big challenge in using multiple 

machines together is coordinating their actions so they efficiently finish their tasks. This 

issue ends up being even more complex for fields with irregular and non-convex shapes.  
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According to the ASABE Standards (ASABE & EP496.3, 2006), helpful 

engineering information in making management decisions on farms consists of tractor 

performance, machine power requirements, field machine performance, cost of use, 

reliability, selection of field machine capacity, and replacement. In management of 

agricultural machinery there are five management tasks by which various management 

levels of operations on the farm are encompassed. These tasks are capacity planning, task 

times planning, scheduling, route planning, and performance evaluation (Dionysis D 

Bochtis et al., 2014) . However, the category of replacement concerns economic issues 

and is not paid attention to through those five tasks. Scheduling and route planning as two 

of the main five topics in management of agricultural machinery should be taken into 

consideration to enable producers to benefit from multiple machines utilization. 

1.3.2   Task Updating for Vehicles 

One of the main advantages of exploiting a number of vehicles in the field is 

flexibility in assigning tasks to each vehicle owing to redundancy of vehicles in the field, 

since uncertainty is inherent in agricultural operations. As opposed to using one big and 

fast machine, envision a situation in which either farmer decides to utilize one or some of 

the vehicles of the fleet performing a task for other operations, or one of the vehicles 

breaks down and should be taken out of the field, thanks to communications and control 

technology coupled with widespread availability of Global Navigation Satellite Systems 

(GNSS) using multiple vehicles empower the farmers to manage the situations by 

assigning the tasks of the removed vehicles to those available on the field. Whereas 

carrying out the tasks with a large vehicle wouldn’t provide flexibility for the farmers in 

the former case, and it would be expensive in terms of money and time, in the latter case. 

In management of agricultural operations, there are countless situations where 

producers act to reassign tasks to vehicles due to availability of equipment or even a 

piece of land. Putting these into perspective, consider the vehicle or vehicles in the prior 

scenario which were pulled out for another operation finished their task and now they are 

out of work such that the farmer wants to re-utilize them in the current operation in 

progress, or the broken machine is repaired and ready to resume working in the field. In 

order for such scenarios to be handled it is required to view the problem from the 

perspective of dynamic vehicle routing i.e. input data are continually updated.  
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1.4   OBJECTIVES 

The overall goal of this project was to provide logistic solutions for area coverage 

when a fleet of vehicles are used in agricultural operation using the Vehicle Routing Problem 

(VRP). All things considered, in order to address the above mentioned issues with respect 

to improving effective field capacity and accomplish the project goal, we pursued four 

distinct objectives as follows: 

1- Transform the Agricultural Field Coverage Problem into a standard Vehicle 

Routing Problem (VRP). 

Hypothesis: It is possible to change the Agricultural Field Coverage Problem with 

multiple vehicles into a solvable Vehicle Routing Problem. 

2- To change the parameters of VRP to enable to update the route of each vehicle     

during an operation. 

Hypothesis: Dynamic re-routing of the vehicles involved in an operation can be 

conducted while keeping the field work parameters such as effective field capacity and 

field efficiency similar to the pre-determined solutions. 

3- Compare “optimal” results from VRP with the conventional farmer methods. 

Hypothesis: Computerized path assignment through optimization yields more 

efficient solutions compared to the current farmer path allocation techniques in terms of 

completion time. 

4- Compare the efficiency of replacing a single large vehicle with multiple 

smaller vehicles. 

Hypothesis: Dividing up the task of a big machine into the task of a number of 

smaller machines is more efficient, in a complicated field, with respect to completion 

time and will improve effective field capacity. 

1.5   DISSERTATION OUTLINE 

This dissertation is organized in five chapters. Chapter 1 establishes the general 

rationale and justification of this research and identifies the specific objectives that will 

be addressed within this dissertation. Chapter 2 starts with converting and representing a 

field area coverage into a standard Vehicle Routing Problem (VRP). Then it continues 

with two different approaches to provide solutions for the VRP problem. In chapter 3 

management of agricultural machinery was addressed. Three different most commonly 
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scenarios— 1) changes in the number of vehicles 2) unexpected field work rates 3) 

changes in the area to be worked — in utilizing multiple vehicles were investigated. 

Solution to these scenarios were provided through the re-allocation of task to the 

involved vehicles. Chapter 4 examines the feasibility of implementation of the solutions 

provided by the computer model. This chapter also presents the verification of the 

solutions, through computer simulation, in terms of the reduction of the time to complete 

a field work. Chapter 5 discusses and compares the effective field capacity and field 

efficiency when a single large machine is replaced with two or three smaller ones, 

contingent upon performing the operation under the same conditions. Chapter 6 

concludes major findings from the present research and discusses the future work.  

The research presented in this dissertation has been accepted or submitted for 

publication in the following peer-reviewed journals: 

1. Seyyedhasani, H., & Dvorak, J. S. (2017). Using the Vehicle Routing Problem 

to reduce field completion times with multiple machines. Computers and 

Electronics in Agriculture, 134, 142-150. (Chapter 2)  

2. Seyyedhasani, H., & Dvorak, J. S. (2017). Reducing Field Work Time Using 

Fleet Routing Optimization. Biosystems Engineering, Under Review. (Chapter 4) 
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CHAPTER 2:  OBJECTIVE 1: USING THE VEHICLE ROUTING PROBLEM 

TO REDUCE FIELD COMPLETION TIMES WITH MULTIPLE MACHINES 

2.1   SUMMARY 

The Vehicle Routing Problem (VRP) is a powerful tool used to express many 

logistics problems, yet unlike other vehicle routing challenges, agricultural field work 

consists of machine paths that completely cover a field. In this work, the allocation and 

ordering of field paths among a number of available machines has been transformed into 

a VRP that enables optimization of completion time for the entire field. A basic heuristic 

algorithm (a modified form of the common Clarke-Wright algorithm) and a meta-

heuristic algorithm, Tabu Search, were employed for optimization. Both techniques were 

evaluated through computer simulations in two fields:  a hypothetical basic rectangular 

field and a more complex, real-world field. Field completion times and effective field 

capacity were calculated for cases when 1, 2, 3, 5, and 10 vehicles were used 

simultaneously. Although the Tabu Search method required more than two hours to 

produce its solution on an Intel i7 processor compared to less than one second for the 

method based on Clarke-Wright, Tabu Search provided better solutions that resulted in 

reduced field completion times and increased effective field capacity. The benefit 

provided by Tabu Search was larger in the more complex field and as the number of 

vehicles increased. With ten vehicles in the real-world field, the benefit provided by Tabu 

Search over the Modified Clarke-Wright resulted in reduced completion time of 32%, but 

even with only three vehicles a 15% reduction was obtained. While ten vehicles may only 

be applicable with future autonomous machines, simultaneous usage of three machines is 

not uncommon in current production. As producers consider using multiple machines to 

improve field completion times and effective field capacity, optimization of the vehicle 

routing will play an important role in ensuring those improvements are fully realized. 

2.2   INTRODUCTION 

Reducing field completion times is one of the most important factors for 

producers when making agricultural machinery decisions. It is especially important in 

operations such as planting, swathing or baling where producers want to minimize 

temporal differences between crop states in the same field. Weather is brutally 
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unforgiving and the profit penalties for missing the optimal times to perform field 

operations is frequently severe. Reducing time to finish a field also enables producers to 

quickly move equipment to the next field and work more acres in limited timeframes. 

Field completion time reduction requires improving effective field capacity (American 

Society of Agricultural and Biological Engineers, 2011), and there are two ways to 

increase effective field capacity – increase the speed, width, or size of individual 

machines; or use more machines at one time. 

Increasing speed or width of machines is a frequently used approach to improving 

effective field capacity as evidenced by the increasing size and horsepower of agricultural 

machinery over the decades (Shearer et al., 2010a). In addition to making these machines 

larger and faster, much research has focused on improving their efficiency by discovering 

algorithms that divide a field into paths in such a way to minimize turning and other non-

productive time (D. D. Bochtis & Vougioukas, 2008; I. A. Hameed, D. D. Bochtis, C. G. 

Sørensen, & M. Nøremark, 2010; Jin & Tang, 2010; Oksanen & Visala, 2009; Palmer, 

Wild, & Runtz, 2003; Spekken & de Bruin, 2013).  Although larger and faster machines 

significantly improve capacity, they also cause compaction (Blackmore et al., 2002; 

Hamza & Anderson, 2005). Researchers have even explored routing optimization for 

vehicles to specifically reduce compaction potential (Dionysis D. Bochtis, Sørensen, & 

Green, 2012).  

Using multiple machines allows the use of smaller machines with less compaction 

risk. It also provides redundancy in the event of an equipment failure and more flexibility 

in machinery management. The use of multiple machines creates several challenges, 

which researchers have been working to overcome. Operating multiple vehicles in the 

same area can lead to collisions, which S. G. Vougioukas (2012) addressed through the 

use of peer-to-peer and master-slave control of navigation functions. When developing a 

team of peat harvesting autonomous tractors, Johnson, Naffin, Puhalla, Sanchez, and 

Wellington (2009) allocated work by assigning vehicles to separate works zones and 

prevented collisions in shared common areas by limiting access to these areas to only one 

vehicle at a time. The control systems of agricultural robots designed to operate in fleets 

have been developed through multi-agent-simulation (Arguenon, Bergues-Lagarde, 

Rosenberger, Bro, & Smari, 2006) and three dimensional environment modelling (Emmi, 
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Paredes-Madrid, Ribeiro, Pajares, & Gonzalez-de-Santos, 2013).  When using multiple 

machines together in a field, it is vital to properly allocate work to machines and 

coordinate their actions so they efficiently finish their tasks. 

Computer scientists, operations management specialists and others researching 

logistics have long realized the importance of efficient routing of multiple vehicles. The 

classical Vehicle Routing Problem (VRP) was first devised in 1959 to route fleets of fuel 

trucks to customers (Dantzig & Ramser, 1959). In applying the VRP, each customer is 

transformed into a node in a network graph and travel costs are assigned to the 

connections between the nodes. The VRP then provides a set of constraints that requires 

that in any solution all customers must be visited by at least one vehicle that has capacity 

to service that customer, and that vehicles start and end positions in designated locations 

(Toth & Vigo, 2002). Many variations of the VRP exist which add constraints for 

delivery order, or time windows for certain deliveries. Some constraints, such as the 

capacity constraint can also be relaxed. This relaxation provides a representation often 

called the Multiple Traveling Salesperson Problem (m-TSP). Careful consideration must 

be made of the optimization function and the travel cost assignment when setting up the 

VRP. One common goal is to minimize the total travel time of all vehicles so costs are 

expressed as time, while other goals include minimizing fuel usage or distance traveled. 

This method of casting the routing problem as a mathematical optimization problem has 

proven a powerful tool to improve logistics from maintenance service calls (Toth & Vigo, 

2002) to agricultural field applications (D. D. Bochtis & Sørensen, 2009; Conesa-Muñoz, 

Pajares, & Ribeiro, 2016). 

When applying the VRP to agricultural field applications, the challenge becomes 

transforming an area coverage problem into a VRP with nodes, a cost matrix and an 

optimization function. D. D. Bochtis and Sørensen (2009) proposed a method to 

minimize non-productive time in a field that had already been divided into paths by 

assigning nodes at each path endpoint and costs between the nodes based on non-

productive time. Although this method requires that the field already be broken into 

paths, this is easily achievable using available path creation algorithms. Alternatively, 

many agricultural operations must be performed on already pre-established paths (e.g. 

baling, spraying on tramlines, spraying by row in growing crops, or any operation in 
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controlled traffic farming). The Bochtis and Sørensen transformation would be excellent 

for routing a single vehicle on these pre-established paths or for multiple vehicles when 

machine efficiency is more important than field completion times (such as when the field 

is located adjacent to equipment storage). Unfortunately, minimizing non-productive time 

is not the same as minimizing the time necessary to complete a field. It is often the case 

that increasing the number of vehicles increases non-productive time. This is because 

extra time must be spent traveling past paths assigned to other vehicles. A different 

transformation must be used to solve for the minimum time to complete a field. 

Although the VRP has been the subject of research by computer scientists for 

decades, the problem is computationally intractable (Toth & Vigo, 2002). Therefore, 

solutions to VRP must rely on heuristics that produce good solutions rather than finding a 

single optimum answer. One of the earliest and most popular heuristics is the Clarke-

Wright Savings Algorithm (Clarke & Wright, 1964). This algorithm produces reasonable 

solutions quickly (Toth & Vigo, 2002) but always optimizes for minimum total travel 

time and uses vehicle capacity limits to determine how many vehicles to use. Clarke-

Wright has been implemented for single vehicle route optimization in agricultural field 

work by several researchers (Dionysis D. Bochtis, Sørensen, Busato, & Berruto, 2013; 

Spekken & de Bruin, 2013). Recently more advanced meta-heuristics have been 

developed that can provide more optimal solutions and utilize other optimization 

functions. Long-term scheduling of agricultural field work has been optimized using a 

two-phase metaheuristic based on simulated annealing, genetic algorithms and hybrid 

Petri nets (Guan, Nakamura, Shikanai, & Okazaki, 2009).  Unfortunately, the most 

popular meta-heuristics, such as neural networks or genetic algorithms, are not efficient 

at exploring the solution space posed by the VRP (Toth & Vigo, 2002). Nevertheless, 

researchers have successfully applied modified versions of genetic algorithms for routing 

of vehicles in agricultural fields (Alba & Dorronsoro, 2004; I. A. Hameed, Bochtis, & 

Sørensen, 2011) and controlling robots in greenhouses (Komasilovs, Stalidzans, 

Osadcuks, & Mednis, 2013). However, for VRP, Tabu Search has been identified as 

much more efficient at identifying solutions to the VRP (Toth & Vigo, 2002). 

The goal of this project was to develop a computerized method for path 

assignment among a fleet of farm machinery in a field that minimized the time to 
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complete a field. The field paths considered are already defined, either by an algorithm 

that optimally decomposes a field into paths or by the nature of the field operation. 

Although the VRP is designed to work with vehicles with capacity restraints, in this 

initial investigation we relaxed the capacity requirement and focused on operations like 

tillage, swathing, baling, some seeding, and some fertilizing application where the 

capacity restraints are either nonexistent or inconsequential. The objectives of this project 

to meet the goal are: 1) transform the multiple vehicle field path assignment problem into 

a VRP that allows minimization of field completion time; 2) establish techniques that 

produce solutions to the developed VRP transformation; and 3) compare the techniques 

based on their ability to reduce completion times. 

2.3   MATERIALS AND METHODS 

The allocation problem began with a set of travel paths in a field along which the 

agricultural vehicle was required to drive. These paths were represented by the location 

coordinates of their endpoints. The number of vehicles and their travel characteristics 

including speed and turning ability must also be known. Several steps were required to 

take this basic information and turn it into efficiently allocated routings for multiple 

vehicles. The first step was to turn the vehicle information and location coordinates into a 

mathematical representation based on nodes and travel costs. The results of this first stage 

are a cost matrix (for optimization) and a transformation matrix (to relate nodes to 

physical field locations). The next step is to apply an optimization algorithm to search the 

solution space provided by the mathematical representation of the problem. A variety of 

optimization algorithms can be used, but the result will be a list of nodes representing the 

route for each vehicle. The final stage of this process is to convert the routes from a list of 

nodes into physical locations and waypoints to control actual vehicle travel. In the final 

stage, completion time, machine operation time, machine efficiency and whether the 

routes are valid are calculated. In this project, all of these stages of the routing process 

were implemented in MATLAB code. Each stage provides its own outputs which are 

then used as the inputs to the subsequent stage.  
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Figure 2-1. Steps in the field path allocation and route creation process. 

2.3.1   VRP Conversion 

A VRP is expressed as a network graph with a set of arcs, E, connecting a set of 

nodes, N, to each other. A cost, cab, is associated with each arc and represents the cost of 

travel between the nodes a and b connected by that arc.  

The first step in conversion to a VRP from a field path representation is node 

assignment. The initial agricultural field work problem consists of a list of vehicle paths 

to be worked. Each path is defined by its two end points (Figure 2-2a). In this project, the 

paths were converted into VRP representation using 3 nodes per path. Each endpoint was 

mapped to a VRP node and an extra node was added at the midpoint of the path (Figure 

2-2b).  
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Figure 2-2. Field with (a) paths to be worked by a vehicle, (b) with the VRP nodes 

assigned to those paths, and (c) invalid and valid arcs for travel (represented for only two 

paths). 

 

The next step in the conversion process is the assignment of costs to the arcs 

between nodes. The method of cost assignment in VRPs varies based on the optimization 

criterion, but in this case, simple travel time was the desired variable.  For the 

connections between an endpoint and the midpoint on the same path, the cost of that arc 

was assigned as travel time for the vehicle to go from the endpoint to the midpoint of the 

path. Likewise, the cost between endpoints connected to the same headland in the field 

was assigned to be the travel time for a vehicle to travel from one path to the other. Arcs 

between all other nodes were considered invalid for vehicle travel (Figure 2-2c), and 

therefore, the costs on these connections were set to a value at least ten times greater than 

the cost on any valid path to significantly penalize solutions that use invalid arcs. For 

each midpoint, the only feasible arcs for travel were those connected to the endpoints of 

the same path. 

This three-node per path structure differs from the previously published two-node 

structure by D. D. Bochtis and Sørensen (2009). Their two-node structure relied on a cost 

of zero on the arc between the nodes representing the endpoints of the path to force the 

solution to include travel down every field path. This cost structure enabled optimizing 

based on minimization of non-working time, but it does not permit optimizations that 
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consider actual travel time. In our transformation, the third node at the midpoint of the 

path enforces travel down every path since the only valid connection to and from this 

node is from each endpoint. While adding a third node increases the size of the matrices 

involved in solving the VRP, it enables direct consideration of travel times in the 

optimization. 

The solution to this VRP is a route, Rj, for each vehicle, Vj, in the set of available 

vehicles, V, and takes the form of permutation sets of Rj = 〈𝑖1, 𝑖2, … , 𝑖|𝑅𝑗|〉 where each i 

represents a node visited by the vehicle. The governing constraints for this problem are: 

(1) Each route starts and ends at the same location (In VRP notation, the depot and 

node 0, i = 0), i.e.,  𝑖1 = 𝑖|𝑅𝑗| = 0, and {𝑖2, … , 𝑖|𝑅𝑗|−1} ⊆ 𝑁\{0}, and  

(2) Each node is visited by exactly one vehicle, i.e., ⋂ 𝑅𝑗 = 0
|𝑉|
𝑗=1 ∧ ⋃ 𝑅𝑗 = 𝑁

|𝑉|
𝑗=1 . 

There are alternative notations for expressing the VRP (Toth & Vigo, 2002), but 

for consistency with publications in agricultural machinery we have adopted D. D. 

Bochtis and Sørensen (2009) notation. D. D. Bochtis and Sørensen (2009) also gives a 

more in-depth consideration of the variables and equations. 

The final VRP conversion step was the creation of a fitness function that 

appropriately captures the optimization criteria of the problem. In most VRPs, the 

variable of primary concern is the sum of all vehicles’ travel costs,  

(1.1) 

𝑐𝑜𝑠𝑡𝑎𝑙𝑙 = ∑ ∑ 𝑐𝑎𝑏𝑥𝑎𝑏

𝑏∈𝑁𝑎∈𝑁

 

where xab is 1 if a route, Rj, in the solution set contains a connection between 

nodes a and b (represented by a and b appearing consecutively in Rj) and 0 otherwise. 

The traditional goal is minimization of this cost, min(costall). 

The above fitness function reduces the total cost of the solution. However, when 

the focus is shifted to when all vehicles are finished, the variable of concern becomes 

only the vehicle with the highest travel time or cost as it would be the last to finish: 

(1.2) 

𝑐𝑜𝑠𝑡𝑙𝑎𝑠𝑡 = 𝑚𝑎𝑥𝑗|𝑗∈𝑉 (∑ ∑ 𝑐𝑎𝑏𝑥𝑎𝑏𝑗

𝑏∈𝑁𝑎∈𝑁

) 
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where xabj is 1 if the route, Rj, for vehicle j in the solution set contains a 

connection between nodes a and b (represented by a and b appearing consecutively in Rj) 

and 0 otherwise. The added variable, j, allows calculating each route individually.  

Although farmers will be primarily interested in maximizing field capacity and 

finishing the field as quickly as possible, simply using equation (1.3) for optimization is 

not suitable. It only considers the travel time of the last vehicle to finish and ignores any 

optimization of other vehicles. This hinders the optimization process as solution 

improvements will only be accepted if they help the last vehicle to finish, and 

improvements to other vehicles will be ignored. To improve optimization, a better fitness 

function for this problem is one that considers both the total time for all vehicles and the 

time for the last vehicle to finish: 

(1.3) 

min (𝑧 𝑐𝑜𝑠𝑡𝑙𝑎𝑠𝑡 + (1 − 𝑧)
𝑐𝑜𝑠𝑡𝑎𝑙𝑙

|𝑉|
) , 𝑧|0 ≤ 𝑧 ≤ 1 

where z represents the focus placed on optimizing total travel time versus field 

completion time. 

Utilizing a weighting function enables adjusting the focus of the optimization for 

producers who may also want a balance between total machine time and field completion 

time. To ensure the weighting variable appropriately reflects the percentage of focus on 

each part of the equation, the total travel time, costall, is divided by the number of 

vehicles used. In this project, the primary focus was on minimizing field completion time. 

In initial testing, a weighting value of 0.80 was found to provide sufficient optimization 

for all vehicles while still selecting solutions that minimized time to field completion.  

2.4    VRP SOLUTION METHODS 

2.4.1   Modified Clarke-Wright 

The Clarke-Wright Savings Algorithm (Clarke & Wright, 1964) is a cost savings 

algorithm that attempts to reduce the combined cost of the travel paths of all vehicles. 

While this algorithm almost never produces an optimal solution, its calculations can be 

performed quickly and it usually produces a reasonably acceptable solution (Toth & 
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Vigo, 2002). Without capacity restraints, it generally links all nodes into a path for a 

single vehicle. 

Because the agricultural tasks considered in this project are non-capacity limited 

and the optimization goal is not reducing total costs, direct application of the Clarke-

Wright Savings algorithm is inappropriate. When the base Clarke-Wright algorithm is 

applied to the VRP representations in this work, a single long route always appeared 

(Figure 2-3). This route did not meet the established optimization criteria, yet it required 

limited processing time. For a single vehicle, this route did represent a reasonable path. 

 
Figure 2-3. Initial Clarke-Wright Solution showing a single long route. 

To produce a solution for our multiple vehicle problem, the single vehicle Clarke-

Wright path was divided to produce one segment for each available vehicle. Initially 

these segments were of equal length, but these became unequal when the travel times to 

and from the starting point were added. This blind segmentation also resulted in poor 

decisions like starting a route on the far headland rather than the close headland. To 

address both of these issues, these breaking points of the initial path chain were then 

shifted one node by one node, and alterations were accepted if they reduced the cost of 

the fitness function. The result represented a solution for this class of agricultural field 

work problems based on a modified version of the Clark-Wright Savings Algorithm 

(Figure 2-4).  
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Figure 2-4. Modified Clarke-Wright Solution showing route broken into paths for three 

vehicles. 

The code to implement the Modified Clarke-Wright optimization was written as a 

function in MATLAB. The computation began with the necessary steps to perform the 

cost savings calculations and route simplification procedures that are provided by the 

Clarke-Wright algorithm. The result of this process was a single long route for one 

vehicle. The next step in the code was to identify appropriate locations at which to divide 

this single long chain of paths for multiple vehicles. The Modified Clarke-Wright code 

did contain several iterations and code loops to sort cost savings or to determine route 

division locations, but these were limited. A single pass through the entire Modified 

Clarke-Wright procedure provided the final result from the algorithm which reduced the 

time needed to produce a result compared to other methods. 

2.4.2   Tabu Search 

Tabu Search is a high-level meta-heuristic procedure developed by Glover (1989). 

As with other meta-heuristics, like neural networks or genetic algorithms, there are many 

implementations for Tabu Search. However, the primary feature of all Tabu Search 

algorithms is a list of Tabu improvement operations that the algorithm has already tried 

and is forbidden to utilize in future iterations. This Tabu list forces the optimization 

procedure to search more widely for solutions and prevents trapping at a local minimum 

of the optimization function. 

The Tabu Search algorithm used in this study utilized three operations:  swap, 

insertion and inversion. It considered all eligible combinations of these operations at 
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every iteration of the algorithm. The Tabu Search had to begin its iteration process with 

an initial solution. Therefore, the solution provided by the Modified Clarke-Wright 

algorithm was used. 

The Tabu Search algorithm was also implemented in MATLAB. The Tabu Search 

is a complicated algorithm, and as such required hundreds of lines of code and many 

functions to create. First, the algorithm determined all possible actions involving the 

swap, insertion and inversion of nodes to create an action list as a cell array. Using this 

array, the algorithm then applied each of these actions in an attempt to improve the 

solution. Tabu Search accepted the action if it improved the fitness of the solution and 

marked that same action as tabu in future iterations. This was to discourage the search 

from repeating the move of the immediately previous action to avoid becoming stuck in 

suboptimal regions. The tabu action would be released for use after the number of 

subsequent movements was equal to half of the number of total possible actions. The 

algorithm checked every action and identified the best permissible and best forbidden 

action. The best permissible action was accepted unless the forbidden action was better 

than any currently known best solution. Finally, a new solution was generated. This 

procedure was repeated with continuously improving solutions until 300 iterations had 

passed with no improvement. At this point, the algorithm halted and provided its best 

solution as the optimized paths. In preliminary experiments, the total number of iterations 

was usually between 600 and 700. 

2.4.3   Test Conditions 

The VRP transformation and the solution techniques were tested in two fields. 

One was a hypothetical basic rectangular field while the other was based on a non-convex 

real-world field that has been used in other agricultural field path optimization papers.  

The basic field was a simple rectangle with a worked area of 13.2 ha. Paths were created 

parallel to the short side of the field. Although not the most efficient path direction, the 

focus in this artificial field was merely to create a field with many parallel paths upon 

which to distribute the vehicles. The field was divided into paths with an implement 

width of 10 m resulting in 90 straight paths surrounded by two border passes in the 

headlands for a total of 98 paths (Figure 2-5). The total path length was 13,200 m with 

the longest path at 930 m.  
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Figure 2-5. Hypothetical basic rectangular field 

The second field was a non-convex field based on a real world field example 

consisting of 88 paths (Figure 2-6). The paths in this field were provided as an example 

of optimal path direction in the path creation research by I. A. Hameed et al. (2011). The 

scale of this field was adjusted to correspond with the same 10 m implement width used 

in the rectangular field. This resulted in a total path length of 18,377 m with the longest 

path of 707 m and an overall area to work of 18.3 ha. An initial starting point for all 

vehicles was selected and marked as “start.” The field boundary and the intruding area in 

the non-convex shape were considered passible, as would be the case if this land also 

belonged to the same farmer and its current use would not be significantly impacted by 

limited cross traffic. The non-convex shape meant that a direct connection between field 

path endpoints on the same side of the field could require driving across other non-

headland field paths. This travel was permitted in this investigation, as would be the case 

for operations like planting. In other applications, such as spraying in growing row crops, 

driving across rows would be unacceptable, and the cost matrix would need to be 

adjusted to either disallow that connection or include the time to drive to and along the 

headland. 
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Figure 2-6. Non-convex field 

In a final application, the cost matrix would be created based on the travel times 

expected between each point based on operating speeds and handling characteristics of 

the individual machines available to perform the fieldwork. For this initial testing phase, 

the simulation model was simplified to constant speed vehicles capable of instant turns 

(massless and holonomic steering) traveling at 2 m s-1. The cost matrix was then created 

based on the travel times between the locations of each node in the field.  

To investigate if these methods could produce useful information and identify the 

strengths of different routings, each algorithm (Modified Clark-Wright and Tabu Search), 

was tested in each field with 1, 2, 3, 5, and 10 vehicles. Each solution was checked to 

determine whether the generated solution was feasible. The vehicle paths, the total 

combined operating time of all vehicles, and the operating time of the single vehicle that 

operated for the longest period of time was recorded. 

2.5   RESULTS 

2.5.1   VRP Transformation 

The VRP transformation of the test fields resulted in the node placements as 

shown in Figure 9a for the basic field and 9b for the non-convex field.  
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Figure 2-7. The (a) basic and (b) non-convex fields with VRP nodes on field paths. 

In the cost matrix, there are only two feasible connections to each middle node 

and they are from the endpoints of the path. Since the VRP requires that each node be 

visited once and only once, the middle node on each field path creates a situation where 

each path must be traversed.  

The end result of the VRP transformation is a list of nodes representing the paths 

in the field and a cost matrix showing the cost of travel on the arcs between any two 

nodes. These arcs can be divided into several categories (Table 2-1). For both fields, 77% 

of the total arcs are infeasible and unacceptable in any realistic solution. There are also a 

large number of arcs that may be used in feasible solutions. Finally, there are a small 

number of arcs that must be included. These required arcs represent the original work 

paths in the field. 
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Table 2-1.  Properties of the basic rectangular field and a non-convex field after VRP 

transformation 

Properties 
Field Name 

Basic Field Non-convex Field 

Nodes 294 264 

Required Arcs 196 176 

Available Infeasible Arcs 66934 53944 

Available Feasible Arcs 19780 15992 

 

The high number of infeasible arcs complicated the solution space and limited 

solution methods as those that attempt random selections would mostly select infeasible 

arcs. However, the normal constraints within the VRP already make it difficult to solve 

with such methods so this limitation was not too severe. More importantly, this VRP 

transformation did create a representation that enabled assigning travel times to every 

path in the field while still ensuring all fieldwork paths are traversed.  

2.5.2   Solution Methods 

Both the Modified Clarke-Wright Savings Algorithm and Tabu Search always 

generated solutions containing only feasible arcs and included all required arcs. Figure 

2-8 shows a representative example of the solutions generated by each of these 

techniques. The displayed solutions are for the non-convex field with five vehicles. As 

expected, the Modified Clarke-Wright method assigned paths to each vehicle that are 

closely grouped to each other since its solution is obtained by dividing a single long chain 

of paths. This resulted in three vehicles (represented by purple, blue and yellow) that had 

to travel to the far end of the field to start or finish working. The Modified Clarke-Wright 

method produced a solution not unlike that used by many producers today, where one 

vehicle sets an A-B line and provides the coordinates to the other vehicles. The drivers 

then try to divide the field evenly and drive to their sections, which they will work until 

they meet the work performed by the other drivers. The Tabu Search eliminated more of 

the inefficient non-working travel time and utilized the border passes in the headlands to 

distribute vehicles to the far side of the field. Also with Tabu Search, vehicles do not 

always proceed from one path to a contiguous path as redistributing some paths enabled a 

more even distribution of work and the field to be completed more quickly overall. 



 

22 

 

    
Figure 2-8. Solutions in the non-convex field for 5 vehicles using (a) the Modified 

Clarke-Wright algorithm and (b) Tabu Search. Each vehicle’s travel is represented by a 

different color line. 

One of the biggest differences between the solution methods is the time necessary 

to generate a solution. The solutions from the Modified Clarke-Wright were calculated so 

quickly that on modern processers, the solution was generated nearly instantaneously. 

The Tabu Search was much more computationally expensive. The total run time to 

generate an acceptable solution was highly variable and depended on field complexity, 

number of vehicles and the initial solution used to seed the Tabu Search. However, in no 

case was the Tabu Search algorithm able to complete processing in less than 2 hours on 

an Intel i7 processor and in some cases required several more hours to complete.  
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2.5.3   Field Completion Times 

2.5.3.1 Basic Rectangular Field 

As Figure 2-9 illustrates, the time required to complete the field was identical for 

both the Modified Clarke-Wright (MCW in figures 9-12) and Tabu Search (TS in figures 

9-12) methods when only using one or two vehicles. However, there is a significant 

difference in the completion time as more vehicles are used. With ten vehicles, the 

routing provided by Tabu Search would complete the field in 26% less time. 

 

Figure 2-9. Comparison of field completion time in the basic rectangular field (percent 

decrease from Modified Clarke-Wright (MCW) to Tabu Search (TS) shown above 

columns). 

Effective field capacity, the total area worked divided by the time until the field 

was complete, provides another way to look at the results. When viewed this way (Figure 

2-10), it becomes apparent that effective field capacity did not scale perfectly with the 

number of vehicles. With additional vehicles, the routing increased in complexity and 

some efficiency was lost. With one vehicle, effective field capacity was 6.3 ha h-1, and 

with two vehicles it was almost doubled to 12.1 ha h-1 (6.0 ha h-1per vehicle). However 

with ten vehicles, the highest effective field capacity (from Tabu Search) was only 3.4 ha 

h-1 per vehicle, which is only 53% of the original field capacity per vehicle. 
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Figure 2-10. Effective field capacity (both total and per vehicle) in the basic field. 

2.5.3.2 Non-Convex Field 

For the non-convex field, the Tabu Search technique always reduced the 

completion time and provided a better solution than Modified Clarke-Wright (Figure 

2-11). In contrast, in the basic field, Tabu Search was unable to improve on the Modified 

Clarke-Wright solution when only one or two vehicles were used. In the non-convex 

field, the magnitude of the improvement provided by the Tabu Search algorithm over the 

Modified Clarke-Wright method was also greater for every number of vehicles tested. 

Even when employing only three vehicles, using Tabu Search reduced completion time 

by a non-trivial 15% in the non-convex field compared to a difference of only 4% in the 

basic rectangular field. The Modified Clarke-Wright routings were not unreasonable as 

was previously shown in Figure 10 with 5 vehicles, but the difference in completion 

times between the solutions shown in Figure 10a and Figure 10b is 21% (the 5 vehicle 

point in Figure 13). 
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Figure 2-11. Comparison of field completion time in the non-convex field (percent 

decrease from Modified Clarke-Wright (MCW) to Tabu Search (TS) shown above 

columns). 

Interestingly, Tabu Search in this irregular field was able to improve effective 

field capacity per vehicle in some cases as the number of vehicles increased (Figure 

2-12). With Tabu Search, the effective field capacity improved from 6.47 ha h-1 with one 

vehicle to 6.63 ha h-1 with two vehicles and to 6.67 ha h-1 with three vehicles. There was 

a loss of efficiency at higher numbers of vehicles, but this decline was not as steep as 

with the basic field. With Tabu Search and ten vehicles in this field, the capacity per 

vehicle only dropped to 4.6 ha h-1, or 71% of the single-vehicle effective field capacity 

compared to the 53% seen in the basic field.  
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Figure 2-12. Effective field capacity in the non-convex field. 

2.6   DISCUSSION 

In even moderately complex fields like the non-convex one used in this study, 

there are clear benefits to using a strong optimization method. Tabu Search was able to 

maintain effective field capacity per vehicle even as the basic Modified Clarke-Wright 

heuristic always saw declining benefits to adding vehicles. However, utilizing Tabu 

Search is only possible when the field path allocation and routing problem has been 

converted into a more standard mathematical representation.  

The results of this work are directly applicable to current production practices 

where the navigation computers in machines working together in a field could direct each 

vehicle driver to follow the path sequence that results in the field being completed in the 

shortest amount of time. If the field is irregular as in the non-convex field studied here, 

this optimization could even enable the producer to realize an improvement in effective 

field capacity with these limited number of vehicles. This would represent a clear 

improvement over the basic sharing of A-B lines producers now use to coordinate field 

work. 

These results could also find use in the fleets of smaller autonomous vehicles 

proposed by several researchers (Blackmore et al., 2002; Pitla, Luck, & Shearer, 2010; 

Shearer et al., 2010a). Almost assuredly, these smaller autonomous vehicles will be 
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transported from field to field on a truck together. Therefore, the overall field capacity 

will be directly related to the time for the last vehicle to complete its routing. Often, these 

fleets are envisioned as having more than two or three vehicles, and as this research 

shows, routing algorithms become very important as the number of vehicles increases 

toward five or ten vehicles working together in a field. 

One strength of the VRP is that the optimization is performed based on the costs 

contained in the cost matrix. In this initial investigation, the cost matrix was simply 

assigned based on travel time and assuming all vehicles were identical and traveled at 

constant speed. In an on-farm implementation, the working speeds, non-working speeds 

and turning speeds for various types of turns for specific vehicle and implement 

combinations would be used for costs to provide exact estimates of field completion 

times. Costs could also vary to reflect the effect on working speed of changes in field 

conditions like regions with tougher soil or changes in operating conditions, such as 

slowing down to increase planting precision in regions with high planting density. The 

VRP can also be implemented with individual cost matrices for each vehicle to enable 

consideration of heterogeneous vehicles with a variety of handling characteristics as long 

as they operated on the same paths.  

In further work, the model could be improved by tuning it for specific vehicles 

with actual travel time information from real-world applications. Naturally, there would 

also be useful work in comparing current farmer path allocation techniques recorded from 

field data with the routings provided by the optimization algorithm. Finally, agricultural 

fields are not static and completely predictable before starting field work. The VRP can 

be represented with stochastic costs in the cost matrix to express this uncertainty (Toth & 

Vigo, 2002). There could also be value in real-time recalculation of the vehicle routings 

as the effects of deviations from the expected progress of the vehicles begin to compile. 

All of these opportunities provide natural extensions of this work now that the basic 

method has been established here. 

2.7   CONCLUSION 

The VRP is a valuable tool for optimizing path allocation to finish fields as 

quickly as possible with multiple vehicles. As this study shows, the standard field work 

problem can be transformed into a VRP in a manner that enables optimization based on 
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criteria important to farmers. The field path to VRP transformation provided in this 

project represents each required field work path with three nodes and defines certain arcs 

between nodes as infeasible to prevent inappropriate vehicle routing. For the fields in this 

study, this resulted in a cost matrix in which 77% of the arcs were infeasible and marked 

as so through very high costs.  For feasible routes, the cost matrix contained costs based 

on travelling time and distance between every two nodes.  

This VRP representation of the field work routing problem was optimizable 

through the use of a modified version of the Clarke-Wright algorithm and a Tabu Search 

algorithm. Most importantly, both techniques always provided feasible solutions. 

However, there were significant differences in processing time and the level of 

optimization each provided. Calculation times for a single scenario with Tabu Search 

required two hours on an Intel i7 processor, while the Modified Clarke-Wright method 

provided its solution in less than a second. In very basic field routing situations (e.g. 

routing only one vehicle in either field or two vehicles in the rectangular field), the 

difference between Modified Clarke-Wright and Tabu Search was less than 1%. 

However, with the more complex scenarios presented when routing greater numbers of 

vehicles, Tabu Search provided much better optimization with route completion times of 

4% to 32% less than the routes provided by the Modified Clark-Wright method. The 

routing characteristics from each method are also different. The Modified Clarke-Wright 

method provided solutions similar to the Work Zone approach currently utilized by many 

producers. The Tabu Search routes appeared more random, less predictable, and unlike 

any current routing producers would use. For basic scenarios involving one or a very 

limited number of vehicles on simple field shapes, a modified version of the Clarke-

Wright algorithm was perfectly acceptable. However, as the number of vehicles or field 

complexity increases, the more powerful Tabu Search algorithm will be necessary for 

proper optimization.  
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CHAPTER 3:  OBJECTIVE 2: DYNAMIC RE-ROUTING OF A FLEET OF 

VEHICLES IN AGRICULTURAL OPERATIONS USING THE VEHICLE 

ROUTING PROBLEM  

3.1   SUMMARY 

Agricultural field work operations rely on proper machinery management to be 

successful. Agricultural field work and the machinery operating in them are dynamic, 

complex entities and producers are often subject to deviations from initial plans as the 

work proceeds. Therefore, resetting of the paths allocated and scheduled for each vehicle 

would be needed, due to either unexpected field conditions or machinery management 

challenges. The goal of this project was to develop a method for applying the VRP that 

enables dynamic recalculation of the routes. To that end, a combination of Dynamic VRP 

and Multi-Depot VRP was employed. The solutions were generated using Tabu Search 

optimization procedure. This dynamic routing method was then tested in simulations of 

various, common scenarios that would often require rerouting of vehicles. The results 

revealed the impact of the new routes is dependent on the specifics of the event that 

necessitated the rerouting. When a vehicle was added to the fleet working the field, the 

updating procedure was able to use that vehicle to reduce completion times. For removal 

of a vehicle, the field completion time increased, but the field efficiency improved for the 

remaining vehicles. When a vehicle completed more work than expected, the procedure 

enabled the producer to capture this benefit to complete the field in less time; the field 

efficiency also effectively remained within 3% of the original field efficiency. The 

procedure was excellent at handling increases in the area coverage with total field 

completion times largely unchanged. However, it was less capable of addressing the 

challenges presented by a sudden reduction of field area, with the field capacity, field 

efficiency and completion time moving in a worse direction by approximately 8% each. 

This work illustrated the possibility to update field routes for a fleet of vehicles during 

field operations, and as such provided the opportunity to improve field work outcomes 

based on changing and variable field and work conditions. 
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3.2   INTRODUCTION 

Agricultural field crop operations rely on proper machinery management to be 

successful. This requires effective utilization of available machinery. An important driver 

of utilization is ensuring that the routes that vehicles follow in the field are as efficient as 

possible. This has led to many researchers investigating the efficiency of various path 

generation methods (D. D. Bochtis & Vougioukas, 2008; I. A. Hameed et al., 2010; 

Oksanen & Visala, 2009). However, another important driver of machinery utilization 

efficiency is the order in which these field paths are worked and, in the case of multiple 

vehicles working together, the allocation of paths between vehicles (Seyyedhasani & 

Dvorak, 2017).  

One method of allocating and ordering the field work paths among available 

vehicles is to convert this problem of agricultural field routing into a more standard 

computer science representation such as the Vehicle Routing Problem (VRP) (D. D. 

Bochtis & Sørensen, 2009; Seyyedhasani & Dvorak, 2017). Although this class of 

problems is NP-Hard and therefore computationally intractable, the VRP has seen 

decades of algorithm development in efforts to produce vehicle routes that are closer to 

optimal (Toth & Vigo, 2002).  

A VRP problem can be solved and implemented from two perspectives—static 

and dynamic. In a static VRP, the solution for the problem is generated in the beginning 

and the route for each vehicle is determined a priori. In a dynamic VRP, the solution can 

be redefined in an ongoing fashion as new, unknown inputs are revealed during the 

execution of the routes (Novoa & Storer, 2009; Secomandi & Margot, 2009). Jaillet and 

Wagner (2008) referred to this class of VRPs as online routing. A dynamic VRP requires 

a different mathematical representation than a static VRP as the vehicles are already in 

motion and parts of the routes have already been completed. 

Earlier work applying the VRP for routing of machinery in agricultural fields has 

focused on the static approach of producing initial routes for the vehicles. However, 

agricultural fields and the machinery operating in them are dynamic, complex entities and 

producers are often forced to deviate from initial plans as the work progresses. 

Unexpected field conditions can cause deviations in work rates of vehicles. Machinery 

can break down and remove a vehicle from the fleet in a field. A new vehicle could be 
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added to a field fleet. Producers can encounter wet spots or other issues that prevent them 

from completing certain field sections. At other times, producers may decide to increase 

the area within a field that is devoted to a certain crop. All of these situations can happen 

once a field operation is underway. These are referred to as evolution and quality of 

information, according to Psaraftis (1988), to address the dynamic VRP in the real-world 

applications. A broadly applicable routing system must be able to generate new routes for 

the fleet in the event that any of these events occurs.  

The goal of this project was to develop a method for applying the VRP that 

enables dynamic recalculation of the routes. This dynamic routing method was then 

tested in simulations of various scenarios that would often require rerouting of vehicles. 

These new routes are evaluated and compared to the original routes to determine the 

effectiveness of the rerouting procedure in terms of important field machinery 

management parameters of field capacity, field time, and field efficiency. 

3.3   MATERIALS AND METHODS 

Updating the path allocation to each vehicle in a fleet working together can be 

viewed as a variant of the classic VRP. The working paths in the field are transformed 

into VRP nodes and costs assigned for travel between these nodes. This transformation of 

the field enables application of VRP solution techniques to produce vehicle routes in the 

field. The traditional VRP assumes that all vehicles start and stop at the same location. 

However, when updating routes, start locations will be different for each vehicle, 

different from the stop locations, and spread out across the field. The Multiple Depot 

variant of the VRP (MDVRP) was developed for instances in which each vehicle starts 

and stops from individual depots. In this work, we add a dynamic aspect to the MDVRP, 

which permits the start and stop depots to be at different locations. Hence, the solution of 

the problem consists of double-depot routes.  
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Vj        the vehicle j ∈ N from the set of 

available vehicles, i.e., Vj ∈ V 

Rj        the permutation set that consists of 

the numbers and the order of the 

nodes visited by the vehicle Vj, 

according to the VRP solution, Rj = 

〈𝑖1, 𝑖2, … , 𝑖|𝑅𝑗|〉 

i          the node number allocated to a 

vehicle, Vj, according to the VRP 

solution 

G         the complete directed graph, G = 

(N, E) 

N         the set of nodes in the VRP graph, 

𝑁 = (𝑁𝑓 ∪ 𝑁𝑣 ∪ 𝑁𝑑) 

𝑁𝑓       the set of field nodes, 𝑁𝑓 =

{𝑛1, … , 𝑛|𝑁𝑓|} 

𝑁𝑣       the set of dynamic depots, 𝑁𝑣 =
{𝑛|𝑁𝑓|+1, … , 𝑛|𝑁𝑓|+|𝑁𝑣|} 

𝑁𝑑       the stop depot, 𝑁𝑑 = 𝑛|𝑁𝑓|+|𝑁𝑣|+1 

E         the set of the arcs (connections) in 

the VRP graph, 𝐸 =
{(𝑛𝑎, 𝑛𝑏): 𝑛𝑎, 𝑛𝑏 ∈ 𝑁, 𝑎 ≠ 𝑏}  

C         the cost matrix of the graph, C = 

|𝑁| × |𝑁| 
𝑐𝑎𝑏      the travel cost associated with each 

connection (𝑛𝑎, 𝑛𝑏) ∈ 𝐸 

M                the large number to penalize 

VRP solutions that use 

invalid connections 

𝑥𝑎𝑏              a binary variable, which is 1 

if a route, Rj, in the VRP 

solution includes the 

connection (𝑛𝑎, 𝑛𝑏) ∈ 𝐸 

𝑐𝑜𝑠𝑡𝑎𝑙𝑙         the sum of the travel cost of 

vehicles, in the VRP 

solution 

𝑐𝑜𝑠𝑡𝑙𝑎𝑠𝑡       the highest travel cost of 

vehicles, in the VRP 

solution 

𝑧                  the weight parameter, 0 ≤
𝑧 ≤ 1, for field completion 

time versus total field work 

 

Abbreviations 
VRP            vehicle routing problem 

DVRP         dynamic Vehicle routing 

problem 

MDVRP     multi-depot Vehicle routing 

problem 

DMDVRP  dynamic multi-depot Vehicle 

routing problem 

CW             Clarke-Wright 

TS               tabu search 

Figure 3-1. Nomenclature 

3.3.1   DMDVRP conversion 

The first step in the representation of DMDVRP is to handle the dynamic part of 

the problem. To that end, the current location of each vehicle is set as a dynamic depot. 

Since this optimization is occurring while field work is already underway, the dynamic 

depots can be situated anywhere in the field. Figure 1 illustrates a representative example 

in which routes are to be updated when 25% of the field work is completed.  
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Figure 3-2. Dynamic depots, worked area, and unworked area, and field routes when re-

routing in a field that is 25% complete 

For vehicles that are currently working on a path, their start depot is moved to the 

next midpoint or endpoint. This reduces the addition of new nodes and simplifies solution 

generation since the vehicles must finish their paths. At the end of the route generation 

process, the travel cost associated with moving the start depot is added back to the 

vehicle assigned to the start depot. If a vehicle is travelling between paths, its current 

location is used for the dynamic starting depot as it can proceed in any direction. If the 

route update is occurring because a vehicle was removed from the fleet, that entire path is 

considered unworked to force another vehicle to finish the path. Finally, nodes from 

paths that have already been worked are removed from the list of available nodes. 

3.3.2   Node-Representation 

The nodes are assigned to the remaining field tracks as shown in Figure 3-3. The 

pattern of assignment causes the endpoints of tracks to be {(3𝑞) ∪ (3𝑞 + 1)|𝑞 ∈ ℕ ∪

{0}}. Midpoints are represented as {(3𝑞) + 2|𝑞 ∈ ℕ ∪ {0}}. The dynamic start depots are 

assigned numbers after the field nodes. The stop depot is assigned the final node number. 
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Figure 3-3. Node-representation of the problem 

3.3.3   Formulation 

The final solution to the DMDVRP is characterized as a route, 𝑅𝑗, for each 

vehicle, Vj, in the set of available vehicles, V, and takes the form of permutation sets of 

𝑅𝑗 =  〈𝑖1, 𝑖2, … , 𝑖|𝑅𝑗|〉 where each i represents the node allocated to the vehicle. Therefore, 

the problem can be formulated as follows. Let G = (N, E) be a directed graph where 𝑁 =

(𝑁𝑓 ∪ 𝑁𝑣 ∪ 𝑁𝑑) as total nodes consists of 𝑁𝑓 = {𝑛1, … , 𝑛|𝑁𝑓|} as the set of field nodes, 

𝑁𝑣 = {𝑛|𝑁𝑓|+1, … , 𝑛|𝑁𝑓|+|𝑁𝑣|} as the set of dynamic depots, and  𝑁𝑑 = 𝑛|𝑁𝑓|+|𝑁𝑣|+1 as the 

stop depot, and 𝐸 = {(𝑛𝑎, 𝑛𝑏): 𝑛𝑎, 𝑛𝑏 ∈ 𝑁, 𝑎 ≠ 𝑏} is the set of the arcs. 

The governing constraints for this problem are: 

(1) Each route starts at its associated dynamic depot, i.e., 𝑖1 ⊆ 𝑁𝑣, and for a given 

𝑅𝑗, 𝑖1 = 𝑁𝑣𝑗, 

(2) All routes end at the same location (the stop depot and last node, i = n), i.e.,  

𝑖|𝑅𝑗| = |𝑁|,  

(3) Each vehicle visits only field nodes, i.e., {𝑖2, … , 𝑖|𝑅𝑗|−1} ⊆ 𝑁𝑓, and  

(4) Each node is visited by one and only one vehicle, i.e., ⋂ 𝑅𝑗 = |𝑁|
|𝑉|
𝑗=1 ∧

⋃ 𝑅𝑗 = 𝑁
|𝑉|
𝑗=1 . 
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There are alternative representations, such as that used by Crevier, Cordeau, and 

Laporte (2007) and (Surekha & Sumathi, 2011) for MDVRP, but this notation is 

consistent with publications in agricultural machinery (D. D. Bochtis & Sørensen, 2009; 

Seyyedhasani & Dvorak, 2017). The next step in conversion of the field work problem 

into a DMDVRP is to define the fitness function through which evaluation of the 

optimization criteria for the parameters of interest will be carried out. The variable of 

primary concern, as the main, traditional objective in most VRPs, is the sum of the travel 

cost of vehicles: 

 (3.1) 

𝑐𝑜𝑠𝑡𝑎𝑙𝑙 = ∑ ∑ 𝑐𝑎𝑏𝑥𝑎𝑏

𝑏∈𝑁𝑎∈𝑁

 

where 𝑥𝑎𝑏 is a binary variable, which is 1 if a route, 𝑅𝑗, in the generated solution 

includes a connection between nodes a and b. The objective of the equation is to 

minimized the cost, min(𝑐𝑜𝑠𝑡𝑎𝑙𝑙). The equation (3.1) considers reduction of the total 

work time of the vehicles. However, completion time of the field is another primary 

variable of concern which is defined as the travel cost of the vehicle with the highest cost 

as it would be the last one finishes the task:  

(3.2) 

𝑐𝑜𝑠𝑡𝑙𝑎𝑠𝑡 = 𝑚𝑎𝑥𝑗|𝑗∈𝑉 (∑ ∑ 𝑐𝑎𝑏𝑥𝑎𝑏𝑗

𝑏∈𝑁𝑎∈𝑁

) 

As with the 𝑐𝑜𝑠𝑡𝑎𝑙𝑙 variable, minimization of the 𝑐𝑜𝑠𝑡𝑙𝑎𝑠𝑡 is the objective of the 

equation (3.2) known as min-max objective (Applegate, Cook, Dash, & Rohe, 2002; 

Carlsson, Ge, Subramaniam, Wu, & Ye, 2009). 

As farmers are interested in minimizing the field completion time as well as the 

total field work by the vehicles, simple consideration of equation (3.1) or (3.3) for 

optimization is not suitable. Equation (3.1) only considers the travel time of the last 

vehicle to finish and ignores any optimization of other vehicles. Likewise, the equation 

(3.3) only reflects the total travel time and disregards the optimization of field completion 

time. Therefore, a fitness function based on weighted sum was defined to provide the 

improvement of both objectives:  

 (3.3) 

min (𝑧 𝑐𝑜𝑠𝑡𝑙𝑎𝑠𝑡 + (1 − 𝑧)
𝑐𝑜𝑠𝑡𝑎𝑙𝑙

|𝑉|
) , 𝑧|0 ≤ 𝑧 ≤ 1 
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where 𝑧 represents the proportion of the focus placed upon optimization of field 

completion time versus the total field work. Utilizing a weighting function enables 

adjusting the focus of the optimization for producers who may want a balance between 

the field completion time and the total field work. To ensure the weighting variable 

appropriately reflects the percentage of focus on each part of the equation, the total travel 

time, 𝑐𝑜𝑠𝑡𝑎𝑙𝑙, is divided by the number of vehicles deployed. In this study, the primary 

focus was placed on the minimization of the field completion time. In the initial testing, 

the weighting coefficient of 0.8 was found to provide acceptable optimization for both 

objectives with a focus on field completion time.   

3.3.4   Travel Cost 

To solve a DMDVRP, the cost matrix which contains the traversal cost between 

every pair of nodes, 𝑐𝑎𝑏, must be formed. To that end, let C be a |𝑁| × |𝑁| matrix with 

the elements of 𝑐𝑎𝑏 =  𝑐𝑏𝑎, where 𝑐 is the travel cost from node a to node b when 𝑎 ≠ 𝑏 

and zero otherwise. Each track consists of a two endpoints and a midpoint. For the 

connection between a midpoint and an endpoint on the same track, the cost of the 

corresponding arc is assigned as travel cost for the vehicle to travel from the midpoint to 

the endpoint of the track. Other connections to the midpoints were considered invalid to 

force each vehicle to finish the second half of the track if the first half is started. As such 

the costs on those connections were set to M, where M is a large number, to significantly 

penalize solutions that use invalid arcs. For connections between endpoints, the cost is 

considered M when both endpoints are on the same track. For connections between 

endpoints not on the same track, the cost was assigned as the travel cost for the vehicles 

to travel from one track to the other. However, for travel between endpoints not in the 

same side of the field, the vehicles were not allowed to cross the field, i.e., the vehicles 

should reach the other endpoint by traveling in the headland around the field. In addition, 

even though the dynamic depots are considered as regular nodes for solution generation, 

direct connections between them were disallowed by setting their connections equal to M. 

Therefore, matrix C can be written as represented in Table 3-1. 
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Table 3-1. Representation of the cost matrix 
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Endpoint 0 𝑐12 𝑀 𝑐14 𝑀 𝑐16 …  𝑐1.|𝑁𝑓| 𝑐1.|𝑁𝑓|+1 𝑐1.|𝑁𝑓|+2 …     𝑐1.|𝑁𝑓|+|𝑁𝑣| 𝑐1.|𝑁| 

Midpoint 𝑐21 0 𝑐23 𝑀 𝑀 𝑀 … 𝑀 𝑀 𝑀 … 𝑀 𝑀 

Endpoint 𝑀 𝑐32 0 𝑐34 𝑀 𝑐36 … 𝑐3.|𝑁𝑓| 𝑐3.|𝑁𝑓|+1 𝑐3.|𝑁𝑓|+2 … 𝑐3.|𝑁𝑓|+|𝑁𝑣| 𝑐3.|𝑁| 
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Endpoint 𝑐14 𝑀 0 0 𝑐45 𝑀 …  𝑐4.|𝑁𝑓| 𝑐4.|𝑁𝑓|+1 𝑐4.|𝑁𝑓|+2 …     𝑐4.|𝑁𝑓|+|𝑁𝑣| 𝑐4.|𝑁| 

Midpoint 𝑀 𝑀 𝑐43 𝑐54 0 𝑐56 … 𝑀 𝑀 𝑀 … 𝑀 𝑀 

Endpoint 𝑐61 𝑀 𝑐63 𝑀 𝑐65 0 … 𝑐6.|𝑁𝑓| 𝑐6.|𝑁𝑓|+1 𝑐6.|𝑁𝑓|+2 … 𝑐6.|𝑁𝑓|+|𝑁𝑣| 𝑐6.|𝑁| 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Final 

Field 

Node 

Endpoint 𝑐|𝑁𝑓|.1 𝑀 𝑐|𝑁𝑓|.3 𝑐|𝑁𝑓|.4 𝑀 𝑐|𝑁𝑓|.6 … 𝑐|𝑁𝑓|.|𝑁𝑓| 𝑐|𝑁𝑓|.|𝑁𝑓|+1 𝑐|𝑁𝑓|.|𝑁𝑓|+2 … 𝑐|𝑁𝑓|.|𝑁𝑓|𝑁𝑣| 𝑐|𝑁𝑓|.|𝑁| 
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Depots 

Vehicle 1 𝑐|𝑁𝑓|+1.1 𝑀 𝑐|𝑁𝑓|+1.3 𝑐|𝑁𝑓|+1.4 𝑀 𝑐|𝑁𝑓|+1.6 … 𝑐|𝑁𝑓|+1.|𝑁𝑓| 0 𝑀 … 𝑀 𝑐|𝑁𝑓|+1.|𝑁| 

Vehicle 2 𝑐|𝑁𝑓|+2.1 𝑀 𝑐|𝑁𝑓|+2.3 𝑐|𝑁𝑓|+2.4 𝑀 𝑐|𝑁𝑓|+2.6 … 𝑐|𝑁𝑓|+2.|𝑁𝑓| 𝑀 0 … 𝑀 𝑐|𝑁𝑓|+2.|𝑁| 
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𝑐|𝑁𝑓|+|𝑁𝑣|1 𝑀 𝑐|𝑁𝑓|+|𝑁𝑣|.3 𝑐|𝑁𝑓|+|𝑁𝑣|.4 𝑀 𝑐|𝑁𝑓|+|𝑁𝑣|.6 … 𝑐|𝑁𝑓|+|𝑁𝑣|.|𝑁𝑓| 𝑀 𝑀 … 0 𝑐|𝑁𝑓|+|𝑁𝑣|.|𝑁| 

Stop Depot 𝑐|𝑁|.1 𝑀 𝑐|𝑁|.3 𝑐|𝑁|.4 𝑀 𝑐|𝑁|.6 … 𝑐|𝑁|.|𝑁𝑓| 𝑐|𝑁|.|𝑁𝑓|+1 𝑐|𝑁|.|𝑁𝑓|+2 … 𝑐|𝑁|.|𝑁𝑓|+|𝑁𝑣| 0 
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3.3.5   Machinery Operation Parameters of Interest 

The two primary variables pursued in fitness function also underlie the parameters 

of interest to producers. Effective field capacity, the total field area worked divided by 

the time until the work is completed (American Society of Agricultural and Biological 

Engineers, 2011), is of paramount importance. Minimizing the field time (𝑐𝑜𝑠𝑡𝑙𝑎𝑠𝑡), 

which is the time from the start of field work to its completion (American Society of 

Agricultural and Biological Engineers, 2011),  improves the effective field capacity. 

Another valuable parameter to farmers is field efficiency, ratio of the theoretical travel 

time of the vehicles to the actual time (American Society of Agricultural and Biological 

Engineers, 2011). This parameter is associated with the operating time of the field work. 

As such minimizing the total work time variable (𝑐𝑜𝑠𝑡𝑎𝑙𝑙) contributes to field efficiency. 

3.4   DMDVRP SOLUTION METHODS 

There are many heuristics and meta-heuristics procedures developed to provide 

solutions for various varieties of the VRP. However, they are not able to provide an 

efficient solution for the DMDVRP, so a new method was devised. The first step was to 

generate an initial solution, and to do so, the dynamic individual depots of the problem 

were assumed to be regular spatial nodes. In this way, the problem converts into the 

standard VRP. Then a modified Clarke-Wright Savings Algorithm as a heuristic 

procedure is used to generate an initial solution. Finally, a more optimal solution was 

produced through application of the Tabu Search Algorithm, which is a meta-heuristic 

procedure. 

3.4.1   Initial Solution from Modified Clarke-Wright 

The Clarke-Wright Savings Algorithm (Clarke & Wright, 1964), as a cost saving 

procedure, strives to reduce the cost for a fleet of vehicles in which capacity is considered 

an important constraint. In case of the problem investigated in this paper, capacity is 

assumed infinite (that is, the agricultural operations in which capacity is not considered a 

limitation). Therefore, the Clarke-Wright algorithm tends to produce an overall route 

consisting of all the nodes. This becomes a reasonable solution for a single vehicle 

covering the area, whereas it is inappropriate for task allocation for multiple vehicles. 
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Figure 3 demonstrates the single long route servicing all the nodes generated by the basic 

Clarke-Wright Algorithm, while considering the dynamic individual depots as regular 

nodes.  

 
Figure 3-4. A single long route generated by basic Clarke-Wright Algorithm 

This single route was then distributed among available vehicles by dividing the 

single route into multiple routes using the dynamic start depots. For route allocation to 

specific vehicles, a number of approaches are evaluated by the procedure: 1) each vehicle 

adopts the subsequent nodes from its current location until it reaches the next dynamic 

start node; 2) reversed version of the prior method through linking the end node to the 

first dynamic start node; 3) after linking the end node to the first dynamic start node, the 

first vehicle adopts its surrounding nodes until it reaches a dynamic start node from either 

side, and other vehicles split the remaining route. After completing its route, each vehicle 

travels back to the main depot. The allocation takes place based on the method that best 

meets the established optimization criteria and most reduces the cost of fitness function 

(Figure 2(a)). The result is an acceptable solution for this class of agricultural field work 

problem which requires insignificant computation time to be generated. The solution as 

displayed in Figure 2(b) is based on the exact location of the vehicles where re-routing 

was initiated.  
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Figure 3-5. Modified Clarke-Wright algorithm solution 

3.4.2   Further Optimization 

Tabu Search was then used to perform optimization of the initial routes. As a 

meta-heuristic, Tabu Search developed by Glover (1989) relies on iterations to 

investigate potential solutions and incrementally produces increasingly more optimal 

solutions. The technique has been proved to generate highly effective solutions for 

MDVRP (Cordeau, Gendreau, & Laporte, 1997; Crevier et al., 2007). It is a powerful 

optimization technique and in other agriculture applications has been used to improve 

enterprise-level planning of the order in which fields should be worked (Edwards, 

Bochtis, & Søresen, 2013). In this work, Tabu Search was implemented as described in 

Seyyedhasani and Dvorak (2017), which provides more details on computational 

complexity and use. 
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3.5   TEST SCENARIOS 

An experiment was designed to investigate solutions provided by the computer 

model developed for re-routing the vehicles involved in an operation, in an ongoing 

fashion. The field selected for the experiment was located in Logan County, Kentucky, 

United States of America [36.793°, -86.77°] (Figure 9). The field was of a non-convex 

shape with an area of approximately 71.5 ha. The producer often uses three vehicles in 

field operations in this field and the field paths within the field were those used by the 

producer during an anhydrous ammonia application. The field work parameters for this 

operation were 73% for the field efficiency and 10.0 ha h-1 for the effective field 

capacity.  

 

Figure 3-6. Field selected for the experiment 

3.5.1   Base Scenario 

Path allocation and route planning for each vehicle involved in the operation was 

performed using the optimization procedure developed by Seyyedhasani and Dvorak 

(2017). Three VRP nodes were assigned to each field path (Figure 3-7). Path allocation 
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produced routes that start and end at the field entrance for each of the three vehicles 

(Figure 3-8). If this base scenario were followed to completion, the procedure estimates 

that it would take 113 minutes to complete the field. Field efficiency was calculated for 

each vehicle route from the start of field work until that route was completed. The 

average field efficiency for the complete set of vehicle routes was 87%. Field capacity 

per vehicle was also determined, but this calculation was performed in aggregate by 

dividing the total area worked by the time required to work that area and the number of 

vehicles used. The field capacity per vehicle for the complete set of routes in the base 

scenario was 13.5 ha h-1. 

Three different scenarios were considered as triggers for dynamic re-routing: 1) 

re-routing following changes in the number of vehicles, 2) re-routing arising from 

unexpected behaviors (working speed) of the vehicles, and 3) re-routing due to changes 

in area coverage. Most scenarios were tested with the trigger event and re-routing 

occurring after 28, 56, and 84 minutes of work. These times correspond to when the 

initial solution predicted that 75%, 50% and 25% of the field work remained.  

 
Figure 3-7. Field paths to be worked (blue lines) with VRP nodes (black dots) assigned. 
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Figure 3-8. Vehicle routes for three machines following the optimization procedure in 

Seyyedhasani and Dvorak (2017). All routes start and stop at the field entrance (Start 

Depot). 

3.5.2   Scenario 1: Change in Number of Vehicles 

In the initial solution, three vehicles were involved in the field operation from the 

beginning to the end of the operation. This scenario considers two actions: the addition or 

the removal of a single vehicle from the fleet of vehicles working in the field. In this 

scenario, the change happens suddenly at times of 28, 56, and 84 minutes after starting 

the field work. The vehicles are assumed to have perfectly followed the initial solution 

for the base scenario up to this point in time (Figure 3-9). For vehicle removal, vehicle 2 

is removed from service instantaneously at the trigger time. The path on which vehicle 2 

was working is incomplete and the entire path is assigned to another vehicle. This results 

in a slight loss of completed work in the vehicle removal scenario. 
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Figure 3-9. Field completion based on the base scenario with field working times of (a) 

28, (b) 56, (c) 84 minutes 

3.5.3   Scenario 2: Unexpected Field Work Rates 

In this scenario, Vehicle 2 has unexpectedly managed to complete 30% more field 

work than anticipated in the base scenario. It is assumed that this increase occurs and/or 

is noticed at the same operating times as scenario 1: 28, 56, and 84 minutes. However, 

since Vehicle 2 has completed 30% more work, more of the field has been completed at 

these times than at the same times in scenario 1 (Figure 3-10). The increase in the work 

rate for Vehicle 2 is temporary. While it has completed 30% more work than predicted at 

28, 56, and 84 minutes, for the remainder of the field, it will operate at its standard rate. 

Because Vehicle 2 completed more work than expected in all of these scenarios, it is 

expected to complete its initial route quicker even as it finishes its route at the expected 

rate. If no changes to routes are made, Vehicle 2 is assumed to wait at the final depot 

until all other vehicles also finish.  
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Figure 3-10. Remaining paths when a) 75%, b) 50%, and c) 25% of the paths assigned to 

each vehicle should be left, according to the initial path allocation 

3.5.4   Scenario 3: Changes in Area to Be Worked 

In this scenario, re-routing takes place when sections are added or removed from 

the field area to be worked. For section removal, the vehicles begin with the base 

scenario. They work the field until one of the vehicles encounters the area to be removed. 

At this point, the paths in this section of the field are removed from the field area to be 

worked (Figure 3-11). This occurs after 42 minutes of work in the field. The initial 

vehicle routes are no longer valid and the re-routing procedure is used to generate a new 

set of routes that does not include the removed section of the field. 



 

46 

 

 
Figure 3-11. The area (and the corresponding work paths) to be removed from the field 

work plan is shown in yellow. Vehicle progress in working the field is also shown for the 

moment at which a vehicle (Vehicle 1) first encounters the section to be removed. The re-

routing process begins at this stage. 

When adding a section to the field, the base scenario is different from the other 

scenarios. The initial solution is the base field with a section already removed (Figure 

3-12). The predicted time to complete this field work is 86 minutes. The expected field 

capacity is 14.1 ha hr-1 and the field efficiency is 90.7%. In testing, the missing section of 

the original field is added to the work plan when the field has been worked for 22, 43, 

and 65 minutes (Figure 3-13). These times correspond to when 75, 50, and 25% of the 

field is remaining. 
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Figure 3-12. Original solution for the field with one section removed from the work plan. 
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Figure 3-13. Field completion based on the base scenario with field working times of (a) 

22, (b) 46, (c) 65 minutes 

3.5.5   Evaluating the Effectiveness of Re-routing 

In all of the scenarios, a pre-calculated base scenario is followed until an event 

occurs which triggers the need for re-routing. For evaluation, the field capacity per 

vehicle and field efficiency are calculated for both the initial routes and the newly 

recalculated routes following the trigger event. For example, for a scenario with a trigger 

event at 56 minutes (when 50% of the field work is completed), values for field capacity 

per vehicle and field efficiency are based on vehicle travel from the trigger time, at 56 

minutes, to field completion. Comparing only the values after the trigger event highlights 

differences directly caused by the re-routing and ensures that these differences are not 

diluted by averaging over the entire field working time. 

Vehicle operation is expressed based on both average field efficiency and field 

capacity per vehicle. In general, these terms are associated; however, differences arise 

when one vehicle finishes its route before the other. The average field efficiency is the 

average of each vehicle’s field efficiency as it follows its route. The field capacity per 

vehicle is the total area worked divided by the time required and number of vehicles 

available. A vehicle that finishes its route will no longer see changes in its field 

efficiency. However, if the field is still not complete, field capacity will be impacted as 

that vehicle is available for use but is not contributing to field work progress. 

3.6   RESULTS AND DISCUSSION 

3.6.1   Scenario 1: Change in Number of Vehicles 

The new paths generated by the path assignment are unpredictable as the 

procedure optimizes the allocation between available vehicles. Figure 3-14 and Figure 

3-15 show the optimized paths for the case in which a vehicle is removed (Figure 3-14) 

or added (Figure 3-15) after 56 minutes of field work (field is 50% complete). 
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Figure 3-14. New routes created by the scenario in which Vehicle 2 is removed after 

working in the field for 56 minutes. 
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Figure 3-15. New routes created by the scenario in which a fourth vehicle is added after 

56 minutes of field work. 

Changing the number of vehicles available to work the field had significant 

effects on the important field work management parameters of average field efficiency, 

field capacity per vehicle and time required to complete the field (Table 3-2). Routes in 

all cases were most efficient at the beginning as longer non-working travel paths were 

concentrated at the end of the routes. This produced a general decrease in average field 

efficiency and field capacity per vehicle as more of the field is completed. As expected, 

removing a vehicle increased the time required to finish the field and adding a vehicle 

decreased that time with the magnitude of the change dependent on when the vehicle was 

added or removed.  

Removing a vehicle also increased average field efficiency, but adding a vehicle 

decreased it. This is expected, as utilizing more vehicles requires more non-working 

travel to reach different field sections. The effect on field capacity per vehicle was less 

consistent and not related to the time of the trigging event or whether a vehicle was added 

or removed. In half of the cases, field capacity was largely unchanged and remained 

within ±5% of the values in the initial solution. In the remaining cases, field capacity per 

vehicle decreased by 12.3% to 19.8%, which represents cases in which the updating 

procedure had difficulty identifying a solution that was as optimal as the original. 
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Table 3-2. Effective field capacity and field efficiency following the triggering event for the scenario with the removal or 

addition of a vehicle. Percent change from the initial solution to the updated solution is shown in parenthesis following values 

in the updated solution column. 

Scenario 

Parameters 
Base 

Scenario a 
Initial Solution Updated Solution 

Elapsed time at which scenario 

is triggered (min) 
Never 28 56 84 28 56 84 

Removal of One 

Vehicle 

 

Effective Field Capacity per 

Vehicle (ha h-1) 
13.5 13.5 12.6 11.4 

13.8 

(2.5%) 

10.4 

(-17.2%) 

11.8 

(2.8%) 

Field Efficiency (%) 86.8 82.3 82 76.5 
92.3 

(12.2%) 

85.6 

(4.4%) 

81.5 

(6.5%) 

Remaining Time to Field 

Completion (min) 
113 85 57 29 

125 

(47%) 

104 

(82.5%) 

43 

(48.3%) 

Addition of One 

Vehicle 

 

Effective Field Capacity per 

Vehicle (ha h-1) 
13.5 13.4 12.5 10.8 

12.7 

(-4.9%) 

10.9 

(-12.3%) 

8.68 

(-19.8%) 

Field Efficiency (%) 86.8 86.5 81.3 72.3 
84.7 

(-2.1%) 

74.5 

(-8.3%) 

75 

(3.7%) 

Remaining Time to Field 

Completion (min) 
113 85 57 29 

67 

(-21.2%) 

49 

(-14%) 

27 

(-6.9%) 

a The base scenario column represents following the initial solution all the way to completion and never adding or removing a 

vehicle. It is provided for comparison. 
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An important area of further study would be to identify the factors that make it 

difficult for the optimization procedure to produce better routes and ways to mitigate 

those factors. Although the procedure had difficulty in maintaining previous levels of 

field capacity per vehicle in some cases, it was always able to reroute the vehicles to 

improve field completion time (for addition of a vehicle) or field efficiency (for removal 

of a vehicle). This illustrates that the updating procedure can provide effective new routes 

in the event of a change in the number of vehicles available to work a field. 

3.6.2   Scenario 2: Unexpected Field Work Rates 

When field work does not proceed at expected rates, significant improvements to 

field work parameters can be made using a real-time updating procedure (Table 3-3). In 

this particular test, vehicle 2 has been able to complete 30% more work than expected at 

the event triggering time. If the vehicles remain on their initial routes, vehicle 2 will 

complete the field earlier and sit at the gate waiting for the other vehicles to finish. 

Following the initial routes to completion will result in total field completion time 

remaining at 113 minutes as the other vehicles still require the full 113 minutes to 

complete their routes. Redistributing the field paths allows vehicle 2 to take over the 

paths of the other vehicles and enables all of them to complete the field in less time. The 

gains in completion time from rerouting are more dependent on the level of the disruption 

to the original working plan than on the rerouting procedure. The largest reductions in 

field completion time occurring when vehicle 2 operated for the longest period with an 

increased work rate (corresponding to later trigger times), but without a rerouting 

procedure, it would be impossible to realize any of these gains. 
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Table 3-3. Effective field capacity and field efficiency following the triggering event for the scenario in which a vehicle 

unexpected works at a higher rate. Percent change from the initial solution to the updated solution is shown in parenthesis 

following values in the updated solution column. 

Scenario 

Parameters 
Base 

Scenario a 
Initial Solution Updated Solution 

Elapsed time at which 

scenario is triggered (min) 
Never 28 56 84 28 56 84 

Unexpected field 

work rate 

 

Effective Field Capacity per 

Vehicle (ha h-1) 
13.5 12.9 11.3 8.4 

13.2 

(2.2%) 

11.9 

(5.2%) 

10.2 

(21.2%) 

Field Efficiency (%) 86.8 86 80.4 74.7 
85 

(-1.3%) 

78 

(-2.9%) 

75 

(0.4%) 

Remaining Time to Field 

Completion (min) 
113 85 57 29 

83 

(-2.3%) 

54 

(-5.3%) 

24 

(-17.2%) 

a The base scenario column represents following the initial solution all the way to completion with vehicle 2 at its 

expected work rate. It is provided for comparison. 
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The effective field capacity also illustrates the importance of route updates when 

field work does not proceed as expected. The idle time for vehicle 2 in the initial solution 

causes a sharp drop in field capacity per vehicle. In the base scenario, field capacity per 

vehicle is 13.5 ha h-1, but it decreases to 8.4 ha h-1 with later trigger times for the 

scenario. Rerouting prevents vehicle 2 from sitting idle and the effective field capacity 

increases to 10.2 ha h-1, which is a 21.2% increase. 

Finally, the results with average field efficiency illustrate that the new routes 

generated by the procedure are still efficient. The average field efficiency of the routes 

remains within 3% of the original routes. The rerouting procedure performed very well in 

this scenario as it was able to provide reductions to field completion times, increases in 

field capacity and maintain the field efficiency of the individual machine routes.  

3.6.3   Scenario 3: Changes in Area to be Worked 

Unlike the other scenarios considered, changes in area to be worked force 

rerouting and reallocation of vehicle paths as the original routes either include areas that 

should not be worked or are missing areas that should. This prevents direct comparisons 

between the newly updated routes and the initial routes from different rerouting 

triggering points. Instead, comparisons are made between the new routes and the initial 

set of routes had the area remained constant. This provides two base scenarios. One base 

scenario was generated using the smaller field area with a section removed. The other is 

the original base scenario used in the other scenarios. This larger base scenario covers the 

entire field area. 

When a section of field is added, the vehicle initially starts with the small base 

scenario, but then must switch to completing the area covered by the large base scenario 

at the scenario trigger time. The route updating procedure worked well in handling this 

change as there were only minor adjustments in the field work parameters (Table 3-4). 

The field completion time for the base scenario that includes the entire field was 113 

minutes. In the worst case, the updated routes required 114 minutes. At two of the area 

change trigger points, the updated solution actually produced results that decreased the 

time to complete the field. Additionally, field capacity per vehicle and field efficiency for 

the routes only experience slight if any decreases from the large base scenario that covers 

the entire field. Field efficiency only drops from 86.8% to 84.6%, and field capacity per 
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vehicle only drops from 13.5 ha h-1 to 12.6 ha h-1 for the updated solution beginning at 65 

minutes after starting the field. Route updating and optimization works very well when 

the field size is increased with resulting field completion times very close to the times 

provided when the size of the field was known from the beginning of the field work. 

Table 3-4. Effective field capacity and field efficiency following the triggering event for 

the scenario with the addition of a section of field. 

Scenario 

Parameters 
Small Base 

Scenario a 

Large Base 

Scenario b 
Updated Solution 

Elapsed time at which 

scenario is triggered (min) 
Never Never 22 43 65 

Addition of 

Field Section 

 

Effective Field Capacity 

per Vehicle (ha h-1) 
14.1 13.5 13.1 13.7 12.6 

Field Efficiency 90.7 86.8 86.1 87.6 84.6 

Remaining Time to Field 

Completion (min) 
-- -- 92 65 47 

Total Field Completion 

Time (min) 
86 113 114 108 112 

a The small base scenario column shows the parameter values for a solution that works the field 

with the section removed from the beginning to completion. 
b The large base scenario column shows the parameter values for the original base scenario 

solution produced for working the entire field from the beginning to completion. 

 

Real-time path reallocation, optimization and updating did not work as well for 

the removal of a section from the field as it did for the addition of section to the field. 

When removal of the particular section of the coverage area happens, the base scenario 

turns into the small base scenario. The new paths are reasonable, as the field work 

parameters are slightly less than those for the base scenario (Table 3-5). However, 

compared to the pre-calculated solution for the small base scenario, the magnitude of the 

field completion time, field capacity, and field efficiency all declined by approximately 

8%. Unlike the section addition scenario in which field completion times were almost 

unchanged compared to final area, in this section removal scenario, total field completion 

time increased by 8 minutes. This is not unexpected as resetting the paths instantaneously 

after the first machine (vehicle 1) arrived to the “Remains Unworked” region increased 
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non-working travel unexpectedly — both to get to the “Remains Unworked” region, 

according to the initial solution, and to get to the newly allocated spot after reallocation 

(Figure 3-16).  

Table 3-5. Effective field capacity and field efficiency for the entire field work for the 

scenario with the removal of a section of field. 

Scenario 

Parameters 
Small Base 
Scenario a 

Large Base 
Scenario b 

Updated 
Solution 

Elapsed time at which scenario is 
triggered (min) 

Never Never 42 

Removal of 
Field 
Section 
 

Effective Field Capacity per Vehicle (ha 
h-1) 

14.1 13.5 13 

Field Efficiency 90.7 86.8 84.9 

Remaining Time to Field Completion 
(min) 

-- -- 54 

Total Field Completion Time (min) 86 113 96 

a The small base scenario column shows the parameter values for a solution that works the field with 
the section removed from the beginning to completion. 
b The large base scenario column shows the parameter values for the original base scenario solution 
produced for working the entire field from the beginning to completion. 
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Figure 3-16. Removing a plot from the field work while operation 

3.6.4   Overall Discussion 

In many of the tested cases, the effectiveness of the rerouting procedure was 

largely dependent on the routing flexibility remaining for the field work. For example, 

when a vehicle is added to the field, the earlier this addition happens, the larger the 

percent decrease in field completion time. For the changes in field area, an increase in 

area raises the number of available paths and flexibility. In this case, the field work 

parameters were largely the same as if the area were constant from the beginning. 

However, a decrease in area reduces the flexibility, and the field work parameters moved 

in a worse direction. Although the updating procedure permits sudden changes to the 

field work conditions, it is still best to determine these settings as early as possible to 

maximize effectiveness of the field work. 
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3.7   CONCLUSIONS 

The ability to provide dynamic, real-time updating to vehicle path allocations is 

an important characteristic of any useful method to optimize the routes of multiple 

vehicles working together in agricultural fields. The mathematical representation of the 

field and solution algorithms provided in the methods section enables this dynamic, real-

time optimization. In all the scenarios tested, this procedure was able to produce new 

optimized routes, but the impact of these routes varied for each scenario. When a vehicle 

was added to the fleet working the field, the updating procedure was able to use that 

vehicle to reduce completion times, and the magnitude of the reduction was greater when 

more of the field was unworked. For removal of a vehicle, the field completion time 

increased, but the procedure was able to increase the field efficiency of the remaining 

vehicles. When a vehicle completes more work than expected, the updating procedure 

enables the producer to capture this benefit to complete the field in less time. The 

updating procedure is also effective in this case, as field efficiency remains within 3% of 

the original field efficiency. The procedure was excellent at handling increases in the 

field area to be worked with total field completion times largely unchanged compared 

with optimizations performed with a consistent field area from the beginning. However, 

the procedure was less capable of addressing the challenges presented by a sudden 

reduction of field area, with the field capacity, field efficiency and completion time 

moving in a worse direction by approximately 8% each. In general, the procedure was 

able to provide better outcomes if the change in field conditions occurred at a point in 

time when less of the field was complete and there was more flexibility in the final 

routing. This project illustrates that it is possible to update field routes for a fleet of 

vehicles during field operations. The impact of the new routes is dependent on the 

specifics of the event that necessitated the rerouting, but such a system provides the 

opportunity to improve field work outcomes based on changing and variable field and 

work conditions. 
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CHAPTER 4:  OBJECTIVE 3: REDUCING FIELD WORK TIME USING FLEET 

ROUTING OPTIMIZATION  

4.1   SUMMARY 

Agricultural producers seek to complete their field work operations as quickly as 

possible. This is achievable through the simultaneous use of multiple vehicles for an 

operation. However, path allocation and scheduling then must be considered. 

Transforming the field work problem into a Vehicle Routing Problem (VRP) and using 

optimization procedures designed for this problem provides a method of allocating paths. 

In this work, the accuracy of a VRP representation of field work is confirmed and the 

ability of this optimization system to reduce field work times is verified. Experiments 

were conducted using three tractors during a rotary mowing operation. First, the 

traditional routes used by human drivers were recorded. Then, a VRP representation of 

this operation was created, and new routes generated by a Tabu Search optimization 

procedure. Finally, the field operation was repeated using the optimized routes. Using 

these routes, the time to complete the field work was reduced by 17.3% and the total 

operating time for all tractors was reduced by 11.5%. The predictions by the VRP 

representation for completion time and total time were both within 2% of the actual times 

recorded when the tractors followed the computer-generated routes in the field. These 

reductions illustrated the ability of the route optimization procedure to improve effective 

field efficiency.  

4.2    INTRODUCTION 

Agricultural producers seek to complete their field work operations as quickly as 

possible. This drive to increase field capacity, the rate in terms of area per time that work 

is done (American Society of Agricultural and Biological Engineers, 2011), has led to 

larger agricultural machinery and many producers to use more than one machine in a 

field at a time. It has also led researchers to seek methods to improve the efficiency of 

these field operations. Many researchers have tested methods to improve the way in 

which paths are generated in fields. Other projects have focused on the order in which 

these paths are worked and, in the case of multiple vehicles, which vehicles are assigned 

to each path. One issue with these improved path generation and routing systems is that 
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the solutions they generate often appear random and arbitrary. These solutions do not 

follow any easily recognizable rule. However, modern advances in sensing, information 

and communication technologies have provided automatic steering and navigation 

systems that enable following these more complex paths through the field. As 

development continues in autonomous vehicles for both traditional field work and crop 

scouting, these path generation and routing techniques will become not only more 

feasible, but also more necessary as there will not be a human operator to generate paths 

and routes in the traditional manner. 

Much agricultural machinery optimization research has been focused on improved 

algorithms for path generation (Flann, Hansen, & Gray, 2007; I. A. Hameed et al., 2011; 

Jin & Tang, 2010; Palmer et al., 2003). Using discrete geometric primitives and operating 

in real time, I. A. Hameed et al. (2010) generated maps to represent the field on which 

field operations take place. In addition, various methods have been developed for 

automatic geometric representation of field sections such as headland generation (Sachs, 

Roszhart, Schleicher, Beck, & Bezdek, 2012), and headland turns generation (Birnie, 

2006; Senneff, Leiran, & Roszhart, 2012). When path generation, planning and routing 

are combined, it provides a coverage path planning algorithm. A complete coverage path 

planning algorithm for one vehicle using a genetic algorithm for the solution has been 

developed by Ibrahim A Hameed, Bochtis, and Sørensen (2013). In order to efficiently 

operate on the generated paths, along with operational planning also known as in-field 

machinery activities (I. Hameed, Bochtis, Sørensen, & Vougioukas, 2012), it is required 

to allocate and schedule the paths among the available vehicles. Researchers have shown 

that scheduling the paths efficiently can reduce the total non-productive travel up to 50% 

(D. D. Bochtis & Vougioukas, 2008). D. D. Bochtis and Sørensen (2010) investigated the 

scheduling and planning for the service units in harvest operations. They represented this 

operation as a Vehicle Routing Problem with Time Windows and used optimization 

techniques designed for this traditional computer science problem. Non-productive 

travelled distance can be decreased further by taking into consideration the impact of 

different types of headland turns (D. Bochtis, 2008; Jensen, Bochtis, & Sørensen, 2015). 

Ali, Verlinden, and Van Oudheusden (2009) reduced the non-productive travel time of 

combine harvesters by generating itineraries for the vehicles including the start location, 
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the end location, and locations for unloading the harvester. In fertilizing operations, total 

travel distance was reduced up to 11.8% (Jensen et al., 2015) by following optimized 

plans instead of the conventional plans followed by farmers during the operations. 

Researchers have even explored routing optimization for vehicles to specifically reduce 

compaction potential (Dionysis D. Bochtis et al., 2012). They could reduce the risk factor 

up to 61% using optimal paths. 

The variants of the Vehicle Routing Problem (VRP) provide methods to represent 

mathematically the routing of a fleet used to visit and service customers, contingent upon 

specific constraints. There are a set of constraints incorporated in the VRP which 

necessitate that all the customers be visited and that each individual customer be visited 

by only one vehicle. In addition, various variants of the VRP have their respective 

constraints such as the vehicles start and end positions in designated locations, or 

customers be visited in a specific order or in a specific time window. When applying 

VRP for solving a problem a network graph is developed. Each customer is transformed 

into a node on the graph, and the travel cost between each pair of nodes is assigned to the 

connection between the nodes. In agricultural applications, casting the field routing 

problem as a mathematical optimization problem is a powerful tool to improve logistics 

(D. D. Bochtis & Sørensen, 2009; Conesa-Muñoz et al., 2016).  

Seyyedhasani and Dvorak (2017) proposed a VRP representation and 

optimization techniques that focused on enabling producers using multiple vehicles to 

complete a field operation as quickly as possible. The field representation began with a 

set of travel paths along which the agricultural vehicle drives. VRP nodes were assigned 

to the endpoints and midpoint of each path. In the next step, the travel time between each 

pair of location coordinates was assigned as the connection cost for the pair of the 

corresponding nodes. Connections that were considered unacceptable (e.g. from one 

endpoint to an endpoint at the other side of the field or from midpoint to midpoint) were 

penalized by assigning a very high cost. The outputs of the first two steps are a cost 

matrix (for optimization) and a transformation matrix (to map physical locations to 

nodes). An initial solution was generated using a modified version of the Clarke-Wright 

Savings algorithm (Clarke & Wright, 1964) and improved using Tabu Search. The Tabu 

Search procedure developed by Glover (1989) searches more broadly for solutions and 
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prevents the optimization function from getting trapped at a local minimum. Each 

iteration of the algorithm (as the algorithm is an iteration-based procedure) utilizes all 

possible combinations of three operations: swap, insertion, and inversion. Tabu Search is 

a powerful optimization technique and has been used in other agriculture applications to 

improve enterprise-level planning such as calculating the sequence in which fields should 

be worked (Edwards et al., 2013).  

According to the model developed by Seyyedhasani and Dvorak (2017), the 

simulation results provided feasible solutions through both the modified version of the 

Clarke-Wright algorithm and the Tabu Search algorithm. The modified Clarke-Wright 

solutions were similar to the Work Zone approach currently utilized by many producers. 

The Tabu Search provided less predictable routing that was unlike any route pattern 

currently used by producers. These simulation results proved that the proposed VRP 

conversion and its optimization method were feasible. 

The goal of this project was to confirm the expected reduction in the time required 

for multiple vehicles to finish a field. To that end, field completion times to conduct an 

agricultural operation   via conventional human-operator routing was compared to an 

improved routing provided by the optimization procedure in the same field.  Within this 

larger comparison, it was also necessary to test whether the computer model was accurate 

and the times predicted by the optimized solution could be realized by tractors driving 

these routes in the field. 

4.3   MATERIALS AND METHODS 

Most of the field experiments in this study were performed on the University of 

Kentucky’s C. Oran Little Research Center in Versailles, Kentucky in a recently 

harvested corn field in late September and early October of 2016. This Research Center is 

a 600-hectare farm. While the farm provides some crop test plots for researchers, much of 

it is managed using standard commercial crop production practices to provide the feed 

inputs for the animal research that also occurs there. Following corn harvest, the 

managers of the farm were planning to cut down the standing corn stalks using tractor-

pulled rotary mowers. They intended to use multiple tractors during this field operation 

so it provided an opportunity to analyse standard tractor driver coordination patterns. 

Only minor changes to normal operating procedures were necessary to accommodate data 
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collection. The operation took place on two contiguous fields covering 15.6 ha: a 12.1 ha 

field (a) and a 3.5 ha field (b) (Figure 4-1). After recording the original routes used by the 

tractor drivers, a set of computer-optimized routes was generated. These optimized routes 

were then tested by repeating the field operation using the new routes to confirm the 

expected efficiency improvements.  

 

Figure 4-1. The two contiguous fields in University of Kentucky C. Oran Little Research 

Center 

A second operation was recorded on a farm in Logan County, Kentucky. The field 

had a non-convex boundary with the area of approximately 71.5 ha (Figure 4-2), in which 

three vehicles worked together applying anhydrous ammonia to cover the whole field. In 

this field, the operation was not repeated. Only the original routes were recorded. The 

data from this field was only used to verify that the travel time estimates provided by the 

cost matrix were accurate. As this operation was an application of anhydrous ammonia, 

the recorded routes included travel to reposition anhydrous ammonia tanks in the field. 

This project only focuses on travel and working times, not refill and equipment servicing 

times, so this tank repositioning time was removed from the routes during this analysis. 
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Figure 4-2. Field in Logan County, Kentucky where vehicle routes were recorded during 

anhydrous ammonia application  

4.3.1   Recording Routes Driven by Human Operators 

The farming operation used as the basis for most of this experiment was mowing 

of harvested, standing corn stalks using a rotary mower. This operation was performed 

using three tractors that pulled 4.57 m wide rotary mowers. These three tractors were a 

John Deere 6130M, a John Deere 5100E, and a John Deere 6195R, which are referred to 

as machines 1, 2, and 3, respectively. All tractor drivers were experienced operators and 

employees of the research farm. They had driven these tractors and used these 

implements previously. They were also used to coordinating together in the field. During 

this field operation, the tractor operators were told to drive as they normally would to 

finish the field as quickly as possible. 

Several minor changes to their normal practices were used to improve data 

collection during this experiment. First, a simultaneous start from the entrance of the field 

was enforced. In addition, all operators were told to travel at the same speed. Path 

recording equipment was also added to the tractors. The John Deere 6195R contained a 

GreenStar navigation system, so its position was recorded by logging the ISOBUS 

location messages generated by the navigation system using a Vector GL1000 CAN 

datalogger (Stuttgart, Germany). The John Deere 6130M and John Deere 5100E lacked 

built-in navigation systems, so Trimble E-Z Guide 500 Lightbar Guidance Systems 
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(Sunnyvale, California) were used to record their paths. Before starting, the navigation 

systems in all tractors were set to an identical A-B line. While setting the same A-B line 

is standard practice for coordinating the work of multiple tractors in the same field, it also 

ensured overlap between rows was consistent during the experiment and did not cause 

field efficiency differences.  

The tractors used on the Logan county farm for anhydrous ammonia were all 

heavy-duty class Case IH tractors with power ratings of 350 kW (470 horsepower) 

(machines 1 and 2) and 335 kW (450 horsepower) (machine 3). All three tractors used 

ISOBUS and auto-guidance technology from Case’s Advanced Farming System (AFS) 

which enabled logging vehicle position by logging ISOBUS traffic. The implement width 

was 19 m.  The tractor operators were all experienced operators at using this equipment, 

working together, and performing anhydrous ammonia application. The operators 

performed this operation as normal and made no adjustments for the data collection in 

this experiment.  

4.3.2   Optimized Routes Generation 

4.3.2.1 Convert Field to Model Representation 

The first step in generating computer-optimized routes was creating a digital 

representation of the field paths based on the human-driven paths. In the digital 

representation, the field paths were represented by their endpoints. Rather than directly 

using the human driven paths with their inaccuracies, these paths were adjusted to match 

perfectly the 4.57 m or 19 m implement width used in creating the A-B lines that initially 

guided the drivers. The endpoints and midpoints of these paths were used at VRP nodes 

following the procedures in Seyyedhasani and Dvorak (2017). These steps provided the 

digital representation of the field as VRP nodes, and the next step was to assign costs of 

the connections between nodes. 

Kinematic characteristics of the combination of the vehicle and implement were 

determined from the original human-generated routes to produce the cost matrix for the 

model. The turning radius for the vehicle and implement combination was more than half 

of the working width (r > w/2), so “bulb” and “hook” turns were required to steer into 

adjacent paths (using terminology from Jin and Tang (2010)). With these turns, vehicles 

start to diverge towards the opposite direction to provide more space for turning. The 
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hook turn was used when the machine travel direction,  , was not perpendicular to the 

headland direction, 𝜑, and the “bulb” turn otherwise (Figure 4-3). As other researchers 

(Jin & Tang, 2010) have already worked on the mathematics of different types of turns, 

in this work, we employed the empirical data corresponding to these turns to calibrate the 

computer model.   

 

 

 

Figure 4-3. Different type of turns used in the simulation a) “flat” turn, b) “bulb” turn, 

and c) “hook” turn. The red dashed line represents the turning trail. 

The “flat” type turn was employed for turns into non-adjacent paths (i.e. skipping 

one or more paths) as this path arrangement provided sufficient space to turn (Jin & 

Tang, 2010). A turning trail inside the headland was designed, surrounding the boundary, 

to connect each pair of the paths. To determine the length of the “flat” turn between each 
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pair of paths, 𝑎 and 𝑏, corner lengths were added to the travelling length on the turning 

trail, i.e., 𝑓𝑙𝑎𝑡𝑇𝑢𝑟𝑛𝐿𝑒𝑛𝑔𝑡ℎ𝑎𝑏  = 2 ×
1

4
(2𝜋𝑟) + travelLength𝑎𝑏 (Figure 4-4). The 

turning trail provided a path around the entire field. This enabled using the equation for 

the flat turn to calculate turning and non-working travel times even if subsequent paths 

were not on the same headland segment. The variable, travelLengthab, merely 

incorporated the travel time between the paths using segments of the turning trail, and the 

flat turn equation then provided the time required to transition between the working paths 

and the turning trail. 

 

Figure 4-4. Track type designations for two example turns with non-adjacent working 

paths. 

In many cases, turning is a challenge for vehicles taking “bulb” or “hook” turns; 

however, the turning speed recorded during this experiment was not significantly 

different from working speed, i.e. 7.55 and 7.54 km h-1, respectively. The non-working 

travel speed, 7.57 km h-1, was also nearly identical to working and turning speeds. Non-
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working travel was very limited in the routes created by the tractor drivers, so the drivers 

did not adjust speed in these limited non-working periods. Therefore, the model was 

created assuming equal speed for non-working, working, and turning travel speeds. As 

such, in developing a cost matrix (for optimization) and transformation matrix (to 

determine the amount of time for traveling from the physical location of each node to 

other node’s) travel speeds were set at a constant of 7.5 km h-1. This was not true, 

however, as to the Logan county operation. Each vehicle operated at a different velocity, 

8.52, 8.17, and 7.28 km h-1, for the Machine 1, 2, and 3, respectively. Hence a cost matrix 

with a more complex data structure was developed to calculate the transformation matrix 

for each machine individually, and address the kinematically heterogeneous fleet. 

4.3.2.2 Creating computer-optimized routes 

Computer-optimized routes were only generated for the rotary mowing operation 

on the C. Oran Little Research Farm since this was the only farm where repeated 

operations were conducted. The goal of the optimization procedure was to minimize a 

fitness function including both total driving time and the time required for the slowest 

vehicle to finish as described in Seyyedhasani and Dvorak (2017). An initial solution for 

the computer-generated routes was obtained using a modified version of the Clarke-

Wright algorithm. This solution was improved with further processing through Tabu 

Search, a high-level meta-heuristic procedure. The Tabu Search algorithm was repeated 

until one iteration had passed with no improvement (Figure 4-5). At this point, the 

optimization program halted and provided its best solution (so far) as the optimized 

routings. As a meta-heuristic procedure, Tabu Search cannot be guaranteed to produce 

the global optimal solution. It is also likely that further iterations could further optimize 

the solution. However, the solution generated by this procedure already predicted a 

significant decrease in work time compared to the routes used by the human tractor 

drivers so the optimization procedure was halted at this point and the new routes were 

used for testing in the field. 
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Figure 4-5. Fitness of routes at each iteration of the Tabu Search optimization procedure. 

4.3.3  Using Optimized Routes in Field 

After generating the simulation-based routes, the operation was repeated to verify 

the feasibility of the allocated routes as well as the accuracy of the model predictions in 

terms of the field completion time. The navigation systems in the available tractors were 

not capable of displaying path sequence information to help the drivers follow the 

optimized route sequence. Therefore, sequencing had to be performed by a second person 

riding with the tractor driver. This person tracked route progress and communicated with 

the driver to ensure the tractor travelled down the appropriate paths at all times. One 

tractor (machine 3 from before) was used to follow all three machine routes. It started 

with the route for machine one, and then proceeded to the routes for machines two and 

three. This use of one machine ensured that the optimized routes were all followed with 

the same degree of accuracy as the same navigator and driver handled all routing. This 

was important, as following routes in the patterns generated by the computer optimization 

was not standard practice for these tractor operators. 
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The repetition of this field operation occurred two weeks after the original 

operation and under similar ground and weather conditions. Unfortunately, a perfect 

replication was not possible, as the original mowing operation had cut down the standing 

corn stalks. This change enabled the tractor in this second trip through the field to achieve 

a higher average travel speed than the tractors in the first trip (8.6 km h-1 compared to 7.5 

km h-1). To ensure fair comparisons, the travel times in the second trip were increased by 

14% to reflect the differences in average travel speed. The actual recorded times are 

provided in the results section, but all analysis and comparisons were done with the times 

adjusted for equal travel speeds of 7.5 km h-1.  

4.4   RESULTS 

4.4.1   Cost Matrix Travel Time Verification 

The routes driven by the human operators during the anhydrous ammonia 

application operation in Logan County, Kentucky (Figure 4-6) were divided into ten sub-

routes. These ten routes were randomly created with each route incorporating a variable 

number of field passes (Figure 4-7). The routes driven by the humans were not the perfect 

routes used in creating the time estimates with the cost model. For example, the driven 

routes do not perfectly utilize the bulb, flat and hook turns used in creating the cost 

matrix. This is illustrated by the “extra” driving that occurred at the end of some rows. 
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Figure 4-6. Recorded routes driven by human operators during the anhydrous ammonia 

application operation in Logan County, Kentucky. 
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Figure 4-7. The routes in the field were divided into 10 smaller routes. 

For each section of the routes, the error between the actual times recorded by the 

loggers for travel along that path and the time predicted by the cost matrix for that same 

route was between -6% and 6% with most estimation times within 5% of the actual 

measured times (Figure 4-8). The Root Mean Square Error (RMSE) was only 3.9 

seconds. Although the drivers did deviate from the perfect routes used in creating the cost 

matrix, the overall error in travel time estimation was minimal. This illustrates that the 

time estimates from the vehicle travel model closely match the real-world times.  
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Figure 4-8. Comparison of recorded travel times to times estimated by the cost matrix for 

the same route. 

4.4.2   Route Optimization Verification 

Using the optimized routes from the computer model, the time to complete the 

field work was reduced from 122 to 101 minutes (Table 4-1), a reduction of 17.3%. In 

addition to reducing completion time, the total time for all tractors combined was reduced 

from 340 to 301 minutes, a 11.5% reduction. These reductions illustrate the ability of the 

route optimization procedure to improve field work parameters, improving the field 

efficiency and effective field capacity by nearly 12% and 21%, respectively. Table 1 also 

confirms that the computer model could accurately estimate vehicle travel. The model 

predicted a total time of 309 minutes and a completion time of 103 minutes, both of 

which were within 2% of the actual times when tractors followed those routes in the field. 
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Table 4-1. Field completion time and total time of field work of the rotary mower 

experiment 

Multi-Field 

Experiment 

Total Time 

(min) 

Completion Time 

(min) 

Field 

Efficiency (%) 

Effective Field 

Capacity (ha h-1) 

Vehicle Velocity 

(km h-1) 

Human-Directed 

Routing 
340 122 82 7.67 7.5 

Simulated Optimized 

Routing 
309 103 91 9.09 7.5 

In-Field Optimized 

Routing 
301 101 92 9.27 7.5 

 

The original tractor routes driven by human operators were reasonable and 

demonstrate the proficiency of the drivers in managing route allocation (Figure 4-9). 

While the routes predominately resemble a “work zone” approach, individual “work 

zones” were not rigidly enforced as the drivers attempted to minimize non-working time. 

Machines 2 and 3 begin working at the start location with machine 2 working on the 

outer border and machine 3 starting with the inner border. Machine 2 follows the outer 

border to the far side of the field a and starts on the smaller triangular section of that 

field, while machine 3 completes the section of field a closest to the starting point before 

proceeding to the smaller field b. When machine 2 finishes the small triangular section of 

field a, it moves to the far end of field a and starts working toward machine 1, which 

began working in the middle section of field a. When machines 1 and 2 finish field a, 

they move to field b to help machine 3 finish it. The shifts of machines from the one end 

of the field to the far away regions created non-working travels which adversely affected 

the field efficiency. In these original routes, each vehicle was used for approximately the 

same amount of time. Machines 1, 2, and 3 operated for 122.0, 103.7, and 114.3 min, 

respectively, for a total operating time of 340.0 minutes. Working speed was 7.5 km h-1. 
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Figure 4-9. Original routes of the tractor drivers during the rotary mowing operation. 

The routes generated by the VRP optimization procedure (Figure 4-10) provided 

an estimated 15% reduction in completion time from 122 to 103 minutes. Each machine 

was predicted to complete its route in 103 minutes as the optimization evenly distributed 

the work. Total travel time was expected to drop by 9% from 340 to 309 minutes. As 

such the field efficiency as a parameter directly impacted by the total travel time 

improved as much. When looking at the computer-optimized routing, the VRP 

optimization procedure adopted time-reduction strategies like those used by the tractor 

drivers to take advantage of field shape peculiarities. Like the human drivers, one 

machine worked the triangular section at the far side of field a. Another machine was 

responsible for field b, and the last machine worked the large middle section of field a. 

However, unlike the human drivers, the optimized routes produced by the computer used 

only one machine in field b. Also, the routes were more evenly distributed to ensure that 

all machines finished at the same time. 
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Figure 4-10. Routing provided by the VRP optimization. The black dots represent the 

VRP nodes placed at the endpoints and midpoints of each field path. 

When the optimized routes were followed by a human driver (Figure 4-11), the 

predicted completion and total working time reductions were realized. Since the tractor 

was following these routes in a field that had already been worked, its travel speed was 

faster than before, at 8.6 km h-1, and operating times for machines 1, 2 and 3 were 85, 88, 

and 86 minutes. After adjusting travel times to reflect the same 7.5 km h-1 average 

working speed of the original operation, the total time accounted for 297 minutes and the 

length of time for machines 1, 2 and 3 was determined to be 97, 101, and 99 minutes, 

respectively. Another time adjustment is necessary for missing passes in the corner of the 

triangular section of field (visible in Figure 4-11). These were supposed to be completed 

by machine 1. Given the working and travel speeds of machine 1, these missing routes 

would have required two minutes each, so four minutes were added to machine 1’s time. 
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Therefore, the resulting total time was 301 minutes with machine 1 requiring 101 minutes 

(as shown in Table 4-1), and as such the effective field capacity was calculated to be 9.27 

ha h-1. The adjusted operating times and completion times are within 2% of the times 

predicted by the computer model of the field operation.  

 

  

Figure 4-11. Travel paths of a human driver following the optimized routes.  

The confirmation of reductions in field completion time indicate the potential of 

this type of technology if it were incorporated within current tractor navigation systems 

or utilized in routing future autonomous agricultural machines. As implemented within 

this testing, on-farm use of this technology is infeasible, as it required a careful digital 

depiction of the field geometry and paths, information on vehicle dynamics, offline 

optimization and a navigator riding with the tractor driver to ensure the path was 

followed correctly. However, future navigation systems could easily include route 

indicators and help drivers follow more complex optimized routes. In addition, farm 
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management systems often include geometric representations of fields and a history of 

previous field operations. This information could be used to generate paths and to 

determine the vehicle dynamics when a similar operation was last performed. 

Appropriately integrating these information systems would quickly enable producers to 

achieve the efficiency gains provided by this optimization. 

4.4.3   Conclusions 

One outcome of this project was proof that this computer model can accurately 

represent field working times of different routings. When the tractor driver followed the 

optimized routings provided by the model, the field completion time estimated by the 

model was within 2% of that measured in the field. Another outcome was the 

confirmation that computer optimized routings can result in a reduction in both time to 

complete the field and the total operating time of the vehicles. Even though time 

reductions and accuracy of using computer generated routes have been already reported 

in literature, this work was focused on path planning of a distributed fleet of vehicles, 

along with routing those vehicles. Other reported work has focused on different 

applications within agriculture such as master-slave systems (S. G. Vougioukas, 2012) or 

focused on the creation of guidance lines (I. A. Hameed et al., 2010). The time required 

to complete the field dropped by 17.3% from 122 minutes to 101 minutes, while the total 

operating time for all vehicles decreased by 11.5% from 340 minutes to 301 minutes. 

These reductions are at levels that provide a significant impact on producer’s operations 

and illustrate the ability of computer-optimization to provide important benefits to 

producers. 
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CHAPTER 5:  OBJECTIVE 4: FIELD LOGISTICS SIMULATION COMPARING 

FIELD EFFICIENCY AND FIELD CAPACITIES BETWEEN LARGER AND 

SMALLER EQUIPMENT 

5.1   SUMMARY 

Deploying multiple vehicles, as opposed to an individual large vehicle, to 

complete a given agricultural operation is a way to improve effective field capacity. 

Using multiple smaller machines will mitigate the risk of soil compaction and provides 

more flexibility in machinery management, compared to utilizing a single larger machine. 

In this work, comparison of field work efficiencies was performed when a single larger 

machine is replaced with a number of smaller machines of the same total size. To that 

end, the task of a single machine in three real-world fields was converted and assigned to 

two small machines and three smaller machines. Initial path allocation and path 

scheduling for the involved vehicles was obtained through a modified version of Clarke-

Wright saving method. Then, the solutions were post-processed by the meta-heuristic 

Tabu Search procedure to improve the results. In all three fields that were investigated 

the time to complete the field work was reduced, by up to 11%, when replacing a single 

vehicle with a number of smaller vehicles to carry out the same operation. Results of the 

method demonstrated consistent improvements for the effective field capacity (by up to 

16%) and field efficiency (by up to 9.5%) when a larger machine was replaced with 

multiple equivalent smaller machines. These reductions highlighted the importance of 

considering multiple small vehicles in order to conduct agricultural operations.  

5.2  INTRODUCTION 

One of the common and frequently used approaches in improving effective field 

capacity is using a single vehicle with faster speed and bigger size and width, i.e. higher 

throughput. Even though this approach is more intuitive and popular among farmers, 

there are several impediments to the use of larger and faster agricultural machinery. Soil 

compaction by large, heavy machinery is one concern (Blackmore et al., 2002; Hamza & 

Anderson, 2005). The soil compaction associated with mechanized farm operations is 

characterized by the decrease in soil porosity underneath the wheel and the formation of 

ruts at the soil surface. As such, the degree of the compaction depends directly on the 
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axel loadings, tire dimensions, and the velocity of a vehicle (Lebert, Burger, & Horn, 

1989). This is true even in no-till systems, as in a single pass with a planter more that 

30% of the coverage area can be affected by machinery travel (Tullberg, 1990). Heavy 

machinery can also cause subsoil compaction in addition to compaction of the top soil 

(Raper, Reeves, & Burt, 1998). 

When focusing on economies of scale, one large vehicle is often cheaper than 

multiple smaller ones. However, obsolescence can impact newer technologies, and as 

such, the vehicle life with newer machines can be adversely affected (Shearer et al., 

2010b). Additionally, the long-term historical focus on improving field capacity through 

the use of larger and faster machines means that one cannot expect substantial further 

improvements in effectiveness of modern, bigger and faster agricultural machinery 

(Dionysis D Bochtis et al., 2014). Smaller machines could also potentially see advantages 

in the economies of scale during manufacturing as the largest agricultural machines are 

currently only produced in limited quantities.  

Even though deploying large equipment requires less labor, sometimes this 

approach places farmers in a quandary. Smaller and complex fields are difficult to farm 

with large implements. One of the largest (widest working width) pieces of modern 

agricultural machinery is the sprayer. Luck, Zandonadi, Luck, and Shearer (2010) using a 

sprayer with a 24.8 m boom width in a wide range of field shapes and sizes found 12.4% 

over-application on average. The larger equipment creates off-rate application errors as 

the velocity, pressure, and height variations increase across the wider booms. Relying on 

a single large piece of equipment means that there will be less redundancy in the case of 

equipment failure (Blackmore et al., 2002). 

The other method of improving the effective field capacity is to increase the 

number of machines being used at one time, which is common on most large-scale farms 

around the world (Blackmore et al., 2002; Shearer et al., 2010a). Traditionally, this is 

used by producers looking for greater field capacity than that provided by a single unit of 

the largest machines. However, using multiple machines allows the use of smaller 

machines with less compaction risk. It also provides redundancy in the event of an 

equipment failure and more flexibility in machinery management. In many situations, 

using multiple smaller vehicles in the same environment is a good strategy to handle very 
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irregular shaped or small fields. And another significant benefit of smaller machines will 

be the ability of manufacturers and producers to manage the liability of fully autonomous 

machines (Blackmore et al., 2002; Jones, 2014). However, there are a number of issues 

associated with the use of multiple smaller machines performing the same operation— 

labor cost and logistics. 

Currently, reducing labor costs has been a primary driver of the move toward 

larger equipment. Typically, one operator is required for each machine performing 

agricultural tasks, and using more machines requires more people. However, modern 

advances in sensing, information, and communication technologies have paved the way 

for fully autonomous vehicles. Noguchi, Will, Reid, and Zhang (2004) developed 

algorithms for a master-slave multi-robot system performing farm operations. Control of 

the master vehicle is manual and the autonomous slave vehicle follows the master. S. 

Vougioukas (2009) put forward a master-slave method for more than two vehicles. In his 

proposal a team of robots as slaves would be coordinated through the motion 

characteristics specified by the master one. According to simulations, the method verifies 

the ability to coordinate the motion of a fleet of robots, even though no experiments are 

implemented with the proposed method. The concept of master-slave multi-robot can be 

employed for particular agricultural operations such as grain harvesting in which at least 

two machines are required to work in a coordinated fashion. The ability to manage the 

whole operation by only one operator from the master machine, i.e. the harvester, would 

reduce the labor cost significantly.  

Johnson et al. (2009) designed behavior and actions for a team of three tractors to 

perform harvest operation of peat moss. The team carried out approximately 100 field test 

harvesting missions during one season. To accomplish mission, commanding and 

monitoring was done remotely by a human operator as a team leader. Further, a large 

European project, Robot Fleets for Highly Effective Agriculture and Forestry 

Management, has specifically focused on the development of a fleet of robots capable of 

autonomous weeding tasks (Emmi et al., 2013). Based on current research, the next 

generation of autonomous agricultural machinery could be designed with robust control 

systems that enable reducing the number of operators from one for each vehicle to one 

remotely for all the vehicles accomplishing the same task in a collective fashion. These 



 

82 

 

technologies also will bring about a “paradigm shift” in the size of field machinery, 

according to Shearer et al. (2010a).  

Although the development of unmanned agricultural machines could remove the 

labor constraint on using multiple machines, logistics is still an issue to consider with the 

use of multiple vehicles. Deployment of multiple vehicles in the same area increases the 

chance of collision, as S. G. Vougioukas (2012) explored through the coordination of a 

team of autonomous agricultural vehicles in master-salve and peer-to-peer modes. A team 

of experienced human operators working together are capable of developing routes for 

machines that are reasonably efficient and avoid collisions. Removing these operators 

through automation may reduce the labor costs, but it requires that the new machines be 

capable of solving these logistic challenges through algorithms. Several algorithms have 

been proposed for this routing challenge and many are based on the classic computer 

science problem, the Vehicle Routing Problem (Johnson et al., 2009).  

All thing considered, replacing a larger machine with a number of smaller 

machines seems to be capable of removing most of the drawbacks of utilizing large 

machines to improve effective field capacity. In this paper, we will study the field 

logistics of a larger machine and a number of smaller ones in terms of effective field 

capacity and field efficiency through simulations. 

5.3  MATERIALS AND METHODS 

Looking at a field as a system to investigate the characteristics of deploying a 

single larger vehicle or a number of smaller ones, it is rational to replace a single larger 

vehicle with multiple smaller ones. To conduct a field operation, the principle difference 

between a big machine and small one is the power to operate larger implements. That is, 

the primary operational difference is implement width. Hence, to carry out this work, a 

number of steps were taken. In the first step, working paths of the test fields were 

generated according to the implement width for a variety of machine sizes. In the next 

step, the field paths were assigned and scheduled to the available vehicles. For each field, 

the number of vehicles multiplied by the width of the implement was a constant so 

theoretical field capacity was identical. Finally, the resulting field work scenarios were 

evaluated for field efficiency and field capacity. 
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5.3.1   Task Conversion 

Field conversion for deploying a number of small vehicles fundamentally requires 

re-generation of field paths according to the size of utilized vehicles. This, in the first 

step, necessitates preserving field properties including geographical position, boundary, 

and the assigned headland layout of the field, in addition to path characteristics such as 

direction and paths pattern. Then the field paths should be re-generated so the entire field 

is treated without overlap using the new implement widths. 

5.3.2   Machinery Operation Parameters of Interest 

The Effective Field Capacity (EFC) and Field Efficiency (FE) are the parameters 

of interest to producers. As such, the comparison of vehicle replacement is performed 

with respect to these parameters.  EFC represents how much land area is worked in a 

specific period of time (D. D. Bochtis & Sørensen, 2009; Seyyedhasani & Dvorak, 2017). 

It varies depending on operating conditions and field shape and size. Factors that adjust 

operating speed (conditions) or change non-working time (field shape) will create 

differences in time requirements without changing the land area that is ultimately 

worked. When EFC is considered at the field scale, it can be calculated as 

(5.1) 

EFC  =
𝑎𝑟𝑒𝑎𝑓𝑖𝑒𝑙𝑑

𝑡𝑖𝑚𝑒𝑙𝑎𝑠𝑡
 

where EFC is the land area that is worked in a given period of time (ha h-1), 

𝑎𝑟𝑒𝑎𝑓𝑖𝑒𝑙𝑑 is the area of the field (ha), and 𝑡𝑖𝑚𝑒𝑙𝑎𝑠𝑡 is the time required to finish the field 

(h).  

With multiple machines that all start at the same time, 𝑡𝑖𝑚𝑒𝑙𝑎𝑠𝑡 becomes the time 

required for the final machine to finish its work in the field. As equation (5.1) 

demonstrates, improving effective field capacity requires reducing the field completion 

time. 

FE is another vital field performance parameter. It is the ratio between the 

machine productivity in actual field conditions and the theoretical maximum machine 

productivity (American Society of Agricultural and Biological Engineers, 2011). 

Maximum productivity assumes a machine is constantly engaged at maximum speed and 
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utilizing the full width of the implement. Productivity in actual field conditions is reduced 

by the non-working time required to turn in headlands in addition to other issues. As with 

EFC, FE is affected by operating conditions and field shape characteristics. FE can also 

be determined based on the ratio of the time a machine operates at maximum productivity 

to the total time required to complete a  field operation (American Society of Agricultural 

and Biological Engineers, 2011). When considered at the field level with multiple 

machines, FE can be calculated as 

(5.2) 

 

FE =
𝑡𝑖𝑚𝑒𝑎𝑙𝑙,𝑡ℎ𝑒𝑜𝑟𝑎𝑡𝑖𝑐𝑎𝑙

𝑡𝑖𝑚𝑒𝑎𝑙𝑙
 

Where FE is field efficiency (expressed without units as a ratio), 

𝑡𝑖𝑚𝑒𝑎𝑙𝑙,𝑡ℎ𝑒𝑜𝑟𝑎𝑡𝑖𝑐𝑎𝑙 is the amount of time it would take to work an area of the same size as 

the field assuming all machines were operating continuously at maximum productivity 

(h), and 𝑡𝑖𝑚𝑒𝑎𝑙𝑙, is the total amount of time all the machines actually had to work to 

complete the field (h).  

As such, decreasing the total machine work time in the field will result in 

increasing the field efficiency. It is possible to calculate the times required by the FE 

equation based on vehicle travel routes using vehicle routing notation as:  

(5.3) 

𝑡𝑖𝑚𝑒𝑎𝑙𝑙,𝑡ℎ𝑒𝑜𝑟𝑡𝑖𝑐𝑎𝑙 = ∑ ∑ 𝑐𝑎𝑏

𝑏∈𝑁|𝑏>𝑎𝑎∈𝑁

𝑘𝑎𝑏 

and 

(5.4) 

𝑡𝑖𝑚𝑒𝑎𝑙𝑙 = ∑ ∑ 𝑐𝑎𝑏𝑥𝑎𝑏

𝑏∈𝑁𝑎∈𝑁

 

Where N is the set of all points (or nodes) defining the ends of all paths (working 

and non-working for all vehicles) in the field, a and b are points defining the ends of field 

paths (for working paths, these can be considered the points A and B in A-B lines; for 

non-working paths, this is A and B points on different A-B lines), 𝑐𝑎𝑏 is the time required 

to work between points a and b (h), 𝑥𝑎𝑏 is 1 if that path travelled from point a to b 
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appears in the route assigned to a vehicle and 𝑘𝑎𝑏 is 1 if the path traveled between nodes 

a and b by vehicles is a working path and 0 for non-working paths.  

Improvement of EFC and FE for any specific field operation is contingent upon 

reducing 𝑡𝑖𝑚𝑒𝑙𝑎𝑠𝑡 and 𝑡𝑖𝑚𝑒𝑎𝑙𝑙 respectively.  

 

5.3.3   Experiment Design 

5.3.3.1 Test Conditions 

Three different fields were selected with differences in shape, size and 

complexity. One field was a test field used as an example in path planning research. For 

this field, the working paths follow the layout determined by I. A. Hameed et al. (2011) 

to be optimal. The other two fields are located in Kentucky, USA and the working paths 

are based on actual tractor driving paths recorded using fleet telematics equipment. The 

recorded paths (or suggested optimal paths) were used to create the single vehicle 

scenario. Then additional test scenarios were created with two and three machines 

replacing the single machine. In the scenarios, all machines were considered to operate at 

the same speed, and the implement widths for the two and three machine scenarios were 

one-half and one-third, respectively, of the width of the implement in the one machine 

scenario. Thus, every scenario had the same maximum theoretical productivity and 

capacity. 

Maintaining identical maximum theoretical capacity between scenarios enabled 

direct comparisons of EFC and EF. It also ensured that routes in the field could be 

preserved between scenarios with different implement widths. For the scenarios with 

implements one-half and one-third of the original widths, one or two paths, respectively, 

were added between the original paths. Thus, effects stemming from merely shifting 

paths were avoided. 

The routes taken by machines while covering all of the field work paths can have 

a dramatic impact on field efficiency. The importance of effective routing increases as the 

field shapes become more complicated and the number of vehicles increases 

(Seyyedhasani & Dvorak, 2017). Therefore, the route optimization procedure from 

Seyyedhasani and Dvorak (2017) based on the Vehicle Routing Problem (VRP) was used 

to generate the vehicle routes in all of these scenarios. This procedure attempts to 
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minimize both 𝑡𝑖𝑚𝑒𝑎𝑙𝑙 and 𝑡𝑖𝑚𝑒𝑙𝑎𝑠𝑡, so it incorporates a vehicle travel model used to 

estimate the 𝑡𝑖𝑚𝑒𝑎𝑙𝑙 and 𝑡𝑖𝑚𝑒𝑙𝑎𝑠𝑡 of any given routing procedure. This model was 

validated with field testing (Seyyedhasani & Dvorak, in review). 

Single Field Test 

This part of the experiment focuses on the common situation in which field work 

is being conducted in a single contiguous area. Two fields from real world farms were 

selected. The first field is from path planning optimization research where it was used to 

illustrate optimal paths (I. A. Hameed et al., 2011). It was also employed by 

Seyyedhasani and Dvorak (2016) to generate optimal routes for covering the entire field 

via different number of vehicles (1, 2, 3, 5, or 10 vehicles) through the developed model 

(Figure 5-1a). The field is located in the Northern part of Jutland, Denmark 

[56.546,9.507]. Since this field is from literature instead of recordings of actual tractor 

paths, it was assumed that the operation in this field was performed at 7.2 km/h in order 

to express results in terms of times. The field consists of 63 paths surrounded with two 

borders as a headland, performing the operations with a 9 m wide implement. Table 5-1 

represents the geographical properties of the fields investigated. 

The second field is adopted from a farm located in Russellville, Kentucky 

[36.793, -86.77] in which application of anhydrous ammonia has been conducted. The 

implement had a 19 m working width and worked at 8.2 km/h. The route followed by the 

driver was monitored through data loggers mounted on the vehicle’s CAN bus (Figure 

5-1b). Then this route was converted into a vehicle routing, node-based representation 

suitable for application of route optimization procedure by Seyyedhasani and Dvorak 

(2017).  
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Figure 5-1. (a) Jutland field, (b) Russellville field  

Multi-Field Test 

The third experiment was conducted at the University of Kentucky C. Oran Little 

Research Center in Versailles, Kentucky [38.074,-84.737]. The task was a mowing 

operation of corn stalks performed at 7.5 km/h with an implement width of 4.57 m on two 

separate but contiguous fields. As with the Russellville field test, the operation was 

monitored through data loggers, and the actual driven route was converted into node-

based representation for application of VRP solution methods. Figure 5-2 displays the 

fields in which the larger field is 12.1 ha and the smaller field is 3.5 ha.  

 

 

Figure 5-2. Versailles field 
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Table 5-1. Geographical properties of the test fields 

Test Field 
Total Path 

Length (m) 

Number of 

Paths 

Longest 

Path (m) 
Area (ha) 

Jutland Field 17,250 63 707 17.2 

Russellville Field 41,253 75 857 71.5 

Versailles Field 35,549 119 619 15.6 

 

5.4  RESULTS AND DISCUSSION 

5.4.1   Task Conversion 

The conversion of the fields created appropriate working paths for 1, 2, or 3 

vehicles to operate on the same field. As shown in Figure 5-3, this conversion preserved 

the field characteristics and path pattern.  

 

a    b    c  
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Figure 5-3. Original vehicle paths (a) re-generated to utilize (b) 2 (c) 3 smaller vehicles 

Working widths and other properties of the corresponding fields are represented 

in Table 5-2. As demonstrated working width has reduced to one-half and one-third of 

the working width of the original machine. The number of paths and total length of paths 

did not precisely double or triple with the number of vehicles. This is due to the 

irregularities in field shape. To ensure field coverage with a large implement, it was at 

times necessary to work a path that did not utilize the full width of the implement or to 

continue the path for a longer distance into the headlands. The number of paths in a field 

is an interesting and important parameter that indicates how finely a field was divided. 

The original implement used in the Versailles field was smaller in relation to field size 

and produced more paths in comparison with the other two fields. 
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Table 5-2. Characteristic of different number of machines working together and their respective fields properties 

Field 

Working Width (m) Total Path Length (m) Number of Paths 

1 

Machine 

2 

Machines 

3 

Machines 

1 

Machine 

2 

Machines 

3 

Machines 

1 

Machine 

2 

Machines 

3 

Machines 

Jutland, 

Denmark 
9.00 4.50 2.25 17,250 33,475 49,674 63 130 197 

Russellville, 

Kentucky 
18.3 9.15 6.1 41,253 80,482 119,726 75 155 234 

Versailles, 

Kentucky 
4.6 2.3 1.53 35,549 69,815 103,966 119 246 372 



 

91 

 

 

5.4.1.1 Simulation-Based Solution 

Figure 5-4 provides examples of the solutions generated when three smaller 

vehicles complete the operations (each color line represents one vehicle’s travel). The 

computer procedure spawned the solutions through both the modified CW algorithm and 

the TS algorithm for the Jutland, Russellville, and Versailles fields. As expected, the 

modified Clarke-Wright algorithm closely grouped the paths assigned to each vehicle. 

The modified Clarke-Wright algorithm generated a solution not unlike that used by many 

producers today, where one vehicle sets an A-B line and provides the coordinates to the 

other vehicles. The drivers then try to divide the field evenly and drive to their sections, 

which they will work until they meet the work performed by the other drivers. Tabu 

Search further eliminated inefficient non-working travel and utilized border passes in the 

headlands to distribute vehicles to the far side of the field (Figure 5-4d-f). Also with Tabu 

Search, vehicles do not always proceed from one path to a contiguous path as 

redistributing some paths enabled a more even distribution of work (Figure 5-4e), and 

allowed field to be completed more quickly overall. 

a     b    c 

 

d     e        f 
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Figure 5-4. Model-based generated routes for 3 vehicles working together on the fields 

located in (a,d) Jutland (b,e) Russellville (c,f) Versailles. Upper row (a-c) generated by 

Modified Clarke-Wright algorithm and lower row (d-f) by Tabu Search procedure. 

5.4.2   Field Completion Time 

The completion time of the field operations always decreased or remained 

constant with increasing numbers of vehicles when the Tabu Search optimization was 

used (Figure 5-5 and Table 5-3). The less optimal routing provided by the modified 

Clarke-Wright algorithm did not always provide a reduction in completion time when 

increasing vehicle numbers. With the modified Clarke-Wright algorithm, there were 

continuous decreases in the Jutland and Versailles fields. However, three vehicles were 

fastest and two vehicles slowest in the Russellville field. This illustrates the importance 

of an effective route optimization algorithm if one hopes to see improvements in field 

completion times by increasing the number of vehicles. Final solutions provided by the 

Tabu Search demonstrated a continuous reduction in the field completion time as number 

of vehicles increased for all three fields, by up to 11% (Figure 5-5). 
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Figure 5-5. Field completion time reduction through replacing a single reference machine 

with two and three smaller ones, in addition to field completion time while different 

number of vehicles are working together to conduct the operation in (a) Jutland (b) 

Russellville (c) Versailles field through computer generated routings of MCW and TS 

procedures. 
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Table 5-3. Field completion time improvement when deploying relatively smaller 

vehicles with routing based on Tabu Search 

Field 
Field Completion Time 

1 Machine 2 Machines 3 Machines 

 
(min) (min) 

(Improvement 
from 1 machine) 

(min) 
(Improvement 

from 1 machine) 

Jutland, 
Denmark 

171 154 9.9% 153 11% 

Russellville, 
Kentucky 

353 327 7.4% 313 11% 

Versailles, 
Kentucky 

320 302 5.6% 294 8.1% 

 

5.4.3   Field Capacity and Efficiency 

5.4.3.1 Effective Field Capacity 

The effective field capacity improved as the number of smaller machines replaced 

with the reference single machine increased (Table 5-4). There was an interesting trend in 

the improvement of this field work parameter in that the second stage of the downsizing 

(replacing three smaller machines with the two small machines) increased the parameter 

by nearly 50% of the first stage (replacing two small machines with the reference single 

machine), for all the fields. This indicates the magnitude of change rate with respect to 

the field capacity is predominantly and linearly dependent upon the ratio of downsizing. 

The results also illustrated the magnitude of change rate was the highest for the Jutland 

field, by 16%, and the lowest for the Versailles field, by 8.5%. This stems from the 

number of turns as well as the type of turns that the vehicles take to cover the 

corresponding field. The Versailles field was already finely divided with the implement 

widths from the original tractor routes so the improvement from increased size reductions 

was less.  
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Table 5-4. Field work parameters while smaller vehicles being utilized 

Parameter Field 

1 Machine 2 Machines 3 Machines 

Parameter Parameter 
(Improvement 

from 1 machine) 
Parameter 

(Improvement 

from 1 machine) 

Effective Field 

Capacity 

(ha h-1) 

Jutland, 

Denmark 
6.29 6.98 11% 7.30 16% 

Russellville, 

Kentucky 
12.1 13.1 8.3% 13.7 13% 

Versailles, 

Kentucky 
2.93 3.10 5.8% 3.18 8.5% 

Field Efficiency 

(%) 

 

Jutland, 

Denmark 
84 90.5 7.7% 90.1 7.3% 

Russellville, 

Kentucky 
85.4 90.1 5.5% 93.4 9.5% 

Versailles, 

Kentucky 
88.9 92.6 4.2% 94.4 6.2% 
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5.4.3.2 Field Efficiency 

As with the field capacity, field efficiency as another parameter of interest 

consistently improved due to the replacement. Although the field efficiency using the 

original machine was above 80%, using smaller machines could still improve this 

parameter more than 9% (Table 5-4). There were larger increases in field efficiency when 

the starting efficiency was lower. This was not unexpected as the amount of the 

efficiency increases, the improvements happen at a slower rate. Finally, downsizing the 

machine did always produce increases in field efficiency. While replacing the single 

machine with multiple smaller ones did always increase field efficiency, in the Jutland 

field, the highest field efficiency was obtained with two vehicles rather than three. 

For completion time, field efficiency and field capacity, the field in Versailles saw 

smaller percentage improvements than the other fields. This is likely because the small 

original implement width in relation to the field area already produced more paths in the 

field, which enabled the original solution to recognize the benefits of reduced double 

coverage in the headlands and other similar efficiencies. An interesting area of further 

research would be to significantly expand this investigation and attempt to determine how 

much the improvement with multiple vehicles is based on smaller implements and how 

much is based on more effective routing with multiple vehicles providing increased 

flexibility. 

5.5   CONCLUSIONS 

In this work replacing of an individual original machine with a number of smaller 

machines was studied in terms of the field work parameters. To that end, the field task for 

a single larger machine was converted into the task of two and three smaller vehicles. 

Newly re-generated working paths reduced working width to one-half and one-third of 

the width of the original machine, yet preserved the geographical properties of the fields. 

New routes were generated using a modified Clarke-Wright algorithm and a Tabu Search 

algorithm and a fitness function that sought improvements in both field efficiency and 

effective field capacity (respectively total machine time and field completion time).  

In all three fields the time to complete the field work reduced, up to 11%, when a 

single larger vehicle was replaced by a number of smaller vehicles to carry out the same 

operation. The reductions varied with respect to the number of engaged vehicles and 
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shape complexity of the fields. It was necessary to use Tabu Search to produce the new 

routes as the simpler CW algorithm did not always provide improvements. Effective field 

capacity also saw improvements of up to 16% as a single vehicle was replaced with 

multiple smaller ones. Additionally, the field efficiency metric improved when replacing 

a single large vehicle with smaller ones, by up to 9.5%. Finally, improvements from 

using multiple machines were larger when the field efficiency of the original route was 

lower. 
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CHAPTER 6:  SUMMARY AND CONCLUSIONS 

The primary goal of this dissertation was to provide solutions for logistics in 

agriculture, as computer scientists, operations management specialists and others 

researching logistics have long realized the importance of efficient routing of multiple 

vehicles. The VRP is a valuable tool for optimizing path allocation to finish fields as 

quickly as possible with multiple vehicles. To that end, the allocation and ordering of 

field paths among a number of involved machines have been transformed into a solvable 

Vehicle Routing Problem (VRP). A basic heuristic algorithm (a modified form of the 

Clarke-Wright algorithm) and a meta-heuristic algorithm, Tabu Search, were employed to 

solve the VRP. In addition, the parameters of the VRP were changed into a dynamic, 

multi-depot representation to enable to re-route the vehicle even as the operation is 

ongoing. Finally, the accuracy of the VRP representation of field works and the ability of 

this optimization procedure to reduce field work times verified. Experiments were 

conducted using three tractors during a rotary mowing operation. Furthermore, computer 

simulations were conducted for various fields with different characteristics to investigate 

the field work parameters when replace an individual big machine with a number of 

smaller machines.  

6.1   MAJOR CONCLUSIONS 

Major findings from this research are summarized as follows: 

 The standard field work problem can be transformed into a VRP. This 

transformation enabled optimization of field work parameters when multiple 

vehicles are working together, based on criteria important to farmers. 

 Tabu Search algorithm as a meta-heuristic procedure and Clark-Wright algorithm 

as a heuristic procedure always generated feasible solutions for the VRP. 

Solutions provided by the Tabu Search yielded more optimum results than the 

exact solutions of the Clark-Wright algorithm. 

 Tabu Search yielded better solutions as larger numbers of vehicles are deployed in 

more complicated fields. 

 The dynamic, multi-depot VRP can be used as route updating procedure of 

multiple vehicles in agriculture fields while the operation is in progress. In all 
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three common scenarios of 1) re-routing following changes in the number of 

vehicles, 2) re-routing arising from unexpected behaviors (working speed) of the 

vehicles, and 3) re-routing due to changes in area coverage, this model was able to 

produce new optimized routes. 

 The magnitude of either loss or improvement of the field work parameters, due to 

re-routing, changed according to the trigger event.  

 The magnitude of the changes in the field work parameters changed based on 

when the trigger event took place. In general, the procedure was able to provide 

better outcomes if the change in field conditions occurred at a point in time when 

less of the field was complete and there was more flexibility in the final routing. 

 A field work operation when different number of vehicles are working together 

can be transformed into a vehicle routing problem effectively. 

 A reduction in both time to complete the field and the total operating time of the 

vehicles through the computer-generated optimized routes was confirmed. 

 The computer model accurately predicted field working times of different 

routings. 

 The task of a single large machine in real-world fields can be converted and 

assigned to a number of smaller machines. 

 In investigated examples, this replacement of a large machine with 2 or 3 smaller 

machines improved the effective field capacity, by 7%, and the field efficiency, 

by 3.8%. 

 Time reduction in field completion time varied with respect to the number of 

engaged vehicles and complexity of the fields in terms of shape, when replacing 

an individual large machine with multiple small machines. 
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CHAPTER 7:  FUTURE WORK 

Following changes in the parameters of the VRP, the dynamic, multi-depot VRP 

was shown to be able to reset the paths allocated to each vehicle involved in the operation 

at the same time when the operation was ongoing. The effective field capacity, as the 

primary parameter of interest, was maintained within ±5% of the pre-determined solution 

in half of the rerouting scenarios. An important area of further study would be to identify 

the factors that make it difficult for the optimization model to produce better routes. As 

such by mitigating those factors, the procedure would be able to maintain effective field 

capacity within ±5% for the other half of the scenarios when resetting of the routes is 

commanded.  

The solutions from the Modified Clarke-Wright were calculated so quickly that 

on modern processers, the solution was generated nearly instantaneously. Tabu Search 

was much more computationally expensive. The total run time to generate an acceptable 

solution was highly variable and depended on field complexity, number of vehicles and 

the initial solution used to seed the Tabu Search. Considering the importance of time for 

both farmers and machinery owners, further research needs to be conducted on reducing 

the computation time to near real-time. As such, the procedure would be used in real-

world operation.  

Computer simulations in this work demonstrated noticeable improvements in the 

effective field capacity and the field efficiency when an individual big machine is 

replaced with a number of smaller machines. However, initial cost and annual operating 

cost, such as labor cost, repairs and maintenance, and fuel consumption, are important 

factors for machinery managers to consider this replacement paradigm in reality. Hence, 

further studies are required to investigate the feasibility of this transition by integrating 

benefits achieved from field work efficiencies and the premiums arisen from this 

replacement.  

Throughout this work, computer simulations revealed various magnitudes of 

improvements for the field work efficiencies when different numbers of vehicles were 

working together to complete the operation. A number of important factors such as the 

number of vehicles, the size of the vehicles, the shape of field, and the size of the field 

influenced the magnitude of improvements. Therefore, a research needs to be carried out 
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to determine the optimal number of vehicles with the same kinematic properties, such as 

working width and size. This will provide machinery managers with a tool to easier make 

decisions and deploy minimum number of vehicles while maintaining the field work 

efficiencies similar to the optima.  
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