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ABSTRACT OF THESIS 

 

 
STORM HYDROGRAPH CHARACTERISTICS AND CURVE NUMBERS OF 

LOOSE-DUMPED MINE SPOIL IN EASTERN KENTUCKY 
 

Traditional mine reclamation often results in highly compacted lands which 
prohibit tree growth and survival, reduce infiltration rates, and increase runoff. In 2005, 
six 0.4 ha plots were constructed on the Bent Mountain surface mine in eastern KY by 
the University of Kentucky in accordance with Forestry Reclamation Approach’s low 
compaction guidelines. The plots consisted of two replications each of (1) brown 
weathered sandstone (BROWN), (2) gray unweathered sandstone (GRAY), (3) and a 
combination of both sandstones and shales (MIXED). The goal of this project was to 
assess the hydrologic performance on a storm event basis (monitoring years 2012-2013) 
of the plots. It was hypothesized that the increase in tree growth on the plots, especially in 
BROWN, would result in storm-based hydrological changes since plot construction. 
Results showed that no significant differences were found between the 2005-2006 and 
2012-2013 monitoring periods for the storm parameters of discharge volume, discharge 
duration, and curve number. A significant increase was noted for peak discharge, lag 
time, and response time. No significant differences were found between spoil types in 
spite of the difference in vegetative cover. Results suggest that placement of spoil has the 
greatest influence over storm hydrology at this point in time. 

 
KEYWORDS: Storm hydrology, curve number, Forestry Reclamation Approach, surface 
mining, reclamation. 
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION  

 The Appalachian coal fields stretch from Alabama to Pennsylvania covering parts 

of Alabama, Kentucky, Ohio, Tennessee, Virginia and West Virginia (Figure 1.1). This 

region encompasses over 186,000 km2 of which over 80% is forested (Vogel, 1981; 

Zipper et al., 2011). From 1973 to 2000, mining was the largest, direct anthropogenic 

influence on land cover change within the region, in terms of material removed (Sayler, 

2012). As of 2012, Kentucky was the third largest coal producing state (Wyoming was 

first and West Virginia was second), employing over 11,800 people in the eastern part of 

the state (USEIA, 2013). However, employment levels for the eastern part of the state 

decreased by nearly 20% due in part to economic competition from the natural gas sector 

(USEIA, 2012; 2013; Estep, 2014; Rocco, 2014). Regulations, such as the proposed 

Clean Power Plan from the Environmental Protection Agency (EPA) (2014), are also 

expected to negatively impact coal mining jobs. Although mining has and continues to 

decrease in the Appalachian region, hundreds of thousands of hectares of previously 

mined lands remain as grass and shrub lands and not forested ecosystems (Chaney et al., 

1995; Zipper et al., 2011; Sayler, 2012). 

The Surface Mining Control and Reclamation Act (SMCRA) of 1977 requires the 

restoration of mined lands largely to pre-mining levels with a focus on reconstructing 

original or approximate original contours and stabilizing mine spoils to prevent erosion. 

The common result of the law was to produce highly compacted lands which provide 

poor conditions for tree growth but provide a suitable habitat for grasses and shrubs 

(Graves et al., 2000; Angel et al., 2008; Zipper et al. 2011). Hence, much of the post-

SMCRA reclaimed mined lands were converted from forests to herbaceous communities 

(Burger, et al. 2011; Zipper et al., 2011). Since then, efforts such as the Appalachia 

Regional Reforestation Initiative (ARRI) have focused on planting high value hardwood 

trees and increasing tree survival rates and natural succession (Angel et al., 2005; Angel 

et al., 2008). 
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Figure 1.1: The Appalachian coal fields extend from Alabama to Pennsylvania with 

forest serving as the dominate land cover. 
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 The Forestry Reclamation Approach (FRA) was created in an effort to re-

establish native hardwood forests on mine sites (Angel et al., 2005). The FRA consists of 

five steps for re-establishing a forested ecosystem on mined lands, one of which is the use 

of a non-compacted topsoil or topsoil substitute (i.e. loose-dumped spoil) as a planting 

medium (Burger, et al. 2005). While the FRA is relatively young, research to date 

indicates it has been a successful tool in the mined land reforestation effort in regards to 

vegetation, hydrology and water quality (Graves et al., 2000; Burger et al., 2005; Angel 

et al., 2008; Taylor et al., 2008; Emerson et al., 2009; Sena, 2014) (Figure 1.2). However, 

research on hydrologic characteristics, particularly storm-based, has only been conducted 

on a young (1-2 year old) forest. Hence, the effect of interception and storage was not 

realized at that time, but may be significant after a 7-8 year period (Taylor et al., 2009b).  

  

(a) 

(b) 

Figure 1.2: Tree growth on brown, weathered sandstone, placed in accordance with FRA, 

(a) immediately after planting and (b) eight years after planting. 
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1.2 OBJECTIVES 

This project was conducted to evaluate the storm hydrologic characteristics (rainfall-

runoff relationships) on 7-8 year old plots consisting of either (1) brown, weathered 

sandstone (BROWN), (2) gray, unweathered sandstone (GRAY), and (3) a mixture of 

BROWN and GRAY and shale (MIXED). The objectives for the project were: 

1. Determine and compare the storm hydrologic characteristics for these three loose 

dumped spoil types (years 7 and 8) and compare the results to those from years 0 and 

1 (Chapter 2).  

2. Develop and compare curve numbers for the loose dumped spoil types (years 7 and 8) 

and compare the results to those from years 0 and 1 as well as to those from a 

forested, reference watershed (Chapter 3). 

1.3 ORGANIZATION OF THESIS 

Chapter 1 contains an introduction of the research problems and research objectives. 

Chapters 2 and 3 provide a detailed description of the work done to satisfy the objectives 

of this thesis. Chapter 4 discusses the conclusions of the research while Chapter 5 

explores options for future work.  
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CHAPTER 2: STORM HYDROGRAPH CHARACTERISTICS OF A YOUNG 

FOREST ESTABLISHED ON LOOSE-DUMPED SPOIL IN EASTERN 

KENTUCKY 

2.1 INTRODUCTION 

 Since the passage of the Surface Mining Control and Reclamation Act (SMCRA) 

of 1977, over 600,000 ha of land, much of it forested, has been mined in the Appalachian 

coal fields of the eastern United States (Zipper et al., 2011). Once mined, these lands are 

reclaimed largely not as forests but as herbaceous communities dominated by grasses and 

shrubs (Chaney et al., 1995; Zipper et al., 2011). The reason for the transformation in 

vegetation type is due in large part to the high levels of surface compaction associated 

with traditional mine reclamation techniques which inhibit tree growth and survival and 

favor herbaceous communities (Graves et al., 2000; Conrad et al., 2002; Burger et al., 

2011; Zipper et al., 2011).  

Along with the change from a forested ecosystem to a herbaceous one, compacted 

mine lands also result in a myriad of changes in the hydrology (Ritter and Gardner 1993; 

Negely and Eshleman, 2006; McCormick et al., 2009; McCormick and Eshleman 2011) 

such increased runoff volumes and peak flows (Dick et al., 1983; Weiss and Razem, 

1984; Bonta et al., 1997; Bonta and Dick, 2003) which are primarily caused by 

significant reductions in soil infiltration rates (Jorgensen and Gardner, 1987; Guebert and 

Gardner, 2001) though changes in evapotranspiration rates associated with different 

vegetation communities may also play a role (Hornbeck et al., 1970; Bosch and Hewlett, 

1982). Traditional mine reclamation techniques, as noted by Ferrari et al. (2009), can 

produce a hydrologic state similar to that resulting from the urbanization of a watershed.  

Forested ecosystems such as those found in Central Appalachian ecoregion of the United 

States provide many valuable goods and services related to water quantity and quality, 

habitat, carbon sequestration, and the like (Turner and Daily, 2008; Fields-Johnson., 

2011; Zipper et al., 2011). How to best reclaim mined lands to support tree growth and 

survival has been the focus of much research in Central Appalachia and has resulted in 

the development of the Forestry Reclamation Approach (FRA) (Burger et al., 2005). The 

FRA consists of five steps: (1) selection of a suitable medium for tree growth by using 
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best material available with topsoil or weathered sandstone preferred, (2) minimizing 

compaction of the medium by allowing only one or two dozer passes, (3) use of minimal, 

tree-compatible ground cover, (4) use of early successional and commercially valuable 

tree species, and (5) use proper tree planting techniques. 

Research evaluating the ability of the FRA to re-establish forested ecosystems has 

largely examined tree growth and survival (Angel et al., 2008; Emerson et al., 2009; 

Showalter et al., 2010; Wilson-Kokes et al., 2013; Sena, 2014) though some studies have 

examined soil genesis (Miller et al., 2012), water quality (Agouridis et al., 2012; Sena, 

2014) and hydrology (Taylor et al., 2009a; Taylor et al., 2009b; Sena 2014). With regards 

to hydrology, Taylor et al. (2009b) examined storm hydrograph characteristics (discharge 

volume, peak discharge, discharge duration, lag time, and response time) of a 1-2 year 

old forest planted on three types of loose-dumped soil placed in accordance with FRA. 

The spoil types examined were (1) brown, weathered sandstone (BROWN), (2) gray, 

unweathered sandstone (GRAY), and (3) a mixture of the two sandstone types and shale 

(MIXED). The authors concluded that spoil type did not significantly influence storm 

hydrology, but rather it was the placement of the spoil in accordance with FRA 

specifications that was controlling, and as also seen by Taylor et al. (2009a), could result 

in a hydrograph similar to a forested watershed. Taylor et al. (2009b) also noted that as 

the forest matures, it was expected that interception and evapotranspiration would play a 

greater role in hydrologic response.  

Sena (2014) re-examined the effect of spoil type on vegetation growth and 

interflow (storm and base flows) on the same plots used in Taylor et al. (2009a) and 

Taylor et al. (2009b). Vegetation growth was significantly different between the spoil 

types with BROWN exhibiting substantially greater tree volumes (12,270 cm3) and 

ground cover  (99%) as compared to GRAY (237 cm3 and 10%) and MIXED (1,840 cm3 

and 20%). Sena (2014) also noted significantly less rainfall (storm and base flows) 

discharged as interflow during the growing season on BROWN as compared to GRAY 

and MIXED; no significant differences were noted between spoil types during the non-

growing season. The author attributed the differences in interflow volumes on BROWN 

during the growing season to higher rates evapotranspiration. No separation of storm and 

base flows was performed, and as seen in work by Beasley (1976), a substantial portion 
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of flow in forested watersheds can be classified as baseflow. Thus, the effect of soil type, 

and hence the vegetation, on storm flow characteristics was not determined. 

Calder and Aylward, (2006) note that forests, theoretically, influence storm 

hydrology primarily through evapotranspiration which creates soil moisture deficits. 

These soil moisture deficits allow for the storage of more stormwater, and hence less 

runoff, particularly for small storm events where a greater percentage of the total rainfall 

may be held in the soil profile (Lull and Reinhart, 1972). Thus, the objective of this study 

was to evaluate the influence of spoil type (BROWN, GRAY and MIXED) on storm 

hydrologic characteristics (discharge volume, peak discharge, lag times, response times, 

and discharge duration) for a young (7 and 8 year old) forest. Results from this study will 

further the understanding as to how loose-dumped mine spoil affects hydrology and will 

aid reclamationists as they seek to restore forest ecosystems on surface mined lands. 

2.2 METHODS 

2.2.1 Study Site 

The research was conducted on the Bent Mountain surface mine (BM), which is 

located in the Cumberland Plateau in eastern Kentucky (latitude 37° 35.88 N; longitude 

82° 24.31 W) (Figure 2.1). The average annual rainfall is 114 cm and the climate is 

humid and temperate with summer temperatures ranging from 18 to 32 °C and winter 

temperatures ranging from -4 to 7°C. Underlying geology is dominated by sandstone 

followed by some shale and siltstone all of the Breathitt formation of Lower to Middle 

Pennsylvania age (Wunsch, 1993). 

In 2005, six 0.4 ha plots (three spoil types, two replicates of each) were 

constructed at the BM surface mine. The spoil types consisted of: (1) brown, weathered 

sandstone (BROWN), (2) gray, unweathered sandstone (GRAY), and (3) a mixture of 

both BROWN and GRAY in addition to shale (MIXED). The loose-dumped spoil was 

placed overtop a compacted layer in accordance with the FRA (Burger et al., 2005) to a 

depth of approximately 2.5 m. It was assumed that the compacted layer was impervious. 

The suface topography was left rough creating macropores and ridge to depression depths 

of 0.5-1.5 m. The underlying compacted layer was graded with a longitudinal slope of 

approximately 2% and side slopes between 3-10%. A 10.2 cm, perforated PVC pipe was  
7 

 



 

 
Figure 2.1: Location of the Bent Mountain (BM) Surface Mine and the University of 

Kentucky’s Robinson Forest (RF). 
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placed along the center of the plots to direct interflow to the data acquisition equipment 

(Taylor et al., 2009b). Interflow from the data acquisition outlet was then directed into an 

underlying deep mine to ensure plots remained hydrologically separated. The plots were 

planted immediately after construction with 1:0 bare root seedlings (1.8 m x 2.4 m 

spacing) of white oak (Quercus alba), red oak (Quercurs rubra), yellow-poplar 

(Liriodendron tulipfera), and green ash (Fraximus pennsylvanica). Groundcovers were 

not used in order to help minimize competition to tree seedlings.  

2.2.2 Hydrologic Data  

 Precipitation data were recorded using a Rain Collector II tipping bucket rain 

gage (Davis Instruments, Hayward, CA) equipped with a HOBO Event datalogger (Onset 

Computer Corporation, Cape Cod, MA) in 2005 and 2006. This rain gage was located 

approximately 300 m from the plots. However, due to equipment failure, for 2012 and 

2013, precipitation data (15 minute intervals) were obtained from the USGS gage 

03210000, which is located approximately 8 km from the plots near the community of 

Meta, KY. A total of 24 rainfall events were used in the analysis: 12 events (14.5-42.9 

mm) from the 2005-2006 monitoring period and 12 events (15.4-44.4 mm) from the 

2012-2013 monitoring period (Table 2.1). The mean and median rainfall depths for the 

2005-2006 monitoring period were 23.4 and 25.8 mm, respectively; for the 2012-2013 

monitoring period, the mean and median rainfall depths were 26.9 and 19.5 mm, 

respectively. Rainfall events less than 25.4 mm were included in the analysis to increase 

sample size.  

Interflow data were recorded using calibrated metal tipping buckets and HOBO 

Event dataloggers, which were located at the outlet of each plot. Interflow was measured 

as no runoff was observed on the plots due to their hummocky nature. Baseflow 

separation was conducted using the concave method (McCuen, 2005). Discharge volume, 

peak discharge, lag times, response times, and discharge durations were determined for 

all plots during the 2012-2013 monitoring period (Figure 2.2). For the 2005-2006 

monitoring period, these hydrograph data were obtained from Taylor et al. (2009b). Lag 

time was defined as the difference in time from the start of precipitation to the time of 

peak discharge. Response time was defined as the start of precipitation to the start of 
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Table 2.1: Storm Event Characteristics for Bent Mountain Plots. 

Date Precipitation 
(mm) 

Duration 
(h) 

Total 5-day 
antecedent 

rainfall (mm) 

Average Intensity 
(mm h-1) 

--------------------2005-2006--------------------1  
July 21, 2005 20.1 0.9 7.6 22.3 

August 6, 2005 16.0 0.9 0.0 17.8 
August 16, 2005 19.6 4.6 0.0 4.3 

September 16, 2005 19.4 1.1 0.0 17.6 
October 7, 2005 25.4 5.3 4.6 4.8 

April 7, 2006 38.1 17.7 27.3 2.2 
August 11, 2006 44.1 4.6 11.7 9.6 
August 19, 2006 15.4 2.3 3.7 6.7 
August 29, 2006 18.3 7.0 9.6 2.6 

September 22, 2006 16.3 3.1 1.1 5.3 
October 16, 2006 30.6 13.3 3.1 2.3 
November 1, 2006 16.9 4.5 12.7 3.8 
Mean±Std.Dev. (all 

events) 23.4±9.4 5.4±5.2 6.8±7.9 8.3±7.0 

--------------------2012-2013--------------------  
June 1, 2012 23.4 15.0 0.1 1.5 

August 6, 2012 33.3 6.0 0.6 5.3 
August 10, 2012 14.5 2.0 1.9 6.4 
August 15, 2012 28.2 2.0 0.6 12.5 

September 17, 2012 33.0 29.0 0.0 1.1 
October 28, 2012 42.9 9.5 0.2 1.8 

April 17, 2013 17.5 3.8 0.5 4.4 
May 20, 2013 20.1 3.0 0.1 6.2 
June 30, 2013 22.9 42.5 0.5 0.5 
July 11, 2013 42.4 2.3 0.3 17.0 

August 10, 2013 16.0 4.5 0.3 3.4 
November 25, 2013 28.7 0.63 0.2 1.0 
Mean±Std.Dev. (all 

events) 26.9±9.6 10.0±13.
0 0.4±0.5 5.1±4.8 

1Source: Taylor et al. (2009b).
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Figure 2.2: Example of Hydrograph Baseflow Separation and Parameter Estimation.

11 

 



discharge. The start of discharge was determined by the lowest discharge value before the 

rising limb, per McCuen (2005) or as soon as a discharge increase was noted. For an 

unknown reason, one of the GRAY plots (plot 6) hydrologically behaved quite differently 

than the other plots (discharge was seldom recorded) and therefore was not used in this 

study. 

2.2.3 Statistical Analysis 

 A general linear model (PROC GLM) in Statistical Analysis Software 9.3 (SAS, 

2011) was used to test for significant differences in the storm hydrograph parameters 

discharge volume, peak discharge, lag time, response time, and discharge duration due to 

spoil type (BROWN, GRAY and MIXED) and hence vegetation (α=0.05. Temporal 

changes were across the 2005-2006 and 2012-2013 monitoring periods. Precipitation 

depth and growing season (April 20-October 26) served as covariates.   

2.3 RESULTS AND DISCUSSION 

2.3.1 Temporal  

No significant differences were noted between the monitoring periods 2005-2006 

and 2012-2013 for the storm hydrograph parameters discharge volume and duration. For 

the 2005-2006 monitoring period, mean discharge volume was 12.9 m3 and mean 

discharge duration was 5.5 days. For the 2012-2013 monitoring period, the values were 

17.5 m3 and 2.6 days, respectively (Tables 2.2-2.3). Though not quantified in this study, 

data indicated that baseflow was sustained on the plots throughout the length of the study. 

Significant differences were found for the storm hydrograph parameters peak discharge, 

lag time, and response time (Tables 2.4-2.6). From the 2005-2006 monitoring period to 

the 2012-2013 monitoring period, mean peak discharge increased from 6.3 x10-4 m3 to 

7.1 x10-4 m3. Mean lag time increased from 0.10 to 0.33 days (2.1 to 7.9 hours), and mean 

response time increased from 0.05 to 0.16 days (1.2 to 3.8 hours) (Table 2.7).  

The increase in lag time and response time is likely linked to the weathering of 

the spoils. Miller et al. (2012) observed that BROWN, GRAY and MIXED spoils all 

weathered as a result of freeze-thaw forces and dissolution of carbonate cements. During 

a one-year period, the authors observed that BROWN and MIXED had a normalized  

12 

 



Table 2.2: Bent Mountain Plot Discharge Volumes (m3). 

Date Plots1 

1 2 3 4 5 
--------------------2005-2006--------------------2 

July 21, 2005 13.9 8.8 12.0 -- 13.8 
August 6, 2005 11.0 7.2 6.5 6.9 8.3 
August 16, 2005 10.6 5.7 6.7 6.0 5.9 

September 16, 2005 2.1 1.5 1.1 2.0 2.1 
October 7, 2005 6.3 1.3 1.3 3.0 2.5 

April 7, 2006 34.7 20.2 -- 57.5 54.9 
August 11, 2006 12.9 19.4 5.2 18.3 19.7 
August 19, 2006 2.9 5.3 0.2 4.8 3.0 
August 29, 2006 7.5 11.2 0.7 6.6 4.9 

September 22, 2006 9.0 -- 2.4 3.1 2.9 
October 16, 2006 27.7 19.1 15.8 24.8 27.3 

November 1, 20063 11.8 7.4 8.8 -- 12.1 
Mean ±SD (all events) 12.5±9.6 9.7±6.9 5.5±5.1 13.3±17.2 13.1±15.3 

--------------------2012-2013-------------------- 
June 1, 2012 7.1 8.6 -- 23.5 24.7 

August 6, 2012 31.9 34.04 35.0 -- -- 
August 10, 2012 0.2 -- 0.1 -- -- 
August 15, 2012 8.0 -- 8.5 -- -- 

September 17, 2012 -- -- -- 33.0 25.3 
October 28, 20123 2.1 -- 1.7 2.5 4.8 

April 17, 20133 27.7 9.3 374 16.7 17.7 
May 20, 2013 0.3 0.4 0.04 1.4 1.64 

June 30, 2013 0.2 1.1 0.1 2.8 1.9 
July 11, 2013 25.7 26.6 15.44 23.2 23.1 

August 10, 2013 3.34 -- -- 17.3 16.0 
November 25, 20133 24.1 50.0 -- 44.2 57.8 

Mean ±SD (all events) 11.9±12.7 18.6±18.8 12.2±15.6 18.3±14.7 1.29±17.3 
1Plots 1 and 3 are brown, weathered sandstone; plot 2 is gray, unweathered sandstone; and plots 4 and 5 are 
a mixture of both brown, weathered sandstone and gray, unweathered sandstone and shale. Plot 6 (gray, 
unweathered sandstone) was not used in the analysis. 
2Source: Taylor et al. (2009b). 
3Non-growing season. 

4Hydrograph was incomplete after the peak, so value was estimated. 

13 

 



Table 2.3: Bent Mountain Plot Discharge Durations (d). 

Date Plots1 

1 2 3 4 5 
--------------------2005-2006--------------------2 

July 21, 2005 4.8 1.7 4.1 1.8 5.9 
August 6, 2005 7.4 5.9 8.4 7.3 9.8 
August 16, 2005 3.4 3.7 6.5 4.2 3.7 

September 16, 2005 5.7 6.2 0.6 5.4 6.6 
October 7, 2005 8.0 14.7 0.7 14.9 17.8 

April 7, 2006 2.8 11.2 -- 15.0 9.7 
August 11, 2006 7.7 7.8 5.3 14.6 14.6 
August 19, 2006 4.2 6.0 1.9 5.4 4.9 
August 29, 2006 4.0 3.2 1.8 4.0 3.1 

September 22, 2006 0.7 -- 1.2 1.5 1.0 
October 16, 2006 13.0 13.4 10.2 10.3 14.3 

November 1, 20063 3.7 1.2 1.6 -- 2.2 
Mean ±SD (all events) 5.4±3.2 6.8±4.5 3.8±3.3 7.7±5.2 7.8±5.4 

--------------------2012-2013-------------------- 
June 1, 2012 0.7 1.14 -- 15.7 13.74 

August 6, 2012 2.44 1.54 4.24 -- -- 
August 10, 2012 0.6 -- 0.4 -- -- 
August 15, 2012 3.1 -- 8.0 -- -- 

September 17, 2012 -- -- -- 7.64 7.84 

October 28, 20123 1.94 -- 3.14 1.5 2.1 
April 17, 20133 9.8 10.7 10.7 10.8 6.3 
May 20, 2013 1.5 1.0 -- 1.5 1.5 
June 30, 2013 0.2 0.84 0.6 0.84 0.84 

July 11, 2013 2.0 2.44 3.04 4.04 2.14 

August 10, 2013 1.0 -- -- -- 2.2 
November 25, 20133 3.84 4.54 -- 4.24 4.54 

Mean ±SD (all events) 2.5±2.5 3.1±3.3 4.3±3.5 5.8±4.9 4.6±3.9 
1Plots 1 and 3 are brown, weathered sandstone; plot 2 is gray, unweathered sandstone; and plots 4 and 5 are 
a mixture of both brown, weathered sandstone and gray, unweathered sandstone and shale. Plot 6 (gray, 
unweathered sandstone) was not used in the analysis. 
2Source: Taylor et al. (2009b). 
3Non-growing season. 

4Hydrograph was incomplete after the peak, so value was estimated. 
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Table 2.4: Bent Mountain Plot Peak Discharge (m3 s-1 x 10-4). 

Date Plots1 

1 2 3 4 5 
--------------------2005-2006--------------------2 

July 21, 2005 10.9 7.2 9.8 -- 5.6 
August 6, 2005 3.5 8.1 8.8 2.4 3.0 
August 16, 2005 10.0 7.4 10.3 -- 4.3 

September 16, 2005 6.6 5.6 5.5 3.7 2.3 
October 7, 2005 6.3 3.8 2.5 2.1 4.8 

April 7, 2006 25.2 7.7 -- 4.4 4.7 
August 11, 2006 29.1 11.5 6.6 14.2 10.5 
August 19, 2006 4.6 3.9 7.2 1.0 0.2 
August 29, 2006 10.1 12.0 2.4 6.9 3.0 

September 22, 2006 7.2 -- 2.1 1.9 1.0 
October 16, 2006 7.2 5.2 2.4 2.5 2.3 

November 1, 20063 8.4 10.5 5.5 -- 1.3 
Mean ±SD (all events) 10.8±8.0 7.5±2.8 5.7±3.1 4.3±4.1 4.5±3.7 

--------------------2012-2013-------------------- 
June 1, 2012 7.0 12.6 -- 12.6 12.6 

August 6, 2012 12.6 12.64 8.3 -- 12.6 
August 10, 2012 0.5 -- 1.1 -- -- 
August 15, 2012 8.3 -- 8.3 -- -- 

September 17, 2012 -- -- -- 8.2 7.0 
October 28, 20123 0.7 -- 0.5 2.5 1.8 

April 17, 20133 12.6 5.2 8.3 10.2 10.2 
May 20, 2013 1.0 1.4 .03 1.7 0.6 
June 30, 2013 1.0 3.5 0.8 4.7 1.8 
July 11, 2013 12.6 12.6 12.5 12.6 12.6 

August 10, 2013 5.2 -- -- 11.5 10.6 
November 25, 20133 7.0 8.3 -- 10.0 8.9 

Mean ±SD (all events) 6.2±5.0 8.0±4.8 5.0±4.9 8.2±4.3 7.9±4.7 
1Plots 1 and 3 are brown, weathered sandstone; plot 2 is gray, unweathered sandstone; and plots 4 and 5 are 
a mixture of both brown, weathered sandstone and gray, unweathered sandstone and shale. Plot 6 (gray, 
unweathered sandstone) was not used in the analysis. 
2Source: Taylor et al. (2009b). 
3Non-growing season. 

4Hydrograph was incomplete after the peak, so value was estimated. 
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Table 2.5: Bent Mountain Plot Lag Time (d x 10-2). 

Date Plots1 

1 2 3 4 5 
--------------------2005-2006--------------------2 

July 21, 2005 2.9 1.5 1.2 -- 7.1 
August 6, 2005 0.0 1.8 1.3 1.1 0.0 
August 16, 2005 1.4 1.5 1.5 -- 1.9 

September 16, 2005 2.2 2.2 2.7 2.4 3.3 
October 7, 2005 15.7 15.8 16.9 19.9 32.4 

April 7, 2006 9.2 3.4 -- 10.1 54.3 
August 11, 2006 9.4 9.6 9.2 10.1 9.7 
August 19, 2006 1.5 1.5 2.3 1.8 21.3 
August 29, 2006 2.6 2.6 3.9 2.7 3.5 

September 22, 2006 8.3 -- 9.1 8.9 21.2 
October 16, 2006 30.9 56.8 31.3 53.2 61.4 

November 1, 20063 4.7 4.1 4.7 -- 1.8 
Mean ±SD (all events) 7.4±8.7 9.2±16.4 7.7±9.2 12.2±16.5 18.1±21.1 

--------------------2012-2013-------------------- 
June 1, 2012 55.8 52.8 -- 52.8 56.9 

August 6, 2012 15.2 10.84 11.0 -- 12.1 
August 10, 2012 9.9 -- 8.1 -- -- 
August 15, 2012 3.7 -- 2.6 -- -- 

September 17, 2012 -- -- -- 67.3 69.7 
October 28, 20123 158.7 -- 159.0 53.5 77.3 

April 17, 20133 11.5 9.2 3.2 6.7 15.7 
May 20, 2013 12.2 7.5 5.6 10.3 12.5 
June 30, 2013 14.4 9.7 9.4 14.2 16.3 
July 11, 2013 1.2 -- 33.3 1.3 2.2 

August 10, 2013 18.6 -- -- 13.8 20.2 
November 25, 20133 89.7 89.9 -- 76.3 91.2 

Mean ±SD (all events) 35.5±48.6 30.0±34.2 29.0±53.4 32.9±29.2 37.4±32.7 
1Plots 1 and 3 are brown, weathered sandstone; plot 2 is gray, unweathered sandstone; and plots 4 and 5 are 
a mixture of both brown, weathered sandstone and gray, unweathered sandstone and shale. Plot 6 (gray, 
unweathered sandstone) was not used in the analysis. 
2Source: Taylor et al. (2009b). 
3Non-growing season. 

4Hydrograph was incomplete after the peak, so value was estimated. 
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Table 2.6: Bent Mountain Plot Response Time (d x 10-2). 

Date Plots1 

1 2 3 4 5 
--------------------2005-2006--------------------2 

July 21, 2005 0.1 0.2 0.1 0.1 0.2 
August 6, 2005 10.4 1.2 0.5 0.1 13.6 
August 16, 2005 0.3 0.2 0.1 -- 0.5 

September 16, 2005 1.8 1.7 2.0 1.8 1.9 
October 7, 2005 7.9 8.5 9.9 8.8 17.2 

April 7, 2006 2.8 2.4 59.4 2.9 3.4 
August 11, 2006 6.9 4.9 5.6 5.6 8.0 
August 19, 2006 0.7 0.1 1.5 0.2 1.5 
August 29, 2006 2.2 1.9 2.3 2.3 2.6 

September 22, 2006 0.8 -- 0.7 1.4 1.5 
October 16, 2006 8.4 8.2 22.4 25.1 27.3 

November 1, 20063 0.9 1.6 2.3 -- 1.3 
Mean ±SD (all events) 3.6±3.7 2.8±3.1 8.9±17.1 4.8±7.6 6.6±8.5 

--------------------2012-2013-------------------- 
June 1, 2012 51.4 51.5 -- 10.1 10.2 

August 6, 2012 4.54 10.54 4.9 -- 3.3 
August 10, 2012 7.1 -- 7.5 -- -- 
August 15, 2012 1.9 -- 2.6 -- -- 

September 17, 2012 -- -- -- 42.8 26.6 
October 28, 20123 130.7 -- 116.1 47.6 48.9 

April 17, 20133 0.6 0.9 0.4 0.9 0.9 
May 20, 2013 8.5 3.4 3.9 5.8 9.2 
June 30, 2013 12.3 2.3 0.5 0.7 3.7 
July 11, 2013 0.44 3.64 4.04 2.84 0.44 

August 10, 2013 11.4 -- -- 10.0 3.0 
November 25, 20133 9.9 8.9 -- 16.8 15.2 

Mean ±SD (all events) 21.7±37.0 11.6±16.6 17.5±37.3 15.3±16.8 12.1±14.4 
1Plots 1 and 3 are brown, weathered sandstone; plot 2 is gray, unweathered sandstone; and plots 4 and 5 are 
a mixture of both brown, weathered sandstone and gray, unweathered sandstone and shale. Plot 6 (gray, 
unweathered sandstone) was not used in the analysis. 
2Source: Taylor et al. (2009b). 
3Non-growing season. 

4Hydrograph was incomplete after the peak, so value was estimated. 
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Table 2.7: Hydrologic Parameters Means and Standard Deviations. 

Parameter Monitoring Year Monitoring Period 
2005 2006 2012 2013 2005-2006 2012-2013 

Discharge volume (m3) 6.1±4.0 14.4±14.1 14.8±13.4 16.5±16.6 10.9±11.7 15.8±15.3 
Discharge volume (% rainfall) 8.5±5.5 14.2±10.3 14.6±13.2 19.3±19.6 11.7±9.0 17.5±17.4 
Peak Discharge (m3 s-1 x 10-4) 5.4±3.1 7.0±6.5 7.2±4.9 7.0±4.7 6.3±5.3 7.0±4.7 
Lag Time (d x 10-2) 6.2±8.4 13.0±16.4 48.7±47.7 22.9±28.7 10.2±14.0 33.5±39.3 
Response Time (d x 10-2) 3.7±5.1 6.6±11.7 32.1±38.3 5.2±4.9 5.4±9.5 16.0±27.6 
Discharge Duration (d) 6.4±4.3 6.3±4.8 4.4±4.6 3.6±3.4 6.3±4.5 4.0±3.9 
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settling of 10 cm while it was 2 cm for GRAY. GRAY spoils were more resistant to 

weathering per slake durability and freeze-thaw tests. Settling of the spoil over time 

likely decreased permeability as finer material from the weathering process began to fill 

in pore spaces thus reducing the size and/or number of macropores. Sena (2014) found 

that silt and clay contents increased in the GRAY and MIXED plots and remained stable 

in the BROWN plots between the 2005-2006 and 2012-2013 monitoring periods. The 

findings suggest that the spoils had a greater ability to hold water. 

As noted by Taylor et al. (2009b), it is important to note the overall smallness of 

the peak discharges, length of flow duration (multiple days), and low percentage of 

rainfall that is discharged. For the storms analyzed, 11% and 17% of the rainfall was 

discharged as storm flow for the 2005-2006 and 2012-2013 monitoring periods, 

respectively (Table 2.8). No significant difference between monitoring periods was 

noted. These findings demonstrate that spoil placed in accordance with the minimal 

compaction specification of the FRA (i.e. loose-dumped spoil) and at a depth of 2.5 m 

provides a substantial amount of storage for rainfall. Infiltrated rainfall is slowly released 

as interflow during and long after the storm, and as shown by Sena (2014) for the 

BROWN spoil, evapotranspired by vegetation in between storm events. 

2.3.2 Spoil Type 

While Taylor et al. (2009b) found significant differences between spoil types with 

respect to storm discharge volume (% rainfall only), peak discharge, lag time, response 

time, and duration, no significant differences were found for the 2012-2013 monitoring 

period. For the 2005-2006 monitoring period, Taylor et al. (2009b) noted that BROWN 

had higher peak discharges and shorter durations of storm flow. Even with the 

substantially greater amount of tree growth and ground cover on the BROWN spoil by 

the 2012-2013 monitoring period, as noted by Sena (2014), spoil type did not 

significantly affect storm hydrograph characteristics. These findings suggest that the 

placement of spoil has a greater influence on hydrology than vegetation at this point in 

time though that may change as the forest continues to develop. Qi et al. (2009) found 

that forest composition and spatial pattern significantly affected runoff volumes and peak  
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Table 2.8: Bent Mountain Plot Discharge Volume as Percentage of Rainfall (%). 

Date Plots1 

1 2 3 4 5 
--------------------2005-2006--------------------2 

July 21, 2005 16.7 12.9 15.7 -- 18.6 
August 6, 2005 14.4 10.4 10.8 13.3 14.0 
August 16, 2005 13.2 8.0 8.9 9.5 8.2 

September 16, 2005 2.9 2.5 1.5 3.2 2.9 
October 7, 2005 6.5 1.6 1.7 3.7 2.6 

April 7, 2006 23.9 16.5 -- 47.0 38.8 
August 11, 2006 7.4 12.4 3.1 12.3 11.6 
August 19, 2006 5.0 10.8 0.3 9.8 5.2 
August 29, 2006 10.7 19.2 0.9 11.3 7.2 

September 22, 2006 11.8 -- 4.1 5.8 4.8 
October 16, 2006 23.7 19.7 14.2 25.3 24.1 

November 1, 20063 18.4 13.8 14.4 -- 19.4 
Mean ±SD (all events) 12.9±6.9 11.6±5.9 6.9±6.0 14.1±13.1 13.1±10.7 

--------------------2012-2013-------------------- 
June 1, 2012 7.6 10.9 -- 31.5 33.0 

August 6, 2012 24.0 30.0 31.1 -- -- 
August 10, 2012 0.3 -- 0.1 -- -- 
August 15, 2012 7.1 -- 8.9 -- -- 

September 17, 2012 -- -- -- 31.3 24.0 
October 28, 20123 1.2 -- 1.2 1.9 3.5 

April 17, 20133 39.4 15.5 62.3 29.8 31.6 
May 20, 2013 0.4 0.6 0.1 2.1 2.5 
June 30, 2013 0.3 1.4 0.1 3.8 2.6 
July 11, 2013 15.1 18.4 10.7 17.1 17.0 

August 10, 2013 5.1 -- -- 33.9 31.3 
November 25, 20133 21.0 51.2 -- 44.2 63.0 

Mean ±SD (all events) 11.0±12.6 18.3±17.7 14.3±22.1 21.7±15.9 23.2±19.7 
1Plots 1 and 3 are brown, weathered sandstone; plot 2 is gray, unweathered sandstone; and plots 4 and 5 are 
a mixture of both brown, weathered sandstone and gray, unweathered sandstone and shale. Plot 6 (gray, 
unweathered sandstone) was not used in the analysis. 
2Source: Taylor et al. (2009b). 
3Non-growing season. 

4Hydrograph was incomplete after the peak, so value was estimated. 
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flows with forests comprised of vegetation able to intercept greater amounts of rainfall 

more effective at reducing runoff volumes and peak flows. Like in this study, the authors 

noted that soil properties were important in controlling hydrology; soils with greater 

infiltration rates and higher soil water holding capacities were more effective at reducing 

discharge volumes and peak flows. 

2.3.3 Growing Season 

 With regards to growing season, data from only four storm events were available: 

one storm during the 2005-2006 monitoring period and three storms during the 2012-

2013 monitoring period. As such, comparisons between growing (April 20-October 26) 

and non-growing (October 27-April 19) are tenuous. Table 2.9 contains mean and 

standard deviation values of the hydrologic parameters separated by growing and non-

growing seasons. With the exception of lag time in the 2012-2013 monitoring period, no 

significant relationships were noted using t-tests between growing and non-growing 

seasons for the two monitoring periods.  

2.3.4 Precipitation Depth 

 The hydrograph parameters discharge volume, peak discharge, lag time, and 

response time displayed a slight increase with precipitation depth (Figures 2.3-2.6). 

Greater rainfall depths tended to produce greater volumes of discharge with larger peaks. 

Interestingly, the time until runoff generation and peak runoff also increased indicating 

that storm characteristics such as intensity were likely influential. Warner et al. (2010) 

noted that intense storms yield greater amounts of runoff while longer duration multi-

interval storms produce less runoff. With multi-interval and longer storms, rainfall has 

more time to infiltrate. No increase was seen with discharge duration or percent rainfall 

discharged (Figures 2.7-2.8). 
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Table 2.9: Hydrologic Parameters for Growing and Non-Growing Seasons (All Years) Means and Standard Deviations. 

Parameter 
Monitoring Period 

2005-2006 2012-2013 
Growing Non-Growing Growing Non-Growing 

Discharge volume (m3) 10.9±12.1 10.0±2.3 14.1±12.5 23.4±24.0 
Discharge volume (% rainfall) 11.4±9.2 16.5±2.8 13.0±12.4 28.1±22.9 
Peak Discharge (m3 s-1 x 10-4) 6.3±5.4 6.4±4.0 7.5±4.8 5.0±4.0 
Lag Time (d x 10-2) 10.3±14.3 3.8±1.4 18.8±19.5 99.4±38.6 
Response Time (d x 10-2) 5.7±9.8 1.5±0.6 8.8±13.1 49.3±48.5 
Discharge Duration (d) 6.6±4.6 2.2±1.1 4.1±4.3 3.2±1.2 
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2.4 CONCLUSIONS 

 The objective of this study was to evaluate storm hydrograph characteristics 

(discharge volume, peak discharge, lag time, response time, and discharge duration) for 

7-8 year old forests (monitoring years 2012-2013) established on three types of loose-

dumped spoil placed in accordance with FRA guidelines. The three spoil types were (1) 

brown, weathered sandstone (BROWN), (2) gray unweathered sandstone (GRAY) and 

(3) a mixture of both theses sandstones and shales (MIXED). The hydrograph 

characteristics were then compared to initial conditions (monitoring years 2005-2006) to 

assess temporal changes. It was expected that since the different spoil types demonstrated 

remarkably different amounts of tree growth and groundcover by the 2012-2013 

monitoring period, significant differences in hydrograph characteristics would be found. 

 No significant differences were found between the 2005-2006 and 2012-2013 

monitoring periods for the storm hydrograph parameters discharge volume and duration. 

Significant increases were found for the hydrograph parameters peak discharge, lag time, 

and response time. This is thought to be due to the weathering and settling of the spoils. 

overall smallness of the peak discharges, long length of flow durations, and low 

percentage of discharged rainfall indicate that the FRA’s guidelines for minimal 

compaction allows for high infiltration rates and, with sufficient spoil thickness, provides 

ample room for rainfall storage in the spoil profile. The continued lack of significant 

differences between the spoil types, by the  2012-2013 monitoring period, indicates that 

although vegetation was significantly different between the plots, spoils properties as 

dictated by its placement, has a much greater influence on storm hydrology at this point 

in time. However, as the forest continues to mature, the effect of vegetation in the form of 

increased interception and evapotranspiration could begin to significantly influence storm 

hydrology.
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Figure 2.3: Discharge Volume versus Precipitation Depth.
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Figure 2.4: Peak Discharge versus Precipitation Depth.
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Figure 2.5: Lag Time versus Precipitation Depth.
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Figure 2.6: Response Time versus Precipitation Depth.
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Figure 2.7: Discharge Duration versus Precipitation Depth.
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Figure 2.8: Percent Rainfall Discharged versus Precipitation Depth.
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CHAPTER 3: EFFECT OF SPOIL TYPE ON CURVE NUMBERS FOR 

LOOSE-DUMPED MINE SPOIL INTERFLOW 

3.1 INTRODUCTION 

From 1973-2000, mining has resulted in the conversion of 2,620 km2 of forest to 

mined lands, a 34% reduction, in Central Appalachian ecoregion of the United States 

(Sayler, 2012). Once mined, most of the lands are reclaimed using techniques that 

promote compaction, and hence the establishment of grasses and shrubs, instead of those 

that promote the establishment of forested ecosystems (Chaney et al., 1995; Wickham et 

al., 2006; Angel et al., 2008; Zipper et al., 2011). The heavy compaction of mined lands 

is due in large part to regulatory and mine operator interpretation of the Surface Mining 

Reclamation and Control Act of 1977 (SMCRA). SMCRA requires that mined lands are 

reclaimed in a manner that ensures stability meaning they are not prone to excessive 

erosion or landslides. While not specified in the regulations, mine operators and 

regulators tend to equate land stability with high levels of compaction and the planting of 

herbaceous vegetation to control erosion (Angel et al., 2008; Zipper et al., 2011). As a 

result, many pre-mined lands that were once forested now resemble grasslands.  

By converting forested communities into herbaceous ones, ecosystem goods and 

services such as those related to hydrology (Sheil and Murdiyarso, 2009; Lima et al., 

2014), nutrient cycling (Jones et al., 2001; Gomi et al., 2002), and habitat (Riedel et al., 

2008; McKie and Malmqvist, 2009) are negatively affected (Wickham et al., 2007; 

Zipper et al., 2011). Costanza et al. (1997) estimated that forests alone provide US$4.7 

trillion yr-1 in ecosystem goods and services, which is the second highest value for a 

terrestrial system with wetlands at US$4.9 trillion yr-1 being the first. The largest benefits 

for temporal/boreal forests were seen in the areas of climate regulation, soil formation, 

waste treatment, food production, raw materials, and recreation. 

  One of the fundamental components of a forested ecosystem is water and how it is 

transported throughout the ecosystem, meaning its hydrology (Chang, 2003; Harmon et 

al., 2012). Precipitated water can be intercepted by the forest canopy, evapotranspired, 

infiltrated (shallow and deep), and/or transported as surface runoff or overland flow 

(Ponce and Hawkins, 1996; Chang, 2003). In Central Appalachia, steep sloping forests 
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tend to produce little overland flow but instead are typically dominated by interflow 

which is due to high soil infiltration rates and the presence of an underlying low 

hydraulic conductivity layer such as bedrock (Hursh, 1936; Hewlett and Hibbert, 1965; 

Whipkey, 1969; Neary et al., 2009; USEPA, 2011). The high infiltration rates of forested 

soils are created in part by the presence of macropores from biotic sources such as roots 

and burrowing insects and animals as well as abiotic ones such as mineral dissolution and 

freeze/thaw cycles (Aubertin, 1971). Macropores in forested soils also increase shallow 

subsurface flow rates (Chang, 2003). 

In comparison to forested soils, traditional post-SMCRA mine reclamation 

practices result in lands with significantly reduced infiltration rates (Jorgensen and 

Gardner, 1987; Guebert and Gardner, 2001), which in turn results in larger and flashier 

amounts of surface runoff (Dick et al., 1983; Weiss and Razem, 1984; Bonta et al., 1997; 

Bonta and Dick, 2003). Thus, returning mined lands to forested ecosystems requires an 

understanding of how to best restore mined soils for tree growth and hydrology as well as 

water quality – all factors that influence the value of forested ecosystem goods and 

services. 

One method that has demonstrated success in regrowing trees on mined lands is 

the Forestry Reclamation Approach (FRA) (Graves et al., 2000; Angel et al., 2008; 

Emerson et al., 2009; Cotton et al., 2012; Sena et al., 2014). The FRA, as detailed in 

Burger et al. (2005), is comprised of five steps: (1) create a medium using topsoil, 

weathered sandstone, or best available material, (2) minimize compaction of the medium, 

(3) use tree compatible ground covers, (4) plant early successional and high-value tree 

species, and (5) properly plant the trees. The FRA has also been shown to exhibit 

hydrologic characteristics similar to that of a forested ecosystem. Taylor et al. (2009a; 

2009b) found that the spoil placed in accordance with the FRA’s minimum compaction 

recommendation exhibited curve numbers and discharge volumes, peaks and durations 

that were similar to those from a reference forested watershed even though the trees were 

quite young (1-2 years old). The structure of the 2.5 m deep layer of loosed-dumped spoil 

above a compacted layer allowed for high levels of infiltration and subsequently the 

creation of interflow even for such a young forest. Taylor et al. (2009b) hypothesized that 

as the forest matures, discharge volumes and peaks would continue to decline as 
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interception and evapotranspiration increased. Thus while Taylor et al. (2009a; 2009b) 

concluded that spoil type did not influence storm hydrology at this point of early forest 

development, the influence of spoil type may change over time because soil type 

influences vegetation development. 

One means of assessing the influence of FRA, and consequently spoil type and 

vegetation, on hydrology is through the use of curve numbers (CN). The CN method was 

developed by the United States Department of Agriculture’s Natural Resource 

Conservation Service (formerly Soil Conservation Service) as a means of predicting 

runoff volumes and peak flows (USDA-SCS, 1972; USDA-NRCS, 2004). Estimations of 

CNs are based on four criteria (1) hydrologic soil group, (2) land use, (3) hydrologic 

surface conditions, and (4) the antecedent moisture condition (Ponce and Hawkins 1996). 

CNs are calculated using equations 3.1-3.4:  

 

𝑸 =
(𝑷 − 𝑰𝒂)𝟐

𝑷 − 𝑰𝒂 + 𝑺
         𝐅𝐨𝐫 𝑷 ≥ 𝑰𝒂 (eqn. 3.1) 

 
𝑸 = 𝟎     𝐅𝐨𝐫 𝑷 ≤ 𝑰𝒂 (eqn. 3.2) 

 
𝑰𝒂 = 𝝀𝑺 (eqn. 3.3) 

 

𝑺 =
𝟐𝟓,𝟒𝟎𝟎
𝑪𝑵

− 𝟐𝟓𝟒 (eqn. 3.4) 

 

The variable Q denotes stormwater runoff depth (mm) resulting from rainfall, P is storm 

precipitation (mm), Ia is the initial absraction (mm) and is defined as the amount of 

precipitation required before the start of runoff, 𝜆𝜆 is the initial abstraction coefficient, and 

S denotes the storage retention (mm). The initial abstraction is based the amount of 

rainfall that infiltrates, becomes surface storage, or is intercepted before runoff begins 

(Ponce and Hawkins, 1996). A value of 0.2 is commonly used for λ (USDA-SCS, 1972; 

USDA-NRCS, 2004) although a number of more recent studies indicate that λ may be 
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much lower. Hawkins et al. (2002) and Shi et al. (2009) recommend a λ value of 0.05. Fu 

et al. (2011) found a median value of 0.05 for λ when examining 205 storm events on 

nine runoff plots in the Loess Plateau of China.  

The CN method is widely used by design professional when developing mine and 

reclamation plans. In Kentucky, the selection of CNs is guided by Technical Reclamation 

Memorandum (TRM) #6 (Eddins, 1982). For undisturbed forests, TRM #6 recommends a 

CN of 73 while a CN of 60 is recommended for mined lands reclaimed as forests (non-

FRA). Taylor et al. (2009a) noted that CNs for forested watersheds in the eastern 

Kentucky ranged between 85 and 93, values that agreed with work by Hawkins (1993) 

that found mean CN of 85 for a reference watershed (Little Millseat) in eastern Kentucky. 

These values are well above the TRM #6 recommended CN of 73 for undisturbed forests. 

TRM #6 was developed well prior to the development of FRA, thus the document 

contains no information on the selection of CNs for mined lands reclaimed using the 

FRA. While Taylor et al. (2009a) developed CN for newly established FRA plots, these 

CN values are hypothesized to change over time as the forest matures and as the 

influence of different spoil types is exerted through vegetation growth. The objective of 

this study was to develop and compare CNs from interflow for three types of loosely 

dumped spoil with a 7-8 year old forest to those from the same plots with a 0-1 year old 

forest as well with a 90+ year old forested reference watershed. Results from this study 

will aid reclamationists in their understanding of how the FRA can be used in the 

restoration of a watershed’s hydrology and how spoil type selection can influence such 

efforts. 

3.2 METHODS 

3.2.1 Study Sites 

The study was conducted at two sites located in the Cumberland Plateau in 

eastern Kentucky: the Bent Mountain (BM) surface mine and the University of 

Kentucky’s Robinson Forest (Figure 3.1). The BM surface mine is located in Pike 

County, Kentucky (latitude 37° 35.88 N; longitude 82° 24.31 W). The climate is humid 

and temperate with summer temperatures ranging from 18 to 32 °C and winter  

33 

 



 

Figure 3.1: Location of the Bent Mountain (BM) Surface Mine and the University of 

Kentucky’s Robinson Forest (RF). 
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temperatures ranging from -4 to 7°C. The average annual rainfall is 114 cm. The 

underlying geology is dominated by sandstone followed by some shale and siltstone all of 

the Breathitt formation of Lower to Middle Pennsylvania age. Quartz, rock fragments, 

feldspar, and mica grains are the major components of the sandstone with calcite as the 

main cementing agent (Wunsch, 1993). 

Six 0.4 ha plots were constructed at the BM surface mine in 2005. The plots 

consisted of two replicates each of (1) brown, weathered sandstone (BROWN), (2) gray, 

unweathered sandstone (GRAY), and (3) a mixture of both BROWN and GRAY in 

addition to shale (MIXED). Plots were constructed overtop a compacted layer to a depth 

of approximately 2.5 m. The compacted layer was graded with a longitudinal slope of 

approximately 2% and side slopes between 3-10% to direct interflow via a 10.2 cm 

perforated PVC pipe to data acquisition equipment (Taylor et al., 2009a). The underlying 

compacted layer was assumed to be impervious. Following measurement by the data 

acquisition equipment, interflow from each plot was then directed into a deep mine so 

that all plots remained hydrologically separated. Loose-dumped spoil was then placed 

overtop the compacted layer in accordance with the FRA (Burger et al., 2005). Following 

construction, the plots were planted with 1:0 bare root seedlings (1.8 m by 2.4 m spacing) 

of white oak (Quercus alba), red oak (Quercurs rubra), yellow-poplar (Liriodendron 

tulipfera), and green ash (Fraximus pennsylvanica). No groundcover was seeded to help 

minimize competition to tree seedlings. Since the establishment of the plots at BM, 

studies on vegetation, hydrology, and water quality have been conducted (Angel et. al., 

2008; Taylor, 2009a; 2009b; Agouridis et al., 2012; Sena, 2014). 

Robinson Forest (RF) is a nearly 6,000 ha 90+ year-old second growth mixed-

mesophytic forest owned and operated by the University of Kentucky for research, 

education and outreach purposes. RF is located near the community of Clayhole (latitude 

37° 27.01 N; longitude 83°09.01 W). The climate is humid and temperate with summer 

temperatures ranging from 18 to 30 °C and winter temperatures ranging from -5 to 6°C. 

The average annual rainfall for RF is 118 cm. For this study, the reference watershed 

Little Millseat (LMS) was used. LMS is an 81 ha watershed with steep side slopes (25-

60%) and with elevation ranging from 305-451 m. The LMS watershed has a drainage 

density of 0.0038 m m-2. Underlying soils are comprised of the Dekalb-Marowbone-
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Lantham (1.0 depth), Cloverlick-Shelocata-Cutshin (1.2-1.8 m depth), Shelocta-Gilpin-

Hazleton (1.2 m depth), and Shelocta-Gilpin-Kimper (1.2 m depth) complex mapping 

units (Hayes, 1991; Cherry, 2006). The LMS serves as a control or reference watersheds 

for numerous hydrologically-based studies in RF. Data from the period of 2000-2004 

were used for LMS. 

3.2.2 Hydrologic Data  

3.2.2.1 Bent Mountain 

 At the BM surface mine, precipitation data were recorded using a Rain Collector 

II tipping bucket rain gage (Davis Instruments, Hayward, CA) equipped with a HOBO 

Event datalogger (Onset Computer Corporation, Cape Cod, MA) in 2005 and 2006. The 

rain gage was located approximately 300 m from the plots. Due to equipment failure, in 

2012 and 2013, precipitation data were obtained from the USGS gage 03210000, which 

is located approximately 8 km from the plots. Data from this rain gage were recorded in 

15 minute intervals. For the 2005-2006 monitoring period, a total of 12 events (15.4-44.4 

mm) were used in the analysis while a total of 12 events (14.5-42.9 mm) were used for 

the 2012-2013 monitoring period (Taylor et al., 2009a) (Table 3.1). The mean and 

median rainfall depths for the 2005-2006 monitoring period were 23.4 and 25.8 mm, 

respectively; for the 2012-2013 monitoring period, it was 26.9 and 19.5 mm, 

respectively. Rainfall events less than 25.4 mm were included in the analysis to increase 

the sample size. Because of this, bias towards larger CN values was examined (Hjelmfelt, 

1991; Hawkins, 1993; Warner et al., 2010). For each monitoring period, rainfall was 

separated into ranges of small (12.7-19.0), medium (19.0-25.4), and large (<25.4) storms 

depths and examined for each monitoring period individually and together. Flow data 

were recorded using calibrated metal tipping buckets and HOBO Event dataloggers, 

which were located at the outlet of each plot. Baseflow separation was conducted using 

the concave method (McCuen, 2005). For an unknown reason, one of the GRAY plots 

(plot 6) behaved quite differently than the other plots. As such, it was not used in this 

study. 
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 Table 3.1: Storm Event Characteristics for Bent Mountain Plots. 

Date Precipitation (mm) Duration (h) 
Total 5-day 
antecedent 

rainfall (mm) 
--------------------2005-2006--------------------1 

July 21, 2005 20.1 0.9 7.6 
August 6, 2005 16.0 0.9 0.0 
August 16, 2005 19.6 4.6 0.0 

September 16, 2005 19.4 1.1 0.0 
October 7, 2005 25.4 5.3 4.6 

April 7, 2006 38.1 17.7 27.3 
August 11, 2006 44.1 4.6 11.7 
August 19, 2006 15.4 2.3 3.7 
August 29, 2006 18.3 7.0 9.6 

September 22, 2006 16.3 3.1 1.1 
October 16, 2006 30.6 13.3 3.1 
November 1, 2006 16.9 4.5 12.7 

Mean±Std.Dev. (all events) 23.4±9.4 5.4±5.2 6.8±7.9 
--------------------2012-2013-------------------- 

June 1, 2012 23.4 15.0 0.1 
August 6, 2012 33.3 6.0 0.6 
August 10, 2012 14.5 2.0 1.9 
August 15, 2012 28.2 2.0 0.6 

September 17, 2012 33.0 29.0 0.0 
October 28, 2012 42.9 9.5 0.2 

April 17, 2013 17.5 3.8 0.5 
May 20, 2013 20.1 3.0 0.1 
June 30, 2013 22.9 42.5 0.5 
July 11, 2013 42.4 2.3 0.3 

August 10, 2013 16.0 4.5 0.3 
November 25, 2013 28.7 0.63 0.2 

Mean±Std.Dev. (all events) 26.9±9.6 10.0±13.0 0.4±0.5 
1Source: Taylor et al. (2009a).
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3.2.2.2 Robinson Forest  

For the LMS watershed in RF, precipitation data were recorded via a centrally 

located tipping bucket rain gage and a Campbell Scientific CR10X data logger  

(Campbell Scientific, Logan, UT). Data were recorded in intervals of 15 minutes. From 

2000-2004, a total of 12 events (28.4-67.6 mm) > 25.4 mm were used in the analysis 

while a total of 12 events (27.4-46.5 mm) > 25.4 mm were used for the 2012-2013 

monitoring period (Taylor et al., 2009a) (Table 3.2). A cut off of 25.4 mm was selected to 

minimize bias in CN computations with shallow storms (Hawkins et al., 2002; Schneider 

and McCuen, 2005). The mean and median rainfall depths for the 2000-2004 monitoring 

period were 43.0 and 43.8 mm, respectively; for the 2012-2013 monitoring period, they 

were 39.5 and 39.9 mm, respectively. Flow data the LMS watershed were continuously 

recorded using an 8:1 side-sloped broad-crested combination weir (Cherry, 2006). 

Baseflow was separated using the concave method (McCuen, 2005). 

3.2.3 Curve Numbers 

 Curve numbers were computed using equations 3.1-3.4 and values of 0.2 and 0.05 

for λ (Appendix B). As noted in Taylor et al. (2009a), the CN method is generally used 

for surface runoff; however, surface runoff does not occur at the plots at BM due to the 

hummocky topography (Angel et al., 2008; Taylor et al., 2009 a; 2009b). The interflow 

occurring at the plots is quite similar to that seen in the mountainous terrain in eastern 

Kentucky. In this environment, rainfall tends to rapidly infiltrate the shallow soils where 

it meets a low hydraulic conductivity layer, such as bedrock, and then proceeds as 

interflow towards streams (Whipkey, 1967; Sloan and Moore, 1984; Ormsbee and Khan, 

1987). Antecedent moisture condition (AMC) II was used (Fennesey and Hawkins, 2001; 

McCuen, 2005) although total 5-day prior rainfall amounts are provided if adjustments 

are desired. 
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Table 3.2: Storm Event Characteristics for Little Millseat. 

Date Precipitation (mm) Duration (h) 
Total 5-day 
antecedent 

rainfall (mm) 
--------------------2000-2004--------------------1 

April 4, 2000 36.3 15.5 12.4 
December 16, 2000 42.7 20.5 48.5 
January 20, 2001 45.2 25.2 8.4 
February 14, 2001 47.2 21.0 13.7 
February 16, 2001 30.0 18.8 52.8 

July 13, 2002 67.6 23.2 0.0 
April 6, 2003 28.4 16.0 10.9 
June 7, 2003 30.2 13.0 14.2 

September 3, 2003 53.6 5.5 23.6 
November 17, 2003 44.7 19.2 14.7 

January 2, 2004 42.9 18.8 12.7 
March 5, 2004 47.0 7.8 6.4 

Mean±Std.Dev. (all events) 43.0±11.1 17.0±5.9 18.2±16.2 
1Source: Taylor et al. (2009a).
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3.2.4 Statistical Analysis 

 The influence of spoil type (BROWN, GRAY and MIXED), and hence 

vegetation, over the periods of 2005-2006 and 2012-2013 were examined using a general 

linear model (PROC GLM) in Statistical Analysis Software 9.3 (SAS, 2011). Temporal 

changes were examined for individual years (2005, 2006, 2012 and 2013) and the 

combined initial (2005-2006) and latter (2012-2013) periods. Precipitation depth served 

as a covariate in the model. 

Differences in precipitation depth between the 2005-2006 and 2012-2013 periods 

were examined for BM and RF using t-tests in SigmaPlot (α=0.05). One-way analysis of 

variances (ANOVAs) in SigmaPlot (α=0.05) were performed to 1) compare CNs from 

BM, LMS and FR and 2) evaluate the effect of rainfall depth on CN. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Bent Mountain 

In 2012-2013, CN values (λ=0.2) ranged from 60 to 97 for all plots at BM with a 

mean of 81 (Table 3.3). Using a λ=0.05, CN values ranged from 29 to 89 with a mean of 

60. Taylor et al. (2009a) measured CN values (λ=0.2) between 64 and 90 with a mean of 

83 in 2005-2006. For a λ=0.05, the authors measured CNs values ranging from 39 to 72 

with a mean of 69. While a reduction in the mean CN was found between the 2005-2006 

and 2012-2013 monitoring periods (83 vs. 81 for λ=0.2 and 69 vs. 60 for λ=0.05, 

respectively), the differences were not significant at α=0.05. For CNs generated using 

λ=0.05, significant differences between the two monitoring periods (all treatments 

combined) were found at α=0.10 (Figures 3.2-3.3). No differences were noted in rainfall 

depths for the 2005-2006 (mean=24 mm, median=19.5 mm) and 2012-2013 periods 

(mean=27 mm, median=26 mm) (Table 3.1).  

Using values of Ia for the 2005-2006 and 2012-2013 data sets at BM, values of λ 

were computed (Table 3.4) (Appendix B). Values of λ varied with storm event, a 

phenomenon also noted by Woodward et al. (2003), as well as for plot, For the 2005-

2006 monitoring period, values of λ had an overall mean of 0.125 (median=0.046); for 

the 2012-2013 monitoring period, λ had an overall mean of 0.051 (median=0.007). These 
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Table 3.3: Curve Numbers for Bent Mountain Plots.1  

Date 
CN (λ=0.2) CN (λ=0.05) 
Test Cells2 Test Cells2 

1 2 3 4 5 1 2 3 4 5 
--------------------2005-2006--------------------3 

July 21, 2005 88 86 88 -- 88 80 76 80 -- 81 
August 6, 2005 90 89 88 89 89 83 80 79 80 81 
August 16, 2005 86 84 85 85 84 77 70 73 72 70 

September 16, 2005 79 79 78 80 80 58 57 54 59 59 
October 7, 2005 78 73 73 76 75 60 47 47 54 51 

April 7, 2006 82 78 -- 90 88 73 65 -- 87 84 
August 11, 2006 69 74 64 74 73 49 58 40 58 58 
August 19, 2006 85 88 79 88 85 69 77 51 77 70 
August 29, 2006 86 89 78 86 84 74 82 53 75 70 

September 22, 2006 89 -- 84 85 84 80 -- 67 70 68 
October 16, 2006 85 83 81 86 86 77 73 70 79 78 
November 1, 2006 90 88 89 -- 90 82 79 81 -- 84 

Mean±Std.Dev. (all events) 84±6 83±6 81±8 84±6 84±6 72±11 69±11 63±15 71±11 71±11 
--------------------2012-2013-------------------- 

June 1, 2012 81 83 -- 91 90 65 70 -- 86 85 
August 6, 2012 84 87 87 -- -- 76 81 81 -- -- 
August 10, 2012 80 -- 79 -- -- 31 -- 30 -- -- 
August 15, 2012 77 -- 79 -- -- 53 -- 56 -- -- 

September 17, 2012 -- -- -- 87 83 -- -- -- 81 74 
October 28, 2012 60 -- 60 62 64 40 -- 40 43 48 

April 17, 2013 94 89 97 92 92 74 58 82 68 67 
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Table 3.3 cont’d. 

Date 
CN (λ=0.2) CN (λ=0.05) 
Test Cells2 Test Cells2 

1 2 3 4 5 1 2 3 4 5 
May 20, 2013 75 75 73 78 78 32 33 29 39 39 
June 30, 2013 71 74 70 78 76 32 37 30 44 40 
July 11, 2013 76 78 73 77 76 72 76 66 75 72 

August 10, 2013 84 -- -- 94 93 44 -- -- 69 66 
November 25, 2013 85 93 -- 93 94 71 88 -- 87 89 

Mean±Std.Dev. (all events) 79±8 83±7 77±11 84±11 83±10 54±19 62±21 52±23 66±19 65±18 
1AMC II 
2 Plots 1 and 3 are brown, weathered sandstone; plot 2 is gray, unweathered sandstone; and plots 4 and 5 are a mixture of both brown, weathered sandstone and 
gray, unweathered sandstone and shale. Plot 6 (gray, unweathered sandstone) was not used in the analysis. 
3Source: Taylor et al. (2009a). 

 

 

42 

 



 

Figure 3.2: Curve Numbers for Bent Mountain Plots for the 2005-2006 Monitoring 

Period.
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Figure 3.3: Curve Numbers for Bent Mountain Plots for the 2012-2013 Monitoring 

Period.
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Table 3.4: Values of λ for Bent Mountain Plots.  

Date Plot 
1 2 3 4 5 

--------------------2005-2006-------------------- 
July 21, 2005 0.01 0.0084 0.0088 -- 0.0134 

August 6, 2005 -- -- 0.0129 0.0053 -- 
August 16, 2005 0.0590 0.0161 0.0103 -- 0.1766 

September 16, 2005 0.0622 0.0205 0.2246 0.0948 0.1644 
October 7, 2005 0.0363 0.0121 0.0121 0.0365 0.9246 

April 7, 2006 0.0315 0.0193 -- 0.1014 0.0738 
August 11, 2006 0.0763 0.0554 0.0148 0.0631 0.6385 
August 19, 2006 0.0338 0.0040 0.0124 0.0060 0.2808 
August 29, 2006 0.2569 0.0486 0.0501 0.8028 0.9359 

September 22, 2006 0.0750 -- 0.0165 0.0463 0.0422 
October 16, 2006 -- -- -- -- -- 

November 1, 2006 0.0236 0.0518 0.1215 -- 0.0701 
Mean±Std.Dev. 0.0663±0.0706 0.0263±0.0200 0.0493±0.0706 0.1445±0.2684 0.3320±0.3629 

--------------------2012-2013-------------------- 
June 1, 2012 0.0092 0.0014 -- 0.0954 0.1048 

August 6, 2012 0.0223 0.398 0.0322 -- -- 
August 10, 2012 0.0001 -- 0.0013 -- -- 
August 15, 2012 0.3090 -- 0.0018 -- -- 

September 17, 2012 -- -- -- 0.1603 0.0654 
October 28, 2012 0.0065 -- 0.0091 0.0077 0.0131 

April 17, 2013 0.0098 0.0027 0.0253 0.0064 0.0058 
May 20, 2013 0.0001 0.0001 0.0000 0.0006 0.0104 
June 30, 2013 0.0004 0.0005 0.0000 0.0009 0.0011 
July 11, 2013 0.0057 -- -- -- -- 

August 10, 2013 0.2822 -- -- 0.0276 0.0206 
November 25, 2013 0.0024 0.0535 -- 0.0699 0.6578 

Mean±Std.Dev. 0.0581±0.1177 0.0163±0.0239 0.0100±0.0133 0.0461±0.0580 0.1099±0.2243 
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results suggest that CNs computed using λ=0.05 are more representative of actual 

rainfall-interflow conditions at the study site.  

No significant treatment differences were noted for the 2012-2013 monitoring 

period (Figure 3.4). For the 2012-2013 monitoring period and 𝜆𝜆=0.2, BROWN had a 

mean CN of 78 while GRAY and MIXED each had a mean CN of 83. For 𝜆𝜆=0.05, the 

mean CNs for BROWN, GRAY and MIXED were 53, 63 and 65, respectively. Similar 

results were noted by Taylor et al. (2009a) during the 2005-2006 monitoring period. The 

authors found no difference in CN with spoil type. These findings were unexpected as it 

was hypothesized that significant treatment effects would occur by 2012-2013 for storm 

events and would be noted by changes in CNs. By the 2012-2013 monitoring period, 

BROWN had significantly more vegetation as compared to GRAY and MIXED. Sena 

(2014) found that groundcover on BROWN was nearly 10% greater than on GRAY and 

over 20% greater than on MIXED (Table 3.5). Furthermore, Sena (2014) found tree 

volume (12,270 cm3) on BROWN was over 50 times greater than GRAY (237 cm3) and 

nearly 7 times greater than MIXED.  

While tree growth and ground cover were significantly greater on BROWN and 

did influence the overall annual water budget (storm and base flows) as noted by Sena 

(2014), vegetation did not significantly influence storm interflow though reductions in 

mean CN were measured. These finding suggest that interception and evapotranspiration 

may have some influence on storm hydrology, but that the placement of the spoil using 

FRA is overriding the influence of vegetation at this point in time. In essence, the FRA 

placed spoil, with its hummocky surface and high infiltration rates (Angel et al., 2008; 

Taylor et al., 2009b) acts much like a rain garden with amended soils. During storm 

events, evapotranspiration exerts little influence on the water budget in rain gardens 

(Dietz and Clausen, 2005; Li et al., 2009; WEF, 2012). However, evapotranspiration can 

significantly increase storage capacity in the soil between storm events (WEF, 2012). 

Because of a lack of data during the non-growing season (October 27-April 19), CN 

separation based on times of high and low evapotranspiration (i.e. growing versus non-

growing seasons) could not be performed.  

As noted by Miller et al. (2012), the BROWN, GRAY and MIXED spoils all 

weather, and hence settle, due to factors such as freeze-thaw forces and dissolution of  
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Figure 3.4: Curve Numbers versus Spoil Type (monitoring period 2012-2013).
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Table 3.5: Tree Volume and Ground Cover on Bent Mountain Plots in 2013.1 

Tree Volume (cm3) Ground Cover (%) 
Brown Gray Mixed Brown Gray Mixed 

12,270±292 237±115 1,837±277 99.1±0 9.8±0.05 20.2±0.07 
1Source: Sena (2014). 
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carbonate cements. This settling is expected to reduce infiltration rates as sandstones and 

shales break down into finer particles and begin to fill in some of the macropores. Also as 

noted by Miller et al. (2012), the rate of weather varies with spoil type. Brown sandstones 

and shale weathered most rapidly with gray sandstone weathering much more slowly. 

Thus, weathering likely accounted in part for the lower, though not significant, mean CN 

in BROWN.  

  A significant trend was noted between rainfall depth and CN (λ=02 and 0.05) for 

the 2005-2006 and 2012-2013 monitoring periods as well as for both monitoring periods 

combined (Table 3.6). As expected, lower rainfall depths produced significantly larger 

CNs (Figures 3.5 and 3.6) (Hjelmfelt, 1991; Hawkins, 1993; Warner et al., 2010), 

particularly with λ=0.2 where the initial abstraction was assumed to be higher. Van 

Mullem et al., (2002) noted that higher initial abstractions for small storms that do 

produce runoff resulted in the computation of artificially high CNs. As seen in Figures 

3.5 and 3.6, the significant relationship between CN and rainfall depth was much less 

pronounced with λ=0.05. 

3.3.2 Robinson Forest 

 For the reference watershed LMS (2000-2004), mean CNs were 83 and 62, 

respectively, for λ=0.2 and were 75 and 31, respectively, for λ=0.05 (Table 3.7). Hawkins 

(1993) computed a mean CN of 85 for LMS using λ=0.2. For the LMS watershed, CN 

decreased with precipitation depth for both λ=0.2 and 0.05 (Figures 3.7-3.8). Hawkins 

(1993) classified the LMS as “violent” for larger storms (>25.4 mm) meaning CNs rise 

rapidly with increasing rainfall depth before reaching a constant or “threshold” value. For 

this study, results from the storms (>25.4 mm) analyzed in this study do not show the 

same “violent” trend.  
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Table 3.6: Bent Mountain Plot Curve Numbers1 Related to Precipitation Categories. 

Precipitation (mm) 
2005-20062 2012-2013 All Years 

CN (λ=0.2)3 CN (λ=0.05) 3 CN (λ=0.2)3 CN (λ=0.05) 3 CN (λ=0.2)3 CN (λ=0.05) 3 
12.7 - 19.0 87±3 a 75±8 a 89±6 a 59±18 ab 88±4 a 69±15 a 

19.0 - 25.4 81±5 b 64±12 b 78±6 b 47±20 b 80±6 b 57±18 b 

>25.4 81±7 b 69±13ab 79±11 b 69±16 a 80±9 b 69±14 a 
1AMC II 
2Source: Taylor et al. (2009a). 
3Statistical differences within column indicated by differing letter.
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Figure 3.5: Curve Numbers from Bent Mountain (2012-2013 Monitoring Period) in 

Relation to Precipitation Depths. 
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Figure 3.6: Curve Numbers from Bent Mountain (2005-2006 Monitoring Period) in 

Relation to Precipitation Depths. 
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Table 3.7: Curve Numbers for Little Millseat Watershed. 

Date CN (λ=0.2) CN (λ=0.05) 
--------------------2000-2004--------------------2,3 

April 4, 2000 88 83 
December 16, 2000 91 89 
January 20, 2001 76 63 
February 14, 2001 87 83 
February 16, 2001 88 83 

July 13, 2002 54 31 
April 6, 2003 90 86 
June 7, 2003 89 84 

September 3, 2003 65 46 
November 17, 2003 81 73 

January 2, 2004 93 91 
March 5, 2004 90 87 

Mean±Std.Dev. (all events) 83±12 75±19 
1AMC II 
2 Little Millseat. 
3Source: Taylor et al. (2009a). 
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Figure 3.7: Curve Numbers from Little Millseat (LMS) (2000-2004) and Falling Rock 

(FR) (2012-2013) in Relation to Precipitation Depths, λ=0.2. 

Precipitation (mm)

20 30 40 50 60 70 80

C
ur

ve
 N

um
be

r

0

20

40

60

80

100

LMS
FR

LMS, R2=0.63

FR, R2=0.52

54 

 



 

 

Figure 3.8: Curve Numbers from Little Millseat (LMS) (2000-2004) and Falling Rock 

(FR) (2012-2013) in Relation to Precipitation Depths, λ=0.05. 
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3.3.3 CN Comparison  

 Results from the one-way ANOVAs (nonparametric) indicated that median CNs 

(λ=0.2 and λ=0.05) measured at BM were similar to the median CN measured at LMS 

(Table 3.8). As noted by Taylor et al. (2009a), from the time of placement, loose-dumped 

spoil behaves hydrologically similar to a forested, reference watershed (LMS), and it 

continues to do so even after a period of 7-8 years.  

3.4 CONCLUSIONS 

 This study developed CNs from 7-8 year old forests established on three different 

types of spoil: (1) brown, unweathered sandstone, (2) gray, weathered sandstone, and (3) 

a mixture of both sandstones and shale. These CNs were compared to CNs from the same 

plot with a 0-1 year old forest (Taylor et al., 2009a) as well as a two reference watersheds 

with 90+ year old forests. Since 2005-2006 (years 0 and 1), tree growth and ground cover 

on the BROWN plots has substantially outpaced vegetation growth on the GRAY and 

MIXED plots. Tree volumes on the BROWN plots are 50 times greater than those on the 

GRAY plots and 7 times greater than those on the MIXED plots. As such, it was 

hypothesized that by 2012-2103, CNs on the BROWN plots would be significantly less 

than those on the GRAY and MIXED plots due to the additional storage capacity 

provided via evapotranspiration. 

 No significant differences were found between treatments (BROWN vs. GRAY 

vs. MIXED) or between monitoring periods (2005-2006 vs. 2012-2013). These findings 

indicate that while vegetation did influence the overall annual water budget (storm and  

 

Table 3.8: Medians from CN Comparison between Bent Mountain (BM) Plots and the 

Little Millseat (LMS) Watershed.1 

Location λ=0.2 λ=0.05 Discharge Volume 
(m3) 

BM (2005-2006) 85 a2 72 ab 10.9±11.7 
BM (2012-2013) 80 a  65 b 15.8±15.3 

LMS 88 a 83 a 13.7±7.9 
1AMC II 
2Statistical differences within column indicated by differing letter. 
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base flows), as noted by Sena (2014), vegetation did not significantly influence CNs. 

While no significant differences in CN were noted amongst the treatments, the mean CN 

for the BROWN plots was lower than the mean CNs from the GRAY and MIXED plots 

suggesting that vegetation may be exerting some small influence on storm hydrology. 

Findings from this study indicate that it is the placement of the spoil using FRA that has 

the greatest influence at this point in time. Important to note is that while this study found 

no significant differences in spoil type with respect to CN, reclamationists must consider 

a myriad of other factors such as water quality, nutrient cycling, and aquatic and 

terrestrial habitats in addition to hydrology when restoring forested ecosystems on mined 

lands.  

 

57 

 



CHAPTER 4: CONCLUSIONS 

This study evaluated the hydrologic performance of three spoil types (1) brown, 

weathered sandstone (BROWN), (2) gray unweathered sandstone (GRAY), and (3) a 

mixture of shales and both sandstones (MIXED). Spoil was placed in accordance to 

minimal compaction guidelines set forth in the Forestry Reclamation Approach (FRA. 

The research site was located in eastern Kentucky on the Bent Mountain surface mine 

(BM), which is located near the community of Meta, KY. Both reference watersheds (FR 

and LMS) were located at the University of Kentucky’s research forest also in eastern 

Kentucky. Results from this study may aid reclamationists in their attempts to restore 

hydrologic function to reclaimed mine lands.  

Chapter one provided an outline of research objectives as well as background 

information about surface mining and reclamation techniques. 

Chapter two evaluated the interflow storm hydrologic characteristics discharge 

volume, peak discharge, lag time, response time, and discharge duration for the 

monitoring period of 2012-2013 and compared them to values at initial plot conditions of 

2005-2006 (Table 3.9). Background research and plot construction methods were 

discussed. For the extent of this study, no significant differences in discharge volume and 

discharge duration were found between monitoring periods 2005-2006 and 2012-2013. 

Lag time, response time, and peak discharge all increased significantly. Discharge 

volume remained quite small; only 17% of rainfall was discharged as storm flow. As in 

2005-2006, no significant treatment differences were noted between plots for monitoring 

period 2012-2013. These findings indicate that the placement of the spoil controls storm 

hydrology at this point in time.   

Chapter three developed curve numbers for the 7-8 year old young forest and 

compared these to CN values found at year 0-1 as well as a 90+ year reference watershed. 

Curve numbers did not significantly change between monitoring periods (2005-2006 and 

2012-2013) or between the three spoil types (BROWN, GRAY, and MIXED). However, 

it was noted that the mean CN for the BROWN, highly vegetated plot, was slightly lower 

than the CN from GRAY and MIXED. This might suggest that vegetation can exert some 

small influence on storm hydrology indicating that the overall water budget will decrease  
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Table 3.9: Summary Table of Mean Storm Hydrology Parameters and CNs from Bent 

Mountain and Little Millseat. 

Parameter Monitoring Period (BM) LMS 2005-2006 2012-2013 
Discharge volume (m3) 10.9±11.7 15.8±15.3 --1 

Discharge volume (% rainfall) 11.7±9.0 17.5±17.4 -- 

Peak Discharge (m3 s-1 x 10-4) 6.3±5.3 7.0±4.7 -- 

Lag Time (d x 10-2) 10.2±14.0 33.5±39.3 -- 
Response Time (d x 10-2) 5.4±9.5 16.0±27.6 -- 
Discharge Duration (d) 6.3±4.5 4.0±3.9 -- 

CN (𝜆𝜆=0.2) 83 81 83 
CN (𝜆𝜆=0.05) 69 57 75 

1Values were not determined. 

 

overtime as vegetation continues to develop. Results from CN comparison of BM to LMS 

measured similar values for both λ=0.2 and λ=0.05. This suggests that in the case of 

LMS, after 8 years loose-dumped spoil will continue to behave in a similar manner to a 

forested watershed. 

This study indicates that the method of spoil placement (i.e. minimal compaction), 

and not vegetation growth, is driving the hydrology on a storm event basis for these plots. 

However, it is important to note that surface mine reclamation encompasses many other 

factors such as habitat, water quality, and nutrient cycling and that while no difference 

between spoil treatments in terms of hydrology was found, BROWN demonstrated 

remarkable vegetation growth compared to GRAY and MIXED.  
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CHAPTER 5: FUTURE WORK 

Future research should continue to evaluate the influence vegetation growth on 

baseflow conditions and storm response. After 8 years, hydrograph characteristics and 

curve numbers did not greatly change from initial plot construction conditions. However, 

as vegetation continues to grow, it could exert a greater influence over storm hydrology 

and differences between treatments may become apparent. 

During the extent of this analysis, few large storms were available. Because 

precipitation depth can bias curve number, work should be done to evaluate CN response 

to larger storms and for a longer monitoring time period.  

Although spoil type at this point does not influence storm hydrology, other aspects of 

reclamation, such as spoil stability on steeper slopes, should be considered for optimal 

reclamation conditions. 
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APPENDIX A: BENT MOUNTAIN HYDROGRAPHS
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Figure A.1. Rainfall-Runoff Response at Bent Mountain on June 1, 2012. BM1, BROWN. 

 
Table A.1: Storm Hydrograph Characteristics and CNs. 

Start of Storm 6/1/12 0:00 
Storm Duration 23.4 

Precipitation Depth (mm) 15.0 
CN (𝜆𝜆=0.2) 81 
CN (𝜆𝜆=0.05) 65 

Discharge volume (m3) 7.1 
Discharge volume (% rainfall) 7.6 
Peak Discharge (m3 s-1 x 10-4) 7.0 

Lag Time (d x 10-2) 55.8 
Response Time (d x 10-2) 51.4 
Discharge Duration (d) 0.7 
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Figure A.2. Rainfall-Runoff Response at Bent Mountain on June 1, 2012. BM2, GRAY. 

 
Table A.2: Storm Hydrograph Characteristics and CNs. 

Start of Storm 6/1/12 0:00 
Storm Duration 23.4 

Precipitation Depth (mm) 15.0 
CN (𝜆𝜆=0.2) 83 
CN (𝜆𝜆=0.05) 70 

Discharge volume (m3) 8.6 
Discharge volume (% rainfall) 10.9 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 52.8 
Response Time (d x 10-2) 51.5 
Discharge Duration (d) 1.1 
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Figure A.3. Rainfall-Runoff Response at Bent Mountain on June 1, 2012. BM4, MIXED. 

 
Table A.3: Storm Hydrograph Characteristics and CNs. 

Start of Storm 6/1/12 0:00 
Storm Duration 23.4 

Precipitation Depth (mm) 15.0 
CN (𝜆𝜆=0.2) 91 
CN (𝜆𝜆=0.05) 86 

Discharge volume (m3) 23.5 
Discharge volume (% rainfall) 31.5 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 52.8 
Response Time (d x 10-2) 10.1 
Discharge Duration (d) 15.7 
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Figure A.4. Rainfall-Runoff Response at Bent Mountain on June 1, 2012. BM5, MIXED. 

 
Table A.4: Storm Hydrograph Characteristics and CNs. 

Start of Storm 6/1/12 0:00 
Storm Duration 23.4 

Precipitation Depth (mm) 15.0 
CN (𝜆𝜆=0.2) 90 
CN (𝜆𝜆=0.05) 85 

Discharge volume (m3) 24.7 
Discharge volume (% rainfall) 33.0 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 56.9 
Response Time (d x 10-2) 10.2 
Discharge Duration (d) 13.7 
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Figure A.5. Rainfall-Runoff Response at Bent Mountain on August 6, 2012. BM1, BROWN. 

 
Table A.5: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/6/12 5:30 
Storm Duration 33.3 

Precipitation Depth (mm) 6.0 
CN (𝜆𝜆=0.2) 84 
CN (𝜆𝜆=0.05) 76 

Discharge volume (m3) 32.0 
Discharge volume (% rainfall) 24.0 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 15.2 
Response Time (d x 10-2) 4.1 
Discharge Duration (d) 2.4 

 
 

66 

 



 
Figure A.6. Rainfall-Runoff Response at Bent Mountain on August 6, 2012. BM2, GRAY. 

 
Table A.6: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/6/12 5:30 
Storm Duration 33.3 

Precipitation Depth (mm) 6.0 
CN (𝜆𝜆=0.2) 87 
CN (𝜆𝜆=0.05) 81 

Discharge volume (m3) 34.0 
Discharge volume (% rainfall) 30.0 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 10.8 
Response Time (d x 10-2) 10.5 
Discharge Duration (d) 1.5 
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Figure A.7. Rainfall-runoff response at Bent Mountain on August 6, 2012. BM3, BROWN. 

 
Table A.7: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/6/12 5:30 
Storm Duration 33.3 

Precipitation Depth (mm) 6.0 
CN (𝜆𝜆=0.2) 87 
CN (𝜆𝜆=0.05) 81 

Discharge volume (m3) 35.0 
Discharge volume (% rainfall) 31.1 
Peak Discharge (m3 s-1 x 10-4) 8.3 

Lag Time (d x 10-2) 11.0 
Response Time (d x 10-2) 4.9 
Discharge Duration (d) 4.2 
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Figure A.8. Rainfall-Runoff Response at Bent Mountain on August 10, 2012. BM1, BROWN. 

 
Table A.8: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/10/12 8:30 
Storm Duration 14.5 

Precipitation Depth (mm) 2.0 
CN (𝜆𝜆=0.2) 80 
CN (𝜆𝜆=0.05) 31 

Discharge volume (m3) 0.2 
Discharge volume (% rainfall) 0.3 
Peak Discharge (m3 s-1 x 10-4) 0.5 

Lag Time (d x 10-2) 9.9 
Response Time (d x 10-2) 7.1 
Discharge Duration (d) 0.6 
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Figure A.9. Rainfall-Runoff Response at Bent Mountain on August 10, 2012. BM3, MIXED. 

 
Table A.9: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/10/12 8:30 
Storm Duration 14.5 

Precipitation Depth (mm) 2.0 
CN (𝜆𝜆=0.2) 79 
CN (𝜆𝜆=0.05) 30 

Discharge volume (m3) 0.1 
Discharge volume (% rainfall) 0.1 
Peak Discharge (m3 s-1 x 10-4) 1.1 

Lag Time (d x 10-2) 8.1 
Response Time (d x 10-2) 7.5 
Discharge Duration (d) 0.4 

 

70 

 



 
Figure A.10. Rainfall-Runoff Response at Bent Mountain on August 15, 2012. BM1, BROWN. 

 
Table A.10: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/15/12 10:00 
Storm Duration 28.2 

Precipitation Depth (mm) 2.0 
CN (𝜆𝜆=0.2) 77 
CN (𝜆𝜆=0.05) 53 

Discharge volume (m3) 8.0 
Discharge volume (% rainfall) 7.1 
Peak Discharge (m3 s-1 x 10-4) 8.3 

Lag Time (d x 10-2) 3.7 
Response Time (d x 10-2) 1.9 
Discharge Duration (d) 3.1 
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Figure A.11. Rainfall-Runoff Response at Bent Mountain on August 15, 2012. BM3, BROWN. 

 
Table A.11: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/15/12 10:00 
Storm Duration 28.2 

Precipitation Depth (mm) 2.0 
CN (𝜆𝜆=0.2) 79 
CN (𝜆𝜆=0.05) 56 

Discharge volume (m3) 8.5 
Discharge volume (% rainfall) 8.9 
Peak Discharge (m3 s-1 x 10-4) 8.3 

Lag Time (d x 10-2) 2.6 
Response Time (d x 10-2) 2.6 
Discharge Duration (d) 8.0 
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Figure A.12. Rainfall-Runoff Response at Bent Mountain on September 17, 2012. BM4, 

MIXED. 

 
Table A.12: Storm Hydrograph Characteristics and CNs. 

Start of Storm 9/17/12 12:00 
Storm Duration 33.0 

Precipitation Depth (mm) 29.0 
CN (𝜆𝜆=0.2) 87 
CN (𝜆𝜆=0.05) 81 

Discharge volume (m3) 33.0 
Discharge volume (% rainfall) 31.3 
Peak Discharge (m3 s-1 x 10-4) 8.2 

Lag Time (d x 10-2) 67.3 
Response Time (d x 10-2) 42.8 
Discharge Duration (d) 7.6 
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Figure A.13. Rainfall-Runoff Response at Bent Mountain on September 17, 2012. BM5, 

MIXED. 

 
Table A.13: Storm Hydrograph Characteristics and CNs. 

Start of Storm 9/17/12 12:00 
Storm Duration 33.0 

Precipitation Depth (mm) 29.0 
CN (𝜆𝜆=0.2) 83 
CN (𝜆𝜆=0.05) 74 

Discharge volume (m3) 25.3 
Discharge volume (% rainfall) 24.0 
Peak Discharge (m3 s-1 x 10-4) 7.0 

Lag Time (d x 10-2) 69.7 
Response Time (d x 10-2) 26.6 
Discharge Duration (d) 7.8 
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Figure A.14. Rainfall-Runoff Response at Bent Mountain on October 28, 2012. BM1, GRAY. 

 
Table A.14: Storm Hydrograph Characteristics and CNs. 

Start of Storm 10/28/12 6:30 
Storm Duration 42.9 

Precipitation Depth (mm) 42.9 
CN (𝜆𝜆=0.2) 60 
CN (𝜆𝜆=0.05) 40 

Discharge volume (m3) 2.1 
Discharge volume (% rainfall)  1.2 
Peak Discharge (m3 s-1 x 10-4) 0.7 

Lag Time (d x 10-2) 158.7 
Response Time (d x 10-2) 130.7 
Discharge Duration (d) 1.9 
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Figure A.15. Rainfall-Runoff Response at Bent Mountain on October 28, 2012. BM3, BROWN. 

 
Table A.15: Storm Hydrograph Characteristics and CNs. 

Start of Storm 10/28/12 6:30 
Storm Duration 42.9 

Precipitation Depth (mm) 9.5 
CN (𝜆𝜆=0.2) 60 
CN (𝜆𝜆=0.05) 40 

Discharge volume (m3) 1.7 
Discharge volume (% rainfall)  1.2 
Peak Discharge (m3 s-1 x 10-4) 0.5 

Lag Time (d x 10-2) 159.0 
Response Time (d x 10-2) 116.1 
Discharge Duration (d) 3.1 
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Figure A.16. Rainfall-Runoff Response at Bent Mountain on October 28, 2012. BM4, MIXED. 

 
Table A.16: Storm Hydrograph Characteristics and CNs. 

Start of Storm 10/28/12 6:30 
Storm Duration 42.9 

Precipitation Depth (mm) 9.5 
CN (𝜆𝜆=0.2) 62 
CN (𝜆𝜆=0.05) 43 

Discharge volume (m3) 2.5 
Discharge volume (% rainfall)  1.9 
Peak Discharge (m3 s-1 x 10-4) 2.5 

Lag Time (d x 10-2) 53.5 
Response Time (d x 10-2) 47.6 
Discharge Duration (d) 1.5 
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Figure A.17. Rainfall-Runoff Response at Bent Mountain on October 28, 2012. BM5, MIXED. 

 
Table A.17: Storm Hydrograph Characteristics and CNs. 

Start of Storm 10/28/12 6:30 
Storm Duration 42.9 

Precipitation Depth (mm) 9.5 
CN (𝜆𝜆=0.2) 64 
CN (𝜆𝜆=0.05) 48 

Discharge volume (m3) 4.8 
Discharge volume (% rainfall)  3.5 
Peak Discharge (m3 s-1 x 10-4) 1.8 

Lag Time (d x 10-2) 77.3 
Response Time (d x 10-2) 48.9 
Discharge Duration (d) 2.1 
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Figure A.18. Rainfall-Runoff Response at Bent Mountain on April 17, 2013. BM1, BROWN. 

 
Table A.18: Storm Hydrograph Characteristics and CNs. 

Start of Storm 4/17/13 8:00 
Storm Duration 17.5 

Precipitation Depth (mm) 3.8 
CN (𝜆𝜆=0.2) 94 
CN (𝜆𝜆=0.05) 74 

Discharge volume (m3) 27.7 
Discharge volume (% rainfall) 39.4 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 11.5 
Response Time (d x 10-2) 0.6 
Discharge Duration (d) 9.8 
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Figure A.19. Rainfall-Runoff Response at Bent Mountain on April 17, 2013. BM2, GRAY. 

 
Table A.19: Storm Hydrograph Characteristics and CNs. 

Start of Storm 4/17/13 8:00 
Storm Duration 17.5 

Precipitation Depth (mm) 3.8 
CN (𝜆𝜆=0.2) 89 
CN (𝜆𝜆=0.05) 58 

Discharge volume (m3) 9.3 
Discharge volume (% rainfall) 15.5 
Peak Discharge (m3 s-1 x 10-4) 5.2 

Lag Time (d x 10-2) 9.2 
Response Time (d x 10-2) 0.9 
Discharge Duration (d) 10.7 
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Figure A.20. Rainfall-Runoff Response at Bent Mountain on April 17, 2013. BM3, BROWN. 

 
Table A.20: Storm Hydrograph Characteristics and CNs. 

Start of Storm 4/17/13 8:00 
Storm Duration 17.5 

Precipitation Depth (mm) 3.8 
CN (𝜆𝜆=0.2) 94 
CN (𝜆𝜆=0.05) 74 

Discharge volume (m3) 27.7 
Discharge volume (% rainfall) 62.3 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 11.5 
Response Time (d x 10-2) 0.6 
Discharge Duration (d) 9.8 
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Figure A.21. Rainfall-Runoff Response at Bent Mountain on April 17, 2013. BM4, MIXED. 

 
Table A.21: Storm Hydrograph Characteristics and CNs. 

Start of Storm 4/17/13 8:00 
Storm Duration 17.5 

Precipitation Depth (mm) 3.8 
CN (𝜆𝜆=0.2) 97 
CN (𝜆𝜆=0.05) 82 

Discharge volume (m3) 29.8 
Discharge volume (% rainfall) 62.3 
Peak Discharge (m3 s-1 x 10-4) 8.3 

Lag Time (d x 10-2) 3.2 
Response Time (d x 10-2) 0.4 
Discharge Duration (d) 10.7 
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Figure A.22. Rainfall-Runoff Response at Bent Mountain on April 17, 2013. BM5, MIXED. 

 
Table A.22: Storm Hydrograph Characteristics and CNs. 

Start of Storm 4/17/13 8:00 
Storm Duration 17.5 

Precipitation Depth (mm) 3.8 
CN (𝜆𝜆=0.2) 92 
CN (𝜆𝜆=0.05) 67 

Discharge volume (m3) 17.7 
Discharge volume (% rainfall) 31.6 
Peak Discharge (m3 s-1 x 10-4) 10.2 

Lag Time (d x 10-2) 15.7 
Response Time (d x 10-2) 0.9 
Discharge Duration (d) 6.3 
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Figure A.23. Rainfall-Runoff Response at Bent Mountain on May 20, 2013. BM1, BROWN. 

 
Table A.23: Storm Hydrograph Characteristics and CNs. 

Start of Storm 5/20/13 4:45 
Storm Duration 20.1 

Precipitation Depth (mm) 3.0 
CN (𝜆𝜆=0.2) 75 
CN (𝜆𝜆=0.05) 32 

Discharge volume (m3) 0.3 
Discharge volume (% rainfall) 0.4 
Peak Discharge (m3 s-1 x 10-4) 1.0 

Lag Time (d x 10-2) 12.2 
Response Time (d x 10-2) 8.5 
Discharge Duration (d) 1.5 
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Figure A.24. Rainfall-Runoff Response at Bent Mountain on May 20, 2013. BM2, GRAY. 

 
Table A.24: Storm Hydrograph Characteristics and CNs. 

Start of Storm 5/20/13 4:45 
Storm Duration 20.1 

Precipitation Depth (mm) 3.0 
CN (𝜆𝜆=0.2) 75 
CN (𝜆𝜆=0.05) 33 

Discharge volume (m3) 0.4 
Discharge volume (% rainfall) 0.6 
Peak Discharge (m3 s-1 x 10-4) 1.4 

Lag Time (d x 10-2) 7.5 
Response Time (d x 10-2) 3.4 
Discharge Duration (d) 1.0 
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Figure A.25. Rainfall-Runoff Response at Bent Mountain on May 20, 2013. BM3, BROWN. 

 
Table A.25: Storm Hydrograph Characteristics and CNs. 

Start of Storm 5/20/13 4:45 
Storm Duration 20.1 

Precipitation Depth (mm) 3.0 
CN (𝜆𝜆=0.2) 73 
CN (𝜆𝜆=0.05) 29 

Discharge volume (m3) 0.0 
Discharge volume (% rainfall) 0.1 
Peak Discharge (m3 s-1 x 10-4) 0.3 

Lag Time (d x 10-2) 5.6 
Response Time (d x 10-2) 3.9 
Discharge Duration (d) -- 
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Figure A.26. Rainfall-Runoff Response at Bent Mountain on May 20, 2013. BM4, MIXED. 

 
Table A.26: Storm Hydrograph Characteristics and CNs. 

Start of Storm 5/20/13 4:45 
Storm Duration 20.1 

Precipitation Depth (mm) 3.0 
CN (𝜆𝜆=0.2) 78 
CN (𝜆𝜆=0.05) 39 

Discharge volume (m3) 1.4 
Discharge volume (% rainfall) 2.1 
Peak Discharge (m3 s-1 x 10-4) 1.7 

Lag Time (d x 10-2) 10.3 
Response Time (d x 10-2) 5.8 
Discharge Duration (d) 1.5 
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Figure A.27. Rainfall-Runoff Response at Bent Mountain on May 20, 2013. BM5, MIXED. 

 
Table A.27: Storm Hydrograph Characteristics and CNs. 

Start of Storm 5/20/13 4:45 
Storm Duration 20.1 

Precipitation Depth (mm) 3.0 
CN (𝜆𝜆=0.2) 78 
CN (𝜆𝜆=0.05) 39 

Discharge volume (m3) 1.6 
Discharge volume (% rainfall) 2.5 
Peak Discharge (m3 s-1 x 10-4) 0.6 

Lag Time (d x 10-2) 12.5 
Response Time (d x 10-2) 9.2 
Discharge Duration (d) 1.5 
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Figure A.28. Rainfall-Runoff Response at Bent Mountain on June 30, 2013. BM1, BROWN. 

 
Table A.28: Storm Hydrograph Characteristics and CNs. 

Start of Storm 6/30/13 23:30 
Storm Duration 22.9 

Precipitation Depth (mm) 42.5 
CN (𝜆𝜆=0.2) 71 
CN (𝜆𝜆=0.05) 32 

Discharge volume (m3) 0.2 
Discharge volume (% rainfall) 0.3 
Peak Discharge (m3 s-1 x 10-4) 1.0 

Lag Time (d x 10-2) 14.4 
Response Time (d x 10-2) 12.3 
Discharge Duration (d) 0.2 
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Figure A.29. Rainfall-Runoff Response at Bent Mountain on June 30, 2013. BM2, GRAY. 

 
Table A.29: Storm Hydrograph Characteristics and CNs. 

Start of Storm 6/30/13 23:30 
Storm Duration 22.9 

Precipitation Depth (mm) 42.5 
CN (𝜆𝜆=0.2) 74 
CN (𝜆𝜆=0.05) 37 

Discharge volume (m3) 1.1 
Discharge volume (% rainfall) 1.4 
Peak Discharge (m3 s-1 x 10-4) 3.5 

Lag Time (d x 10-2) 9.7 
Response Time (d x 10-2) 2.3 
Discharge Duration (d) 0.8 
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Figure A.30. Rainfall-Runoff Response at Bent Mountain on June 30, 2013. BM3, BROWN. 

 
Table A.30: Storm Hydrograph Characteristics and CNs. 

Start of Storm 6/30/13 23:30 
Storm Duration 22.9 

Precipitation Depth (mm) 42.5 
CN (𝜆𝜆=0.2) 71 
CN (𝜆𝜆=0.05) 32 

Discharge volume (m3) 0.2 
Discharge volume (% rainfall) 0.1 
Peak Discharge (m3 s-1 x 10-4) 1.0 

Lag Time (d x 10-2) 14.4 
Response Time (d x 10-2) 12.3 
Discharge Duration (d) 0.2 
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Figure A.31. Rainfall-Runoff Response at Bent Mountain on June 30, 2013. BM4, MIXED. 

 
Table A.31: Storm Hydrograph Characteristics and CNs. 

Start of Storm 6/30/13 23:30 
Storm Duration 22.9 

Precipitation Depth (mm) 42.5 
CN (𝜆𝜆=0.2) 78 
CN (𝜆𝜆=0.05) 44 

Discharge volume (m3) 2.8 
Discharge volume (% rainfall) 3.8 
Peak Discharge (m3 s-1 x 10-4) 4.7 

Lag Time (d x 10-2) 14.2 
Response Time (d x 10-2) 0.7 
Discharge Duration (d) 0.8 
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Figure A.32. Rainfall-Runoff Response at Bent Mountain on June 30, 2013. BM5, MIXED. 

 
Table A.32: Storm Hydrograph Characteristics and CNs. 

Start of Storm 6/30/13 23:30 
Storm Duration 22.9 

Precipitation Depth (mm) 42.5 
CN (𝜆𝜆=0.2) 76 
CN (𝜆𝜆=0.05) 40 

Discharge volume (m3) 1.9 
Discharge volume (% rainfall) 2.6 
Peak Discharge (m3 s-1 x 10-4) 1.8 

Lag Time (d x 10-2) 16.3 
Response Time (d x 10-2) 3.7 
Discharge Duration (d) 0.8 
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Figure A.33. Rainfall-Runoff Response at Bent Mountain on July, 11 2013. BM1, BROWN. 

 
Table A.33: Storm Hydrograph Characteristics and CNs. 

Start of Storm 7/11/13 21:00 
Storm Duration 42.4 

Precipitation Depth (mm) 2.3 
CN (𝜆𝜆=0.2) 76 
CN (𝜆𝜆=0.05) 72 

Discharge volume (m3) 25.7 
Discharge volume (% rainfall) 15.1 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 1.2 
Response Time (d x 10-2) 0.4 
Discharge Duration (d) 2.0 
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Figure A.34. Rainfall-Runoff Response at Bent Mountain on July, 11 2013. BM2, GRAY. 

 
Table A.34: Storm Hydrograph Characteristics and CNs. 

Start of Storm 7/11/13 21:00 
Storm Duration 42.4 

Precipitation Depth (mm) 2.3 
CN (𝜆𝜆=0.2) 78 
CN (𝜆𝜆=0.05) 76 

Discharge volume (m3) 26.6 
Discharge volume (% rainfall) 18.4 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 0.0 
Response Time (d x 10-2) 3.6 
Discharge Duration (d) 2.4 
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Figure A.35. Rainfall-Runoff Response at Bent Mountain on July, 11 2013. BM3, BROWN. 

 
Table A.35: Storm Hydrograph Characteristics and CNs. 

Start of Storm 7/11/13 21:00 
Storm Duration 42.4 

Precipitation Depth (mm) 2.3 
CN (𝜆𝜆=0.2) 73 
CN (𝜆𝜆=0.05) 66 

Discharge volume (m3) 15.4 
Discharge volume (% rainfall) 10.7 
Peak Discharge (m3 s-1 x 10-4) 12.5 

Lag Time (d x 10-2) 33.3 
Response Time (d x 10-2) 4.0 
Discharge Duration (d) 3.0 
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Figure A.36. Rainfall-Runoff Response at Bent Mountain on July, 11 2013. BM4, MIXED. 

 
Table A.36: Storm Hydrograph Characteristics and CNs. 

Start of Storm 7/11/13 21:00 
Storm Duration 42.4 

Precipitation Depth (mm) 2.3 
CN (𝜆𝜆=0.2) 77 
CN (𝜆𝜆=0.05) 75 

Discharge volume (m3) 23.2 
Discharge volume (% rainfall) 17.1 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 1.3 
Response Time (d x 10-2) 2.8 
Discharge Duration (d) 4.0 
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Figure A.37. Rainfall-Runoff Response at Bent Mountain on July, 11 2013. BM5, MIXED. 

 
Table A.37: Storm Hydrograph Characteristics and CNs. 

Start of Storm 7/11/13 21:00 
Storm Duration 42.4 

Precipitation Depth (mm) 2.3 
CN (𝜆𝜆=0.2) 76 
CN (𝜆𝜆=0.05) 72 

Discharge volume (m3) 23.1 
Discharge volume (% rainfall) 17.0 
Peak Discharge (m3 s-1 x 10-4) 12.6 

Lag Time (d x 10-2) 2.2 
Response Time (d x 10-2) 0.4 
Discharge Duration (d) 2.1 
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Figure A.38. Rainfall-Runoff Response at Bent Mountain on August 10, 2013. BM1, BROWN 

 
Table A.38: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/10/13 3:30 
Storm Duration 16.0 

Precipitation Depth (mm) 4.5 
CN (𝜆𝜆=0.2) 84 
CN (𝜆𝜆=0.05) 44 

Discharge volume (m3) 3.3 
Discharge volume (% rainfall) 5.1 
Peak Discharge (m3 s-1 x 10-4) 5.2 

Lag Time (d x 10-2) 18.6 
Response Time (d x 10-2) 11.4 
Discharge Duration (d) 1.0 
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Figure A.39. Rainfall-Runoff Response at Bent Mountain on August 10, 2013. BM4, MIXED. 

 
Table A.39: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/10/13 3:30 
Storm Duration 16.0 

Precipitation Depth (mm) 4.5 
CN (𝜆𝜆=0.2) 94 
CN (𝜆𝜆=0.05) 69 

Discharge volume (m3) 17.4 
Discharge volume (% rainfall) 33.9 
Peak Discharge (m3 s-1 x 10-4) 11.5 

Lag Time (d x 10-2) 13.8 
Response Time (d x 10-2) 10.0 
Discharge Duration (d) -- 
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Figure A.40. Rainfall-Runoff Response at Bent Mountain on August 10, 2013. BM5, MIXED. 

 

Table A.40: Storm Hydrograph Characteristics and CNs. 

Start of Storm 8/10/13 3:30 
Storm Duration 16.0 

Precipitation Depth (mm) 4.5 
CN (𝜆𝜆=0.2) 93 
CN (𝜆𝜆=0.05) 66 

Discharge volume (m3) 16.0 
Discharge volume (% rainfall) 31.3 
Peak Discharge (m3 s-1 x 10-4) 10.6 

Lag Time (d x 10-2) 20.2 
Response Time (d x 10-2) 3.0 
Discharge Duration (d) 2.2 
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Figure A.41. Rainfall-Runoff Response at Bent Mountain on November 11, 2013. BM1, 

BROWN. 

 

Table A.41: Storm Hydrograph Characteristics and CNs. 

Start of Storm 11/25/13 21:15 
Storm Duration 28.7 

Precipitation Depth (mm) 0.6 
CN (𝜆𝜆=0.2) 85 
CN (𝜆𝜆=0.05) 71 

Discharge volume (m3) 24.2 
Discharge volume (% rainfall) 21.0  
Peak Discharge (m3 s-1 x 10-4) 7.0 

Lag Time (d x 10-2) 89.7 
Response Time (d x 10-2) 9.9 
Discharge Duration (d) 3.8 
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Figure A.42. Rainfall-Runoff Response at Bent Mountain on November 11, 2013. BM2, GRAY. 

 

Table A.42: Storm Hydrograph Characteristics and CNs. 

Start of Storm 11/25/13 21:15 
Storm Duration 28.7 

Precipitation Depth (mm) 0.6 
CN (𝜆𝜆=0.2) 93 
CN (𝜆𝜆=0.05) 88 

Discharge volume (m3) 50.0 
Discharge volume (% rainfall)  51.2 
Peak Discharge (m3 s-1 x 10-4) 8.3 

Lag Time (d x 10-2) 89.9 
Response Time (d x 10-2) 8.9 
Discharge Duration (d) 4.5 
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Figure A.43. Rainfall-Runoff Response at Bent Mountain on November 11, 2013. BM4, 

MIXED. 

 

Table A.43: Storm Hydrograph Characteristics and CNs. 

Start of Storm 11/25/13 21:15 
Storm Duration 28.7 

Precipitation Depth (mm) 0.6 
CN (𝜆𝜆=0.2) 93 
CN (𝜆𝜆=0.05) 87 

Discharge volume (m3) 44.3 
Discharge volume (% rainfall)  33.9 
Peak Discharge (m3 s-1 x 10-4) 10.0 

Lag Time (d x 10-2) 76.3 
Response Time (d x 10-2) 16.8 
Discharge Duration (d) 4.2 
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Figure A.44. Rainfall-Runoff Response at Bent Mountain on November 11, 2013. BM5, 

MIXED. 

 

Table A.44: Storm Hydrograph Characteristics and CNs. 

Start of Storm 11/25/13 21:15 
Storm Duration 28.7 

Precipitation Depth (mm) 0.6 
CN (𝜆𝜆=0.2) 94 
CN (𝜆𝜆=0.05) 89 

Discharge volume (m3) 57.8 
Discharge volume (% rainfall)  63.0 
Peak Discharge (m3 s-1 x 10-4) 8.9 

Lag Time (d x 10-2) 91.2 
Response Time (d x 10-2) 15.2 
Discharge Duration (d) 4.5 
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APPENDIX B: CALCULATED λ VALUES FOR BENT MOUNTAIN
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Table B.1: Precipitation Depth, P (mm) 

Date Plot 
BM1 BM2 BM3 BM4 BM5 

July 21, 2005 20.1 20.1 20.1 20.1 20.1 
August 6, 2005 16 16 16 16 16 
August 16, 2005 19.6 19.6 19.6 19.6 19.6 

September 16, 2005 19.4 19.4 19.4 19.4 19.4 
October 7, 2005 25.4 25.4 25.4 25.4 25.4 

April 7, 2006 38.1 38.1 38.1 38.1 38.1 
August 11, 2006 44.1 44.1 44.1 44.1 44.1 
August 19, 2006 15.4 15.4 15.4 15.4 15.4 
August 29, 2006 18.3 18.3 18.3 18.3 18.3 

September 22, 2006 16.3 16.3 16.3 16.3 16.3 
October 16, 2006 30.6 30.6 30.6 30.6 30.6 
November 1, 2006 16.9 16.9 16.9 16.9 16.9 

June 1, 2012 23.4 23.4 23.4 23.4 23.4 
August 6, 2012 33.3 33.3 33.3 33.3 33.3 
August 10, 2012 14.5 14.5 14.5 14.5 14.5 
August 15, 2012 28.2 28.2 28.2 28.2 28.2 

September 17, 2012 33.0 33.0 33.0 33.0 33.0 
October 28, 2012 42.9 42.9 42.9 42.9 42.9 

April 17, 2013 17.5 17.5 17.5 17.5 17.5 
May 20, 2013 20.1 20.1 20.1 20.1 20.1 
June 30, 2013 22.9 22.9 22.9 22.9 22.9 
July 11, 2013 42.4 42.4 42.4 42.4 42.4 

August 10, 2013 16.0 16.0 16.0 16.0 16.0 
November 25, 2013 28.7 28.7 28.7 28.7 28.7 
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Table B2: Flow Depth, Q (mm) 

Date Plot 
BM1 BM2 BM3 BM4 BM5 

July 21, 2005 3.5 2.6 3.5 
 

3.8 
August 6, 2005 2.8 2.1 1.9 2.1 2.3 
August 16, 2005 2.6 1.7 2.0 1.9 1.6 

September 16, 2005 0.5 0.5 0.3 0.6 0.6 
October 7, 2005 1.6 0.4 0.4 0.9 0.7 

April 7, 2006 8.7 5.9 -- 18.0 15.2 
August 11, 2006 3.2 5.7 1.5 5.7 5.5 
August 19, 2006 0.7 1.6 0.0 1.5 0.8 
August 29, 2006 1.9 3.3 0.2 2.1 1.4 

September 22, 2006 2.3 -- 0.7 1.0 0.8 
October 16, 2006 6.9 5.6 4.7 7.8 7.6 
November 1, 2006 3.0 2.2 2.6 -- 3.3 

June 1, 2012 1.8 2.5 -- 7.4 6.8 
August 6, 2012 8.0 10.0 10.3 -- -- 
August 10, 2012 0.0 0.0 0.0 -- -- 
August 15, 2012 2.0 0.0 2.5 -- -- 

September 17, 2012 0.0 0.0 -- 10.3 7.0 
October 28, 2012 0.5 0.0 0.3 0.8 1.3 

April 17, 2013 6.9 2.7 10.9 5.2 4.9 
May 20, 2013 0.1 0.1 0.0 0.4 0.4 
June 30, 2013 0.1 0.3 0.0 0.9 0.5 
July 11, 2013 6.4 7.8 4.5 7.3 6.4 

August 10, 2013 0.8 -- -- 5.4 4.4 
November 25, 2013 6.0 14.7 -- 13.8 16.0 
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Table B3: Initial Abstraction, Ia (mm) 

Date Plot 
BM1 BM2 BM3 BM4 BM5 

July 21, 2005 0.8 1.0 0.8 1.0 1.0 
August 6, 2005 -- -- 1.3 0.5 -- 
August 16, 2005 4.3 2.5 1.5 -- 9.4 

September 16, 2005 9.9 6.9 14.7 10.7 12.4 
October 7, 2005 7.1 8.6 10.9 9.4 21.1 

April 7, 2006 3.3 3.3 43.2 3.3 3.3 
August 11, 2006 16.3 9.7 10.4 10.4 26.2 
August 19, 2006 4.8 0.5 9.4 0.8 9.7 
August 29, 2006 9.1 2.8 11.4 11.7 13.2 

September 22, 2006 4.1 -- 3.6 5.3 5.6 
October 16, 2006 -- -- -- -- -- 
November 1, 2006 1.5 3.6 5.1 -- 3.0 

June 1, 2012 0.3 0.3 -- 3.3 3.8 
August 6, 2012 2.0 2.5 2.0 0.0 -- 
August 10, 2012 0.2 -- 6.1 -- -- 
August 15, 2012 16.8 -- 0.5 -- -- 

September 17, 2012 0.0 0.0 -- 6.6 5.3 
October 28, 2012 11.9 -- 17.3 10.2 10.2 

April 17, 2013 0.3 0.3 0.3 0.3 0.3 
May 20, 2013 0.5 0.3 0.3 0.5 5.1 
June 30, 2013 2.8 0.8 0.5 0.5 1.0 
July 11, 2013 1.3 -- -- -- -- 

August 10, 2013 10.2 -- -- 0.8 0.8 
November 25, 2013 0.3 1.3 -- 1.8 6.1 
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Table B4: Storage Retention, S (mm) 

Date Plot 
BM1 BM2 BM3 BM4 BM5 

July 21, 2005 88.4 121.2 86.3 -- 75.8 
August 6, 2005 -- -- 98.7 96.5 95.4 
August 16, 2005 73.1 158.0 147.6 -- 53.2 

September 16, 2005 159.2 334.8 65.6 112.5 75.7 
October 7, 2005 196.0 713.3 515.2 257.8 22.8 

April 7, 2006 104.9 170.9 -- 32.6 44.7 
August 11, 2006 213.0 174.2 705.2 165.1 41.0 
August 19, 2006 142.7 127.8 756.4 127.5 34.4 
August 29, 2006 35.6 57.5 228.1 14.6 14.1 

September 22, 2006 54.2 
 

215.4 115.1 132.5 
October 16, 2006 104.9 135.9 170.2 90.2 93.3 
November 1, 2006 64.7 68.7 41.8 -- 43.5 

June 1, 2012 277.5 187.3 -- 34.6 36.4 
August 6, 2012 91.1 63.8 63.1 -- -- 
August 10, 2012 4309.3 -- 4529.9 -- -- 
August 15, 2012 54.3 -- 278.8 -- -- 

September 17, 2012 -- -- -- 41.2 81.5 
October 28, 2012 1832.7 -- 1904.4 1318.7 776.3 

April 17, 2013 25.9 92.4 10.0 39.9 43.5 
May 20, 2013 4580.8 3331.0 36361.7 873.1 486.8 
June 30, 2013 6959.3 1555.3 27123.5 554.8 900.1 
July 11, 2013 223.1 -- -- -- -- 

August 10, 2013 36.0 -- -- 27.6 37.1 
November 25, 2013 105.7 23.8 -- 25.5 9.3 
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Table B5: Initial Abstraction Coefficient, λ 

Date Plot 
BM1 BM2 BM3 BM4 BM5 

July 21, 2005 0.01 0.01 0.01 -- 0.01 
August 6, 2005 -- -- 0.01 0.01 -- 
August 16, 2005 0.06 0.02 0.01 -- 0.18 

September 16, 2005 0.06 0.02 0.22 0.09 0.16 
October 7, 2005 0.04 0.01 0.02 0.04 0.92 

April 7, 2006 0.03 0.02 -- 0.10 0.07 
August 11, 2006 0.08 0.06 0.01 0.06 0.64 
August 19, 2006 0.03 0.00 0.01 0.01 0.28 
August 29, 2006 0.26 0.05 0.05 0.80 0.94 

September 22, 2006 0.08 -- 0.02 0.05 0.04 
October 16, 2006 -- -- -- -- -- 
November 1, 2006 0.02 0.05 0.12 -- 0.07 

June 1, 2012 0.00 0.00 -- 0.10 0.10 
August 6, 2012 0.02 0.04 0.03 -- -- 
August 10, 2012 0.00 -- 0.00 -- -- 
August 15, 2012 0.31 -- 0.00 -- -- 

September 17, 2012 -- -- -- 0.16 0.07 
October 28, 2012 0.01 -- 0.01 0.01 0.01 

April 17, 2013 0.01 0.00 0.03 0.01 0.01 
May 20, 2013 0.00 0.00 0.00 0.00 0.01 
June 30, 2013 0.00 0.00 0.00 0.00 0.00 
July 11, 2013 0.01 -- -- 

  August 10, 2013 0.28 -- -- 0.03 0.02 
November 25, 2013 0.00 0.05 -- 0.07 0.66 
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